xref: /linux/net/mptcp/protocol.c (revision 6832a9317eee280117cd695fa885b2b7a7a38daf)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp_states.h>
19 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
20 #include <net/transp_v6.h>
21 #endif
22 #include <net/mptcp.h>
23 #include <net/hotdata.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
50 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
51 };
52 static struct net_device *mptcp_napi_dev;
53 
54 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)55 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
56 {
57 	return READ_ONCE(msk->wnd_end);
58 }
59 
mptcp_fallback_tcp_ops(const struct sock * sk)60 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
61 {
62 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
63 	if (sk->sk_prot == &tcpv6_prot)
64 		return &inet6_stream_ops;
65 #endif
66 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
67 	return &inet_stream_ops;
68 }
69 
__mptcp_socket_create(struct mptcp_sock * msk)70 static int __mptcp_socket_create(struct mptcp_sock *msk)
71 {
72 	struct mptcp_subflow_context *subflow;
73 	struct sock *sk = (struct sock *)msk;
74 	struct socket *ssock;
75 	int err;
76 
77 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
78 	if (err)
79 		return err;
80 
81 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
82 	WRITE_ONCE(msk->first, ssock->sk);
83 	subflow = mptcp_subflow_ctx(ssock->sk);
84 	list_add(&subflow->node, &msk->conn_list);
85 	sock_hold(ssock->sk);
86 	subflow->request_mptcp = 1;
87 	subflow->subflow_id = msk->subflow_id++;
88 
89 	/* This is the first subflow, always with id 0 */
90 	WRITE_ONCE(subflow->local_id, 0);
91 	mptcp_sock_graft(msk->first, sk->sk_socket);
92 	iput(SOCK_INODE(ssock));
93 
94 	return 0;
95 }
96 
97 /* If the MPC handshake is not started, returns the first subflow,
98  * eventually allocating it.
99  */
__mptcp_nmpc_sk(struct mptcp_sock * msk)100 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
101 {
102 	struct sock *sk = (struct sock *)msk;
103 	int ret;
104 
105 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
106 		return ERR_PTR(-EINVAL);
107 
108 	if (!msk->first) {
109 		ret = __mptcp_socket_create(msk);
110 		if (ret)
111 			return ERR_PTR(ret);
112 	}
113 
114 	return msk->first;
115 }
116 
mptcp_drop(struct sock * sk,struct sk_buff * skb)117 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
118 {
119 	sk_drops_add(sk, skb);
120 	__kfree_skb(skb);
121 }
122 
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)123 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
124 			       struct sk_buff *from)
125 {
126 	bool fragstolen;
127 	int delta;
128 
129 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
130 	    MPTCP_SKB_CB(from)->offset ||
131 	    ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
132 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
133 		return false;
134 
135 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
136 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
137 		 to->len, MPTCP_SKB_CB(from)->end_seq);
138 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
139 
140 	/* note the fwd memory can reach a negative value after accounting
141 	 * for the delta, but the later skb free will restore a non
142 	 * negative one
143 	 */
144 	atomic_add(delta, &sk->sk_rmem_alloc);
145 	sk_mem_charge(sk, delta);
146 	kfree_skb_partial(from, fragstolen);
147 
148 	return true;
149 }
150 
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)151 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
152 				   struct sk_buff *from)
153 {
154 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
155 		return false;
156 
157 	return mptcp_try_coalesce((struct sock *)msk, to, from);
158 }
159 
160 /* "inspired" by tcp_data_queue_ofo(), main differences:
161  * - use mptcp seqs
162  * - don't cope with sacks
163  */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)164 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
165 {
166 	struct sock *sk = (struct sock *)msk;
167 	struct rb_node **p, *parent;
168 	u64 seq, end_seq, max_seq;
169 	struct sk_buff *skb1;
170 
171 	seq = MPTCP_SKB_CB(skb)->map_seq;
172 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
173 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
174 
175 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
176 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
177 	if (after64(end_seq, max_seq)) {
178 		/* out of window */
179 		mptcp_drop(sk, skb);
180 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
181 			 (unsigned long long)end_seq - (unsigned long)max_seq,
182 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
183 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
184 		return;
185 	}
186 
187 	p = &msk->out_of_order_queue.rb_node;
188 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
189 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
190 		rb_link_node(&skb->rbnode, NULL, p);
191 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
192 		msk->ooo_last_skb = skb;
193 		goto end;
194 	}
195 
196 	/* with 2 subflows, adding at end of ooo queue is quite likely
197 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
198 	 */
199 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
200 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
201 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
202 		return;
203 	}
204 
205 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
206 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
207 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
208 		parent = &msk->ooo_last_skb->rbnode;
209 		p = &parent->rb_right;
210 		goto insert;
211 	}
212 
213 	/* Find place to insert this segment. Handle overlaps on the way. */
214 	parent = NULL;
215 	while (*p) {
216 		parent = *p;
217 		skb1 = rb_to_skb(parent);
218 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
219 			p = &parent->rb_left;
220 			continue;
221 		}
222 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
223 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
224 				/* All the bits are present. Drop. */
225 				mptcp_drop(sk, skb);
226 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
227 				return;
228 			}
229 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
230 				/* partial overlap:
231 				 *     |     skb      |
232 				 *  |     skb1    |
233 				 * continue traversing
234 				 */
235 			} else {
236 				/* skb's seq == skb1's seq and skb covers skb1.
237 				 * Replace skb1 with skb.
238 				 */
239 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
240 						&msk->out_of_order_queue);
241 				mptcp_drop(sk, skb1);
242 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
243 				goto merge_right;
244 			}
245 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
246 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
247 			return;
248 		}
249 		p = &parent->rb_right;
250 	}
251 
252 insert:
253 	/* Insert segment into RB tree. */
254 	rb_link_node(&skb->rbnode, parent, p);
255 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
256 
257 merge_right:
258 	/* Remove other segments covered by skb. */
259 	while ((skb1 = skb_rb_next(skb)) != NULL) {
260 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
261 			break;
262 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
263 		mptcp_drop(sk, skb1);
264 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
265 	}
266 	/* If there is no skb after us, we are the last_skb ! */
267 	if (!skb1)
268 		msk->ooo_last_skb = skb;
269 
270 end:
271 	skb_condense(skb);
272 	skb_set_owner_r(skb, sk);
273 }
274 
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)275 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
276 			     struct sk_buff *skb, unsigned int offset,
277 			     size_t copy_len)
278 {
279 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
280 	struct sock *sk = (struct sock *)msk;
281 	struct sk_buff *tail;
282 	bool has_rxtstamp;
283 
284 	__skb_unlink(skb, &ssk->sk_receive_queue);
285 
286 	skb_ext_reset(skb);
287 	skb_orphan(skb);
288 
289 	/* try to fetch required memory from subflow */
290 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
291 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
292 		goto drop;
293 	}
294 
295 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
296 
297 	/* the skb map_seq accounts for the skb offset:
298 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
299 	 * value
300 	 */
301 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
302 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
303 	MPTCP_SKB_CB(skb)->offset = offset;
304 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
305 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
306 
307 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
308 		/* in sequence */
309 		msk->bytes_received += copy_len;
310 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
311 		tail = skb_peek_tail(&sk->sk_receive_queue);
312 		if (tail && mptcp_try_coalesce(sk, tail, skb))
313 			return true;
314 
315 		skb_set_owner_r(skb, sk);
316 		__skb_queue_tail(&sk->sk_receive_queue, skb);
317 		return true;
318 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
319 		mptcp_data_queue_ofo(msk, skb);
320 		return false;
321 	}
322 
323 	/* old data, keep it simple and drop the whole pkt, sender
324 	 * will retransmit as needed, if needed.
325 	 */
326 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
327 drop:
328 	mptcp_drop(sk, skb);
329 	return false;
330 }
331 
mptcp_stop_rtx_timer(struct sock * sk)332 static void mptcp_stop_rtx_timer(struct sock *sk)
333 {
334 	struct inet_connection_sock *icsk = inet_csk(sk);
335 
336 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
337 	mptcp_sk(sk)->timer_ival = 0;
338 }
339 
mptcp_close_wake_up(struct sock * sk)340 static void mptcp_close_wake_up(struct sock *sk)
341 {
342 	if (sock_flag(sk, SOCK_DEAD))
343 		return;
344 
345 	sk->sk_state_change(sk);
346 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
347 	    sk->sk_state == TCP_CLOSE)
348 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
349 	else
350 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
351 }
352 
353 /* called under the msk socket lock */
mptcp_pending_data_fin_ack(struct sock * sk)354 static bool mptcp_pending_data_fin_ack(struct sock *sk)
355 {
356 	struct mptcp_sock *msk = mptcp_sk(sk);
357 
358 	return ((1 << sk->sk_state) &
359 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
360 	       msk->write_seq == READ_ONCE(msk->snd_una);
361 }
362 
mptcp_check_data_fin_ack(struct sock * sk)363 static void mptcp_check_data_fin_ack(struct sock *sk)
364 {
365 	struct mptcp_sock *msk = mptcp_sk(sk);
366 
367 	/* Look for an acknowledged DATA_FIN */
368 	if (mptcp_pending_data_fin_ack(sk)) {
369 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
370 
371 		switch (sk->sk_state) {
372 		case TCP_FIN_WAIT1:
373 			mptcp_set_state(sk, TCP_FIN_WAIT2);
374 			break;
375 		case TCP_CLOSING:
376 		case TCP_LAST_ACK:
377 			mptcp_set_state(sk, TCP_CLOSE);
378 			break;
379 		}
380 
381 		mptcp_close_wake_up(sk);
382 	}
383 }
384 
385 /* can be called with no lock acquired */
mptcp_pending_data_fin(struct sock * sk,u64 * seq)386 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
387 {
388 	struct mptcp_sock *msk = mptcp_sk(sk);
389 
390 	if (READ_ONCE(msk->rcv_data_fin) &&
391 	    ((1 << inet_sk_state_load(sk)) &
392 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
393 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
394 
395 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
396 			if (seq)
397 				*seq = rcv_data_fin_seq;
398 
399 			return true;
400 		}
401 	}
402 
403 	return false;
404 }
405 
mptcp_set_datafin_timeout(struct sock * sk)406 static void mptcp_set_datafin_timeout(struct sock *sk)
407 {
408 	struct inet_connection_sock *icsk = inet_csk(sk);
409 	u32 retransmits;
410 
411 	retransmits = min_t(u32, icsk->icsk_retransmits,
412 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
413 
414 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
415 }
416 
__mptcp_set_timeout(struct sock * sk,long tout)417 static void __mptcp_set_timeout(struct sock *sk, long tout)
418 {
419 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
420 }
421 
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)422 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
423 {
424 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
425 
426 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
427 	       icsk_timeout(inet_csk(ssk)) - jiffies : 0;
428 }
429 
mptcp_set_timeout(struct sock * sk)430 static void mptcp_set_timeout(struct sock *sk)
431 {
432 	struct mptcp_subflow_context *subflow;
433 	long tout = 0;
434 
435 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
436 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
437 	__mptcp_set_timeout(sk, tout);
438 }
439 
tcp_can_send_ack(const struct sock * ssk)440 static inline bool tcp_can_send_ack(const struct sock *ssk)
441 {
442 	return !((1 << inet_sk_state_load(ssk)) &
443 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
444 }
445 
__mptcp_subflow_send_ack(struct sock * ssk)446 void __mptcp_subflow_send_ack(struct sock *ssk)
447 {
448 	if (tcp_can_send_ack(ssk))
449 		tcp_send_ack(ssk);
450 }
451 
mptcp_subflow_send_ack(struct sock * ssk)452 static void mptcp_subflow_send_ack(struct sock *ssk)
453 {
454 	bool slow;
455 
456 	slow = lock_sock_fast(ssk);
457 	__mptcp_subflow_send_ack(ssk);
458 	unlock_sock_fast(ssk, slow);
459 }
460 
mptcp_send_ack(struct mptcp_sock * msk)461 static void mptcp_send_ack(struct mptcp_sock *msk)
462 {
463 	struct mptcp_subflow_context *subflow;
464 
465 	mptcp_for_each_subflow(msk, subflow)
466 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
467 }
468 
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)469 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
470 {
471 	bool slow;
472 
473 	slow = lock_sock_fast(ssk);
474 	if (tcp_can_send_ack(ssk))
475 		tcp_cleanup_rbuf(ssk, copied);
476 	unlock_sock_fast(ssk, slow);
477 }
478 
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)479 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
480 {
481 	const struct inet_connection_sock *icsk = inet_csk(ssk);
482 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
483 	const struct tcp_sock *tp = tcp_sk(ssk);
484 
485 	return (ack_pending & ICSK_ACK_SCHED) &&
486 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
487 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
488 		 (rx_empty && ack_pending &
489 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
490 }
491 
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)492 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
493 {
494 	int old_space = READ_ONCE(msk->old_wspace);
495 	struct mptcp_subflow_context *subflow;
496 	struct sock *sk = (struct sock *)msk;
497 	int space =  __mptcp_space(sk);
498 	bool cleanup, rx_empty;
499 
500 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
501 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
502 
503 	mptcp_for_each_subflow(msk, subflow) {
504 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
505 
506 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
507 			mptcp_subflow_cleanup_rbuf(ssk, copied);
508 	}
509 }
510 
mptcp_check_data_fin(struct sock * sk)511 static bool mptcp_check_data_fin(struct sock *sk)
512 {
513 	struct mptcp_sock *msk = mptcp_sk(sk);
514 	u64 rcv_data_fin_seq;
515 	bool ret = false;
516 
517 	/* Need to ack a DATA_FIN received from a peer while this side
518 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
519 	 * msk->rcv_data_fin was set when parsing the incoming options
520 	 * at the subflow level and the msk lock was not held, so this
521 	 * is the first opportunity to act on the DATA_FIN and change
522 	 * the msk state.
523 	 *
524 	 * If we are caught up to the sequence number of the incoming
525 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
526 	 * not caught up, do nothing and let the recv code send DATA_ACK
527 	 * when catching up.
528 	 */
529 
530 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
531 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
532 		WRITE_ONCE(msk->rcv_data_fin, 0);
533 
534 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
535 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
536 
537 		switch (sk->sk_state) {
538 		case TCP_ESTABLISHED:
539 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
540 			break;
541 		case TCP_FIN_WAIT1:
542 			mptcp_set_state(sk, TCP_CLOSING);
543 			break;
544 		case TCP_FIN_WAIT2:
545 			mptcp_set_state(sk, TCP_CLOSE);
546 			break;
547 		default:
548 			/* Other states not expected */
549 			WARN_ON_ONCE(1);
550 			break;
551 		}
552 
553 		ret = true;
554 		if (!__mptcp_check_fallback(msk))
555 			mptcp_send_ack(msk);
556 		mptcp_close_wake_up(sk);
557 	}
558 	return ret;
559 }
560 
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)561 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
562 {
563 	if (mptcp_try_fallback(ssk)) {
564 		MPTCP_INC_STATS(sock_net(ssk),
565 				MPTCP_MIB_DSSCORRUPTIONFALLBACK);
566 	} else {
567 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
568 		mptcp_subflow_reset(ssk);
569 	}
570 }
571 
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk)572 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
573 					   struct sock *ssk)
574 {
575 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
576 	struct sock *sk = (struct sock *)msk;
577 	bool more_data_avail;
578 	struct tcp_sock *tp;
579 	bool ret = false;
580 
581 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
582 	tp = tcp_sk(ssk);
583 	do {
584 		u32 map_remaining, offset;
585 		u32 seq = tp->copied_seq;
586 		struct sk_buff *skb;
587 		bool fin;
588 
589 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
590 			break;
591 
592 		/* try to move as much data as available */
593 		map_remaining = subflow->map_data_len -
594 				mptcp_subflow_get_map_offset(subflow);
595 
596 		skb = skb_peek(&ssk->sk_receive_queue);
597 		if (unlikely(!skb))
598 			break;
599 
600 		if (__mptcp_check_fallback(msk)) {
601 			/* Under fallback skbs have no MPTCP extension and TCP could
602 			 * collapse them between the dummy map creation and the
603 			 * current dequeue. Be sure to adjust the map size.
604 			 */
605 			map_remaining = skb->len;
606 			subflow->map_data_len = skb->len;
607 		}
608 
609 		offset = seq - TCP_SKB_CB(skb)->seq;
610 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
611 		if (fin)
612 			seq++;
613 
614 		if (offset < skb->len) {
615 			size_t len = skb->len - offset;
616 
617 			ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret;
618 			seq += len;
619 
620 			if (unlikely(map_remaining < len)) {
621 				DEBUG_NET_WARN_ON_ONCE(1);
622 				mptcp_dss_corruption(msk, ssk);
623 			}
624 		} else {
625 			if (unlikely(!fin)) {
626 				DEBUG_NET_WARN_ON_ONCE(1);
627 				mptcp_dss_corruption(msk, ssk);
628 			}
629 
630 			sk_eat_skb(ssk, skb);
631 		}
632 
633 		WRITE_ONCE(tp->copied_seq, seq);
634 		more_data_avail = mptcp_subflow_data_available(ssk);
635 
636 	} while (more_data_avail);
637 
638 	if (ret)
639 		msk->last_data_recv = tcp_jiffies32;
640 	return ret;
641 }
642 
__mptcp_ofo_queue(struct mptcp_sock * msk)643 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
644 {
645 	struct sock *sk = (struct sock *)msk;
646 	struct sk_buff *skb, *tail;
647 	bool moved = false;
648 	struct rb_node *p;
649 	u64 end_seq;
650 
651 	p = rb_first(&msk->out_of_order_queue);
652 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
653 	while (p) {
654 		skb = rb_to_skb(p);
655 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
656 			break;
657 
658 		p = rb_next(p);
659 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
660 
661 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
662 				      msk->ack_seq))) {
663 			mptcp_drop(sk, skb);
664 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
665 			continue;
666 		}
667 
668 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
669 		tail = skb_peek_tail(&sk->sk_receive_queue);
670 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
671 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
672 
673 			/* skip overlapping data, if any */
674 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
675 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
676 				 delta);
677 			MPTCP_SKB_CB(skb)->offset += delta;
678 			MPTCP_SKB_CB(skb)->map_seq += delta;
679 			__skb_queue_tail(&sk->sk_receive_queue, skb);
680 		}
681 		msk->bytes_received += end_seq - msk->ack_seq;
682 		WRITE_ONCE(msk->ack_seq, end_seq);
683 		moved = true;
684 	}
685 	return moved;
686 }
687 
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)688 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
689 {
690 	int err = sock_error(ssk);
691 	int ssk_state;
692 
693 	if (!err)
694 		return false;
695 
696 	/* only propagate errors on fallen-back sockets or
697 	 * on MPC connect
698 	 */
699 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
700 		return false;
701 
702 	/* We need to propagate only transition to CLOSE state.
703 	 * Orphaned socket will see such state change via
704 	 * subflow_sched_work_if_closed() and that path will properly
705 	 * destroy the msk as needed.
706 	 */
707 	ssk_state = inet_sk_state_load(ssk);
708 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
709 		mptcp_set_state(sk, ssk_state);
710 	WRITE_ONCE(sk->sk_err, -err);
711 
712 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
713 	smp_wmb();
714 	sk_error_report(sk);
715 	return true;
716 }
717 
__mptcp_error_report(struct sock * sk)718 void __mptcp_error_report(struct sock *sk)
719 {
720 	struct mptcp_subflow_context *subflow;
721 	struct mptcp_sock *msk = mptcp_sk(sk);
722 
723 	mptcp_for_each_subflow(msk, subflow)
724 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
725 			break;
726 }
727 
728 /* In most cases we will be able to lock the mptcp socket.  If its already
729  * owned, we need to defer to the work queue to avoid ABBA deadlock.
730  */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)731 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
732 {
733 	struct sock *sk = (struct sock *)msk;
734 	bool moved;
735 
736 	moved = __mptcp_move_skbs_from_subflow(msk, ssk);
737 	__mptcp_ofo_queue(msk);
738 	if (unlikely(ssk->sk_err)) {
739 		if (!sock_owned_by_user(sk))
740 			__mptcp_error_report(sk);
741 		else
742 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
743 	}
744 
745 	/* If the moves have caught up with the DATA_FIN sequence number
746 	 * it's time to ack the DATA_FIN and change socket state, but
747 	 * this is not a good place to change state. Let the workqueue
748 	 * do it.
749 	 */
750 	if (mptcp_pending_data_fin(sk, NULL))
751 		mptcp_schedule_work(sk);
752 	return moved;
753 }
754 
__mptcp_rcvbuf_update(struct sock * sk,struct sock * ssk)755 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk)
756 {
757 	if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf))
758 		WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf);
759 }
760 
__mptcp_data_ready(struct sock * sk,struct sock * ssk)761 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
762 {
763 	struct mptcp_sock *msk = mptcp_sk(sk);
764 
765 	__mptcp_rcvbuf_update(sk, ssk);
766 
767 	/* Wake-up the reader only for in-sequence data */
768 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
769 		sk->sk_data_ready(sk);
770 }
771 
mptcp_data_ready(struct sock * sk,struct sock * ssk)772 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
773 {
774 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
775 
776 	/* The peer can send data while we are shutting down this
777 	 * subflow at msk destruction time, but we must avoid enqueuing
778 	 * more data to the msk receive queue
779 	 */
780 	if (unlikely(subflow->disposable))
781 		return;
782 
783 	mptcp_data_lock(sk);
784 	if (!sock_owned_by_user(sk))
785 		__mptcp_data_ready(sk, ssk);
786 	else
787 		__set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
788 	mptcp_data_unlock(sk);
789 }
790 
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)791 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
792 {
793 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
794 	msk->allow_infinite_fallback = false;
795 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
796 }
797 
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)798 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
799 {
800 	struct sock *sk = (struct sock *)msk;
801 
802 	if (sk->sk_state != TCP_ESTABLISHED)
803 		return false;
804 
805 	spin_lock_bh(&msk->fallback_lock);
806 	if (!msk->allow_subflows) {
807 		spin_unlock_bh(&msk->fallback_lock);
808 		return false;
809 	}
810 	mptcp_subflow_joined(msk, ssk);
811 	spin_unlock_bh(&msk->fallback_lock);
812 
813 	/* attach to msk socket only after we are sure we will deal with it
814 	 * at close time
815 	 */
816 	if (sk->sk_socket && !ssk->sk_socket)
817 		mptcp_sock_graft(ssk, sk->sk_socket);
818 
819 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
820 	mptcp_sockopt_sync_locked(msk, ssk);
821 	mptcp_stop_tout_timer(sk);
822 	__mptcp_propagate_sndbuf(sk, ssk);
823 	return true;
824 }
825 
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)826 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
827 {
828 	struct mptcp_subflow_context *tmp, *subflow;
829 	struct mptcp_sock *msk = mptcp_sk(sk);
830 
831 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
832 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
833 		bool slow = lock_sock_fast(ssk);
834 
835 		list_move_tail(&subflow->node, &msk->conn_list);
836 		if (!__mptcp_finish_join(msk, ssk))
837 			mptcp_subflow_reset(ssk);
838 		unlock_sock_fast(ssk, slow);
839 	}
840 }
841 
mptcp_rtx_timer_pending(struct sock * sk)842 static bool mptcp_rtx_timer_pending(struct sock *sk)
843 {
844 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
845 }
846 
mptcp_reset_rtx_timer(struct sock * sk)847 static void mptcp_reset_rtx_timer(struct sock *sk)
848 {
849 	struct inet_connection_sock *icsk = inet_csk(sk);
850 	unsigned long tout;
851 
852 	/* prevent rescheduling on close */
853 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
854 		return;
855 
856 	tout = mptcp_sk(sk)->timer_ival;
857 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
858 }
859 
mptcp_schedule_work(struct sock * sk)860 bool mptcp_schedule_work(struct sock *sk)
861 {
862 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
863 	    schedule_work(&mptcp_sk(sk)->work)) {
864 		/* each subflow already holds a reference to the sk, and the
865 		 * workqueue is invoked by a subflow, so sk can't go away here.
866 		 */
867 		sock_hold(sk);
868 		return true;
869 	}
870 	return false;
871 }
872 
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)873 static bool mptcp_skb_can_collapse_to(u64 write_seq,
874 				      const struct sk_buff *skb,
875 				      const struct mptcp_ext *mpext)
876 {
877 	if (!tcp_skb_can_collapse_to(skb))
878 		return false;
879 
880 	/* can collapse only if MPTCP level sequence is in order and this
881 	 * mapping has not been xmitted yet
882 	 */
883 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
884 	       !mpext->frozen;
885 }
886 
887 /* we can append data to the given data frag if:
888  * - there is space available in the backing page_frag
889  * - the data frag tail matches the current page_frag free offset
890  * - the data frag end sequence number matches the current write seq
891  */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)892 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
893 				       const struct page_frag *pfrag,
894 				       const struct mptcp_data_frag *df)
895 {
896 	return df && pfrag->page == df->page &&
897 		pfrag->size - pfrag->offset > 0 &&
898 		pfrag->offset == (df->offset + df->data_len) &&
899 		df->data_seq + df->data_len == msk->write_seq;
900 }
901 
dfrag_uncharge(struct sock * sk,int len)902 static void dfrag_uncharge(struct sock *sk, int len)
903 {
904 	sk_mem_uncharge(sk, len);
905 	sk_wmem_queued_add(sk, -len);
906 }
907 
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)908 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
909 {
910 	int len = dfrag->data_len + dfrag->overhead;
911 
912 	list_del(&dfrag->list);
913 	dfrag_uncharge(sk, len);
914 	put_page(dfrag->page);
915 }
916 
917 /* called under both the msk socket lock and the data lock */
__mptcp_clean_una(struct sock * sk)918 static void __mptcp_clean_una(struct sock *sk)
919 {
920 	struct mptcp_sock *msk = mptcp_sk(sk);
921 	struct mptcp_data_frag *dtmp, *dfrag;
922 	u64 snd_una;
923 
924 	snd_una = msk->snd_una;
925 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
926 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
927 			break;
928 
929 		if (unlikely(dfrag == msk->first_pending)) {
930 			/* in recovery mode can see ack after the current snd head */
931 			if (WARN_ON_ONCE(!msk->recovery))
932 				break;
933 
934 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
935 		}
936 
937 		dfrag_clear(sk, dfrag);
938 	}
939 
940 	dfrag = mptcp_rtx_head(sk);
941 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
942 		u64 delta = snd_una - dfrag->data_seq;
943 
944 		/* prevent wrap around in recovery mode */
945 		if (unlikely(delta > dfrag->already_sent)) {
946 			if (WARN_ON_ONCE(!msk->recovery))
947 				goto out;
948 			if (WARN_ON_ONCE(delta > dfrag->data_len))
949 				goto out;
950 			dfrag->already_sent += delta - dfrag->already_sent;
951 		}
952 
953 		dfrag->data_seq += delta;
954 		dfrag->offset += delta;
955 		dfrag->data_len -= delta;
956 		dfrag->already_sent -= delta;
957 
958 		dfrag_uncharge(sk, delta);
959 	}
960 
961 	/* all retransmitted data acked, recovery completed */
962 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
963 		msk->recovery = false;
964 
965 out:
966 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
967 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
968 			mptcp_stop_rtx_timer(sk);
969 	} else {
970 		mptcp_reset_rtx_timer(sk);
971 	}
972 
973 	if (mptcp_pending_data_fin_ack(sk))
974 		mptcp_schedule_work(sk);
975 }
976 
__mptcp_clean_una_wakeup(struct sock * sk)977 static void __mptcp_clean_una_wakeup(struct sock *sk)
978 {
979 	lockdep_assert_held_once(&sk->sk_lock.slock);
980 
981 	__mptcp_clean_una(sk);
982 	mptcp_write_space(sk);
983 }
984 
mptcp_clean_una_wakeup(struct sock * sk)985 static void mptcp_clean_una_wakeup(struct sock *sk)
986 {
987 	mptcp_data_lock(sk);
988 	__mptcp_clean_una_wakeup(sk);
989 	mptcp_data_unlock(sk);
990 }
991 
mptcp_enter_memory_pressure(struct sock * sk)992 static void mptcp_enter_memory_pressure(struct sock *sk)
993 {
994 	struct mptcp_subflow_context *subflow;
995 	struct mptcp_sock *msk = mptcp_sk(sk);
996 	bool first = true;
997 
998 	mptcp_for_each_subflow(msk, subflow) {
999 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1000 
1001 		if (first)
1002 			tcp_enter_memory_pressure(ssk);
1003 		sk_stream_moderate_sndbuf(ssk);
1004 
1005 		first = false;
1006 	}
1007 	__mptcp_sync_sndbuf(sk);
1008 }
1009 
1010 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1011  * data
1012  */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1013 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1014 {
1015 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1016 					pfrag, sk->sk_allocation)))
1017 		return true;
1018 
1019 	mptcp_enter_memory_pressure(sk);
1020 	return false;
1021 }
1022 
1023 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1024 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1025 		      int orig_offset)
1026 {
1027 	int offset = ALIGN(orig_offset, sizeof(long));
1028 	struct mptcp_data_frag *dfrag;
1029 
1030 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1031 	dfrag->data_len = 0;
1032 	dfrag->data_seq = msk->write_seq;
1033 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1034 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1035 	dfrag->already_sent = 0;
1036 	dfrag->page = pfrag->page;
1037 
1038 	return dfrag;
1039 }
1040 
1041 struct mptcp_sendmsg_info {
1042 	int mss_now;
1043 	int size_goal;
1044 	u16 limit;
1045 	u16 sent;
1046 	unsigned int flags;
1047 	bool data_lock_held;
1048 };
1049 
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1050 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1051 				    u64 data_seq, int avail_size)
1052 {
1053 	u64 window_end = mptcp_wnd_end(msk);
1054 	u64 mptcp_snd_wnd;
1055 
1056 	if (__mptcp_check_fallback(msk))
1057 		return avail_size;
1058 
1059 	mptcp_snd_wnd = window_end - data_seq;
1060 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1061 
1062 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1063 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1064 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1065 	}
1066 
1067 	return avail_size;
1068 }
1069 
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1070 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1071 {
1072 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1073 
1074 	if (!mpext)
1075 		return false;
1076 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1077 	return true;
1078 }
1079 
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1080 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1081 {
1082 	struct sk_buff *skb;
1083 
1084 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1085 	if (likely(skb)) {
1086 		if (likely(__mptcp_add_ext(skb, gfp))) {
1087 			skb_reserve(skb, MAX_TCP_HEADER);
1088 			skb->ip_summed = CHECKSUM_PARTIAL;
1089 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1090 			return skb;
1091 		}
1092 		__kfree_skb(skb);
1093 	} else {
1094 		mptcp_enter_memory_pressure(sk);
1095 	}
1096 	return NULL;
1097 }
1098 
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1099 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1100 {
1101 	struct sk_buff *skb;
1102 
1103 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1104 	if (!skb)
1105 		return NULL;
1106 
1107 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1108 		tcp_skb_entail(ssk, skb);
1109 		return skb;
1110 	}
1111 	tcp_skb_tsorted_anchor_cleanup(skb);
1112 	kfree_skb(skb);
1113 	return NULL;
1114 }
1115 
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1116 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1117 {
1118 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1119 
1120 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1121 }
1122 
1123 /* note: this always recompute the csum on the whole skb, even
1124  * if we just appended a single frag. More status info needed
1125  */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1126 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1127 {
1128 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1129 	__wsum csum = ~csum_unfold(mpext->csum);
1130 	int offset = skb->len - added;
1131 
1132 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1133 }
1134 
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1135 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1136 				      struct sock *ssk,
1137 				      struct mptcp_ext *mpext)
1138 {
1139 	if (!mpext)
1140 		return;
1141 
1142 	mpext->infinite_map = 1;
1143 	mpext->data_len = 0;
1144 
1145 	if (!mptcp_try_fallback(ssk)) {
1146 		mptcp_subflow_reset(ssk);
1147 		return;
1148 	}
1149 
1150 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1151 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1152 	pr_fallback(msk);
1153 }
1154 
1155 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1156 
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1157 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1158 			      struct mptcp_data_frag *dfrag,
1159 			      struct mptcp_sendmsg_info *info)
1160 {
1161 	u64 data_seq = dfrag->data_seq + info->sent;
1162 	int offset = dfrag->offset + info->sent;
1163 	struct mptcp_sock *msk = mptcp_sk(sk);
1164 	bool zero_window_probe = false;
1165 	struct mptcp_ext *mpext = NULL;
1166 	bool can_coalesce = false;
1167 	bool reuse_skb = true;
1168 	struct sk_buff *skb;
1169 	size_t copy;
1170 	int i;
1171 
1172 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1173 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1174 
1175 	if (WARN_ON_ONCE(info->sent > info->limit ||
1176 			 info->limit > dfrag->data_len))
1177 		return 0;
1178 
1179 	if (unlikely(!__tcp_can_send(ssk)))
1180 		return -EAGAIN;
1181 
1182 	/* compute send limit */
1183 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1184 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1185 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1186 	copy = info->size_goal;
1187 
1188 	skb = tcp_write_queue_tail(ssk);
1189 	if (skb && copy > skb->len) {
1190 		/* Limit the write to the size available in the
1191 		 * current skb, if any, so that we create at most a new skb.
1192 		 * Explicitly tells TCP internals to avoid collapsing on later
1193 		 * queue management operation, to avoid breaking the ext <->
1194 		 * SSN association set here
1195 		 */
1196 		mpext = mptcp_get_ext(skb);
1197 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1198 			TCP_SKB_CB(skb)->eor = 1;
1199 			tcp_mark_push(tcp_sk(ssk), skb);
1200 			goto alloc_skb;
1201 		}
1202 
1203 		i = skb_shinfo(skb)->nr_frags;
1204 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1205 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1206 			tcp_mark_push(tcp_sk(ssk), skb);
1207 			goto alloc_skb;
1208 		}
1209 
1210 		copy -= skb->len;
1211 	} else {
1212 alloc_skb:
1213 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1214 		if (!skb)
1215 			return -ENOMEM;
1216 
1217 		i = skb_shinfo(skb)->nr_frags;
1218 		reuse_skb = false;
1219 		mpext = mptcp_get_ext(skb);
1220 	}
1221 
1222 	/* Zero window and all data acked? Probe. */
1223 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1224 	if (copy == 0) {
1225 		u64 snd_una = READ_ONCE(msk->snd_una);
1226 
1227 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1228 			tcp_remove_empty_skb(ssk);
1229 			return 0;
1230 		}
1231 
1232 		zero_window_probe = true;
1233 		data_seq = snd_una - 1;
1234 		copy = 1;
1235 	}
1236 
1237 	copy = min_t(size_t, copy, info->limit - info->sent);
1238 	if (!sk_wmem_schedule(ssk, copy)) {
1239 		tcp_remove_empty_skb(ssk);
1240 		return -ENOMEM;
1241 	}
1242 
1243 	if (can_coalesce) {
1244 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1245 	} else {
1246 		get_page(dfrag->page);
1247 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1248 	}
1249 
1250 	skb->len += copy;
1251 	skb->data_len += copy;
1252 	skb->truesize += copy;
1253 	sk_wmem_queued_add(ssk, copy);
1254 	sk_mem_charge(ssk, copy);
1255 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1256 	TCP_SKB_CB(skb)->end_seq += copy;
1257 	tcp_skb_pcount_set(skb, 0);
1258 
1259 	/* on skb reuse we just need to update the DSS len */
1260 	if (reuse_skb) {
1261 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1262 		mpext->data_len += copy;
1263 		goto out;
1264 	}
1265 
1266 	memset(mpext, 0, sizeof(*mpext));
1267 	mpext->data_seq = data_seq;
1268 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1269 	mpext->data_len = copy;
1270 	mpext->use_map = 1;
1271 	mpext->dsn64 = 1;
1272 
1273 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1274 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1275 		 mpext->dsn64);
1276 
1277 	if (zero_window_probe) {
1278 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1279 		mpext->frozen = 1;
1280 		if (READ_ONCE(msk->csum_enabled))
1281 			mptcp_update_data_checksum(skb, copy);
1282 		tcp_push_pending_frames(ssk);
1283 		return 0;
1284 	}
1285 out:
1286 	if (READ_ONCE(msk->csum_enabled))
1287 		mptcp_update_data_checksum(skb, copy);
1288 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1289 		mptcp_update_infinite_map(msk, ssk, mpext);
1290 	trace_mptcp_sendmsg_frag(mpext);
1291 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1292 	return copy;
1293 }
1294 
1295 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1296 					 sizeof(struct tcphdr) - \
1297 					 MAX_TCP_OPTION_SPACE - \
1298 					 sizeof(struct ipv6hdr) - \
1299 					 sizeof(struct frag_hdr))
1300 
1301 struct subflow_send_info {
1302 	struct sock *ssk;
1303 	u64 linger_time;
1304 };
1305 
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1306 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1307 {
1308 	if (!subflow->stale)
1309 		return;
1310 
1311 	subflow->stale = 0;
1312 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1313 }
1314 
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1315 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1316 {
1317 	if (unlikely(subflow->stale)) {
1318 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1319 
1320 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1321 			return false;
1322 
1323 		mptcp_subflow_set_active(subflow);
1324 	}
1325 	return __mptcp_subflow_active(subflow);
1326 }
1327 
1328 #define SSK_MODE_ACTIVE	0
1329 #define SSK_MODE_BACKUP	1
1330 #define SSK_MODE_MAX	2
1331 
1332 /* implement the mptcp packet scheduler;
1333  * returns the subflow that will transmit the next DSS
1334  * additionally updates the rtx timeout
1335  */
mptcp_subflow_get_send(struct mptcp_sock * msk)1336 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1337 {
1338 	struct subflow_send_info send_info[SSK_MODE_MAX];
1339 	struct mptcp_subflow_context *subflow;
1340 	struct sock *sk = (struct sock *)msk;
1341 	u32 pace, burst, wmem;
1342 	int i, nr_active = 0;
1343 	struct sock *ssk;
1344 	u64 linger_time;
1345 	long tout = 0;
1346 
1347 	/* pick the subflow with the lower wmem/wspace ratio */
1348 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1349 		send_info[i].ssk = NULL;
1350 		send_info[i].linger_time = -1;
1351 	}
1352 
1353 	mptcp_for_each_subflow(msk, subflow) {
1354 		bool backup = subflow->backup || subflow->request_bkup;
1355 
1356 		trace_mptcp_subflow_get_send(subflow);
1357 		ssk =  mptcp_subflow_tcp_sock(subflow);
1358 		if (!mptcp_subflow_active(subflow))
1359 			continue;
1360 
1361 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1362 		nr_active += !backup;
1363 		pace = subflow->avg_pacing_rate;
1364 		if (unlikely(!pace)) {
1365 			/* init pacing rate from socket */
1366 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1367 			pace = subflow->avg_pacing_rate;
1368 			if (!pace)
1369 				continue;
1370 		}
1371 
1372 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1373 		if (linger_time < send_info[backup].linger_time) {
1374 			send_info[backup].ssk = ssk;
1375 			send_info[backup].linger_time = linger_time;
1376 		}
1377 	}
1378 	__mptcp_set_timeout(sk, tout);
1379 
1380 	/* pick the best backup if no other subflow is active */
1381 	if (!nr_active)
1382 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1383 
1384 	/* According to the blest algorithm, to avoid HoL blocking for the
1385 	 * faster flow, we need to:
1386 	 * - estimate the faster flow linger time
1387 	 * - use the above to estimate the amount of byte transferred
1388 	 *   by the faster flow
1389 	 * - check that the amount of queued data is greter than the above,
1390 	 *   otherwise do not use the picked, slower, subflow
1391 	 * We select the subflow with the shorter estimated time to flush
1392 	 * the queued mem, which basically ensure the above. We just need
1393 	 * to check that subflow has a non empty cwin.
1394 	 */
1395 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1396 	if (!ssk || !sk_stream_memory_free(ssk))
1397 		return NULL;
1398 
1399 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1400 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1401 	if (!burst)
1402 		return ssk;
1403 
1404 	subflow = mptcp_subflow_ctx(ssk);
1405 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1406 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1407 					   burst + wmem);
1408 	msk->snd_burst = burst;
1409 	return ssk;
1410 }
1411 
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1412 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1413 {
1414 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1415 	release_sock(ssk);
1416 }
1417 
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1418 static void mptcp_update_post_push(struct mptcp_sock *msk,
1419 				   struct mptcp_data_frag *dfrag,
1420 				   u32 sent)
1421 {
1422 	u64 snd_nxt_new = dfrag->data_seq;
1423 
1424 	dfrag->already_sent += sent;
1425 
1426 	msk->snd_burst -= sent;
1427 
1428 	snd_nxt_new += dfrag->already_sent;
1429 
1430 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1431 	 * is recovering after a failover. In that event, this re-sends
1432 	 * old segments.
1433 	 *
1434 	 * Thus compute snd_nxt_new candidate based on
1435 	 * the dfrag->data_seq that was sent and the data
1436 	 * that has been handed to the subflow for transmission
1437 	 * and skip update in case it was old dfrag.
1438 	 */
1439 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1440 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1441 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1442 	}
1443 }
1444 
mptcp_check_and_set_pending(struct sock * sk)1445 void mptcp_check_and_set_pending(struct sock *sk)
1446 {
1447 	if (mptcp_send_head(sk)) {
1448 		mptcp_data_lock(sk);
1449 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1450 		mptcp_data_unlock(sk);
1451 	}
1452 }
1453 
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1454 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1455 				  struct mptcp_sendmsg_info *info)
1456 {
1457 	struct mptcp_sock *msk = mptcp_sk(sk);
1458 	struct mptcp_data_frag *dfrag;
1459 	int len, copied = 0, err = 0;
1460 
1461 	while ((dfrag = mptcp_send_head(sk))) {
1462 		info->sent = dfrag->already_sent;
1463 		info->limit = dfrag->data_len;
1464 		len = dfrag->data_len - dfrag->already_sent;
1465 		while (len > 0) {
1466 			int ret = 0;
1467 
1468 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1469 			if (ret <= 0) {
1470 				err = copied ? : ret;
1471 				goto out;
1472 			}
1473 
1474 			info->sent += ret;
1475 			copied += ret;
1476 			len -= ret;
1477 
1478 			mptcp_update_post_push(msk, dfrag, ret);
1479 		}
1480 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1481 
1482 		if (msk->snd_burst <= 0 ||
1483 		    !sk_stream_memory_free(ssk) ||
1484 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1485 			err = copied;
1486 			goto out;
1487 		}
1488 		mptcp_set_timeout(sk);
1489 	}
1490 	err = copied;
1491 
1492 out:
1493 	if (err > 0)
1494 		msk->last_data_sent = tcp_jiffies32;
1495 	return err;
1496 }
1497 
__mptcp_push_pending(struct sock * sk,unsigned int flags)1498 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1499 {
1500 	struct sock *prev_ssk = NULL, *ssk = NULL;
1501 	struct mptcp_sock *msk = mptcp_sk(sk);
1502 	struct mptcp_sendmsg_info info = {
1503 				.flags = flags,
1504 	};
1505 	bool do_check_data_fin = false;
1506 	int push_count = 1;
1507 
1508 	while (mptcp_send_head(sk) && (push_count > 0)) {
1509 		struct mptcp_subflow_context *subflow;
1510 		int ret = 0;
1511 
1512 		if (mptcp_sched_get_send(msk))
1513 			break;
1514 
1515 		push_count = 0;
1516 
1517 		mptcp_for_each_subflow(msk, subflow) {
1518 			if (READ_ONCE(subflow->scheduled)) {
1519 				mptcp_subflow_set_scheduled(subflow, false);
1520 
1521 				prev_ssk = ssk;
1522 				ssk = mptcp_subflow_tcp_sock(subflow);
1523 				if (ssk != prev_ssk) {
1524 					/* First check. If the ssk has changed since
1525 					 * the last round, release prev_ssk
1526 					 */
1527 					if (prev_ssk)
1528 						mptcp_push_release(prev_ssk, &info);
1529 
1530 					/* Need to lock the new subflow only if different
1531 					 * from the previous one, otherwise we are still
1532 					 * helding the relevant lock
1533 					 */
1534 					lock_sock(ssk);
1535 				}
1536 
1537 				push_count++;
1538 
1539 				ret = __subflow_push_pending(sk, ssk, &info);
1540 				if (ret <= 0) {
1541 					if (ret != -EAGAIN ||
1542 					    (1 << ssk->sk_state) &
1543 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1544 						push_count--;
1545 					continue;
1546 				}
1547 				do_check_data_fin = true;
1548 			}
1549 		}
1550 	}
1551 
1552 	/* at this point we held the socket lock for the last subflow we used */
1553 	if (ssk)
1554 		mptcp_push_release(ssk, &info);
1555 
1556 	/* ensure the rtx timer is running */
1557 	if (!mptcp_rtx_timer_pending(sk))
1558 		mptcp_reset_rtx_timer(sk);
1559 	if (do_check_data_fin)
1560 		mptcp_check_send_data_fin(sk);
1561 }
1562 
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1563 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1564 {
1565 	struct mptcp_sock *msk = mptcp_sk(sk);
1566 	struct mptcp_sendmsg_info info = {
1567 		.data_lock_held = true,
1568 	};
1569 	bool keep_pushing = true;
1570 	struct sock *xmit_ssk;
1571 	int copied = 0;
1572 
1573 	info.flags = 0;
1574 	while (mptcp_send_head(sk) && keep_pushing) {
1575 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1576 		int ret = 0;
1577 
1578 		/* check for a different subflow usage only after
1579 		 * spooling the first chunk of data
1580 		 */
1581 		if (first) {
1582 			mptcp_subflow_set_scheduled(subflow, false);
1583 			ret = __subflow_push_pending(sk, ssk, &info);
1584 			first = false;
1585 			if (ret <= 0)
1586 				break;
1587 			copied += ret;
1588 			continue;
1589 		}
1590 
1591 		if (mptcp_sched_get_send(msk))
1592 			goto out;
1593 
1594 		if (READ_ONCE(subflow->scheduled)) {
1595 			mptcp_subflow_set_scheduled(subflow, false);
1596 			ret = __subflow_push_pending(sk, ssk, &info);
1597 			if (ret <= 0)
1598 				keep_pushing = false;
1599 			copied += ret;
1600 		}
1601 
1602 		mptcp_for_each_subflow(msk, subflow) {
1603 			if (READ_ONCE(subflow->scheduled)) {
1604 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1605 				if (xmit_ssk != ssk) {
1606 					mptcp_subflow_delegate(subflow,
1607 							       MPTCP_DELEGATE_SEND);
1608 					keep_pushing = false;
1609 				}
1610 			}
1611 		}
1612 	}
1613 
1614 out:
1615 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1616 	 * not going to flush it via release_sock()
1617 	 */
1618 	if (copied) {
1619 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1620 			 info.size_goal);
1621 		if (!mptcp_rtx_timer_pending(sk))
1622 			mptcp_reset_rtx_timer(sk);
1623 
1624 		if (msk->snd_data_fin_enable &&
1625 		    msk->snd_nxt + 1 == msk->write_seq)
1626 			mptcp_schedule_work(sk);
1627 	}
1628 }
1629 
1630 static int mptcp_disconnect(struct sock *sk, int flags);
1631 
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1632 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1633 				  size_t len, int *copied_syn)
1634 {
1635 	unsigned int saved_flags = msg->msg_flags;
1636 	struct mptcp_sock *msk = mptcp_sk(sk);
1637 	struct sock *ssk;
1638 	int ret;
1639 
1640 	/* on flags based fastopen the mptcp is supposed to create the
1641 	 * first subflow right now. Otherwise we are in the defer_connect
1642 	 * path, and the first subflow must be already present.
1643 	 * Since the defer_connect flag is cleared after the first succsful
1644 	 * fastopen attempt, no need to check for additional subflow status.
1645 	 */
1646 	if (msg->msg_flags & MSG_FASTOPEN) {
1647 		ssk = __mptcp_nmpc_sk(msk);
1648 		if (IS_ERR(ssk))
1649 			return PTR_ERR(ssk);
1650 	}
1651 	if (!msk->first)
1652 		return -EINVAL;
1653 
1654 	ssk = msk->first;
1655 
1656 	lock_sock(ssk);
1657 	msg->msg_flags |= MSG_DONTWAIT;
1658 	msk->fastopening = 1;
1659 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1660 	msk->fastopening = 0;
1661 	msg->msg_flags = saved_flags;
1662 	release_sock(ssk);
1663 
1664 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1665 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1666 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1667 					    msg->msg_namelen, msg->msg_flags, 1);
1668 
1669 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1670 		 * case of any error, except timeout or signal
1671 		 */
1672 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1673 			*copied_syn = 0;
1674 	} else if (ret && ret != -EINPROGRESS) {
1675 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1676 		 * __inet_stream_connect() can fail, due to looking check,
1677 		 * see mptcp_disconnect().
1678 		 * Attempt it again outside the problematic scope.
1679 		 */
1680 		if (!mptcp_disconnect(sk, 0)) {
1681 			sk->sk_disconnects++;
1682 			sk->sk_socket->state = SS_UNCONNECTED;
1683 		}
1684 	}
1685 	inet_clear_bit(DEFER_CONNECT, sk);
1686 
1687 	return ret;
1688 }
1689 
do_copy_data_nocache(struct sock * sk,int copy,struct iov_iter * from,char * to)1690 static int do_copy_data_nocache(struct sock *sk, int copy,
1691 				struct iov_iter *from, char *to)
1692 {
1693 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1694 		if (!copy_from_iter_full_nocache(to, copy, from))
1695 			return -EFAULT;
1696 	} else if (!copy_from_iter_full(to, copy, from)) {
1697 		return -EFAULT;
1698 	}
1699 	return 0;
1700 }
1701 
1702 /* open-code sk_stream_memory_free() plus sent limit computation to
1703  * avoid indirect calls in fast-path.
1704  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1705  * annotations.
1706  */
mptcp_send_limit(const struct sock * sk)1707 static u32 mptcp_send_limit(const struct sock *sk)
1708 {
1709 	const struct mptcp_sock *msk = mptcp_sk(sk);
1710 	u32 limit, not_sent;
1711 
1712 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1713 		return 0;
1714 
1715 	limit = mptcp_notsent_lowat(sk);
1716 	if (limit == UINT_MAX)
1717 		return UINT_MAX;
1718 
1719 	not_sent = msk->write_seq - msk->snd_nxt;
1720 	if (not_sent >= limit)
1721 		return 0;
1722 
1723 	return limit - not_sent;
1724 }
1725 
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1726 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1727 {
1728 	struct mptcp_sock *msk = mptcp_sk(sk);
1729 	struct page_frag *pfrag;
1730 	size_t copied = 0;
1731 	int ret = 0;
1732 	long timeo;
1733 
1734 	/* silently ignore everything else */
1735 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1736 
1737 	lock_sock(sk);
1738 
1739 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1740 		     msg->msg_flags & MSG_FASTOPEN)) {
1741 		int copied_syn = 0;
1742 
1743 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1744 		copied += copied_syn;
1745 		if (ret == -EINPROGRESS && copied_syn > 0)
1746 			goto out;
1747 		else if (ret)
1748 			goto do_error;
1749 	}
1750 
1751 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1752 
1753 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1754 		ret = sk_stream_wait_connect(sk, &timeo);
1755 		if (ret)
1756 			goto do_error;
1757 	}
1758 
1759 	ret = -EPIPE;
1760 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1761 		goto do_error;
1762 
1763 	pfrag = sk_page_frag(sk);
1764 
1765 	while (msg_data_left(msg)) {
1766 		int total_ts, frag_truesize = 0;
1767 		struct mptcp_data_frag *dfrag;
1768 		bool dfrag_collapsed;
1769 		size_t psize, offset;
1770 		u32 copy_limit;
1771 
1772 		/* ensure fitting the notsent_lowat() constraint */
1773 		copy_limit = mptcp_send_limit(sk);
1774 		if (!copy_limit)
1775 			goto wait_for_memory;
1776 
1777 		/* reuse tail pfrag, if possible, or carve a new one from the
1778 		 * page allocator
1779 		 */
1780 		dfrag = mptcp_pending_tail(sk);
1781 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1782 		if (!dfrag_collapsed) {
1783 			if (!mptcp_page_frag_refill(sk, pfrag))
1784 				goto wait_for_memory;
1785 
1786 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1787 			frag_truesize = dfrag->overhead;
1788 		}
1789 
1790 		/* we do not bound vs wspace, to allow a single packet.
1791 		 * memory accounting will prevent execessive memory usage
1792 		 * anyway
1793 		 */
1794 		offset = dfrag->offset + dfrag->data_len;
1795 		psize = pfrag->size - offset;
1796 		psize = min_t(size_t, psize, msg_data_left(msg));
1797 		psize = min_t(size_t, psize, copy_limit);
1798 		total_ts = psize + frag_truesize;
1799 
1800 		if (!sk_wmem_schedule(sk, total_ts))
1801 			goto wait_for_memory;
1802 
1803 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1804 					   page_address(dfrag->page) + offset);
1805 		if (ret)
1806 			goto do_error;
1807 
1808 		/* data successfully copied into the write queue */
1809 		sk_forward_alloc_add(sk, -total_ts);
1810 		copied += psize;
1811 		dfrag->data_len += psize;
1812 		frag_truesize += psize;
1813 		pfrag->offset += frag_truesize;
1814 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1815 
1816 		/* charge data on mptcp pending queue to the msk socket
1817 		 * Note: we charge such data both to sk and ssk
1818 		 */
1819 		sk_wmem_queued_add(sk, frag_truesize);
1820 		if (!dfrag_collapsed) {
1821 			get_page(dfrag->page);
1822 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1823 			if (!msk->first_pending)
1824 				WRITE_ONCE(msk->first_pending, dfrag);
1825 		}
1826 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1827 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1828 			 !dfrag_collapsed);
1829 
1830 		continue;
1831 
1832 wait_for_memory:
1833 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1834 		__mptcp_push_pending(sk, msg->msg_flags);
1835 		ret = sk_stream_wait_memory(sk, &timeo);
1836 		if (ret)
1837 			goto do_error;
1838 	}
1839 
1840 	if (copied)
1841 		__mptcp_push_pending(sk, msg->msg_flags);
1842 
1843 out:
1844 	release_sock(sk);
1845 	return copied;
1846 
1847 do_error:
1848 	if (copied)
1849 		goto out;
1850 
1851 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1852 	goto out;
1853 }
1854 
1855 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1856 
__mptcp_recvmsg_mskq(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1857 static int __mptcp_recvmsg_mskq(struct sock *sk,
1858 				struct msghdr *msg,
1859 				size_t len, int flags,
1860 				struct scm_timestamping_internal *tss,
1861 				int *cmsg_flags)
1862 {
1863 	struct mptcp_sock *msk = mptcp_sk(sk);
1864 	struct sk_buff *skb, *tmp;
1865 	int copied = 0;
1866 
1867 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1868 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1869 		u32 data_len = skb->len - offset;
1870 		u32 count = min_t(size_t, len - copied, data_len);
1871 		int err;
1872 
1873 		if (!(flags & MSG_TRUNC)) {
1874 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1875 			if (unlikely(err < 0)) {
1876 				if (!copied)
1877 					return err;
1878 				break;
1879 			}
1880 		}
1881 
1882 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1883 			tcp_update_recv_tstamps(skb, tss);
1884 			*cmsg_flags |= MPTCP_CMSG_TS;
1885 		}
1886 
1887 		copied += count;
1888 
1889 		if (count < data_len) {
1890 			if (!(flags & MSG_PEEK)) {
1891 				MPTCP_SKB_CB(skb)->offset += count;
1892 				MPTCP_SKB_CB(skb)->map_seq += count;
1893 				msk->bytes_consumed += count;
1894 			}
1895 			break;
1896 		}
1897 
1898 		if (!(flags & MSG_PEEK)) {
1899 			/* avoid the indirect call, we know the destructor is sock_wfree */
1900 			skb->destructor = NULL;
1901 			atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1902 			sk_mem_uncharge(sk, skb->truesize);
1903 			__skb_unlink(skb, &sk->sk_receive_queue);
1904 			__kfree_skb(skb);
1905 			msk->bytes_consumed += count;
1906 		}
1907 
1908 		if (copied >= len)
1909 			break;
1910 	}
1911 
1912 	mptcp_rcv_space_adjust(msk, copied);
1913 	return copied;
1914 }
1915 
1916 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1917  *
1918  * Only difference: Use highest rtt estimate of the subflows in use.
1919  */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1920 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1921 {
1922 	struct mptcp_subflow_context *subflow;
1923 	struct sock *sk = (struct sock *)msk;
1924 	u8 scaling_ratio = U8_MAX;
1925 	u32 time, advmss = 1;
1926 	u64 rtt_us, mstamp;
1927 
1928 	msk_owned_by_me(msk);
1929 
1930 	if (copied <= 0)
1931 		return;
1932 
1933 	if (!msk->rcvspace_init)
1934 		mptcp_rcv_space_init(msk, msk->first);
1935 
1936 	msk->rcvq_space.copied += copied;
1937 
1938 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1939 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1940 
1941 	rtt_us = msk->rcvq_space.rtt_us;
1942 	if (rtt_us && time < (rtt_us >> 3))
1943 		return;
1944 
1945 	rtt_us = 0;
1946 	mptcp_for_each_subflow(msk, subflow) {
1947 		const struct tcp_sock *tp;
1948 		u64 sf_rtt_us;
1949 		u32 sf_advmss;
1950 
1951 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1952 
1953 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1954 		sf_advmss = READ_ONCE(tp->advmss);
1955 
1956 		rtt_us = max(sf_rtt_us, rtt_us);
1957 		advmss = max(sf_advmss, advmss);
1958 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1959 	}
1960 
1961 	msk->rcvq_space.rtt_us = rtt_us;
1962 	msk->scaling_ratio = scaling_ratio;
1963 	if (time < (rtt_us >> 3) || rtt_us == 0)
1964 		return;
1965 
1966 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1967 		goto new_measure;
1968 
1969 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1970 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1971 		u64 rcvwin, grow;
1972 		int rcvbuf;
1973 
1974 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1975 
1976 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1977 
1978 		do_div(grow, msk->rcvq_space.space);
1979 		rcvwin += (grow << 1);
1980 
1981 		rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin),
1982 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1983 
1984 		if (rcvbuf > sk->sk_rcvbuf) {
1985 			u32 window_clamp;
1986 
1987 			window_clamp = mptcp_win_from_space(sk, rcvbuf);
1988 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1989 
1990 			/* Make subflows follow along.  If we do not do this, we
1991 			 * get drops at subflow level if skbs can't be moved to
1992 			 * the mptcp rx queue fast enough (announced rcv_win can
1993 			 * exceed ssk->sk_rcvbuf).
1994 			 */
1995 			mptcp_for_each_subflow(msk, subflow) {
1996 				struct sock *ssk;
1997 				bool slow;
1998 
1999 				ssk = mptcp_subflow_tcp_sock(subflow);
2000 				slow = lock_sock_fast(ssk);
2001 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2002 				WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2003 				if (tcp_can_send_ack(ssk))
2004 					tcp_cleanup_rbuf(ssk, 1);
2005 				unlock_sock_fast(ssk, slow);
2006 			}
2007 		}
2008 	}
2009 
2010 	msk->rcvq_space.space = msk->rcvq_space.copied;
2011 new_measure:
2012 	msk->rcvq_space.copied = 0;
2013 	msk->rcvq_space.time = mstamp;
2014 }
2015 
2016 static struct mptcp_subflow_context *
__mptcp_first_ready_from(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)2017 __mptcp_first_ready_from(struct mptcp_sock *msk,
2018 			 struct mptcp_subflow_context *subflow)
2019 {
2020 	struct mptcp_subflow_context *start_subflow = subflow;
2021 
2022 	while (!READ_ONCE(subflow->data_avail)) {
2023 		subflow = mptcp_next_subflow(msk, subflow);
2024 		if (subflow == start_subflow)
2025 			return NULL;
2026 	}
2027 	return subflow;
2028 }
2029 
__mptcp_move_skbs(struct sock * sk)2030 static bool __mptcp_move_skbs(struct sock *sk)
2031 {
2032 	struct mptcp_subflow_context *subflow;
2033 	struct mptcp_sock *msk = mptcp_sk(sk);
2034 	bool ret = false;
2035 
2036 	if (list_empty(&msk->conn_list))
2037 		return false;
2038 
2039 	/* verify we can move any data from the subflow, eventually updating */
2040 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
2041 		mptcp_for_each_subflow(msk, subflow)
2042 			__mptcp_rcvbuf_update(sk, subflow->tcp_sock);
2043 
2044 	subflow = list_first_entry(&msk->conn_list,
2045 				   struct mptcp_subflow_context, node);
2046 	for (;;) {
2047 		struct sock *ssk;
2048 		bool slowpath;
2049 
2050 		/*
2051 		 * As an optimization avoid traversing the subflows list
2052 		 * and ev. acquiring the subflow socket lock before baling out
2053 		 */
2054 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2055 			break;
2056 
2057 		subflow = __mptcp_first_ready_from(msk, subflow);
2058 		if (!subflow)
2059 			break;
2060 
2061 		ssk = mptcp_subflow_tcp_sock(subflow);
2062 		slowpath = lock_sock_fast(ssk);
2063 		ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2064 		if (unlikely(ssk->sk_err))
2065 			__mptcp_error_report(sk);
2066 		unlock_sock_fast(ssk, slowpath);
2067 
2068 		subflow = mptcp_next_subflow(msk, subflow);
2069 	}
2070 
2071 	__mptcp_ofo_queue(msk);
2072 	if (ret)
2073 		mptcp_check_data_fin((struct sock *)msk);
2074 	return ret;
2075 }
2076 
mptcp_inq_hint(const struct sock * sk)2077 static unsigned int mptcp_inq_hint(const struct sock *sk)
2078 {
2079 	const struct mptcp_sock *msk = mptcp_sk(sk);
2080 	const struct sk_buff *skb;
2081 
2082 	skb = skb_peek(&sk->sk_receive_queue);
2083 	if (skb) {
2084 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2085 
2086 		if (hint_val >= INT_MAX)
2087 			return INT_MAX;
2088 
2089 		return (unsigned int)hint_val;
2090 	}
2091 
2092 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2093 		return 1;
2094 
2095 	return 0;
2096 }
2097 
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2098 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2099 			 int flags, int *addr_len)
2100 {
2101 	struct mptcp_sock *msk = mptcp_sk(sk);
2102 	struct scm_timestamping_internal tss;
2103 	int copied = 0, cmsg_flags = 0;
2104 	int target;
2105 	long timeo;
2106 
2107 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2108 	if (unlikely(flags & MSG_ERRQUEUE))
2109 		return inet_recv_error(sk, msg, len, addr_len);
2110 
2111 	lock_sock(sk);
2112 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2113 		copied = -ENOTCONN;
2114 		goto out_err;
2115 	}
2116 
2117 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2118 
2119 	len = min_t(size_t, len, INT_MAX);
2120 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2121 
2122 	if (unlikely(msk->recvmsg_inq))
2123 		cmsg_flags = MPTCP_CMSG_INQ;
2124 
2125 	while (copied < len) {
2126 		int err, bytes_read;
2127 
2128 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags);
2129 		if (unlikely(bytes_read < 0)) {
2130 			if (!copied)
2131 				copied = bytes_read;
2132 			goto out_err;
2133 		}
2134 
2135 		copied += bytes_read;
2136 
2137 		if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2138 			continue;
2139 
2140 		/* only the MPTCP socket status is relevant here. The exit
2141 		 * conditions mirror closely tcp_recvmsg()
2142 		 */
2143 		if (copied >= target)
2144 			break;
2145 
2146 		if (copied) {
2147 			if (sk->sk_err ||
2148 			    sk->sk_state == TCP_CLOSE ||
2149 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2150 			    !timeo ||
2151 			    signal_pending(current))
2152 				break;
2153 		} else {
2154 			if (sk->sk_err) {
2155 				copied = sock_error(sk);
2156 				break;
2157 			}
2158 
2159 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2160 				/* race breaker: the shutdown could be after the
2161 				 * previous receive queue check
2162 				 */
2163 				if (__mptcp_move_skbs(sk))
2164 					continue;
2165 				break;
2166 			}
2167 
2168 			if (sk->sk_state == TCP_CLOSE) {
2169 				copied = -ENOTCONN;
2170 				break;
2171 			}
2172 
2173 			if (!timeo) {
2174 				copied = -EAGAIN;
2175 				break;
2176 			}
2177 
2178 			if (signal_pending(current)) {
2179 				copied = sock_intr_errno(timeo);
2180 				break;
2181 			}
2182 		}
2183 
2184 		pr_debug("block timeout %ld\n", timeo);
2185 		mptcp_cleanup_rbuf(msk, copied);
2186 		err = sk_wait_data(sk, &timeo, NULL);
2187 		if (err < 0) {
2188 			err = copied ? : err;
2189 			goto out_err;
2190 		}
2191 	}
2192 
2193 	mptcp_cleanup_rbuf(msk, copied);
2194 
2195 out_err:
2196 	if (cmsg_flags && copied >= 0) {
2197 		if (cmsg_flags & MPTCP_CMSG_TS)
2198 			tcp_recv_timestamp(msg, sk, &tss);
2199 
2200 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2201 			unsigned int inq = mptcp_inq_hint(sk);
2202 
2203 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2204 		}
2205 	}
2206 
2207 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2208 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2209 
2210 	release_sock(sk);
2211 	return copied;
2212 }
2213 
mptcp_retransmit_timer(struct timer_list * t)2214 static void mptcp_retransmit_timer(struct timer_list *t)
2215 {
2216 	struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2217 							       icsk_retransmit_timer);
2218 	struct sock *sk = &icsk->icsk_inet.sk;
2219 	struct mptcp_sock *msk = mptcp_sk(sk);
2220 
2221 	bh_lock_sock(sk);
2222 	if (!sock_owned_by_user(sk)) {
2223 		/* we need a process context to retransmit */
2224 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2225 			mptcp_schedule_work(sk);
2226 	} else {
2227 		/* delegate our work to tcp_release_cb() */
2228 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2229 	}
2230 	bh_unlock_sock(sk);
2231 	sock_put(sk);
2232 }
2233 
mptcp_tout_timer(struct timer_list * t)2234 static void mptcp_tout_timer(struct timer_list *t)
2235 {
2236 	struct sock *sk = timer_container_of(sk, t, sk_timer);
2237 
2238 	mptcp_schedule_work(sk);
2239 	sock_put(sk);
2240 }
2241 
2242 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2243  * level.
2244  *
2245  * A backup subflow is returned only if that is the only kind available.
2246  */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2247 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2248 {
2249 	struct sock *backup = NULL, *pick = NULL;
2250 	struct mptcp_subflow_context *subflow;
2251 	int min_stale_count = INT_MAX;
2252 
2253 	mptcp_for_each_subflow(msk, subflow) {
2254 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2255 
2256 		if (!__mptcp_subflow_active(subflow))
2257 			continue;
2258 
2259 		/* still data outstanding at TCP level? skip this */
2260 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2261 			mptcp_pm_subflow_chk_stale(msk, ssk);
2262 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2263 			continue;
2264 		}
2265 
2266 		if (subflow->backup || subflow->request_bkup) {
2267 			if (!backup)
2268 				backup = ssk;
2269 			continue;
2270 		}
2271 
2272 		if (!pick)
2273 			pick = ssk;
2274 	}
2275 
2276 	if (pick)
2277 		return pick;
2278 
2279 	/* use backup only if there are no progresses anywhere */
2280 	return min_stale_count > 1 ? backup : NULL;
2281 }
2282 
__mptcp_retransmit_pending_data(struct sock * sk)2283 bool __mptcp_retransmit_pending_data(struct sock *sk)
2284 {
2285 	struct mptcp_data_frag *cur, *rtx_head;
2286 	struct mptcp_sock *msk = mptcp_sk(sk);
2287 
2288 	if (__mptcp_check_fallback(msk))
2289 		return false;
2290 
2291 	/* the closing socket has some data untransmitted and/or unacked:
2292 	 * some data in the mptcp rtx queue has not really xmitted yet.
2293 	 * keep it simple and re-inject the whole mptcp level rtx queue
2294 	 */
2295 	mptcp_data_lock(sk);
2296 	__mptcp_clean_una_wakeup(sk);
2297 	rtx_head = mptcp_rtx_head(sk);
2298 	if (!rtx_head) {
2299 		mptcp_data_unlock(sk);
2300 		return false;
2301 	}
2302 
2303 	msk->recovery_snd_nxt = msk->snd_nxt;
2304 	msk->recovery = true;
2305 	mptcp_data_unlock(sk);
2306 
2307 	msk->first_pending = rtx_head;
2308 	msk->snd_burst = 0;
2309 
2310 	/* be sure to clear the "sent status" on all re-injected fragments */
2311 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2312 		if (!cur->already_sent)
2313 			break;
2314 		cur->already_sent = 0;
2315 	}
2316 
2317 	return true;
2318 }
2319 
2320 /* flags for __mptcp_close_ssk() */
2321 #define MPTCP_CF_PUSH		BIT(1)
2322 #define MPTCP_CF_FASTCLOSE	BIT(2)
2323 
2324 /* be sure to send a reset only if the caller asked for it, also
2325  * clean completely the subflow status when the subflow reaches
2326  * TCP_CLOSE state
2327  */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2328 static void __mptcp_subflow_disconnect(struct sock *ssk,
2329 				       struct mptcp_subflow_context *subflow,
2330 				       unsigned int flags)
2331 {
2332 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2333 	    (flags & MPTCP_CF_FASTCLOSE)) {
2334 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2335 		 * disconnect should never fail
2336 		 */
2337 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2338 		mptcp_subflow_ctx_reset(subflow);
2339 	} else {
2340 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2341 	}
2342 }
2343 
2344 /* subflow sockets can be either outgoing (connect) or incoming
2345  * (accept).
2346  *
2347  * Outgoing subflows use in-kernel sockets.
2348  * Incoming subflows do not have their own 'struct socket' allocated,
2349  * so we need to use tcp_close() after detaching them from the mptcp
2350  * parent socket.
2351  */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2352 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2353 			      struct mptcp_subflow_context *subflow,
2354 			      unsigned int flags)
2355 {
2356 	struct mptcp_sock *msk = mptcp_sk(sk);
2357 	bool dispose_it, need_push = false;
2358 
2359 	/* If the first subflow moved to a close state before accept, e.g. due
2360 	 * to an incoming reset or listener shutdown, the subflow socket is
2361 	 * already deleted by inet_child_forget() and the mptcp socket can't
2362 	 * survive too.
2363 	 */
2364 	if (msk->in_accept_queue && msk->first == ssk &&
2365 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2366 		/* ensure later check in mptcp_worker() will dispose the msk */
2367 		sock_set_flag(sk, SOCK_DEAD);
2368 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2369 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2370 		mptcp_subflow_drop_ctx(ssk);
2371 		goto out_release;
2372 	}
2373 
2374 	dispose_it = msk->free_first || ssk != msk->first;
2375 	if (dispose_it)
2376 		list_del(&subflow->node);
2377 
2378 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2379 
2380 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2381 		/* be sure to force the tcp_close path
2382 		 * to generate the egress reset
2383 		 */
2384 		ssk->sk_lingertime = 0;
2385 		sock_set_flag(ssk, SOCK_LINGER);
2386 		subflow->send_fastclose = 1;
2387 	}
2388 
2389 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2390 	if (!dispose_it) {
2391 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2392 		release_sock(ssk);
2393 
2394 		goto out;
2395 	}
2396 
2397 	subflow->disposable = 1;
2398 
2399 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2400 	 * the ssk has been already destroyed, we just need to release the
2401 	 * reference owned by msk;
2402 	 */
2403 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2404 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2405 		kfree_rcu(subflow, rcu);
2406 	} else {
2407 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2408 		__tcp_close(ssk, 0);
2409 
2410 		/* close acquired an extra ref */
2411 		__sock_put(ssk);
2412 	}
2413 
2414 out_release:
2415 	__mptcp_subflow_error_report(sk, ssk);
2416 	release_sock(ssk);
2417 
2418 	sock_put(ssk);
2419 
2420 	if (ssk == msk->first)
2421 		WRITE_ONCE(msk->first, NULL);
2422 
2423 out:
2424 	__mptcp_sync_sndbuf(sk);
2425 	if (need_push)
2426 		__mptcp_push_pending(sk, 0);
2427 
2428 	/* Catch every 'all subflows closed' scenario, including peers silently
2429 	 * closing them, e.g. due to timeout.
2430 	 * For established sockets, allow an additional timeout before closing,
2431 	 * as the protocol can still create more subflows.
2432 	 */
2433 	if (list_is_singular(&msk->conn_list) && msk->first &&
2434 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2435 		if (sk->sk_state != TCP_ESTABLISHED ||
2436 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2437 			mptcp_set_state(sk, TCP_CLOSE);
2438 			mptcp_close_wake_up(sk);
2439 		} else {
2440 			mptcp_start_tout_timer(sk);
2441 		}
2442 	}
2443 }
2444 
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2445 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2446 		     struct mptcp_subflow_context *subflow)
2447 {
2448 	/* The first subflow can already be closed and still in the list */
2449 	if (subflow->close_event_done)
2450 		return;
2451 
2452 	subflow->close_event_done = true;
2453 
2454 	if (sk->sk_state == TCP_ESTABLISHED)
2455 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2456 
2457 	/* subflow aborted before reaching the fully_established status
2458 	 * attempt the creation of the next subflow
2459 	 */
2460 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2461 
2462 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2463 }
2464 
mptcp_sync_mss(struct sock * sk,u32 pmtu)2465 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2466 {
2467 	return 0;
2468 }
2469 
__mptcp_close_subflow(struct sock * sk)2470 static void __mptcp_close_subflow(struct sock *sk)
2471 {
2472 	struct mptcp_subflow_context *subflow, *tmp;
2473 	struct mptcp_sock *msk = mptcp_sk(sk);
2474 
2475 	might_sleep();
2476 
2477 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2478 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2479 		int ssk_state = inet_sk_state_load(ssk);
2480 
2481 		if (ssk_state != TCP_CLOSE &&
2482 		    (ssk_state != TCP_CLOSE_WAIT ||
2483 		     inet_sk_state_load(sk) != TCP_ESTABLISHED))
2484 			continue;
2485 
2486 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2487 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2488 			continue;
2489 
2490 		mptcp_close_ssk(sk, ssk, subflow);
2491 	}
2492 
2493 }
2494 
mptcp_close_tout_expired(const struct sock * sk)2495 static bool mptcp_close_tout_expired(const struct sock *sk)
2496 {
2497 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2498 	    sk->sk_state == TCP_CLOSE)
2499 		return false;
2500 
2501 	return time_after32(tcp_jiffies32,
2502 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2503 }
2504 
mptcp_check_fastclose(struct mptcp_sock * msk)2505 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2506 {
2507 	struct mptcp_subflow_context *subflow, *tmp;
2508 	struct sock *sk = (struct sock *)msk;
2509 
2510 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2511 		return;
2512 
2513 	mptcp_token_destroy(msk);
2514 
2515 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2516 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2517 		bool slow;
2518 
2519 		slow = lock_sock_fast(tcp_sk);
2520 		if (tcp_sk->sk_state != TCP_CLOSE) {
2521 			mptcp_send_active_reset_reason(tcp_sk);
2522 			tcp_set_state(tcp_sk, TCP_CLOSE);
2523 		}
2524 		unlock_sock_fast(tcp_sk, slow);
2525 	}
2526 
2527 	/* Mirror the tcp_reset() error propagation */
2528 	switch (sk->sk_state) {
2529 	case TCP_SYN_SENT:
2530 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2531 		break;
2532 	case TCP_CLOSE_WAIT:
2533 		WRITE_ONCE(sk->sk_err, EPIPE);
2534 		break;
2535 	case TCP_CLOSE:
2536 		return;
2537 	default:
2538 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2539 	}
2540 
2541 	mptcp_set_state(sk, TCP_CLOSE);
2542 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2543 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2544 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2545 
2546 	/* the calling mptcp_worker will properly destroy the socket */
2547 	if (sock_flag(sk, SOCK_DEAD))
2548 		return;
2549 
2550 	sk->sk_state_change(sk);
2551 	sk_error_report(sk);
2552 }
2553 
__mptcp_retrans(struct sock * sk)2554 static void __mptcp_retrans(struct sock *sk)
2555 {
2556 	struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2557 	struct mptcp_sock *msk = mptcp_sk(sk);
2558 	struct mptcp_subflow_context *subflow;
2559 	struct mptcp_data_frag *dfrag;
2560 	struct sock *ssk;
2561 	int ret, err;
2562 	u16 len = 0;
2563 
2564 	mptcp_clean_una_wakeup(sk);
2565 
2566 	/* first check ssk: need to kick "stale" logic */
2567 	err = mptcp_sched_get_retrans(msk);
2568 	dfrag = mptcp_rtx_head(sk);
2569 	if (!dfrag) {
2570 		if (mptcp_data_fin_enabled(msk)) {
2571 			struct inet_connection_sock *icsk = inet_csk(sk);
2572 
2573 			icsk->icsk_retransmits++;
2574 			mptcp_set_datafin_timeout(sk);
2575 			mptcp_send_ack(msk);
2576 
2577 			goto reset_timer;
2578 		}
2579 
2580 		if (!mptcp_send_head(sk))
2581 			return;
2582 
2583 		goto reset_timer;
2584 	}
2585 
2586 	if (err)
2587 		goto reset_timer;
2588 
2589 	mptcp_for_each_subflow(msk, subflow) {
2590 		if (READ_ONCE(subflow->scheduled)) {
2591 			u16 copied = 0;
2592 
2593 			mptcp_subflow_set_scheduled(subflow, false);
2594 
2595 			ssk = mptcp_subflow_tcp_sock(subflow);
2596 
2597 			lock_sock(ssk);
2598 
2599 			/* limit retransmission to the bytes already sent on some subflows */
2600 			info.sent = 0;
2601 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2602 								    dfrag->already_sent;
2603 
2604 			/*
2605 			 * make the whole retrans decision, xmit, disallow
2606 			 * fallback atomic
2607 			 */
2608 			spin_lock_bh(&msk->fallback_lock);
2609 			if (__mptcp_check_fallback(msk)) {
2610 				spin_unlock_bh(&msk->fallback_lock);
2611 				release_sock(ssk);
2612 				return;
2613 			}
2614 
2615 			while (info.sent < info.limit) {
2616 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2617 				if (ret <= 0)
2618 					break;
2619 
2620 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2621 				copied += ret;
2622 				info.sent += ret;
2623 			}
2624 			if (copied) {
2625 				len = max(copied, len);
2626 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2627 					 info.size_goal);
2628 				msk->allow_infinite_fallback = false;
2629 			}
2630 			spin_unlock_bh(&msk->fallback_lock);
2631 
2632 			release_sock(ssk);
2633 		}
2634 	}
2635 
2636 	msk->bytes_retrans += len;
2637 	dfrag->already_sent = max(dfrag->already_sent, len);
2638 
2639 reset_timer:
2640 	mptcp_check_and_set_pending(sk);
2641 
2642 	if (!mptcp_rtx_timer_pending(sk))
2643 		mptcp_reset_rtx_timer(sk);
2644 }
2645 
2646 /* schedule the timeout timer for the relevant event: either close timeout
2647  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2648  */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2649 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2650 {
2651 	struct sock *sk = (struct sock *)msk;
2652 	unsigned long timeout, close_timeout;
2653 
2654 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2655 		return;
2656 
2657 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2658 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2659 
2660 	/* the close timeout takes precedence on the fail one, and here at least one of
2661 	 * them is active
2662 	 */
2663 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2664 
2665 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2666 }
2667 
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2668 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2669 {
2670 	struct sock *ssk = msk->first;
2671 	bool slow;
2672 
2673 	if (!ssk)
2674 		return;
2675 
2676 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2677 
2678 	slow = lock_sock_fast(ssk);
2679 	mptcp_subflow_reset(ssk);
2680 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2681 	unlock_sock_fast(ssk, slow);
2682 }
2683 
mptcp_do_fastclose(struct sock * sk)2684 static void mptcp_do_fastclose(struct sock *sk)
2685 {
2686 	struct mptcp_subflow_context *subflow, *tmp;
2687 	struct mptcp_sock *msk = mptcp_sk(sk);
2688 
2689 	mptcp_set_state(sk, TCP_CLOSE);
2690 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2691 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2692 				  subflow, MPTCP_CF_FASTCLOSE);
2693 }
2694 
mptcp_worker(struct work_struct * work)2695 static void mptcp_worker(struct work_struct *work)
2696 {
2697 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2698 	struct sock *sk = (struct sock *)msk;
2699 	unsigned long fail_tout;
2700 	int state;
2701 
2702 	lock_sock(sk);
2703 	state = sk->sk_state;
2704 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2705 		goto unlock;
2706 
2707 	mptcp_check_fastclose(msk);
2708 
2709 	mptcp_pm_worker(msk);
2710 
2711 	mptcp_check_send_data_fin(sk);
2712 	mptcp_check_data_fin_ack(sk);
2713 	mptcp_check_data_fin(sk);
2714 
2715 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2716 		__mptcp_close_subflow(sk);
2717 
2718 	if (mptcp_close_tout_expired(sk)) {
2719 		mptcp_do_fastclose(sk);
2720 		mptcp_close_wake_up(sk);
2721 	}
2722 
2723 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2724 		__mptcp_destroy_sock(sk);
2725 		goto unlock;
2726 	}
2727 
2728 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2729 		__mptcp_retrans(sk);
2730 
2731 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2732 	if (fail_tout && time_after(jiffies, fail_tout))
2733 		mptcp_mp_fail_no_response(msk);
2734 
2735 unlock:
2736 	release_sock(sk);
2737 	sock_put(sk);
2738 }
2739 
__mptcp_init_sock(struct sock * sk)2740 static void __mptcp_init_sock(struct sock *sk)
2741 {
2742 	struct mptcp_sock *msk = mptcp_sk(sk);
2743 
2744 	INIT_LIST_HEAD(&msk->conn_list);
2745 	INIT_LIST_HEAD(&msk->join_list);
2746 	INIT_LIST_HEAD(&msk->rtx_queue);
2747 	INIT_WORK(&msk->work, mptcp_worker);
2748 	msk->out_of_order_queue = RB_ROOT;
2749 	msk->first_pending = NULL;
2750 	msk->timer_ival = TCP_RTO_MIN;
2751 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2752 
2753 	WRITE_ONCE(msk->first, NULL);
2754 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2755 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2756 	msk->allow_infinite_fallback = true;
2757 	msk->allow_subflows = true;
2758 	msk->recovery = false;
2759 	msk->subflow_id = 1;
2760 	msk->last_data_sent = tcp_jiffies32;
2761 	msk->last_data_recv = tcp_jiffies32;
2762 	msk->last_ack_recv = tcp_jiffies32;
2763 
2764 	mptcp_pm_data_init(msk);
2765 	spin_lock_init(&msk->fallback_lock);
2766 
2767 	/* re-use the csk retrans timer for MPTCP-level retrans */
2768 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2769 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2770 }
2771 
mptcp_ca_reset(struct sock * sk)2772 static void mptcp_ca_reset(struct sock *sk)
2773 {
2774 	struct inet_connection_sock *icsk = inet_csk(sk);
2775 
2776 	tcp_assign_congestion_control(sk);
2777 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2778 		sizeof(mptcp_sk(sk)->ca_name));
2779 
2780 	/* no need to keep a reference to the ops, the name will suffice */
2781 	tcp_cleanup_congestion_control(sk);
2782 	icsk->icsk_ca_ops = NULL;
2783 }
2784 
mptcp_init_sock(struct sock * sk)2785 static int mptcp_init_sock(struct sock *sk)
2786 {
2787 	struct net *net = sock_net(sk);
2788 	int ret;
2789 
2790 	__mptcp_init_sock(sk);
2791 
2792 	if (!mptcp_is_enabled(net))
2793 		return -ENOPROTOOPT;
2794 
2795 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2796 		return -ENOMEM;
2797 
2798 	rcu_read_lock();
2799 	ret = mptcp_init_sched(mptcp_sk(sk),
2800 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2801 	rcu_read_unlock();
2802 	if (ret)
2803 		return ret;
2804 
2805 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2806 
2807 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2808 	 * propagate the correct value
2809 	 */
2810 	mptcp_ca_reset(sk);
2811 
2812 	sk_sockets_allocated_inc(sk);
2813 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2814 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2815 
2816 	return 0;
2817 }
2818 
__mptcp_clear_xmit(struct sock * sk)2819 static void __mptcp_clear_xmit(struct sock *sk)
2820 {
2821 	struct mptcp_sock *msk = mptcp_sk(sk);
2822 	struct mptcp_data_frag *dtmp, *dfrag;
2823 
2824 	WRITE_ONCE(msk->first_pending, NULL);
2825 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2826 		dfrag_clear(sk, dfrag);
2827 }
2828 
mptcp_cancel_work(struct sock * sk)2829 void mptcp_cancel_work(struct sock *sk)
2830 {
2831 	struct mptcp_sock *msk = mptcp_sk(sk);
2832 
2833 	if (cancel_work_sync(&msk->work))
2834 		__sock_put(sk);
2835 }
2836 
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2837 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2838 {
2839 	lock_sock(ssk);
2840 
2841 	switch (ssk->sk_state) {
2842 	case TCP_LISTEN:
2843 		if (!(how & RCV_SHUTDOWN))
2844 			break;
2845 		fallthrough;
2846 	case TCP_SYN_SENT:
2847 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2848 		break;
2849 	default:
2850 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2851 			pr_debug("Fallback\n");
2852 			ssk->sk_shutdown |= how;
2853 			tcp_shutdown(ssk, how);
2854 
2855 			/* simulate the data_fin ack reception to let the state
2856 			 * machine move forward
2857 			 */
2858 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2859 			mptcp_schedule_work(sk);
2860 		} else {
2861 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2862 			tcp_send_ack(ssk);
2863 			if (!mptcp_rtx_timer_pending(sk))
2864 				mptcp_reset_rtx_timer(sk);
2865 		}
2866 		break;
2867 	}
2868 
2869 	release_sock(ssk);
2870 }
2871 
mptcp_set_state(struct sock * sk,int state)2872 void mptcp_set_state(struct sock *sk, int state)
2873 {
2874 	int oldstate = sk->sk_state;
2875 
2876 	switch (state) {
2877 	case TCP_ESTABLISHED:
2878 		if (oldstate != TCP_ESTABLISHED)
2879 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2880 		break;
2881 	case TCP_CLOSE_WAIT:
2882 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2883 		 * MPTCP "accepted" sockets will be created later on. So no
2884 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2885 		 */
2886 		break;
2887 	default:
2888 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2889 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2890 	}
2891 
2892 	inet_sk_state_store(sk, state);
2893 }
2894 
2895 static const unsigned char new_state[16] = {
2896 	/* current state:     new state:      action:	*/
2897 	[0 /* (Invalid) */] = TCP_CLOSE,
2898 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2899 	[TCP_SYN_SENT]      = TCP_CLOSE,
2900 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2901 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2902 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2903 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2904 	[TCP_CLOSE]         = TCP_CLOSE,
2905 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2906 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2907 	[TCP_LISTEN]        = TCP_CLOSE,
2908 	[TCP_CLOSING]       = TCP_CLOSING,
2909 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2910 };
2911 
mptcp_close_state(struct sock * sk)2912 static int mptcp_close_state(struct sock *sk)
2913 {
2914 	int next = (int)new_state[sk->sk_state];
2915 	int ns = next & TCP_STATE_MASK;
2916 
2917 	mptcp_set_state(sk, ns);
2918 
2919 	return next & TCP_ACTION_FIN;
2920 }
2921 
mptcp_check_send_data_fin(struct sock * sk)2922 static void mptcp_check_send_data_fin(struct sock *sk)
2923 {
2924 	struct mptcp_subflow_context *subflow;
2925 	struct mptcp_sock *msk = mptcp_sk(sk);
2926 
2927 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2928 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2929 		 msk->snd_nxt, msk->write_seq);
2930 
2931 	/* we still need to enqueue subflows or not really shutting down,
2932 	 * skip this
2933 	 */
2934 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2935 	    mptcp_send_head(sk))
2936 		return;
2937 
2938 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2939 
2940 	mptcp_for_each_subflow(msk, subflow) {
2941 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2942 
2943 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2944 	}
2945 }
2946 
__mptcp_wr_shutdown(struct sock * sk)2947 static void __mptcp_wr_shutdown(struct sock *sk)
2948 {
2949 	struct mptcp_sock *msk = mptcp_sk(sk);
2950 
2951 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
2952 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2953 		 !!mptcp_send_head(sk));
2954 
2955 	/* will be ignored by fallback sockets */
2956 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2957 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2958 
2959 	mptcp_check_send_data_fin(sk);
2960 }
2961 
__mptcp_destroy_sock(struct sock * sk)2962 static void __mptcp_destroy_sock(struct sock *sk)
2963 {
2964 	struct mptcp_sock *msk = mptcp_sk(sk);
2965 
2966 	pr_debug("msk=%p\n", msk);
2967 
2968 	might_sleep();
2969 
2970 	mptcp_stop_rtx_timer(sk);
2971 	sk_stop_timer(sk, &sk->sk_timer);
2972 	msk->pm.status = 0;
2973 	mptcp_release_sched(msk);
2974 
2975 	sk->sk_prot->destroy(sk);
2976 
2977 	sk_stream_kill_queues(sk);
2978 	xfrm_sk_free_policy(sk);
2979 
2980 	sock_put(sk);
2981 }
2982 
__mptcp_unaccepted_force_close(struct sock * sk)2983 void __mptcp_unaccepted_force_close(struct sock *sk)
2984 {
2985 	sock_set_flag(sk, SOCK_DEAD);
2986 	mptcp_do_fastclose(sk);
2987 	__mptcp_destroy_sock(sk);
2988 }
2989 
mptcp_check_readable(struct sock * sk)2990 static __poll_t mptcp_check_readable(struct sock *sk)
2991 {
2992 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
2993 }
2994 
mptcp_check_listen_stop(struct sock * sk)2995 static void mptcp_check_listen_stop(struct sock *sk)
2996 {
2997 	struct sock *ssk;
2998 
2999 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3000 		return;
3001 
3002 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3003 	ssk = mptcp_sk(sk)->first;
3004 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3005 		return;
3006 
3007 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3008 	tcp_set_state(ssk, TCP_CLOSE);
3009 	mptcp_subflow_queue_clean(sk, ssk);
3010 	inet_csk_listen_stop(ssk);
3011 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3012 	release_sock(ssk);
3013 }
3014 
__mptcp_close(struct sock * sk,long timeout)3015 bool __mptcp_close(struct sock *sk, long timeout)
3016 {
3017 	struct mptcp_subflow_context *subflow;
3018 	struct mptcp_sock *msk = mptcp_sk(sk);
3019 	bool do_cancel_work = false;
3020 	int subflows_alive = 0;
3021 
3022 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3023 
3024 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3025 		mptcp_check_listen_stop(sk);
3026 		mptcp_set_state(sk, TCP_CLOSE);
3027 		goto cleanup;
3028 	}
3029 
3030 	if (mptcp_data_avail(msk) || timeout < 0) {
3031 		/* If the msk has read data, or the caller explicitly ask it,
3032 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3033 		 */
3034 		mptcp_do_fastclose(sk);
3035 		timeout = 0;
3036 	} else if (mptcp_close_state(sk)) {
3037 		__mptcp_wr_shutdown(sk);
3038 	}
3039 
3040 	sk_stream_wait_close(sk, timeout);
3041 
3042 cleanup:
3043 	/* orphan all the subflows */
3044 	mptcp_for_each_subflow(msk, subflow) {
3045 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3046 		bool slow = lock_sock_fast_nested(ssk);
3047 
3048 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3049 
3050 		/* since the close timeout takes precedence on the fail one,
3051 		 * cancel the latter
3052 		 */
3053 		if (ssk == msk->first)
3054 			subflow->fail_tout = 0;
3055 
3056 		/* detach from the parent socket, but allow data_ready to
3057 		 * push incoming data into the mptcp stack, to properly ack it
3058 		 */
3059 		ssk->sk_socket = NULL;
3060 		ssk->sk_wq = NULL;
3061 		unlock_sock_fast(ssk, slow);
3062 	}
3063 	sock_orphan(sk);
3064 
3065 	/* all the subflows are closed, only timeout can change the msk
3066 	 * state, let's not keep resources busy for no reasons
3067 	 */
3068 	if (subflows_alive == 0)
3069 		mptcp_set_state(sk, TCP_CLOSE);
3070 
3071 	sock_hold(sk);
3072 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3073 	mptcp_pm_connection_closed(msk);
3074 
3075 	if (sk->sk_state == TCP_CLOSE) {
3076 		__mptcp_destroy_sock(sk);
3077 		do_cancel_work = true;
3078 	} else {
3079 		mptcp_start_tout_timer(sk);
3080 	}
3081 
3082 	return do_cancel_work;
3083 }
3084 
mptcp_close(struct sock * sk,long timeout)3085 static void mptcp_close(struct sock *sk, long timeout)
3086 {
3087 	bool do_cancel_work;
3088 
3089 	lock_sock(sk);
3090 
3091 	do_cancel_work = __mptcp_close(sk, timeout);
3092 	release_sock(sk);
3093 	if (do_cancel_work)
3094 		mptcp_cancel_work(sk);
3095 
3096 	sock_put(sk);
3097 }
3098 
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3099 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3100 {
3101 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3102 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3103 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3104 
3105 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3106 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3107 
3108 	if (msk6 && ssk6) {
3109 		msk6->saddr = ssk6->saddr;
3110 		msk6->flow_label = ssk6->flow_label;
3111 	}
3112 #endif
3113 
3114 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3115 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3116 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3117 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3118 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3119 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3120 }
3121 
mptcp_disconnect(struct sock * sk,int flags)3122 static int mptcp_disconnect(struct sock *sk, int flags)
3123 {
3124 	struct mptcp_sock *msk = mptcp_sk(sk);
3125 
3126 	/* We are on the fastopen error path. We can't call straight into the
3127 	 * subflows cleanup code due to lock nesting (we are already under
3128 	 * msk->firstsocket lock).
3129 	 */
3130 	if (msk->fastopening)
3131 		return -EBUSY;
3132 
3133 	mptcp_check_listen_stop(sk);
3134 	mptcp_set_state(sk, TCP_CLOSE);
3135 
3136 	mptcp_stop_rtx_timer(sk);
3137 	mptcp_stop_tout_timer(sk);
3138 
3139 	mptcp_pm_connection_closed(msk);
3140 
3141 	/* msk->subflow is still intact, the following will not free the first
3142 	 * subflow
3143 	 */
3144 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3145 
3146 	/* The first subflow is already in TCP_CLOSE status, the following
3147 	 * can't overlap with a fallback anymore
3148 	 */
3149 	spin_lock_bh(&msk->fallback_lock);
3150 	msk->allow_subflows = true;
3151 	msk->allow_infinite_fallback = true;
3152 	WRITE_ONCE(msk->flags, 0);
3153 	spin_unlock_bh(&msk->fallback_lock);
3154 
3155 	msk->cb_flags = 0;
3156 	msk->recovery = false;
3157 	WRITE_ONCE(msk->can_ack, false);
3158 	WRITE_ONCE(msk->fully_established, false);
3159 	WRITE_ONCE(msk->rcv_data_fin, false);
3160 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3161 	WRITE_ONCE(msk->rcv_fastclose, false);
3162 	WRITE_ONCE(msk->use_64bit_ack, false);
3163 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3164 	mptcp_pm_data_reset(msk);
3165 	mptcp_ca_reset(sk);
3166 	msk->bytes_consumed = 0;
3167 	msk->bytes_acked = 0;
3168 	msk->bytes_received = 0;
3169 	msk->bytes_sent = 0;
3170 	msk->bytes_retrans = 0;
3171 	msk->rcvspace_init = 0;
3172 
3173 	WRITE_ONCE(sk->sk_shutdown, 0);
3174 	sk_error_report(sk);
3175 	return 0;
3176 }
3177 
3178 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3179 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3180 {
3181 	struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3182 
3183 	return &msk6->np;
3184 }
3185 
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3186 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3187 {
3188 	const struct ipv6_pinfo *np = inet6_sk(sk);
3189 	struct ipv6_txoptions *opt;
3190 	struct ipv6_pinfo *newnp;
3191 
3192 	newnp = inet6_sk(newsk);
3193 
3194 	rcu_read_lock();
3195 	opt = rcu_dereference(np->opt);
3196 	if (opt) {
3197 		opt = ipv6_dup_options(newsk, opt);
3198 		if (!opt)
3199 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3200 	}
3201 	RCU_INIT_POINTER(newnp->opt, opt);
3202 	rcu_read_unlock();
3203 }
3204 #endif
3205 
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3206 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3207 {
3208 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3209 	const struct inet_sock *inet = inet_sk(sk);
3210 	struct inet_sock *newinet;
3211 
3212 	newinet = inet_sk(newsk);
3213 
3214 	rcu_read_lock();
3215 	inet_opt = rcu_dereference(inet->inet_opt);
3216 	if (inet_opt) {
3217 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3218 				      inet_opt->opt.optlen, GFP_ATOMIC);
3219 		if (!newopt)
3220 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3221 	}
3222 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3223 	rcu_read_unlock();
3224 }
3225 
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3226 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3227 				 const struct mptcp_options_received *mp_opt,
3228 				 struct sock *ssk,
3229 				 struct request_sock *req)
3230 {
3231 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3232 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3233 	struct mptcp_subflow_context *subflow;
3234 	struct mptcp_sock *msk;
3235 
3236 	if (!nsk)
3237 		return NULL;
3238 
3239 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3240 	if (nsk->sk_family == AF_INET6)
3241 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3242 #endif
3243 
3244 	__mptcp_init_sock(nsk);
3245 
3246 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3247 	if (nsk->sk_family == AF_INET6)
3248 		mptcp_copy_ip6_options(nsk, sk);
3249 	else
3250 #endif
3251 		mptcp_copy_ip_options(nsk, sk);
3252 
3253 	msk = mptcp_sk(nsk);
3254 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3255 	WRITE_ONCE(msk->token, subflow_req->token);
3256 	msk->in_accept_queue = 1;
3257 	WRITE_ONCE(msk->fully_established, false);
3258 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3259 		WRITE_ONCE(msk->csum_enabled, true);
3260 
3261 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3262 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3263 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3264 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3265 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3266 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3267 
3268 	/* passive msk is created after the first/MPC subflow */
3269 	msk->subflow_id = 2;
3270 
3271 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3272 	security_inet_csk_clone(nsk, req);
3273 
3274 	/* this can't race with mptcp_close(), as the msk is
3275 	 * not yet exposted to user-space
3276 	 */
3277 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3278 
3279 	/* The msk maintain a ref to each subflow in the connections list */
3280 	WRITE_ONCE(msk->first, ssk);
3281 	subflow = mptcp_subflow_ctx(ssk);
3282 	list_add(&subflow->node, &msk->conn_list);
3283 	sock_hold(ssk);
3284 
3285 	/* new mpc subflow takes ownership of the newly
3286 	 * created mptcp socket
3287 	 */
3288 	mptcp_token_accept(subflow_req, msk);
3289 
3290 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3291 	 * uses the correct data
3292 	 */
3293 	mptcp_copy_inaddrs(nsk, ssk);
3294 	__mptcp_propagate_sndbuf(nsk, ssk);
3295 
3296 	mptcp_rcv_space_init(msk, ssk);
3297 
3298 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3299 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3300 	bh_unlock_sock(nsk);
3301 
3302 	/* note: the newly allocated socket refcount is 2 now */
3303 	return nsk;
3304 }
3305 
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3306 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3307 {
3308 	const struct tcp_sock *tp = tcp_sk(ssk);
3309 
3310 	msk->rcvspace_init = 1;
3311 	msk->rcvq_space.copied = 0;
3312 	msk->rcvq_space.rtt_us = 0;
3313 
3314 	msk->rcvq_space.time = tp->tcp_mstamp;
3315 
3316 	/* initial rcv_space offering made to peer */
3317 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3318 				      TCP_INIT_CWND * tp->advmss);
3319 	if (msk->rcvq_space.space == 0)
3320 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3321 }
3322 
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3323 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3324 {
3325 	struct mptcp_subflow_context *subflow, *tmp;
3326 	struct sock *sk = (struct sock *)msk;
3327 
3328 	__mptcp_clear_xmit(sk);
3329 
3330 	/* join list will be eventually flushed (with rst) at sock lock release time */
3331 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3332 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3333 
3334 	__skb_queue_purge(&sk->sk_receive_queue);
3335 	skb_rbtree_purge(&msk->out_of_order_queue);
3336 
3337 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3338 	 * inet_sock_destruct() will dispose it
3339 	 */
3340 	mptcp_token_destroy(msk);
3341 	mptcp_pm_destroy(msk);
3342 }
3343 
mptcp_destroy(struct sock * sk)3344 static void mptcp_destroy(struct sock *sk)
3345 {
3346 	struct mptcp_sock *msk = mptcp_sk(sk);
3347 
3348 	/* allow the following to close even the initial subflow */
3349 	msk->free_first = 1;
3350 	mptcp_destroy_common(msk, 0);
3351 	sk_sockets_allocated_dec(sk);
3352 }
3353 
__mptcp_data_acked(struct sock * sk)3354 void __mptcp_data_acked(struct sock *sk)
3355 {
3356 	if (!sock_owned_by_user(sk))
3357 		__mptcp_clean_una(sk);
3358 	else
3359 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3360 }
3361 
__mptcp_check_push(struct sock * sk,struct sock * ssk)3362 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3363 {
3364 	if (!mptcp_send_head(sk))
3365 		return;
3366 
3367 	if (!sock_owned_by_user(sk))
3368 		__mptcp_subflow_push_pending(sk, ssk, false);
3369 	else
3370 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3371 }
3372 
3373 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3374 				      BIT(MPTCP_RETRANSMIT) | \
3375 				      BIT(MPTCP_FLUSH_JOIN_LIST) | \
3376 				      BIT(MPTCP_DEQUEUE))
3377 
3378 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3379 static void mptcp_release_cb(struct sock *sk)
3380 	__must_hold(&sk->sk_lock.slock)
3381 {
3382 	struct mptcp_sock *msk = mptcp_sk(sk);
3383 
3384 	for (;;) {
3385 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3386 		struct list_head join_list;
3387 
3388 		if (!flags)
3389 			break;
3390 
3391 		INIT_LIST_HEAD(&join_list);
3392 		list_splice_init(&msk->join_list, &join_list);
3393 
3394 		/* the following actions acquire the subflow socket lock
3395 		 *
3396 		 * 1) can't be invoked in atomic scope
3397 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3398 		 *    datapath acquires the msk socket spinlock while helding
3399 		 *    the subflow socket lock
3400 		 */
3401 		msk->cb_flags &= ~flags;
3402 		spin_unlock_bh(&sk->sk_lock.slock);
3403 
3404 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3405 			__mptcp_flush_join_list(sk, &join_list);
3406 		if (flags & BIT(MPTCP_PUSH_PENDING))
3407 			__mptcp_push_pending(sk, 0);
3408 		if (flags & BIT(MPTCP_RETRANSMIT))
3409 			__mptcp_retrans(sk);
3410 		if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3411 			/* notify ack seq update */
3412 			mptcp_cleanup_rbuf(msk, 0);
3413 			sk->sk_data_ready(sk);
3414 		}
3415 
3416 		cond_resched();
3417 		spin_lock_bh(&sk->sk_lock.slock);
3418 	}
3419 
3420 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3421 		__mptcp_clean_una_wakeup(sk);
3422 	if (unlikely(msk->cb_flags)) {
3423 		/* be sure to sync the msk state before taking actions
3424 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3425 		 * On sk release avoid actions depending on the first subflow
3426 		 */
3427 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3428 			__mptcp_sync_state(sk, msk->pending_state);
3429 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3430 			__mptcp_error_report(sk);
3431 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3432 			__mptcp_sync_sndbuf(sk);
3433 	}
3434 }
3435 
3436 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3437  * TCP can't schedule delack timer before the subflow is fully established.
3438  * MPTCP uses the delack timer to do 3rd ack retransmissions
3439  */
schedule_3rdack_retransmission(struct sock * ssk)3440 static void schedule_3rdack_retransmission(struct sock *ssk)
3441 {
3442 	struct inet_connection_sock *icsk = inet_csk(ssk);
3443 	struct tcp_sock *tp = tcp_sk(ssk);
3444 	unsigned long timeout;
3445 
3446 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3447 		return;
3448 
3449 	/* reschedule with a timeout above RTT, as we must look only for drop */
3450 	if (tp->srtt_us)
3451 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3452 	else
3453 		timeout = TCP_TIMEOUT_INIT;
3454 	timeout += jiffies;
3455 
3456 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3457 	smp_store_release(&icsk->icsk_ack.pending,
3458 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3459 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3460 }
3461 
mptcp_subflow_process_delegated(struct sock * ssk,long status)3462 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3463 {
3464 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3465 	struct sock *sk = subflow->conn;
3466 
3467 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3468 		mptcp_data_lock(sk);
3469 		if (!sock_owned_by_user(sk))
3470 			__mptcp_subflow_push_pending(sk, ssk, true);
3471 		else
3472 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3473 		mptcp_data_unlock(sk);
3474 	}
3475 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3476 		mptcp_data_lock(sk);
3477 		if (!sock_owned_by_user(sk))
3478 			__mptcp_sync_sndbuf(sk);
3479 		else
3480 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3481 		mptcp_data_unlock(sk);
3482 	}
3483 	if (status & BIT(MPTCP_DELEGATE_ACK))
3484 		schedule_3rdack_retransmission(ssk);
3485 }
3486 
mptcp_hash(struct sock * sk)3487 static int mptcp_hash(struct sock *sk)
3488 {
3489 	/* should never be called,
3490 	 * we hash the TCP subflows not the MPTCP socket
3491 	 */
3492 	WARN_ON_ONCE(1);
3493 	return 0;
3494 }
3495 
mptcp_unhash(struct sock * sk)3496 static void mptcp_unhash(struct sock *sk)
3497 {
3498 	/* called from sk_common_release(), but nothing to do here */
3499 }
3500 
mptcp_get_port(struct sock * sk,unsigned short snum)3501 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3502 {
3503 	struct mptcp_sock *msk = mptcp_sk(sk);
3504 
3505 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3506 	if (WARN_ON_ONCE(!msk->first))
3507 		return -EINVAL;
3508 
3509 	return inet_csk_get_port(msk->first, snum);
3510 }
3511 
mptcp_finish_connect(struct sock * ssk)3512 void mptcp_finish_connect(struct sock *ssk)
3513 {
3514 	struct mptcp_subflow_context *subflow;
3515 	struct mptcp_sock *msk;
3516 	struct sock *sk;
3517 
3518 	subflow = mptcp_subflow_ctx(ssk);
3519 	sk = subflow->conn;
3520 	msk = mptcp_sk(sk);
3521 
3522 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3523 
3524 	subflow->map_seq = subflow->iasn;
3525 	subflow->map_subflow_seq = 1;
3526 
3527 	/* the socket is not connected yet, no msk/subflow ops can access/race
3528 	 * accessing the field below
3529 	 */
3530 	WRITE_ONCE(msk->local_key, subflow->local_key);
3531 
3532 	mptcp_pm_new_connection(msk, ssk, 0);
3533 }
3534 
mptcp_sock_graft(struct sock * sk,struct socket * parent)3535 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3536 {
3537 	write_lock_bh(&sk->sk_callback_lock);
3538 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3539 	sk_set_socket(sk, parent);
3540 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3541 	write_unlock_bh(&sk->sk_callback_lock);
3542 }
3543 
mptcp_finish_join(struct sock * ssk)3544 bool mptcp_finish_join(struct sock *ssk)
3545 {
3546 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3547 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3548 	struct sock *parent = (void *)msk;
3549 	bool ret = true;
3550 
3551 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3552 
3553 	/* mptcp socket already closing? */
3554 	if (!mptcp_is_fully_established(parent)) {
3555 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3556 		return false;
3557 	}
3558 
3559 	/* active subflow, already present inside the conn_list */
3560 	if (!list_empty(&subflow->node)) {
3561 		spin_lock_bh(&msk->fallback_lock);
3562 		if (!msk->allow_subflows) {
3563 			spin_unlock_bh(&msk->fallback_lock);
3564 			return false;
3565 		}
3566 		mptcp_subflow_joined(msk, ssk);
3567 		spin_unlock_bh(&msk->fallback_lock);
3568 		mptcp_propagate_sndbuf(parent, ssk);
3569 		return true;
3570 	}
3571 
3572 	if (!mptcp_pm_allow_new_subflow(msk)) {
3573 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3574 		goto err_prohibited;
3575 	}
3576 
3577 	/* If we can't acquire msk socket lock here, let the release callback
3578 	 * handle it
3579 	 */
3580 	mptcp_data_lock(parent);
3581 	if (!sock_owned_by_user(parent)) {
3582 		ret = __mptcp_finish_join(msk, ssk);
3583 		if (ret) {
3584 			sock_hold(ssk);
3585 			list_add_tail(&subflow->node, &msk->conn_list);
3586 		}
3587 	} else {
3588 		sock_hold(ssk);
3589 		list_add_tail(&subflow->node, &msk->join_list);
3590 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3591 	}
3592 	mptcp_data_unlock(parent);
3593 
3594 	if (!ret) {
3595 err_prohibited:
3596 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3597 		return false;
3598 	}
3599 
3600 	return true;
3601 }
3602 
mptcp_shutdown(struct sock * sk,int how)3603 static void mptcp_shutdown(struct sock *sk, int how)
3604 {
3605 	pr_debug("sk=%p, how=%d\n", sk, how);
3606 
3607 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3608 		__mptcp_wr_shutdown(sk);
3609 }
3610 
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3611 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3612 {
3613 	const struct sock *sk = (void *)msk;
3614 	u64 delta;
3615 
3616 	if (sk->sk_state == TCP_LISTEN)
3617 		return -EINVAL;
3618 
3619 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3620 		return 0;
3621 
3622 	delta = msk->write_seq - v;
3623 	if (__mptcp_check_fallback(msk) && msk->first) {
3624 		struct tcp_sock *tp = tcp_sk(msk->first);
3625 
3626 		/* the first subflow is disconnected after close - see
3627 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3628 		 * so ignore that status, too.
3629 		 */
3630 		if (!((1 << msk->first->sk_state) &
3631 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3632 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3633 	}
3634 	if (delta > INT_MAX)
3635 		delta = INT_MAX;
3636 
3637 	return (int)delta;
3638 }
3639 
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3640 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3641 {
3642 	struct mptcp_sock *msk = mptcp_sk(sk);
3643 	bool slow;
3644 
3645 	switch (cmd) {
3646 	case SIOCINQ:
3647 		if (sk->sk_state == TCP_LISTEN)
3648 			return -EINVAL;
3649 
3650 		lock_sock(sk);
3651 		if (__mptcp_move_skbs(sk))
3652 			mptcp_cleanup_rbuf(msk, 0);
3653 		*karg = mptcp_inq_hint(sk);
3654 		release_sock(sk);
3655 		break;
3656 	case SIOCOUTQ:
3657 		slow = lock_sock_fast(sk);
3658 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3659 		unlock_sock_fast(sk, slow);
3660 		break;
3661 	case SIOCOUTQNSD:
3662 		slow = lock_sock_fast(sk);
3663 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3664 		unlock_sock_fast(sk, slow);
3665 		break;
3666 	default:
3667 		return -ENOIOCTLCMD;
3668 	}
3669 
3670 	return 0;
3671 }
3672 
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3673 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3674 {
3675 	struct mptcp_subflow_context *subflow;
3676 	struct mptcp_sock *msk = mptcp_sk(sk);
3677 	int err = -EINVAL;
3678 	struct sock *ssk;
3679 
3680 	ssk = __mptcp_nmpc_sk(msk);
3681 	if (IS_ERR(ssk))
3682 		return PTR_ERR(ssk);
3683 
3684 	mptcp_set_state(sk, TCP_SYN_SENT);
3685 	subflow = mptcp_subflow_ctx(ssk);
3686 #ifdef CONFIG_TCP_MD5SIG
3687 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3688 	 * TCP option space.
3689 	 */
3690 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3691 		mptcp_subflow_early_fallback(msk, subflow);
3692 #endif
3693 	if (subflow->request_mptcp) {
3694 		if (mptcp_active_should_disable(sk)) {
3695 			MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3696 			mptcp_subflow_early_fallback(msk, subflow);
3697 		} else if (mptcp_token_new_connect(ssk) < 0) {
3698 			MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3699 			mptcp_subflow_early_fallback(msk, subflow);
3700 		}
3701 	}
3702 
3703 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3704 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3705 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3706 	if (likely(!__mptcp_check_fallback(msk)))
3707 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3708 
3709 	/* if reaching here via the fastopen/sendmsg path, the caller already
3710 	 * acquired the subflow socket lock, too.
3711 	 */
3712 	if (!msk->fastopening)
3713 		lock_sock(ssk);
3714 
3715 	/* the following mirrors closely a very small chunk of code from
3716 	 * __inet_stream_connect()
3717 	 */
3718 	if (ssk->sk_state != TCP_CLOSE)
3719 		goto out;
3720 
3721 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3722 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3723 		if (err)
3724 			goto out;
3725 	}
3726 
3727 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3728 	if (err < 0)
3729 		goto out;
3730 
3731 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3732 
3733 out:
3734 	if (!msk->fastopening)
3735 		release_sock(ssk);
3736 
3737 	/* on successful connect, the msk state will be moved to established by
3738 	 * subflow_finish_connect()
3739 	 */
3740 	if (unlikely(err)) {
3741 		/* avoid leaving a dangling token in an unconnected socket */
3742 		mptcp_token_destroy(msk);
3743 		mptcp_set_state(sk, TCP_CLOSE);
3744 		return err;
3745 	}
3746 
3747 	mptcp_copy_inaddrs(sk, ssk);
3748 	return 0;
3749 }
3750 
3751 static struct proto mptcp_prot = {
3752 	.name		= "MPTCP",
3753 	.owner		= THIS_MODULE,
3754 	.init		= mptcp_init_sock,
3755 	.connect	= mptcp_connect,
3756 	.disconnect	= mptcp_disconnect,
3757 	.close		= mptcp_close,
3758 	.setsockopt	= mptcp_setsockopt,
3759 	.getsockopt	= mptcp_getsockopt,
3760 	.shutdown	= mptcp_shutdown,
3761 	.destroy	= mptcp_destroy,
3762 	.sendmsg	= mptcp_sendmsg,
3763 	.ioctl		= mptcp_ioctl,
3764 	.recvmsg	= mptcp_recvmsg,
3765 	.release_cb	= mptcp_release_cb,
3766 	.hash		= mptcp_hash,
3767 	.unhash		= mptcp_unhash,
3768 	.get_port	= mptcp_get_port,
3769 	.stream_memory_free	= mptcp_stream_memory_free,
3770 	.sockets_allocated	= &mptcp_sockets_allocated,
3771 
3772 	.memory_allocated	= &tcp_memory_allocated,
3773 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3774 
3775 	.memory_pressure	= &tcp_memory_pressure,
3776 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3777 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3778 	.sysctl_mem	= sysctl_tcp_mem,
3779 	.obj_size	= sizeof(struct mptcp_sock),
3780 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3781 	.no_autobind	= true,
3782 };
3783 
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3784 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3785 {
3786 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3787 	struct sock *ssk, *sk = sock->sk;
3788 	int err = -EINVAL;
3789 
3790 	lock_sock(sk);
3791 	ssk = __mptcp_nmpc_sk(msk);
3792 	if (IS_ERR(ssk)) {
3793 		err = PTR_ERR(ssk);
3794 		goto unlock;
3795 	}
3796 
3797 	if (sk->sk_family == AF_INET)
3798 		err = inet_bind_sk(ssk, uaddr, addr_len);
3799 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3800 	else if (sk->sk_family == AF_INET6)
3801 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3802 #endif
3803 	if (!err)
3804 		mptcp_copy_inaddrs(sk, ssk);
3805 
3806 unlock:
3807 	release_sock(sk);
3808 	return err;
3809 }
3810 
mptcp_listen(struct socket * sock,int backlog)3811 static int mptcp_listen(struct socket *sock, int backlog)
3812 {
3813 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3814 	struct sock *sk = sock->sk;
3815 	struct sock *ssk;
3816 	int err;
3817 
3818 	pr_debug("msk=%p\n", msk);
3819 
3820 	lock_sock(sk);
3821 
3822 	err = -EINVAL;
3823 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3824 		goto unlock;
3825 
3826 	ssk = __mptcp_nmpc_sk(msk);
3827 	if (IS_ERR(ssk)) {
3828 		err = PTR_ERR(ssk);
3829 		goto unlock;
3830 	}
3831 
3832 	mptcp_set_state(sk, TCP_LISTEN);
3833 	sock_set_flag(sk, SOCK_RCU_FREE);
3834 
3835 	lock_sock(ssk);
3836 	err = __inet_listen_sk(ssk, backlog);
3837 	release_sock(ssk);
3838 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3839 
3840 	if (!err) {
3841 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3842 		mptcp_copy_inaddrs(sk, ssk);
3843 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3844 	}
3845 
3846 unlock:
3847 	release_sock(sk);
3848 	return err;
3849 }
3850 
mptcp_stream_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)3851 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3852 			       struct proto_accept_arg *arg)
3853 {
3854 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3855 	struct sock *ssk, *newsk;
3856 
3857 	pr_debug("msk=%p\n", msk);
3858 
3859 	/* Buggy applications can call accept on socket states other then LISTEN
3860 	 * but no need to allocate the first subflow just to error out.
3861 	 */
3862 	ssk = READ_ONCE(msk->first);
3863 	if (!ssk)
3864 		return -EINVAL;
3865 
3866 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3867 	newsk = inet_csk_accept(ssk, arg);
3868 	if (!newsk)
3869 		return arg->err;
3870 
3871 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3872 	if (sk_is_mptcp(newsk)) {
3873 		struct mptcp_subflow_context *subflow;
3874 		struct sock *new_mptcp_sock;
3875 
3876 		subflow = mptcp_subflow_ctx(newsk);
3877 		new_mptcp_sock = subflow->conn;
3878 
3879 		/* is_mptcp should be false if subflow->conn is missing, see
3880 		 * subflow_syn_recv_sock()
3881 		 */
3882 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3883 			tcp_sk(newsk)->is_mptcp = 0;
3884 			goto tcpfallback;
3885 		}
3886 
3887 		newsk = new_mptcp_sock;
3888 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3889 
3890 		newsk->sk_kern_sock = arg->kern;
3891 		lock_sock(newsk);
3892 		__inet_accept(sock, newsock, newsk);
3893 
3894 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3895 		msk = mptcp_sk(newsk);
3896 		msk->in_accept_queue = 0;
3897 
3898 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3899 		 * This is needed so NOSPACE flag can be set from tcp stack.
3900 		 */
3901 		mptcp_for_each_subflow(msk, subflow) {
3902 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3903 
3904 			if (!ssk->sk_socket)
3905 				mptcp_sock_graft(ssk, newsock);
3906 		}
3907 
3908 		/* Do late cleanup for the first subflow as necessary. Also
3909 		 * deal with bad peers not doing a complete shutdown.
3910 		 */
3911 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3912 			__mptcp_close_ssk(newsk, msk->first,
3913 					  mptcp_subflow_ctx(msk->first), 0);
3914 			if (unlikely(list_is_singular(&msk->conn_list)))
3915 				mptcp_set_state(newsk, TCP_CLOSE);
3916 		}
3917 	} else {
3918 tcpfallback:
3919 		newsk->sk_kern_sock = arg->kern;
3920 		lock_sock(newsk);
3921 		__inet_accept(sock, newsock, newsk);
3922 		/* we are being invoked after accepting a non-mp-capable
3923 		 * flow: sk is a tcp_sk, not an mptcp one.
3924 		 *
3925 		 * Hand the socket over to tcp so all further socket ops
3926 		 * bypass mptcp.
3927 		 */
3928 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3929 			   mptcp_fallback_tcp_ops(newsock->sk));
3930 	}
3931 	release_sock(newsk);
3932 
3933 	return 0;
3934 }
3935 
mptcp_check_writeable(struct mptcp_sock * msk)3936 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3937 {
3938 	struct sock *sk = (struct sock *)msk;
3939 
3940 	if (__mptcp_stream_is_writeable(sk, 1))
3941 		return EPOLLOUT | EPOLLWRNORM;
3942 
3943 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3944 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3945 	if (__mptcp_stream_is_writeable(sk, 1))
3946 		return EPOLLOUT | EPOLLWRNORM;
3947 
3948 	return 0;
3949 }
3950 
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)3951 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3952 			   struct poll_table_struct *wait)
3953 {
3954 	struct sock *sk = sock->sk;
3955 	struct mptcp_sock *msk;
3956 	__poll_t mask = 0;
3957 	u8 shutdown;
3958 	int state;
3959 
3960 	msk = mptcp_sk(sk);
3961 	sock_poll_wait(file, sock, wait);
3962 
3963 	state = inet_sk_state_load(sk);
3964 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
3965 	if (state == TCP_LISTEN) {
3966 		struct sock *ssk = READ_ONCE(msk->first);
3967 
3968 		if (WARN_ON_ONCE(!ssk))
3969 			return 0;
3970 
3971 		return inet_csk_listen_poll(ssk);
3972 	}
3973 
3974 	shutdown = READ_ONCE(sk->sk_shutdown);
3975 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3976 		mask |= EPOLLHUP;
3977 	if (shutdown & RCV_SHUTDOWN)
3978 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3979 
3980 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3981 		mask |= mptcp_check_readable(sk);
3982 		if (shutdown & SEND_SHUTDOWN)
3983 			mask |= EPOLLOUT | EPOLLWRNORM;
3984 		else
3985 			mask |= mptcp_check_writeable(msk);
3986 	} else if (state == TCP_SYN_SENT &&
3987 		   inet_test_bit(DEFER_CONNECT, sk)) {
3988 		/* cf tcp_poll() note about TFO */
3989 		mask |= EPOLLOUT | EPOLLWRNORM;
3990 	}
3991 
3992 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3993 	smp_rmb();
3994 	if (READ_ONCE(sk->sk_err))
3995 		mask |= EPOLLERR;
3996 
3997 	return mask;
3998 }
3999 
4000 static const struct proto_ops mptcp_stream_ops = {
4001 	.family		   = PF_INET,
4002 	.owner		   = THIS_MODULE,
4003 	.release	   = inet_release,
4004 	.bind		   = mptcp_bind,
4005 	.connect	   = inet_stream_connect,
4006 	.socketpair	   = sock_no_socketpair,
4007 	.accept		   = mptcp_stream_accept,
4008 	.getname	   = inet_getname,
4009 	.poll		   = mptcp_poll,
4010 	.ioctl		   = inet_ioctl,
4011 	.gettstamp	   = sock_gettstamp,
4012 	.listen		   = mptcp_listen,
4013 	.shutdown	   = inet_shutdown,
4014 	.setsockopt	   = sock_common_setsockopt,
4015 	.getsockopt	   = sock_common_getsockopt,
4016 	.sendmsg	   = inet_sendmsg,
4017 	.recvmsg	   = inet_recvmsg,
4018 	.mmap		   = sock_no_mmap,
4019 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4020 };
4021 
4022 static struct inet_protosw mptcp_protosw = {
4023 	.type		= SOCK_STREAM,
4024 	.protocol	= IPPROTO_MPTCP,
4025 	.prot		= &mptcp_prot,
4026 	.ops		= &mptcp_stream_ops,
4027 	.flags		= INET_PROTOSW_ICSK,
4028 };
4029 
mptcp_napi_poll(struct napi_struct * napi,int budget)4030 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4031 {
4032 	struct mptcp_delegated_action *delegated;
4033 	struct mptcp_subflow_context *subflow;
4034 	int work_done = 0;
4035 
4036 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4037 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4038 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4039 
4040 		bh_lock_sock_nested(ssk);
4041 		if (!sock_owned_by_user(ssk)) {
4042 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4043 		} else {
4044 			/* tcp_release_cb_override already processed
4045 			 * the action or will do at next release_sock().
4046 			 * In both case must dequeue the subflow here - on the same
4047 			 * CPU that scheduled it.
4048 			 */
4049 			smp_wmb();
4050 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4051 		}
4052 		bh_unlock_sock(ssk);
4053 		sock_put(ssk);
4054 
4055 		if (++work_done == budget)
4056 			return budget;
4057 	}
4058 
4059 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4060 	 * will not try accessing the NULL napi->dev ptr
4061 	 */
4062 	napi_complete_done(napi, 0);
4063 	return work_done;
4064 }
4065 
mptcp_proto_init(void)4066 void __init mptcp_proto_init(void)
4067 {
4068 	struct mptcp_delegated_action *delegated;
4069 	int cpu;
4070 
4071 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4072 
4073 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4074 		panic("Failed to allocate MPTCP pcpu counter\n");
4075 
4076 	mptcp_napi_dev = alloc_netdev_dummy(0);
4077 	if (!mptcp_napi_dev)
4078 		panic("Failed to allocate MPTCP dummy netdev\n");
4079 	for_each_possible_cpu(cpu) {
4080 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4081 		INIT_LIST_HEAD(&delegated->head);
4082 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4083 				  mptcp_napi_poll);
4084 		napi_enable(&delegated->napi);
4085 	}
4086 
4087 	mptcp_subflow_init();
4088 	mptcp_pm_init();
4089 	mptcp_sched_init();
4090 	mptcp_token_init();
4091 
4092 	if (proto_register(&mptcp_prot, 1) != 0)
4093 		panic("Failed to register MPTCP proto.\n");
4094 
4095 	inet_register_protosw(&mptcp_protosw);
4096 
4097 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4098 }
4099 
4100 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4101 static const struct proto_ops mptcp_v6_stream_ops = {
4102 	.family		   = PF_INET6,
4103 	.owner		   = THIS_MODULE,
4104 	.release	   = inet6_release,
4105 	.bind		   = mptcp_bind,
4106 	.connect	   = inet_stream_connect,
4107 	.socketpair	   = sock_no_socketpair,
4108 	.accept		   = mptcp_stream_accept,
4109 	.getname	   = inet6_getname,
4110 	.poll		   = mptcp_poll,
4111 	.ioctl		   = inet6_ioctl,
4112 	.gettstamp	   = sock_gettstamp,
4113 	.listen		   = mptcp_listen,
4114 	.shutdown	   = inet_shutdown,
4115 	.setsockopt	   = sock_common_setsockopt,
4116 	.getsockopt	   = sock_common_getsockopt,
4117 	.sendmsg	   = inet6_sendmsg,
4118 	.recvmsg	   = inet6_recvmsg,
4119 	.mmap		   = sock_no_mmap,
4120 #ifdef CONFIG_COMPAT
4121 	.compat_ioctl	   = inet6_compat_ioctl,
4122 #endif
4123 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4124 };
4125 
4126 static struct proto mptcp_v6_prot;
4127 
4128 static struct inet_protosw mptcp_v6_protosw = {
4129 	.type		= SOCK_STREAM,
4130 	.protocol	= IPPROTO_MPTCP,
4131 	.prot		= &mptcp_v6_prot,
4132 	.ops		= &mptcp_v6_stream_ops,
4133 	.flags		= INET_PROTOSW_ICSK,
4134 };
4135 
mptcp_proto_v6_init(void)4136 int __init mptcp_proto_v6_init(void)
4137 {
4138 	int err;
4139 
4140 	mptcp_v6_prot = mptcp_prot;
4141 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4142 	mptcp_v6_prot.slab = NULL;
4143 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4144 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4145 
4146 	err = proto_register(&mptcp_v6_prot, 1);
4147 	if (err)
4148 		return err;
4149 
4150 	err = inet6_register_protosw(&mptcp_v6_protosw);
4151 	if (err)
4152 		proto_unregister(&mptcp_v6_prot);
4153 
4154 	return err;
4155 }
4156 #endif
4157