1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system
4 *
5 * Copyright: 2011 Raumfeld GmbH
6 * Author: Johannes Stezenbach <js@sig21.net>
7 *
8 * based on code from:
9 * Wolfson Microelectronics PLC.
10 * Mark Brown <broonie@opensource.wolfsonmicro.com>
11 * Freescale Semiconductor, Inc.
12 * Timur Tabi <timur@freescale.com>
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
16
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/pm.h>
23 #include <linux/i2c.h>
24 #include <linux/of.h>
25 #include <linux/regmap.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/slab.h>
29 #include <linux/workqueue.h>
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/soc.h>
34 #include <sound/soc-dapm.h>
35 #include <sound/initval.h>
36 #include <sound/tlv.h>
37
38 #include <sound/sta32x.h>
39 #include "sta32x.h"
40
41 #define STA32X_RATES (SNDRV_PCM_RATE_32000 | \
42 SNDRV_PCM_RATE_44100 | \
43 SNDRV_PCM_RATE_48000 | \
44 SNDRV_PCM_RATE_88200 | \
45 SNDRV_PCM_RATE_96000 | \
46 SNDRV_PCM_RATE_176400 | \
47 SNDRV_PCM_RATE_192000)
48
49 #define STA32X_FORMATS \
50 (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S18_3LE | \
51 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_3LE | \
52 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
53
54 /* Power-up register defaults */
55 static const struct reg_default sta32x_regs[] = {
56 { 0x0, 0x63 },
57 { 0x1, 0x80 },
58 { 0x2, 0xc2 },
59 { 0x3, 0x40 },
60 { 0x4, 0xc2 },
61 { 0x5, 0x5c },
62 { 0x6, 0x10 },
63 { 0x7, 0xff },
64 { 0x8, 0x60 },
65 { 0x9, 0x60 },
66 { 0xa, 0x60 },
67 { 0xb, 0x80 },
68 { 0xc, 0x00 },
69 { 0xd, 0x00 },
70 { 0xe, 0x00 },
71 { 0xf, 0x40 },
72 { 0x10, 0x80 },
73 { 0x11, 0x77 },
74 { 0x12, 0x6a },
75 { 0x13, 0x69 },
76 { 0x14, 0x6a },
77 { 0x15, 0x69 },
78 { 0x16, 0x00 },
79 { 0x17, 0x00 },
80 { 0x18, 0x00 },
81 { 0x19, 0x00 },
82 { 0x1a, 0x00 },
83 { 0x1b, 0x00 },
84 { 0x1c, 0x00 },
85 { 0x1d, 0x00 },
86 { 0x1e, 0x00 },
87 { 0x1f, 0x00 },
88 { 0x20, 0x00 },
89 { 0x21, 0x00 },
90 { 0x22, 0x00 },
91 { 0x23, 0x00 },
92 { 0x24, 0x00 },
93 { 0x25, 0x00 },
94 { 0x26, 0x00 },
95 { 0x27, 0x2d },
96 { 0x28, 0xc0 },
97 { 0x2b, 0x00 },
98 { 0x2c, 0x0c },
99 };
100
101 static const struct regmap_range sta32x_write_regs_range[] = {
102 regmap_reg_range(STA32X_CONFA, STA32X_FDRC2),
103 };
104
105 static const struct regmap_range sta32x_read_regs_range[] = {
106 regmap_reg_range(STA32X_CONFA, STA32X_FDRC2),
107 };
108
109 static const struct regmap_range sta32x_volatile_regs_range[] = {
110 regmap_reg_range(STA32X_CFADDR2, STA32X_CFUD),
111 };
112
113 static const struct regmap_access_table sta32x_write_regs = {
114 .yes_ranges = sta32x_write_regs_range,
115 .n_yes_ranges = ARRAY_SIZE(sta32x_write_regs_range),
116 };
117
118 static const struct regmap_access_table sta32x_read_regs = {
119 .yes_ranges = sta32x_read_regs_range,
120 .n_yes_ranges = ARRAY_SIZE(sta32x_read_regs_range),
121 };
122
123 static const struct regmap_access_table sta32x_volatile_regs = {
124 .yes_ranges = sta32x_volatile_regs_range,
125 .n_yes_ranges = ARRAY_SIZE(sta32x_volatile_regs_range),
126 };
127
128 /* regulator power supply names */
129 static const char *sta32x_supply_names[] = {
130 "Vdda", /* analog supply, 3.3VV */
131 "Vdd3", /* digital supply, 3.3V */
132 "Vcc" /* power amp spply, 10V - 36V */
133 };
134
135 /* codec private data */
136 struct sta32x_priv {
137 struct regmap *regmap;
138 struct clk *xti_clk;
139 struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)];
140 struct snd_soc_component *component;
141 struct sta32x_platform_data *pdata;
142
143 unsigned int mclk;
144 unsigned int format;
145
146 u32 coef_shadow[STA32X_COEF_COUNT];
147 struct delayed_work watchdog_work;
148 int shutdown;
149 struct gpio_desc *gpiod_nreset;
150 struct mutex coeff_lock;
151 };
152
153 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1);
154 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
155 static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0);
156
157 static const char *sta32x_drc_ac[] = {
158 "Anti-Clipping", "Dynamic Range Compression" };
159 static const char *sta32x_auto_eq_mode[] = {
160 "User", "Preset", "Loudness" };
161 static const char *sta32x_auto_gc_mode[] = {
162 "User", "AC no clipping", "AC limited clipping (10%)",
163 "DRC nighttime listening mode" };
164 static const char *sta32x_auto_xo_mode[] = {
165 "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz",
166 "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" };
167 static const char *sta32x_preset_eq_mode[] = {
168 "Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft",
169 "Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1",
170 "Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2",
171 "Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7",
172 "Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12",
173 "Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" };
174 static const char *sta32x_limiter_select[] = {
175 "Limiter Disabled", "Limiter #1", "Limiter #2" };
176 static const char *sta32x_limiter_attack_rate[] = {
177 "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
178 "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
179 "0.0645", "0.0564", "0.0501", "0.0451" };
180 static const char *sta32x_limiter_release_rate[] = {
181 "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
182 "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
183 "0.0134", "0.0117", "0.0110", "0.0104" };
184 static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_attack_tlv,
185 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
186 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
187 );
188
189 static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_release_tlv,
190 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
191 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
192 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
193 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
194 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
195 );
196
197 static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_attack_tlv,
198 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
199 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
200 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
201 );
202
203 static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_release_tlv,
204 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
205 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
206 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
207 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
208 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
209 );
210
211 static SOC_ENUM_SINGLE_DECL(sta32x_drc_ac_enum,
212 STA32X_CONFD, STA32X_CONFD_DRC_SHIFT,
213 sta32x_drc_ac);
214 static SOC_ENUM_SINGLE_DECL(sta32x_auto_eq_enum,
215 STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT,
216 sta32x_auto_eq_mode);
217 static SOC_ENUM_SINGLE_DECL(sta32x_auto_gc_enum,
218 STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT,
219 sta32x_auto_gc_mode);
220 static SOC_ENUM_SINGLE_DECL(sta32x_auto_xo_enum,
221 STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT,
222 sta32x_auto_xo_mode);
223 static SOC_ENUM_SINGLE_DECL(sta32x_preset_eq_enum,
224 STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT,
225 sta32x_preset_eq_mode);
226 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch1_enum,
227 STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT,
228 sta32x_limiter_select);
229 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch2_enum,
230 STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT,
231 sta32x_limiter_select);
232 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch3_enum,
233 STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT,
234 sta32x_limiter_select);
235 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_attack_rate_enum,
236 STA32X_L1AR, STA32X_LxA_SHIFT,
237 sta32x_limiter_attack_rate);
238 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_attack_rate_enum,
239 STA32X_L2AR, STA32X_LxA_SHIFT,
240 sta32x_limiter_attack_rate);
241 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_release_rate_enum,
242 STA32X_L1AR, STA32X_LxR_SHIFT,
243 sta32x_limiter_release_rate);
244 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_release_rate_enum,
245 STA32X_L2AR, STA32X_LxR_SHIFT,
246 sta32x_limiter_release_rate);
247
248 /* byte array controls for setting biquad, mixer, scaling coefficients;
249 * for biquads all five coefficients need to be set in one go,
250 * mixer and pre/postscale coefs can be set individually;
251 * each coef is 24bit, the bytes are ordered in the same way
252 * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0)
253 */
254
sta32x_coefficient_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)255 static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol,
256 struct snd_ctl_elem_info *uinfo)
257 {
258 int numcoef = kcontrol->private_value >> 16;
259 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
260 uinfo->count = 3 * numcoef;
261 return 0;
262 }
263
sta32x_coefficient_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)264 static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol,
265 struct snd_ctl_elem_value *ucontrol)
266 {
267 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
268 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
269 int numcoef = kcontrol->private_value >> 16;
270 int index = kcontrol->private_value & 0xffff;
271 unsigned int cfud, val;
272 int i, ret = 0;
273
274 mutex_lock(&sta32x->coeff_lock);
275
276 /* preserve reserved bits in STA32X_CFUD */
277 regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
278 cfud &= 0xf0;
279 /*
280 * chip documentation does not say if the bits are self clearing,
281 * so do it explicitly
282 */
283 regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
284
285 regmap_write(sta32x->regmap, STA32X_CFADDR2, index);
286 if (numcoef == 1) {
287 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x04);
288 } else if (numcoef == 5) {
289 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x08);
290 } else {
291 ret = -EINVAL;
292 goto exit_unlock;
293 }
294
295 for (i = 0; i < 3 * numcoef; i++) {
296 regmap_read(sta32x->regmap, STA32X_B1CF1 + i, &val);
297 ucontrol->value.bytes.data[i] = val;
298 }
299
300 exit_unlock:
301 mutex_unlock(&sta32x->coeff_lock);
302
303 return ret;
304 }
305
sta32x_coefficient_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)306 static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol,
307 struct snd_ctl_elem_value *ucontrol)
308 {
309 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
310 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
311 int numcoef = kcontrol->private_value >> 16;
312 int index = kcontrol->private_value & 0xffff;
313 unsigned int cfud;
314 int i;
315
316 /* preserve reserved bits in STA32X_CFUD */
317 regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
318 cfud &= 0xf0;
319 /*
320 * chip documentation does not say if the bits are self clearing,
321 * so do it explicitly
322 */
323 regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
324
325 regmap_write(sta32x->regmap, STA32X_CFADDR2, index);
326 for (i = 0; i < numcoef && (index + i < STA32X_COEF_COUNT); i++)
327 sta32x->coef_shadow[index + i] =
328 (ucontrol->value.bytes.data[3 * i] << 16)
329 | (ucontrol->value.bytes.data[3 * i + 1] << 8)
330 | (ucontrol->value.bytes.data[3 * i + 2]);
331 for (i = 0; i < 3 * numcoef; i++)
332 regmap_write(sta32x->regmap, STA32X_B1CF1 + i,
333 ucontrol->value.bytes.data[i]);
334 if (numcoef == 1)
335 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01);
336 else if (numcoef == 5)
337 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x02);
338 else
339 return -EINVAL;
340
341 return 0;
342 }
343
sta32x_sync_coef_shadow(struct snd_soc_component * component)344 static int sta32x_sync_coef_shadow(struct snd_soc_component *component)
345 {
346 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
347 unsigned int cfud;
348 int i;
349
350 /* preserve reserved bits in STA32X_CFUD */
351 regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
352 cfud &= 0xf0;
353
354 for (i = 0; i < STA32X_COEF_COUNT; i++) {
355 regmap_write(sta32x->regmap, STA32X_CFADDR2, i);
356 regmap_write(sta32x->regmap, STA32X_B1CF1,
357 (sta32x->coef_shadow[i] >> 16) & 0xff);
358 regmap_write(sta32x->regmap, STA32X_B1CF2,
359 (sta32x->coef_shadow[i] >> 8) & 0xff);
360 regmap_write(sta32x->regmap, STA32X_B1CF3,
361 (sta32x->coef_shadow[i]) & 0xff);
362 /*
363 * chip documentation does not say if the bits are
364 * self-clearing, so do it explicitly
365 */
366 regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
367 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01);
368 }
369 return 0;
370 }
371
sta32x_cache_sync(struct snd_soc_component * component)372 static int sta32x_cache_sync(struct snd_soc_component *component)
373 {
374 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
375 unsigned int mute;
376 int rc;
377
378 /* mute during register sync */
379 regmap_read(sta32x->regmap, STA32X_MMUTE, &mute);
380 regmap_write(sta32x->regmap, STA32X_MMUTE, mute | STA32X_MMUTE_MMUTE);
381 sta32x_sync_coef_shadow(component);
382 rc = regcache_sync(sta32x->regmap);
383 regmap_write(sta32x->regmap, STA32X_MMUTE, mute);
384 return rc;
385 }
386
387 /* work around ESD issue where sta32x resets and loses all configuration */
sta32x_watchdog(struct work_struct * work)388 static void sta32x_watchdog(struct work_struct *work)
389 {
390 struct sta32x_priv *sta32x = container_of(work, struct sta32x_priv,
391 watchdog_work.work);
392 struct snd_soc_component *component = sta32x->component;
393 unsigned int confa, confa_cached;
394
395 /* check if sta32x has reset itself */
396 confa_cached = snd_soc_component_read(component, STA32X_CONFA);
397 regcache_cache_bypass(sta32x->regmap, true);
398 confa = snd_soc_component_read(component, STA32X_CONFA);
399 regcache_cache_bypass(sta32x->regmap, false);
400 if (confa != confa_cached) {
401 regcache_mark_dirty(sta32x->regmap);
402 sta32x_cache_sync(component);
403 }
404
405 if (!sta32x->shutdown)
406 queue_delayed_work(system_power_efficient_wq,
407 &sta32x->watchdog_work,
408 round_jiffies_relative(HZ));
409 }
410
sta32x_watchdog_start(struct sta32x_priv * sta32x)411 static void sta32x_watchdog_start(struct sta32x_priv *sta32x)
412 {
413 if (sta32x->pdata->needs_esd_watchdog) {
414 sta32x->shutdown = 0;
415 queue_delayed_work(system_power_efficient_wq,
416 &sta32x->watchdog_work,
417 round_jiffies_relative(HZ));
418 }
419 }
420
sta32x_watchdog_stop(struct sta32x_priv * sta32x)421 static void sta32x_watchdog_stop(struct sta32x_priv *sta32x)
422 {
423 if (sta32x->pdata->needs_esd_watchdog) {
424 sta32x->shutdown = 1;
425 cancel_delayed_work_sync(&sta32x->watchdog_work);
426 }
427 }
428
429 #define SINGLE_COEF(xname, index) \
430 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
431 .info = sta32x_coefficient_info, \
432 .get = sta32x_coefficient_get,\
433 .put = sta32x_coefficient_put, \
434 .private_value = index | (1 << 16) }
435
436 #define BIQUAD_COEFS(xname, index) \
437 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
438 .info = sta32x_coefficient_info, \
439 .get = sta32x_coefficient_get,\
440 .put = sta32x_coefficient_put, \
441 .private_value = index | (5 << 16) }
442
443 static const struct snd_kcontrol_new sta32x_snd_controls[] = {
444 SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv),
445 SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1),
446 SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1),
447 SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1),
448 SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1),
449 SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv),
450 SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv),
451 SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv),
452 SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0),
453 SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum),
454 SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0),
455 SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0),
456 SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0),
457 SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0),
458 SOC_ENUM("Automode EQ", sta32x_auto_eq_enum),
459 SOC_ENUM("Automode GC", sta32x_auto_gc_enum),
460 SOC_ENUM("Automode XO", sta32x_auto_xo_enum),
461 SOC_ENUM("Preset EQ", sta32x_preset_eq_enum),
462 SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
463 SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
464 SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
465 SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
466 SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
467 SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
468 SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
469 SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum),
470 SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum),
471 SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum),
472 SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv),
473 SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv),
474 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum),
475 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum),
476 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
477 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter2_release_rate_enum),
478
479 /* depending on mode, the attack/release thresholds have
480 * two different enum definitions; provide both
481 */
482 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
483 16, 0, sta32x_limiter_ac_attack_tlv),
484 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
485 16, 0, sta32x_limiter_ac_attack_tlv),
486 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
487 16, 0, sta32x_limiter_ac_release_tlv),
488 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
489 16, 0, sta32x_limiter_ac_release_tlv),
490 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
491 16, 0, sta32x_limiter_drc_attack_tlv),
492 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
493 16, 0, sta32x_limiter_drc_attack_tlv),
494 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
495 16, 0, sta32x_limiter_drc_release_tlv),
496 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
497 16, 0, sta32x_limiter_drc_release_tlv),
498
499 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
500 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
501 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
502 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
503 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
504 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
505 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
506 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
507 BIQUAD_COEFS("High-pass", 40),
508 BIQUAD_COEFS("Low-pass", 45),
509 SINGLE_COEF("Ch1 - Prescale", 50),
510 SINGLE_COEF("Ch2 - Prescale", 51),
511 SINGLE_COEF("Ch1 - Postscale", 52),
512 SINGLE_COEF("Ch2 - Postscale", 53),
513 SINGLE_COEF("Ch3 - Postscale", 54),
514 SINGLE_COEF("Thermal warning - Postscale", 55),
515 SINGLE_COEF("Ch1 - Mix 1", 56),
516 SINGLE_COEF("Ch1 - Mix 2", 57),
517 SINGLE_COEF("Ch2 - Mix 1", 58),
518 SINGLE_COEF("Ch2 - Mix 2", 59),
519 SINGLE_COEF("Ch3 - Mix 1", 60),
520 SINGLE_COEF("Ch3 - Mix 2", 61),
521 };
522
523 static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = {
524 SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0),
525 SND_SOC_DAPM_OUTPUT("LEFT"),
526 SND_SOC_DAPM_OUTPUT("RIGHT"),
527 SND_SOC_DAPM_OUTPUT("SUB"),
528 };
529
530 static const struct snd_soc_dapm_route sta32x_dapm_routes[] = {
531 { "LEFT", NULL, "DAC" },
532 { "RIGHT", NULL, "DAC" },
533 { "SUB", NULL, "DAC" },
534 };
535
536 /* MCLK interpolation ratio per fs */
537 static struct {
538 int fs;
539 int ir;
540 } interpolation_ratios[] = {
541 { 32000, 0 },
542 { 44100, 0 },
543 { 48000, 0 },
544 { 88200, 1 },
545 { 96000, 1 },
546 { 176400, 2 },
547 { 192000, 2 },
548 };
549
550 /* MCLK to fs clock ratios */
551 static int mcs_ratio_table[3][7] = {
552 { 768, 512, 384, 256, 128, 576, 0 },
553 { 384, 256, 192, 128, 64, 0 },
554 { 384, 256, 192, 128, 64, 0 },
555 };
556
557 /**
558 * sta32x_set_dai_sysclk - configure MCLK
559 * @codec_dai: the codec DAI
560 * @clk_id: the clock ID (ignored)
561 * @freq: the MCLK input frequency
562 * @dir: the clock direction (ignored)
563 *
564 * The value of MCLK is used to determine which sample rates are supported
565 * by the STA32X, based on the mclk_ratios table.
566 *
567 * This function must be called by the machine driver's 'startup' function,
568 * otherwise the list of supported sample rates will not be available in
569 * time for ALSA.
570 *
571 * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause
572 * theoretically possible sample rates to be enabled. Call it again with a
573 * proper value set one the external clock is set (most probably you would do
574 * that from a machine's driver 'hw_param' hook.
575 */
sta32x_set_dai_sysclk(struct snd_soc_dai * codec_dai,int clk_id,unsigned int freq,int dir)576 static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
577 int clk_id, unsigned int freq, int dir)
578 {
579 struct snd_soc_component *component = codec_dai->component;
580 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
581
582 dev_dbg(component->dev, "mclk=%u\n", freq);
583 sta32x->mclk = freq;
584
585 return 0;
586 }
587
588 /**
589 * sta32x_set_dai_fmt - configure the codec for the selected audio format
590 * @codec_dai: the codec DAI
591 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
592 *
593 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
594 * codec accordingly.
595 */
sta32x_set_dai_fmt(struct snd_soc_dai * codec_dai,unsigned int fmt)596 static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai,
597 unsigned int fmt)
598 {
599 struct snd_soc_component *component = codec_dai->component;
600 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
601 u8 confb = 0;
602
603 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
604 case SND_SOC_DAIFMT_CBC_CFC:
605 break;
606 default:
607 return -EINVAL;
608 }
609
610 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
611 case SND_SOC_DAIFMT_I2S:
612 case SND_SOC_DAIFMT_RIGHT_J:
613 case SND_SOC_DAIFMT_LEFT_J:
614 sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
615 break;
616 default:
617 return -EINVAL;
618 }
619
620 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
621 case SND_SOC_DAIFMT_NB_NF:
622 confb |= STA32X_CONFB_C2IM;
623 break;
624 case SND_SOC_DAIFMT_NB_IF:
625 confb |= STA32X_CONFB_C1IM;
626 break;
627 default:
628 return -EINVAL;
629 }
630
631 return regmap_update_bits(sta32x->regmap, STA32X_CONFB,
632 STA32X_CONFB_C1IM | STA32X_CONFB_C2IM, confb);
633 }
634
635 /**
636 * sta32x_hw_params - program the STA32X with the given hardware parameters.
637 * @substream: the audio stream
638 * @params: the hardware parameters to set
639 * @dai: the SOC DAI (ignored)
640 *
641 * This function programs the hardware with the values provided.
642 * Specifically, the sample rate and the data format.
643 */
sta32x_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * dai)644 static int sta32x_hw_params(struct snd_pcm_substream *substream,
645 struct snd_pcm_hw_params *params,
646 struct snd_soc_dai *dai)
647 {
648 struct snd_soc_component *component = dai->component;
649 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
650 int i, mcs = -EINVAL, ir = -EINVAL;
651 unsigned int confa, confb;
652 unsigned int rate, ratio;
653 int ret;
654
655 if (!sta32x->mclk) {
656 dev_err(component->dev,
657 "sta32x->mclk is unset. Unable to determine ratio\n");
658 return -EIO;
659 }
660
661 rate = params_rate(params);
662 ratio = sta32x->mclk / rate;
663 dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
664
665 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
666 if (interpolation_ratios[i].fs == rate) {
667 ir = interpolation_ratios[i].ir;
668 break;
669 }
670 }
671
672 if (ir < 0) {
673 dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
674 return -EINVAL;
675 }
676
677 for (i = 0; i < 6; i++) {
678 if (mcs_ratio_table[ir][i] == ratio) {
679 mcs = i;
680 break;
681 }
682 }
683
684 if (mcs < 0) {
685 dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
686 return -EINVAL;
687 }
688
689 confa = (ir << STA32X_CONFA_IR_SHIFT) |
690 (mcs << STA32X_CONFA_MCS_SHIFT);
691 confb = 0;
692
693 switch (params_width(params)) {
694 case 24:
695 dev_dbg(component->dev, "24bit\n");
696 fallthrough;
697 case 32:
698 dev_dbg(component->dev, "24bit or 32bit\n");
699 switch (sta32x->format) {
700 case SND_SOC_DAIFMT_I2S:
701 confb |= 0x0;
702 break;
703 case SND_SOC_DAIFMT_LEFT_J:
704 confb |= 0x1;
705 break;
706 case SND_SOC_DAIFMT_RIGHT_J:
707 confb |= 0x2;
708 break;
709 }
710
711 break;
712 case 20:
713 dev_dbg(component->dev, "20bit\n");
714 switch (sta32x->format) {
715 case SND_SOC_DAIFMT_I2S:
716 confb |= 0x4;
717 break;
718 case SND_SOC_DAIFMT_LEFT_J:
719 confb |= 0x5;
720 break;
721 case SND_SOC_DAIFMT_RIGHT_J:
722 confb |= 0x6;
723 break;
724 }
725
726 break;
727 case 18:
728 dev_dbg(component->dev, "18bit\n");
729 switch (sta32x->format) {
730 case SND_SOC_DAIFMT_I2S:
731 confb |= 0x8;
732 break;
733 case SND_SOC_DAIFMT_LEFT_J:
734 confb |= 0x9;
735 break;
736 case SND_SOC_DAIFMT_RIGHT_J:
737 confb |= 0xa;
738 break;
739 }
740
741 break;
742 case 16:
743 dev_dbg(component->dev, "16bit\n");
744 switch (sta32x->format) {
745 case SND_SOC_DAIFMT_I2S:
746 confb |= 0x0;
747 break;
748 case SND_SOC_DAIFMT_LEFT_J:
749 confb |= 0xd;
750 break;
751 case SND_SOC_DAIFMT_RIGHT_J:
752 confb |= 0xe;
753 break;
754 }
755
756 break;
757 default:
758 return -EINVAL;
759 }
760
761 ret = regmap_update_bits(sta32x->regmap, STA32X_CONFA,
762 STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK,
763 confa);
764 if (ret < 0)
765 return ret;
766
767 ret = regmap_update_bits(sta32x->regmap, STA32X_CONFB,
768 STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB,
769 confb);
770 if (ret < 0)
771 return ret;
772
773 return 0;
774 }
775
sta32x_startup_sequence(struct sta32x_priv * sta32x)776 static int sta32x_startup_sequence(struct sta32x_priv *sta32x)
777 {
778 if (sta32x->gpiod_nreset) {
779 gpiod_set_value(sta32x->gpiod_nreset, 0);
780 mdelay(1);
781 gpiod_set_value(sta32x->gpiod_nreset, 1);
782 mdelay(1);
783 }
784
785 return 0;
786 }
787
788 /**
789 * sta32x_set_bias_level - DAPM callback
790 * @component: the component device
791 * @level: DAPM power level
792 *
793 * This is called by ALSA to put the component into low power mode
794 * or to wake it up. If the component is powered off completely
795 * all registers must be restored after power on.
796 */
sta32x_set_bias_level(struct snd_soc_component * component,enum snd_soc_bias_level level)797 static int sta32x_set_bias_level(struct snd_soc_component *component,
798 enum snd_soc_bias_level level)
799 {
800 int ret;
801 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
802
803 dev_dbg(component->dev, "level = %d\n", level);
804 switch (level) {
805 case SND_SOC_BIAS_ON:
806 break;
807
808 case SND_SOC_BIAS_PREPARE:
809 /* Full power on */
810 regmap_update_bits(sta32x->regmap, STA32X_CONFF,
811 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
812 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
813 break;
814
815 case SND_SOC_BIAS_STANDBY:
816 if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
817 ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
818 sta32x->supplies);
819 if (ret != 0) {
820 dev_err(component->dev,
821 "Failed to enable supplies: %d\n", ret);
822 return ret;
823 }
824
825 sta32x_startup_sequence(sta32x);
826 sta32x_cache_sync(component);
827 sta32x_watchdog_start(sta32x);
828 }
829
830 /* Power down */
831 regmap_update_bits(sta32x->regmap, STA32X_CONFF,
832 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
833 0);
834
835 break;
836
837 case SND_SOC_BIAS_OFF:
838 /* The chip runs through the power down sequence for us. */
839 regmap_update_bits(sta32x->regmap, STA32X_CONFF,
840 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD, 0);
841 msleep(300);
842 sta32x_watchdog_stop(sta32x);
843
844 gpiod_set_value(sta32x->gpiod_nreset, 0);
845
846 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies),
847 sta32x->supplies);
848 break;
849 }
850 return 0;
851 }
852
853 static const struct snd_soc_dai_ops sta32x_dai_ops = {
854 .hw_params = sta32x_hw_params,
855 .set_sysclk = sta32x_set_dai_sysclk,
856 .set_fmt = sta32x_set_dai_fmt,
857 };
858
859 static struct snd_soc_dai_driver sta32x_dai = {
860 .name = "sta32x-hifi",
861 .playback = {
862 .stream_name = "Playback",
863 .channels_min = 2,
864 .channels_max = 2,
865 .rates = STA32X_RATES,
866 .formats = STA32X_FORMATS,
867 },
868 .ops = &sta32x_dai_ops,
869 };
870
sta32x_probe(struct snd_soc_component * component)871 static int sta32x_probe(struct snd_soc_component *component)
872 {
873 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
874 struct sta32x_platform_data *pdata = sta32x->pdata;
875 int i, ret = 0, thermal = 0;
876
877 sta32x->component = component;
878
879 if (sta32x->xti_clk) {
880 ret = clk_prepare_enable(sta32x->xti_clk);
881 if (ret != 0) {
882 dev_err(component->dev,
883 "Failed to enable clock: %d\n", ret);
884 return ret;
885 }
886 }
887
888 ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
889 sta32x->supplies);
890 if (ret != 0) {
891 dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
892 goto err_clk_disable_unprepare;
893 }
894
895 ret = sta32x_startup_sequence(sta32x);
896 if (ret < 0) {
897 dev_err(component->dev, "Failed to startup device\n");
898 goto err_regulator_bulk_disable;
899 }
900
901 /* CONFA */
902 if (!pdata->thermal_warning_recovery)
903 thermal |= STA32X_CONFA_TWAB;
904 if (!pdata->thermal_warning_adjustment)
905 thermal |= STA32X_CONFA_TWRB;
906 if (!pdata->fault_detect_recovery)
907 thermal |= STA32X_CONFA_FDRB;
908 regmap_update_bits(sta32x->regmap, STA32X_CONFA,
909 STA32X_CONFA_TWAB | STA32X_CONFA_TWRB |
910 STA32X_CONFA_FDRB,
911 thermal);
912
913 /* CONFC */
914 regmap_update_bits(sta32x->regmap, STA32X_CONFC,
915 STA32X_CONFC_CSZ_MASK,
916 pdata->drop_compensation_ns
917 << STA32X_CONFC_CSZ_SHIFT);
918
919 /* CONFE */
920 regmap_update_bits(sta32x->regmap, STA32X_CONFE,
921 STA32X_CONFE_MPCV,
922 pdata->max_power_use_mpcc ?
923 STA32X_CONFE_MPCV : 0);
924 regmap_update_bits(sta32x->regmap, STA32X_CONFE,
925 STA32X_CONFE_MPC,
926 pdata->max_power_correction ?
927 STA32X_CONFE_MPC : 0);
928 regmap_update_bits(sta32x->regmap, STA32X_CONFE,
929 STA32X_CONFE_AME,
930 pdata->am_reduction_mode ?
931 STA32X_CONFE_AME : 0);
932 regmap_update_bits(sta32x->regmap, STA32X_CONFE,
933 STA32X_CONFE_PWMS,
934 pdata->odd_pwm_speed_mode ?
935 STA32X_CONFE_PWMS : 0);
936
937 /* CONFF */
938 regmap_update_bits(sta32x->regmap, STA32X_CONFF,
939 STA32X_CONFF_IDE,
940 pdata->invalid_input_detect_mute ?
941 STA32X_CONFF_IDE : 0);
942
943 /* select output configuration */
944 regmap_update_bits(sta32x->regmap, STA32X_CONFF,
945 STA32X_CONFF_OCFG_MASK,
946 pdata->output_conf
947 << STA32X_CONFF_OCFG_SHIFT);
948
949 /* channel to output mapping */
950 regmap_update_bits(sta32x->regmap, STA32X_C1CFG,
951 STA32X_CxCFG_OM_MASK,
952 pdata->ch1_output_mapping
953 << STA32X_CxCFG_OM_SHIFT);
954 regmap_update_bits(sta32x->regmap, STA32X_C2CFG,
955 STA32X_CxCFG_OM_MASK,
956 pdata->ch2_output_mapping
957 << STA32X_CxCFG_OM_SHIFT);
958 regmap_update_bits(sta32x->regmap, STA32X_C3CFG,
959 STA32X_CxCFG_OM_MASK,
960 pdata->ch3_output_mapping
961 << STA32X_CxCFG_OM_SHIFT);
962
963 /* initialize coefficient shadow RAM with reset values */
964 for (i = 4; i <= 49; i += 5)
965 sta32x->coef_shadow[i] = 0x400000;
966 for (i = 50; i <= 54; i++)
967 sta32x->coef_shadow[i] = 0x7fffff;
968 sta32x->coef_shadow[55] = 0x5a9df7;
969 sta32x->coef_shadow[56] = 0x7fffff;
970 sta32x->coef_shadow[59] = 0x7fffff;
971 sta32x->coef_shadow[60] = 0x400000;
972 sta32x->coef_shadow[61] = 0x400000;
973
974 if (sta32x->pdata->needs_esd_watchdog)
975 INIT_DELAYED_WORK(&sta32x->watchdog_work, sta32x_watchdog);
976
977 snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
978 /* Bias level configuration will have done an extra enable */
979 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
980
981 return 0;
982
983 err_regulator_bulk_disable:
984 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
985 err_clk_disable_unprepare:
986 if (sta32x->xti_clk)
987 clk_disable_unprepare(sta32x->xti_clk);
988 return ret;
989 }
990
sta32x_remove(struct snd_soc_component * component)991 static void sta32x_remove(struct snd_soc_component *component)
992 {
993 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
994
995 sta32x_watchdog_stop(sta32x);
996 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
997
998 if (sta32x->xti_clk)
999 clk_disable_unprepare(sta32x->xti_clk);
1000 }
1001
1002 static const struct snd_soc_component_driver sta32x_component = {
1003 .probe = sta32x_probe,
1004 .remove = sta32x_remove,
1005 .set_bias_level = sta32x_set_bias_level,
1006 .controls = sta32x_snd_controls,
1007 .num_controls = ARRAY_SIZE(sta32x_snd_controls),
1008 .dapm_widgets = sta32x_dapm_widgets,
1009 .num_dapm_widgets = ARRAY_SIZE(sta32x_dapm_widgets),
1010 .dapm_routes = sta32x_dapm_routes,
1011 .num_dapm_routes = ARRAY_SIZE(sta32x_dapm_routes),
1012 .suspend_bias_off = 1,
1013 .idle_bias_on = 1,
1014 .use_pmdown_time = 1,
1015 .endianness = 1,
1016 };
1017
1018 static const struct regmap_config sta32x_regmap = {
1019 .reg_bits = 8,
1020 .val_bits = 8,
1021 .max_register = STA32X_FDRC2,
1022 .reg_defaults = sta32x_regs,
1023 .num_reg_defaults = ARRAY_SIZE(sta32x_regs),
1024 .cache_type = REGCACHE_MAPLE,
1025 .wr_table = &sta32x_write_regs,
1026 .rd_table = &sta32x_read_regs,
1027 .volatile_table = &sta32x_volatile_regs,
1028 };
1029
1030 #ifdef CONFIG_OF
1031 static const struct of_device_id st32x_dt_ids[] = {
1032 { .compatible = "st,sta32x", },
1033 { }
1034 };
1035 MODULE_DEVICE_TABLE(of, st32x_dt_ids);
1036
sta32x_probe_dt(struct device * dev,struct sta32x_priv * sta32x)1037 static int sta32x_probe_dt(struct device *dev, struct sta32x_priv *sta32x)
1038 {
1039 struct device_node *np = dev->of_node;
1040 struct sta32x_platform_data *pdata;
1041 u16 tmp;
1042
1043 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1044 if (!pdata)
1045 return -ENOMEM;
1046
1047 of_property_read_u8(np, "st,output-conf",
1048 &pdata->output_conf);
1049 of_property_read_u8(np, "st,ch1-output-mapping",
1050 &pdata->ch1_output_mapping);
1051 of_property_read_u8(np, "st,ch2-output-mapping",
1052 &pdata->ch2_output_mapping);
1053 of_property_read_u8(np, "st,ch3-output-mapping",
1054 &pdata->ch3_output_mapping);
1055
1056 pdata->fault_detect_recovery =
1057 of_property_read_bool(np, "st,fault-detect-recovery");
1058 pdata->thermal_warning_recovery =
1059 of_property_read_bool(np, "st,thermal-warning-recovery");
1060 pdata->thermal_warning_adjustment =
1061 of_property_read_bool(np, "st,thermal-warning-adjustment");
1062 pdata->needs_esd_watchdog =
1063 of_property_read_bool(np, "st,needs_esd_watchdog");
1064
1065 tmp = 140;
1066 of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1067 pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1068
1069 /* CONFE */
1070 pdata->max_power_use_mpcc =
1071 of_property_read_bool(np, "st,max-power-use-mpcc");
1072 pdata->max_power_correction =
1073 of_property_read_bool(np, "st,max-power-correction");
1074 pdata->am_reduction_mode =
1075 of_property_read_bool(np, "st,am-reduction-mode");
1076 pdata->odd_pwm_speed_mode =
1077 of_property_read_bool(np, "st,odd-pwm-speed-mode");
1078
1079 /* CONFF */
1080 pdata->invalid_input_detect_mute =
1081 of_property_read_bool(np, "st,invalid-input-detect-mute");
1082
1083 sta32x->pdata = pdata;
1084
1085 return 0;
1086 }
1087 #endif
1088
sta32x_i2c_probe(struct i2c_client * i2c)1089 static int sta32x_i2c_probe(struct i2c_client *i2c)
1090 {
1091 struct device *dev = &i2c->dev;
1092 struct sta32x_priv *sta32x;
1093 int ret, i;
1094
1095 sta32x = devm_kzalloc(&i2c->dev, sizeof(struct sta32x_priv),
1096 GFP_KERNEL);
1097 if (!sta32x)
1098 return -ENOMEM;
1099
1100 mutex_init(&sta32x->coeff_lock);
1101 sta32x->pdata = dev_get_platdata(dev);
1102
1103 #ifdef CONFIG_OF
1104 if (dev->of_node) {
1105 ret = sta32x_probe_dt(dev, sta32x);
1106 if (ret < 0)
1107 return ret;
1108 }
1109 #endif
1110
1111 /* Clock */
1112 sta32x->xti_clk = devm_clk_get(dev, "xti");
1113 if (IS_ERR(sta32x->xti_clk)) {
1114 ret = PTR_ERR(sta32x->xti_clk);
1115
1116 if (ret == -EPROBE_DEFER)
1117 return ret;
1118
1119 sta32x->xti_clk = NULL;
1120 }
1121
1122 /* GPIOs */
1123 sta32x->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1124 GPIOD_OUT_LOW);
1125 if (IS_ERR(sta32x->gpiod_nreset))
1126 return PTR_ERR(sta32x->gpiod_nreset);
1127
1128 /* regulators */
1129 for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++)
1130 sta32x->supplies[i].supply = sta32x_supply_names[i];
1131
1132 ret = devm_regulator_bulk_get(&i2c->dev, ARRAY_SIZE(sta32x->supplies),
1133 sta32x->supplies);
1134 if (ret != 0) {
1135 dev_err(&i2c->dev, "Failed to request supplies: %d\n", ret);
1136 return ret;
1137 }
1138
1139 sta32x->regmap = devm_regmap_init_i2c(i2c, &sta32x_regmap);
1140 if (IS_ERR(sta32x->regmap)) {
1141 ret = PTR_ERR(sta32x->regmap);
1142 dev_err(dev, "Failed to init regmap: %d\n", ret);
1143 return ret;
1144 }
1145
1146 i2c_set_clientdata(i2c, sta32x);
1147
1148 ret = devm_snd_soc_register_component(dev, &sta32x_component,
1149 &sta32x_dai, 1);
1150 if (ret < 0)
1151 dev_err(dev, "Failed to register component (%d)\n", ret);
1152
1153 return ret;
1154 }
1155
1156 static const struct i2c_device_id sta32x_i2c_id[] = {
1157 { "sta326" },
1158 { "sta328" },
1159 { "sta329" },
1160 { }
1161 };
1162 MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id);
1163
1164 static struct i2c_driver sta32x_i2c_driver = {
1165 .driver = {
1166 .name = "sta32x",
1167 .of_match_table = of_match_ptr(st32x_dt_ids),
1168 },
1169 .probe = sta32x_i2c_probe,
1170 .id_table = sta32x_i2c_id,
1171 };
1172
1173 module_i2c_driver(sta32x_i2c_driver);
1174
1175 MODULE_DESCRIPTION("ASoC STA32X driver");
1176 MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>");
1177 MODULE_LICENSE("GPL");
1178