xref: /linux/kernel/rcu/srcutree.c (revision f49040c7aaa5532a1f94355ef5073c49e6b32349)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Authors: Paul McKenney <paulmck@linux.ibm.com>
9  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *		Documentation/RCU/ *.txt
13  *
14  */
15 
16 #define pr_fmt(fmt) "rcu: " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/srcu.h>
29 
30 #include "rcu.h"
31 #include "rcu_segcblist.h"
32 
33 /* Holdoff in nanoseconds for auto-expediting. */
34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
36 module_param(exp_holdoff, ulong, 0444);
37 
38 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
39 static ulong counter_wrap_check = (ULONG_MAX >> 2);
40 module_param(counter_wrap_check, ulong, 0444);
41 
42 /*
43  * Control conversion to SRCU_SIZE_BIG:
44  *    0: Don't convert at all.
45  *    1: Convert at init_srcu_struct() time.
46  *    2: Convert when rcutorture invokes srcu_torture_stats_print().
47  *    3: Decide at boot time based on system shape (default).
48  * 0x1x: Convert when excessive contention encountered.
49  */
50 #define SRCU_SIZING_NONE	0
51 #define SRCU_SIZING_INIT	1
52 #define SRCU_SIZING_TORTURE	2
53 #define SRCU_SIZING_AUTO	3
54 #define SRCU_SIZING_CONTEND	0x10
55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
60 static int convert_to_big = SRCU_SIZING_AUTO;
61 module_param(convert_to_big, int, 0444);
62 
63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
64 static int big_cpu_lim __read_mostly = 128;
65 module_param(big_cpu_lim, int, 0444);
66 
67 /* Contention events per jiffy to initiate transition to big. */
68 static int small_contention_lim __read_mostly = 100;
69 module_param(small_contention_lim, int, 0444);
70 
71 /* Early-boot callback-management, so early that no lock is required! */
72 static LIST_HEAD(srcu_boot_list);
73 static bool __read_mostly srcu_init_done;
74 
75 static void srcu_invoke_callbacks(struct work_struct *work);
76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
77 static void process_srcu(struct work_struct *work);
78 static void srcu_delay_timer(struct timer_list *t);
79 
80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
81 #define spin_lock_rcu_node(p)							\
82 do {										\
83 	spin_lock(&ACCESS_PRIVATE(p, lock));					\
84 	smp_mb__after_unlock_lock();						\
85 } while (0)
86 
87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
88 
89 #define spin_lock_irq_rcu_node(p)						\
90 do {										\
91 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));				\
92 	smp_mb__after_unlock_lock();						\
93 } while (0)
94 
95 #define spin_unlock_irq_rcu_node(p)						\
96 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
97 
98 #define spin_lock_irqsave_rcu_node(p, flags)					\
99 do {										\
100 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);			\
101 	smp_mb__after_unlock_lock();						\
102 } while (0)
103 
104 #define spin_trylock_irqsave_rcu_node(p, flags)					\
105 ({										\
106 	bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
107 										\
108 	if (___locked)								\
109 		smp_mb__after_unlock_lock();					\
110 	___locked;								\
111 })
112 
113 #define spin_unlock_irqrestore_rcu_node(p, flags)				\
114 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)			\
115 
116 /*
117  * Initialize SRCU per-CPU data.  Note that statically allocated
118  * srcu_struct structures might already have srcu_read_lock() and
119  * srcu_read_unlock() running against them.  So if the is_static
120  * parameter is set, don't initialize ->srcu_ctrs[].srcu_locks and
121  * ->srcu_ctrs[].srcu_unlocks.
122  */
init_srcu_struct_data(struct srcu_struct * ssp)123 static void init_srcu_struct_data(struct srcu_struct *ssp)
124 {
125 	int cpu;
126 	struct srcu_data *sdp;
127 
128 	/*
129 	 * Initialize the per-CPU srcu_data array, which feeds into the
130 	 * leaves of the srcu_node tree.
131 	 */
132 	for_each_possible_cpu(cpu) {
133 		sdp = per_cpu_ptr(ssp->sda, cpu);
134 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
135 		rcu_segcblist_init(&sdp->srcu_cblist);
136 		sdp->srcu_cblist_invoking = false;
137 		sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq;
138 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq;
139 		sdp->srcu_barrier_head.next = &sdp->srcu_barrier_head;
140 		sdp->mynode = NULL;
141 		sdp->cpu = cpu;
142 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
143 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
144 		sdp->ssp = ssp;
145 	}
146 }
147 
148 /* Invalid seq state, used during snp node initialization */
149 #define SRCU_SNP_INIT_SEQ		0x2
150 
151 /*
152  * Check whether sequence number corresponding to snp node,
153  * is invalid.
154  */
srcu_invl_snp_seq(unsigned long s)155 static inline bool srcu_invl_snp_seq(unsigned long s)
156 {
157 	return s == SRCU_SNP_INIT_SEQ;
158 }
159 
160 /*
161  * Allocated and initialize SRCU combining tree.  Returns @true if
162  * allocation succeeded and @false otherwise.
163  */
init_srcu_struct_nodes(struct srcu_struct * ssp,gfp_t gfp_flags)164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
165 {
166 	int cpu;
167 	int i;
168 	int level = 0;
169 	int levelspread[RCU_NUM_LVLS];
170 	struct srcu_data *sdp;
171 	struct srcu_node *snp;
172 	struct srcu_node *snp_first;
173 
174 	/* Initialize geometry if it has not already been initialized. */
175 	rcu_init_geometry();
176 	ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags);
177 	if (!ssp->srcu_sup->node)
178 		return false;
179 
180 	/* Work out the overall tree geometry. */
181 	ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0];
182 	for (i = 1; i < rcu_num_lvls; i++)
183 		ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1];
184 	rcu_init_levelspread(levelspread, num_rcu_lvl);
185 
186 	/* Each pass through this loop initializes one srcu_node structure. */
187 	srcu_for_each_node_breadth_first(ssp, snp) {
188 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
189 		BUILD_BUG_ON(ARRAY_SIZE(snp->srcu_have_cbs) !=
190 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
191 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
192 			snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
193 			snp->srcu_data_have_cbs[i] = 0;
194 		}
195 		snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
196 		snp->grplo = -1;
197 		snp->grphi = -1;
198 		if (snp == &ssp->srcu_sup->node[0]) {
199 			/* Root node, special case. */
200 			snp->srcu_parent = NULL;
201 			continue;
202 		}
203 
204 		/* Non-root node. */
205 		if (snp == ssp->srcu_sup->level[level + 1])
206 			level++;
207 		snp->srcu_parent = ssp->srcu_sup->level[level - 1] +
208 				   (snp - ssp->srcu_sup->level[level]) /
209 				   levelspread[level - 1];
210 	}
211 
212 	/*
213 	 * Initialize the per-CPU srcu_data array, which feeds into the
214 	 * leaves of the srcu_node tree.
215 	 */
216 	level = rcu_num_lvls - 1;
217 	snp_first = ssp->srcu_sup->level[level];
218 	for_each_possible_cpu(cpu) {
219 		sdp = per_cpu_ptr(ssp->sda, cpu);
220 		sdp->mynode = &snp_first[cpu / levelspread[level]];
221 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
222 			if (snp->grplo < 0)
223 				snp->grplo = cpu;
224 			snp->grphi = cpu;
225 		}
226 		sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo);
227 	}
228 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
229 	return true;
230 }
231 
232 /*
233  * Initialize non-compile-time initialized fields, including the
234  * associated srcu_node and srcu_data structures.  The is_static parameter
235  * tells us that ->sda has already been wired up to srcu_data.
236  */
init_srcu_struct_fields(struct srcu_struct * ssp,bool is_static)237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
238 {
239 	if (!is_static)
240 		ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL);
241 	if (!ssp->srcu_sup)
242 		return -ENOMEM;
243 	if (!is_static)
244 		spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
245 	ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL;
246 	ssp->srcu_sup->node = NULL;
247 	mutex_init(&ssp->srcu_sup->srcu_cb_mutex);
248 	mutex_init(&ssp->srcu_sup->srcu_gp_mutex);
249 	ssp->srcu_sup->srcu_gp_seq = SRCU_GP_SEQ_INITIAL_VAL;
250 	ssp->srcu_sup->srcu_barrier_seq = 0;
251 	mutex_init(&ssp->srcu_sup->srcu_barrier_mutex);
252 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0);
253 	INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu);
254 	ssp->srcu_sup->sda_is_static = is_static;
255 	if (!is_static) {
256 		ssp->sda = alloc_percpu(struct srcu_data);
257 		ssp->srcu_ctrp = &ssp->sda->srcu_ctrs[0];
258 	}
259 	if (!ssp->sda)
260 		goto err_free_sup;
261 	init_srcu_struct_data(ssp);
262 	ssp->srcu_sup->srcu_gp_seq_needed_exp = SRCU_GP_SEQ_INITIAL_VAL;
263 	ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns();
264 	if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
265 		if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC))
266 			goto err_free_sda;
267 		WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG);
268 	}
269 	ssp->srcu_sup->srcu_ssp = ssp;
270 	smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed,
271 			SRCU_GP_SEQ_INITIAL_VAL); /* Init done. */
272 	return 0;
273 
274 err_free_sda:
275 	if (!is_static) {
276 		free_percpu(ssp->sda);
277 		ssp->sda = NULL;
278 	}
279 err_free_sup:
280 	if (!is_static) {
281 		kfree(ssp->srcu_sup);
282 		ssp->srcu_sup = NULL;
283 	}
284 	return -ENOMEM;
285 }
286 
287 #ifdef CONFIG_DEBUG_LOCK_ALLOC
288 
__init_srcu_struct(struct srcu_struct * ssp,const char * name,struct lock_class_key * key)289 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
290 		       struct lock_class_key *key)
291 {
292 	/* Don't re-initialize a lock while it is held. */
293 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
294 	lockdep_init_map(&ssp->dep_map, name, key, 0);
295 	return init_srcu_struct_fields(ssp, false);
296 }
297 EXPORT_SYMBOL_GPL(__init_srcu_struct);
298 
299 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
300 
301 /**
302  * init_srcu_struct - initialize a sleep-RCU structure
303  * @ssp: structure to initialize.
304  *
305  * Must invoke this on a given srcu_struct before passing that srcu_struct
306  * to any other function.  Each srcu_struct represents a separate domain
307  * of SRCU protection.
308  */
init_srcu_struct(struct srcu_struct * ssp)309 int init_srcu_struct(struct srcu_struct *ssp)
310 {
311 	return init_srcu_struct_fields(ssp, false);
312 }
313 EXPORT_SYMBOL_GPL(init_srcu_struct);
314 
315 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
316 
317 /*
318  * Initiate a transition to SRCU_SIZE_BIG with lock held.
319  */
__srcu_transition_to_big(struct srcu_struct * ssp)320 static void __srcu_transition_to_big(struct srcu_struct *ssp)
321 {
322 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
323 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC);
324 }
325 
326 /*
327  * Initiate an idempotent transition to SRCU_SIZE_BIG.
328  */
srcu_transition_to_big(struct srcu_struct * ssp)329 static void srcu_transition_to_big(struct srcu_struct *ssp)
330 {
331 	unsigned long flags;
332 
333 	/* Double-checked locking on ->srcu_size-state. */
334 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL)
335 		return;
336 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
337 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) {
338 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
339 		return;
340 	}
341 	__srcu_transition_to_big(ssp);
342 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
343 }
344 
345 /*
346  * Check to see if the just-encountered contention event justifies
347  * a transition to SRCU_SIZE_BIG.
348  */
spin_lock_irqsave_check_contention(struct srcu_struct * ssp)349 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
350 {
351 	unsigned long j;
352 
353 	if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state)
354 		return;
355 	j = jiffies;
356 	if (ssp->srcu_sup->srcu_size_jiffies != j) {
357 		ssp->srcu_sup->srcu_size_jiffies = j;
358 		ssp->srcu_sup->srcu_n_lock_retries = 0;
359 	}
360 	if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim)
361 		return;
362 	__srcu_transition_to_big(ssp);
363 }
364 
365 /*
366  * Acquire the specified srcu_data structure's ->lock, but check for
367  * excessive contention, which results in initiation of a transition
368  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
369  * parameter permits this.
370  */
spin_lock_irqsave_sdp_contention(struct srcu_data * sdp,unsigned long * flags)371 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
372 {
373 	struct srcu_struct *ssp = sdp->ssp;
374 
375 	if (spin_trylock_irqsave_rcu_node(sdp, *flags))
376 		return;
377 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
378 	spin_lock_irqsave_check_contention(ssp);
379 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags);
380 	spin_lock_irqsave_rcu_node(sdp, *flags);
381 }
382 
383 /*
384  * Acquire the specified srcu_struct structure's ->lock, but check for
385  * excessive contention, which results in initiation of a transition
386  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
387  * parameter permits this.
388  */
spin_lock_irqsave_ssp_contention(struct srcu_struct * ssp,unsigned long * flags)389 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
390 {
391 	if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags))
392 		return;
393 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
394 	spin_lock_irqsave_check_contention(ssp);
395 }
396 
397 /*
398  * First-use initialization of statically allocated srcu_struct
399  * structure.  Wiring up the combining tree is more than can be
400  * done with compile-time initialization, so this check is added
401  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
402  * compile-time initialized, to resolve races involving multiple
403  * CPUs trying to garner first-use privileges.
404  */
check_init_srcu_struct(struct srcu_struct * ssp)405 static void check_init_srcu_struct(struct srcu_struct *ssp)
406 {
407 	unsigned long flags;
408 
409 	/* The smp_load_acquire() pairs with the smp_store_release(). */
410 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/
411 		return; /* Already initialized. */
412 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
413 	if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) {
414 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
415 		return;
416 	}
417 	init_srcu_struct_fields(ssp, true);
418 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
419 }
420 
421 /*
422  * Is the current or any upcoming grace period to be expedited?
423  */
srcu_gp_is_expedited(struct srcu_struct * ssp)424 static bool srcu_gp_is_expedited(struct srcu_struct *ssp)
425 {
426 	struct srcu_usage *sup = ssp->srcu_sup;
427 
428 	return ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp));
429 }
430 
431 /*
432  * Computes approximate total of the readers' ->srcu_ctrs[].srcu_locks
433  * values for the rank of per-CPU counters specified by idx, and returns
434  * true if the caller did the proper barrier (gp), and if the count of
435  * the locks matches that of the unlocks passed in.
436  */
srcu_readers_lock_idx(struct srcu_struct * ssp,int idx,bool gp,unsigned long unlocks)437 static bool srcu_readers_lock_idx(struct srcu_struct *ssp, int idx, bool gp, unsigned long unlocks)
438 {
439 	int cpu;
440 	unsigned long mask = 0;
441 	unsigned long sum = 0;
442 
443 	for_each_possible_cpu(cpu) {
444 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
445 
446 		sum += atomic_long_read(&sdp->srcu_ctrs[idx].srcu_locks);
447 		if (IS_ENABLED(CONFIG_PROVE_RCU))
448 			mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
449 	}
450 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
451 		  "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
452 	if (mask & SRCU_READ_FLAVOR_SLOWGP && !gp)
453 		return false;
454 	return sum == unlocks;
455 }
456 
457 /*
458  * Returns approximate total of the readers' ->srcu_ctrs[].srcu_unlocks
459  * values for the rank of per-CPU counters specified by idx.
460  */
srcu_readers_unlock_idx(struct srcu_struct * ssp,int idx,unsigned long * rdm)461 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx, unsigned long *rdm)
462 {
463 	int cpu;
464 	unsigned long mask = 0;
465 	unsigned long sum = 0;
466 
467 	for_each_possible_cpu(cpu) {
468 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
469 
470 		sum += atomic_long_read(&sdp->srcu_ctrs[idx].srcu_unlocks);
471 		mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
472 	}
473 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
474 		  "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
475 	*rdm = mask;
476 	return sum;
477 }
478 
479 /*
480  * Return true if the number of pre-existing readers is determined to
481  * be zero.
482  */
srcu_readers_active_idx_check(struct srcu_struct * ssp,int idx)483 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
484 {
485 	bool did_gp;
486 	unsigned long rdm;
487 	unsigned long unlocks;
488 
489 	unlocks = srcu_readers_unlock_idx(ssp, idx, &rdm);
490 	did_gp = !!(rdm & SRCU_READ_FLAVOR_SLOWGP);
491 
492 	/*
493 	 * Make sure that a lock is always counted if the corresponding
494 	 * unlock is counted. Needs to be a smp_mb() as the read side may
495 	 * contain a read from a variable that is written to before the
496 	 * synchronize_srcu() in the write side. In this case smp_mb()s
497 	 * A and B (or X and Y) act like the store buffering pattern.
498 	 *
499 	 * This smp_mb() also pairs with smp_mb() C (or, in the case of X,
500 	 * Z) to prevent accesses after the synchronize_srcu() from being
501 	 * executed before the grace period ends.
502 	 */
503 	if (!did_gp)
504 		smp_mb(); /* A */
505 	else
506 		synchronize_rcu(); /* X */
507 
508 	/*
509 	 * If the locks are the same as the unlocks, then there must have
510 	 * been no readers on this index at some point in this function.
511 	 * But there might be more readers, as a task might have read
512 	 * the current ->srcu_ctrp but not yet have incremented its CPU's
513 	 * ->srcu_ctrs[idx].srcu_locks counter.  In fact, it is possible
514 	 * that most of the tasks have been preempted between fetching
515 	 * ->srcu_ctrp and incrementing ->srcu_ctrs[idx].srcu_locks.  And
516 	 * there could be almost (ULONG_MAX / sizeof(struct task_struct))
517 	 * tasks in a system whose address space was fully populated
518 	 * with memory.  Call this quantity Nt.
519 	 *
520 	 * So suppose that the updater is preempted at this
521 	 * point in the code for a long time.  That now-preempted
522 	 * updater has already flipped ->srcu_ctrp (possibly during
523 	 * the preceding grace period), done an smp_mb() (again,
524 	 * possibly during the preceding grace period), and summed up
525 	 * the ->srcu_ctrs[idx].srcu_unlocks counters.  How many times
526 	 * can a given one of the aforementioned Nt tasks increment the
527 	 * old ->srcu_ctrp value's ->srcu_ctrs[idx].srcu_locks counter,
528 	 * in the absence of nesting?
529 	 *
530 	 * It can clearly do so once, given that it has already fetched
531 	 * the old value of ->srcu_ctrp and is just about to use that
532 	 * value to index its increment of ->srcu_ctrs[idx].srcu_locks.
533 	 * But as soon as it leaves that SRCU read-side critical section,
534 	 * it will increment ->srcu_ctrs[idx].srcu_unlocks, which must
535 	 * follow the updater's above read from that same value.  Thus,
536 	   as soon the reading task does an smp_mb() and a later fetch from
537 	 * ->srcu_ctrp, that task will be guaranteed to get the new index.
538 	 * Except that the increment of ->srcu_ctrs[idx].srcu_unlocks
539 	 * in __srcu_read_unlock() is after the smp_mb(), and the fetch
540 	 * from ->srcu_ctrp in __srcu_read_lock() is before the smp_mb().
541 	 * Thus, that task might not see the new value of ->srcu_ctrp until
542 	 * the -second- __srcu_read_lock(), which in turn means that this
543 	 * task might well increment ->srcu_ctrs[idx].srcu_locks for the
544 	 * old value of ->srcu_ctrp twice, not just once.
545 	 *
546 	 * However, it is important to note that a given smp_mb() takes
547 	 * effect not just for the task executing it, but also for any
548 	 * later task running on that same CPU.
549 	 *
550 	 * That is, there can be almost Nt + Nc further increments
551 	 * of ->srcu_ctrs[idx].srcu_locks for the old index, where Nc
552 	 * is the number of CPUs.  But this is OK because the size of
553 	 * the task_struct structure limits the value of Nt and current
554 	 * systems limit Nc to a few thousand.
555 	 *
556 	 * OK, but what about nesting?  This does impose a limit on
557 	 * nesting of half of the size of the task_struct structure
558 	 * (measured in bytes), which should be sufficient.  A late 2022
559 	 * TREE01 rcutorture run reported this size to be no less than
560 	 * 9408 bytes, allowing up to 4704 levels of nesting, which is
561 	 * comfortably beyond excessive.  Especially on 64-bit systems,
562 	 * which are unlikely to be configured with an address space fully
563 	 * populated with memory, at least not anytime soon.
564 	 */
565 	return srcu_readers_lock_idx(ssp, idx, did_gp, unlocks);
566 }
567 
568 /**
569  * srcu_readers_active - returns true if there are readers. and false
570  *                       otherwise
571  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
572  *
573  * Note that this is not an atomic primitive, and can therefore suffer
574  * severe errors when invoked on an active srcu_struct.  That said, it
575  * can be useful as an error check at cleanup time.
576  */
srcu_readers_active(struct srcu_struct * ssp)577 static bool srcu_readers_active(struct srcu_struct *ssp)
578 {
579 	int cpu;
580 	unsigned long sum = 0;
581 
582 	for_each_possible_cpu(cpu) {
583 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
584 
585 		sum += atomic_long_read(&sdp->srcu_ctrs[0].srcu_locks);
586 		sum += atomic_long_read(&sdp->srcu_ctrs[1].srcu_locks);
587 		sum -= atomic_long_read(&sdp->srcu_ctrs[0].srcu_unlocks);
588 		sum -= atomic_long_read(&sdp->srcu_ctrs[1].srcu_unlocks);
589 	}
590 	return sum;
591 }
592 
593 /*
594  * We use an adaptive strategy for synchronize_srcu() and especially for
595  * synchronize_srcu_expedited().  We spin for a fixed time period
596  * (defined below, boot time configurable) to allow SRCU readers to exit
597  * their read-side critical sections.  If there are still some readers
598  * after one jiffy, we repeatedly block for one jiffy time periods.
599  * The blocking time is increased as the grace-period age increases,
600  * with max blocking time capped at 10 jiffies.
601  */
602 #define SRCU_DEFAULT_RETRY_CHECK_DELAY		5
603 
604 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
605 module_param(srcu_retry_check_delay, ulong, 0444);
606 
607 #define SRCU_INTERVAL		1		// Base delay if no expedited GPs pending.
608 #define SRCU_MAX_INTERVAL	10		// Maximum incremental delay from slow readers.
609 
610 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO	3UL	// Lowmark on default per-GP-phase
611 							// no-delay instances.
612 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI	1000UL	// Highmark on default per-GP-phase
613 							// no-delay instances.
614 
615 #define SRCU_UL_CLAMP_LO(val, low)	((val) > (low) ? (val) : (low))
616 #define SRCU_UL_CLAMP_HI(val, high)	((val) < (high) ? (val) : (high))
617 #define SRCU_UL_CLAMP(val, low, high)	SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
618 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
619 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
620 // called from process_srcu().
621 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED	\
622 	(2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
623 
624 // Maximum per-GP-phase consecutive no-delay instances.
625 #define SRCU_DEFAULT_MAX_NODELAY_PHASE	\
626 	SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED,	\
627 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_LO,	\
628 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
629 
630 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
631 module_param(srcu_max_nodelay_phase, ulong, 0444);
632 
633 // Maximum consecutive no-delay instances.
634 #define SRCU_DEFAULT_MAX_NODELAY	(SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ?	\
635 					 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
636 
637 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
638 module_param(srcu_max_nodelay, ulong, 0444);
639 
640 /*
641  * Return grace-period delay, zero if there are expedited grace
642  * periods pending, SRCU_INTERVAL otherwise.
643  */
srcu_get_delay(struct srcu_struct * ssp)644 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
645 {
646 	unsigned long gpstart;
647 	unsigned long j;
648 	unsigned long jbase = SRCU_INTERVAL;
649 	struct srcu_usage *sup = ssp->srcu_sup;
650 
651 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
652 	if (srcu_gp_is_expedited(ssp))
653 		jbase = 0;
654 	if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) {
655 		j = jiffies - 1;
656 		gpstart = READ_ONCE(sup->srcu_gp_start);
657 		if (time_after(j, gpstart))
658 			jbase += j - gpstart;
659 		if (!jbase) {
660 			ASSERT_EXCLUSIVE_WRITER(sup->srcu_n_exp_nodelay);
661 			WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1);
662 			if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
663 				jbase = 1;
664 		}
665 	}
666 	return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
667 }
668 
669 /**
670  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
671  * @ssp: structure to clean up.
672  *
673  * Must invoke this after you are finished using a given srcu_struct that
674  * was initialized via init_srcu_struct(), else you leak memory.
675  */
cleanup_srcu_struct(struct srcu_struct * ssp)676 void cleanup_srcu_struct(struct srcu_struct *ssp)
677 {
678 	int cpu;
679 	unsigned long delay;
680 	struct srcu_usage *sup = ssp->srcu_sup;
681 
682 	spin_lock_irq_rcu_node(ssp->srcu_sup);
683 	delay = srcu_get_delay(ssp);
684 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
685 	if (WARN_ON(!delay))
686 		return; /* Just leak it! */
687 	if (WARN_ON(srcu_readers_active(ssp)))
688 		return; /* Just leak it! */
689 	flush_delayed_work(&sup->work);
690 	for_each_possible_cpu(cpu) {
691 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
692 
693 		del_timer_sync(&sdp->delay_work);
694 		flush_work(&sdp->work);
695 		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
696 			return; /* Forgot srcu_barrier(), so just leak it! */
697 	}
698 	if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
699 	    WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) ||
700 	    WARN_ON(srcu_readers_active(ssp))) {
701 		pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
702 			__func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)),
703 			rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed);
704 		return; // Caller forgot to stop doing call_srcu()?
705 			// Or caller invoked start_poll_synchronize_srcu()
706 			// and then cleanup_srcu_struct() before that grace
707 			// period ended?
708 	}
709 	kfree(sup->node);
710 	sup->node = NULL;
711 	sup->srcu_size_state = SRCU_SIZE_SMALL;
712 	if (!sup->sda_is_static) {
713 		free_percpu(ssp->sda);
714 		ssp->sda = NULL;
715 		kfree(sup);
716 		ssp->srcu_sup = NULL;
717 	}
718 }
719 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
720 
721 /*
722  * Check for consistent reader flavor.
723  */
__srcu_check_read_flavor(struct srcu_struct * ssp,int read_flavor)724 void __srcu_check_read_flavor(struct srcu_struct *ssp, int read_flavor)
725 {
726 	int old_read_flavor;
727 	struct srcu_data *sdp;
728 
729 	/* NMI-unsafe use in NMI is a bad sign, as is multi-bit read_flavor values. */
730 	WARN_ON_ONCE((read_flavor != SRCU_READ_FLAVOR_NMI) && in_nmi());
731 	WARN_ON_ONCE(read_flavor & (read_flavor - 1));
732 
733 	sdp = raw_cpu_ptr(ssp->sda);
734 	old_read_flavor = READ_ONCE(sdp->srcu_reader_flavor);
735 	if (!old_read_flavor) {
736 		old_read_flavor = cmpxchg(&sdp->srcu_reader_flavor, 0, read_flavor);
737 		if (!old_read_flavor)
738 			return;
739 	}
740 	WARN_ONCE(old_read_flavor != read_flavor, "CPU %d old state %d new state %d\n", sdp->cpu, old_read_flavor, read_flavor);
741 }
742 EXPORT_SYMBOL_GPL(__srcu_check_read_flavor);
743 
744 /*
745  * Counts the new reader in the appropriate per-CPU element of the
746  * srcu_struct.
747  * Returns a guaranteed non-negative index that must be passed to the
748  * matching __srcu_read_unlock().
749  */
__srcu_read_lock(struct srcu_struct * ssp)750 int __srcu_read_lock(struct srcu_struct *ssp)
751 {
752 	struct srcu_ctr __percpu *scp = READ_ONCE(ssp->srcu_ctrp);
753 
754 	this_cpu_inc(scp->srcu_locks.counter);
755 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
756 	return __srcu_ptr_to_ctr(ssp, scp);
757 }
758 EXPORT_SYMBOL_GPL(__srcu_read_lock);
759 
760 /*
761  * Removes the count for the old reader from the appropriate per-CPU
762  * element of the srcu_struct.  Note that this may well be a different
763  * CPU than that which was incremented by the corresponding srcu_read_lock().
764  */
__srcu_read_unlock(struct srcu_struct * ssp,int idx)765 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
766 {
767 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
768 	this_cpu_inc(__srcu_ctr_to_ptr(ssp, idx)->srcu_unlocks.counter);
769 }
770 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
771 
772 #ifdef CONFIG_NEED_SRCU_NMI_SAFE
773 
774 /*
775  * Counts the new reader in the appropriate per-CPU element of the
776  * srcu_struct, but in an NMI-safe manner using RMW atomics.
777  * Returns an index that must be passed to the matching srcu_read_unlock().
778  */
__srcu_read_lock_nmisafe(struct srcu_struct * ssp)779 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
780 {
781 	struct srcu_ctr __percpu *scpp = READ_ONCE(ssp->srcu_ctrp);
782 	struct srcu_ctr *scp = raw_cpu_ptr(scpp);
783 
784 	atomic_long_inc(&scp->srcu_locks);
785 	smp_mb__after_atomic(); /* B */  /* Avoid leaking the critical section. */
786 	return __srcu_ptr_to_ctr(ssp, scpp);
787 }
788 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
789 
790 /*
791  * Removes the count for the old reader from the appropriate per-CPU
792  * element of the srcu_struct.  Note that this may well be a different
793  * CPU than that which was incremented by the corresponding srcu_read_lock().
794  */
__srcu_read_unlock_nmisafe(struct srcu_struct * ssp,int idx)795 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
796 {
797 	smp_mb__before_atomic(); /* C */  /* Avoid leaking the critical section. */
798 	atomic_long_inc(&raw_cpu_ptr(__srcu_ctr_to_ptr(ssp, idx))->srcu_unlocks);
799 }
800 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
801 
802 #endif // CONFIG_NEED_SRCU_NMI_SAFE
803 
804 /*
805  * Start an SRCU grace period.
806  */
srcu_gp_start(struct srcu_struct * ssp)807 static void srcu_gp_start(struct srcu_struct *ssp)
808 {
809 	int state;
810 
811 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
812 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed));
813 	WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies);
814 	WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0);
815 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
816 	rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq);
817 	state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq);
818 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
819 }
820 
821 
srcu_delay_timer(struct timer_list * t)822 static void srcu_delay_timer(struct timer_list *t)
823 {
824 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
825 
826 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
827 }
828 
srcu_queue_delayed_work_on(struct srcu_data * sdp,unsigned long delay)829 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
830 				       unsigned long delay)
831 {
832 	if (!delay) {
833 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
834 		return;
835 	}
836 
837 	timer_reduce(&sdp->delay_work, jiffies + delay);
838 }
839 
840 /*
841  * Schedule callback invocation for the specified srcu_data structure,
842  * if possible, on the corresponding CPU.
843  */
srcu_schedule_cbs_sdp(struct srcu_data * sdp,unsigned long delay)844 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
845 {
846 	srcu_queue_delayed_work_on(sdp, delay);
847 }
848 
849 /*
850  * Schedule callback invocation for all srcu_data structures associated
851  * with the specified srcu_node structure that have callbacks for the
852  * just-completed grace period, the one corresponding to idx.  If possible,
853  * schedule this invocation on the corresponding CPUs.
854  */
srcu_schedule_cbs_snp(struct srcu_struct * ssp,struct srcu_node * snp,unsigned long mask,unsigned long delay)855 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
856 				  unsigned long mask, unsigned long delay)
857 {
858 	int cpu;
859 
860 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
861 		if (!(mask & (1UL << (cpu - snp->grplo))))
862 			continue;
863 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
864 	}
865 }
866 
867 /*
868  * Note the end of an SRCU grace period.  Initiates callback invocation
869  * and starts a new grace period if needed.
870  *
871  * The ->srcu_cb_mutex acquisition does not protect any data, but
872  * instead prevents more than one grace period from starting while we
873  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
874  * array to have a finite number of elements.
875  */
srcu_gp_end(struct srcu_struct * ssp)876 static void srcu_gp_end(struct srcu_struct *ssp)
877 {
878 	unsigned long cbdelay = 1;
879 	bool cbs;
880 	bool last_lvl;
881 	int cpu;
882 	unsigned long gpseq;
883 	int idx;
884 	unsigned long mask;
885 	struct srcu_data *sdp;
886 	unsigned long sgsne;
887 	struct srcu_node *snp;
888 	int ss_state;
889 	struct srcu_usage *sup = ssp->srcu_sup;
890 
891 	/* Prevent more than one additional grace period. */
892 	mutex_lock(&sup->srcu_cb_mutex);
893 
894 	/* End the current grace period. */
895 	spin_lock_irq_rcu_node(sup);
896 	idx = rcu_seq_state(sup->srcu_gp_seq);
897 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
898 	if (srcu_gp_is_expedited(ssp))
899 		cbdelay = 0;
900 
901 	WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns());
902 	rcu_seq_end(&sup->srcu_gp_seq);
903 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
904 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq))
905 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq);
906 	spin_unlock_irq_rcu_node(sup);
907 	mutex_unlock(&sup->srcu_gp_mutex);
908 	/* A new grace period can start at this point.  But only one. */
909 
910 	/* Initiate callback invocation as needed. */
911 	ss_state = smp_load_acquire(&sup->srcu_size_state);
912 	if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
913 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()),
914 					cbdelay);
915 	} else {
916 		idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
917 		srcu_for_each_node_breadth_first(ssp, snp) {
918 			spin_lock_irq_rcu_node(snp);
919 			cbs = false;
920 			last_lvl = snp >= sup->level[rcu_num_lvls - 1];
921 			if (last_lvl)
922 				cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
923 			snp->srcu_have_cbs[idx] = gpseq;
924 			rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
925 			sgsne = snp->srcu_gp_seq_needed_exp;
926 			if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
927 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
928 			if (ss_state < SRCU_SIZE_BIG)
929 				mask = ~0;
930 			else
931 				mask = snp->srcu_data_have_cbs[idx];
932 			snp->srcu_data_have_cbs[idx] = 0;
933 			spin_unlock_irq_rcu_node(snp);
934 			if (cbs)
935 				srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
936 		}
937 	}
938 
939 	/* Occasionally prevent srcu_data counter wrap. */
940 	if (!(gpseq & counter_wrap_check))
941 		for_each_possible_cpu(cpu) {
942 			sdp = per_cpu_ptr(ssp->sda, cpu);
943 			spin_lock_irq_rcu_node(sdp);
944 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
945 				sdp->srcu_gp_seq_needed = gpseq;
946 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
947 				sdp->srcu_gp_seq_needed_exp = gpseq;
948 			spin_unlock_irq_rcu_node(sdp);
949 		}
950 
951 	/* Callback initiation done, allow grace periods after next. */
952 	mutex_unlock(&sup->srcu_cb_mutex);
953 
954 	/* Start a new grace period if needed. */
955 	spin_lock_irq_rcu_node(sup);
956 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
957 	if (!rcu_seq_state(gpseq) &&
958 	    ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) {
959 		srcu_gp_start(ssp);
960 		spin_unlock_irq_rcu_node(sup);
961 		srcu_reschedule(ssp, 0);
962 	} else {
963 		spin_unlock_irq_rcu_node(sup);
964 	}
965 
966 	/* Transition to big if needed. */
967 	if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
968 		if (ss_state == SRCU_SIZE_ALLOC)
969 			init_srcu_struct_nodes(ssp, GFP_KERNEL);
970 		else
971 			smp_store_release(&sup->srcu_size_state, ss_state + 1);
972 	}
973 }
974 
975 /*
976  * Funnel-locking scheme to scalably mediate many concurrent expedited
977  * grace-period requests.  This function is invoked for the first known
978  * expedited request for a grace period that has already been requested,
979  * but without expediting.  To start a completely new grace period,
980  * whether expedited or not, use srcu_funnel_gp_start() instead.
981  */
srcu_funnel_exp_start(struct srcu_struct * ssp,struct srcu_node * snp,unsigned long s)982 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
983 				  unsigned long s)
984 {
985 	unsigned long flags;
986 	unsigned long sgsne;
987 
988 	if (snp)
989 		for (; snp != NULL; snp = snp->srcu_parent) {
990 			sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
991 			if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) ||
992 			    (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
993 				return;
994 			spin_lock_irqsave_rcu_node(snp, flags);
995 			sgsne = snp->srcu_gp_seq_needed_exp;
996 			if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
997 				spin_unlock_irqrestore_rcu_node(snp, flags);
998 				return;
999 			}
1000 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1001 			spin_unlock_irqrestore_rcu_node(snp, flags);
1002 		}
1003 	spin_lock_irqsave_ssp_contention(ssp, &flags);
1004 	if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s))
1005 		WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s);
1006 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
1007 }
1008 
1009 /*
1010  * Funnel-locking scheme to scalably mediate many concurrent grace-period
1011  * requests.  The winner has to do the work of actually starting grace
1012  * period s.  Losers must either ensure that their desired grace-period
1013  * number is recorded on at least their leaf srcu_node structure, or they
1014  * must take steps to invoke their own callbacks.
1015  *
1016  * Note that this function also does the work of srcu_funnel_exp_start(),
1017  * in some cases by directly invoking it.
1018  *
1019  * The srcu read lock should be hold around this function. And s is a seq snap
1020  * after holding that lock.
1021  */
srcu_funnel_gp_start(struct srcu_struct * ssp,struct srcu_data * sdp,unsigned long s,bool do_norm)1022 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
1023 				 unsigned long s, bool do_norm)
1024 {
1025 	unsigned long flags;
1026 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
1027 	unsigned long sgsne;
1028 	struct srcu_node *snp;
1029 	struct srcu_node *snp_leaf;
1030 	unsigned long snp_seq;
1031 	struct srcu_usage *sup = ssp->srcu_sup;
1032 
1033 	/* Ensure that snp node tree is fully initialized before traversing it */
1034 	if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1035 		snp_leaf = NULL;
1036 	else
1037 		snp_leaf = sdp->mynode;
1038 
1039 	if (snp_leaf)
1040 		/* Each pass through the loop does one level of the srcu_node tree. */
1041 		for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
1042 			if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf)
1043 				return; /* GP already done and CBs recorded. */
1044 			spin_lock_irqsave_rcu_node(snp, flags);
1045 			snp_seq = snp->srcu_have_cbs[idx];
1046 			if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
1047 				if (snp == snp_leaf && snp_seq == s)
1048 					snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1049 				spin_unlock_irqrestore_rcu_node(snp, flags);
1050 				if (snp == snp_leaf && snp_seq != s) {
1051 					srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
1052 					return;
1053 				}
1054 				if (!do_norm)
1055 					srcu_funnel_exp_start(ssp, snp, s);
1056 				return;
1057 			}
1058 			snp->srcu_have_cbs[idx] = s;
1059 			if (snp == snp_leaf)
1060 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1061 			sgsne = snp->srcu_gp_seq_needed_exp;
1062 			if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
1063 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1064 			spin_unlock_irqrestore_rcu_node(snp, flags);
1065 		}
1066 
1067 	/* Top of tree, must ensure the grace period will be started. */
1068 	spin_lock_irqsave_ssp_contention(ssp, &flags);
1069 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) {
1070 		/*
1071 		 * Record need for grace period s.  Pair with load
1072 		 * acquire setting up for initialization.
1073 		 */
1074 		smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/
1075 	}
1076 	if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s))
1077 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s);
1078 
1079 	/* If grace period not already in progress, start it. */
1080 	if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) &&
1081 	    rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) {
1082 		srcu_gp_start(ssp);
1083 
1084 		// And how can that list_add() in the "else" clause
1085 		// possibly be safe for concurrent execution?  Well,
1086 		// it isn't.  And it does not have to be.  After all, it
1087 		// can only be executed during early boot when there is only
1088 		// the one boot CPU running with interrupts still disabled.
1089 		if (likely(srcu_init_done))
1090 			queue_delayed_work(rcu_gp_wq, &sup->work,
1091 					   !!srcu_get_delay(ssp));
1092 		else if (list_empty(&sup->work.work.entry))
1093 			list_add(&sup->work.work.entry, &srcu_boot_list);
1094 	}
1095 	spin_unlock_irqrestore_rcu_node(sup, flags);
1096 }
1097 
1098 /*
1099  * Wait until all readers counted by array index idx complete, but
1100  * loop an additional time if there is an expedited grace period pending.
1101  * The caller must ensure that ->srcu_ctrp is not changed while checking.
1102  */
try_check_zero(struct srcu_struct * ssp,int idx,int trycount)1103 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
1104 {
1105 	unsigned long curdelay;
1106 
1107 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1108 	curdelay = !srcu_get_delay(ssp);
1109 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1110 
1111 	for (;;) {
1112 		if (srcu_readers_active_idx_check(ssp, idx))
1113 			return true;
1114 		if ((--trycount + curdelay) <= 0)
1115 			return false;
1116 		udelay(srcu_retry_check_delay);
1117 	}
1118 }
1119 
1120 /*
1121  * Increment the ->srcu_ctrp counter so that future SRCU readers will
1122  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
1123  * us to wait for pre-existing readers in a starvation-free manner.
1124  */
srcu_flip(struct srcu_struct * ssp)1125 static void srcu_flip(struct srcu_struct *ssp)
1126 {
1127 	/*
1128 	 * Because the flip of ->srcu_ctrp is executed only if the
1129 	 * preceding call to srcu_readers_active_idx_check() found that
1130 	 * the ->srcu_ctrs[].srcu_unlocks and ->srcu_ctrs[].srcu_locks sums
1131 	 * matched and because that summing uses atomic_long_read(),
1132 	 * there is ordering due to a control dependency between that
1133 	 * summing and the WRITE_ONCE() in this call to srcu_flip().
1134 	 * This ordering ensures that if this updater saw a given reader's
1135 	 * increment from __srcu_read_lock(), that reader was using a value
1136 	 * of ->srcu_ctrp from before the previous call to srcu_flip(),
1137 	 * which should be quite rare.  This ordering thus helps forward
1138 	 * progress because the grace period could otherwise be delayed
1139 	 * by additional calls to __srcu_read_lock() using that old (soon
1140 	 * to be new) value of ->srcu_ctrp.
1141 	 *
1142 	 * This sum-equality check and ordering also ensures that if
1143 	 * a given call to __srcu_read_lock() uses the new value of
1144 	 * ->srcu_ctrp, this updater's earlier scans cannot have seen
1145 	 * that reader's increments, which is all to the good, because
1146 	 * this grace period need not wait on that reader.  After all,
1147 	 * if those earlier scans had seen that reader, there would have
1148 	 * been a sum mismatch and this code would not be reached.
1149 	 *
1150 	 * This means that the following smp_mb() is redundant, but
1151 	 * it stays until either (1) Compilers learn about this sort of
1152 	 * control dependency or (2) Some production workload running on
1153 	 * a production system is unduly delayed by this slowpath smp_mb().
1154 	 * Except for _lite() readers, where it is inoperative, which
1155 	 * means that it is a good thing that it is redundant.
1156 	 */
1157 	smp_mb(); /* E */  /* Pairs with B and C. */
1158 
1159 	WRITE_ONCE(ssp->srcu_ctrp,
1160 		   &ssp->sda->srcu_ctrs[!(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0])]);
1161 
1162 	/*
1163 	 * Ensure that if the updater misses an __srcu_read_unlock()
1164 	 * increment, that task's __srcu_read_lock() following its next
1165 	 * __srcu_read_lock() or __srcu_read_unlock() will see the above
1166 	 * counter update.  Note that both this memory barrier and the
1167 	 * one in srcu_readers_active_idx_check() provide the guarantee
1168 	 * for __srcu_read_lock().
1169 	 */
1170 	smp_mb(); /* D */  /* Pairs with C. */
1171 }
1172 
1173 /*
1174  * If SRCU is likely idle, in other words, the next SRCU grace period
1175  * should be expedited, return true, otherwise return false.  Except that
1176  * in the presence of _lite() readers, always return false.
1177  *
1178  * Note that it is OK for several current from-idle requests for a new
1179  * grace period from idle to specify expediting because they will all end
1180  * up requesting the same grace period anyhow.  So no loss.
1181  *
1182  * Note also that if any CPU (including the current one) is still invoking
1183  * callbacks, this function will nevertheless say "idle".  This is not
1184  * ideal, but the overhead of checking all CPUs' callback lists is even
1185  * less ideal, especially on large systems.  Furthermore, the wakeup
1186  * can happen before the callback is fully removed, so we have no choice
1187  * but to accept this type of error.
1188  *
1189  * This function is also subject to counter-wrap errors, but let's face
1190  * it, if this function was preempted for enough time for the counters
1191  * to wrap, it really doesn't matter whether or not we expedite the grace
1192  * period.  The extra overhead of a needlessly expedited grace period is
1193  * negligible when amortized over that time period, and the extra latency
1194  * of a needlessly non-expedited grace period is similarly negligible.
1195  */
srcu_should_expedite(struct srcu_struct * ssp)1196 static bool srcu_should_expedite(struct srcu_struct *ssp)
1197 {
1198 	unsigned long curseq;
1199 	unsigned long flags;
1200 	struct srcu_data *sdp;
1201 	unsigned long t;
1202 	unsigned long tlast;
1203 
1204 	check_init_srcu_struct(ssp);
1205 	/* If _lite() readers, don't do unsolicited expediting. */
1206 	if (this_cpu_read(ssp->sda->srcu_reader_flavor) & SRCU_READ_FLAVOR_SLOWGP)
1207 		return false;
1208 	/* If the local srcu_data structure has callbacks, not idle.  */
1209 	sdp = raw_cpu_ptr(ssp->sda);
1210 	spin_lock_irqsave_rcu_node(sdp, flags);
1211 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
1212 		spin_unlock_irqrestore_rcu_node(sdp, flags);
1213 		return false; /* Callbacks already present, so not idle. */
1214 	}
1215 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1216 
1217 	/*
1218 	 * No local callbacks, so probabilistically probe global state.
1219 	 * Exact information would require acquiring locks, which would
1220 	 * kill scalability, hence the probabilistic nature of the probe.
1221 	 */
1222 
1223 	/* First, see if enough time has passed since the last GP. */
1224 	t = ktime_get_mono_fast_ns();
1225 	tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end);
1226 	if (exp_holdoff == 0 ||
1227 	    time_in_range_open(t, tlast, tlast + exp_holdoff))
1228 		return false; /* Too soon after last GP. */
1229 
1230 	/* Next, check for probable idleness. */
1231 	curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1232 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
1233 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed)))
1234 		return false; /* Grace period in progress, so not idle. */
1235 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
1236 	if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq))
1237 		return false; /* GP # changed, so not idle. */
1238 	return true; /* With reasonable probability, idle! */
1239 }
1240 
1241 /*
1242  * SRCU callback function to leak a callback.
1243  */
srcu_leak_callback(struct rcu_head * rhp)1244 static void srcu_leak_callback(struct rcu_head *rhp)
1245 {
1246 }
1247 
1248 /*
1249  * Start an SRCU grace period, and also queue the callback if non-NULL.
1250  */
srcu_gp_start_if_needed(struct srcu_struct * ssp,struct rcu_head * rhp,bool do_norm)1251 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
1252 					     struct rcu_head *rhp, bool do_norm)
1253 {
1254 	unsigned long flags;
1255 	int idx;
1256 	bool needexp = false;
1257 	bool needgp = false;
1258 	unsigned long s;
1259 	struct srcu_data *sdp;
1260 	struct srcu_node *sdp_mynode;
1261 	int ss_state;
1262 
1263 	check_init_srcu_struct(ssp);
1264 	/*
1265 	 * While starting a new grace period, make sure we are in an
1266 	 * SRCU read-side critical section so that the grace-period
1267 	 * sequence number cannot wrap around in the meantime.
1268 	 */
1269 	idx = __srcu_read_lock_nmisafe(ssp);
1270 	ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state);
1271 	if (ss_state < SRCU_SIZE_WAIT_CALL)
1272 		sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
1273 	else
1274 		sdp = raw_cpu_ptr(ssp->sda);
1275 	spin_lock_irqsave_sdp_contention(sdp, &flags);
1276 	if (rhp)
1277 		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
1278 	/*
1279 	 * It's crucial to capture the snapshot 's' for acceleration before
1280 	 * reading the current gp_seq that is used for advancing. This is
1281 	 * essential because if the acceleration snapshot is taken after a
1282 	 * failed advancement attempt, there's a risk that a grace period may
1283 	 * conclude and a new one may start in the interim. If the snapshot is
1284 	 * captured after this sequence of events, the acceleration snapshot 's'
1285 	 * could be excessively advanced, leading to acceleration failure.
1286 	 * In such a scenario, an 'acceleration leak' can occur, where new
1287 	 * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment.
1288 	 * Also note that encountering advancing failures is a normal
1289 	 * occurrence when the grace period for RCU_WAIT_TAIL is in progress.
1290 	 *
1291 	 * To see this, consider the following events which occur if
1292 	 * rcu_seq_snap() were to be called after advance:
1293 	 *
1294 	 *  1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the
1295 	 *     RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8).
1296 	 *
1297 	 *  2) The grace period for RCU_WAIT_TAIL is seen as started but not
1298 	 *     completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1.
1299 	 *
1300 	 *  3) This value is passed to rcu_segcblist_advance() which can't move
1301 	 *     any segment forward and fails.
1302 	 *
1303 	 *  4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
1304 	 *     But then the call to rcu_seq_snap() observes the grace period for the
1305 	 *     RCU_WAIT_TAIL segment as completed and the subsequent one for the
1306 	 *     RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1)
1307 	 *     so it returns a snapshot of the next grace period, which is X + 12.
1308 	 *
1309 	 *  5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the
1310 	 *     freshly enqueued callback in RCU_NEXT_TAIL can't move to
1311 	 *     RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
1312 	 *     period (gp_num = X + 8). So acceleration fails.
1313 	 */
1314 	s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1315 	if (rhp) {
1316 		rcu_segcblist_advance(&sdp->srcu_cblist,
1317 				      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1318 		/*
1319 		 * Acceleration can never fail because the base current gp_seq
1320 		 * used for acceleration is <= the value of gp_seq used for
1321 		 * advancing. This means that RCU_NEXT_TAIL segment will
1322 		 * always be able to be emptied by the acceleration into the
1323 		 * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments.
1324 		 */
1325 		WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s));
1326 	}
1327 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
1328 		sdp->srcu_gp_seq_needed = s;
1329 		needgp = true;
1330 	}
1331 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
1332 		sdp->srcu_gp_seq_needed_exp = s;
1333 		needexp = true;
1334 	}
1335 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1336 
1337 	/* Ensure that snp node tree is fully initialized before traversing it */
1338 	if (ss_state < SRCU_SIZE_WAIT_BARRIER)
1339 		sdp_mynode = NULL;
1340 	else
1341 		sdp_mynode = sdp->mynode;
1342 
1343 	if (needgp)
1344 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1345 	else if (needexp)
1346 		srcu_funnel_exp_start(ssp, sdp_mynode, s);
1347 	__srcu_read_unlock_nmisafe(ssp, idx);
1348 	return s;
1349 }
1350 
1351 /*
1352  * Enqueue an SRCU callback on the srcu_data structure associated with
1353  * the current CPU and the specified srcu_struct structure, initiating
1354  * grace-period processing if it is not already running.
1355  *
1356  * Note that all CPUs must agree that the grace period extended beyond
1357  * all pre-existing SRCU read-side critical section.  On systems with
1358  * more than one CPU, this means that when "func()" is invoked, each CPU
1359  * is guaranteed to have executed a full memory barrier since the end of
1360  * its last corresponding SRCU read-side critical section whose beginning
1361  * preceded the call to call_srcu().  It also means that each CPU executing
1362  * an SRCU read-side critical section that continues beyond the start of
1363  * "func()" must have executed a memory barrier after the call_srcu()
1364  * but before the beginning of that SRCU read-side critical section.
1365  * Note that these guarantees include CPUs that are offline, idle, or
1366  * executing in user mode, as well as CPUs that are executing in the kernel.
1367  *
1368  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
1369  * resulting SRCU callback function "func()", then both CPU A and CPU
1370  * B are guaranteed to execute a full memory barrier during the time
1371  * interval between the call to call_srcu() and the invocation of "func()".
1372  * This guarantee applies even if CPU A and CPU B are the same CPU (but
1373  * again only if the system has more than one CPU).
1374  *
1375  * Of course, these guarantees apply only for invocations of call_srcu(),
1376  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
1377  * srcu_struct structure.
1378  */
__call_srcu(struct srcu_struct * ssp,struct rcu_head * rhp,rcu_callback_t func,bool do_norm)1379 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1380 			rcu_callback_t func, bool do_norm)
1381 {
1382 	if (debug_rcu_head_queue(rhp)) {
1383 		/* Probable double call_srcu(), so leak the callback. */
1384 		WRITE_ONCE(rhp->func, srcu_leak_callback);
1385 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
1386 		return;
1387 	}
1388 	rhp->func = func;
1389 	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
1390 }
1391 
1392 /**
1393  * call_srcu() - Queue a callback for invocation after an SRCU grace period
1394  * @ssp: srcu_struct in queue the callback
1395  * @rhp: structure to be used for queueing the SRCU callback.
1396  * @func: function to be invoked after the SRCU grace period
1397  *
1398  * The callback function will be invoked some time after a full SRCU
1399  * grace period elapses, in other words after all pre-existing SRCU
1400  * read-side critical sections have completed.  However, the callback
1401  * function might well execute concurrently with other SRCU read-side
1402  * critical sections that started after call_srcu() was invoked.  SRCU
1403  * read-side critical sections are delimited by srcu_read_lock() and
1404  * srcu_read_unlock(), and may be nested.
1405  *
1406  * The callback will be invoked from process context, but with bh
1407  * disabled.  The callback function must therefore be fast and must
1408  * not block.
1409  *
1410  * See the description of call_rcu() for more detailed information on
1411  * memory ordering guarantees.
1412  */
call_srcu(struct srcu_struct * ssp,struct rcu_head * rhp,rcu_callback_t func)1413 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1414 	       rcu_callback_t func)
1415 {
1416 	__call_srcu(ssp, rhp, func, true);
1417 }
1418 EXPORT_SYMBOL_GPL(call_srcu);
1419 
1420 /*
1421  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
1422  */
__synchronize_srcu(struct srcu_struct * ssp,bool do_norm)1423 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
1424 {
1425 	struct rcu_synchronize rcu;
1426 
1427 	srcu_lock_sync(&ssp->dep_map);
1428 
1429 	RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
1430 			 lock_is_held(&rcu_bh_lock_map) ||
1431 			 lock_is_held(&rcu_lock_map) ||
1432 			 lock_is_held(&rcu_sched_lock_map),
1433 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
1434 
1435 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
1436 		return;
1437 	might_sleep();
1438 	check_init_srcu_struct(ssp);
1439 	init_completion(&rcu.completion);
1440 	init_rcu_head_on_stack(&rcu.head);
1441 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
1442 	wait_for_completion(&rcu.completion);
1443 	destroy_rcu_head_on_stack(&rcu.head);
1444 
1445 	/*
1446 	 * Make sure that later code is ordered after the SRCU grace
1447 	 * period.  This pairs with the spin_lock_irq_rcu_node()
1448 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
1449 	 * because the current CPU might have been totally uninvolved with
1450 	 * (and thus unordered against) that grace period.
1451 	 */
1452 	smp_mb();
1453 }
1454 
1455 /**
1456  * synchronize_srcu_expedited - Brute-force SRCU grace period
1457  * @ssp: srcu_struct with which to synchronize.
1458  *
1459  * Wait for an SRCU grace period to elapse, but be more aggressive about
1460  * spinning rather than blocking when waiting.
1461  *
1462  * Note that synchronize_srcu_expedited() has the same deadlock and
1463  * memory-ordering properties as does synchronize_srcu().
1464  */
synchronize_srcu_expedited(struct srcu_struct * ssp)1465 void synchronize_srcu_expedited(struct srcu_struct *ssp)
1466 {
1467 	__synchronize_srcu(ssp, rcu_gp_is_normal());
1468 }
1469 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
1470 
1471 /**
1472  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
1473  * @ssp: srcu_struct with which to synchronize.
1474  *
1475  * Wait for the count to drain to zero of both indexes. To avoid the
1476  * possible starvation of synchronize_srcu(), it waits for the count of
1477  * the index=!(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]) to drain to zero
1478  * at first, and then flip the ->srcu_ctrp and wait for the count of the
1479  * other index.
1480  *
1481  * Can block; must be called from process context.
1482  *
1483  * Note that it is illegal to call synchronize_srcu() from the corresponding
1484  * SRCU read-side critical section; doing so will result in deadlock.
1485  * However, it is perfectly legal to call synchronize_srcu() on one
1486  * srcu_struct from some other srcu_struct's read-side critical section,
1487  * as long as the resulting graph of srcu_structs is acyclic.
1488  *
1489  * There are memory-ordering constraints implied by synchronize_srcu().
1490  * On systems with more than one CPU, when synchronize_srcu() returns,
1491  * each CPU is guaranteed to have executed a full memory barrier since
1492  * the end of its last corresponding SRCU read-side critical section
1493  * whose beginning preceded the call to synchronize_srcu().  In addition,
1494  * each CPU having an SRCU read-side critical section that extends beyond
1495  * the return from synchronize_srcu() is guaranteed to have executed a
1496  * full memory barrier after the beginning of synchronize_srcu() and before
1497  * the beginning of that SRCU read-side critical section.  Note that these
1498  * guarantees include CPUs that are offline, idle, or executing in user mode,
1499  * as well as CPUs that are executing in the kernel.
1500  *
1501  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1502  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1503  * to have executed a full memory barrier during the execution of
1504  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
1505  * are the same CPU, but again only if the system has more than one CPU.
1506  *
1507  * Of course, these memory-ordering guarantees apply only when
1508  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1509  * passed the same srcu_struct structure.
1510  *
1511  * Implementation of these memory-ordering guarantees is similar to
1512  * that of synchronize_rcu().
1513  *
1514  * If SRCU is likely idle as determined by srcu_should_expedite(),
1515  * expedite the first request.  This semantic was provided by Classic SRCU,
1516  * and is relied upon by its users, so TREE SRCU must also provide it.
1517  * Note that detecting idleness is heuristic and subject to both false
1518  * positives and negatives.
1519  */
synchronize_srcu(struct srcu_struct * ssp)1520 void synchronize_srcu(struct srcu_struct *ssp)
1521 {
1522 	if (srcu_should_expedite(ssp) || rcu_gp_is_expedited())
1523 		synchronize_srcu_expedited(ssp);
1524 	else
1525 		__synchronize_srcu(ssp, true);
1526 }
1527 EXPORT_SYMBOL_GPL(synchronize_srcu);
1528 
1529 /**
1530  * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1531  * @ssp: srcu_struct to provide cookie for.
1532  *
1533  * This function returns a cookie that can be passed to
1534  * poll_state_synchronize_srcu(), which will return true if a full grace
1535  * period has elapsed in the meantime.  It is the caller's responsibility
1536  * to make sure that grace period happens, for example, by invoking
1537  * call_srcu() after return from get_state_synchronize_srcu().
1538  */
get_state_synchronize_srcu(struct srcu_struct * ssp)1539 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1540 {
1541 	// Any prior manipulation of SRCU-protected data must happen
1542 	// before the load from ->srcu_gp_seq.
1543 	smp_mb();
1544 	return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1545 }
1546 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1547 
1548 /**
1549  * start_poll_synchronize_srcu - Provide cookie and start grace period
1550  * @ssp: srcu_struct to provide cookie for.
1551  *
1552  * This function returns a cookie that can be passed to
1553  * poll_state_synchronize_srcu(), which will return true if a full grace
1554  * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1555  * this function also ensures that any needed SRCU grace period will be
1556  * started.  This convenience does come at a cost in terms of CPU overhead.
1557  */
start_poll_synchronize_srcu(struct srcu_struct * ssp)1558 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1559 {
1560 	return srcu_gp_start_if_needed(ssp, NULL, true);
1561 }
1562 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1563 
1564 /**
1565  * poll_state_synchronize_srcu - Has cookie's grace period ended?
1566  * @ssp: srcu_struct to provide cookie for.
1567  * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1568  *
1569  * This function takes the cookie that was returned from either
1570  * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1571  * returns @true if an SRCU grace period elapsed since the time that the
1572  * cookie was created.
1573  *
1574  * Because cookies are finite in size, wrapping/overflow is possible.
1575  * This is more pronounced on 32-bit systems where cookies are 32 bits,
1576  * where in theory wrapping could happen in about 14 hours assuming
1577  * 25-microsecond expedited SRCU grace periods.  However, a more likely
1578  * overflow lower bound is on the order of 24 days in the case of
1579  * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1580  * system requires geologic timespans, as in more than seven million years
1581  * even for expedited SRCU grace periods.
1582  *
1583  * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1584  * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1585  * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1586  * few minutes.  If this proves to be a problem, this counter will be
1587  * expanded to the same size as for Tree SRCU.
1588  */
poll_state_synchronize_srcu(struct srcu_struct * ssp,unsigned long cookie)1589 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1590 {
1591 	if (cookie != SRCU_GET_STATE_COMPLETED &&
1592 	    !rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie))
1593 		return false;
1594 	// Ensure that the end of the SRCU grace period happens before
1595 	// any subsequent code that the caller might execute.
1596 	smp_mb(); // ^^^
1597 	return true;
1598 }
1599 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1600 
1601 /*
1602  * Callback function for srcu_barrier() use.
1603  */
srcu_barrier_cb(struct rcu_head * rhp)1604 static void srcu_barrier_cb(struct rcu_head *rhp)
1605 {
1606 	struct srcu_data *sdp;
1607 	struct srcu_struct *ssp;
1608 
1609 	rhp->next = rhp; // Mark the callback as having been invoked.
1610 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1611 	ssp = sdp->ssp;
1612 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1613 		complete(&ssp->srcu_sup->srcu_barrier_completion);
1614 }
1615 
1616 /*
1617  * Enqueue an srcu_barrier() callback on the specified srcu_data
1618  * structure's ->cblist.  but only if that ->cblist already has at least one
1619  * callback enqueued.  Note that if a CPU already has callbacks enqueue,
1620  * it must have already registered the need for a future grace period,
1621  * so all we need do is enqueue a callback that will use the same grace
1622  * period as the last callback already in the queue.
1623  */
srcu_barrier_one_cpu(struct srcu_struct * ssp,struct srcu_data * sdp)1624 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
1625 {
1626 	spin_lock_irq_rcu_node(sdp);
1627 	atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1628 	sdp->srcu_barrier_head.func = srcu_barrier_cb;
1629 	debug_rcu_head_queue(&sdp->srcu_barrier_head);
1630 	if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1631 				   &sdp->srcu_barrier_head)) {
1632 		debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1633 		atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1634 	}
1635 	spin_unlock_irq_rcu_node(sdp);
1636 }
1637 
1638 /**
1639  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1640  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1641  */
srcu_barrier(struct srcu_struct * ssp)1642 void srcu_barrier(struct srcu_struct *ssp)
1643 {
1644 	int cpu;
1645 	int idx;
1646 	unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq);
1647 
1648 	check_init_srcu_struct(ssp);
1649 	mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex);
1650 	if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) {
1651 		smp_mb(); /* Force ordering following return. */
1652 		mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1653 		return; /* Someone else did our work for us. */
1654 	}
1655 	rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq);
1656 	init_completion(&ssp->srcu_sup->srcu_barrier_completion);
1657 
1658 	/* Initial count prevents reaching zero until all CBs are posted. */
1659 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1);
1660 
1661 	idx = __srcu_read_lock_nmisafe(ssp);
1662 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1663 		srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda,	get_boot_cpu_id()));
1664 	else
1665 		for_each_possible_cpu(cpu)
1666 			srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
1667 	__srcu_read_unlock_nmisafe(ssp, idx);
1668 
1669 	/* Remove the initial count, at which point reaching zero can happen. */
1670 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1671 		complete(&ssp->srcu_sup->srcu_barrier_completion);
1672 	wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion);
1673 
1674 	rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq);
1675 	mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1676 }
1677 EXPORT_SYMBOL_GPL(srcu_barrier);
1678 
1679 /**
1680  * srcu_batches_completed - return batches completed.
1681  * @ssp: srcu_struct on which to report batch completion.
1682  *
1683  * Report the number of batches, correlated with, but not necessarily
1684  * precisely the same as, the number of grace periods that have elapsed.
1685  */
srcu_batches_completed(struct srcu_struct * ssp)1686 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1687 {
1688 	return READ_ONCE(ssp->srcu_sup->srcu_gp_seq);
1689 }
1690 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1691 
1692 /*
1693  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1694  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1695  * completed in that state.
1696  */
srcu_advance_state(struct srcu_struct * ssp)1697 static void srcu_advance_state(struct srcu_struct *ssp)
1698 {
1699 	int idx;
1700 
1701 	mutex_lock(&ssp->srcu_sup->srcu_gp_mutex);
1702 
1703 	/*
1704 	 * Because readers might be delayed for an extended period after
1705 	 * fetching ->srcu_ctrp for their index, at any point in time there
1706 	 * might well be readers using both idx=0 and idx=1.  We therefore
1707 	 * need to wait for readers to clear from both index values before
1708 	 * invoking a callback.
1709 	 *
1710 	 * The load-acquire ensures that we see the accesses performed
1711 	 * by the prior grace period.
1712 	 */
1713 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */
1714 	if (idx == SRCU_STATE_IDLE) {
1715 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1716 		if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1717 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq));
1718 			spin_unlock_irq_rcu_node(ssp->srcu_sup);
1719 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1720 			return;
1721 		}
1722 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq));
1723 		if (idx == SRCU_STATE_IDLE)
1724 			srcu_gp_start(ssp);
1725 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1726 		if (idx != SRCU_STATE_IDLE) {
1727 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1728 			return; /* Someone else started the grace period. */
1729 		}
1730 	}
1731 
1732 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1733 		idx = !(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]);
1734 		if (!try_check_zero(ssp, idx, 1)) {
1735 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1736 			return; /* readers present, retry later. */
1737 		}
1738 		srcu_flip(ssp);
1739 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1740 		rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2);
1741 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1742 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1743 	}
1744 
1745 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1746 
1747 		/*
1748 		 * SRCU read-side critical sections are normally short,
1749 		 * so check at least twice in quick succession after a flip.
1750 		 */
1751 		idx = !(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]);
1752 		if (!try_check_zero(ssp, idx, 2)) {
1753 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1754 			return; /* readers present, retry later. */
1755 		}
1756 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1757 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1758 	}
1759 }
1760 
1761 /*
1762  * Invoke a limited number of SRCU callbacks that have passed through
1763  * their grace period.  If there are more to do, SRCU will reschedule
1764  * the workqueue.  Note that needed memory barriers have been executed
1765  * in this task's context by srcu_readers_active_idx_check().
1766  */
srcu_invoke_callbacks(struct work_struct * work)1767 static void srcu_invoke_callbacks(struct work_struct *work)
1768 {
1769 	long len;
1770 	bool more;
1771 	struct rcu_cblist ready_cbs;
1772 	struct rcu_head *rhp;
1773 	struct srcu_data *sdp;
1774 	struct srcu_struct *ssp;
1775 
1776 	sdp = container_of(work, struct srcu_data, work);
1777 
1778 	ssp = sdp->ssp;
1779 	rcu_cblist_init(&ready_cbs);
1780 	spin_lock_irq_rcu_node(sdp);
1781 	WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL));
1782 	rcu_segcblist_advance(&sdp->srcu_cblist,
1783 			      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1784 	/*
1785 	 * Although this function is theoretically re-entrant, concurrent
1786 	 * callbacks invocation is disallowed to avoid executing an SRCU barrier
1787 	 * too early.
1788 	 */
1789 	if (sdp->srcu_cblist_invoking ||
1790 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1791 		spin_unlock_irq_rcu_node(sdp);
1792 		return;  /* Someone else on the job or nothing to do. */
1793 	}
1794 
1795 	/* We are on the job!  Extract and invoke ready callbacks. */
1796 	sdp->srcu_cblist_invoking = true;
1797 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1798 	len = ready_cbs.len;
1799 	spin_unlock_irq_rcu_node(sdp);
1800 	rhp = rcu_cblist_dequeue(&ready_cbs);
1801 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1802 		debug_rcu_head_unqueue(rhp);
1803 		debug_rcu_head_callback(rhp);
1804 		local_bh_disable();
1805 		rhp->func(rhp);
1806 		local_bh_enable();
1807 	}
1808 	WARN_ON_ONCE(ready_cbs.len);
1809 
1810 	/*
1811 	 * Update counts, accelerate new callbacks, and if needed,
1812 	 * schedule another round of callback invocation.
1813 	 */
1814 	spin_lock_irq_rcu_node(sdp);
1815 	rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1816 	sdp->srcu_cblist_invoking = false;
1817 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1818 	spin_unlock_irq_rcu_node(sdp);
1819 	/* An SRCU barrier or callbacks from previous nesting work pending */
1820 	if (more)
1821 		srcu_schedule_cbs_sdp(sdp, 0);
1822 }
1823 
1824 /*
1825  * Finished one round of SRCU grace period.  Start another if there are
1826  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1827  */
srcu_reschedule(struct srcu_struct * ssp,unsigned long delay)1828 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1829 {
1830 	bool pushgp = true;
1831 
1832 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1833 	if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1834 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) {
1835 			/* All requests fulfilled, time to go idle. */
1836 			pushgp = false;
1837 		}
1838 	} else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) {
1839 		/* Outstanding request and no GP.  Start one. */
1840 		srcu_gp_start(ssp);
1841 	}
1842 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1843 
1844 	if (pushgp)
1845 		queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay);
1846 }
1847 
1848 /*
1849  * This is the work-queue function that handles SRCU grace periods.
1850  */
process_srcu(struct work_struct * work)1851 static void process_srcu(struct work_struct *work)
1852 {
1853 	unsigned long curdelay;
1854 	unsigned long j;
1855 	struct srcu_struct *ssp;
1856 	struct srcu_usage *sup;
1857 
1858 	sup = container_of(work, struct srcu_usage, work.work);
1859 	ssp = sup->srcu_ssp;
1860 
1861 	srcu_advance_state(ssp);
1862 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1863 	curdelay = srcu_get_delay(ssp);
1864 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1865 	if (curdelay) {
1866 		WRITE_ONCE(sup->reschedule_count, 0);
1867 	} else {
1868 		j = jiffies;
1869 		if (READ_ONCE(sup->reschedule_jiffies) == j) {
1870 			ASSERT_EXCLUSIVE_WRITER(sup->reschedule_count);
1871 			WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1);
1872 			if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay)
1873 				curdelay = 1;
1874 		} else {
1875 			WRITE_ONCE(sup->reschedule_count, 1);
1876 			WRITE_ONCE(sup->reschedule_jiffies, j);
1877 		}
1878 	}
1879 	srcu_reschedule(ssp, curdelay);
1880 }
1881 
srcutorture_get_gp_data(struct srcu_struct * ssp,int * flags,unsigned long * gp_seq)1882 void srcutorture_get_gp_data(struct srcu_struct *ssp, int *flags,
1883 			     unsigned long *gp_seq)
1884 {
1885 	*flags = 0;
1886 	*gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1887 }
1888 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1889 
1890 static const char * const srcu_size_state_name[] = {
1891 	"SRCU_SIZE_SMALL",
1892 	"SRCU_SIZE_ALLOC",
1893 	"SRCU_SIZE_WAIT_BARRIER",
1894 	"SRCU_SIZE_WAIT_CALL",
1895 	"SRCU_SIZE_WAIT_CBS1",
1896 	"SRCU_SIZE_WAIT_CBS2",
1897 	"SRCU_SIZE_WAIT_CBS3",
1898 	"SRCU_SIZE_WAIT_CBS4",
1899 	"SRCU_SIZE_BIG",
1900 	"SRCU_SIZE_???",
1901 };
1902 
srcu_torture_stats_print(struct srcu_struct * ssp,char * tt,char * tf)1903 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1904 {
1905 	int cpu;
1906 	int idx;
1907 	unsigned long s0 = 0, s1 = 0;
1908 	int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state);
1909 	int ss_state_idx = ss_state;
1910 
1911 	idx = ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0];
1912 	if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
1913 		ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
1914 	pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
1915 		 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state,
1916 		 srcu_size_state_name[ss_state_idx]);
1917 	if (!ssp->sda) {
1918 		// Called after cleanup_srcu_struct(), perhaps.
1919 		pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
1920 	} else {
1921 		pr_cont(" per-CPU(idx=%d):", idx);
1922 		for_each_possible_cpu(cpu) {
1923 			unsigned long l0, l1;
1924 			unsigned long u0, u1;
1925 			long c0, c1;
1926 			struct srcu_data *sdp;
1927 
1928 			sdp = per_cpu_ptr(ssp->sda, cpu);
1929 			u0 = data_race(atomic_long_read(&sdp->srcu_ctrs[!idx].srcu_unlocks));
1930 			u1 = data_race(atomic_long_read(&sdp->srcu_ctrs[idx].srcu_unlocks));
1931 
1932 			/*
1933 			 * Make sure that a lock is always counted if the corresponding
1934 			 * unlock is counted.
1935 			 */
1936 			smp_rmb();
1937 
1938 			l0 = data_race(atomic_long_read(&sdp->srcu_ctrs[!idx].srcu_locks));
1939 			l1 = data_race(atomic_long_read(&sdp->srcu_ctrs[idx].srcu_locks));
1940 
1941 			c0 = l0 - u0;
1942 			c1 = l1 - u1;
1943 			pr_cont(" %d(%ld,%ld %c)",
1944 				cpu, c0, c1,
1945 				"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1946 			s0 += c0;
1947 			s1 += c1;
1948 		}
1949 		pr_cont(" T(%ld,%ld)\n", s0, s1);
1950 	}
1951 	if (SRCU_SIZING_IS_TORTURE())
1952 		srcu_transition_to_big(ssp);
1953 }
1954 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1955 
srcu_bootup_announce(void)1956 static int __init srcu_bootup_announce(void)
1957 {
1958 	pr_info("Hierarchical SRCU implementation.\n");
1959 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1960 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1961 	if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
1962 		pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
1963 	if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
1964 		pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
1965 	pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
1966 	return 0;
1967 }
1968 early_initcall(srcu_bootup_announce);
1969 
srcu_init(void)1970 void __init srcu_init(void)
1971 {
1972 	struct srcu_usage *sup;
1973 
1974 	/* Decide on srcu_struct-size strategy. */
1975 	if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
1976 		if (nr_cpu_ids >= big_cpu_lim) {
1977 			convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
1978 			pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
1979 		} else {
1980 			convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
1981 			pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
1982 		}
1983 	}
1984 
1985 	/*
1986 	 * Once that is set, call_srcu() can follow the normal path and
1987 	 * queue delayed work. This must follow RCU workqueues creation
1988 	 * and timers initialization.
1989 	 */
1990 	srcu_init_done = true;
1991 	while (!list_empty(&srcu_boot_list)) {
1992 		sup = list_first_entry(&srcu_boot_list, struct srcu_usage,
1993 				      work.work.entry);
1994 		list_del_init(&sup->work.work.entry);
1995 		if (SRCU_SIZING_IS(SRCU_SIZING_INIT) &&
1996 		    sup->srcu_size_state == SRCU_SIZE_SMALL)
1997 			sup->srcu_size_state = SRCU_SIZE_ALLOC;
1998 		queue_work(rcu_gp_wq, &sup->work.work);
1999 	}
2000 }
2001 
2002 #ifdef CONFIG_MODULES
2003 
2004 /* Initialize any global-scope srcu_struct structures used by this module. */
srcu_module_coming(struct module * mod)2005 static int srcu_module_coming(struct module *mod)
2006 {
2007 	int i;
2008 	struct srcu_struct *ssp;
2009 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
2010 
2011 	for (i = 0; i < mod->num_srcu_structs; i++) {
2012 		ssp = *(sspp++);
2013 		ssp->sda = alloc_percpu(struct srcu_data);
2014 		if (WARN_ON_ONCE(!ssp->sda))
2015 			return -ENOMEM;
2016 		ssp->srcu_ctrp = &ssp->sda->srcu_ctrs[0];
2017 	}
2018 	return 0;
2019 }
2020 
2021 /* Clean up any global-scope srcu_struct structures used by this module. */
srcu_module_going(struct module * mod)2022 static void srcu_module_going(struct module *mod)
2023 {
2024 	int i;
2025 	struct srcu_struct *ssp;
2026 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
2027 
2028 	for (i = 0; i < mod->num_srcu_structs; i++) {
2029 		ssp = *(sspp++);
2030 		if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) &&
2031 		    !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static))
2032 			cleanup_srcu_struct(ssp);
2033 		if (!WARN_ON(srcu_readers_active(ssp)))
2034 			free_percpu(ssp->sda);
2035 	}
2036 }
2037 
2038 /* Handle one module, either coming or going. */
srcu_module_notify(struct notifier_block * self,unsigned long val,void * data)2039 static int srcu_module_notify(struct notifier_block *self,
2040 			      unsigned long val, void *data)
2041 {
2042 	struct module *mod = data;
2043 	int ret = 0;
2044 
2045 	switch (val) {
2046 	case MODULE_STATE_COMING:
2047 		ret = srcu_module_coming(mod);
2048 		break;
2049 	case MODULE_STATE_GOING:
2050 		srcu_module_going(mod);
2051 		break;
2052 	default:
2053 		break;
2054 	}
2055 	return ret;
2056 }
2057 
2058 static struct notifier_block srcu_module_nb = {
2059 	.notifier_call = srcu_module_notify,
2060 	.priority = 0,
2061 };
2062 
init_srcu_module_notifier(void)2063 static __init int init_srcu_module_notifier(void)
2064 {
2065 	int ret;
2066 
2067 	ret = register_module_notifier(&srcu_module_nb);
2068 	if (ret)
2069 		pr_warn("Failed to register srcu module notifier\n");
2070 	return ret;
2071 }
2072 late_initcall(init_srcu_module_notifier);
2073 
2074 #endif /* #ifdef CONFIG_MODULES */
2075