xref: /linux/kernel/rcu/srcutree.c (revision 98e7dcbb82fa57de8dfad357f9b851c3625797fa)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Authors: Paul McKenney <paulmck@linux.ibm.com>
9  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *		Documentation/RCU/ *.txt
13  *
14  */
15 
16 #define pr_fmt(fmt) "rcu: " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/srcu.h>
29 
30 #include "rcu.h"
31 #include "rcu_segcblist.h"
32 
33 /* Holdoff in nanoseconds for auto-expediting. */
34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
36 module_param(exp_holdoff, ulong, 0444);
37 
38 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
39 static ulong counter_wrap_check = (ULONG_MAX >> 2);
40 module_param(counter_wrap_check, ulong, 0444);
41 
42 /*
43  * Control conversion to SRCU_SIZE_BIG:
44  *    0: Don't convert at all.
45  *    1: Convert at init_srcu_struct() time.
46  *    2: Convert when rcutorture invokes srcu_torture_stats_print().
47  *    3: Decide at boot time based on system shape (default).
48  * 0x1x: Convert when excessive contention encountered.
49  */
50 #define SRCU_SIZING_NONE	0
51 #define SRCU_SIZING_INIT	1
52 #define SRCU_SIZING_TORTURE	2
53 #define SRCU_SIZING_AUTO	3
54 #define SRCU_SIZING_CONTEND	0x10
55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
60 static int convert_to_big = SRCU_SIZING_AUTO;
61 module_param(convert_to_big, int, 0444);
62 
63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
64 static int big_cpu_lim __read_mostly = 128;
65 module_param(big_cpu_lim, int, 0444);
66 
67 /* Contention events per jiffy to initiate transition to big. */
68 static int small_contention_lim __read_mostly = 100;
69 module_param(small_contention_lim, int, 0444);
70 
71 /* Early-boot callback-management, so early that no lock is required! */
72 static LIST_HEAD(srcu_boot_list);
73 static bool __read_mostly srcu_init_done;
74 
75 static void srcu_invoke_callbacks(struct work_struct *work);
76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
77 static void process_srcu(struct work_struct *work);
78 static void srcu_delay_timer(struct timer_list *t);
79 
80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
81 #define spin_lock_rcu_node(p)							\
82 do {										\
83 	spin_lock(&ACCESS_PRIVATE(p, lock));					\
84 	smp_mb__after_unlock_lock();						\
85 } while (0)
86 
87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
88 
89 #define spin_lock_irq_rcu_node(p)						\
90 do {										\
91 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));				\
92 	smp_mb__after_unlock_lock();						\
93 } while (0)
94 
95 #define spin_unlock_irq_rcu_node(p)						\
96 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
97 
98 #define spin_lock_irqsave_rcu_node(p, flags)					\
99 do {										\
100 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);			\
101 	smp_mb__after_unlock_lock();						\
102 } while (0)
103 
104 #define spin_trylock_irqsave_rcu_node(p, flags)					\
105 ({										\
106 	bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
107 										\
108 	if (___locked)								\
109 		smp_mb__after_unlock_lock();					\
110 	___locked;								\
111 })
112 
113 #define spin_unlock_irqrestore_rcu_node(p, flags)				\
114 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)			\
115 
116 /*
117  * Initialize SRCU per-CPU data.  Note that statically allocated
118  * srcu_struct structures might already have srcu_read_lock() and
119  * srcu_read_unlock() running against them.  So if the is_static
120  * parameter is set, don't initialize ->srcu_ctrs[].srcu_locks and
121  * ->srcu_ctrs[].srcu_unlocks.
122  */
init_srcu_struct_data(struct srcu_struct * ssp)123 static void init_srcu_struct_data(struct srcu_struct *ssp)
124 {
125 	int cpu;
126 	struct srcu_data *sdp;
127 
128 	/*
129 	 * Initialize the per-CPU srcu_data array, which feeds into the
130 	 * leaves of the srcu_node tree.
131 	 */
132 	for_each_possible_cpu(cpu) {
133 		sdp = per_cpu_ptr(ssp->sda, cpu);
134 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
135 		rcu_segcblist_init(&sdp->srcu_cblist);
136 		sdp->srcu_cblist_invoking = false;
137 		sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq;
138 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq;
139 		sdp->srcu_barrier_head.next = &sdp->srcu_barrier_head;
140 		sdp->mynode = NULL;
141 		sdp->cpu = cpu;
142 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
143 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
144 		sdp->ssp = ssp;
145 	}
146 }
147 
148 /* Invalid seq state, used during snp node initialization */
149 #define SRCU_SNP_INIT_SEQ		0x2
150 
151 /*
152  * Check whether sequence number corresponding to snp node,
153  * is invalid.
154  */
srcu_invl_snp_seq(unsigned long s)155 static inline bool srcu_invl_snp_seq(unsigned long s)
156 {
157 	return s == SRCU_SNP_INIT_SEQ;
158 }
159 
160 /*
161  * Allocated and initialize SRCU combining tree.  Returns @true if
162  * allocation succeeded and @false otherwise.
163  */
init_srcu_struct_nodes(struct srcu_struct * ssp,gfp_t gfp_flags)164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
165 {
166 	int cpu;
167 	int i;
168 	int level = 0;
169 	int levelspread[RCU_NUM_LVLS];
170 	struct srcu_data *sdp;
171 	struct srcu_node *snp;
172 	struct srcu_node *snp_first;
173 
174 	/* Initialize geometry if it has not already been initialized. */
175 	rcu_init_geometry();
176 	ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags);
177 	if (!ssp->srcu_sup->node)
178 		return false;
179 
180 	/* Work out the overall tree geometry. */
181 	ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0];
182 	for (i = 1; i < rcu_num_lvls; i++)
183 		ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1];
184 	rcu_init_levelspread(levelspread, num_rcu_lvl);
185 
186 	/* Each pass through this loop initializes one srcu_node structure. */
187 	srcu_for_each_node_breadth_first(ssp, snp) {
188 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
189 		BUILD_BUG_ON(ARRAY_SIZE(snp->srcu_have_cbs) !=
190 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
191 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
192 			snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
193 			snp->srcu_data_have_cbs[i] = 0;
194 		}
195 		snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
196 		snp->grplo = -1;
197 		snp->grphi = -1;
198 		if (snp == &ssp->srcu_sup->node[0]) {
199 			/* Root node, special case. */
200 			snp->srcu_parent = NULL;
201 			continue;
202 		}
203 
204 		/* Non-root node. */
205 		if (snp == ssp->srcu_sup->level[level + 1])
206 			level++;
207 		snp->srcu_parent = ssp->srcu_sup->level[level - 1] +
208 				   (snp - ssp->srcu_sup->level[level]) /
209 				   levelspread[level - 1];
210 	}
211 
212 	/*
213 	 * Initialize the per-CPU srcu_data array, which feeds into the
214 	 * leaves of the srcu_node tree.
215 	 */
216 	level = rcu_num_lvls - 1;
217 	snp_first = ssp->srcu_sup->level[level];
218 	for_each_possible_cpu(cpu) {
219 		sdp = per_cpu_ptr(ssp->sda, cpu);
220 		sdp->mynode = &snp_first[cpu / levelspread[level]];
221 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
222 			if (snp->grplo < 0)
223 				snp->grplo = cpu;
224 			snp->grphi = cpu;
225 		}
226 		sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo);
227 	}
228 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
229 	return true;
230 }
231 
232 /*
233  * Initialize non-compile-time initialized fields, including the
234  * associated srcu_node and srcu_data structures.  The is_static parameter
235  * tells us that ->sda has already been wired up to srcu_data.
236  */
init_srcu_struct_fields(struct srcu_struct * ssp,bool is_static)237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
238 {
239 	if (!is_static)
240 		ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL);
241 	if (!ssp->srcu_sup)
242 		return -ENOMEM;
243 	if (!is_static)
244 		spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
245 	ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL;
246 	ssp->srcu_sup->node = NULL;
247 	mutex_init(&ssp->srcu_sup->srcu_cb_mutex);
248 	mutex_init(&ssp->srcu_sup->srcu_gp_mutex);
249 	ssp->srcu_sup->srcu_gp_seq = SRCU_GP_SEQ_INITIAL_VAL;
250 	ssp->srcu_sup->srcu_barrier_seq = 0;
251 	mutex_init(&ssp->srcu_sup->srcu_barrier_mutex);
252 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0);
253 	INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu);
254 	ssp->srcu_sup->sda_is_static = is_static;
255 	if (!is_static) {
256 		ssp->sda = alloc_percpu(struct srcu_data);
257 		ssp->srcu_ctrp = &ssp->sda->srcu_ctrs[0];
258 	}
259 	if (!ssp->sda)
260 		goto err_free_sup;
261 	init_srcu_struct_data(ssp);
262 	ssp->srcu_sup->srcu_gp_seq_needed_exp = SRCU_GP_SEQ_INITIAL_VAL;
263 	ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns();
264 	if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
265 		if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC))
266 			goto err_free_sda;
267 		WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG);
268 	}
269 	ssp->srcu_sup->srcu_ssp = ssp;
270 	smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed,
271 			SRCU_GP_SEQ_INITIAL_VAL); /* Init done. */
272 	return 0;
273 
274 err_free_sda:
275 	if (!is_static) {
276 		free_percpu(ssp->sda);
277 		ssp->sda = NULL;
278 	}
279 err_free_sup:
280 	if (!is_static) {
281 		kfree(ssp->srcu_sup);
282 		ssp->srcu_sup = NULL;
283 	}
284 	return -ENOMEM;
285 }
286 
287 #ifdef CONFIG_DEBUG_LOCK_ALLOC
288 
289 static int
__init_srcu_struct_common(struct srcu_struct * ssp,const char * name,struct lock_class_key * key)290 __init_srcu_struct_common(struct srcu_struct *ssp, const char *name, struct lock_class_key *key)
291 {
292 	/* Don't re-initialize a lock while it is held. */
293 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
294 	lockdep_init_map(&ssp->dep_map, name, key, 0);
295 	return init_srcu_struct_fields(ssp, false);
296 }
297 
__init_srcu_struct(struct srcu_struct * ssp,const char * name,struct lock_class_key * key)298 int __init_srcu_struct(struct srcu_struct *ssp, const char *name, struct lock_class_key *key)
299 {
300 	ssp->srcu_reader_flavor = 0;
301 	return __init_srcu_struct_common(ssp, name, key);
302 }
303 EXPORT_SYMBOL_GPL(__init_srcu_struct);
304 
__init_srcu_struct_fast(struct srcu_struct * ssp,const char * name,struct lock_class_key * key)305 int __init_srcu_struct_fast(struct srcu_struct *ssp, const char *name, struct lock_class_key *key)
306 {
307 	ssp->srcu_reader_flavor = SRCU_READ_FLAVOR_FAST;
308 	return __init_srcu_struct_common(ssp, name, key);
309 }
310 EXPORT_SYMBOL_GPL(__init_srcu_struct_fast);
311 
__init_srcu_struct_fast_updown(struct srcu_struct * ssp,const char * name,struct lock_class_key * key)312 int __init_srcu_struct_fast_updown(struct srcu_struct *ssp, const char *name,
313 				   struct lock_class_key *key)
314 {
315 	ssp->srcu_reader_flavor = SRCU_READ_FLAVOR_FAST_UPDOWN;
316 	return __init_srcu_struct_common(ssp, name, key);
317 }
318 EXPORT_SYMBOL_GPL(__init_srcu_struct_fast_updown);
319 
320 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
321 
322 /**
323  * init_srcu_struct - initialize a sleep-RCU structure
324  * @ssp: structure to initialize.
325  *
326  * Use this in place of DEFINE_SRCU() and DEFINE_STATIC_SRCU()
327  * for non-static srcu_struct structures that are to be passed to
328  * srcu_read_lock(), srcu_read_lock_nmisafe(), and friends.  It is necessary
329  * to invoke this on a given srcu_struct before passing that srcu_struct
330  * to any other function.  Each srcu_struct represents a separate domain
331  * of SRCU protection.
332  */
init_srcu_struct(struct srcu_struct * ssp)333 int init_srcu_struct(struct srcu_struct *ssp)
334 {
335 	ssp->srcu_reader_flavor = 0;
336 	return init_srcu_struct_fields(ssp, false);
337 }
338 EXPORT_SYMBOL_GPL(init_srcu_struct);
339 
340 /**
341  * init_srcu_struct_fast - initialize a fast-reader sleep-RCU structure
342  * @ssp: structure to initialize.
343  *
344  * Use this in place of DEFINE_SRCU_FAST() and DEFINE_STATIC_SRCU_FAST()
345  * for non-static srcu_struct structures that are to be passed to
346  * srcu_read_lock_fast() and friends.  It is necessary to invoke this on a
347  * given srcu_struct before passing that srcu_struct to any other function.
348  * Each srcu_struct represents a separate domain of SRCU protection.
349  */
init_srcu_struct_fast(struct srcu_struct * ssp)350 int init_srcu_struct_fast(struct srcu_struct *ssp)
351 {
352 	ssp->srcu_reader_flavor = SRCU_READ_FLAVOR_FAST;
353 	return init_srcu_struct_fields(ssp, false);
354 }
355 EXPORT_SYMBOL_GPL(init_srcu_struct_fast);
356 
357 /**
358  * init_srcu_struct_fast_updown - initialize a fast-reader up/down sleep-RCU structure
359  * @ssp: structure to initialize.
360  *
361  * Use this function in place of DEFINE_SRCU_FAST_UPDOWN() and
362  * DEFINE_STATIC_SRCU_FAST_UPDOWN() for non-static srcu_struct
363  * structures that are to be passed to srcu_read_lock_fast_updown(),
364  * srcu_down_read_fast(), and friends.  It is necessary to invoke this on a
365  * given srcu_struct before passing that srcu_struct to any other function.
366  * Each srcu_struct represents a separate domain of SRCU protection.
367  */
init_srcu_struct_fast_updown(struct srcu_struct * ssp)368 int init_srcu_struct_fast_updown(struct srcu_struct *ssp)
369 {
370 	ssp->srcu_reader_flavor = SRCU_READ_FLAVOR_FAST_UPDOWN;
371 	return init_srcu_struct_fields(ssp, false);
372 }
373 EXPORT_SYMBOL_GPL(init_srcu_struct_fast_updown);
374 
375 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
376 
377 /*
378  * Initiate a transition to SRCU_SIZE_BIG with lock held.
379  */
__srcu_transition_to_big(struct srcu_struct * ssp)380 static void __srcu_transition_to_big(struct srcu_struct *ssp)
381 {
382 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
383 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC);
384 }
385 
386 /*
387  * Initiate an idempotent transition to SRCU_SIZE_BIG.
388  */
srcu_transition_to_big(struct srcu_struct * ssp)389 static void srcu_transition_to_big(struct srcu_struct *ssp)
390 {
391 	unsigned long flags;
392 
393 	/* Double-checked locking on ->srcu_size-state. */
394 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL)
395 		return;
396 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
397 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) {
398 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
399 		return;
400 	}
401 	__srcu_transition_to_big(ssp);
402 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
403 }
404 
405 /*
406  * Check to see if the just-encountered contention event justifies
407  * a transition to SRCU_SIZE_BIG.
408  */
spin_lock_irqsave_check_contention(struct srcu_struct * ssp)409 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
410 {
411 	unsigned long j;
412 
413 	if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state)
414 		return;
415 	j = jiffies;
416 	if (ssp->srcu_sup->srcu_size_jiffies != j) {
417 		ssp->srcu_sup->srcu_size_jiffies = j;
418 		ssp->srcu_sup->srcu_n_lock_retries = 0;
419 	}
420 	if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim)
421 		return;
422 	__srcu_transition_to_big(ssp);
423 }
424 
425 /*
426  * Acquire the specified srcu_data structure's ->lock, but check for
427  * excessive contention, which results in initiation of a transition
428  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
429  * parameter permits this.
430  */
spin_lock_irqsave_sdp_contention(struct srcu_data * sdp,unsigned long * flags)431 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
432 {
433 	struct srcu_struct *ssp = sdp->ssp;
434 
435 	if (spin_trylock_irqsave_rcu_node(sdp, *flags))
436 		return;
437 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
438 	spin_lock_irqsave_check_contention(ssp);
439 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags);
440 	spin_lock_irqsave_rcu_node(sdp, *flags);
441 }
442 
443 /*
444  * Acquire the specified srcu_struct structure's ->lock, but check for
445  * excessive contention, which results in initiation of a transition
446  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
447  * parameter permits this.
448  */
spin_lock_irqsave_ssp_contention(struct srcu_struct * ssp,unsigned long * flags)449 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
450 {
451 	if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags))
452 		return;
453 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
454 	spin_lock_irqsave_check_contention(ssp);
455 }
456 
457 /*
458  * First-use initialization of statically allocated srcu_struct
459  * structure.  Wiring up the combining tree is more than can be
460  * done with compile-time initialization, so this check is added
461  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
462  * compile-time initialized, to resolve races involving multiple
463  * CPUs trying to garner first-use privileges.
464  */
check_init_srcu_struct(struct srcu_struct * ssp)465 static void check_init_srcu_struct(struct srcu_struct *ssp)
466 {
467 	unsigned long flags;
468 
469 	/* The smp_load_acquire() pairs with the smp_store_release(). */
470 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/
471 		return; /* Already initialized. */
472 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
473 	if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) {
474 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
475 		return;
476 	}
477 	init_srcu_struct_fields(ssp, true);
478 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
479 }
480 
481 /*
482  * Is the current or any upcoming grace period to be expedited?
483  */
srcu_gp_is_expedited(struct srcu_struct * ssp)484 static bool srcu_gp_is_expedited(struct srcu_struct *ssp)
485 {
486 	struct srcu_usage *sup = ssp->srcu_sup;
487 
488 	return ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp));
489 }
490 
491 /*
492  * Computes approximate total of the readers' ->srcu_ctrs[].srcu_locks
493  * values for the rank of per-CPU counters specified by idx, and returns
494  * true if the caller did the proper barrier (gp), and if the count of
495  * the locks matches that of the unlocks passed in.
496  */
srcu_readers_lock_idx(struct srcu_struct * ssp,int idx,bool gp,unsigned long unlocks)497 static bool srcu_readers_lock_idx(struct srcu_struct *ssp, int idx, bool gp, unsigned long unlocks)
498 {
499 	int cpu;
500 	unsigned long mask = 0;
501 	unsigned long sum = 0;
502 
503 	for_each_possible_cpu(cpu) {
504 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
505 
506 		sum += atomic_long_read(&sdp->srcu_ctrs[idx].srcu_locks);
507 		if (IS_ENABLED(CONFIG_PROVE_RCU))
508 			mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
509 	}
510 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
511 		  "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
512 	if (mask & SRCU_READ_FLAVOR_SLOWGP && !gp)
513 		return false;
514 	return sum == unlocks;
515 }
516 
517 /*
518  * Returns approximate total of the readers' ->srcu_ctrs[].srcu_unlocks
519  * values for the rank of per-CPU counters specified by idx.
520  */
srcu_readers_unlock_idx(struct srcu_struct * ssp,int idx,unsigned long * rdm)521 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx, unsigned long *rdm)
522 {
523 	int cpu;
524 	unsigned long mask = ssp->srcu_reader_flavor;
525 	unsigned long sum = 0;
526 
527 	for_each_possible_cpu(cpu) {
528 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
529 
530 		sum += atomic_long_read(&sdp->srcu_ctrs[idx].srcu_unlocks);
531 		mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
532 	}
533 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
534 		  "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
535 	*rdm = mask;
536 	return sum;
537 }
538 
539 /*
540  * Return true if the number of pre-existing readers is determined to
541  * be zero.
542  */
srcu_readers_active_idx_check(struct srcu_struct * ssp,int idx)543 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
544 {
545 	bool did_gp;
546 	unsigned long rdm;
547 	unsigned long unlocks;
548 
549 	unlocks = srcu_readers_unlock_idx(ssp, idx, &rdm);
550 	did_gp = !!(rdm & SRCU_READ_FLAVOR_SLOWGP);
551 
552 	/*
553 	 * Make sure that a lock is always counted if the corresponding
554 	 * unlock is counted. Needs to be a smp_mb() as the read side may
555 	 * contain a read from a variable that is written to before the
556 	 * synchronize_srcu() in the write side. In this case smp_mb()s
557 	 * A and B (or X and Y) act like the store buffering pattern.
558 	 *
559 	 * This smp_mb() also pairs with smp_mb() C (or, in the case of X,
560 	 * Z) to prevent accesses after the synchronize_srcu() from being
561 	 * executed before the grace period ends.
562 	 */
563 	if (!did_gp)
564 		smp_mb(); /* A */
565 	else if (srcu_gp_is_expedited(ssp))
566 		synchronize_rcu_expedited(); /* X */
567 	else
568 		synchronize_rcu(); /* X */
569 
570 	/*
571 	 * If the locks are the same as the unlocks, then there must have
572 	 * been no readers on this index at some point in this function.
573 	 * But there might be more readers, as a task might have read
574 	 * the current ->srcu_ctrp but not yet have incremented its CPU's
575 	 * ->srcu_ctrs[idx].srcu_locks counter.  In fact, it is possible
576 	 * that most of the tasks have been preempted between fetching
577 	 * ->srcu_ctrp and incrementing ->srcu_ctrs[idx].srcu_locks.  And
578 	 * there could be almost (ULONG_MAX / sizeof(struct task_struct))
579 	 * tasks in a system whose address space was fully populated
580 	 * with memory.  Call this quantity Nt.
581 	 *
582 	 * So suppose that the updater is preempted at this
583 	 * point in the code for a long time.  That now-preempted
584 	 * updater has already flipped ->srcu_ctrp (possibly during
585 	 * the preceding grace period), done an smp_mb() (again,
586 	 * possibly during the preceding grace period), and summed up
587 	 * the ->srcu_ctrs[idx].srcu_unlocks counters.  How many times
588 	 * can a given one of the aforementioned Nt tasks increment the
589 	 * old ->srcu_ctrp value's ->srcu_ctrs[idx].srcu_locks counter,
590 	 * in the absence of nesting?
591 	 *
592 	 * It can clearly do so once, given that it has already fetched
593 	 * the old value of ->srcu_ctrp and is just about to use that
594 	 * value to index its increment of ->srcu_ctrs[idx].srcu_locks.
595 	 * But as soon as it leaves that SRCU read-side critical section,
596 	 * it will increment ->srcu_ctrs[idx].srcu_unlocks, which must
597 	 * follow the updater's above read from that same value.  Thus,
598 	   as soon the reading task does an smp_mb() and a later fetch from
599 	 * ->srcu_ctrp, that task will be guaranteed to get the new index.
600 	 * Except that the increment of ->srcu_ctrs[idx].srcu_unlocks
601 	 * in __srcu_read_unlock() is after the smp_mb(), and the fetch
602 	 * from ->srcu_ctrp in __srcu_read_lock() is before the smp_mb().
603 	 * Thus, that task might not see the new value of ->srcu_ctrp until
604 	 * the -second- __srcu_read_lock(), which in turn means that this
605 	 * task might well increment ->srcu_ctrs[idx].srcu_locks for the
606 	 * old value of ->srcu_ctrp twice, not just once.
607 	 *
608 	 * However, it is important to note that a given smp_mb() takes
609 	 * effect not just for the task executing it, but also for any
610 	 * later task running on that same CPU.
611 	 *
612 	 * That is, there can be almost Nt + Nc further increments
613 	 * of ->srcu_ctrs[idx].srcu_locks for the old index, where Nc
614 	 * is the number of CPUs.  But this is OK because the size of
615 	 * the task_struct structure limits the value of Nt and current
616 	 * systems limit Nc to a few thousand.
617 	 *
618 	 * OK, but what about nesting?  This does impose a limit on
619 	 * nesting of half of the size of the task_struct structure
620 	 * (measured in bytes), which should be sufficient.  A late 2022
621 	 * TREE01 rcutorture run reported this size to be no less than
622 	 * 9408 bytes, allowing up to 4704 levels of nesting, which is
623 	 * comfortably beyond excessive.  Especially on 64-bit systems,
624 	 * which are unlikely to be configured with an address space fully
625 	 * populated with memory, at least not anytime soon.
626 	 */
627 	return srcu_readers_lock_idx(ssp, idx, did_gp, unlocks);
628 }
629 
630 /**
631  * srcu_readers_active - returns true if there are readers. and false
632  *                       otherwise
633  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
634  *
635  * Note that this is not an atomic primitive, and can therefore suffer
636  * severe errors when invoked on an active srcu_struct.  That said, it
637  * can be useful as an error check at cleanup time.
638  */
srcu_readers_active(struct srcu_struct * ssp)639 static bool srcu_readers_active(struct srcu_struct *ssp)
640 {
641 	int cpu;
642 	unsigned long sum = 0;
643 
644 	for_each_possible_cpu(cpu) {
645 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
646 
647 		sum += atomic_long_read(&sdp->srcu_ctrs[0].srcu_locks);
648 		sum += atomic_long_read(&sdp->srcu_ctrs[1].srcu_locks);
649 		sum -= atomic_long_read(&sdp->srcu_ctrs[0].srcu_unlocks);
650 		sum -= atomic_long_read(&sdp->srcu_ctrs[1].srcu_unlocks);
651 	}
652 	return sum;
653 }
654 
655 /*
656  * We use an adaptive strategy for synchronize_srcu() and especially for
657  * synchronize_srcu_expedited().  We spin for a fixed time period
658  * (defined below, boot time configurable) to allow SRCU readers to exit
659  * their read-side critical sections.  If there are still some readers
660  * after one jiffy, we repeatedly block for one jiffy time periods.
661  * The blocking time is increased as the grace-period age increases,
662  * with max blocking time capped at 10 jiffies.
663  */
664 #define SRCU_DEFAULT_RETRY_CHECK_DELAY		5
665 
666 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
667 module_param(srcu_retry_check_delay, ulong, 0444);
668 
669 #define SRCU_INTERVAL		1		// Base delay if no expedited GPs pending.
670 #define SRCU_MAX_INTERVAL	10		// Maximum incremental delay from slow readers.
671 
672 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO	3UL	// Lowmark on default per-GP-phase
673 							// no-delay instances.
674 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI	1000UL	// Highmark on default per-GP-phase
675 							// no-delay instances.
676 
677 #define SRCU_UL_CLAMP_LO(val, low)	((val) > (low) ? (val) : (low))
678 #define SRCU_UL_CLAMP_HI(val, high)	((val) < (high) ? (val) : (high))
679 #define SRCU_UL_CLAMP(val, low, high)	SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
680 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
681 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
682 // called from process_srcu().
683 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED	\
684 	(2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
685 
686 // Maximum per-GP-phase consecutive no-delay instances.
687 #define SRCU_DEFAULT_MAX_NODELAY_PHASE	\
688 	SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED,	\
689 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_LO,	\
690 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
691 
692 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
693 module_param(srcu_max_nodelay_phase, ulong, 0444);
694 
695 // Maximum consecutive no-delay instances.
696 #define SRCU_DEFAULT_MAX_NODELAY	(SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ?	\
697 					 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
698 
699 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
700 module_param(srcu_max_nodelay, ulong, 0444);
701 
702 /*
703  * Return grace-period delay, zero if there are expedited grace
704  * periods pending, SRCU_INTERVAL otherwise.
705  */
srcu_get_delay(struct srcu_struct * ssp)706 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
707 {
708 	unsigned long gpstart;
709 	unsigned long j;
710 	unsigned long jbase = SRCU_INTERVAL;
711 	struct srcu_usage *sup = ssp->srcu_sup;
712 
713 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
714 	if (srcu_gp_is_expedited(ssp))
715 		jbase = 0;
716 	if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) {
717 		j = jiffies - 1;
718 		gpstart = READ_ONCE(sup->srcu_gp_start);
719 		if (time_after(j, gpstart))
720 			jbase += j - gpstart;
721 		if (!jbase) {
722 			ASSERT_EXCLUSIVE_WRITER(sup->srcu_n_exp_nodelay);
723 			WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1);
724 			if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
725 				jbase = 1;
726 		}
727 	}
728 	return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
729 }
730 
731 /**
732  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
733  * @ssp: structure to clean up.
734  *
735  * Must invoke this after you are finished using a given srcu_struct that
736  * was initialized via init_srcu_struct(), else you leak memory.
737  */
cleanup_srcu_struct(struct srcu_struct * ssp)738 void cleanup_srcu_struct(struct srcu_struct *ssp)
739 {
740 	int cpu;
741 	unsigned long delay;
742 	struct srcu_usage *sup = ssp->srcu_sup;
743 
744 	spin_lock_irq_rcu_node(ssp->srcu_sup);
745 	delay = srcu_get_delay(ssp);
746 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
747 	if (WARN_ON(!delay))
748 		return; /* Just leak it! */
749 	if (WARN_ON(srcu_readers_active(ssp)))
750 		return; /* Just leak it! */
751 	flush_delayed_work(&sup->work);
752 	for_each_possible_cpu(cpu) {
753 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
754 
755 		timer_delete_sync(&sdp->delay_work);
756 		flush_work(&sdp->work);
757 		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
758 			return; /* Forgot srcu_barrier(), so just leak it! */
759 	}
760 	if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
761 	    WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) ||
762 	    WARN_ON(srcu_readers_active(ssp))) {
763 		pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
764 			__func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)),
765 			rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed);
766 		return; // Caller forgot to stop doing call_srcu()?
767 			// Or caller invoked start_poll_synchronize_srcu()
768 			// and then cleanup_srcu_struct() before that grace
769 			// period ended?
770 	}
771 	kfree(sup->node);
772 	sup->node = NULL;
773 	sup->srcu_size_state = SRCU_SIZE_SMALL;
774 	if (!sup->sda_is_static) {
775 		free_percpu(ssp->sda);
776 		ssp->sda = NULL;
777 		kfree(sup);
778 		ssp->srcu_sup = NULL;
779 	}
780 }
781 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
782 
783 /*
784  * Check for consistent reader flavor.
785  */
__srcu_check_read_flavor(struct srcu_struct * ssp,int read_flavor)786 void __srcu_check_read_flavor(struct srcu_struct *ssp, int read_flavor)
787 {
788 	int old_read_flavor;
789 	struct srcu_data *sdp;
790 
791 	/* NMI-unsafe use in NMI is a bad sign, as is multi-bit read_flavor values. */
792 	WARN_ON_ONCE((read_flavor != SRCU_READ_FLAVOR_NMI) && in_nmi());
793 	WARN_ON_ONCE(read_flavor & (read_flavor - 1));
794 
795 	sdp = raw_cpu_ptr(ssp->sda);
796 	old_read_flavor = READ_ONCE(sdp->srcu_reader_flavor);
797 	WARN_ON_ONCE(ssp->srcu_reader_flavor && read_flavor != ssp->srcu_reader_flavor);
798 	WARN_ON_ONCE(old_read_flavor && ssp->srcu_reader_flavor &&
799 		     old_read_flavor != ssp->srcu_reader_flavor);
800 	WARN_ON_ONCE(read_flavor == SRCU_READ_FLAVOR_FAST && !ssp->srcu_reader_flavor);
801 	if (!old_read_flavor) {
802 		old_read_flavor = cmpxchg(&sdp->srcu_reader_flavor, 0, read_flavor);
803 		if (!old_read_flavor)
804 			return;
805 	}
806 	WARN_ONCE(old_read_flavor != read_flavor, "CPU %d old state %d new state %d\n", sdp->cpu, old_read_flavor, read_flavor);
807 }
808 EXPORT_SYMBOL_GPL(__srcu_check_read_flavor);
809 
810 /*
811  * Counts the new reader in the appropriate per-CPU element of the
812  * srcu_struct.
813  * Returns a guaranteed non-negative index that must be passed to the
814  * matching __srcu_read_unlock().
815  */
__srcu_read_lock(struct srcu_struct * ssp)816 int __srcu_read_lock(struct srcu_struct *ssp)
817 {
818 	struct srcu_ctr __percpu *scp = READ_ONCE(ssp->srcu_ctrp);
819 
820 	this_cpu_inc(scp->srcu_locks.counter);
821 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
822 	return __srcu_ptr_to_ctr(ssp, scp);
823 }
824 EXPORT_SYMBOL_GPL(__srcu_read_lock);
825 
826 /*
827  * Removes the count for the old reader from the appropriate per-CPU
828  * element of the srcu_struct.  Note that this may well be a different
829  * CPU than that which was incremented by the corresponding srcu_read_lock().
830  */
__srcu_read_unlock(struct srcu_struct * ssp,int idx)831 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
832 {
833 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
834 	this_cpu_inc(__srcu_ctr_to_ptr(ssp, idx)->srcu_unlocks.counter);
835 }
836 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
837 
838 #ifdef CONFIG_NEED_SRCU_NMI_SAFE
839 
840 /*
841  * Counts the new reader in the appropriate per-CPU element of the
842  * srcu_struct, but in an NMI-safe manner using RMW atomics.
843  * Returns an index that must be passed to the matching srcu_read_unlock().
844  */
__srcu_read_lock_nmisafe(struct srcu_struct * ssp)845 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
846 {
847 	struct srcu_ctr __percpu *scpp = READ_ONCE(ssp->srcu_ctrp);
848 	struct srcu_ctr *scp = raw_cpu_ptr(scpp);
849 
850 	atomic_long_inc(&scp->srcu_locks);
851 	smp_mb__after_atomic(); /* B */  /* Avoid leaking the critical section. */
852 	return __srcu_ptr_to_ctr(ssp, scpp);
853 }
854 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
855 
856 /*
857  * Removes the count for the old reader from the appropriate per-CPU
858  * element of the srcu_struct.  Note that this may well be a different
859  * CPU than that which was incremented by the corresponding srcu_read_lock().
860  */
__srcu_read_unlock_nmisafe(struct srcu_struct * ssp,int idx)861 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
862 {
863 	smp_mb__before_atomic(); /* C */  /* Avoid leaking the critical section. */
864 	atomic_long_inc(&raw_cpu_ptr(__srcu_ctr_to_ptr(ssp, idx))->srcu_unlocks);
865 }
866 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
867 
868 #endif // CONFIG_NEED_SRCU_NMI_SAFE
869 
870 /*
871  * Start an SRCU grace period.
872  */
srcu_gp_start(struct srcu_struct * ssp)873 static void srcu_gp_start(struct srcu_struct *ssp)
874 {
875 	int state;
876 
877 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
878 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed));
879 	WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies);
880 	WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0);
881 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
882 	rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq);
883 	state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq);
884 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
885 }
886 
887 
srcu_delay_timer(struct timer_list * t)888 static void srcu_delay_timer(struct timer_list *t)
889 {
890 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
891 
892 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
893 }
894 
srcu_queue_delayed_work_on(struct srcu_data * sdp,unsigned long delay)895 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
896 				       unsigned long delay)
897 {
898 	if (!delay) {
899 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
900 		return;
901 	}
902 
903 	timer_reduce(&sdp->delay_work, jiffies + delay);
904 }
905 
906 /*
907  * Schedule callback invocation for the specified srcu_data structure,
908  * if possible, on the corresponding CPU.
909  */
srcu_schedule_cbs_sdp(struct srcu_data * sdp,unsigned long delay)910 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
911 {
912 	srcu_queue_delayed_work_on(sdp, delay);
913 }
914 
915 /*
916  * Schedule callback invocation for all srcu_data structures associated
917  * with the specified srcu_node structure that have callbacks for the
918  * just-completed grace period, the one corresponding to idx.  If possible,
919  * schedule this invocation on the corresponding CPUs.
920  */
srcu_schedule_cbs_snp(struct srcu_struct * ssp,struct srcu_node * snp,unsigned long mask,unsigned long delay)921 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
922 				  unsigned long mask, unsigned long delay)
923 {
924 	int cpu;
925 
926 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
927 		if (!(mask & (1UL << (cpu - snp->grplo))))
928 			continue;
929 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
930 	}
931 }
932 
933 /*
934  * Note the end of an SRCU grace period.  Initiates callback invocation
935  * and starts a new grace period if needed.
936  *
937  * The ->srcu_cb_mutex acquisition does not protect any data, but
938  * instead prevents more than one grace period from starting while we
939  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
940  * array to have a finite number of elements.
941  */
srcu_gp_end(struct srcu_struct * ssp)942 static void srcu_gp_end(struct srcu_struct *ssp)
943 {
944 	unsigned long cbdelay = 1;
945 	bool cbs;
946 	bool last_lvl;
947 	int cpu;
948 	unsigned long gpseq;
949 	int idx;
950 	unsigned long mask;
951 	struct srcu_data *sdp;
952 	unsigned long sgsne;
953 	struct srcu_node *snp;
954 	int ss_state;
955 	struct srcu_usage *sup = ssp->srcu_sup;
956 
957 	/* Prevent more than one additional grace period. */
958 	mutex_lock(&sup->srcu_cb_mutex);
959 
960 	/* End the current grace period. */
961 	spin_lock_irq_rcu_node(sup);
962 	idx = rcu_seq_state(sup->srcu_gp_seq);
963 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
964 	if (srcu_gp_is_expedited(ssp))
965 		cbdelay = 0;
966 
967 	WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns());
968 	rcu_seq_end(&sup->srcu_gp_seq);
969 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
970 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq))
971 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq);
972 	spin_unlock_irq_rcu_node(sup);
973 	mutex_unlock(&sup->srcu_gp_mutex);
974 	/* A new grace period can start at this point.  But only one. */
975 
976 	/* Initiate callback invocation as needed. */
977 	ss_state = smp_load_acquire(&sup->srcu_size_state);
978 	if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
979 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()),
980 					cbdelay);
981 	} else {
982 		idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
983 		srcu_for_each_node_breadth_first(ssp, snp) {
984 			spin_lock_irq_rcu_node(snp);
985 			cbs = false;
986 			last_lvl = snp >= sup->level[rcu_num_lvls - 1];
987 			if (last_lvl)
988 				cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
989 			snp->srcu_have_cbs[idx] = gpseq;
990 			rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
991 			sgsne = snp->srcu_gp_seq_needed_exp;
992 			if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
993 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
994 			if (ss_state < SRCU_SIZE_BIG)
995 				mask = ~0;
996 			else
997 				mask = snp->srcu_data_have_cbs[idx];
998 			snp->srcu_data_have_cbs[idx] = 0;
999 			spin_unlock_irq_rcu_node(snp);
1000 			if (cbs)
1001 				srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
1002 		}
1003 	}
1004 
1005 	/* Occasionally prevent srcu_data counter wrap. */
1006 	if (!(gpseq & counter_wrap_check))
1007 		for_each_possible_cpu(cpu) {
1008 			sdp = per_cpu_ptr(ssp->sda, cpu);
1009 			spin_lock_irq_rcu_node(sdp);
1010 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
1011 				sdp->srcu_gp_seq_needed = gpseq;
1012 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
1013 				sdp->srcu_gp_seq_needed_exp = gpseq;
1014 			spin_unlock_irq_rcu_node(sdp);
1015 		}
1016 
1017 	/* Callback initiation done, allow grace periods after next. */
1018 	mutex_unlock(&sup->srcu_cb_mutex);
1019 
1020 	/* Start a new grace period if needed. */
1021 	spin_lock_irq_rcu_node(sup);
1022 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
1023 	if (!rcu_seq_state(gpseq) &&
1024 	    ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) {
1025 		srcu_gp_start(ssp);
1026 		spin_unlock_irq_rcu_node(sup);
1027 		srcu_reschedule(ssp, 0);
1028 	} else {
1029 		spin_unlock_irq_rcu_node(sup);
1030 	}
1031 
1032 	/* Transition to big if needed. */
1033 	if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
1034 		if (ss_state == SRCU_SIZE_ALLOC)
1035 			init_srcu_struct_nodes(ssp, GFP_KERNEL);
1036 		else
1037 			smp_store_release(&sup->srcu_size_state, ss_state + 1);
1038 	}
1039 }
1040 
1041 /*
1042  * Funnel-locking scheme to scalably mediate many concurrent expedited
1043  * grace-period requests.  This function is invoked for the first known
1044  * expedited request for a grace period that has already been requested,
1045  * but without expediting.  To start a completely new grace period,
1046  * whether expedited or not, use srcu_funnel_gp_start() instead.
1047  */
srcu_funnel_exp_start(struct srcu_struct * ssp,struct srcu_node * snp,unsigned long s)1048 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
1049 				  unsigned long s)
1050 {
1051 	unsigned long flags;
1052 	unsigned long sgsne;
1053 
1054 	if (snp)
1055 		for (; snp != NULL; snp = snp->srcu_parent) {
1056 			sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
1057 			if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) ||
1058 			    (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
1059 				return;
1060 			spin_lock_irqsave_rcu_node(snp, flags);
1061 			sgsne = snp->srcu_gp_seq_needed_exp;
1062 			if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
1063 				spin_unlock_irqrestore_rcu_node(snp, flags);
1064 				return;
1065 			}
1066 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1067 			spin_unlock_irqrestore_rcu_node(snp, flags);
1068 		}
1069 	spin_lock_irqsave_ssp_contention(ssp, &flags);
1070 	if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s))
1071 		WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s);
1072 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
1073 }
1074 
1075 /*
1076  * Funnel-locking scheme to scalably mediate many concurrent grace-period
1077  * requests.  The winner has to do the work of actually starting grace
1078  * period s.  Losers must either ensure that their desired grace-period
1079  * number is recorded on at least their leaf srcu_node structure, or they
1080  * must take steps to invoke their own callbacks.
1081  *
1082  * Note that this function also does the work of srcu_funnel_exp_start(),
1083  * in some cases by directly invoking it.
1084  *
1085  * The srcu read lock should be hold around this function. And s is a seq snap
1086  * after holding that lock.
1087  */
srcu_funnel_gp_start(struct srcu_struct * ssp,struct srcu_data * sdp,unsigned long s,bool do_norm)1088 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
1089 				 unsigned long s, bool do_norm)
1090 {
1091 	unsigned long flags;
1092 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
1093 	unsigned long sgsne;
1094 	struct srcu_node *snp;
1095 	struct srcu_node *snp_leaf;
1096 	unsigned long snp_seq;
1097 	struct srcu_usage *sup = ssp->srcu_sup;
1098 
1099 	/* Ensure that snp node tree is fully initialized before traversing it */
1100 	if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1101 		snp_leaf = NULL;
1102 	else
1103 		snp_leaf = sdp->mynode;
1104 
1105 	if (snp_leaf)
1106 		/* Each pass through the loop does one level of the srcu_node tree. */
1107 		for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
1108 			if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf)
1109 				return; /* GP already done and CBs recorded. */
1110 			spin_lock_irqsave_rcu_node(snp, flags);
1111 			snp_seq = snp->srcu_have_cbs[idx];
1112 			if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
1113 				if (snp == snp_leaf && snp_seq == s)
1114 					snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1115 				spin_unlock_irqrestore_rcu_node(snp, flags);
1116 				if (snp == snp_leaf && snp_seq != s) {
1117 					srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
1118 					return;
1119 				}
1120 				if (!do_norm)
1121 					srcu_funnel_exp_start(ssp, snp, s);
1122 				return;
1123 			}
1124 			snp->srcu_have_cbs[idx] = s;
1125 			if (snp == snp_leaf)
1126 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1127 			sgsne = snp->srcu_gp_seq_needed_exp;
1128 			if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
1129 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1130 			spin_unlock_irqrestore_rcu_node(snp, flags);
1131 		}
1132 
1133 	/* Top of tree, must ensure the grace period will be started. */
1134 	spin_lock_irqsave_ssp_contention(ssp, &flags);
1135 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) {
1136 		/*
1137 		 * Record need for grace period s.  Pair with load
1138 		 * acquire setting up for initialization.
1139 		 */
1140 		smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/
1141 	}
1142 	if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s))
1143 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s);
1144 
1145 	/* If grace period not already in progress, start it. */
1146 	if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) &&
1147 	    rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) {
1148 		srcu_gp_start(ssp);
1149 
1150 		// And how can that list_add() in the "else" clause
1151 		// possibly be safe for concurrent execution?  Well,
1152 		// it isn't.  And it does not have to be.  After all, it
1153 		// can only be executed during early boot when there is only
1154 		// the one boot CPU running with interrupts still disabled.
1155 		if (likely(srcu_init_done))
1156 			queue_delayed_work(rcu_gp_wq, &sup->work,
1157 					   !!srcu_get_delay(ssp));
1158 		else if (list_empty(&sup->work.work.entry))
1159 			list_add(&sup->work.work.entry, &srcu_boot_list);
1160 	}
1161 	spin_unlock_irqrestore_rcu_node(sup, flags);
1162 }
1163 
1164 /*
1165  * Wait until all readers counted by array index idx complete, but
1166  * loop an additional time if there is an expedited grace period pending.
1167  * The caller must ensure that ->srcu_ctrp is not changed while checking.
1168  */
try_check_zero(struct srcu_struct * ssp,int idx,int trycount)1169 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
1170 {
1171 	unsigned long curdelay;
1172 
1173 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1174 	curdelay = !srcu_get_delay(ssp);
1175 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1176 
1177 	for (;;) {
1178 		if (srcu_readers_active_idx_check(ssp, idx))
1179 			return true;
1180 		if ((--trycount + curdelay) <= 0)
1181 			return false;
1182 		udelay(srcu_retry_check_delay);
1183 	}
1184 }
1185 
1186 /*
1187  * Increment the ->srcu_ctrp counter so that future SRCU readers will
1188  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
1189  * us to wait for pre-existing readers in a starvation-free manner.
1190  */
srcu_flip(struct srcu_struct * ssp)1191 static void srcu_flip(struct srcu_struct *ssp)
1192 {
1193 	/*
1194 	 * Because the flip of ->srcu_ctrp is executed only if the
1195 	 * preceding call to srcu_readers_active_idx_check() found that
1196 	 * the ->srcu_ctrs[].srcu_unlocks and ->srcu_ctrs[].srcu_locks sums
1197 	 * matched and because that summing uses atomic_long_read(),
1198 	 * there is ordering due to a control dependency between that
1199 	 * summing and the WRITE_ONCE() in this call to srcu_flip().
1200 	 * This ordering ensures that if this updater saw a given reader's
1201 	 * increment from __srcu_read_lock(), that reader was using a value
1202 	 * of ->srcu_ctrp from before the previous call to srcu_flip(),
1203 	 * which should be quite rare.  This ordering thus helps forward
1204 	 * progress because the grace period could otherwise be delayed
1205 	 * by additional calls to __srcu_read_lock() using that old (soon
1206 	 * to be new) value of ->srcu_ctrp.
1207 	 *
1208 	 * This sum-equality check and ordering also ensures that if
1209 	 * a given call to __srcu_read_lock() uses the new value of
1210 	 * ->srcu_ctrp, this updater's earlier scans cannot have seen
1211 	 * that reader's increments, which is all to the good, because
1212 	 * this grace period need not wait on that reader.  After all,
1213 	 * if those earlier scans had seen that reader, there would have
1214 	 * been a sum mismatch and this code would not be reached.
1215 	 *
1216 	 * This means that the following smp_mb() is redundant, but
1217 	 * it stays until either (1) Compilers learn about this sort of
1218 	 * control dependency or (2) Some production workload running on
1219 	 * a production system is unduly delayed by this slowpath smp_mb().
1220 	 * Except for _lite() readers, where it is inoperative, which
1221 	 * means that it is a good thing that it is redundant.
1222 	 */
1223 	smp_mb(); /* E */  /* Pairs with B and C. */
1224 
1225 	WRITE_ONCE(ssp->srcu_ctrp,
1226 		   &ssp->sda->srcu_ctrs[!(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0])]);
1227 
1228 	/*
1229 	 * Ensure that if the updater misses an __srcu_read_unlock()
1230 	 * increment, that task's __srcu_read_lock() following its next
1231 	 * __srcu_read_lock() or __srcu_read_unlock() will see the above
1232 	 * counter update.  Note that both this memory barrier and the
1233 	 * one in srcu_readers_active_idx_check() provide the guarantee
1234 	 * for __srcu_read_lock().
1235 	 *
1236 	 * Note that this is a performance optimization, in which we spend
1237 	 * an otherwise unnecessary smp_mb() in order to reduce the number
1238 	 * of full per-CPU-variable scans in srcu_readers_lock_idx() and
1239 	 * srcu_readers_unlock_idx().  But this performance optimization
1240 	 * is not so optimal for SRCU-fast, where we would be spending
1241 	 * not smp_mb(), but rather synchronize_rcu().  At the same time,
1242 	 * the overhead of the smp_mb() is in the noise, so there is no
1243 	 * point in omitting it in the SRCU-fast case.  So the same code
1244 	 * is executed either way.
1245 	 */
1246 	smp_mb(); /* D */  /* Pairs with C. */
1247 }
1248 
1249 /*
1250  * If SRCU is likely idle, in other words, the next SRCU grace period
1251  * should be expedited, return true, otherwise return false.  Except that
1252  * in the presence of _lite() readers, always return false.
1253  *
1254  * Note that it is OK for several current from-idle requests for a new
1255  * grace period from idle to specify expediting because they will all end
1256  * up requesting the same grace period anyhow.  So no loss.
1257  *
1258  * Note also that if any CPU (including the current one) is still invoking
1259  * callbacks, this function will nevertheless say "idle".  This is not
1260  * ideal, but the overhead of checking all CPUs' callback lists is even
1261  * less ideal, especially on large systems.  Furthermore, the wakeup
1262  * can happen before the callback is fully removed, so we have no choice
1263  * but to accept this type of error.
1264  *
1265  * This function is also subject to counter-wrap errors, but let's face
1266  * it, if this function was preempted for enough time for the counters
1267  * to wrap, it really doesn't matter whether or not we expedite the grace
1268  * period.  The extra overhead of a needlessly expedited grace period is
1269  * negligible when amortized over that time period, and the extra latency
1270  * of a needlessly non-expedited grace period is similarly negligible.
1271  */
srcu_should_expedite(struct srcu_struct * ssp)1272 static bool srcu_should_expedite(struct srcu_struct *ssp)
1273 {
1274 	unsigned long curseq;
1275 	unsigned long flags;
1276 	struct srcu_data *sdp;
1277 	unsigned long t;
1278 	unsigned long tlast;
1279 
1280 	check_init_srcu_struct(ssp);
1281 	/* If _lite() readers, don't do unsolicited expediting. */
1282 	if (this_cpu_read(ssp->sda->srcu_reader_flavor) & SRCU_READ_FLAVOR_SLOWGP)
1283 		return false;
1284 	/* If the local srcu_data structure has callbacks, not idle.  */
1285 	sdp = raw_cpu_ptr(ssp->sda);
1286 	spin_lock_irqsave_rcu_node(sdp, flags);
1287 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
1288 		spin_unlock_irqrestore_rcu_node(sdp, flags);
1289 		return false; /* Callbacks already present, so not idle. */
1290 	}
1291 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1292 
1293 	/*
1294 	 * No local callbacks, so probabilistically probe global state.
1295 	 * Exact information would require acquiring locks, which would
1296 	 * kill scalability, hence the probabilistic nature of the probe.
1297 	 */
1298 
1299 	/* First, see if enough time has passed since the last GP. */
1300 	t = ktime_get_mono_fast_ns();
1301 	tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end);
1302 	if (exp_holdoff == 0 ||
1303 	    time_in_range_open(t, tlast, tlast + exp_holdoff))
1304 		return false; /* Too soon after last GP. */
1305 
1306 	/* Next, check for probable idleness. */
1307 	curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1308 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
1309 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed)))
1310 		return false; /* Grace period in progress, so not idle. */
1311 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
1312 	if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq))
1313 		return false; /* GP # changed, so not idle. */
1314 	return true; /* With reasonable probability, idle! */
1315 }
1316 
1317 /*
1318  * SRCU callback function to leak a callback.
1319  */
srcu_leak_callback(struct rcu_head * rhp)1320 static void srcu_leak_callback(struct rcu_head *rhp)
1321 {
1322 }
1323 
1324 /*
1325  * Start an SRCU grace period, and also queue the callback if non-NULL.
1326  */
srcu_gp_start_if_needed(struct srcu_struct * ssp,struct rcu_head * rhp,bool do_norm)1327 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
1328 					     struct rcu_head *rhp, bool do_norm)
1329 {
1330 	unsigned long flags;
1331 	int idx;
1332 	bool needexp = false;
1333 	bool needgp = false;
1334 	unsigned long s;
1335 	struct srcu_data *sdp;
1336 	struct srcu_node *sdp_mynode;
1337 	int ss_state;
1338 
1339 	check_init_srcu_struct(ssp);
1340 	/*
1341 	 * While starting a new grace period, make sure we are in an
1342 	 * SRCU read-side critical section so that the grace-period
1343 	 * sequence number cannot wrap around in the meantime.
1344 	 */
1345 	idx = __srcu_read_lock_nmisafe(ssp);
1346 	ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state);
1347 	if (ss_state < SRCU_SIZE_WAIT_CALL)
1348 		sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
1349 	else
1350 		sdp = raw_cpu_ptr(ssp->sda);
1351 	spin_lock_irqsave_sdp_contention(sdp, &flags);
1352 	if (rhp)
1353 		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
1354 	/*
1355 	 * It's crucial to capture the snapshot 's' for acceleration before
1356 	 * reading the current gp_seq that is used for advancing. This is
1357 	 * essential because if the acceleration snapshot is taken after a
1358 	 * failed advancement attempt, there's a risk that a grace period may
1359 	 * conclude and a new one may start in the interim. If the snapshot is
1360 	 * captured after this sequence of events, the acceleration snapshot 's'
1361 	 * could be excessively advanced, leading to acceleration failure.
1362 	 * In such a scenario, an 'acceleration leak' can occur, where new
1363 	 * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment.
1364 	 * Also note that encountering advancing failures is a normal
1365 	 * occurrence when the grace period for RCU_WAIT_TAIL is in progress.
1366 	 *
1367 	 * To see this, consider the following events which occur if
1368 	 * rcu_seq_snap() were to be called after advance:
1369 	 *
1370 	 *  1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the
1371 	 *     RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8).
1372 	 *
1373 	 *  2) The grace period for RCU_WAIT_TAIL is seen as started but not
1374 	 *     completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1.
1375 	 *
1376 	 *  3) This value is passed to rcu_segcblist_advance() which can't move
1377 	 *     any segment forward and fails.
1378 	 *
1379 	 *  4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
1380 	 *     But then the call to rcu_seq_snap() observes the grace period for the
1381 	 *     RCU_WAIT_TAIL segment as completed and the subsequent one for the
1382 	 *     RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1)
1383 	 *     so it returns a snapshot of the next grace period, which is X + 12.
1384 	 *
1385 	 *  5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the
1386 	 *     freshly enqueued callback in RCU_NEXT_TAIL can't move to
1387 	 *     RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
1388 	 *     period (gp_num = X + 8). So acceleration fails.
1389 	 */
1390 	s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1391 	if (rhp) {
1392 		rcu_segcblist_advance(&sdp->srcu_cblist,
1393 				      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1394 		/*
1395 		 * Acceleration can never fail because the base current gp_seq
1396 		 * used for acceleration is <= the value of gp_seq used for
1397 		 * advancing. This means that RCU_NEXT_TAIL segment will
1398 		 * always be able to be emptied by the acceleration into the
1399 		 * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments.
1400 		 */
1401 		WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s));
1402 	}
1403 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
1404 		sdp->srcu_gp_seq_needed = s;
1405 		needgp = true;
1406 	}
1407 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
1408 		sdp->srcu_gp_seq_needed_exp = s;
1409 		needexp = true;
1410 	}
1411 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1412 
1413 	/* Ensure that snp node tree is fully initialized before traversing it */
1414 	if (ss_state < SRCU_SIZE_WAIT_BARRIER)
1415 		sdp_mynode = NULL;
1416 	else
1417 		sdp_mynode = sdp->mynode;
1418 
1419 	if (needgp)
1420 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1421 	else if (needexp)
1422 		srcu_funnel_exp_start(ssp, sdp_mynode, s);
1423 	__srcu_read_unlock_nmisafe(ssp, idx);
1424 	return s;
1425 }
1426 
1427 /*
1428  * Enqueue an SRCU callback on the srcu_data structure associated with
1429  * the current CPU and the specified srcu_struct structure, initiating
1430  * grace-period processing if it is not already running.
1431  *
1432  * Note that all CPUs must agree that the grace period extended beyond
1433  * all pre-existing SRCU read-side critical section.  On systems with
1434  * more than one CPU, this means that when "func()" is invoked, each CPU
1435  * is guaranteed to have executed a full memory barrier since the end of
1436  * its last corresponding SRCU read-side critical section whose beginning
1437  * preceded the call to call_srcu().  It also means that each CPU executing
1438  * an SRCU read-side critical section that continues beyond the start of
1439  * "func()" must have executed a memory barrier after the call_srcu()
1440  * but before the beginning of that SRCU read-side critical section.
1441  * Note that these guarantees include CPUs that are offline, idle, or
1442  * executing in user mode, as well as CPUs that are executing in the kernel.
1443  *
1444  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
1445  * resulting SRCU callback function "func()", then both CPU A and CPU
1446  * B are guaranteed to execute a full memory barrier during the time
1447  * interval between the call to call_srcu() and the invocation of "func()".
1448  * This guarantee applies even if CPU A and CPU B are the same CPU (but
1449  * again only if the system has more than one CPU).
1450  *
1451  * Of course, these guarantees apply only for invocations of call_srcu(),
1452  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
1453  * srcu_struct structure.
1454  */
__call_srcu(struct srcu_struct * ssp,struct rcu_head * rhp,rcu_callback_t func,bool do_norm)1455 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1456 			rcu_callback_t func, bool do_norm)
1457 {
1458 	if (debug_rcu_head_queue(rhp)) {
1459 		/* Probable double call_srcu(), so leak the callback. */
1460 		WRITE_ONCE(rhp->func, srcu_leak_callback);
1461 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
1462 		return;
1463 	}
1464 	rhp->func = func;
1465 	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
1466 }
1467 
1468 /**
1469  * call_srcu() - Queue a callback for invocation after an SRCU grace period
1470  * @ssp: srcu_struct in queue the callback
1471  * @rhp: structure to be used for queueing the SRCU callback.
1472  * @func: function to be invoked after the SRCU grace period
1473  *
1474  * The callback function will be invoked some time after a full SRCU
1475  * grace period elapses, in other words after all pre-existing SRCU
1476  * read-side critical sections have completed.  However, the callback
1477  * function might well execute concurrently with other SRCU read-side
1478  * critical sections that started after call_srcu() was invoked.  SRCU
1479  * read-side critical sections are delimited by srcu_read_lock() and
1480  * srcu_read_unlock(), and may be nested.
1481  *
1482  * The callback will be invoked from process context, but with bh
1483  * disabled.  The callback function must therefore be fast and must
1484  * not block.
1485  *
1486  * See the description of call_rcu() for more detailed information on
1487  * memory ordering guarantees.
1488  */
call_srcu(struct srcu_struct * ssp,struct rcu_head * rhp,rcu_callback_t func)1489 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1490 	       rcu_callback_t func)
1491 {
1492 	__call_srcu(ssp, rhp, func, true);
1493 }
1494 EXPORT_SYMBOL_GPL(call_srcu);
1495 
1496 /*
1497  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
1498  */
__synchronize_srcu(struct srcu_struct * ssp,bool do_norm)1499 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
1500 {
1501 	struct rcu_synchronize rcu;
1502 
1503 	srcu_lock_sync(&ssp->dep_map);
1504 
1505 	RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
1506 			 lock_is_held(&rcu_bh_lock_map) ||
1507 			 lock_is_held(&rcu_lock_map) ||
1508 			 lock_is_held(&rcu_sched_lock_map),
1509 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
1510 
1511 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
1512 		return;
1513 	might_sleep();
1514 	check_init_srcu_struct(ssp);
1515 	init_completion(&rcu.completion);
1516 	init_rcu_head_on_stack(&rcu.head);
1517 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
1518 	wait_for_completion(&rcu.completion);
1519 	destroy_rcu_head_on_stack(&rcu.head);
1520 
1521 	/*
1522 	 * Make sure that later code is ordered after the SRCU grace
1523 	 * period.  This pairs with the spin_lock_irq_rcu_node()
1524 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
1525 	 * because the current CPU might have been totally uninvolved with
1526 	 * (and thus unordered against) that grace period.
1527 	 */
1528 	smp_mb();
1529 }
1530 
1531 /**
1532  * synchronize_srcu_expedited - Brute-force SRCU grace period
1533  * @ssp: srcu_struct with which to synchronize.
1534  *
1535  * Wait for an SRCU grace period to elapse, but be more aggressive about
1536  * spinning rather than blocking when waiting.
1537  *
1538  * Note that synchronize_srcu_expedited() has the same deadlock and
1539  * memory-ordering properties as does synchronize_srcu().
1540  */
synchronize_srcu_expedited(struct srcu_struct * ssp)1541 void synchronize_srcu_expedited(struct srcu_struct *ssp)
1542 {
1543 	__synchronize_srcu(ssp, rcu_gp_is_normal());
1544 }
1545 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
1546 
1547 /**
1548  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
1549  * @ssp: srcu_struct with which to synchronize.
1550  *
1551  * Wait for the count to drain to zero of both indexes. To avoid the
1552  * possible starvation of synchronize_srcu(), it waits for the count of
1553  * the index=!(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]) to drain to zero
1554  * at first, and then flip the ->srcu_ctrp and wait for the count of the
1555  * other index.
1556  *
1557  * Can block; must be called from process context.
1558  *
1559  * Note that it is illegal to call synchronize_srcu() from the corresponding
1560  * SRCU read-side critical section; doing so will result in deadlock.
1561  * However, it is perfectly legal to call synchronize_srcu() on one
1562  * srcu_struct from some other srcu_struct's read-side critical section,
1563  * as long as the resulting graph of srcu_structs is acyclic.
1564  *
1565  * There are memory-ordering constraints implied by synchronize_srcu().
1566  * On systems with more than one CPU, when synchronize_srcu() returns,
1567  * each CPU is guaranteed to have executed a full memory barrier since
1568  * the end of its last corresponding SRCU read-side critical section
1569  * whose beginning preceded the call to synchronize_srcu().  In addition,
1570  * each CPU having an SRCU read-side critical section that extends beyond
1571  * the return from synchronize_srcu() is guaranteed to have executed a
1572  * full memory barrier after the beginning of synchronize_srcu() and before
1573  * the beginning of that SRCU read-side critical section.  Note that these
1574  * guarantees include CPUs that are offline, idle, or executing in user mode,
1575  * as well as CPUs that are executing in the kernel.
1576  *
1577  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1578  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1579  * to have executed a full memory barrier during the execution of
1580  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
1581  * are the same CPU, but again only if the system has more than one CPU.
1582  *
1583  * Of course, these memory-ordering guarantees apply only when
1584  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1585  * passed the same srcu_struct structure.
1586  *
1587  * Implementation of these memory-ordering guarantees is similar to
1588  * that of synchronize_rcu().
1589  *
1590  * If SRCU is likely idle as determined by srcu_should_expedite(),
1591  * expedite the first request.  This semantic was provided by Classic SRCU,
1592  * and is relied upon by its users, so TREE SRCU must also provide it.
1593  * Note that detecting idleness is heuristic and subject to both false
1594  * positives and negatives.
1595  */
synchronize_srcu(struct srcu_struct * ssp)1596 void synchronize_srcu(struct srcu_struct *ssp)
1597 {
1598 	if (srcu_should_expedite(ssp) || rcu_gp_is_expedited())
1599 		synchronize_srcu_expedited(ssp);
1600 	else
1601 		__synchronize_srcu(ssp, true);
1602 }
1603 EXPORT_SYMBOL_GPL(synchronize_srcu);
1604 
1605 /**
1606  * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1607  * @ssp: srcu_struct to provide cookie for.
1608  *
1609  * This function returns a cookie that can be passed to
1610  * poll_state_synchronize_srcu(), which will return true if a full grace
1611  * period has elapsed in the meantime.  It is the caller's responsibility
1612  * to make sure that grace period happens, for example, by invoking
1613  * call_srcu() after return from get_state_synchronize_srcu().
1614  */
get_state_synchronize_srcu(struct srcu_struct * ssp)1615 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1616 {
1617 	// Any prior manipulation of SRCU-protected data must happen
1618 	// before the load from ->srcu_gp_seq.
1619 	smp_mb();
1620 	return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1621 }
1622 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1623 
1624 /**
1625  * start_poll_synchronize_srcu - Provide cookie and start grace period
1626  * @ssp: srcu_struct to provide cookie for.
1627  *
1628  * This function returns a cookie that can be passed to
1629  * poll_state_synchronize_srcu(), which will return true if a full grace
1630  * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1631  * this function also ensures that any needed SRCU grace period will be
1632  * started.  This convenience does come at a cost in terms of CPU overhead.
1633  */
start_poll_synchronize_srcu(struct srcu_struct * ssp)1634 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1635 {
1636 	return srcu_gp_start_if_needed(ssp, NULL, true);
1637 }
1638 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1639 
1640 /**
1641  * poll_state_synchronize_srcu - Has cookie's grace period ended?
1642  * @ssp: srcu_struct to provide cookie for.
1643  * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1644  *
1645  * This function takes the cookie that was returned from either
1646  * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1647  * returns @true if an SRCU grace period elapsed since the time that the
1648  * cookie was created.
1649  *
1650  * Because cookies are finite in size, wrapping/overflow is possible.
1651  * This is more pronounced on 32-bit systems where cookies are 32 bits,
1652  * where in theory wrapping could happen in about 14 hours assuming
1653  * 25-microsecond expedited SRCU grace periods.  However, a more likely
1654  * overflow lower bound is on the order of 24 days in the case of
1655  * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1656  * system requires geologic timespans, as in more than seven million years
1657  * even for expedited SRCU grace periods.
1658  *
1659  * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1660  * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1661  * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1662  * few minutes.  If this proves to be a problem, this counter will be
1663  * expanded to the same size as for Tree SRCU.
1664  */
poll_state_synchronize_srcu(struct srcu_struct * ssp,unsigned long cookie)1665 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1666 {
1667 	if (cookie != SRCU_GET_STATE_COMPLETED &&
1668 	    !rcu_seq_done_exact(&ssp->srcu_sup->srcu_gp_seq, cookie))
1669 		return false;
1670 	// Ensure that the end of the SRCU grace period happens before
1671 	// any subsequent code that the caller might execute.
1672 	smp_mb(); // ^^^
1673 	return true;
1674 }
1675 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1676 
1677 /*
1678  * Callback function for srcu_barrier() use.
1679  */
srcu_barrier_cb(struct rcu_head * rhp)1680 static void srcu_barrier_cb(struct rcu_head *rhp)
1681 {
1682 	struct srcu_data *sdp;
1683 	struct srcu_struct *ssp;
1684 
1685 	rhp->next = rhp; // Mark the callback as having been invoked.
1686 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1687 	ssp = sdp->ssp;
1688 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1689 		complete(&ssp->srcu_sup->srcu_barrier_completion);
1690 }
1691 
1692 /*
1693  * Enqueue an srcu_barrier() callback on the specified srcu_data
1694  * structure's ->cblist.  but only if that ->cblist already has at least one
1695  * callback enqueued.  Note that if a CPU already has callbacks enqueue,
1696  * it must have already registered the need for a future grace period,
1697  * so all we need do is enqueue a callback that will use the same grace
1698  * period as the last callback already in the queue.
1699  */
srcu_barrier_one_cpu(struct srcu_struct * ssp,struct srcu_data * sdp)1700 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
1701 {
1702 	spin_lock_irq_rcu_node(sdp);
1703 	atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1704 	sdp->srcu_barrier_head.func = srcu_barrier_cb;
1705 	debug_rcu_head_queue(&sdp->srcu_barrier_head);
1706 	if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1707 				   &sdp->srcu_barrier_head)) {
1708 		debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1709 		atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1710 	}
1711 	spin_unlock_irq_rcu_node(sdp);
1712 }
1713 
1714 /**
1715  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1716  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1717  */
srcu_barrier(struct srcu_struct * ssp)1718 void srcu_barrier(struct srcu_struct *ssp)
1719 {
1720 	int cpu;
1721 	int idx;
1722 	unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq);
1723 
1724 	check_init_srcu_struct(ssp);
1725 	mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex);
1726 	if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) {
1727 		smp_mb(); /* Force ordering following return. */
1728 		mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1729 		return; /* Someone else did our work for us. */
1730 	}
1731 	rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq);
1732 	init_completion(&ssp->srcu_sup->srcu_barrier_completion);
1733 
1734 	/* Initial count prevents reaching zero until all CBs are posted. */
1735 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1);
1736 
1737 	idx = __srcu_read_lock_nmisafe(ssp);
1738 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1739 		srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda,	get_boot_cpu_id()));
1740 	else
1741 		for_each_possible_cpu(cpu)
1742 			srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
1743 	__srcu_read_unlock_nmisafe(ssp, idx);
1744 
1745 	/* Remove the initial count, at which point reaching zero can happen. */
1746 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1747 		complete(&ssp->srcu_sup->srcu_barrier_completion);
1748 	wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion);
1749 
1750 	rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq);
1751 	mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1752 }
1753 EXPORT_SYMBOL_GPL(srcu_barrier);
1754 
1755 /* Callback for srcu_expedite_current() usage. */
srcu_expedite_current_cb(struct rcu_head * rhp)1756 static void srcu_expedite_current_cb(struct rcu_head *rhp)
1757 {
1758 	unsigned long flags;
1759 	bool needcb = false;
1760 	struct srcu_data *sdp = container_of(rhp, struct srcu_data, srcu_ec_head);
1761 
1762 	spin_lock_irqsave_sdp_contention(sdp, &flags);
1763 	if (sdp->srcu_ec_state == SRCU_EC_IDLE) {
1764 		WARN_ON_ONCE(1);
1765 	} else if (sdp->srcu_ec_state == SRCU_EC_PENDING) {
1766 		sdp->srcu_ec_state = SRCU_EC_IDLE;
1767 	} else {
1768 		WARN_ON_ONCE(sdp->srcu_ec_state != SRCU_EC_REPOST);
1769 		sdp->srcu_ec_state = SRCU_EC_PENDING;
1770 		needcb = true;
1771 	}
1772 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1773 	// If needed, requeue ourselves as an expedited SRCU callback.
1774 	if (needcb)
1775 		__call_srcu(sdp->ssp, &sdp->srcu_ec_head, srcu_expedite_current_cb, false);
1776 }
1777 
1778 /**
1779  * srcu_expedite_current - Expedite the current SRCU grace period
1780  * @ssp: srcu_struct to expedite.
1781  *
1782  * Cause the current SRCU grace period to become expedited.  The grace
1783  * period following the current one might also be expedited.  If there is
1784  * no current grace period, one might be created.  If the current grace
1785  * period is currently sleeping, that sleep will complete before expediting
1786  * will take effect.
1787  */
srcu_expedite_current(struct srcu_struct * ssp)1788 void srcu_expedite_current(struct srcu_struct *ssp)
1789 {
1790 	unsigned long flags;
1791 	bool needcb = false;
1792 	struct srcu_data *sdp;
1793 
1794 	migrate_disable();
1795 	sdp = this_cpu_ptr(ssp->sda);
1796 	spin_lock_irqsave_sdp_contention(sdp, &flags);
1797 	if (sdp->srcu_ec_state == SRCU_EC_IDLE) {
1798 		sdp->srcu_ec_state = SRCU_EC_PENDING;
1799 		needcb = true;
1800 	} else if (sdp->srcu_ec_state == SRCU_EC_PENDING) {
1801 		sdp->srcu_ec_state = SRCU_EC_REPOST;
1802 	} else {
1803 		WARN_ON_ONCE(sdp->srcu_ec_state != SRCU_EC_REPOST);
1804 	}
1805 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1806 	// If needed, queue an expedited SRCU callback.
1807 	if (needcb)
1808 		__call_srcu(ssp, &sdp->srcu_ec_head, srcu_expedite_current_cb, false);
1809 	migrate_enable();
1810 }
1811 EXPORT_SYMBOL_GPL(srcu_expedite_current);
1812 
1813 /**
1814  * srcu_batches_completed - return batches completed.
1815  * @ssp: srcu_struct on which to report batch completion.
1816  *
1817  * Report the number of batches, correlated with, but not necessarily
1818  * precisely the same as, the number of grace periods that have elapsed.
1819  */
srcu_batches_completed(struct srcu_struct * ssp)1820 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1821 {
1822 	return READ_ONCE(ssp->srcu_sup->srcu_gp_seq);
1823 }
1824 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1825 
1826 /*
1827  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1828  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1829  * completed in that state.
1830  */
srcu_advance_state(struct srcu_struct * ssp)1831 static void srcu_advance_state(struct srcu_struct *ssp)
1832 {
1833 	int idx;
1834 
1835 	mutex_lock(&ssp->srcu_sup->srcu_gp_mutex);
1836 
1837 	/*
1838 	 * Because readers might be delayed for an extended period after
1839 	 * fetching ->srcu_ctrp for their index, at any point in time there
1840 	 * might well be readers using both idx=0 and idx=1.  We therefore
1841 	 * need to wait for readers to clear from both index values before
1842 	 * invoking a callback.
1843 	 *
1844 	 * The load-acquire ensures that we see the accesses performed
1845 	 * by the prior grace period.
1846 	 */
1847 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */
1848 	if (idx == SRCU_STATE_IDLE) {
1849 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1850 		if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1851 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq));
1852 			spin_unlock_irq_rcu_node(ssp->srcu_sup);
1853 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1854 			return;
1855 		}
1856 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq));
1857 		if (idx == SRCU_STATE_IDLE)
1858 			srcu_gp_start(ssp);
1859 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1860 		if (idx != SRCU_STATE_IDLE) {
1861 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1862 			return; /* Someone else started the grace period. */
1863 		}
1864 	}
1865 
1866 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1867 		idx = !(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]);
1868 		if (!try_check_zero(ssp, idx, 1)) {
1869 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1870 			return; /* readers present, retry later. */
1871 		}
1872 		srcu_flip(ssp);
1873 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1874 		rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2);
1875 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1876 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1877 	}
1878 
1879 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1880 
1881 		/*
1882 		 * SRCU read-side critical sections are normally short,
1883 		 * so check at least twice in quick succession after a flip.
1884 		 */
1885 		idx = !(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]);
1886 		if (!try_check_zero(ssp, idx, 2)) {
1887 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1888 			return; /* readers present, retry later. */
1889 		}
1890 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1891 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1892 	}
1893 }
1894 
1895 /*
1896  * Invoke a limited number of SRCU callbacks that have passed through
1897  * their grace period.  If there are more to do, SRCU will reschedule
1898  * the workqueue.  Note that needed memory barriers have been executed
1899  * in this task's context by srcu_readers_active_idx_check().
1900  */
srcu_invoke_callbacks(struct work_struct * work)1901 static void srcu_invoke_callbacks(struct work_struct *work)
1902 {
1903 	long len;
1904 	bool more;
1905 	struct rcu_cblist ready_cbs;
1906 	struct rcu_head *rhp;
1907 	struct srcu_data *sdp;
1908 	struct srcu_struct *ssp;
1909 
1910 	sdp = container_of(work, struct srcu_data, work);
1911 
1912 	ssp = sdp->ssp;
1913 	rcu_cblist_init(&ready_cbs);
1914 	spin_lock_irq_rcu_node(sdp);
1915 	WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL));
1916 	rcu_segcblist_advance(&sdp->srcu_cblist,
1917 			      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1918 	/*
1919 	 * Although this function is theoretically re-entrant, concurrent
1920 	 * callbacks invocation is disallowed to avoid executing an SRCU barrier
1921 	 * too early.
1922 	 */
1923 	if (sdp->srcu_cblist_invoking ||
1924 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1925 		spin_unlock_irq_rcu_node(sdp);
1926 		return;  /* Someone else on the job or nothing to do. */
1927 	}
1928 
1929 	/* We are on the job!  Extract and invoke ready callbacks. */
1930 	sdp->srcu_cblist_invoking = true;
1931 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1932 	len = ready_cbs.len;
1933 	spin_unlock_irq_rcu_node(sdp);
1934 	rhp = rcu_cblist_dequeue(&ready_cbs);
1935 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1936 		debug_rcu_head_unqueue(rhp);
1937 		debug_rcu_head_callback(rhp);
1938 		local_bh_disable();
1939 		rhp->func(rhp);
1940 		local_bh_enable();
1941 	}
1942 	WARN_ON_ONCE(ready_cbs.len);
1943 
1944 	/*
1945 	 * Update counts, accelerate new callbacks, and if needed,
1946 	 * schedule another round of callback invocation.
1947 	 */
1948 	spin_lock_irq_rcu_node(sdp);
1949 	rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1950 	sdp->srcu_cblist_invoking = false;
1951 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1952 	spin_unlock_irq_rcu_node(sdp);
1953 	/* An SRCU barrier or callbacks from previous nesting work pending */
1954 	if (more)
1955 		srcu_schedule_cbs_sdp(sdp, 0);
1956 }
1957 
1958 /*
1959  * Finished one round of SRCU grace period.  Start another if there are
1960  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1961  */
srcu_reschedule(struct srcu_struct * ssp,unsigned long delay)1962 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1963 {
1964 	bool pushgp = true;
1965 
1966 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1967 	if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1968 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) {
1969 			/* All requests fulfilled, time to go idle. */
1970 			pushgp = false;
1971 		}
1972 	} else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) {
1973 		/* Outstanding request and no GP.  Start one. */
1974 		srcu_gp_start(ssp);
1975 	}
1976 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1977 
1978 	if (pushgp)
1979 		queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay);
1980 }
1981 
1982 /*
1983  * This is the work-queue function that handles SRCU grace periods.
1984  */
process_srcu(struct work_struct * work)1985 static void process_srcu(struct work_struct *work)
1986 {
1987 	unsigned long curdelay;
1988 	unsigned long j;
1989 	struct srcu_struct *ssp;
1990 	struct srcu_usage *sup;
1991 
1992 	sup = container_of(work, struct srcu_usage, work.work);
1993 	ssp = sup->srcu_ssp;
1994 
1995 	srcu_advance_state(ssp);
1996 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1997 	curdelay = srcu_get_delay(ssp);
1998 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1999 	if (curdelay) {
2000 		WRITE_ONCE(sup->reschedule_count, 0);
2001 	} else {
2002 		j = jiffies;
2003 		if (READ_ONCE(sup->reschedule_jiffies) == j) {
2004 			ASSERT_EXCLUSIVE_WRITER(sup->reschedule_count);
2005 			WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1);
2006 			if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay)
2007 				curdelay = 1;
2008 		} else {
2009 			WRITE_ONCE(sup->reschedule_count, 1);
2010 			WRITE_ONCE(sup->reschedule_jiffies, j);
2011 		}
2012 	}
2013 	srcu_reschedule(ssp, curdelay);
2014 }
2015 
srcutorture_get_gp_data(struct srcu_struct * ssp,int * flags,unsigned long * gp_seq)2016 void srcutorture_get_gp_data(struct srcu_struct *ssp, int *flags,
2017 			     unsigned long *gp_seq)
2018 {
2019 	*flags = 0;
2020 	*gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
2021 }
2022 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
2023 
2024 static const char * const srcu_size_state_name[] = {
2025 	"SRCU_SIZE_SMALL",
2026 	"SRCU_SIZE_ALLOC",
2027 	"SRCU_SIZE_WAIT_BARRIER",
2028 	"SRCU_SIZE_WAIT_CALL",
2029 	"SRCU_SIZE_WAIT_CBS1",
2030 	"SRCU_SIZE_WAIT_CBS2",
2031 	"SRCU_SIZE_WAIT_CBS3",
2032 	"SRCU_SIZE_WAIT_CBS4",
2033 	"SRCU_SIZE_BIG",
2034 	"SRCU_SIZE_???",
2035 };
2036 
srcu_torture_stats_print(struct srcu_struct * ssp,char * tt,char * tf)2037 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
2038 {
2039 	int cpu;
2040 	int idx;
2041 	unsigned long s0 = 0, s1 = 0;
2042 	int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state);
2043 	int ss_state_idx = ss_state;
2044 
2045 	idx = ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0];
2046 	if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
2047 		ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
2048 	pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
2049 		 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state,
2050 		 srcu_size_state_name[ss_state_idx]);
2051 	if (!ssp->sda) {
2052 		// Called after cleanup_srcu_struct(), perhaps.
2053 		pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
2054 	} else {
2055 		pr_cont(" per-CPU(idx=%d):", idx);
2056 		for_each_possible_cpu(cpu) {
2057 			unsigned long l0, l1;
2058 			unsigned long u0, u1;
2059 			long c0, c1;
2060 			struct srcu_data *sdp;
2061 
2062 			sdp = per_cpu_ptr(ssp->sda, cpu);
2063 			u0 = data_race(atomic_long_read(&sdp->srcu_ctrs[!idx].srcu_unlocks));
2064 			u1 = data_race(atomic_long_read(&sdp->srcu_ctrs[idx].srcu_unlocks));
2065 
2066 			/*
2067 			 * Make sure that a lock is always counted if the corresponding
2068 			 * unlock is counted.
2069 			 */
2070 			smp_rmb();
2071 
2072 			l0 = data_race(atomic_long_read(&sdp->srcu_ctrs[!idx].srcu_locks));
2073 			l1 = data_race(atomic_long_read(&sdp->srcu_ctrs[idx].srcu_locks));
2074 
2075 			c0 = l0 - u0;
2076 			c1 = l1 - u1;
2077 			pr_cont(" %d(%ld,%ld %c)",
2078 				cpu, c0, c1,
2079 				"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
2080 			s0 += c0;
2081 			s1 += c1;
2082 		}
2083 		pr_cont(" T(%ld,%ld)\n", s0, s1);
2084 	}
2085 	if (SRCU_SIZING_IS_TORTURE())
2086 		srcu_transition_to_big(ssp);
2087 }
2088 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
2089 
srcu_bootup_announce(void)2090 static int __init srcu_bootup_announce(void)
2091 {
2092 	pr_info("Hierarchical SRCU implementation.\n");
2093 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
2094 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
2095 	if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
2096 		pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
2097 	if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
2098 		pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
2099 	pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
2100 	return 0;
2101 }
2102 early_initcall(srcu_bootup_announce);
2103 
srcu_init(void)2104 void __init srcu_init(void)
2105 {
2106 	struct srcu_usage *sup;
2107 
2108 	/* Decide on srcu_struct-size strategy. */
2109 	if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
2110 		if (nr_cpu_ids >= big_cpu_lim) {
2111 			convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
2112 			pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
2113 		} else {
2114 			convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
2115 			pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
2116 		}
2117 	}
2118 
2119 	/*
2120 	 * Once that is set, call_srcu() can follow the normal path and
2121 	 * queue delayed work. This must follow RCU workqueues creation
2122 	 * and timers initialization.
2123 	 */
2124 	srcu_init_done = true;
2125 	while (!list_empty(&srcu_boot_list)) {
2126 		sup = list_first_entry(&srcu_boot_list, struct srcu_usage,
2127 				      work.work.entry);
2128 		list_del_init(&sup->work.work.entry);
2129 		if (SRCU_SIZING_IS(SRCU_SIZING_INIT) &&
2130 		    sup->srcu_size_state == SRCU_SIZE_SMALL)
2131 			sup->srcu_size_state = SRCU_SIZE_ALLOC;
2132 		queue_work(rcu_gp_wq, &sup->work.work);
2133 	}
2134 }
2135 
2136 #ifdef CONFIG_MODULES
2137 
2138 /* Initialize any global-scope srcu_struct structures used by this module. */
srcu_module_coming(struct module * mod)2139 static int srcu_module_coming(struct module *mod)
2140 {
2141 	int i;
2142 	struct srcu_struct *ssp;
2143 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
2144 
2145 	for (i = 0; i < mod->num_srcu_structs; i++) {
2146 		ssp = *(sspp++);
2147 		ssp->sda = alloc_percpu(struct srcu_data);
2148 		if (WARN_ON_ONCE(!ssp->sda))
2149 			return -ENOMEM;
2150 		ssp->srcu_ctrp = &ssp->sda->srcu_ctrs[0];
2151 	}
2152 	return 0;
2153 }
2154 
2155 /* Clean up any global-scope srcu_struct structures used by this module. */
srcu_module_going(struct module * mod)2156 static void srcu_module_going(struct module *mod)
2157 {
2158 	int i;
2159 	struct srcu_struct *ssp;
2160 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
2161 
2162 	for (i = 0; i < mod->num_srcu_structs; i++) {
2163 		ssp = *(sspp++);
2164 		if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) &&
2165 		    !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static))
2166 			cleanup_srcu_struct(ssp);
2167 		if (!WARN_ON(srcu_readers_active(ssp)))
2168 			free_percpu(ssp->sda);
2169 	}
2170 }
2171 
2172 /* Handle one module, either coming or going. */
srcu_module_notify(struct notifier_block * self,unsigned long val,void * data)2173 static int srcu_module_notify(struct notifier_block *self,
2174 			      unsigned long val, void *data)
2175 {
2176 	struct module *mod = data;
2177 	int ret = 0;
2178 
2179 	switch (val) {
2180 	case MODULE_STATE_COMING:
2181 		ret = srcu_module_coming(mod);
2182 		break;
2183 	case MODULE_STATE_GOING:
2184 		srcu_module_going(mod);
2185 		break;
2186 	default:
2187 		break;
2188 	}
2189 	return ret;
2190 }
2191 
2192 static struct notifier_block srcu_module_nb = {
2193 	.notifier_call = srcu_module_notify,
2194 	.priority = 0,
2195 };
2196 
init_srcu_module_notifier(void)2197 static __init int init_srcu_module_notifier(void)
2198 {
2199 	int ret;
2200 
2201 	ret = register_module_notifier(&srcu_module_nb);
2202 	if (ret)
2203 		pr_warn("Failed to register srcu module notifier\n");
2204 	return ret;
2205 }
2206 late_initcall(init_srcu_module_notifier);
2207 
2208 #endif /* #ifdef CONFIG_MODULES */
2209