1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3 *
4 * Copyright (c) 2017 - 2019, Intel Corporation.
5 */
6
7 #define pr_fmt(fmt) "MPTCP: " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp_states.h>
19 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
20 #include <net/transp_v6.h>
21 #endif
22 #include <net/mptcp.h>
23 #include <net/hotdata.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 struct mptcp_sock msk;
35 struct ipv6_pinfo np;
36 };
37 #endif
38
39 enum {
40 MPTCP_CMSG_TS = BIT(0),
41 MPTCP_CMSG_INQ = BIT(1),
42 };
43
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
50 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
51 };
52 static struct net_device *mptcp_napi_dev;
53
54 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)55 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
56 {
57 return READ_ONCE(msk->wnd_end);
58 }
59
mptcp_fallback_tcp_ops(const struct sock * sk)60 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
61 {
62 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
63 if (sk->sk_prot == &tcpv6_prot)
64 return &inet6_stream_ops;
65 #endif
66 WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
67 return &inet_stream_ops;
68 }
69
__mptcp_socket_create(struct mptcp_sock * msk)70 static int __mptcp_socket_create(struct mptcp_sock *msk)
71 {
72 struct mptcp_subflow_context *subflow;
73 struct sock *sk = (struct sock *)msk;
74 struct socket *ssock;
75 int err;
76
77 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
78 if (err)
79 return err;
80
81 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
82 WRITE_ONCE(msk->first, ssock->sk);
83 subflow = mptcp_subflow_ctx(ssock->sk);
84 list_add(&subflow->node, &msk->conn_list);
85 sock_hold(ssock->sk);
86 subflow->request_mptcp = 1;
87 subflow->subflow_id = msk->subflow_id++;
88
89 /* This is the first subflow, always with id 0 */
90 WRITE_ONCE(subflow->local_id, 0);
91 mptcp_sock_graft(msk->first, sk->sk_socket);
92 iput(SOCK_INODE(ssock));
93
94 return 0;
95 }
96
97 /* If the MPC handshake is not started, returns the first subflow,
98 * eventually allocating it.
99 */
__mptcp_nmpc_sk(struct mptcp_sock * msk)100 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
101 {
102 struct sock *sk = (struct sock *)msk;
103 int ret;
104
105 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
106 return ERR_PTR(-EINVAL);
107
108 if (!msk->first) {
109 ret = __mptcp_socket_create(msk);
110 if (ret)
111 return ERR_PTR(ret);
112 }
113
114 return msk->first;
115 }
116
mptcp_drop(struct sock * sk,struct sk_buff * skb)117 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
118 {
119 sk_drops_add(sk, skb);
120 __kfree_skb(skb);
121 }
122
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)123 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
124 struct sk_buff *from)
125 {
126 bool fragstolen;
127 int delta;
128
129 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
130 MPTCP_SKB_CB(from)->offset ||
131 ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
132 !skb_try_coalesce(to, from, &fragstolen, &delta))
133 return false;
134
135 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
136 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
137 to->len, MPTCP_SKB_CB(from)->end_seq);
138 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
139
140 /* note the fwd memory can reach a negative value after accounting
141 * for the delta, but the later skb free will restore a non
142 * negative one
143 */
144 atomic_add(delta, &sk->sk_rmem_alloc);
145 sk_mem_charge(sk, delta);
146 kfree_skb_partial(from, fragstolen);
147
148 return true;
149 }
150
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)151 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
152 struct sk_buff *from)
153 {
154 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
155 return false;
156
157 return mptcp_try_coalesce((struct sock *)msk, to, from);
158 }
159
160 /* "inspired" by tcp_data_queue_ofo(), main differences:
161 * - use mptcp seqs
162 * - don't cope with sacks
163 */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)164 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
165 {
166 struct sock *sk = (struct sock *)msk;
167 struct rb_node **p, *parent;
168 u64 seq, end_seq, max_seq;
169 struct sk_buff *skb1;
170
171 seq = MPTCP_SKB_CB(skb)->map_seq;
172 end_seq = MPTCP_SKB_CB(skb)->end_seq;
173 max_seq = atomic64_read(&msk->rcv_wnd_sent);
174
175 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
176 RB_EMPTY_ROOT(&msk->out_of_order_queue));
177 if (after64(end_seq, max_seq)) {
178 /* out of window */
179 mptcp_drop(sk, skb);
180 pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
181 (unsigned long long)end_seq - (unsigned long)max_seq,
182 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
183 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
184 return;
185 }
186
187 p = &msk->out_of_order_queue.rb_node;
188 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
189 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
190 rb_link_node(&skb->rbnode, NULL, p);
191 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
192 msk->ooo_last_skb = skb;
193 goto end;
194 }
195
196 /* with 2 subflows, adding at end of ooo queue is quite likely
197 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
198 */
199 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
200 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
201 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
202 return;
203 }
204
205 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
206 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
207 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
208 parent = &msk->ooo_last_skb->rbnode;
209 p = &parent->rb_right;
210 goto insert;
211 }
212
213 /* Find place to insert this segment. Handle overlaps on the way. */
214 parent = NULL;
215 while (*p) {
216 parent = *p;
217 skb1 = rb_to_skb(parent);
218 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
219 p = &parent->rb_left;
220 continue;
221 }
222 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
223 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
224 /* All the bits are present. Drop. */
225 mptcp_drop(sk, skb);
226 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
227 return;
228 }
229 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
230 /* partial overlap:
231 * | skb |
232 * | skb1 |
233 * continue traversing
234 */
235 } else {
236 /* skb's seq == skb1's seq and skb covers skb1.
237 * Replace skb1 with skb.
238 */
239 rb_replace_node(&skb1->rbnode, &skb->rbnode,
240 &msk->out_of_order_queue);
241 mptcp_drop(sk, skb1);
242 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
243 goto merge_right;
244 }
245 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
246 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
247 return;
248 }
249 p = &parent->rb_right;
250 }
251
252 insert:
253 /* Insert segment into RB tree. */
254 rb_link_node(&skb->rbnode, parent, p);
255 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
256
257 merge_right:
258 /* Remove other segments covered by skb. */
259 while ((skb1 = skb_rb_next(skb)) != NULL) {
260 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
261 break;
262 rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
263 mptcp_drop(sk, skb1);
264 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
265 }
266 /* If there is no skb after us, we are the last_skb ! */
267 if (!skb1)
268 msk->ooo_last_skb = skb;
269
270 end:
271 skb_condense(skb);
272 skb_set_owner_r(skb, sk);
273 }
274
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)275 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
276 struct sk_buff *skb, unsigned int offset,
277 size_t copy_len)
278 {
279 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
280 struct sock *sk = (struct sock *)msk;
281 struct sk_buff *tail;
282 bool has_rxtstamp;
283
284 __skb_unlink(skb, &ssk->sk_receive_queue);
285
286 skb_ext_reset(skb);
287 skb_orphan(skb);
288
289 /* try to fetch required memory from subflow */
290 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
291 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
292 goto drop;
293 }
294
295 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
296
297 /* the skb map_seq accounts for the skb offset:
298 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
299 * value
300 */
301 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
302 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
303 MPTCP_SKB_CB(skb)->offset = offset;
304 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
305 MPTCP_SKB_CB(skb)->cant_coalesce = 0;
306
307 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
308 /* in sequence */
309 msk->bytes_received += copy_len;
310 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
311 tail = skb_peek_tail(&sk->sk_receive_queue);
312 if (tail && mptcp_try_coalesce(sk, tail, skb))
313 return true;
314
315 skb_set_owner_r(skb, sk);
316 __skb_queue_tail(&sk->sk_receive_queue, skb);
317 return true;
318 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
319 mptcp_data_queue_ofo(msk, skb);
320 return false;
321 }
322
323 /* old data, keep it simple and drop the whole pkt, sender
324 * will retransmit as needed, if needed.
325 */
326 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
327 drop:
328 mptcp_drop(sk, skb);
329 return false;
330 }
331
mptcp_stop_rtx_timer(struct sock * sk)332 static void mptcp_stop_rtx_timer(struct sock *sk)
333 {
334 struct inet_connection_sock *icsk = inet_csk(sk);
335
336 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
337 mptcp_sk(sk)->timer_ival = 0;
338 }
339
mptcp_close_wake_up(struct sock * sk)340 static void mptcp_close_wake_up(struct sock *sk)
341 {
342 if (sock_flag(sk, SOCK_DEAD))
343 return;
344
345 sk->sk_state_change(sk);
346 if (sk->sk_shutdown == SHUTDOWN_MASK ||
347 sk->sk_state == TCP_CLOSE)
348 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
349 else
350 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
351 }
352
353 /* called under the msk socket lock */
mptcp_pending_data_fin_ack(struct sock * sk)354 static bool mptcp_pending_data_fin_ack(struct sock *sk)
355 {
356 struct mptcp_sock *msk = mptcp_sk(sk);
357
358 return ((1 << sk->sk_state) &
359 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
360 msk->write_seq == READ_ONCE(msk->snd_una);
361 }
362
mptcp_check_data_fin_ack(struct sock * sk)363 static void mptcp_check_data_fin_ack(struct sock *sk)
364 {
365 struct mptcp_sock *msk = mptcp_sk(sk);
366
367 /* Look for an acknowledged DATA_FIN */
368 if (mptcp_pending_data_fin_ack(sk)) {
369 WRITE_ONCE(msk->snd_data_fin_enable, 0);
370
371 switch (sk->sk_state) {
372 case TCP_FIN_WAIT1:
373 mptcp_set_state(sk, TCP_FIN_WAIT2);
374 break;
375 case TCP_CLOSING:
376 case TCP_LAST_ACK:
377 mptcp_set_state(sk, TCP_CLOSE);
378 break;
379 }
380
381 mptcp_close_wake_up(sk);
382 }
383 }
384
385 /* can be called with no lock acquired */
mptcp_pending_data_fin(struct sock * sk,u64 * seq)386 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
387 {
388 struct mptcp_sock *msk = mptcp_sk(sk);
389
390 if (READ_ONCE(msk->rcv_data_fin) &&
391 ((1 << inet_sk_state_load(sk)) &
392 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
393 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
394
395 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
396 if (seq)
397 *seq = rcv_data_fin_seq;
398
399 return true;
400 }
401 }
402
403 return false;
404 }
405
mptcp_set_datafin_timeout(struct sock * sk)406 static void mptcp_set_datafin_timeout(struct sock *sk)
407 {
408 struct inet_connection_sock *icsk = inet_csk(sk);
409 u32 retransmits;
410
411 retransmits = min_t(u32, icsk->icsk_retransmits,
412 ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
413
414 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
415 }
416
__mptcp_set_timeout(struct sock * sk,long tout)417 static void __mptcp_set_timeout(struct sock *sk, long tout)
418 {
419 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
420 }
421
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)422 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
423 {
424 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
425
426 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
427 icsk_timeout(inet_csk(ssk)) - jiffies : 0;
428 }
429
mptcp_set_timeout(struct sock * sk)430 static void mptcp_set_timeout(struct sock *sk)
431 {
432 struct mptcp_subflow_context *subflow;
433 long tout = 0;
434
435 mptcp_for_each_subflow(mptcp_sk(sk), subflow)
436 tout = max(tout, mptcp_timeout_from_subflow(subflow));
437 __mptcp_set_timeout(sk, tout);
438 }
439
tcp_can_send_ack(const struct sock * ssk)440 static inline bool tcp_can_send_ack(const struct sock *ssk)
441 {
442 return !((1 << inet_sk_state_load(ssk)) &
443 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
444 }
445
__mptcp_subflow_send_ack(struct sock * ssk)446 void __mptcp_subflow_send_ack(struct sock *ssk)
447 {
448 if (tcp_can_send_ack(ssk))
449 tcp_send_ack(ssk);
450 }
451
mptcp_subflow_send_ack(struct sock * ssk)452 static void mptcp_subflow_send_ack(struct sock *ssk)
453 {
454 bool slow;
455
456 slow = lock_sock_fast(ssk);
457 __mptcp_subflow_send_ack(ssk);
458 unlock_sock_fast(ssk, slow);
459 }
460
mptcp_send_ack(struct mptcp_sock * msk)461 static void mptcp_send_ack(struct mptcp_sock *msk)
462 {
463 struct mptcp_subflow_context *subflow;
464
465 mptcp_for_each_subflow(msk, subflow)
466 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
467 }
468
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)469 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
470 {
471 bool slow;
472
473 slow = lock_sock_fast(ssk);
474 if (tcp_can_send_ack(ssk))
475 tcp_cleanup_rbuf(ssk, copied);
476 unlock_sock_fast(ssk, slow);
477 }
478
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)479 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
480 {
481 const struct inet_connection_sock *icsk = inet_csk(ssk);
482 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
483 const struct tcp_sock *tp = tcp_sk(ssk);
484
485 return (ack_pending & ICSK_ACK_SCHED) &&
486 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
487 READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
488 (rx_empty && ack_pending &
489 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
490 }
491
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)492 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
493 {
494 int old_space = READ_ONCE(msk->old_wspace);
495 struct mptcp_subflow_context *subflow;
496 struct sock *sk = (struct sock *)msk;
497 int space = __mptcp_space(sk);
498 bool cleanup, rx_empty;
499
500 cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
501 rx_empty = !sk_rmem_alloc_get(sk) && copied;
502
503 mptcp_for_each_subflow(msk, subflow) {
504 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
505
506 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
507 mptcp_subflow_cleanup_rbuf(ssk, copied);
508 }
509 }
510
mptcp_check_data_fin(struct sock * sk)511 static bool mptcp_check_data_fin(struct sock *sk)
512 {
513 struct mptcp_sock *msk = mptcp_sk(sk);
514 u64 rcv_data_fin_seq;
515 bool ret = false;
516
517 /* Need to ack a DATA_FIN received from a peer while this side
518 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
519 * msk->rcv_data_fin was set when parsing the incoming options
520 * at the subflow level and the msk lock was not held, so this
521 * is the first opportunity to act on the DATA_FIN and change
522 * the msk state.
523 *
524 * If we are caught up to the sequence number of the incoming
525 * DATA_FIN, send the DATA_ACK now and do state transition. If
526 * not caught up, do nothing and let the recv code send DATA_ACK
527 * when catching up.
528 */
529
530 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
531 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
532 WRITE_ONCE(msk->rcv_data_fin, 0);
533
534 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
535 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
536
537 switch (sk->sk_state) {
538 case TCP_ESTABLISHED:
539 mptcp_set_state(sk, TCP_CLOSE_WAIT);
540 break;
541 case TCP_FIN_WAIT1:
542 mptcp_set_state(sk, TCP_CLOSING);
543 break;
544 case TCP_FIN_WAIT2:
545 mptcp_set_state(sk, TCP_CLOSE);
546 break;
547 default:
548 /* Other states not expected */
549 WARN_ON_ONCE(1);
550 break;
551 }
552
553 ret = true;
554 if (!__mptcp_check_fallback(msk))
555 mptcp_send_ack(msk);
556 mptcp_close_wake_up(sk);
557 }
558 return ret;
559 }
560
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)561 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
562 {
563 if (mptcp_try_fallback(ssk)) {
564 MPTCP_INC_STATS(sock_net(ssk),
565 MPTCP_MIB_DSSCORRUPTIONFALLBACK);
566 } else {
567 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
568 mptcp_subflow_reset(ssk);
569 }
570 }
571
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk)572 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
573 struct sock *ssk)
574 {
575 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
576 struct sock *sk = (struct sock *)msk;
577 bool more_data_avail;
578 struct tcp_sock *tp;
579 bool ret = false;
580
581 pr_debug("msk=%p ssk=%p\n", msk, ssk);
582 tp = tcp_sk(ssk);
583 do {
584 u32 map_remaining, offset;
585 u32 seq = tp->copied_seq;
586 struct sk_buff *skb;
587 bool fin;
588
589 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
590 break;
591
592 /* try to move as much data as available */
593 map_remaining = subflow->map_data_len -
594 mptcp_subflow_get_map_offset(subflow);
595
596 skb = skb_peek(&ssk->sk_receive_queue);
597 if (unlikely(!skb))
598 break;
599
600 if (__mptcp_check_fallback(msk)) {
601 /* Under fallback skbs have no MPTCP extension and TCP could
602 * collapse them between the dummy map creation and the
603 * current dequeue. Be sure to adjust the map size.
604 */
605 map_remaining = skb->len;
606 subflow->map_data_len = skb->len;
607 }
608
609 offset = seq - TCP_SKB_CB(skb)->seq;
610 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
611 if (fin)
612 seq++;
613
614 if (offset < skb->len) {
615 size_t len = skb->len - offset;
616
617 ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret;
618 seq += len;
619
620 if (unlikely(map_remaining < len)) {
621 DEBUG_NET_WARN_ON_ONCE(1);
622 mptcp_dss_corruption(msk, ssk);
623 }
624 } else {
625 if (unlikely(!fin)) {
626 DEBUG_NET_WARN_ON_ONCE(1);
627 mptcp_dss_corruption(msk, ssk);
628 }
629
630 sk_eat_skb(ssk, skb);
631 }
632
633 WRITE_ONCE(tp->copied_seq, seq);
634 more_data_avail = mptcp_subflow_data_available(ssk);
635
636 } while (more_data_avail);
637
638 if (ret)
639 msk->last_data_recv = tcp_jiffies32;
640 return ret;
641 }
642
__mptcp_ofo_queue(struct mptcp_sock * msk)643 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
644 {
645 struct sock *sk = (struct sock *)msk;
646 struct sk_buff *skb, *tail;
647 bool moved = false;
648 struct rb_node *p;
649 u64 end_seq;
650
651 p = rb_first(&msk->out_of_order_queue);
652 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
653 while (p) {
654 skb = rb_to_skb(p);
655 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
656 break;
657
658 p = rb_next(p);
659 rb_erase(&skb->rbnode, &msk->out_of_order_queue);
660
661 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
662 msk->ack_seq))) {
663 mptcp_drop(sk, skb);
664 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
665 continue;
666 }
667
668 end_seq = MPTCP_SKB_CB(skb)->end_seq;
669 tail = skb_peek_tail(&sk->sk_receive_queue);
670 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
671 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
672
673 /* skip overlapping data, if any */
674 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
675 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
676 delta);
677 MPTCP_SKB_CB(skb)->offset += delta;
678 MPTCP_SKB_CB(skb)->map_seq += delta;
679 __skb_queue_tail(&sk->sk_receive_queue, skb);
680 }
681 msk->bytes_received += end_seq - msk->ack_seq;
682 WRITE_ONCE(msk->ack_seq, end_seq);
683 moved = true;
684 }
685 return moved;
686 }
687
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)688 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
689 {
690 int err = sock_error(ssk);
691 int ssk_state;
692
693 if (!err)
694 return false;
695
696 /* only propagate errors on fallen-back sockets or
697 * on MPC connect
698 */
699 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
700 return false;
701
702 /* We need to propagate only transition to CLOSE state.
703 * Orphaned socket will see such state change via
704 * subflow_sched_work_if_closed() and that path will properly
705 * destroy the msk as needed.
706 */
707 ssk_state = inet_sk_state_load(ssk);
708 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
709 mptcp_set_state(sk, ssk_state);
710 WRITE_ONCE(sk->sk_err, -err);
711
712 /* This barrier is coupled with smp_rmb() in mptcp_poll() */
713 smp_wmb();
714 sk_error_report(sk);
715 return true;
716 }
717
__mptcp_error_report(struct sock * sk)718 void __mptcp_error_report(struct sock *sk)
719 {
720 struct mptcp_subflow_context *subflow;
721 struct mptcp_sock *msk = mptcp_sk(sk);
722
723 mptcp_for_each_subflow(msk, subflow)
724 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
725 break;
726 }
727
728 /* In most cases we will be able to lock the mptcp socket. If its already
729 * owned, we need to defer to the work queue to avoid ABBA deadlock.
730 */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)731 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
732 {
733 struct sock *sk = (struct sock *)msk;
734 bool moved;
735
736 moved = __mptcp_move_skbs_from_subflow(msk, ssk);
737 __mptcp_ofo_queue(msk);
738 if (unlikely(ssk->sk_err)) {
739 if (!sock_owned_by_user(sk))
740 __mptcp_error_report(sk);
741 else
742 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags);
743 }
744
745 /* If the moves have caught up with the DATA_FIN sequence number
746 * it's time to ack the DATA_FIN and change socket state, but
747 * this is not a good place to change state. Let the workqueue
748 * do it.
749 */
750 if (mptcp_pending_data_fin(sk, NULL))
751 mptcp_schedule_work(sk);
752 return moved;
753 }
754
__mptcp_rcvbuf_update(struct sock * sk,struct sock * ssk)755 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk)
756 {
757 if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf))
758 WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf);
759 }
760
__mptcp_data_ready(struct sock * sk,struct sock * ssk)761 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
762 {
763 struct mptcp_sock *msk = mptcp_sk(sk);
764
765 __mptcp_rcvbuf_update(sk, ssk);
766
767 /* Wake-up the reader only for in-sequence data */
768 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
769 sk->sk_data_ready(sk);
770 }
771
mptcp_data_ready(struct sock * sk,struct sock * ssk)772 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
773 {
774 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
775
776 /* The peer can send data while we are shutting down this
777 * subflow at msk destruction time, but we must avoid enqueuing
778 * more data to the msk receive queue
779 */
780 if (unlikely(subflow->disposable))
781 return;
782
783 mptcp_data_lock(sk);
784 if (!sock_owned_by_user(sk))
785 __mptcp_data_ready(sk, ssk);
786 else
787 __set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
788 mptcp_data_unlock(sk);
789 }
790
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)791 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
792 {
793 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
794 msk->allow_infinite_fallback = false;
795 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
796 }
797
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)798 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
799 {
800 struct sock *sk = (struct sock *)msk;
801
802 if (sk->sk_state != TCP_ESTABLISHED)
803 return false;
804
805 spin_lock_bh(&msk->fallback_lock);
806 if (!msk->allow_subflows) {
807 spin_unlock_bh(&msk->fallback_lock);
808 return false;
809 }
810 mptcp_subflow_joined(msk, ssk);
811 spin_unlock_bh(&msk->fallback_lock);
812
813 /* attach to msk socket only after we are sure we will deal with it
814 * at close time
815 */
816 if (sk->sk_socket && !ssk->sk_socket)
817 mptcp_sock_graft(ssk, sk->sk_socket);
818
819 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
820 mptcp_sockopt_sync_locked(msk, ssk);
821 mptcp_stop_tout_timer(sk);
822 __mptcp_propagate_sndbuf(sk, ssk);
823 return true;
824 }
825
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)826 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
827 {
828 struct mptcp_subflow_context *tmp, *subflow;
829 struct mptcp_sock *msk = mptcp_sk(sk);
830
831 list_for_each_entry_safe(subflow, tmp, join_list, node) {
832 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
833 bool slow = lock_sock_fast(ssk);
834
835 list_move_tail(&subflow->node, &msk->conn_list);
836 if (!__mptcp_finish_join(msk, ssk))
837 mptcp_subflow_reset(ssk);
838 unlock_sock_fast(ssk, slow);
839 }
840 }
841
mptcp_rtx_timer_pending(struct sock * sk)842 static bool mptcp_rtx_timer_pending(struct sock *sk)
843 {
844 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
845 }
846
mptcp_reset_rtx_timer(struct sock * sk)847 static void mptcp_reset_rtx_timer(struct sock *sk)
848 {
849 struct inet_connection_sock *icsk = inet_csk(sk);
850 unsigned long tout;
851
852 /* prevent rescheduling on close */
853 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
854 return;
855
856 tout = mptcp_sk(sk)->timer_ival;
857 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
858 }
859
mptcp_schedule_work(struct sock * sk)860 bool mptcp_schedule_work(struct sock *sk)
861 {
862 if (inet_sk_state_load(sk) != TCP_CLOSE &&
863 schedule_work(&mptcp_sk(sk)->work)) {
864 /* each subflow already holds a reference to the sk, and the
865 * workqueue is invoked by a subflow, so sk can't go away here.
866 */
867 sock_hold(sk);
868 return true;
869 }
870 return false;
871 }
872
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)873 static bool mptcp_skb_can_collapse_to(u64 write_seq,
874 const struct sk_buff *skb,
875 const struct mptcp_ext *mpext)
876 {
877 if (!tcp_skb_can_collapse_to(skb))
878 return false;
879
880 /* can collapse only if MPTCP level sequence is in order and this
881 * mapping has not been xmitted yet
882 */
883 return mpext && mpext->data_seq + mpext->data_len == write_seq &&
884 !mpext->frozen;
885 }
886
887 /* we can append data to the given data frag if:
888 * - there is space available in the backing page_frag
889 * - the data frag tail matches the current page_frag free offset
890 * - the data frag end sequence number matches the current write seq
891 */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)892 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
893 const struct page_frag *pfrag,
894 const struct mptcp_data_frag *df)
895 {
896 return df && pfrag->page == df->page &&
897 pfrag->size - pfrag->offset > 0 &&
898 pfrag->offset == (df->offset + df->data_len) &&
899 df->data_seq + df->data_len == msk->write_seq;
900 }
901
dfrag_uncharge(struct sock * sk,int len)902 static void dfrag_uncharge(struct sock *sk, int len)
903 {
904 sk_mem_uncharge(sk, len);
905 sk_wmem_queued_add(sk, -len);
906 }
907
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)908 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
909 {
910 int len = dfrag->data_len + dfrag->overhead;
911
912 list_del(&dfrag->list);
913 dfrag_uncharge(sk, len);
914 put_page(dfrag->page);
915 }
916
917 /* called under both the msk socket lock and the data lock */
__mptcp_clean_una(struct sock * sk)918 static void __mptcp_clean_una(struct sock *sk)
919 {
920 struct mptcp_sock *msk = mptcp_sk(sk);
921 struct mptcp_data_frag *dtmp, *dfrag;
922 u64 snd_una;
923
924 snd_una = msk->snd_una;
925 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
926 if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
927 break;
928
929 if (unlikely(dfrag == msk->first_pending)) {
930 /* in recovery mode can see ack after the current snd head */
931 if (WARN_ON_ONCE(!msk->recovery))
932 break;
933
934 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
935 }
936
937 dfrag_clear(sk, dfrag);
938 }
939
940 dfrag = mptcp_rtx_head(sk);
941 if (dfrag && after64(snd_una, dfrag->data_seq)) {
942 u64 delta = snd_una - dfrag->data_seq;
943
944 /* prevent wrap around in recovery mode */
945 if (unlikely(delta > dfrag->already_sent)) {
946 if (WARN_ON_ONCE(!msk->recovery))
947 goto out;
948 if (WARN_ON_ONCE(delta > dfrag->data_len))
949 goto out;
950 dfrag->already_sent += delta - dfrag->already_sent;
951 }
952
953 dfrag->data_seq += delta;
954 dfrag->offset += delta;
955 dfrag->data_len -= delta;
956 dfrag->already_sent -= delta;
957
958 dfrag_uncharge(sk, delta);
959 }
960
961 /* all retransmitted data acked, recovery completed */
962 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
963 msk->recovery = false;
964
965 out:
966 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
967 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
968 mptcp_stop_rtx_timer(sk);
969 } else {
970 mptcp_reset_rtx_timer(sk);
971 }
972
973 if (mptcp_pending_data_fin_ack(sk))
974 mptcp_schedule_work(sk);
975 }
976
__mptcp_clean_una_wakeup(struct sock * sk)977 static void __mptcp_clean_una_wakeup(struct sock *sk)
978 {
979 lockdep_assert_held_once(&sk->sk_lock.slock);
980
981 __mptcp_clean_una(sk);
982 mptcp_write_space(sk);
983 }
984
mptcp_clean_una_wakeup(struct sock * sk)985 static void mptcp_clean_una_wakeup(struct sock *sk)
986 {
987 mptcp_data_lock(sk);
988 __mptcp_clean_una_wakeup(sk);
989 mptcp_data_unlock(sk);
990 }
991
mptcp_enter_memory_pressure(struct sock * sk)992 static void mptcp_enter_memory_pressure(struct sock *sk)
993 {
994 struct mptcp_subflow_context *subflow;
995 struct mptcp_sock *msk = mptcp_sk(sk);
996 bool first = true;
997
998 mptcp_for_each_subflow(msk, subflow) {
999 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1000
1001 if (first)
1002 tcp_enter_memory_pressure(ssk);
1003 sk_stream_moderate_sndbuf(ssk);
1004
1005 first = false;
1006 }
1007 __mptcp_sync_sndbuf(sk);
1008 }
1009
1010 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1011 * data
1012 */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1013 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1014 {
1015 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1016 pfrag, sk->sk_allocation)))
1017 return true;
1018
1019 mptcp_enter_memory_pressure(sk);
1020 return false;
1021 }
1022
1023 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1024 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1025 int orig_offset)
1026 {
1027 int offset = ALIGN(orig_offset, sizeof(long));
1028 struct mptcp_data_frag *dfrag;
1029
1030 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1031 dfrag->data_len = 0;
1032 dfrag->data_seq = msk->write_seq;
1033 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1034 dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1035 dfrag->already_sent = 0;
1036 dfrag->page = pfrag->page;
1037
1038 return dfrag;
1039 }
1040
1041 struct mptcp_sendmsg_info {
1042 int mss_now;
1043 int size_goal;
1044 u16 limit;
1045 u16 sent;
1046 unsigned int flags;
1047 bool data_lock_held;
1048 };
1049
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1050 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1051 u64 data_seq, int avail_size)
1052 {
1053 u64 window_end = mptcp_wnd_end(msk);
1054 u64 mptcp_snd_wnd;
1055
1056 if (__mptcp_check_fallback(msk))
1057 return avail_size;
1058
1059 mptcp_snd_wnd = window_end - data_seq;
1060 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1061
1062 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1063 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1064 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1065 }
1066
1067 return avail_size;
1068 }
1069
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1070 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1071 {
1072 struct skb_ext *mpext = __skb_ext_alloc(gfp);
1073
1074 if (!mpext)
1075 return false;
1076 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1077 return true;
1078 }
1079
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1080 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1081 {
1082 struct sk_buff *skb;
1083
1084 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1085 if (likely(skb)) {
1086 if (likely(__mptcp_add_ext(skb, gfp))) {
1087 skb_reserve(skb, MAX_TCP_HEADER);
1088 skb->ip_summed = CHECKSUM_PARTIAL;
1089 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1090 return skb;
1091 }
1092 __kfree_skb(skb);
1093 } else {
1094 mptcp_enter_memory_pressure(sk);
1095 }
1096 return NULL;
1097 }
1098
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1099 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1100 {
1101 struct sk_buff *skb;
1102
1103 skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1104 if (!skb)
1105 return NULL;
1106
1107 if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1108 tcp_skb_entail(ssk, skb);
1109 return skb;
1110 }
1111 tcp_skb_tsorted_anchor_cleanup(skb);
1112 kfree_skb(skb);
1113 return NULL;
1114 }
1115
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1116 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1117 {
1118 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1119
1120 return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1121 }
1122
1123 /* note: this always recompute the csum on the whole skb, even
1124 * if we just appended a single frag. More status info needed
1125 */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1126 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1127 {
1128 struct mptcp_ext *mpext = mptcp_get_ext(skb);
1129 __wsum csum = ~csum_unfold(mpext->csum);
1130 int offset = skb->len - added;
1131
1132 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1133 }
1134
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1135 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1136 struct sock *ssk,
1137 struct mptcp_ext *mpext)
1138 {
1139 if (!mpext)
1140 return;
1141
1142 mpext->infinite_map = 1;
1143 mpext->data_len = 0;
1144
1145 if (!mptcp_try_fallback(ssk)) {
1146 mptcp_subflow_reset(ssk);
1147 return;
1148 }
1149
1150 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1151 mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1152 pr_fallback(msk);
1153 }
1154
1155 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1156
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1157 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1158 struct mptcp_data_frag *dfrag,
1159 struct mptcp_sendmsg_info *info)
1160 {
1161 u64 data_seq = dfrag->data_seq + info->sent;
1162 int offset = dfrag->offset + info->sent;
1163 struct mptcp_sock *msk = mptcp_sk(sk);
1164 bool zero_window_probe = false;
1165 struct mptcp_ext *mpext = NULL;
1166 bool can_coalesce = false;
1167 bool reuse_skb = true;
1168 struct sk_buff *skb;
1169 size_t copy;
1170 int i;
1171
1172 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1173 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1174
1175 if (WARN_ON_ONCE(info->sent > info->limit ||
1176 info->limit > dfrag->data_len))
1177 return 0;
1178
1179 if (unlikely(!__tcp_can_send(ssk)))
1180 return -EAGAIN;
1181
1182 /* compute send limit */
1183 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1184 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1185 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1186 copy = info->size_goal;
1187
1188 skb = tcp_write_queue_tail(ssk);
1189 if (skb && copy > skb->len) {
1190 /* Limit the write to the size available in the
1191 * current skb, if any, so that we create at most a new skb.
1192 * Explicitly tells TCP internals to avoid collapsing on later
1193 * queue management operation, to avoid breaking the ext <->
1194 * SSN association set here
1195 */
1196 mpext = mptcp_get_ext(skb);
1197 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1198 TCP_SKB_CB(skb)->eor = 1;
1199 tcp_mark_push(tcp_sk(ssk), skb);
1200 goto alloc_skb;
1201 }
1202
1203 i = skb_shinfo(skb)->nr_frags;
1204 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1205 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1206 tcp_mark_push(tcp_sk(ssk), skb);
1207 goto alloc_skb;
1208 }
1209
1210 copy -= skb->len;
1211 } else {
1212 alloc_skb:
1213 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1214 if (!skb)
1215 return -ENOMEM;
1216
1217 i = skb_shinfo(skb)->nr_frags;
1218 reuse_skb = false;
1219 mpext = mptcp_get_ext(skb);
1220 }
1221
1222 /* Zero window and all data acked? Probe. */
1223 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1224 if (copy == 0) {
1225 u64 snd_una = READ_ONCE(msk->snd_una);
1226
1227 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1228 tcp_remove_empty_skb(ssk);
1229 return 0;
1230 }
1231
1232 zero_window_probe = true;
1233 data_seq = snd_una - 1;
1234 copy = 1;
1235 }
1236
1237 copy = min_t(size_t, copy, info->limit - info->sent);
1238 if (!sk_wmem_schedule(ssk, copy)) {
1239 tcp_remove_empty_skb(ssk);
1240 return -ENOMEM;
1241 }
1242
1243 if (can_coalesce) {
1244 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1245 } else {
1246 get_page(dfrag->page);
1247 skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1248 }
1249
1250 skb->len += copy;
1251 skb->data_len += copy;
1252 skb->truesize += copy;
1253 sk_wmem_queued_add(ssk, copy);
1254 sk_mem_charge(ssk, copy);
1255 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1256 TCP_SKB_CB(skb)->end_seq += copy;
1257 tcp_skb_pcount_set(skb, 0);
1258
1259 /* on skb reuse we just need to update the DSS len */
1260 if (reuse_skb) {
1261 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1262 mpext->data_len += copy;
1263 goto out;
1264 }
1265
1266 memset(mpext, 0, sizeof(*mpext));
1267 mpext->data_seq = data_seq;
1268 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1269 mpext->data_len = copy;
1270 mpext->use_map = 1;
1271 mpext->dsn64 = 1;
1272
1273 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1274 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1275 mpext->dsn64);
1276
1277 if (zero_window_probe) {
1278 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1279 mpext->frozen = 1;
1280 if (READ_ONCE(msk->csum_enabled))
1281 mptcp_update_data_checksum(skb, copy);
1282 tcp_push_pending_frames(ssk);
1283 return 0;
1284 }
1285 out:
1286 if (READ_ONCE(msk->csum_enabled))
1287 mptcp_update_data_checksum(skb, copy);
1288 if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1289 mptcp_update_infinite_map(msk, ssk, mpext);
1290 trace_mptcp_sendmsg_frag(mpext);
1291 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1292 return copy;
1293 }
1294
1295 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
1296 sizeof(struct tcphdr) - \
1297 MAX_TCP_OPTION_SPACE - \
1298 sizeof(struct ipv6hdr) - \
1299 sizeof(struct frag_hdr))
1300
1301 struct subflow_send_info {
1302 struct sock *ssk;
1303 u64 linger_time;
1304 };
1305
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1306 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1307 {
1308 if (!subflow->stale)
1309 return;
1310
1311 subflow->stale = 0;
1312 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1313 }
1314
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1315 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1316 {
1317 if (unlikely(subflow->stale)) {
1318 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1319
1320 if (subflow->stale_rcv_tstamp == rcv_tstamp)
1321 return false;
1322
1323 mptcp_subflow_set_active(subflow);
1324 }
1325 return __mptcp_subflow_active(subflow);
1326 }
1327
1328 #define SSK_MODE_ACTIVE 0
1329 #define SSK_MODE_BACKUP 1
1330 #define SSK_MODE_MAX 2
1331
1332 /* implement the mptcp packet scheduler;
1333 * returns the subflow that will transmit the next DSS
1334 * additionally updates the rtx timeout
1335 */
mptcp_subflow_get_send(struct mptcp_sock * msk)1336 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1337 {
1338 struct subflow_send_info send_info[SSK_MODE_MAX];
1339 struct mptcp_subflow_context *subflow;
1340 struct sock *sk = (struct sock *)msk;
1341 u32 pace, burst, wmem;
1342 int i, nr_active = 0;
1343 struct sock *ssk;
1344 u64 linger_time;
1345 long tout = 0;
1346
1347 /* pick the subflow with the lower wmem/wspace ratio */
1348 for (i = 0; i < SSK_MODE_MAX; ++i) {
1349 send_info[i].ssk = NULL;
1350 send_info[i].linger_time = -1;
1351 }
1352
1353 mptcp_for_each_subflow(msk, subflow) {
1354 bool backup = subflow->backup || subflow->request_bkup;
1355
1356 trace_mptcp_subflow_get_send(subflow);
1357 ssk = mptcp_subflow_tcp_sock(subflow);
1358 if (!mptcp_subflow_active(subflow))
1359 continue;
1360
1361 tout = max(tout, mptcp_timeout_from_subflow(subflow));
1362 nr_active += !backup;
1363 pace = subflow->avg_pacing_rate;
1364 if (unlikely(!pace)) {
1365 /* init pacing rate from socket */
1366 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1367 pace = subflow->avg_pacing_rate;
1368 if (!pace)
1369 continue;
1370 }
1371
1372 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1373 if (linger_time < send_info[backup].linger_time) {
1374 send_info[backup].ssk = ssk;
1375 send_info[backup].linger_time = linger_time;
1376 }
1377 }
1378 __mptcp_set_timeout(sk, tout);
1379
1380 /* pick the best backup if no other subflow is active */
1381 if (!nr_active)
1382 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1383
1384 /* According to the blest algorithm, to avoid HoL blocking for the
1385 * faster flow, we need to:
1386 * - estimate the faster flow linger time
1387 * - use the above to estimate the amount of byte transferred
1388 * by the faster flow
1389 * - check that the amount of queued data is greter than the above,
1390 * otherwise do not use the picked, slower, subflow
1391 * We select the subflow with the shorter estimated time to flush
1392 * the queued mem, which basically ensure the above. We just need
1393 * to check that subflow has a non empty cwin.
1394 */
1395 ssk = send_info[SSK_MODE_ACTIVE].ssk;
1396 if (!ssk || !sk_stream_memory_free(ssk))
1397 return NULL;
1398
1399 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1400 wmem = READ_ONCE(ssk->sk_wmem_queued);
1401 if (!burst)
1402 return ssk;
1403
1404 subflow = mptcp_subflow_ctx(ssk);
1405 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1406 READ_ONCE(ssk->sk_pacing_rate) * burst,
1407 burst + wmem);
1408 msk->snd_burst = burst;
1409 return ssk;
1410 }
1411
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1412 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1413 {
1414 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1415 release_sock(ssk);
1416 }
1417
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1418 static void mptcp_update_post_push(struct mptcp_sock *msk,
1419 struct mptcp_data_frag *dfrag,
1420 u32 sent)
1421 {
1422 u64 snd_nxt_new = dfrag->data_seq;
1423
1424 dfrag->already_sent += sent;
1425
1426 msk->snd_burst -= sent;
1427
1428 snd_nxt_new += dfrag->already_sent;
1429
1430 /* snd_nxt_new can be smaller than snd_nxt in case mptcp
1431 * is recovering after a failover. In that event, this re-sends
1432 * old segments.
1433 *
1434 * Thus compute snd_nxt_new candidate based on
1435 * the dfrag->data_seq that was sent and the data
1436 * that has been handed to the subflow for transmission
1437 * and skip update in case it was old dfrag.
1438 */
1439 if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1440 msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1441 WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1442 }
1443 }
1444
mptcp_check_and_set_pending(struct sock * sk)1445 void mptcp_check_and_set_pending(struct sock *sk)
1446 {
1447 if (mptcp_send_head(sk)) {
1448 mptcp_data_lock(sk);
1449 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1450 mptcp_data_unlock(sk);
1451 }
1452 }
1453
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1454 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1455 struct mptcp_sendmsg_info *info)
1456 {
1457 struct mptcp_sock *msk = mptcp_sk(sk);
1458 struct mptcp_data_frag *dfrag;
1459 int len, copied = 0, err = 0;
1460
1461 while ((dfrag = mptcp_send_head(sk))) {
1462 info->sent = dfrag->already_sent;
1463 info->limit = dfrag->data_len;
1464 len = dfrag->data_len - dfrag->already_sent;
1465 while (len > 0) {
1466 int ret = 0;
1467
1468 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1469 if (ret <= 0) {
1470 err = copied ? : ret;
1471 goto out;
1472 }
1473
1474 info->sent += ret;
1475 copied += ret;
1476 len -= ret;
1477
1478 mptcp_update_post_push(msk, dfrag, ret);
1479 }
1480 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1481
1482 if (msk->snd_burst <= 0 ||
1483 !sk_stream_memory_free(ssk) ||
1484 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1485 err = copied;
1486 goto out;
1487 }
1488 mptcp_set_timeout(sk);
1489 }
1490 err = copied;
1491
1492 out:
1493 if (err > 0)
1494 msk->last_data_sent = tcp_jiffies32;
1495 return err;
1496 }
1497
__mptcp_push_pending(struct sock * sk,unsigned int flags)1498 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1499 {
1500 struct sock *prev_ssk = NULL, *ssk = NULL;
1501 struct mptcp_sock *msk = mptcp_sk(sk);
1502 struct mptcp_sendmsg_info info = {
1503 .flags = flags,
1504 };
1505 bool do_check_data_fin = false;
1506 int push_count = 1;
1507
1508 while (mptcp_send_head(sk) && (push_count > 0)) {
1509 struct mptcp_subflow_context *subflow;
1510 int ret = 0;
1511
1512 if (mptcp_sched_get_send(msk))
1513 break;
1514
1515 push_count = 0;
1516
1517 mptcp_for_each_subflow(msk, subflow) {
1518 if (READ_ONCE(subflow->scheduled)) {
1519 mptcp_subflow_set_scheduled(subflow, false);
1520
1521 prev_ssk = ssk;
1522 ssk = mptcp_subflow_tcp_sock(subflow);
1523 if (ssk != prev_ssk) {
1524 /* First check. If the ssk has changed since
1525 * the last round, release prev_ssk
1526 */
1527 if (prev_ssk)
1528 mptcp_push_release(prev_ssk, &info);
1529
1530 /* Need to lock the new subflow only if different
1531 * from the previous one, otherwise we are still
1532 * helding the relevant lock
1533 */
1534 lock_sock(ssk);
1535 }
1536
1537 push_count++;
1538
1539 ret = __subflow_push_pending(sk, ssk, &info);
1540 if (ret <= 0) {
1541 if (ret != -EAGAIN ||
1542 (1 << ssk->sk_state) &
1543 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1544 push_count--;
1545 continue;
1546 }
1547 do_check_data_fin = true;
1548 }
1549 }
1550 }
1551
1552 /* at this point we held the socket lock for the last subflow we used */
1553 if (ssk)
1554 mptcp_push_release(ssk, &info);
1555
1556 /* ensure the rtx timer is running */
1557 if (!mptcp_rtx_timer_pending(sk))
1558 mptcp_reset_rtx_timer(sk);
1559 if (do_check_data_fin)
1560 mptcp_check_send_data_fin(sk);
1561 }
1562
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1563 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1564 {
1565 struct mptcp_sock *msk = mptcp_sk(sk);
1566 struct mptcp_sendmsg_info info = {
1567 .data_lock_held = true,
1568 };
1569 bool keep_pushing = true;
1570 struct sock *xmit_ssk;
1571 int copied = 0;
1572
1573 info.flags = 0;
1574 while (mptcp_send_head(sk) && keep_pushing) {
1575 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1576 int ret = 0;
1577
1578 /* check for a different subflow usage only after
1579 * spooling the first chunk of data
1580 */
1581 if (first) {
1582 mptcp_subflow_set_scheduled(subflow, false);
1583 ret = __subflow_push_pending(sk, ssk, &info);
1584 first = false;
1585 if (ret <= 0)
1586 break;
1587 copied += ret;
1588 continue;
1589 }
1590
1591 if (mptcp_sched_get_send(msk))
1592 goto out;
1593
1594 if (READ_ONCE(subflow->scheduled)) {
1595 mptcp_subflow_set_scheduled(subflow, false);
1596 ret = __subflow_push_pending(sk, ssk, &info);
1597 if (ret <= 0)
1598 keep_pushing = false;
1599 copied += ret;
1600 }
1601
1602 mptcp_for_each_subflow(msk, subflow) {
1603 if (READ_ONCE(subflow->scheduled)) {
1604 xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1605 if (xmit_ssk != ssk) {
1606 mptcp_subflow_delegate(subflow,
1607 MPTCP_DELEGATE_SEND);
1608 keep_pushing = false;
1609 }
1610 }
1611 }
1612 }
1613
1614 out:
1615 /* __mptcp_alloc_tx_skb could have released some wmem and we are
1616 * not going to flush it via release_sock()
1617 */
1618 if (copied) {
1619 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1620 info.size_goal);
1621 if (!mptcp_rtx_timer_pending(sk))
1622 mptcp_reset_rtx_timer(sk);
1623
1624 if (msk->snd_data_fin_enable &&
1625 msk->snd_nxt + 1 == msk->write_seq)
1626 mptcp_schedule_work(sk);
1627 }
1628 }
1629
1630 static int mptcp_disconnect(struct sock *sk, int flags);
1631
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1632 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1633 size_t len, int *copied_syn)
1634 {
1635 unsigned int saved_flags = msg->msg_flags;
1636 struct mptcp_sock *msk = mptcp_sk(sk);
1637 struct sock *ssk;
1638 int ret;
1639
1640 /* on flags based fastopen the mptcp is supposed to create the
1641 * first subflow right now. Otherwise we are in the defer_connect
1642 * path, and the first subflow must be already present.
1643 * Since the defer_connect flag is cleared after the first succsful
1644 * fastopen attempt, no need to check for additional subflow status.
1645 */
1646 if (msg->msg_flags & MSG_FASTOPEN) {
1647 ssk = __mptcp_nmpc_sk(msk);
1648 if (IS_ERR(ssk))
1649 return PTR_ERR(ssk);
1650 }
1651 if (!msk->first)
1652 return -EINVAL;
1653
1654 ssk = msk->first;
1655
1656 lock_sock(ssk);
1657 msg->msg_flags |= MSG_DONTWAIT;
1658 msk->fastopening = 1;
1659 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1660 msk->fastopening = 0;
1661 msg->msg_flags = saved_flags;
1662 release_sock(ssk);
1663
1664 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1665 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1666 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1667 msg->msg_namelen, msg->msg_flags, 1);
1668
1669 /* Keep the same behaviour of plain TCP: zero the copied bytes in
1670 * case of any error, except timeout or signal
1671 */
1672 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1673 *copied_syn = 0;
1674 } else if (ret && ret != -EINPROGRESS) {
1675 /* The disconnect() op called by tcp_sendmsg_fastopen()/
1676 * __inet_stream_connect() can fail, due to looking check,
1677 * see mptcp_disconnect().
1678 * Attempt it again outside the problematic scope.
1679 */
1680 if (!mptcp_disconnect(sk, 0)) {
1681 sk->sk_disconnects++;
1682 sk->sk_socket->state = SS_UNCONNECTED;
1683 }
1684 }
1685 inet_clear_bit(DEFER_CONNECT, sk);
1686
1687 return ret;
1688 }
1689
do_copy_data_nocache(struct sock * sk,int copy,struct iov_iter * from,char * to)1690 static int do_copy_data_nocache(struct sock *sk, int copy,
1691 struct iov_iter *from, char *to)
1692 {
1693 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1694 if (!copy_from_iter_full_nocache(to, copy, from))
1695 return -EFAULT;
1696 } else if (!copy_from_iter_full(to, copy, from)) {
1697 return -EFAULT;
1698 }
1699 return 0;
1700 }
1701
1702 /* open-code sk_stream_memory_free() plus sent limit computation to
1703 * avoid indirect calls in fast-path.
1704 * Called under the msk socket lock, so we can avoid a bunch of ONCE
1705 * annotations.
1706 */
mptcp_send_limit(const struct sock * sk)1707 static u32 mptcp_send_limit(const struct sock *sk)
1708 {
1709 const struct mptcp_sock *msk = mptcp_sk(sk);
1710 u32 limit, not_sent;
1711
1712 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1713 return 0;
1714
1715 limit = mptcp_notsent_lowat(sk);
1716 if (limit == UINT_MAX)
1717 return UINT_MAX;
1718
1719 not_sent = msk->write_seq - msk->snd_nxt;
1720 if (not_sent >= limit)
1721 return 0;
1722
1723 return limit - not_sent;
1724 }
1725
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1726 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1727 {
1728 struct mptcp_sock *msk = mptcp_sk(sk);
1729 struct page_frag *pfrag;
1730 size_t copied = 0;
1731 int ret = 0;
1732 long timeo;
1733
1734 /* silently ignore everything else */
1735 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1736
1737 lock_sock(sk);
1738
1739 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1740 msg->msg_flags & MSG_FASTOPEN)) {
1741 int copied_syn = 0;
1742
1743 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1744 copied += copied_syn;
1745 if (ret == -EINPROGRESS && copied_syn > 0)
1746 goto out;
1747 else if (ret)
1748 goto do_error;
1749 }
1750
1751 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1752
1753 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1754 ret = sk_stream_wait_connect(sk, &timeo);
1755 if (ret)
1756 goto do_error;
1757 }
1758
1759 ret = -EPIPE;
1760 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1761 goto do_error;
1762
1763 pfrag = sk_page_frag(sk);
1764
1765 while (msg_data_left(msg)) {
1766 int total_ts, frag_truesize = 0;
1767 struct mptcp_data_frag *dfrag;
1768 bool dfrag_collapsed;
1769 size_t psize, offset;
1770 u32 copy_limit;
1771
1772 /* ensure fitting the notsent_lowat() constraint */
1773 copy_limit = mptcp_send_limit(sk);
1774 if (!copy_limit)
1775 goto wait_for_memory;
1776
1777 /* reuse tail pfrag, if possible, or carve a new one from the
1778 * page allocator
1779 */
1780 dfrag = mptcp_pending_tail(sk);
1781 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1782 if (!dfrag_collapsed) {
1783 if (!mptcp_page_frag_refill(sk, pfrag))
1784 goto wait_for_memory;
1785
1786 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1787 frag_truesize = dfrag->overhead;
1788 }
1789
1790 /* we do not bound vs wspace, to allow a single packet.
1791 * memory accounting will prevent execessive memory usage
1792 * anyway
1793 */
1794 offset = dfrag->offset + dfrag->data_len;
1795 psize = pfrag->size - offset;
1796 psize = min_t(size_t, psize, msg_data_left(msg));
1797 psize = min_t(size_t, psize, copy_limit);
1798 total_ts = psize + frag_truesize;
1799
1800 if (!sk_wmem_schedule(sk, total_ts))
1801 goto wait_for_memory;
1802
1803 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1804 page_address(dfrag->page) + offset);
1805 if (ret)
1806 goto do_error;
1807
1808 /* data successfully copied into the write queue */
1809 sk_forward_alloc_add(sk, -total_ts);
1810 copied += psize;
1811 dfrag->data_len += psize;
1812 frag_truesize += psize;
1813 pfrag->offset += frag_truesize;
1814 WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1815
1816 /* charge data on mptcp pending queue to the msk socket
1817 * Note: we charge such data both to sk and ssk
1818 */
1819 sk_wmem_queued_add(sk, frag_truesize);
1820 if (!dfrag_collapsed) {
1821 get_page(dfrag->page);
1822 list_add_tail(&dfrag->list, &msk->rtx_queue);
1823 if (!msk->first_pending)
1824 WRITE_ONCE(msk->first_pending, dfrag);
1825 }
1826 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1827 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1828 !dfrag_collapsed);
1829
1830 continue;
1831
1832 wait_for_memory:
1833 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1834 __mptcp_push_pending(sk, msg->msg_flags);
1835 ret = sk_stream_wait_memory(sk, &timeo);
1836 if (ret)
1837 goto do_error;
1838 }
1839
1840 if (copied)
1841 __mptcp_push_pending(sk, msg->msg_flags);
1842
1843 out:
1844 release_sock(sk);
1845 return copied;
1846
1847 do_error:
1848 if (copied)
1849 goto out;
1850
1851 copied = sk_stream_error(sk, msg->msg_flags, ret);
1852 goto out;
1853 }
1854
1855 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1856
__mptcp_recvmsg_mskq(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1857 static int __mptcp_recvmsg_mskq(struct sock *sk,
1858 struct msghdr *msg,
1859 size_t len, int flags,
1860 struct scm_timestamping_internal *tss,
1861 int *cmsg_flags)
1862 {
1863 struct mptcp_sock *msk = mptcp_sk(sk);
1864 struct sk_buff *skb, *tmp;
1865 int copied = 0;
1866
1867 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1868 u32 offset = MPTCP_SKB_CB(skb)->offset;
1869 u32 data_len = skb->len - offset;
1870 u32 count = min_t(size_t, len - copied, data_len);
1871 int err;
1872
1873 if (!(flags & MSG_TRUNC)) {
1874 err = skb_copy_datagram_msg(skb, offset, msg, count);
1875 if (unlikely(err < 0)) {
1876 if (!copied)
1877 return err;
1878 break;
1879 }
1880 }
1881
1882 if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1883 tcp_update_recv_tstamps(skb, tss);
1884 *cmsg_flags |= MPTCP_CMSG_TS;
1885 }
1886
1887 copied += count;
1888
1889 if (count < data_len) {
1890 if (!(flags & MSG_PEEK)) {
1891 MPTCP_SKB_CB(skb)->offset += count;
1892 MPTCP_SKB_CB(skb)->map_seq += count;
1893 msk->bytes_consumed += count;
1894 }
1895 break;
1896 }
1897
1898 if (!(flags & MSG_PEEK)) {
1899 /* avoid the indirect call, we know the destructor is sock_wfree */
1900 skb->destructor = NULL;
1901 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1902 sk_mem_uncharge(sk, skb->truesize);
1903 __skb_unlink(skb, &sk->sk_receive_queue);
1904 __kfree_skb(skb);
1905 msk->bytes_consumed += count;
1906 }
1907
1908 if (copied >= len)
1909 break;
1910 }
1911
1912 mptcp_rcv_space_adjust(msk, copied);
1913 return copied;
1914 }
1915
1916 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
1917 *
1918 * Only difference: Use highest rtt estimate of the subflows in use.
1919 */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1920 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1921 {
1922 struct mptcp_subflow_context *subflow;
1923 struct sock *sk = (struct sock *)msk;
1924 u8 scaling_ratio = U8_MAX;
1925 u32 time, advmss = 1;
1926 u64 rtt_us, mstamp;
1927
1928 msk_owned_by_me(msk);
1929
1930 if (copied <= 0)
1931 return;
1932
1933 if (!msk->rcvspace_init)
1934 mptcp_rcv_space_init(msk, msk->first);
1935
1936 msk->rcvq_space.copied += copied;
1937
1938 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1939 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1940
1941 rtt_us = msk->rcvq_space.rtt_us;
1942 if (rtt_us && time < (rtt_us >> 3))
1943 return;
1944
1945 rtt_us = 0;
1946 mptcp_for_each_subflow(msk, subflow) {
1947 const struct tcp_sock *tp;
1948 u64 sf_rtt_us;
1949 u32 sf_advmss;
1950
1951 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1952
1953 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1954 sf_advmss = READ_ONCE(tp->advmss);
1955
1956 rtt_us = max(sf_rtt_us, rtt_us);
1957 advmss = max(sf_advmss, advmss);
1958 scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1959 }
1960
1961 msk->rcvq_space.rtt_us = rtt_us;
1962 msk->scaling_ratio = scaling_ratio;
1963 if (time < (rtt_us >> 3) || rtt_us == 0)
1964 return;
1965
1966 if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1967 goto new_measure;
1968
1969 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1970 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1971 u64 rcvwin, grow;
1972 int rcvbuf;
1973
1974 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1975
1976 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1977
1978 do_div(grow, msk->rcvq_space.space);
1979 rcvwin += (grow << 1);
1980
1981 rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin),
1982 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1983
1984 if (rcvbuf > sk->sk_rcvbuf) {
1985 u32 window_clamp;
1986
1987 window_clamp = mptcp_win_from_space(sk, rcvbuf);
1988 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1989
1990 /* Make subflows follow along. If we do not do this, we
1991 * get drops at subflow level if skbs can't be moved to
1992 * the mptcp rx queue fast enough (announced rcv_win can
1993 * exceed ssk->sk_rcvbuf).
1994 */
1995 mptcp_for_each_subflow(msk, subflow) {
1996 struct sock *ssk;
1997 bool slow;
1998
1999 ssk = mptcp_subflow_tcp_sock(subflow);
2000 slow = lock_sock_fast(ssk);
2001 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2002 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2003 if (tcp_can_send_ack(ssk))
2004 tcp_cleanup_rbuf(ssk, 1);
2005 unlock_sock_fast(ssk, slow);
2006 }
2007 }
2008 }
2009
2010 msk->rcvq_space.space = msk->rcvq_space.copied;
2011 new_measure:
2012 msk->rcvq_space.copied = 0;
2013 msk->rcvq_space.time = mstamp;
2014 }
2015
2016 static struct mptcp_subflow_context *
__mptcp_first_ready_from(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)2017 __mptcp_first_ready_from(struct mptcp_sock *msk,
2018 struct mptcp_subflow_context *subflow)
2019 {
2020 struct mptcp_subflow_context *start_subflow = subflow;
2021
2022 while (!READ_ONCE(subflow->data_avail)) {
2023 subflow = mptcp_next_subflow(msk, subflow);
2024 if (subflow == start_subflow)
2025 return NULL;
2026 }
2027 return subflow;
2028 }
2029
__mptcp_move_skbs(struct sock * sk)2030 static bool __mptcp_move_skbs(struct sock *sk)
2031 {
2032 struct mptcp_subflow_context *subflow;
2033 struct mptcp_sock *msk = mptcp_sk(sk);
2034 bool ret = false;
2035
2036 if (list_empty(&msk->conn_list))
2037 return false;
2038
2039 /* verify we can move any data from the subflow, eventually updating */
2040 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
2041 mptcp_for_each_subflow(msk, subflow)
2042 __mptcp_rcvbuf_update(sk, subflow->tcp_sock);
2043
2044 subflow = list_first_entry(&msk->conn_list,
2045 struct mptcp_subflow_context, node);
2046 for (;;) {
2047 struct sock *ssk;
2048 bool slowpath;
2049
2050 /*
2051 * As an optimization avoid traversing the subflows list
2052 * and ev. acquiring the subflow socket lock before baling out
2053 */
2054 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2055 break;
2056
2057 subflow = __mptcp_first_ready_from(msk, subflow);
2058 if (!subflow)
2059 break;
2060
2061 ssk = mptcp_subflow_tcp_sock(subflow);
2062 slowpath = lock_sock_fast(ssk);
2063 ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2064 if (unlikely(ssk->sk_err))
2065 __mptcp_error_report(sk);
2066 unlock_sock_fast(ssk, slowpath);
2067
2068 subflow = mptcp_next_subflow(msk, subflow);
2069 }
2070
2071 __mptcp_ofo_queue(msk);
2072 if (ret)
2073 mptcp_check_data_fin((struct sock *)msk);
2074 return ret;
2075 }
2076
mptcp_inq_hint(const struct sock * sk)2077 static unsigned int mptcp_inq_hint(const struct sock *sk)
2078 {
2079 const struct mptcp_sock *msk = mptcp_sk(sk);
2080 const struct sk_buff *skb;
2081
2082 skb = skb_peek(&sk->sk_receive_queue);
2083 if (skb) {
2084 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2085
2086 if (hint_val >= INT_MAX)
2087 return INT_MAX;
2088
2089 return (unsigned int)hint_val;
2090 }
2091
2092 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2093 return 1;
2094
2095 return 0;
2096 }
2097
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2098 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2099 int flags, int *addr_len)
2100 {
2101 struct mptcp_sock *msk = mptcp_sk(sk);
2102 struct scm_timestamping_internal tss;
2103 int copied = 0, cmsg_flags = 0;
2104 int target;
2105 long timeo;
2106
2107 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2108 if (unlikely(flags & MSG_ERRQUEUE))
2109 return inet_recv_error(sk, msg, len, addr_len);
2110
2111 lock_sock(sk);
2112 if (unlikely(sk->sk_state == TCP_LISTEN)) {
2113 copied = -ENOTCONN;
2114 goto out_err;
2115 }
2116
2117 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2118
2119 len = min_t(size_t, len, INT_MAX);
2120 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2121
2122 if (unlikely(msk->recvmsg_inq))
2123 cmsg_flags = MPTCP_CMSG_INQ;
2124
2125 while (copied < len) {
2126 int err, bytes_read;
2127
2128 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags);
2129 if (unlikely(bytes_read < 0)) {
2130 if (!copied)
2131 copied = bytes_read;
2132 goto out_err;
2133 }
2134
2135 copied += bytes_read;
2136
2137 if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2138 continue;
2139
2140 /* only the MPTCP socket status is relevant here. The exit
2141 * conditions mirror closely tcp_recvmsg()
2142 */
2143 if (copied >= target)
2144 break;
2145
2146 if (copied) {
2147 if (sk->sk_err ||
2148 sk->sk_state == TCP_CLOSE ||
2149 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2150 !timeo ||
2151 signal_pending(current))
2152 break;
2153 } else {
2154 if (sk->sk_err) {
2155 copied = sock_error(sk);
2156 break;
2157 }
2158
2159 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2160 /* race breaker: the shutdown could be after the
2161 * previous receive queue check
2162 */
2163 if (__mptcp_move_skbs(sk))
2164 continue;
2165 break;
2166 }
2167
2168 if (sk->sk_state == TCP_CLOSE) {
2169 copied = -ENOTCONN;
2170 break;
2171 }
2172
2173 if (!timeo) {
2174 copied = -EAGAIN;
2175 break;
2176 }
2177
2178 if (signal_pending(current)) {
2179 copied = sock_intr_errno(timeo);
2180 break;
2181 }
2182 }
2183
2184 pr_debug("block timeout %ld\n", timeo);
2185 mptcp_cleanup_rbuf(msk, copied);
2186 err = sk_wait_data(sk, &timeo, NULL);
2187 if (err < 0) {
2188 err = copied ? : err;
2189 goto out_err;
2190 }
2191 }
2192
2193 mptcp_cleanup_rbuf(msk, copied);
2194
2195 out_err:
2196 if (cmsg_flags && copied >= 0) {
2197 if (cmsg_flags & MPTCP_CMSG_TS)
2198 tcp_recv_timestamp(msg, sk, &tss);
2199
2200 if (cmsg_flags & MPTCP_CMSG_INQ) {
2201 unsigned int inq = mptcp_inq_hint(sk);
2202
2203 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2204 }
2205 }
2206
2207 pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2208 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2209
2210 release_sock(sk);
2211 return copied;
2212 }
2213
mptcp_retransmit_timer(struct timer_list * t)2214 static void mptcp_retransmit_timer(struct timer_list *t)
2215 {
2216 struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2217 icsk_retransmit_timer);
2218 struct sock *sk = &icsk->icsk_inet.sk;
2219 struct mptcp_sock *msk = mptcp_sk(sk);
2220
2221 bh_lock_sock(sk);
2222 if (!sock_owned_by_user(sk)) {
2223 /* we need a process context to retransmit */
2224 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2225 mptcp_schedule_work(sk);
2226 } else {
2227 /* delegate our work to tcp_release_cb() */
2228 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2229 }
2230 bh_unlock_sock(sk);
2231 sock_put(sk);
2232 }
2233
mptcp_tout_timer(struct timer_list * t)2234 static void mptcp_tout_timer(struct timer_list *t)
2235 {
2236 struct sock *sk = timer_container_of(sk, t, sk_timer);
2237
2238 mptcp_schedule_work(sk);
2239 sock_put(sk);
2240 }
2241
2242 /* Find an idle subflow. Return NULL if there is unacked data at tcp
2243 * level.
2244 *
2245 * A backup subflow is returned only if that is the only kind available.
2246 */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2247 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2248 {
2249 struct sock *backup = NULL, *pick = NULL;
2250 struct mptcp_subflow_context *subflow;
2251 int min_stale_count = INT_MAX;
2252
2253 mptcp_for_each_subflow(msk, subflow) {
2254 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2255
2256 if (!__mptcp_subflow_active(subflow))
2257 continue;
2258
2259 /* still data outstanding at TCP level? skip this */
2260 if (!tcp_rtx_and_write_queues_empty(ssk)) {
2261 mptcp_pm_subflow_chk_stale(msk, ssk);
2262 min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2263 continue;
2264 }
2265
2266 if (subflow->backup || subflow->request_bkup) {
2267 if (!backup)
2268 backup = ssk;
2269 continue;
2270 }
2271
2272 if (!pick)
2273 pick = ssk;
2274 }
2275
2276 if (pick)
2277 return pick;
2278
2279 /* use backup only if there are no progresses anywhere */
2280 return min_stale_count > 1 ? backup : NULL;
2281 }
2282
__mptcp_retransmit_pending_data(struct sock * sk)2283 bool __mptcp_retransmit_pending_data(struct sock *sk)
2284 {
2285 struct mptcp_data_frag *cur, *rtx_head;
2286 struct mptcp_sock *msk = mptcp_sk(sk);
2287
2288 if (__mptcp_check_fallback(msk))
2289 return false;
2290
2291 /* the closing socket has some data untransmitted and/or unacked:
2292 * some data in the mptcp rtx queue has not really xmitted yet.
2293 * keep it simple and re-inject the whole mptcp level rtx queue
2294 */
2295 mptcp_data_lock(sk);
2296 __mptcp_clean_una_wakeup(sk);
2297 rtx_head = mptcp_rtx_head(sk);
2298 if (!rtx_head) {
2299 mptcp_data_unlock(sk);
2300 return false;
2301 }
2302
2303 msk->recovery_snd_nxt = msk->snd_nxt;
2304 msk->recovery = true;
2305 mptcp_data_unlock(sk);
2306
2307 msk->first_pending = rtx_head;
2308 msk->snd_burst = 0;
2309
2310 /* be sure to clear the "sent status" on all re-injected fragments */
2311 list_for_each_entry(cur, &msk->rtx_queue, list) {
2312 if (!cur->already_sent)
2313 break;
2314 cur->already_sent = 0;
2315 }
2316
2317 return true;
2318 }
2319
2320 /* flags for __mptcp_close_ssk() */
2321 #define MPTCP_CF_PUSH BIT(1)
2322 #define MPTCP_CF_FASTCLOSE BIT(2)
2323
2324 /* be sure to send a reset only if the caller asked for it, also
2325 * clean completely the subflow status when the subflow reaches
2326 * TCP_CLOSE state
2327 */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2328 static void __mptcp_subflow_disconnect(struct sock *ssk,
2329 struct mptcp_subflow_context *subflow,
2330 unsigned int flags)
2331 {
2332 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2333 (flags & MPTCP_CF_FASTCLOSE)) {
2334 /* The MPTCP code never wait on the subflow sockets, TCP-level
2335 * disconnect should never fail
2336 */
2337 WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2338 mptcp_subflow_ctx_reset(subflow);
2339 } else {
2340 tcp_shutdown(ssk, SEND_SHUTDOWN);
2341 }
2342 }
2343
2344 /* subflow sockets can be either outgoing (connect) or incoming
2345 * (accept).
2346 *
2347 * Outgoing subflows use in-kernel sockets.
2348 * Incoming subflows do not have their own 'struct socket' allocated,
2349 * so we need to use tcp_close() after detaching them from the mptcp
2350 * parent socket.
2351 */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2352 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2353 struct mptcp_subflow_context *subflow,
2354 unsigned int flags)
2355 {
2356 struct mptcp_sock *msk = mptcp_sk(sk);
2357 bool dispose_it, need_push = false;
2358
2359 /* If the first subflow moved to a close state before accept, e.g. due
2360 * to an incoming reset or listener shutdown, the subflow socket is
2361 * already deleted by inet_child_forget() and the mptcp socket can't
2362 * survive too.
2363 */
2364 if (msk->in_accept_queue && msk->first == ssk &&
2365 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2366 /* ensure later check in mptcp_worker() will dispose the msk */
2367 sock_set_flag(sk, SOCK_DEAD);
2368 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2369 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2370 mptcp_subflow_drop_ctx(ssk);
2371 goto out_release;
2372 }
2373
2374 dispose_it = msk->free_first || ssk != msk->first;
2375 if (dispose_it)
2376 list_del(&subflow->node);
2377
2378 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2379
2380 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2381 /* be sure to force the tcp_close path
2382 * to generate the egress reset
2383 */
2384 ssk->sk_lingertime = 0;
2385 sock_set_flag(ssk, SOCK_LINGER);
2386 subflow->send_fastclose = 1;
2387 }
2388
2389 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2390 if (!dispose_it) {
2391 __mptcp_subflow_disconnect(ssk, subflow, flags);
2392 release_sock(ssk);
2393
2394 goto out;
2395 }
2396
2397 subflow->disposable = 1;
2398
2399 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2400 * the ssk has been already destroyed, we just need to release the
2401 * reference owned by msk;
2402 */
2403 if (!inet_csk(ssk)->icsk_ulp_ops) {
2404 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2405 kfree_rcu(subflow, rcu);
2406 } else {
2407 /* otherwise tcp will dispose of the ssk and subflow ctx */
2408 __tcp_close(ssk, 0);
2409
2410 /* close acquired an extra ref */
2411 __sock_put(ssk);
2412 }
2413
2414 out_release:
2415 __mptcp_subflow_error_report(sk, ssk);
2416 release_sock(ssk);
2417
2418 sock_put(ssk);
2419
2420 if (ssk == msk->first)
2421 WRITE_ONCE(msk->first, NULL);
2422
2423 out:
2424 __mptcp_sync_sndbuf(sk);
2425 if (need_push)
2426 __mptcp_push_pending(sk, 0);
2427
2428 /* Catch every 'all subflows closed' scenario, including peers silently
2429 * closing them, e.g. due to timeout.
2430 * For established sockets, allow an additional timeout before closing,
2431 * as the protocol can still create more subflows.
2432 */
2433 if (list_is_singular(&msk->conn_list) && msk->first &&
2434 inet_sk_state_load(msk->first) == TCP_CLOSE) {
2435 if (sk->sk_state != TCP_ESTABLISHED ||
2436 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2437 mptcp_set_state(sk, TCP_CLOSE);
2438 mptcp_close_wake_up(sk);
2439 } else {
2440 mptcp_start_tout_timer(sk);
2441 }
2442 }
2443 }
2444
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2445 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2446 struct mptcp_subflow_context *subflow)
2447 {
2448 /* The first subflow can already be closed and still in the list */
2449 if (subflow->close_event_done)
2450 return;
2451
2452 subflow->close_event_done = true;
2453
2454 if (sk->sk_state == TCP_ESTABLISHED)
2455 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2456
2457 /* subflow aborted before reaching the fully_established status
2458 * attempt the creation of the next subflow
2459 */
2460 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2461
2462 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2463 }
2464
mptcp_sync_mss(struct sock * sk,u32 pmtu)2465 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2466 {
2467 return 0;
2468 }
2469
__mptcp_close_subflow(struct sock * sk)2470 static void __mptcp_close_subflow(struct sock *sk)
2471 {
2472 struct mptcp_subflow_context *subflow, *tmp;
2473 struct mptcp_sock *msk = mptcp_sk(sk);
2474
2475 might_sleep();
2476
2477 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2478 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2479 int ssk_state = inet_sk_state_load(ssk);
2480
2481 if (ssk_state != TCP_CLOSE &&
2482 (ssk_state != TCP_CLOSE_WAIT ||
2483 inet_sk_state_load(sk) != TCP_ESTABLISHED))
2484 continue;
2485
2486 /* 'subflow_data_ready' will re-sched once rx queue is empty */
2487 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2488 continue;
2489
2490 mptcp_close_ssk(sk, ssk, subflow);
2491 }
2492
2493 }
2494
mptcp_close_tout_expired(const struct sock * sk)2495 static bool mptcp_close_tout_expired(const struct sock *sk)
2496 {
2497 if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2498 sk->sk_state == TCP_CLOSE)
2499 return false;
2500
2501 return time_after32(tcp_jiffies32,
2502 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2503 }
2504
mptcp_check_fastclose(struct mptcp_sock * msk)2505 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2506 {
2507 struct mptcp_subflow_context *subflow, *tmp;
2508 struct sock *sk = (struct sock *)msk;
2509
2510 if (likely(!READ_ONCE(msk->rcv_fastclose)))
2511 return;
2512
2513 mptcp_token_destroy(msk);
2514
2515 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2516 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2517 bool slow;
2518
2519 slow = lock_sock_fast(tcp_sk);
2520 if (tcp_sk->sk_state != TCP_CLOSE) {
2521 mptcp_send_active_reset_reason(tcp_sk);
2522 tcp_set_state(tcp_sk, TCP_CLOSE);
2523 }
2524 unlock_sock_fast(tcp_sk, slow);
2525 }
2526
2527 /* Mirror the tcp_reset() error propagation */
2528 switch (sk->sk_state) {
2529 case TCP_SYN_SENT:
2530 WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2531 break;
2532 case TCP_CLOSE_WAIT:
2533 WRITE_ONCE(sk->sk_err, EPIPE);
2534 break;
2535 case TCP_CLOSE:
2536 return;
2537 default:
2538 WRITE_ONCE(sk->sk_err, ECONNRESET);
2539 }
2540
2541 mptcp_set_state(sk, TCP_CLOSE);
2542 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2543 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2544 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2545
2546 /* the calling mptcp_worker will properly destroy the socket */
2547 if (sock_flag(sk, SOCK_DEAD))
2548 return;
2549
2550 sk->sk_state_change(sk);
2551 sk_error_report(sk);
2552 }
2553
__mptcp_retrans(struct sock * sk)2554 static void __mptcp_retrans(struct sock *sk)
2555 {
2556 struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2557 struct mptcp_sock *msk = mptcp_sk(sk);
2558 struct mptcp_subflow_context *subflow;
2559 struct mptcp_data_frag *dfrag;
2560 struct sock *ssk;
2561 int ret, err;
2562 u16 len = 0;
2563
2564 mptcp_clean_una_wakeup(sk);
2565
2566 /* first check ssk: need to kick "stale" logic */
2567 err = mptcp_sched_get_retrans(msk);
2568 dfrag = mptcp_rtx_head(sk);
2569 if (!dfrag) {
2570 if (mptcp_data_fin_enabled(msk)) {
2571 struct inet_connection_sock *icsk = inet_csk(sk);
2572
2573 icsk->icsk_retransmits++;
2574 mptcp_set_datafin_timeout(sk);
2575 mptcp_send_ack(msk);
2576
2577 goto reset_timer;
2578 }
2579
2580 if (!mptcp_send_head(sk))
2581 return;
2582
2583 goto reset_timer;
2584 }
2585
2586 if (err)
2587 goto reset_timer;
2588
2589 mptcp_for_each_subflow(msk, subflow) {
2590 if (READ_ONCE(subflow->scheduled)) {
2591 u16 copied = 0;
2592
2593 mptcp_subflow_set_scheduled(subflow, false);
2594
2595 ssk = mptcp_subflow_tcp_sock(subflow);
2596
2597 lock_sock(ssk);
2598
2599 /* limit retransmission to the bytes already sent on some subflows */
2600 info.sent = 0;
2601 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2602 dfrag->already_sent;
2603
2604 /*
2605 * make the whole retrans decision, xmit, disallow
2606 * fallback atomic
2607 */
2608 spin_lock_bh(&msk->fallback_lock);
2609 if (__mptcp_check_fallback(msk)) {
2610 spin_unlock_bh(&msk->fallback_lock);
2611 release_sock(ssk);
2612 return;
2613 }
2614
2615 while (info.sent < info.limit) {
2616 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2617 if (ret <= 0)
2618 break;
2619
2620 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2621 copied += ret;
2622 info.sent += ret;
2623 }
2624 if (copied) {
2625 len = max(copied, len);
2626 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2627 info.size_goal);
2628 msk->allow_infinite_fallback = false;
2629 }
2630 spin_unlock_bh(&msk->fallback_lock);
2631
2632 release_sock(ssk);
2633 }
2634 }
2635
2636 msk->bytes_retrans += len;
2637 dfrag->already_sent = max(dfrag->already_sent, len);
2638
2639 reset_timer:
2640 mptcp_check_and_set_pending(sk);
2641
2642 if (!mptcp_rtx_timer_pending(sk))
2643 mptcp_reset_rtx_timer(sk);
2644 }
2645
2646 /* schedule the timeout timer for the relevant event: either close timeout
2647 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2648 */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2649 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2650 {
2651 struct sock *sk = (struct sock *)msk;
2652 unsigned long timeout, close_timeout;
2653
2654 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2655 return;
2656
2657 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2658 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2659
2660 /* the close timeout takes precedence on the fail one, and here at least one of
2661 * them is active
2662 */
2663 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2664
2665 sk_reset_timer(sk, &sk->sk_timer, timeout);
2666 }
2667
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2668 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2669 {
2670 struct sock *ssk = msk->first;
2671 bool slow;
2672
2673 if (!ssk)
2674 return;
2675
2676 pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2677
2678 slow = lock_sock_fast(ssk);
2679 mptcp_subflow_reset(ssk);
2680 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2681 unlock_sock_fast(ssk, slow);
2682 }
2683
mptcp_do_fastclose(struct sock * sk)2684 static void mptcp_do_fastclose(struct sock *sk)
2685 {
2686 struct mptcp_subflow_context *subflow, *tmp;
2687 struct mptcp_sock *msk = mptcp_sk(sk);
2688
2689 mptcp_set_state(sk, TCP_CLOSE);
2690 mptcp_for_each_subflow_safe(msk, subflow, tmp)
2691 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2692 subflow, MPTCP_CF_FASTCLOSE);
2693 }
2694
mptcp_worker(struct work_struct * work)2695 static void mptcp_worker(struct work_struct *work)
2696 {
2697 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2698 struct sock *sk = (struct sock *)msk;
2699 unsigned long fail_tout;
2700 int state;
2701
2702 lock_sock(sk);
2703 state = sk->sk_state;
2704 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2705 goto unlock;
2706
2707 mptcp_check_fastclose(msk);
2708
2709 mptcp_pm_worker(msk);
2710
2711 mptcp_check_send_data_fin(sk);
2712 mptcp_check_data_fin_ack(sk);
2713 mptcp_check_data_fin(sk);
2714
2715 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2716 __mptcp_close_subflow(sk);
2717
2718 if (mptcp_close_tout_expired(sk)) {
2719 mptcp_do_fastclose(sk);
2720 mptcp_close_wake_up(sk);
2721 }
2722
2723 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2724 __mptcp_destroy_sock(sk);
2725 goto unlock;
2726 }
2727
2728 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2729 __mptcp_retrans(sk);
2730
2731 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2732 if (fail_tout && time_after(jiffies, fail_tout))
2733 mptcp_mp_fail_no_response(msk);
2734
2735 unlock:
2736 release_sock(sk);
2737 sock_put(sk);
2738 }
2739
__mptcp_init_sock(struct sock * sk)2740 static void __mptcp_init_sock(struct sock *sk)
2741 {
2742 struct mptcp_sock *msk = mptcp_sk(sk);
2743
2744 INIT_LIST_HEAD(&msk->conn_list);
2745 INIT_LIST_HEAD(&msk->join_list);
2746 INIT_LIST_HEAD(&msk->rtx_queue);
2747 INIT_WORK(&msk->work, mptcp_worker);
2748 msk->out_of_order_queue = RB_ROOT;
2749 msk->first_pending = NULL;
2750 msk->timer_ival = TCP_RTO_MIN;
2751 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2752
2753 WRITE_ONCE(msk->first, NULL);
2754 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2755 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2756 msk->allow_infinite_fallback = true;
2757 msk->allow_subflows = true;
2758 msk->recovery = false;
2759 msk->subflow_id = 1;
2760 msk->last_data_sent = tcp_jiffies32;
2761 msk->last_data_recv = tcp_jiffies32;
2762 msk->last_ack_recv = tcp_jiffies32;
2763
2764 mptcp_pm_data_init(msk);
2765 spin_lock_init(&msk->fallback_lock);
2766
2767 /* re-use the csk retrans timer for MPTCP-level retrans */
2768 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2769 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2770 }
2771
mptcp_ca_reset(struct sock * sk)2772 static void mptcp_ca_reset(struct sock *sk)
2773 {
2774 struct inet_connection_sock *icsk = inet_csk(sk);
2775
2776 tcp_assign_congestion_control(sk);
2777 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2778 sizeof(mptcp_sk(sk)->ca_name));
2779
2780 /* no need to keep a reference to the ops, the name will suffice */
2781 tcp_cleanup_congestion_control(sk);
2782 icsk->icsk_ca_ops = NULL;
2783 }
2784
mptcp_init_sock(struct sock * sk)2785 static int mptcp_init_sock(struct sock *sk)
2786 {
2787 struct net *net = sock_net(sk);
2788 int ret;
2789
2790 __mptcp_init_sock(sk);
2791
2792 if (!mptcp_is_enabled(net))
2793 return -ENOPROTOOPT;
2794
2795 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2796 return -ENOMEM;
2797
2798 rcu_read_lock();
2799 ret = mptcp_init_sched(mptcp_sk(sk),
2800 mptcp_sched_find(mptcp_get_scheduler(net)));
2801 rcu_read_unlock();
2802 if (ret)
2803 return ret;
2804
2805 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2806
2807 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2808 * propagate the correct value
2809 */
2810 mptcp_ca_reset(sk);
2811
2812 sk_sockets_allocated_inc(sk);
2813 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2814 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2815
2816 return 0;
2817 }
2818
__mptcp_clear_xmit(struct sock * sk)2819 static void __mptcp_clear_xmit(struct sock *sk)
2820 {
2821 struct mptcp_sock *msk = mptcp_sk(sk);
2822 struct mptcp_data_frag *dtmp, *dfrag;
2823
2824 WRITE_ONCE(msk->first_pending, NULL);
2825 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2826 dfrag_clear(sk, dfrag);
2827 }
2828
mptcp_cancel_work(struct sock * sk)2829 void mptcp_cancel_work(struct sock *sk)
2830 {
2831 struct mptcp_sock *msk = mptcp_sk(sk);
2832
2833 if (cancel_work_sync(&msk->work))
2834 __sock_put(sk);
2835 }
2836
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2837 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2838 {
2839 lock_sock(ssk);
2840
2841 switch (ssk->sk_state) {
2842 case TCP_LISTEN:
2843 if (!(how & RCV_SHUTDOWN))
2844 break;
2845 fallthrough;
2846 case TCP_SYN_SENT:
2847 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2848 break;
2849 default:
2850 if (__mptcp_check_fallback(mptcp_sk(sk))) {
2851 pr_debug("Fallback\n");
2852 ssk->sk_shutdown |= how;
2853 tcp_shutdown(ssk, how);
2854
2855 /* simulate the data_fin ack reception to let the state
2856 * machine move forward
2857 */
2858 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2859 mptcp_schedule_work(sk);
2860 } else {
2861 pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2862 tcp_send_ack(ssk);
2863 if (!mptcp_rtx_timer_pending(sk))
2864 mptcp_reset_rtx_timer(sk);
2865 }
2866 break;
2867 }
2868
2869 release_sock(ssk);
2870 }
2871
mptcp_set_state(struct sock * sk,int state)2872 void mptcp_set_state(struct sock *sk, int state)
2873 {
2874 int oldstate = sk->sk_state;
2875
2876 switch (state) {
2877 case TCP_ESTABLISHED:
2878 if (oldstate != TCP_ESTABLISHED)
2879 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2880 break;
2881 case TCP_CLOSE_WAIT:
2882 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2883 * MPTCP "accepted" sockets will be created later on. So no
2884 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2885 */
2886 break;
2887 default:
2888 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2889 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2890 }
2891
2892 inet_sk_state_store(sk, state);
2893 }
2894
2895 static const unsigned char new_state[16] = {
2896 /* current state: new state: action: */
2897 [0 /* (Invalid) */] = TCP_CLOSE,
2898 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2899 [TCP_SYN_SENT] = TCP_CLOSE,
2900 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2901 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2902 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2903 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
2904 [TCP_CLOSE] = TCP_CLOSE,
2905 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2906 [TCP_LAST_ACK] = TCP_LAST_ACK,
2907 [TCP_LISTEN] = TCP_CLOSE,
2908 [TCP_CLOSING] = TCP_CLOSING,
2909 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2910 };
2911
mptcp_close_state(struct sock * sk)2912 static int mptcp_close_state(struct sock *sk)
2913 {
2914 int next = (int)new_state[sk->sk_state];
2915 int ns = next & TCP_STATE_MASK;
2916
2917 mptcp_set_state(sk, ns);
2918
2919 return next & TCP_ACTION_FIN;
2920 }
2921
mptcp_check_send_data_fin(struct sock * sk)2922 static void mptcp_check_send_data_fin(struct sock *sk)
2923 {
2924 struct mptcp_subflow_context *subflow;
2925 struct mptcp_sock *msk = mptcp_sk(sk);
2926
2927 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2928 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2929 msk->snd_nxt, msk->write_seq);
2930
2931 /* we still need to enqueue subflows or not really shutting down,
2932 * skip this
2933 */
2934 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2935 mptcp_send_head(sk))
2936 return;
2937
2938 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2939
2940 mptcp_for_each_subflow(msk, subflow) {
2941 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2942
2943 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2944 }
2945 }
2946
__mptcp_wr_shutdown(struct sock * sk)2947 static void __mptcp_wr_shutdown(struct sock *sk)
2948 {
2949 struct mptcp_sock *msk = mptcp_sk(sk);
2950
2951 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
2952 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2953 !!mptcp_send_head(sk));
2954
2955 /* will be ignored by fallback sockets */
2956 WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2957 WRITE_ONCE(msk->snd_data_fin_enable, 1);
2958
2959 mptcp_check_send_data_fin(sk);
2960 }
2961
__mptcp_destroy_sock(struct sock * sk)2962 static void __mptcp_destroy_sock(struct sock *sk)
2963 {
2964 struct mptcp_sock *msk = mptcp_sk(sk);
2965
2966 pr_debug("msk=%p\n", msk);
2967
2968 might_sleep();
2969
2970 mptcp_stop_rtx_timer(sk);
2971 sk_stop_timer(sk, &sk->sk_timer);
2972 msk->pm.status = 0;
2973 mptcp_release_sched(msk);
2974
2975 sk->sk_prot->destroy(sk);
2976
2977 sk_stream_kill_queues(sk);
2978 xfrm_sk_free_policy(sk);
2979
2980 sock_put(sk);
2981 }
2982
__mptcp_unaccepted_force_close(struct sock * sk)2983 void __mptcp_unaccepted_force_close(struct sock *sk)
2984 {
2985 sock_set_flag(sk, SOCK_DEAD);
2986 mptcp_do_fastclose(sk);
2987 __mptcp_destroy_sock(sk);
2988 }
2989
mptcp_check_readable(struct sock * sk)2990 static __poll_t mptcp_check_readable(struct sock *sk)
2991 {
2992 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
2993 }
2994
mptcp_check_listen_stop(struct sock * sk)2995 static void mptcp_check_listen_stop(struct sock *sk)
2996 {
2997 struct sock *ssk;
2998
2999 if (inet_sk_state_load(sk) != TCP_LISTEN)
3000 return;
3001
3002 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3003 ssk = mptcp_sk(sk)->first;
3004 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3005 return;
3006
3007 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3008 tcp_set_state(ssk, TCP_CLOSE);
3009 mptcp_subflow_queue_clean(sk, ssk);
3010 inet_csk_listen_stop(ssk);
3011 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3012 release_sock(ssk);
3013 }
3014
__mptcp_close(struct sock * sk,long timeout)3015 bool __mptcp_close(struct sock *sk, long timeout)
3016 {
3017 struct mptcp_subflow_context *subflow;
3018 struct mptcp_sock *msk = mptcp_sk(sk);
3019 bool do_cancel_work = false;
3020 int subflows_alive = 0;
3021
3022 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3023
3024 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3025 mptcp_check_listen_stop(sk);
3026 mptcp_set_state(sk, TCP_CLOSE);
3027 goto cleanup;
3028 }
3029
3030 if (mptcp_data_avail(msk) || timeout < 0) {
3031 /* If the msk has read data, or the caller explicitly ask it,
3032 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3033 */
3034 mptcp_do_fastclose(sk);
3035 timeout = 0;
3036 } else if (mptcp_close_state(sk)) {
3037 __mptcp_wr_shutdown(sk);
3038 }
3039
3040 sk_stream_wait_close(sk, timeout);
3041
3042 cleanup:
3043 /* orphan all the subflows */
3044 mptcp_for_each_subflow(msk, subflow) {
3045 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3046 bool slow = lock_sock_fast_nested(ssk);
3047
3048 subflows_alive += ssk->sk_state != TCP_CLOSE;
3049
3050 /* since the close timeout takes precedence on the fail one,
3051 * cancel the latter
3052 */
3053 if (ssk == msk->first)
3054 subflow->fail_tout = 0;
3055
3056 /* detach from the parent socket, but allow data_ready to
3057 * push incoming data into the mptcp stack, to properly ack it
3058 */
3059 ssk->sk_socket = NULL;
3060 ssk->sk_wq = NULL;
3061 unlock_sock_fast(ssk, slow);
3062 }
3063 sock_orphan(sk);
3064
3065 /* all the subflows are closed, only timeout can change the msk
3066 * state, let's not keep resources busy for no reasons
3067 */
3068 if (subflows_alive == 0)
3069 mptcp_set_state(sk, TCP_CLOSE);
3070
3071 sock_hold(sk);
3072 pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3073 mptcp_pm_connection_closed(msk);
3074
3075 if (sk->sk_state == TCP_CLOSE) {
3076 __mptcp_destroy_sock(sk);
3077 do_cancel_work = true;
3078 } else {
3079 mptcp_start_tout_timer(sk);
3080 }
3081
3082 return do_cancel_work;
3083 }
3084
mptcp_close(struct sock * sk,long timeout)3085 static void mptcp_close(struct sock *sk, long timeout)
3086 {
3087 bool do_cancel_work;
3088
3089 lock_sock(sk);
3090
3091 do_cancel_work = __mptcp_close(sk, timeout);
3092 release_sock(sk);
3093 if (do_cancel_work)
3094 mptcp_cancel_work(sk);
3095
3096 sock_put(sk);
3097 }
3098
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3099 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3100 {
3101 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3102 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3103 struct ipv6_pinfo *msk6 = inet6_sk(msk);
3104
3105 msk->sk_v6_daddr = ssk->sk_v6_daddr;
3106 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3107
3108 if (msk6 && ssk6) {
3109 msk6->saddr = ssk6->saddr;
3110 msk6->flow_label = ssk6->flow_label;
3111 }
3112 #endif
3113
3114 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3115 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3116 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3117 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3118 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3119 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3120 }
3121
mptcp_disconnect(struct sock * sk,int flags)3122 static int mptcp_disconnect(struct sock *sk, int flags)
3123 {
3124 struct mptcp_sock *msk = mptcp_sk(sk);
3125
3126 /* We are on the fastopen error path. We can't call straight into the
3127 * subflows cleanup code due to lock nesting (we are already under
3128 * msk->firstsocket lock).
3129 */
3130 if (msk->fastopening)
3131 return -EBUSY;
3132
3133 mptcp_check_listen_stop(sk);
3134 mptcp_set_state(sk, TCP_CLOSE);
3135
3136 mptcp_stop_rtx_timer(sk);
3137 mptcp_stop_tout_timer(sk);
3138
3139 mptcp_pm_connection_closed(msk);
3140
3141 /* msk->subflow is still intact, the following will not free the first
3142 * subflow
3143 */
3144 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3145
3146 /* The first subflow is already in TCP_CLOSE status, the following
3147 * can't overlap with a fallback anymore
3148 */
3149 spin_lock_bh(&msk->fallback_lock);
3150 msk->allow_subflows = true;
3151 msk->allow_infinite_fallback = true;
3152 WRITE_ONCE(msk->flags, 0);
3153 spin_unlock_bh(&msk->fallback_lock);
3154
3155 msk->cb_flags = 0;
3156 msk->recovery = false;
3157 WRITE_ONCE(msk->can_ack, false);
3158 WRITE_ONCE(msk->fully_established, false);
3159 WRITE_ONCE(msk->rcv_data_fin, false);
3160 WRITE_ONCE(msk->snd_data_fin_enable, false);
3161 WRITE_ONCE(msk->rcv_fastclose, false);
3162 WRITE_ONCE(msk->use_64bit_ack, false);
3163 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3164 mptcp_pm_data_reset(msk);
3165 mptcp_ca_reset(sk);
3166 msk->bytes_consumed = 0;
3167 msk->bytes_acked = 0;
3168 msk->bytes_received = 0;
3169 msk->bytes_sent = 0;
3170 msk->bytes_retrans = 0;
3171 msk->rcvspace_init = 0;
3172
3173 WRITE_ONCE(sk->sk_shutdown, 0);
3174 sk_error_report(sk);
3175 return 0;
3176 }
3177
3178 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3179 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3180 {
3181 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3182
3183 return &msk6->np;
3184 }
3185
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3186 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3187 {
3188 const struct ipv6_pinfo *np = inet6_sk(sk);
3189 struct ipv6_txoptions *opt;
3190 struct ipv6_pinfo *newnp;
3191
3192 newnp = inet6_sk(newsk);
3193
3194 rcu_read_lock();
3195 opt = rcu_dereference(np->opt);
3196 if (opt) {
3197 opt = ipv6_dup_options(newsk, opt);
3198 if (!opt)
3199 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3200 }
3201 RCU_INIT_POINTER(newnp->opt, opt);
3202 rcu_read_unlock();
3203 }
3204 #endif
3205
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3206 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3207 {
3208 struct ip_options_rcu *inet_opt, *newopt = NULL;
3209 const struct inet_sock *inet = inet_sk(sk);
3210 struct inet_sock *newinet;
3211
3212 newinet = inet_sk(newsk);
3213
3214 rcu_read_lock();
3215 inet_opt = rcu_dereference(inet->inet_opt);
3216 if (inet_opt) {
3217 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3218 inet_opt->opt.optlen, GFP_ATOMIC);
3219 if (!newopt)
3220 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3221 }
3222 RCU_INIT_POINTER(newinet->inet_opt, newopt);
3223 rcu_read_unlock();
3224 }
3225
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3226 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3227 const struct mptcp_options_received *mp_opt,
3228 struct sock *ssk,
3229 struct request_sock *req)
3230 {
3231 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3232 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3233 struct mptcp_subflow_context *subflow;
3234 struct mptcp_sock *msk;
3235
3236 if (!nsk)
3237 return NULL;
3238
3239 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3240 if (nsk->sk_family == AF_INET6)
3241 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3242 #endif
3243
3244 __mptcp_init_sock(nsk);
3245
3246 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3247 if (nsk->sk_family == AF_INET6)
3248 mptcp_copy_ip6_options(nsk, sk);
3249 else
3250 #endif
3251 mptcp_copy_ip_options(nsk, sk);
3252
3253 msk = mptcp_sk(nsk);
3254 WRITE_ONCE(msk->local_key, subflow_req->local_key);
3255 WRITE_ONCE(msk->token, subflow_req->token);
3256 msk->in_accept_queue = 1;
3257 WRITE_ONCE(msk->fully_established, false);
3258 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3259 WRITE_ONCE(msk->csum_enabled, true);
3260
3261 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3262 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3263 WRITE_ONCE(msk->snd_una, msk->write_seq);
3264 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3265 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3266 mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3267
3268 /* passive msk is created after the first/MPC subflow */
3269 msk->subflow_id = 2;
3270
3271 sock_reset_flag(nsk, SOCK_RCU_FREE);
3272 security_inet_csk_clone(nsk, req);
3273
3274 /* this can't race with mptcp_close(), as the msk is
3275 * not yet exposted to user-space
3276 */
3277 mptcp_set_state(nsk, TCP_ESTABLISHED);
3278
3279 /* The msk maintain a ref to each subflow in the connections list */
3280 WRITE_ONCE(msk->first, ssk);
3281 subflow = mptcp_subflow_ctx(ssk);
3282 list_add(&subflow->node, &msk->conn_list);
3283 sock_hold(ssk);
3284
3285 /* new mpc subflow takes ownership of the newly
3286 * created mptcp socket
3287 */
3288 mptcp_token_accept(subflow_req, msk);
3289
3290 /* set msk addresses early to ensure mptcp_pm_get_local_id()
3291 * uses the correct data
3292 */
3293 mptcp_copy_inaddrs(nsk, ssk);
3294 __mptcp_propagate_sndbuf(nsk, ssk);
3295
3296 mptcp_rcv_space_init(msk, ssk);
3297
3298 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3299 __mptcp_subflow_fully_established(msk, subflow, mp_opt);
3300 bh_unlock_sock(nsk);
3301
3302 /* note: the newly allocated socket refcount is 2 now */
3303 return nsk;
3304 }
3305
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3306 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3307 {
3308 const struct tcp_sock *tp = tcp_sk(ssk);
3309
3310 msk->rcvspace_init = 1;
3311 msk->rcvq_space.copied = 0;
3312 msk->rcvq_space.rtt_us = 0;
3313
3314 msk->rcvq_space.time = tp->tcp_mstamp;
3315
3316 /* initial rcv_space offering made to peer */
3317 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3318 TCP_INIT_CWND * tp->advmss);
3319 if (msk->rcvq_space.space == 0)
3320 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3321 }
3322
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3323 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3324 {
3325 struct mptcp_subflow_context *subflow, *tmp;
3326 struct sock *sk = (struct sock *)msk;
3327
3328 __mptcp_clear_xmit(sk);
3329
3330 /* join list will be eventually flushed (with rst) at sock lock release time */
3331 mptcp_for_each_subflow_safe(msk, subflow, tmp)
3332 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3333
3334 __skb_queue_purge(&sk->sk_receive_queue);
3335 skb_rbtree_purge(&msk->out_of_order_queue);
3336
3337 /* move all the rx fwd alloc into the sk_mem_reclaim_final in
3338 * inet_sock_destruct() will dispose it
3339 */
3340 mptcp_token_destroy(msk);
3341 mptcp_pm_destroy(msk);
3342 }
3343
mptcp_destroy(struct sock * sk)3344 static void mptcp_destroy(struct sock *sk)
3345 {
3346 struct mptcp_sock *msk = mptcp_sk(sk);
3347
3348 /* allow the following to close even the initial subflow */
3349 msk->free_first = 1;
3350 mptcp_destroy_common(msk, 0);
3351 sk_sockets_allocated_dec(sk);
3352 }
3353
__mptcp_data_acked(struct sock * sk)3354 void __mptcp_data_acked(struct sock *sk)
3355 {
3356 if (!sock_owned_by_user(sk))
3357 __mptcp_clean_una(sk);
3358 else
3359 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3360 }
3361
__mptcp_check_push(struct sock * sk,struct sock * ssk)3362 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3363 {
3364 if (!mptcp_send_head(sk))
3365 return;
3366
3367 if (!sock_owned_by_user(sk))
3368 __mptcp_subflow_push_pending(sk, ssk, false);
3369 else
3370 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3371 }
3372
3373 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3374 BIT(MPTCP_RETRANSMIT) | \
3375 BIT(MPTCP_FLUSH_JOIN_LIST) | \
3376 BIT(MPTCP_DEQUEUE))
3377
3378 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3379 static void mptcp_release_cb(struct sock *sk)
3380 __must_hold(&sk->sk_lock.slock)
3381 {
3382 struct mptcp_sock *msk = mptcp_sk(sk);
3383
3384 for (;;) {
3385 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3386 struct list_head join_list;
3387
3388 if (!flags)
3389 break;
3390
3391 INIT_LIST_HEAD(&join_list);
3392 list_splice_init(&msk->join_list, &join_list);
3393
3394 /* the following actions acquire the subflow socket lock
3395 *
3396 * 1) can't be invoked in atomic scope
3397 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3398 * datapath acquires the msk socket spinlock while helding
3399 * the subflow socket lock
3400 */
3401 msk->cb_flags &= ~flags;
3402 spin_unlock_bh(&sk->sk_lock.slock);
3403
3404 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3405 __mptcp_flush_join_list(sk, &join_list);
3406 if (flags & BIT(MPTCP_PUSH_PENDING))
3407 __mptcp_push_pending(sk, 0);
3408 if (flags & BIT(MPTCP_RETRANSMIT))
3409 __mptcp_retrans(sk);
3410 if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3411 /* notify ack seq update */
3412 mptcp_cleanup_rbuf(msk, 0);
3413 sk->sk_data_ready(sk);
3414 }
3415
3416 cond_resched();
3417 spin_lock_bh(&sk->sk_lock.slock);
3418 }
3419
3420 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3421 __mptcp_clean_una_wakeup(sk);
3422 if (unlikely(msk->cb_flags)) {
3423 /* be sure to sync the msk state before taking actions
3424 * depending on sk_state (MPTCP_ERROR_REPORT)
3425 * On sk release avoid actions depending on the first subflow
3426 */
3427 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3428 __mptcp_sync_state(sk, msk->pending_state);
3429 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3430 __mptcp_error_report(sk);
3431 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3432 __mptcp_sync_sndbuf(sk);
3433 }
3434 }
3435
3436 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3437 * TCP can't schedule delack timer before the subflow is fully established.
3438 * MPTCP uses the delack timer to do 3rd ack retransmissions
3439 */
schedule_3rdack_retransmission(struct sock * ssk)3440 static void schedule_3rdack_retransmission(struct sock *ssk)
3441 {
3442 struct inet_connection_sock *icsk = inet_csk(ssk);
3443 struct tcp_sock *tp = tcp_sk(ssk);
3444 unsigned long timeout;
3445
3446 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3447 return;
3448
3449 /* reschedule with a timeout above RTT, as we must look only for drop */
3450 if (tp->srtt_us)
3451 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3452 else
3453 timeout = TCP_TIMEOUT_INIT;
3454 timeout += jiffies;
3455
3456 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3457 smp_store_release(&icsk->icsk_ack.pending,
3458 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3459 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3460 }
3461
mptcp_subflow_process_delegated(struct sock * ssk,long status)3462 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3463 {
3464 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3465 struct sock *sk = subflow->conn;
3466
3467 if (status & BIT(MPTCP_DELEGATE_SEND)) {
3468 mptcp_data_lock(sk);
3469 if (!sock_owned_by_user(sk))
3470 __mptcp_subflow_push_pending(sk, ssk, true);
3471 else
3472 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3473 mptcp_data_unlock(sk);
3474 }
3475 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3476 mptcp_data_lock(sk);
3477 if (!sock_owned_by_user(sk))
3478 __mptcp_sync_sndbuf(sk);
3479 else
3480 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3481 mptcp_data_unlock(sk);
3482 }
3483 if (status & BIT(MPTCP_DELEGATE_ACK))
3484 schedule_3rdack_retransmission(ssk);
3485 }
3486
mptcp_hash(struct sock * sk)3487 static int mptcp_hash(struct sock *sk)
3488 {
3489 /* should never be called,
3490 * we hash the TCP subflows not the MPTCP socket
3491 */
3492 WARN_ON_ONCE(1);
3493 return 0;
3494 }
3495
mptcp_unhash(struct sock * sk)3496 static void mptcp_unhash(struct sock *sk)
3497 {
3498 /* called from sk_common_release(), but nothing to do here */
3499 }
3500
mptcp_get_port(struct sock * sk,unsigned short snum)3501 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3502 {
3503 struct mptcp_sock *msk = mptcp_sk(sk);
3504
3505 pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3506 if (WARN_ON_ONCE(!msk->first))
3507 return -EINVAL;
3508
3509 return inet_csk_get_port(msk->first, snum);
3510 }
3511
mptcp_finish_connect(struct sock * ssk)3512 void mptcp_finish_connect(struct sock *ssk)
3513 {
3514 struct mptcp_subflow_context *subflow;
3515 struct mptcp_sock *msk;
3516 struct sock *sk;
3517
3518 subflow = mptcp_subflow_ctx(ssk);
3519 sk = subflow->conn;
3520 msk = mptcp_sk(sk);
3521
3522 pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3523
3524 subflow->map_seq = subflow->iasn;
3525 subflow->map_subflow_seq = 1;
3526
3527 /* the socket is not connected yet, no msk/subflow ops can access/race
3528 * accessing the field below
3529 */
3530 WRITE_ONCE(msk->local_key, subflow->local_key);
3531
3532 mptcp_pm_new_connection(msk, ssk, 0);
3533 }
3534
mptcp_sock_graft(struct sock * sk,struct socket * parent)3535 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3536 {
3537 write_lock_bh(&sk->sk_callback_lock);
3538 rcu_assign_pointer(sk->sk_wq, &parent->wq);
3539 sk_set_socket(sk, parent);
3540 sk->sk_uid = SOCK_INODE(parent)->i_uid;
3541 write_unlock_bh(&sk->sk_callback_lock);
3542 }
3543
mptcp_finish_join(struct sock * ssk)3544 bool mptcp_finish_join(struct sock *ssk)
3545 {
3546 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3547 struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3548 struct sock *parent = (void *)msk;
3549 bool ret = true;
3550
3551 pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3552
3553 /* mptcp socket already closing? */
3554 if (!mptcp_is_fully_established(parent)) {
3555 subflow->reset_reason = MPTCP_RST_EMPTCP;
3556 return false;
3557 }
3558
3559 /* active subflow, already present inside the conn_list */
3560 if (!list_empty(&subflow->node)) {
3561 spin_lock_bh(&msk->fallback_lock);
3562 if (!msk->allow_subflows) {
3563 spin_unlock_bh(&msk->fallback_lock);
3564 return false;
3565 }
3566 mptcp_subflow_joined(msk, ssk);
3567 spin_unlock_bh(&msk->fallback_lock);
3568 mptcp_propagate_sndbuf(parent, ssk);
3569 return true;
3570 }
3571
3572 if (!mptcp_pm_allow_new_subflow(msk)) {
3573 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3574 goto err_prohibited;
3575 }
3576
3577 /* If we can't acquire msk socket lock here, let the release callback
3578 * handle it
3579 */
3580 mptcp_data_lock(parent);
3581 if (!sock_owned_by_user(parent)) {
3582 ret = __mptcp_finish_join(msk, ssk);
3583 if (ret) {
3584 sock_hold(ssk);
3585 list_add_tail(&subflow->node, &msk->conn_list);
3586 }
3587 } else {
3588 sock_hold(ssk);
3589 list_add_tail(&subflow->node, &msk->join_list);
3590 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3591 }
3592 mptcp_data_unlock(parent);
3593
3594 if (!ret) {
3595 err_prohibited:
3596 subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3597 return false;
3598 }
3599
3600 return true;
3601 }
3602
mptcp_shutdown(struct sock * sk,int how)3603 static void mptcp_shutdown(struct sock *sk, int how)
3604 {
3605 pr_debug("sk=%p, how=%d\n", sk, how);
3606
3607 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3608 __mptcp_wr_shutdown(sk);
3609 }
3610
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3611 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3612 {
3613 const struct sock *sk = (void *)msk;
3614 u64 delta;
3615
3616 if (sk->sk_state == TCP_LISTEN)
3617 return -EINVAL;
3618
3619 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3620 return 0;
3621
3622 delta = msk->write_seq - v;
3623 if (__mptcp_check_fallback(msk) && msk->first) {
3624 struct tcp_sock *tp = tcp_sk(msk->first);
3625
3626 /* the first subflow is disconnected after close - see
3627 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3628 * so ignore that status, too.
3629 */
3630 if (!((1 << msk->first->sk_state) &
3631 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3632 delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3633 }
3634 if (delta > INT_MAX)
3635 delta = INT_MAX;
3636
3637 return (int)delta;
3638 }
3639
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3640 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3641 {
3642 struct mptcp_sock *msk = mptcp_sk(sk);
3643 bool slow;
3644
3645 switch (cmd) {
3646 case SIOCINQ:
3647 if (sk->sk_state == TCP_LISTEN)
3648 return -EINVAL;
3649
3650 lock_sock(sk);
3651 if (__mptcp_move_skbs(sk))
3652 mptcp_cleanup_rbuf(msk, 0);
3653 *karg = mptcp_inq_hint(sk);
3654 release_sock(sk);
3655 break;
3656 case SIOCOUTQ:
3657 slow = lock_sock_fast(sk);
3658 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3659 unlock_sock_fast(sk, slow);
3660 break;
3661 case SIOCOUTQNSD:
3662 slow = lock_sock_fast(sk);
3663 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3664 unlock_sock_fast(sk, slow);
3665 break;
3666 default:
3667 return -ENOIOCTLCMD;
3668 }
3669
3670 return 0;
3671 }
3672
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3673 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3674 {
3675 struct mptcp_subflow_context *subflow;
3676 struct mptcp_sock *msk = mptcp_sk(sk);
3677 int err = -EINVAL;
3678 struct sock *ssk;
3679
3680 ssk = __mptcp_nmpc_sk(msk);
3681 if (IS_ERR(ssk))
3682 return PTR_ERR(ssk);
3683
3684 mptcp_set_state(sk, TCP_SYN_SENT);
3685 subflow = mptcp_subflow_ctx(ssk);
3686 #ifdef CONFIG_TCP_MD5SIG
3687 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3688 * TCP option space.
3689 */
3690 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3691 mptcp_subflow_early_fallback(msk, subflow);
3692 #endif
3693 if (subflow->request_mptcp) {
3694 if (mptcp_active_should_disable(sk)) {
3695 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3696 mptcp_subflow_early_fallback(msk, subflow);
3697 } else if (mptcp_token_new_connect(ssk) < 0) {
3698 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3699 mptcp_subflow_early_fallback(msk, subflow);
3700 }
3701 }
3702
3703 WRITE_ONCE(msk->write_seq, subflow->idsn);
3704 WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3705 WRITE_ONCE(msk->snd_una, subflow->idsn);
3706 if (likely(!__mptcp_check_fallback(msk)))
3707 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3708
3709 /* if reaching here via the fastopen/sendmsg path, the caller already
3710 * acquired the subflow socket lock, too.
3711 */
3712 if (!msk->fastopening)
3713 lock_sock(ssk);
3714
3715 /* the following mirrors closely a very small chunk of code from
3716 * __inet_stream_connect()
3717 */
3718 if (ssk->sk_state != TCP_CLOSE)
3719 goto out;
3720
3721 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3722 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3723 if (err)
3724 goto out;
3725 }
3726
3727 err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3728 if (err < 0)
3729 goto out;
3730
3731 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3732
3733 out:
3734 if (!msk->fastopening)
3735 release_sock(ssk);
3736
3737 /* on successful connect, the msk state will be moved to established by
3738 * subflow_finish_connect()
3739 */
3740 if (unlikely(err)) {
3741 /* avoid leaving a dangling token in an unconnected socket */
3742 mptcp_token_destroy(msk);
3743 mptcp_set_state(sk, TCP_CLOSE);
3744 return err;
3745 }
3746
3747 mptcp_copy_inaddrs(sk, ssk);
3748 return 0;
3749 }
3750
3751 static struct proto mptcp_prot = {
3752 .name = "MPTCP",
3753 .owner = THIS_MODULE,
3754 .init = mptcp_init_sock,
3755 .connect = mptcp_connect,
3756 .disconnect = mptcp_disconnect,
3757 .close = mptcp_close,
3758 .setsockopt = mptcp_setsockopt,
3759 .getsockopt = mptcp_getsockopt,
3760 .shutdown = mptcp_shutdown,
3761 .destroy = mptcp_destroy,
3762 .sendmsg = mptcp_sendmsg,
3763 .ioctl = mptcp_ioctl,
3764 .recvmsg = mptcp_recvmsg,
3765 .release_cb = mptcp_release_cb,
3766 .hash = mptcp_hash,
3767 .unhash = mptcp_unhash,
3768 .get_port = mptcp_get_port,
3769 .stream_memory_free = mptcp_stream_memory_free,
3770 .sockets_allocated = &mptcp_sockets_allocated,
3771
3772 .memory_allocated = &tcp_memory_allocated,
3773 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
3774
3775 .memory_pressure = &tcp_memory_pressure,
3776 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3777 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3778 .sysctl_mem = sysctl_tcp_mem,
3779 .obj_size = sizeof(struct mptcp_sock),
3780 .slab_flags = SLAB_TYPESAFE_BY_RCU,
3781 .no_autobind = true,
3782 };
3783
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3784 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3785 {
3786 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3787 struct sock *ssk, *sk = sock->sk;
3788 int err = -EINVAL;
3789
3790 lock_sock(sk);
3791 ssk = __mptcp_nmpc_sk(msk);
3792 if (IS_ERR(ssk)) {
3793 err = PTR_ERR(ssk);
3794 goto unlock;
3795 }
3796
3797 if (sk->sk_family == AF_INET)
3798 err = inet_bind_sk(ssk, uaddr, addr_len);
3799 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3800 else if (sk->sk_family == AF_INET6)
3801 err = inet6_bind_sk(ssk, uaddr, addr_len);
3802 #endif
3803 if (!err)
3804 mptcp_copy_inaddrs(sk, ssk);
3805
3806 unlock:
3807 release_sock(sk);
3808 return err;
3809 }
3810
mptcp_listen(struct socket * sock,int backlog)3811 static int mptcp_listen(struct socket *sock, int backlog)
3812 {
3813 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3814 struct sock *sk = sock->sk;
3815 struct sock *ssk;
3816 int err;
3817
3818 pr_debug("msk=%p\n", msk);
3819
3820 lock_sock(sk);
3821
3822 err = -EINVAL;
3823 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3824 goto unlock;
3825
3826 ssk = __mptcp_nmpc_sk(msk);
3827 if (IS_ERR(ssk)) {
3828 err = PTR_ERR(ssk);
3829 goto unlock;
3830 }
3831
3832 mptcp_set_state(sk, TCP_LISTEN);
3833 sock_set_flag(sk, SOCK_RCU_FREE);
3834
3835 lock_sock(ssk);
3836 err = __inet_listen_sk(ssk, backlog);
3837 release_sock(ssk);
3838 mptcp_set_state(sk, inet_sk_state_load(ssk));
3839
3840 if (!err) {
3841 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3842 mptcp_copy_inaddrs(sk, ssk);
3843 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3844 }
3845
3846 unlock:
3847 release_sock(sk);
3848 return err;
3849 }
3850
mptcp_stream_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)3851 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3852 struct proto_accept_arg *arg)
3853 {
3854 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3855 struct sock *ssk, *newsk;
3856
3857 pr_debug("msk=%p\n", msk);
3858
3859 /* Buggy applications can call accept on socket states other then LISTEN
3860 * but no need to allocate the first subflow just to error out.
3861 */
3862 ssk = READ_ONCE(msk->first);
3863 if (!ssk)
3864 return -EINVAL;
3865
3866 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3867 newsk = inet_csk_accept(ssk, arg);
3868 if (!newsk)
3869 return arg->err;
3870
3871 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3872 if (sk_is_mptcp(newsk)) {
3873 struct mptcp_subflow_context *subflow;
3874 struct sock *new_mptcp_sock;
3875
3876 subflow = mptcp_subflow_ctx(newsk);
3877 new_mptcp_sock = subflow->conn;
3878
3879 /* is_mptcp should be false if subflow->conn is missing, see
3880 * subflow_syn_recv_sock()
3881 */
3882 if (WARN_ON_ONCE(!new_mptcp_sock)) {
3883 tcp_sk(newsk)->is_mptcp = 0;
3884 goto tcpfallback;
3885 }
3886
3887 newsk = new_mptcp_sock;
3888 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3889
3890 newsk->sk_kern_sock = arg->kern;
3891 lock_sock(newsk);
3892 __inet_accept(sock, newsock, newsk);
3893
3894 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3895 msk = mptcp_sk(newsk);
3896 msk->in_accept_queue = 0;
3897
3898 /* set ssk->sk_socket of accept()ed flows to mptcp socket.
3899 * This is needed so NOSPACE flag can be set from tcp stack.
3900 */
3901 mptcp_for_each_subflow(msk, subflow) {
3902 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3903
3904 if (!ssk->sk_socket)
3905 mptcp_sock_graft(ssk, newsock);
3906 }
3907
3908 /* Do late cleanup for the first subflow as necessary. Also
3909 * deal with bad peers not doing a complete shutdown.
3910 */
3911 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3912 __mptcp_close_ssk(newsk, msk->first,
3913 mptcp_subflow_ctx(msk->first), 0);
3914 if (unlikely(list_is_singular(&msk->conn_list)))
3915 mptcp_set_state(newsk, TCP_CLOSE);
3916 }
3917 } else {
3918 tcpfallback:
3919 newsk->sk_kern_sock = arg->kern;
3920 lock_sock(newsk);
3921 __inet_accept(sock, newsock, newsk);
3922 /* we are being invoked after accepting a non-mp-capable
3923 * flow: sk is a tcp_sk, not an mptcp one.
3924 *
3925 * Hand the socket over to tcp so all further socket ops
3926 * bypass mptcp.
3927 */
3928 WRITE_ONCE(newsock->sk->sk_socket->ops,
3929 mptcp_fallback_tcp_ops(newsock->sk));
3930 }
3931 release_sock(newsk);
3932
3933 return 0;
3934 }
3935
mptcp_check_writeable(struct mptcp_sock * msk)3936 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3937 {
3938 struct sock *sk = (struct sock *)msk;
3939
3940 if (__mptcp_stream_is_writeable(sk, 1))
3941 return EPOLLOUT | EPOLLWRNORM;
3942
3943 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3944 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3945 if (__mptcp_stream_is_writeable(sk, 1))
3946 return EPOLLOUT | EPOLLWRNORM;
3947
3948 return 0;
3949 }
3950
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)3951 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3952 struct poll_table_struct *wait)
3953 {
3954 struct sock *sk = sock->sk;
3955 struct mptcp_sock *msk;
3956 __poll_t mask = 0;
3957 u8 shutdown;
3958 int state;
3959
3960 msk = mptcp_sk(sk);
3961 sock_poll_wait(file, sock, wait);
3962
3963 state = inet_sk_state_load(sk);
3964 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
3965 if (state == TCP_LISTEN) {
3966 struct sock *ssk = READ_ONCE(msk->first);
3967
3968 if (WARN_ON_ONCE(!ssk))
3969 return 0;
3970
3971 return inet_csk_listen_poll(ssk);
3972 }
3973
3974 shutdown = READ_ONCE(sk->sk_shutdown);
3975 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3976 mask |= EPOLLHUP;
3977 if (shutdown & RCV_SHUTDOWN)
3978 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3979
3980 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3981 mask |= mptcp_check_readable(sk);
3982 if (shutdown & SEND_SHUTDOWN)
3983 mask |= EPOLLOUT | EPOLLWRNORM;
3984 else
3985 mask |= mptcp_check_writeable(msk);
3986 } else if (state == TCP_SYN_SENT &&
3987 inet_test_bit(DEFER_CONNECT, sk)) {
3988 /* cf tcp_poll() note about TFO */
3989 mask |= EPOLLOUT | EPOLLWRNORM;
3990 }
3991
3992 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3993 smp_rmb();
3994 if (READ_ONCE(sk->sk_err))
3995 mask |= EPOLLERR;
3996
3997 return mask;
3998 }
3999
4000 static const struct proto_ops mptcp_stream_ops = {
4001 .family = PF_INET,
4002 .owner = THIS_MODULE,
4003 .release = inet_release,
4004 .bind = mptcp_bind,
4005 .connect = inet_stream_connect,
4006 .socketpair = sock_no_socketpair,
4007 .accept = mptcp_stream_accept,
4008 .getname = inet_getname,
4009 .poll = mptcp_poll,
4010 .ioctl = inet_ioctl,
4011 .gettstamp = sock_gettstamp,
4012 .listen = mptcp_listen,
4013 .shutdown = inet_shutdown,
4014 .setsockopt = sock_common_setsockopt,
4015 .getsockopt = sock_common_getsockopt,
4016 .sendmsg = inet_sendmsg,
4017 .recvmsg = inet_recvmsg,
4018 .mmap = sock_no_mmap,
4019 .set_rcvlowat = mptcp_set_rcvlowat,
4020 };
4021
4022 static struct inet_protosw mptcp_protosw = {
4023 .type = SOCK_STREAM,
4024 .protocol = IPPROTO_MPTCP,
4025 .prot = &mptcp_prot,
4026 .ops = &mptcp_stream_ops,
4027 .flags = INET_PROTOSW_ICSK,
4028 };
4029
mptcp_napi_poll(struct napi_struct * napi,int budget)4030 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4031 {
4032 struct mptcp_delegated_action *delegated;
4033 struct mptcp_subflow_context *subflow;
4034 int work_done = 0;
4035
4036 delegated = container_of(napi, struct mptcp_delegated_action, napi);
4037 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4038 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4039
4040 bh_lock_sock_nested(ssk);
4041 if (!sock_owned_by_user(ssk)) {
4042 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4043 } else {
4044 /* tcp_release_cb_override already processed
4045 * the action or will do at next release_sock().
4046 * In both case must dequeue the subflow here - on the same
4047 * CPU that scheduled it.
4048 */
4049 smp_wmb();
4050 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4051 }
4052 bh_unlock_sock(ssk);
4053 sock_put(ssk);
4054
4055 if (++work_done == budget)
4056 return budget;
4057 }
4058
4059 /* always provide a 0 'work_done' argument, so that napi_complete_done
4060 * will not try accessing the NULL napi->dev ptr
4061 */
4062 napi_complete_done(napi, 0);
4063 return work_done;
4064 }
4065
mptcp_proto_init(void)4066 void __init mptcp_proto_init(void)
4067 {
4068 struct mptcp_delegated_action *delegated;
4069 int cpu;
4070
4071 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4072
4073 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4074 panic("Failed to allocate MPTCP pcpu counter\n");
4075
4076 mptcp_napi_dev = alloc_netdev_dummy(0);
4077 if (!mptcp_napi_dev)
4078 panic("Failed to allocate MPTCP dummy netdev\n");
4079 for_each_possible_cpu(cpu) {
4080 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4081 INIT_LIST_HEAD(&delegated->head);
4082 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4083 mptcp_napi_poll);
4084 napi_enable(&delegated->napi);
4085 }
4086
4087 mptcp_subflow_init();
4088 mptcp_pm_init();
4089 mptcp_sched_init();
4090 mptcp_token_init();
4091
4092 if (proto_register(&mptcp_prot, 1) != 0)
4093 panic("Failed to register MPTCP proto.\n");
4094
4095 inet_register_protosw(&mptcp_protosw);
4096
4097 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4098 }
4099
4100 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4101 static const struct proto_ops mptcp_v6_stream_ops = {
4102 .family = PF_INET6,
4103 .owner = THIS_MODULE,
4104 .release = inet6_release,
4105 .bind = mptcp_bind,
4106 .connect = inet_stream_connect,
4107 .socketpair = sock_no_socketpair,
4108 .accept = mptcp_stream_accept,
4109 .getname = inet6_getname,
4110 .poll = mptcp_poll,
4111 .ioctl = inet6_ioctl,
4112 .gettstamp = sock_gettstamp,
4113 .listen = mptcp_listen,
4114 .shutdown = inet_shutdown,
4115 .setsockopt = sock_common_setsockopt,
4116 .getsockopt = sock_common_getsockopt,
4117 .sendmsg = inet6_sendmsg,
4118 .recvmsg = inet6_recvmsg,
4119 .mmap = sock_no_mmap,
4120 #ifdef CONFIG_COMPAT
4121 .compat_ioctl = inet6_compat_ioctl,
4122 #endif
4123 .set_rcvlowat = mptcp_set_rcvlowat,
4124 };
4125
4126 static struct proto mptcp_v6_prot;
4127
4128 static struct inet_protosw mptcp_v6_protosw = {
4129 .type = SOCK_STREAM,
4130 .protocol = IPPROTO_MPTCP,
4131 .prot = &mptcp_v6_prot,
4132 .ops = &mptcp_v6_stream_ops,
4133 .flags = INET_PROTOSW_ICSK,
4134 };
4135
mptcp_proto_v6_init(void)4136 int __init mptcp_proto_v6_init(void)
4137 {
4138 int err;
4139
4140 mptcp_v6_prot = mptcp_prot;
4141 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4142 mptcp_v6_prot.slab = NULL;
4143 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4144 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4145
4146 err = proto_register(&mptcp_v6_prot, 1);
4147 if (err)
4148 return err;
4149
4150 err = inet6_register_protosw(&mptcp_v6_protosw);
4151 if (err)
4152 proto_unregister(&mptcp_v6_prot);
4153
4154 return err;
4155 }
4156 #endif
4157