1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Sleepable Read-Copy Update mechanism for mutual exclusion. 4 * 5 * Copyright (C) IBM Corporation, 2006 6 * Copyright (C) Fujitsu, 2012 7 * 8 * Authors: Paul McKenney <paulmck@linux.ibm.com> 9 * Lai Jiangshan <laijs@cn.fujitsu.com> 10 * 11 * For detailed explanation of Read-Copy Update mechanism see - 12 * Documentation/RCU/ *.txt 13 * 14 */ 15 16 #define pr_fmt(fmt) "rcu: " fmt 17 18 #include <linux/export.h> 19 #include <linux/mutex.h> 20 #include <linux/percpu.h> 21 #include <linux/preempt.h> 22 #include <linux/rcupdate_wait.h> 23 #include <linux/sched.h> 24 #include <linux/smp.h> 25 #include <linux/delay.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/srcu.h> 29 30 #include "rcu.h" 31 #include "rcu_segcblist.h" 32 33 /* Holdoff in nanoseconds for auto-expediting. */ 34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 36 module_param(exp_holdoff, ulong, 0444); 37 38 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 39 static ulong counter_wrap_check = (ULONG_MAX >> 2); 40 module_param(counter_wrap_check, ulong, 0444); 41 42 /* 43 * Control conversion to SRCU_SIZE_BIG: 44 * 0: Don't convert at all. 45 * 1: Convert at init_srcu_struct() time. 46 * 2: Convert when rcutorture invokes srcu_torture_stats_print(). 47 * 3: Decide at boot time based on system shape (default). 48 * 0x1x: Convert when excessive contention encountered. 49 */ 50 #define SRCU_SIZING_NONE 0 51 #define SRCU_SIZING_INIT 1 52 #define SRCU_SIZING_TORTURE 2 53 #define SRCU_SIZING_AUTO 3 54 #define SRCU_SIZING_CONTEND 0x10 55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x) 56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE)) 57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT)) 58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE)) 59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND) 60 static int convert_to_big = SRCU_SIZING_AUTO; 61 module_param(convert_to_big, int, 0444); 62 63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */ 64 static int big_cpu_lim __read_mostly = 128; 65 module_param(big_cpu_lim, int, 0444); 66 67 /* Contention events per jiffy to initiate transition to big. */ 68 static int small_contention_lim __read_mostly = 100; 69 module_param(small_contention_lim, int, 0444); 70 71 /* Early-boot callback-management, so early that no lock is required! */ 72 static LIST_HEAD(srcu_boot_list); 73 static bool __read_mostly srcu_init_done; 74 75 static void srcu_invoke_callbacks(struct work_struct *work); 76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); 77 static void process_srcu(struct work_struct *work); 78 static void srcu_delay_timer(struct timer_list *t); 79 80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 81 #define spin_lock_rcu_node(p) \ 82 do { \ 83 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 84 smp_mb__after_unlock_lock(); \ 85 } while (0) 86 87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 88 89 #define spin_lock_irq_rcu_node(p) \ 90 do { \ 91 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 92 smp_mb__after_unlock_lock(); \ 93 } while (0) 94 95 #define spin_unlock_irq_rcu_node(p) \ 96 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 97 98 #define spin_lock_irqsave_rcu_node(p, flags) \ 99 do { \ 100 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 101 smp_mb__after_unlock_lock(); \ 102 } while (0) 103 104 #define spin_trylock_irqsave_rcu_node(p, flags) \ 105 ({ \ 106 bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 107 \ 108 if (___locked) \ 109 smp_mb__after_unlock_lock(); \ 110 ___locked; \ 111 }) 112 113 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 114 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 115 116 /* 117 * Initialize SRCU per-CPU data. Note that statically allocated 118 * srcu_struct structures might already have srcu_read_lock() and 119 * srcu_read_unlock() running against them. So if the is_static 120 * parameter is set, don't initialize ->srcu_ctrs[].srcu_locks and 121 * ->srcu_ctrs[].srcu_unlocks. 122 */ 123 static void init_srcu_struct_data(struct srcu_struct *ssp) 124 { 125 int cpu; 126 struct srcu_data *sdp; 127 128 /* 129 * Initialize the per-CPU srcu_data array, which feeds into the 130 * leaves of the srcu_node tree. 131 */ 132 for_each_possible_cpu(cpu) { 133 sdp = per_cpu_ptr(ssp->sda, cpu); 134 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 135 rcu_segcblist_init(&sdp->srcu_cblist); 136 sdp->srcu_cblist_invoking = false; 137 sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq; 138 sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq; 139 sdp->srcu_barrier_head.next = &sdp->srcu_barrier_head; 140 sdp->mynode = NULL; 141 sdp->cpu = cpu; 142 INIT_WORK(&sdp->work, srcu_invoke_callbacks); 143 timer_setup(&sdp->delay_work, srcu_delay_timer, 0); 144 sdp->ssp = ssp; 145 } 146 } 147 148 /* Invalid seq state, used during snp node initialization */ 149 #define SRCU_SNP_INIT_SEQ 0x2 150 151 /* 152 * Check whether sequence number corresponding to snp node, 153 * is invalid. 154 */ 155 static inline bool srcu_invl_snp_seq(unsigned long s) 156 { 157 return s == SRCU_SNP_INIT_SEQ; 158 } 159 160 /* 161 * Allocated and initialize SRCU combining tree. Returns @true if 162 * allocation succeeded and @false otherwise. 163 */ 164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags) 165 { 166 int cpu; 167 int i; 168 int level = 0; 169 int levelspread[RCU_NUM_LVLS]; 170 struct srcu_data *sdp; 171 struct srcu_node *snp; 172 struct srcu_node *snp_first; 173 174 /* Initialize geometry if it has not already been initialized. */ 175 rcu_init_geometry(); 176 ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags); 177 if (!ssp->srcu_sup->node) 178 return false; 179 180 /* Work out the overall tree geometry. */ 181 ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0]; 182 for (i = 1; i < rcu_num_lvls; i++) 183 ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1]; 184 rcu_init_levelspread(levelspread, num_rcu_lvl); 185 186 /* Each pass through this loop initializes one srcu_node structure. */ 187 srcu_for_each_node_breadth_first(ssp, snp) { 188 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 189 BUILD_BUG_ON(ARRAY_SIZE(snp->srcu_have_cbs) != 190 ARRAY_SIZE(snp->srcu_data_have_cbs)); 191 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 192 snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ; 193 snp->srcu_data_have_cbs[i] = 0; 194 } 195 snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ; 196 snp->grplo = -1; 197 snp->grphi = -1; 198 if (snp == &ssp->srcu_sup->node[0]) { 199 /* Root node, special case. */ 200 snp->srcu_parent = NULL; 201 continue; 202 } 203 204 /* Non-root node. */ 205 if (snp == ssp->srcu_sup->level[level + 1]) 206 level++; 207 snp->srcu_parent = ssp->srcu_sup->level[level - 1] + 208 (snp - ssp->srcu_sup->level[level]) / 209 levelspread[level - 1]; 210 } 211 212 /* 213 * Initialize the per-CPU srcu_data array, which feeds into the 214 * leaves of the srcu_node tree. 215 */ 216 level = rcu_num_lvls - 1; 217 snp_first = ssp->srcu_sup->level[level]; 218 for_each_possible_cpu(cpu) { 219 sdp = per_cpu_ptr(ssp->sda, cpu); 220 sdp->mynode = &snp_first[cpu / levelspread[level]]; 221 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 222 if (snp->grplo < 0) 223 snp->grplo = cpu; 224 snp->grphi = cpu; 225 } 226 sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo); 227 } 228 smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER); 229 return true; 230 } 231 232 /* 233 * Initialize non-compile-time initialized fields, including the 234 * associated srcu_node and srcu_data structures. The is_static parameter 235 * tells us that ->sda has already been wired up to srcu_data. 236 */ 237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) 238 { 239 if (!is_static) 240 ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL); 241 if (!ssp->srcu_sup) 242 return -ENOMEM; 243 if (!is_static) 244 spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 245 ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL; 246 ssp->srcu_sup->node = NULL; 247 mutex_init(&ssp->srcu_sup->srcu_cb_mutex); 248 mutex_init(&ssp->srcu_sup->srcu_gp_mutex); 249 ssp->srcu_sup->srcu_gp_seq = SRCU_GP_SEQ_INITIAL_VAL; 250 ssp->srcu_sup->srcu_barrier_seq = 0; 251 mutex_init(&ssp->srcu_sup->srcu_barrier_mutex); 252 atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0); 253 INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu); 254 ssp->srcu_sup->sda_is_static = is_static; 255 if (!is_static) { 256 ssp->sda = alloc_percpu(struct srcu_data); 257 ssp->srcu_ctrp = &ssp->sda->srcu_ctrs[0]; 258 } 259 if (!ssp->sda) 260 goto err_free_sup; 261 init_srcu_struct_data(ssp); 262 ssp->srcu_sup->srcu_gp_seq_needed_exp = SRCU_GP_SEQ_INITIAL_VAL; 263 ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns(); 264 if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) { 265 if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) 266 goto err_free_sda; 267 WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG); 268 } 269 ssp->srcu_sup->srcu_ssp = ssp; 270 smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed, 271 SRCU_GP_SEQ_INITIAL_VAL); /* Init done. */ 272 return 0; 273 274 err_free_sda: 275 if (!is_static) { 276 free_percpu(ssp->sda); 277 ssp->sda = NULL; 278 } 279 err_free_sup: 280 if (!is_static) { 281 kfree(ssp->srcu_sup); 282 ssp->srcu_sup = NULL; 283 } 284 return -ENOMEM; 285 } 286 287 #ifdef CONFIG_DEBUG_LOCK_ALLOC 288 289 int __init_srcu_struct(struct srcu_struct *ssp, const char *name, 290 struct lock_class_key *key) 291 { 292 /* Don't re-initialize a lock while it is held. */ 293 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); 294 lockdep_init_map(&ssp->dep_map, name, key, 0); 295 return init_srcu_struct_fields(ssp, false); 296 } 297 EXPORT_SYMBOL_GPL(__init_srcu_struct); 298 299 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 300 301 /** 302 * init_srcu_struct - initialize a sleep-RCU structure 303 * @ssp: structure to initialize. 304 * 305 * Must invoke this on a given srcu_struct before passing that srcu_struct 306 * to any other function. Each srcu_struct represents a separate domain 307 * of SRCU protection. 308 */ 309 int init_srcu_struct(struct srcu_struct *ssp) 310 { 311 return init_srcu_struct_fields(ssp, false); 312 } 313 EXPORT_SYMBOL_GPL(init_srcu_struct); 314 315 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 316 317 /* 318 * Initiate a transition to SRCU_SIZE_BIG with lock held. 319 */ 320 static void __srcu_transition_to_big(struct srcu_struct *ssp) 321 { 322 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 323 smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC); 324 } 325 326 /* 327 * Initiate an idempotent transition to SRCU_SIZE_BIG. 328 */ 329 static void srcu_transition_to_big(struct srcu_struct *ssp) 330 { 331 unsigned long flags; 332 333 /* Double-checked locking on ->srcu_size-state. */ 334 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) 335 return; 336 spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); 337 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) { 338 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 339 return; 340 } 341 __srcu_transition_to_big(ssp); 342 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 343 } 344 345 /* 346 * Check to see if the just-encountered contention event justifies 347 * a transition to SRCU_SIZE_BIG. 348 */ 349 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp) 350 { 351 unsigned long j; 352 353 if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state) 354 return; 355 j = jiffies; 356 if (ssp->srcu_sup->srcu_size_jiffies != j) { 357 ssp->srcu_sup->srcu_size_jiffies = j; 358 ssp->srcu_sup->srcu_n_lock_retries = 0; 359 } 360 if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim) 361 return; 362 __srcu_transition_to_big(ssp); 363 } 364 365 /* 366 * Acquire the specified srcu_data structure's ->lock, but check for 367 * excessive contention, which results in initiation of a transition 368 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module 369 * parameter permits this. 370 */ 371 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags) 372 { 373 struct srcu_struct *ssp = sdp->ssp; 374 375 if (spin_trylock_irqsave_rcu_node(sdp, *flags)) 376 return; 377 spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); 378 spin_lock_irqsave_check_contention(ssp); 379 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags); 380 spin_lock_irqsave_rcu_node(sdp, *flags); 381 } 382 383 /* 384 * Acquire the specified srcu_struct structure's ->lock, but check for 385 * excessive contention, which results in initiation of a transition 386 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module 387 * parameter permits this. 388 */ 389 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags) 390 { 391 if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags)) 392 return; 393 spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); 394 spin_lock_irqsave_check_contention(ssp); 395 } 396 397 /* 398 * First-use initialization of statically allocated srcu_struct 399 * structure. Wiring up the combining tree is more than can be 400 * done with compile-time initialization, so this check is added 401 * to each update-side SRCU primitive. Use ssp->lock, which -is- 402 * compile-time initialized, to resolve races involving multiple 403 * CPUs trying to garner first-use privileges. 404 */ 405 static void check_init_srcu_struct(struct srcu_struct *ssp) 406 { 407 unsigned long flags; 408 409 /* The smp_load_acquire() pairs with the smp_store_release(). */ 410 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/ 411 return; /* Already initialized. */ 412 spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); 413 if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) { 414 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 415 return; 416 } 417 init_srcu_struct_fields(ssp, true); 418 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 419 } 420 421 /* 422 * Is the current or any upcoming grace period to be expedited? 423 */ 424 static bool srcu_gp_is_expedited(struct srcu_struct *ssp) 425 { 426 struct srcu_usage *sup = ssp->srcu_sup; 427 428 return ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)); 429 } 430 431 /* 432 * Computes approximate total of the readers' ->srcu_ctrs[].srcu_locks 433 * values for the rank of per-CPU counters specified by idx, and returns 434 * true if the caller did the proper barrier (gp), and if the count of 435 * the locks matches that of the unlocks passed in. 436 */ 437 static bool srcu_readers_lock_idx(struct srcu_struct *ssp, int idx, bool gp, unsigned long unlocks) 438 { 439 int cpu; 440 unsigned long mask = 0; 441 unsigned long sum = 0; 442 443 for_each_possible_cpu(cpu) { 444 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 445 446 sum += atomic_long_read(&sdp->srcu_ctrs[idx].srcu_locks); 447 if (IS_ENABLED(CONFIG_PROVE_RCU)) 448 mask = mask | READ_ONCE(sdp->srcu_reader_flavor); 449 } 450 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)), 451 "Mixed reader flavors for srcu_struct at %ps.\n", ssp); 452 if (mask & SRCU_READ_FLAVOR_SLOWGP && !gp) 453 return false; 454 return sum == unlocks; 455 } 456 457 /* 458 * Returns approximate total of the readers' ->srcu_ctrs[].srcu_unlocks 459 * values for the rank of per-CPU counters specified by idx. 460 */ 461 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx, unsigned long *rdm) 462 { 463 int cpu; 464 unsigned long mask = 0; 465 unsigned long sum = 0; 466 467 for_each_possible_cpu(cpu) { 468 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 469 470 sum += atomic_long_read(&sdp->srcu_ctrs[idx].srcu_unlocks); 471 mask = mask | READ_ONCE(sdp->srcu_reader_flavor); 472 } 473 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)), 474 "Mixed reader flavors for srcu_struct at %ps.\n", ssp); 475 *rdm = mask; 476 return sum; 477 } 478 479 /* 480 * Return true if the number of pre-existing readers is determined to 481 * be zero. 482 */ 483 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) 484 { 485 bool did_gp; 486 unsigned long rdm; 487 unsigned long unlocks; 488 489 unlocks = srcu_readers_unlock_idx(ssp, idx, &rdm); 490 did_gp = !!(rdm & SRCU_READ_FLAVOR_SLOWGP); 491 492 /* 493 * Make sure that a lock is always counted if the corresponding 494 * unlock is counted. Needs to be a smp_mb() as the read side may 495 * contain a read from a variable that is written to before the 496 * synchronize_srcu() in the write side. In this case smp_mb()s 497 * A and B (or X and Y) act like the store buffering pattern. 498 * 499 * This smp_mb() also pairs with smp_mb() C (or, in the case of X, 500 * Z) to prevent accesses after the synchronize_srcu() from being 501 * executed before the grace period ends. 502 */ 503 if (!did_gp) 504 smp_mb(); /* A */ 505 else 506 synchronize_rcu(); /* X */ 507 508 /* 509 * If the locks are the same as the unlocks, then there must have 510 * been no readers on this index at some point in this function. 511 * But there might be more readers, as a task might have read 512 * the current ->srcu_ctrp but not yet have incremented its CPU's 513 * ->srcu_ctrs[idx].srcu_locks counter. In fact, it is possible 514 * that most of the tasks have been preempted between fetching 515 * ->srcu_ctrp and incrementing ->srcu_ctrs[idx].srcu_locks. And 516 * there could be almost (ULONG_MAX / sizeof(struct task_struct)) 517 * tasks in a system whose address space was fully populated 518 * with memory. Call this quantity Nt. 519 * 520 * So suppose that the updater is preempted at this 521 * point in the code for a long time. That now-preempted 522 * updater has already flipped ->srcu_ctrp (possibly during 523 * the preceding grace period), done an smp_mb() (again, 524 * possibly during the preceding grace period), and summed up 525 * the ->srcu_ctrs[idx].srcu_unlocks counters. How many times 526 * can a given one of the aforementioned Nt tasks increment the 527 * old ->srcu_ctrp value's ->srcu_ctrs[idx].srcu_locks counter, 528 * in the absence of nesting? 529 * 530 * It can clearly do so once, given that it has already fetched 531 * the old value of ->srcu_ctrp and is just about to use that 532 * value to index its increment of ->srcu_ctrs[idx].srcu_locks. 533 * But as soon as it leaves that SRCU read-side critical section, 534 * it will increment ->srcu_ctrs[idx].srcu_unlocks, which must 535 * follow the updater's above read from that same value. Thus, 536 as soon the reading task does an smp_mb() and a later fetch from 537 * ->srcu_ctrp, that task will be guaranteed to get the new index. 538 * Except that the increment of ->srcu_ctrs[idx].srcu_unlocks 539 * in __srcu_read_unlock() is after the smp_mb(), and the fetch 540 * from ->srcu_ctrp in __srcu_read_lock() is before the smp_mb(). 541 * Thus, that task might not see the new value of ->srcu_ctrp until 542 * the -second- __srcu_read_lock(), which in turn means that this 543 * task might well increment ->srcu_ctrs[idx].srcu_locks for the 544 * old value of ->srcu_ctrp twice, not just once. 545 * 546 * However, it is important to note that a given smp_mb() takes 547 * effect not just for the task executing it, but also for any 548 * later task running on that same CPU. 549 * 550 * That is, there can be almost Nt + Nc further increments 551 * of ->srcu_ctrs[idx].srcu_locks for the old index, where Nc 552 * is the number of CPUs. But this is OK because the size of 553 * the task_struct structure limits the value of Nt and current 554 * systems limit Nc to a few thousand. 555 * 556 * OK, but what about nesting? This does impose a limit on 557 * nesting of half of the size of the task_struct structure 558 * (measured in bytes), which should be sufficient. A late 2022 559 * TREE01 rcutorture run reported this size to be no less than 560 * 9408 bytes, allowing up to 4704 levels of nesting, which is 561 * comfortably beyond excessive. Especially on 64-bit systems, 562 * which are unlikely to be configured with an address space fully 563 * populated with memory, at least not anytime soon. 564 */ 565 return srcu_readers_lock_idx(ssp, idx, did_gp, unlocks); 566 } 567 568 /** 569 * srcu_readers_active - returns true if there are readers. and false 570 * otherwise 571 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). 572 * 573 * Note that this is not an atomic primitive, and can therefore suffer 574 * severe errors when invoked on an active srcu_struct. That said, it 575 * can be useful as an error check at cleanup time. 576 */ 577 static bool srcu_readers_active(struct srcu_struct *ssp) 578 { 579 int cpu; 580 unsigned long sum = 0; 581 582 for_each_possible_cpu(cpu) { 583 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 584 585 sum += atomic_long_read(&sdp->srcu_ctrs[0].srcu_locks); 586 sum += atomic_long_read(&sdp->srcu_ctrs[1].srcu_locks); 587 sum -= atomic_long_read(&sdp->srcu_ctrs[0].srcu_unlocks); 588 sum -= atomic_long_read(&sdp->srcu_ctrs[1].srcu_unlocks); 589 } 590 return sum; 591 } 592 593 /* 594 * We use an adaptive strategy for synchronize_srcu() and especially for 595 * synchronize_srcu_expedited(). We spin for a fixed time period 596 * (defined below, boot time configurable) to allow SRCU readers to exit 597 * their read-side critical sections. If there are still some readers 598 * after one jiffy, we repeatedly block for one jiffy time periods. 599 * The blocking time is increased as the grace-period age increases, 600 * with max blocking time capped at 10 jiffies. 601 */ 602 #define SRCU_DEFAULT_RETRY_CHECK_DELAY 5 603 604 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY; 605 module_param(srcu_retry_check_delay, ulong, 0444); 606 607 #define SRCU_INTERVAL 1 // Base delay if no expedited GPs pending. 608 #define SRCU_MAX_INTERVAL 10 // Maximum incremental delay from slow readers. 609 610 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO 3UL // Lowmark on default per-GP-phase 611 // no-delay instances. 612 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI 1000UL // Highmark on default per-GP-phase 613 // no-delay instances. 614 615 #define SRCU_UL_CLAMP_LO(val, low) ((val) > (low) ? (val) : (low)) 616 #define SRCU_UL_CLAMP_HI(val, high) ((val) < (high) ? (val) : (high)) 617 #define SRCU_UL_CLAMP(val, low, high) SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high)) 618 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto 619 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay() 620 // called from process_srcu(). 621 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED \ 622 (2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY) 623 624 // Maximum per-GP-phase consecutive no-delay instances. 625 #define SRCU_DEFAULT_MAX_NODELAY_PHASE \ 626 SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED, \ 627 SRCU_DEFAULT_MAX_NODELAY_PHASE_LO, \ 628 SRCU_DEFAULT_MAX_NODELAY_PHASE_HI) 629 630 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE; 631 module_param(srcu_max_nodelay_phase, ulong, 0444); 632 633 // Maximum consecutive no-delay instances. 634 #define SRCU_DEFAULT_MAX_NODELAY (SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ? \ 635 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100) 636 637 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY; 638 module_param(srcu_max_nodelay, ulong, 0444); 639 640 /* 641 * Return grace-period delay, zero if there are expedited grace 642 * periods pending, SRCU_INTERVAL otherwise. 643 */ 644 static unsigned long srcu_get_delay(struct srcu_struct *ssp) 645 { 646 unsigned long gpstart; 647 unsigned long j; 648 unsigned long jbase = SRCU_INTERVAL; 649 struct srcu_usage *sup = ssp->srcu_sup; 650 651 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 652 if (srcu_gp_is_expedited(ssp)) 653 jbase = 0; 654 if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) { 655 j = jiffies - 1; 656 gpstart = READ_ONCE(sup->srcu_gp_start); 657 if (time_after(j, gpstart)) 658 jbase += j - gpstart; 659 if (!jbase) { 660 ASSERT_EXCLUSIVE_WRITER(sup->srcu_n_exp_nodelay); 661 WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1); 662 if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase) 663 jbase = 1; 664 } 665 } 666 return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase; 667 } 668 669 /** 670 * cleanup_srcu_struct - deconstruct a sleep-RCU structure 671 * @ssp: structure to clean up. 672 * 673 * Must invoke this after you are finished using a given srcu_struct that 674 * was initialized via init_srcu_struct(), else you leak memory. 675 */ 676 void cleanup_srcu_struct(struct srcu_struct *ssp) 677 { 678 int cpu; 679 unsigned long delay; 680 struct srcu_usage *sup = ssp->srcu_sup; 681 682 spin_lock_irq_rcu_node(ssp->srcu_sup); 683 delay = srcu_get_delay(ssp); 684 spin_unlock_irq_rcu_node(ssp->srcu_sup); 685 if (WARN_ON(!delay)) 686 return; /* Just leak it! */ 687 if (WARN_ON(srcu_readers_active(ssp))) 688 return; /* Just leak it! */ 689 flush_delayed_work(&sup->work); 690 for_each_possible_cpu(cpu) { 691 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 692 693 timer_delete_sync(&sdp->delay_work); 694 flush_work(&sdp->work); 695 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) 696 return; /* Forgot srcu_barrier(), so just leak it! */ 697 } 698 if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) || 699 WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) || 700 WARN_ON(srcu_readers_active(ssp))) { 701 pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n", 702 __func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)), 703 rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed); 704 return; // Caller forgot to stop doing call_srcu()? 705 // Or caller invoked start_poll_synchronize_srcu() 706 // and then cleanup_srcu_struct() before that grace 707 // period ended? 708 } 709 kfree(sup->node); 710 sup->node = NULL; 711 sup->srcu_size_state = SRCU_SIZE_SMALL; 712 if (!sup->sda_is_static) { 713 free_percpu(ssp->sda); 714 ssp->sda = NULL; 715 kfree(sup); 716 ssp->srcu_sup = NULL; 717 } 718 } 719 EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 720 721 /* 722 * Check for consistent reader flavor. 723 */ 724 void __srcu_check_read_flavor(struct srcu_struct *ssp, int read_flavor) 725 { 726 int old_read_flavor; 727 struct srcu_data *sdp; 728 729 /* NMI-unsafe use in NMI is a bad sign, as is multi-bit read_flavor values. */ 730 WARN_ON_ONCE((read_flavor != SRCU_READ_FLAVOR_NMI) && in_nmi()); 731 WARN_ON_ONCE(read_flavor & (read_flavor - 1)); 732 733 sdp = raw_cpu_ptr(ssp->sda); 734 old_read_flavor = READ_ONCE(sdp->srcu_reader_flavor); 735 if (!old_read_flavor) { 736 old_read_flavor = cmpxchg(&sdp->srcu_reader_flavor, 0, read_flavor); 737 if (!old_read_flavor) 738 return; 739 } 740 WARN_ONCE(old_read_flavor != read_flavor, "CPU %d old state %d new state %d\n", sdp->cpu, old_read_flavor, read_flavor); 741 } 742 EXPORT_SYMBOL_GPL(__srcu_check_read_flavor); 743 744 /* 745 * Counts the new reader in the appropriate per-CPU element of the 746 * srcu_struct. 747 * Returns a guaranteed non-negative index that must be passed to the 748 * matching __srcu_read_unlock(). 749 */ 750 int __srcu_read_lock(struct srcu_struct *ssp) 751 { 752 struct srcu_ctr __percpu *scp = READ_ONCE(ssp->srcu_ctrp); 753 754 this_cpu_inc(scp->srcu_locks.counter); 755 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 756 return __srcu_ptr_to_ctr(ssp, scp); 757 } 758 EXPORT_SYMBOL_GPL(__srcu_read_lock); 759 760 /* 761 * Removes the count for the old reader from the appropriate per-CPU 762 * element of the srcu_struct. Note that this may well be a different 763 * CPU than that which was incremented by the corresponding srcu_read_lock(). 764 */ 765 void __srcu_read_unlock(struct srcu_struct *ssp, int idx) 766 { 767 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 768 this_cpu_inc(__srcu_ctr_to_ptr(ssp, idx)->srcu_unlocks.counter); 769 } 770 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 771 772 #ifdef CONFIG_NEED_SRCU_NMI_SAFE 773 774 /* 775 * Counts the new reader in the appropriate per-CPU element of the 776 * srcu_struct, but in an NMI-safe manner using RMW atomics. 777 * Returns an index that must be passed to the matching srcu_read_unlock(). 778 */ 779 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp) 780 { 781 struct srcu_ctr __percpu *scpp = READ_ONCE(ssp->srcu_ctrp); 782 struct srcu_ctr *scp = raw_cpu_ptr(scpp); 783 784 atomic_long_inc(&scp->srcu_locks); 785 smp_mb__after_atomic(); /* B */ /* Avoid leaking the critical section. */ 786 return __srcu_ptr_to_ctr(ssp, scpp); 787 } 788 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe); 789 790 /* 791 * Removes the count for the old reader from the appropriate per-CPU 792 * element of the srcu_struct. Note that this may well be a different 793 * CPU than that which was incremented by the corresponding srcu_read_lock(). 794 */ 795 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx) 796 { 797 smp_mb__before_atomic(); /* C */ /* Avoid leaking the critical section. */ 798 atomic_long_inc(&raw_cpu_ptr(__srcu_ctr_to_ptr(ssp, idx))->srcu_unlocks); 799 } 800 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe); 801 802 #endif // CONFIG_NEED_SRCU_NMI_SAFE 803 804 /* 805 * Start an SRCU grace period. 806 */ 807 static void srcu_gp_start(struct srcu_struct *ssp) 808 { 809 int state; 810 811 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 812 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)); 813 WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies); 814 WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0); 815 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 816 rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq); 817 state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq); 818 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 819 } 820 821 822 static void srcu_delay_timer(struct timer_list *t) 823 { 824 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); 825 826 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 827 } 828 829 static void srcu_queue_delayed_work_on(struct srcu_data *sdp, 830 unsigned long delay) 831 { 832 if (!delay) { 833 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 834 return; 835 } 836 837 timer_reduce(&sdp->delay_work, jiffies + delay); 838 } 839 840 /* 841 * Schedule callback invocation for the specified srcu_data structure, 842 * if possible, on the corresponding CPU. 843 */ 844 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 845 { 846 srcu_queue_delayed_work_on(sdp, delay); 847 } 848 849 /* 850 * Schedule callback invocation for all srcu_data structures associated 851 * with the specified srcu_node structure that have callbacks for the 852 * just-completed grace period, the one corresponding to idx. If possible, 853 * schedule this invocation on the corresponding CPUs. 854 */ 855 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, 856 unsigned long mask, unsigned long delay) 857 { 858 int cpu; 859 860 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 861 if (!(mask & (1UL << (cpu - snp->grplo)))) 862 continue; 863 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); 864 } 865 } 866 867 /* 868 * Note the end of an SRCU grace period. Initiates callback invocation 869 * and starts a new grace period if needed. 870 * 871 * The ->srcu_cb_mutex acquisition does not protect any data, but 872 * instead prevents more than one grace period from starting while we 873 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 874 * array to have a finite number of elements. 875 */ 876 static void srcu_gp_end(struct srcu_struct *ssp) 877 { 878 unsigned long cbdelay = 1; 879 bool cbs; 880 bool last_lvl; 881 int cpu; 882 unsigned long gpseq; 883 int idx; 884 unsigned long mask; 885 struct srcu_data *sdp; 886 unsigned long sgsne; 887 struct srcu_node *snp; 888 int ss_state; 889 struct srcu_usage *sup = ssp->srcu_sup; 890 891 /* Prevent more than one additional grace period. */ 892 mutex_lock(&sup->srcu_cb_mutex); 893 894 /* End the current grace period. */ 895 spin_lock_irq_rcu_node(sup); 896 idx = rcu_seq_state(sup->srcu_gp_seq); 897 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 898 if (srcu_gp_is_expedited(ssp)) 899 cbdelay = 0; 900 901 WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns()); 902 rcu_seq_end(&sup->srcu_gp_seq); 903 gpseq = rcu_seq_current(&sup->srcu_gp_seq); 904 if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq)) 905 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq); 906 spin_unlock_irq_rcu_node(sup); 907 mutex_unlock(&sup->srcu_gp_mutex); 908 /* A new grace period can start at this point. But only one. */ 909 910 /* Initiate callback invocation as needed. */ 911 ss_state = smp_load_acquire(&sup->srcu_size_state); 912 if (ss_state < SRCU_SIZE_WAIT_BARRIER) { 913 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()), 914 cbdelay); 915 } else { 916 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 917 srcu_for_each_node_breadth_first(ssp, snp) { 918 spin_lock_irq_rcu_node(snp); 919 cbs = false; 920 last_lvl = snp >= sup->level[rcu_num_lvls - 1]; 921 if (last_lvl) 922 cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq; 923 snp->srcu_have_cbs[idx] = gpseq; 924 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 925 sgsne = snp->srcu_gp_seq_needed_exp; 926 if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq)) 927 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq); 928 if (ss_state < SRCU_SIZE_BIG) 929 mask = ~0; 930 else 931 mask = snp->srcu_data_have_cbs[idx]; 932 snp->srcu_data_have_cbs[idx] = 0; 933 spin_unlock_irq_rcu_node(snp); 934 if (cbs) 935 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); 936 } 937 } 938 939 /* Occasionally prevent srcu_data counter wrap. */ 940 if (!(gpseq & counter_wrap_check)) 941 for_each_possible_cpu(cpu) { 942 sdp = per_cpu_ptr(ssp->sda, cpu); 943 spin_lock_irq_rcu_node(sdp); 944 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100)) 945 sdp->srcu_gp_seq_needed = gpseq; 946 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100)) 947 sdp->srcu_gp_seq_needed_exp = gpseq; 948 spin_unlock_irq_rcu_node(sdp); 949 } 950 951 /* Callback initiation done, allow grace periods after next. */ 952 mutex_unlock(&sup->srcu_cb_mutex); 953 954 /* Start a new grace period if needed. */ 955 spin_lock_irq_rcu_node(sup); 956 gpseq = rcu_seq_current(&sup->srcu_gp_seq); 957 if (!rcu_seq_state(gpseq) && 958 ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) { 959 srcu_gp_start(ssp); 960 spin_unlock_irq_rcu_node(sup); 961 srcu_reschedule(ssp, 0); 962 } else { 963 spin_unlock_irq_rcu_node(sup); 964 } 965 966 /* Transition to big if needed. */ 967 if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) { 968 if (ss_state == SRCU_SIZE_ALLOC) 969 init_srcu_struct_nodes(ssp, GFP_KERNEL); 970 else 971 smp_store_release(&sup->srcu_size_state, ss_state + 1); 972 } 973 } 974 975 /* 976 * Funnel-locking scheme to scalably mediate many concurrent expedited 977 * grace-period requests. This function is invoked for the first known 978 * expedited request for a grace period that has already been requested, 979 * but without expediting. To start a completely new grace period, 980 * whether expedited or not, use srcu_funnel_gp_start() instead. 981 */ 982 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, 983 unsigned long s) 984 { 985 unsigned long flags; 986 unsigned long sgsne; 987 988 if (snp) 989 for (; snp != NULL; snp = snp->srcu_parent) { 990 sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp); 991 if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) || 992 (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s))) 993 return; 994 spin_lock_irqsave_rcu_node(snp, flags); 995 sgsne = snp->srcu_gp_seq_needed_exp; 996 if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) { 997 spin_unlock_irqrestore_rcu_node(snp, flags); 998 return; 999 } 1000 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 1001 spin_unlock_irqrestore_rcu_node(snp, flags); 1002 } 1003 spin_lock_irqsave_ssp_contention(ssp, &flags); 1004 if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s)) 1005 WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s); 1006 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 1007 } 1008 1009 /* 1010 * Funnel-locking scheme to scalably mediate many concurrent grace-period 1011 * requests. The winner has to do the work of actually starting grace 1012 * period s. Losers must either ensure that their desired grace-period 1013 * number is recorded on at least their leaf srcu_node structure, or they 1014 * must take steps to invoke their own callbacks. 1015 * 1016 * Note that this function also does the work of srcu_funnel_exp_start(), 1017 * in some cases by directly invoking it. 1018 * 1019 * The srcu read lock should be hold around this function. And s is a seq snap 1020 * after holding that lock. 1021 */ 1022 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, 1023 unsigned long s, bool do_norm) 1024 { 1025 unsigned long flags; 1026 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 1027 unsigned long sgsne; 1028 struct srcu_node *snp; 1029 struct srcu_node *snp_leaf; 1030 unsigned long snp_seq; 1031 struct srcu_usage *sup = ssp->srcu_sup; 1032 1033 /* Ensure that snp node tree is fully initialized before traversing it */ 1034 if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 1035 snp_leaf = NULL; 1036 else 1037 snp_leaf = sdp->mynode; 1038 1039 if (snp_leaf) 1040 /* Each pass through the loop does one level of the srcu_node tree. */ 1041 for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) { 1042 if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf) 1043 return; /* GP already done and CBs recorded. */ 1044 spin_lock_irqsave_rcu_node(snp, flags); 1045 snp_seq = snp->srcu_have_cbs[idx]; 1046 if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) { 1047 if (snp == snp_leaf && snp_seq == s) 1048 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 1049 spin_unlock_irqrestore_rcu_node(snp, flags); 1050 if (snp == snp_leaf && snp_seq != s) { 1051 srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0); 1052 return; 1053 } 1054 if (!do_norm) 1055 srcu_funnel_exp_start(ssp, snp, s); 1056 return; 1057 } 1058 snp->srcu_have_cbs[idx] = s; 1059 if (snp == snp_leaf) 1060 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 1061 sgsne = snp->srcu_gp_seq_needed_exp; 1062 if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s))) 1063 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 1064 spin_unlock_irqrestore_rcu_node(snp, flags); 1065 } 1066 1067 /* Top of tree, must ensure the grace period will be started. */ 1068 spin_lock_irqsave_ssp_contention(ssp, &flags); 1069 if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) { 1070 /* 1071 * Record need for grace period s. Pair with load 1072 * acquire setting up for initialization. 1073 */ 1074 smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/ 1075 } 1076 if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s)) 1077 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s); 1078 1079 /* If grace period not already in progress, start it. */ 1080 if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && 1081 rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) { 1082 srcu_gp_start(ssp); 1083 1084 // And how can that list_add() in the "else" clause 1085 // possibly be safe for concurrent execution? Well, 1086 // it isn't. And it does not have to be. After all, it 1087 // can only be executed during early boot when there is only 1088 // the one boot CPU running with interrupts still disabled. 1089 if (likely(srcu_init_done)) 1090 queue_delayed_work(rcu_gp_wq, &sup->work, 1091 !!srcu_get_delay(ssp)); 1092 else if (list_empty(&sup->work.work.entry)) 1093 list_add(&sup->work.work.entry, &srcu_boot_list); 1094 } 1095 spin_unlock_irqrestore_rcu_node(sup, flags); 1096 } 1097 1098 /* 1099 * Wait until all readers counted by array index idx complete, but 1100 * loop an additional time if there is an expedited grace period pending. 1101 * The caller must ensure that ->srcu_ctrp is not changed while checking. 1102 */ 1103 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) 1104 { 1105 unsigned long curdelay; 1106 1107 spin_lock_irq_rcu_node(ssp->srcu_sup); 1108 curdelay = !srcu_get_delay(ssp); 1109 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1110 1111 for (;;) { 1112 if (srcu_readers_active_idx_check(ssp, idx)) 1113 return true; 1114 if ((--trycount + curdelay) <= 0) 1115 return false; 1116 udelay(srcu_retry_check_delay); 1117 } 1118 } 1119 1120 /* 1121 * Increment the ->srcu_ctrp counter so that future SRCU readers will 1122 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 1123 * us to wait for pre-existing readers in a starvation-free manner. 1124 */ 1125 static void srcu_flip(struct srcu_struct *ssp) 1126 { 1127 /* 1128 * Because the flip of ->srcu_ctrp is executed only if the 1129 * preceding call to srcu_readers_active_idx_check() found that 1130 * the ->srcu_ctrs[].srcu_unlocks and ->srcu_ctrs[].srcu_locks sums 1131 * matched and because that summing uses atomic_long_read(), 1132 * there is ordering due to a control dependency between that 1133 * summing and the WRITE_ONCE() in this call to srcu_flip(). 1134 * This ordering ensures that if this updater saw a given reader's 1135 * increment from __srcu_read_lock(), that reader was using a value 1136 * of ->srcu_ctrp from before the previous call to srcu_flip(), 1137 * which should be quite rare. This ordering thus helps forward 1138 * progress because the grace period could otherwise be delayed 1139 * by additional calls to __srcu_read_lock() using that old (soon 1140 * to be new) value of ->srcu_ctrp. 1141 * 1142 * This sum-equality check and ordering also ensures that if 1143 * a given call to __srcu_read_lock() uses the new value of 1144 * ->srcu_ctrp, this updater's earlier scans cannot have seen 1145 * that reader's increments, which is all to the good, because 1146 * this grace period need not wait on that reader. After all, 1147 * if those earlier scans had seen that reader, there would have 1148 * been a sum mismatch and this code would not be reached. 1149 * 1150 * This means that the following smp_mb() is redundant, but 1151 * it stays until either (1) Compilers learn about this sort of 1152 * control dependency or (2) Some production workload running on 1153 * a production system is unduly delayed by this slowpath smp_mb(). 1154 * Except for _lite() readers, where it is inoperative, which 1155 * means that it is a good thing that it is redundant. 1156 */ 1157 smp_mb(); /* E */ /* Pairs with B and C. */ 1158 1159 WRITE_ONCE(ssp->srcu_ctrp, 1160 &ssp->sda->srcu_ctrs[!(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0])]); 1161 1162 /* 1163 * Ensure that if the updater misses an __srcu_read_unlock() 1164 * increment, that task's __srcu_read_lock() following its next 1165 * __srcu_read_lock() or __srcu_read_unlock() will see the above 1166 * counter update. Note that both this memory barrier and the 1167 * one in srcu_readers_active_idx_check() provide the guarantee 1168 * for __srcu_read_lock(). 1169 */ 1170 smp_mb(); /* D */ /* Pairs with C. */ 1171 } 1172 1173 /* 1174 * If SRCU is likely idle, in other words, the next SRCU grace period 1175 * should be expedited, return true, otherwise return false. Except that 1176 * in the presence of _lite() readers, always return false. 1177 * 1178 * Note that it is OK for several current from-idle requests for a new 1179 * grace period from idle to specify expediting because they will all end 1180 * up requesting the same grace period anyhow. So no loss. 1181 * 1182 * Note also that if any CPU (including the current one) is still invoking 1183 * callbacks, this function will nevertheless say "idle". This is not 1184 * ideal, but the overhead of checking all CPUs' callback lists is even 1185 * less ideal, especially on large systems. Furthermore, the wakeup 1186 * can happen before the callback is fully removed, so we have no choice 1187 * but to accept this type of error. 1188 * 1189 * This function is also subject to counter-wrap errors, but let's face 1190 * it, if this function was preempted for enough time for the counters 1191 * to wrap, it really doesn't matter whether or not we expedite the grace 1192 * period. The extra overhead of a needlessly expedited grace period is 1193 * negligible when amortized over that time period, and the extra latency 1194 * of a needlessly non-expedited grace period is similarly negligible. 1195 */ 1196 static bool srcu_should_expedite(struct srcu_struct *ssp) 1197 { 1198 unsigned long curseq; 1199 unsigned long flags; 1200 struct srcu_data *sdp; 1201 unsigned long t; 1202 unsigned long tlast; 1203 1204 check_init_srcu_struct(ssp); 1205 /* If _lite() readers, don't do unsolicited expediting. */ 1206 if (this_cpu_read(ssp->sda->srcu_reader_flavor) & SRCU_READ_FLAVOR_SLOWGP) 1207 return false; 1208 /* If the local srcu_data structure has callbacks, not idle. */ 1209 sdp = raw_cpu_ptr(ssp->sda); 1210 spin_lock_irqsave_rcu_node(sdp, flags); 1211 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 1212 spin_unlock_irqrestore_rcu_node(sdp, flags); 1213 return false; /* Callbacks already present, so not idle. */ 1214 } 1215 spin_unlock_irqrestore_rcu_node(sdp, flags); 1216 1217 /* 1218 * No local callbacks, so probabilistically probe global state. 1219 * Exact information would require acquiring locks, which would 1220 * kill scalability, hence the probabilistic nature of the probe. 1221 */ 1222 1223 /* First, see if enough time has passed since the last GP. */ 1224 t = ktime_get_mono_fast_ns(); 1225 tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end); 1226 if (exp_holdoff == 0 || 1227 time_in_range_open(t, tlast, tlast + exp_holdoff)) 1228 return false; /* Too soon after last GP. */ 1229 1230 /* Next, check for probable idleness. */ 1231 curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); 1232 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 1233 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed))) 1234 return false; /* Grace period in progress, so not idle. */ 1235 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 1236 if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)) 1237 return false; /* GP # changed, so not idle. */ 1238 return true; /* With reasonable probability, idle! */ 1239 } 1240 1241 /* 1242 * SRCU callback function to leak a callback. 1243 */ 1244 static void srcu_leak_callback(struct rcu_head *rhp) 1245 { 1246 } 1247 1248 /* 1249 * Start an SRCU grace period, and also queue the callback if non-NULL. 1250 */ 1251 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp, 1252 struct rcu_head *rhp, bool do_norm) 1253 { 1254 unsigned long flags; 1255 int idx; 1256 bool needexp = false; 1257 bool needgp = false; 1258 unsigned long s; 1259 struct srcu_data *sdp; 1260 struct srcu_node *sdp_mynode; 1261 int ss_state; 1262 1263 check_init_srcu_struct(ssp); 1264 /* 1265 * While starting a new grace period, make sure we are in an 1266 * SRCU read-side critical section so that the grace-period 1267 * sequence number cannot wrap around in the meantime. 1268 */ 1269 idx = __srcu_read_lock_nmisafe(ssp); 1270 ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state); 1271 if (ss_state < SRCU_SIZE_WAIT_CALL) 1272 sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id()); 1273 else 1274 sdp = raw_cpu_ptr(ssp->sda); 1275 spin_lock_irqsave_sdp_contention(sdp, &flags); 1276 if (rhp) 1277 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp); 1278 /* 1279 * It's crucial to capture the snapshot 's' for acceleration before 1280 * reading the current gp_seq that is used for advancing. This is 1281 * essential because if the acceleration snapshot is taken after a 1282 * failed advancement attempt, there's a risk that a grace period may 1283 * conclude and a new one may start in the interim. If the snapshot is 1284 * captured after this sequence of events, the acceleration snapshot 's' 1285 * could be excessively advanced, leading to acceleration failure. 1286 * In such a scenario, an 'acceleration leak' can occur, where new 1287 * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment. 1288 * Also note that encountering advancing failures is a normal 1289 * occurrence when the grace period for RCU_WAIT_TAIL is in progress. 1290 * 1291 * To see this, consider the following events which occur if 1292 * rcu_seq_snap() were to be called after advance: 1293 * 1294 * 1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the 1295 * RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8). 1296 * 1297 * 2) The grace period for RCU_WAIT_TAIL is seen as started but not 1298 * completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1. 1299 * 1300 * 3) This value is passed to rcu_segcblist_advance() which can't move 1301 * any segment forward and fails. 1302 * 1303 * 4) srcu_gp_start_if_needed() still proceeds with callback acceleration. 1304 * But then the call to rcu_seq_snap() observes the grace period for the 1305 * RCU_WAIT_TAIL segment as completed and the subsequent one for the 1306 * RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1) 1307 * so it returns a snapshot of the next grace period, which is X + 12. 1308 * 1309 * 5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the 1310 * freshly enqueued callback in RCU_NEXT_TAIL can't move to 1311 * RCU_NEXT_READY_TAIL which already has callbacks for a previous grace 1312 * period (gp_num = X + 8). So acceleration fails. 1313 */ 1314 s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); 1315 if (rhp) { 1316 rcu_segcblist_advance(&sdp->srcu_cblist, 1317 rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); 1318 /* 1319 * Acceleration can never fail because the base current gp_seq 1320 * used for acceleration is <= the value of gp_seq used for 1321 * advancing. This means that RCU_NEXT_TAIL segment will 1322 * always be able to be emptied by the acceleration into the 1323 * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments. 1324 */ 1325 WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s)); 1326 } 1327 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 1328 sdp->srcu_gp_seq_needed = s; 1329 needgp = true; 1330 } 1331 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 1332 sdp->srcu_gp_seq_needed_exp = s; 1333 needexp = true; 1334 } 1335 spin_unlock_irqrestore_rcu_node(sdp, flags); 1336 1337 /* Ensure that snp node tree is fully initialized before traversing it */ 1338 if (ss_state < SRCU_SIZE_WAIT_BARRIER) 1339 sdp_mynode = NULL; 1340 else 1341 sdp_mynode = sdp->mynode; 1342 1343 if (needgp) 1344 srcu_funnel_gp_start(ssp, sdp, s, do_norm); 1345 else if (needexp) 1346 srcu_funnel_exp_start(ssp, sdp_mynode, s); 1347 __srcu_read_unlock_nmisafe(ssp, idx); 1348 return s; 1349 } 1350 1351 /* 1352 * Enqueue an SRCU callback on the srcu_data structure associated with 1353 * the current CPU and the specified srcu_struct structure, initiating 1354 * grace-period processing if it is not already running. 1355 * 1356 * Note that all CPUs must agree that the grace period extended beyond 1357 * all pre-existing SRCU read-side critical section. On systems with 1358 * more than one CPU, this means that when "func()" is invoked, each CPU 1359 * is guaranteed to have executed a full memory barrier since the end of 1360 * its last corresponding SRCU read-side critical section whose beginning 1361 * preceded the call to call_srcu(). It also means that each CPU executing 1362 * an SRCU read-side critical section that continues beyond the start of 1363 * "func()" must have executed a memory barrier after the call_srcu() 1364 * but before the beginning of that SRCU read-side critical section. 1365 * Note that these guarantees include CPUs that are offline, idle, or 1366 * executing in user mode, as well as CPUs that are executing in the kernel. 1367 * 1368 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the 1369 * resulting SRCU callback function "func()", then both CPU A and CPU 1370 * B are guaranteed to execute a full memory barrier during the time 1371 * interval between the call to call_srcu() and the invocation of "func()". 1372 * This guarantee applies even if CPU A and CPU B are the same CPU (but 1373 * again only if the system has more than one CPU). 1374 * 1375 * Of course, these guarantees apply only for invocations of call_srcu(), 1376 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 1377 * srcu_struct structure. 1378 */ 1379 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 1380 rcu_callback_t func, bool do_norm) 1381 { 1382 if (debug_rcu_head_queue(rhp)) { 1383 /* Probable double call_srcu(), so leak the callback. */ 1384 WRITE_ONCE(rhp->func, srcu_leak_callback); 1385 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 1386 return; 1387 } 1388 rhp->func = func; 1389 (void)srcu_gp_start_if_needed(ssp, rhp, do_norm); 1390 } 1391 1392 /** 1393 * call_srcu() - Queue a callback for invocation after an SRCU grace period 1394 * @ssp: srcu_struct in queue the callback 1395 * @rhp: structure to be used for queueing the SRCU callback. 1396 * @func: function to be invoked after the SRCU grace period 1397 * 1398 * The callback function will be invoked some time after a full SRCU 1399 * grace period elapses, in other words after all pre-existing SRCU 1400 * read-side critical sections have completed. However, the callback 1401 * function might well execute concurrently with other SRCU read-side 1402 * critical sections that started after call_srcu() was invoked. SRCU 1403 * read-side critical sections are delimited by srcu_read_lock() and 1404 * srcu_read_unlock(), and may be nested. 1405 * 1406 * The callback will be invoked from process context, but with bh 1407 * disabled. The callback function must therefore be fast and must 1408 * not block. 1409 * 1410 * See the description of call_rcu() for more detailed information on 1411 * memory ordering guarantees. 1412 */ 1413 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 1414 rcu_callback_t func) 1415 { 1416 __call_srcu(ssp, rhp, func, true); 1417 } 1418 EXPORT_SYMBOL_GPL(call_srcu); 1419 1420 /* 1421 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 1422 */ 1423 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) 1424 { 1425 struct rcu_synchronize rcu; 1426 1427 srcu_lock_sync(&ssp->dep_map); 1428 1429 RCU_LOCKDEP_WARN(lockdep_is_held(ssp) || 1430 lock_is_held(&rcu_bh_lock_map) || 1431 lock_is_held(&rcu_lock_map) || 1432 lock_is_held(&rcu_sched_lock_map), 1433 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 1434 1435 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 1436 return; 1437 might_sleep(); 1438 check_init_srcu_struct(ssp); 1439 init_completion(&rcu.completion); 1440 init_rcu_head_on_stack(&rcu.head); 1441 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); 1442 wait_for_completion(&rcu.completion); 1443 destroy_rcu_head_on_stack(&rcu.head); 1444 1445 /* 1446 * Make sure that later code is ordered after the SRCU grace 1447 * period. This pairs with the spin_lock_irq_rcu_node() 1448 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 1449 * because the current CPU might have been totally uninvolved with 1450 * (and thus unordered against) that grace period. 1451 */ 1452 smp_mb(); 1453 } 1454 1455 /** 1456 * synchronize_srcu_expedited - Brute-force SRCU grace period 1457 * @ssp: srcu_struct with which to synchronize. 1458 * 1459 * Wait for an SRCU grace period to elapse, but be more aggressive about 1460 * spinning rather than blocking when waiting. 1461 * 1462 * Note that synchronize_srcu_expedited() has the same deadlock and 1463 * memory-ordering properties as does synchronize_srcu(). 1464 */ 1465 void synchronize_srcu_expedited(struct srcu_struct *ssp) 1466 { 1467 __synchronize_srcu(ssp, rcu_gp_is_normal()); 1468 } 1469 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 1470 1471 /** 1472 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 1473 * @ssp: srcu_struct with which to synchronize. 1474 * 1475 * Wait for the count to drain to zero of both indexes. To avoid the 1476 * possible starvation of synchronize_srcu(), it waits for the count of 1477 * the index=!(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]) to drain to zero 1478 * at first, and then flip the ->srcu_ctrp and wait for the count of the 1479 * other index. 1480 * 1481 * Can block; must be called from process context. 1482 * 1483 * Note that it is illegal to call synchronize_srcu() from the corresponding 1484 * SRCU read-side critical section; doing so will result in deadlock. 1485 * However, it is perfectly legal to call synchronize_srcu() on one 1486 * srcu_struct from some other srcu_struct's read-side critical section, 1487 * as long as the resulting graph of srcu_structs is acyclic. 1488 * 1489 * There are memory-ordering constraints implied by synchronize_srcu(). 1490 * On systems with more than one CPU, when synchronize_srcu() returns, 1491 * each CPU is guaranteed to have executed a full memory barrier since 1492 * the end of its last corresponding SRCU read-side critical section 1493 * whose beginning preceded the call to synchronize_srcu(). In addition, 1494 * each CPU having an SRCU read-side critical section that extends beyond 1495 * the return from synchronize_srcu() is guaranteed to have executed a 1496 * full memory barrier after the beginning of synchronize_srcu() and before 1497 * the beginning of that SRCU read-side critical section. Note that these 1498 * guarantees include CPUs that are offline, idle, or executing in user mode, 1499 * as well as CPUs that are executing in the kernel. 1500 * 1501 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 1502 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 1503 * to have executed a full memory barrier during the execution of 1504 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 1505 * are the same CPU, but again only if the system has more than one CPU. 1506 * 1507 * Of course, these memory-ordering guarantees apply only when 1508 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 1509 * passed the same srcu_struct structure. 1510 * 1511 * Implementation of these memory-ordering guarantees is similar to 1512 * that of synchronize_rcu(). 1513 * 1514 * If SRCU is likely idle as determined by srcu_should_expedite(), 1515 * expedite the first request. This semantic was provided by Classic SRCU, 1516 * and is relied upon by its users, so TREE SRCU must also provide it. 1517 * Note that detecting idleness is heuristic and subject to both false 1518 * positives and negatives. 1519 */ 1520 void synchronize_srcu(struct srcu_struct *ssp) 1521 { 1522 if (srcu_should_expedite(ssp) || rcu_gp_is_expedited()) 1523 synchronize_srcu_expedited(ssp); 1524 else 1525 __synchronize_srcu(ssp, true); 1526 } 1527 EXPORT_SYMBOL_GPL(synchronize_srcu); 1528 1529 /** 1530 * get_state_synchronize_srcu - Provide an end-of-grace-period cookie 1531 * @ssp: srcu_struct to provide cookie for. 1532 * 1533 * This function returns a cookie that can be passed to 1534 * poll_state_synchronize_srcu(), which will return true if a full grace 1535 * period has elapsed in the meantime. It is the caller's responsibility 1536 * to make sure that grace period happens, for example, by invoking 1537 * call_srcu() after return from get_state_synchronize_srcu(). 1538 */ 1539 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp) 1540 { 1541 // Any prior manipulation of SRCU-protected data must happen 1542 // before the load from ->srcu_gp_seq. 1543 smp_mb(); 1544 return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); 1545 } 1546 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu); 1547 1548 /** 1549 * start_poll_synchronize_srcu - Provide cookie and start grace period 1550 * @ssp: srcu_struct to provide cookie for. 1551 * 1552 * This function returns a cookie that can be passed to 1553 * poll_state_synchronize_srcu(), which will return true if a full grace 1554 * period has elapsed in the meantime. Unlike get_state_synchronize_srcu(), 1555 * this function also ensures that any needed SRCU grace period will be 1556 * started. This convenience does come at a cost in terms of CPU overhead. 1557 */ 1558 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp) 1559 { 1560 return srcu_gp_start_if_needed(ssp, NULL, true); 1561 } 1562 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu); 1563 1564 /** 1565 * poll_state_synchronize_srcu - Has cookie's grace period ended? 1566 * @ssp: srcu_struct to provide cookie for. 1567 * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu(). 1568 * 1569 * This function takes the cookie that was returned from either 1570 * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and 1571 * returns @true if an SRCU grace period elapsed since the time that the 1572 * cookie was created. 1573 * 1574 * Because cookies are finite in size, wrapping/overflow is possible. 1575 * This is more pronounced on 32-bit systems where cookies are 32 bits, 1576 * where in theory wrapping could happen in about 14 hours assuming 1577 * 25-microsecond expedited SRCU grace periods. However, a more likely 1578 * overflow lower bound is on the order of 24 days in the case of 1579 * one-millisecond SRCU grace periods. Of course, wrapping in a 64-bit 1580 * system requires geologic timespans, as in more than seven million years 1581 * even for expedited SRCU grace periods. 1582 * 1583 * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems 1584 * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU. This uses 1585 * a 16-bit cookie, which rcutorture routinely wraps in a matter of a 1586 * few minutes. If this proves to be a problem, this counter will be 1587 * expanded to the same size as for Tree SRCU. 1588 */ 1589 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie) 1590 { 1591 if (cookie != SRCU_GET_STATE_COMPLETED && 1592 !rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie)) 1593 return false; 1594 // Ensure that the end of the SRCU grace period happens before 1595 // any subsequent code that the caller might execute. 1596 smp_mb(); // ^^^ 1597 return true; 1598 } 1599 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu); 1600 1601 /* 1602 * Callback function for srcu_barrier() use. 1603 */ 1604 static void srcu_barrier_cb(struct rcu_head *rhp) 1605 { 1606 struct srcu_data *sdp; 1607 struct srcu_struct *ssp; 1608 1609 rhp->next = rhp; // Mark the callback as having been invoked. 1610 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1611 ssp = sdp->ssp; 1612 if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) 1613 complete(&ssp->srcu_sup->srcu_barrier_completion); 1614 } 1615 1616 /* 1617 * Enqueue an srcu_barrier() callback on the specified srcu_data 1618 * structure's ->cblist. but only if that ->cblist already has at least one 1619 * callback enqueued. Note that if a CPU already has callbacks enqueue, 1620 * it must have already registered the need for a future grace period, 1621 * so all we need do is enqueue a callback that will use the same grace 1622 * period as the last callback already in the queue. 1623 */ 1624 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp) 1625 { 1626 spin_lock_irq_rcu_node(sdp); 1627 atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt); 1628 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1629 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1630 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1631 &sdp->srcu_barrier_head)) { 1632 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1633 atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt); 1634 } 1635 spin_unlock_irq_rcu_node(sdp); 1636 } 1637 1638 /** 1639 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1640 * @ssp: srcu_struct on which to wait for in-flight callbacks. 1641 */ 1642 void srcu_barrier(struct srcu_struct *ssp) 1643 { 1644 int cpu; 1645 int idx; 1646 unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq); 1647 1648 check_init_srcu_struct(ssp); 1649 mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex); 1650 if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) { 1651 smp_mb(); /* Force ordering following return. */ 1652 mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); 1653 return; /* Someone else did our work for us. */ 1654 } 1655 rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq); 1656 init_completion(&ssp->srcu_sup->srcu_barrier_completion); 1657 1658 /* Initial count prevents reaching zero until all CBs are posted. */ 1659 atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1); 1660 1661 idx = __srcu_read_lock_nmisafe(ssp); 1662 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 1663 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, get_boot_cpu_id())); 1664 else 1665 for_each_possible_cpu(cpu) 1666 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu)); 1667 __srcu_read_unlock_nmisafe(ssp, idx); 1668 1669 /* Remove the initial count, at which point reaching zero can happen. */ 1670 if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) 1671 complete(&ssp->srcu_sup->srcu_barrier_completion); 1672 wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion); 1673 1674 rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq); 1675 mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); 1676 } 1677 EXPORT_SYMBOL_GPL(srcu_barrier); 1678 1679 /** 1680 * srcu_batches_completed - return batches completed. 1681 * @ssp: srcu_struct on which to report batch completion. 1682 * 1683 * Report the number of batches, correlated with, but not necessarily 1684 * precisely the same as, the number of grace periods that have elapsed. 1685 */ 1686 unsigned long srcu_batches_completed(struct srcu_struct *ssp) 1687 { 1688 return READ_ONCE(ssp->srcu_sup->srcu_gp_seq); 1689 } 1690 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1691 1692 /* 1693 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1694 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1695 * completed in that state. 1696 */ 1697 static void srcu_advance_state(struct srcu_struct *ssp) 1698 { 1699 int idx; 1700 1701 mutex_lock(&ssp->srcu_sup->srcu_gp_mutex); 1702 1703 /* 1704 * Because readers might be delayed for an extended period after 1705 * fetching ->srcu_ctrp for their index, at any point in time there 1706 * might well be readers using both idx=0 and idx=1. We therefore 1707 * need to wait for readers to clear from both index values before 1708 * invoking a callback. 1709 * 1710 * The load-acquire ensures that we see the accesses performed 1711 * by the prior grace period. 1712 */ 1713 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */ 1714 if (idx == SRCU_STATE_IDLE) { 1715 spin_lock_irq_rcu_node(ssp->srcu_sup); 1716 if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { 1717 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)); 1718 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1719 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1720 return; 1721 } 1722 idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)); 1723 if (idx == SRCU_STATE_IDLE) 1724 srcu_gp_start(ssp); 1725 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1726 if (idx != SRCU_STATE_IDLE) { 1727 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1728 return; /* Someone else started the grace period. */ 1729 } 1730 } 1731 1732 if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1733 idx = !(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]); 1734 if (!try_check_zero(ssp, idx, 1)) { 1735 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1736 return; /* readers present, retry later. */ 1737 } 1738 srcu_flip(ssp); 1739 spin_lock_irq_rcu_node(ssp->srcu_sup); 1740 rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2); 1741 ssp->srcu_sup->srcu_n_exp_nodelay = 0; 1742 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1743 } 1744 1745 if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1746 1747 /* 1748 * SRCU read-side critical sections are normally short, 1749 * so check at least twice in quick succession after a flip. 1750 */ 1751 idx = !(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]); 1752 if (!try_check_zero(ssp, idx, 2)) { 1753 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1754 return; /* readers present, retry later. */ 1755 } 1756 ssp->srcu_sup->srcu_n_exp_nodelay = 0; 1757 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ 1758 } 1759 } 1760 1761 /* 1762 * Invoke a limited number of SRCU callbacks that have passed through 1763 * their grace period. If there are more to do, SRCU will reschedule 1764 * the workqueue. Note that needed memory barriers have been executed 1765 * in this task's context by srcu_readers_active_idx_check(). 1766 */ 1767 static void srcu_invoke_callbacks(struct work_struct *work) 1768 { 1769 long len; 1770 bool more; 1771 struct rcu_cblist ready_cbs; 1772 struct rcu_head *rhp; 1773 struct srcu_data *sdp; 1774 struct srcu_struct *ssp; 1775 1776 sdp = container_of(work, struct srcu_data, work); 1777 1778 ssp = sdp->ssp; 1779 rcu_cblist_init(&ready_cbs); 1780 spin_lock_irq_rcu_node(sdp); 1781 WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL)); 1782 rcu_segcblist_advance(&sdp->srcu_cblist, 1783 rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); 1784 /* 1785 * Although this function is theoretically re-entrant, concurrent 1786 * callbacks invocation is disallowed to avoid executing an SRCU barrier 1787 * too early. 1788 */ 1789 if (sdp->srcu_cblist_invoking || 1790 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1791 spin_unlock_irq_rcu_node(sdp); 1792 return; /* Someone else on the job or nothing to do. */ 1793 } 1794 1795 /* We are on the job! Extract and invoke ready callbacks. */ 1796 sdp->srcu_cblist_invoking = true; 1797 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1798 len = ready_cbs.len; 1799 spin_unlock_irq_rcu_node(sdp); 1800 rhp = rcu_cblist_dequeue(&ready_cbs); 1801 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1802 debug_rcu_head_unqueue(rhp); 1803 debug_rcu_head_callback(rhp); 1804 local_bh_disable(); 1805 rhp->func(rhp); 1806 local_bh_enable(); 1807 } 1808 WARN_ON_ONCE(ready_cbs.len); 1809 1810 /* 1811 * Update counts, accelerate new callbacks, and if needed, 1812 * schedule another round of callback invocation. 1813 */ 1814 spin_lock_irq_rcu_node(sdp); 1815 rcu_segcblist_add_len(&sdp->srcu_cblist, -len); 1816 sdp->srcu_cblist_invoking = false; 1817 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1818 spin_unlock_irq_rcu_node(sdp); 1819 /* An SRCU barrier or callbacks from previous nesting work pending */ 1820 if (more) 1821 srcu_schedule_cbs_sdp(sdp, 0); 1822 } 1823 1824 /* 1825 * Finished one round of SRCU grace period. Start another if there are 1826 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1827 */ 1828 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) 1829 { 1830 bool pushgp = true; 1831 1832 spin_lock_irq_rcu_node(ssp->srcu_sup); 1833 if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { 1834 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) { 1835 /* All requests fulfilled, time to go idle. */ 1836 pushgp = false; 1837 } 1838 } else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) { 1839 /* Outstanding request and no GP. Start one. */ 1840 srcu_gp_start(ssp); 1841 } 1842 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1843 1844 if (pushgp) 1845 queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay); 1846 } 1847 1848 /* 1849 * This is the work-queue function that handles SRCU grace periods. 1850 */ 1851 static void process_srcu(struct work_struct *work) 1852 { 1853 unsigned long curdelay; 1854 unsigned long j; 1855 struct srcu_struct *ssp; 1856 struct srcu_usage *sup; 1857 1858 sup = container_of(work, struct srcu_usage, work.work); 1859 ssp = sup->srcu_ssp; 1860 1861 srcu_advance_state(ssp); 1862 spin_lock_irq_rcu_node(ssp->srcu_sup); 1863 curdelay = srcu_get_delay(ssp); 1864 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1865 if (curdelay) { 1866 WRITE_ONCE(sup->reschedule_count, 0); 1867 } else { 1868 j = jiffies; 1869 if (READ_ONCE(sup->reschedule_jiffies) == j) { 1870 ASSERT_EXCLUSIVE_WRITER(sup->reschedule_count); 1871 WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1); 1872 if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay) 1873 curdelay = 1; 1874 } else { 1875 WRITE_ONCE(sup->reschedule_count, 1); 1876 WRITE_ONCE(sup->reschedule_jiffies, j); 1877 } 1878 } 1879 srcu_reschedule(ssp, curdelay); 1880 } 1881 1882 void srcutorture_get_gp_data(struct srcu_struct *ssp, int *flags, 1883 unsigned long *gp_seq) 1884 { 1885 *flags = 0; 1886 *gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); 1887 } 1888 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1889 1890 static const char * const srcu_size_state_name[] = { 1891 "SRCU_SIZE_SMALL", 1892 "SRCU_SIZE_ALLOC", 1893 "SRCU_SIZE_WAIT_BARRIER", 1894 "SRCU_SIZE_WAIT_CALL", 1895 "SRCU_SIZE_WAIT_CBS1", 1896 "SRCU_SIZE_WAIT_CBS2", 1897 "SRCU_SIZE_WAIT_CBS3", 1898 "SRCU_SIZE_WAIT_CBS4", 1899 "SRCU_SIZE_BIG", 1900 "SRCU_SIZE_???", 1901 }; 1902 1903 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) 1904 { 1905 int cpu; 1906 int idx; 1907 unsigned long s0 = 0, s1 = 0; 1908 int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state); 1909 int ss_state_idx = ss_state; 1910 1911 idx = ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]; 1912 if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name)) 1913 ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1; 1914 pr_alert("%s%s Tree SRCU g%ld state %d (%s)", 1915 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state, 1916 srcu_size_state_name[ss_state_idx]); 1917 if (!ssp->sda) { 1918 // Called after cleanup_srcu_struct(), perhaps. 1919 pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n"); 1920 } else { 1921 pr_cont(" per-CPU(idx=%d):", idx); 1922 for_each_possible_cpu(cpu) { 1923 unsigned long l0, l1; 1924 unsigned long u0, u1; 1925 long c0, c1; 1926 struct srcu_data *sdp; 1927 1928 sdp = per_cpu_ptr(ssp->sda, cpu); 1929 u0 = data_race(atomic_long_read(&sdp->srcu_ctrs[!idx].srcu_unlocks)); 1930 u1 = data_race(atomic_long_read(&sdp->srcu_ctrs[idx].srcu_unlocks)); 1931 1932 /* 1933 * Make sure that a lock is always counted if the corresponding 1934 * unlock is counted. 1935 */ 1936 smp_rmb(); 1937 1938 l0 = data_race(atomic_long_read(&sdp->srcu_ctrs[!idx].srcu_locks)); 1939 l1 = data_race(atomic_long_read(&sdp->srcu_ctrs[idx].srcu_locks)); 1940 1941 c0 = l0 - u0; 1942 c1 = l1 - u1; 1943 pr_cont(" %d(%ld,%ld %c)", 1944 cpu, c0, c1, 1945 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]); 1946 s0 += c0; 1947 s1 += c1; 1948 } 1949 pr_cont(" T(%ld,%ld)\n", s0, s1); 1950 } 1951 if (SRCU_SIZING_IS_TORTURE()) 1952 srcu_transition_to_big(ssp); 1953 } 1954 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1955 1956 static int __init srcu_bootup_announce(void) 1957 { 1958 pr_info("Hierarchical SRCU implementation.\n"); 1959 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1960 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1961 if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY) 1962 pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay); 1963 if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY) 1964 pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay); 1965 pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase); 1966 return 0; 1967 } 1968 early_initcall(srcu_bootup_announce); 1969 1970 void __init srcu_init(void) 1971 { 1972 struct srcu_usage *sup; 1973 1974 /* Decide on srcu_struct-size strategy. */ 1975 if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) { 1976 if (nr_cpu_ids >= big_cpu_lim) { 1977 convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention. 1978 pr_info("%s: Setting srcu_struct sizes to big.\n", __func__); 1979 } else { 1980 convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND; 1981 pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__); 1982 } 1983 } 1984 1985 /* 1986 * Once that is set, call_srcu() can follow the normal path and 1987 * queue delayed work. This must follow RCU workqueues creation 1988 * and timers initialization. 1989 */ 1990 srcu_init_done = true; 1991 while (!list_empty(&srcu_boot_list)) { 1992 sup = list_first_entry(&srcu_boot_list, struct srcu_usage, 1993 work.work.entry); 1994 list_del_init(&sup->work.work.entry); 1995 if (SRCU_SIZING_IS(SRCU_SIZING_INIT) && 1996 sup->srcu_size_state == SRCU_SIZE_SMALL) 1997 sup->srcu_size_state = SRCU_SIZE_ALLOC; 1998 queue_work(rcu_gp_wq, &sup->work.work); 1999 } 2000 } 2001 2002 #ifdef CONFIG_MODULES 2003 2004 /* Initialize any global-scope srcu_struct structures used by this module. */ 2005 static int srcu_module_coming(struct module *mod) 2006 { 2007 int i; 2008 struct srcu_struct *ssp; 2009 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 2010 2011 for (i = 0; i < mod->num_srcu_structs; i++) { 2012 ssp = *(sspp++); 2013 ssp->sda = alloc_percpu(struct srcu_data); 2014 if (WARN_ON_ONCE(!ssp->sda)) 2015 return -ENOMEM; 2016 ssp->srcu_ctrp = &ssp->sda->srcu_ctrs[0]; 2017 } 2018 return 0; 2019 } 2020 2021 /* Clean up any global-scope srcu_struct structures used by this module. */ 2022 static void srcu_module_going(struct module *mod) 2023 { 2024 int i; 2025 struct srcu_struct *ssp; 2026 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 2027 2028 for (i = 0; i < mod->num_srcu_structs; i++) { 2029 ssp = *(sspp++); 2030 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) && 2031 !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static)) 2032 cleanup_srcu_struct(ssp); 2033 if (!WARN_ON(srcu_readers_active(ssp))) 2034 free_percpu(ssp->sda); 2035 } 2036 } 2037 2038 /* Handle one module, either coming or going. */ 2039 static int srcu_module_notify(struct notifier_block *self, 2040 unsigned long val, void *data) 2041 { 2042 struct module *mod = data; 2043 int ret = 0; 2044 2045 switch (val) { 2046 case MODULE_STATE_COMING: 2047 ret = srcu_module_coming(mod); 2048 break; 2049 case MODULE_STATE_GOING: 2050 srcu_module_going(mod); 2051 break; 2052 default: 2053 break; 2054 } 2055 return ret; 2056 } 2057 2058 static struct notifier_block srcu_module_nb = { 2059 .notifier_call = srcu_module_notify, 2060 .priority = 0, 2061 }; 2062 2063 static __init int init_srcu_module_notifier(void) 2064 { 2065 int ret; 2066 2067 ret = register_module_notifier(&srcu_module_nb); 2068 if (ret) 2069 pr_warn("Failed to register srcu module notifier\n"); 2070 return ret; 2071 } 2072 late_initcall(init_srcu_module_notifier); 2073 2074 #endif /* #ifdef CONFIG_MODULES */ 2075