1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Data Access Monitor
4 *
5 * Author: SeongJae Park <sj@kernel.org>
6 */
7
8 #define pr_fmt(fmt) "damon: " fmt
9
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/psi.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/string_choices.h>
18
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/damon.h>
21
22 #ifdef CONFIG_DAMON_KUNIT_TEST
23 #undef DAMON_MIN_REGION
24 #define DAMON_MIN_REGION 1
25 #endif
26
27 static DEFINE_MUTEX(damon_lock);
28 static int nr_running_ctxs;
29 static bool running_exclusive_ctxs;
30
31 static DEFINE_MUTEX(damon_ops_lock);
32 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
33
34 static struct kmem_cache *damon_region_cache __ro_after_init;
35
36 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
__damon_is_registered_ops(enum damon_ops_id id)37 static bool __damon_is_registered_ops(enum damon_ops_id id)
38 {
39 struct damon_operations empty_ops = {};
40
41 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
42 return false;
43 return true;
44 }
45
46 /**
47 * damon_is_registered_ops() - Check if a given damon_operations is registered.
48 * @id: Id of the damon_operations to check if registered.
49 *
50 * Return: true if the ops is set, false otherwise.
51 */
damon_is_registered_ops(enum damon_ops_id id)52 bool damon_is_registered_ops(enum damon_ops_id id)
53 {
54 bool registered;
55
56 if (id >= NR_DAMON_OPS)
57 return false;
58 mutex_lock(&damon_ops_lock);
59 registered = __damon_is_registered_ops(id);
60 mutex_unlock(&damon_ops_lock);
61 return registered;
62 }
63
64 /**
65 * damon_register_ops() - Register a monitoring operations set to DAMON.
66 * @ops: monitoring operations set to register.
67 *
68 * This function registers a monitoring operations set of valid &struct
69 * damon_operations->id so that others can find and use them later.
70 *
71 * Return: 0 on success, negative error code otherwise.
72 */
damon_register_ops(struct damon_operations * ops)73 int damon_register_ops(struct damon_operations *ops)
74 {
75 int err = 0;
76
77 if (ops->id >= NR_DAMON_OPS)
78 return -EINVAL;
79
80 mutex_lock(&damon_ops_lock);
81 /* Fail for already registered ops */
82 if (__damon_is_registered_ops(ops->id))
83 err = -EINVAL;
84 else
85 damon_registered_ops[ops->id] = *ops;
86 mutex_unlock(&damon_ops_lock);
87 return err;
88 }
89
90 /**
91 * damon_select_ops() - Select a monitoring operations to use with the context.
92 * @ctx: monitoring context to use the operations.
93 * @id: id of the registered monitoring operations to select.
94 *
95 * This function finds registered monitoring operations set of @id and make
96 * @ctx to use it.
97 *
98 * Return: 0 on success, negative error code otherwise.
99 */
damon_select_ops(struct damon_ctx * ctx,enum damon_ops_id id)100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
101 {
102 int err = 0;
103
104 if (id >= NR_DAMON_OPS)
105 return -EINVAL;
106
107 mutex_lock(&damon_ops_lock);
108 if (!__damon_is_registered_ops(id))
109 err = -EINVAL;
110 else
111 ctx->ops = damon_registered_ops[id];
112 mutex_unlock(&damon_ops_lock);
113 return err;
114 }
115
116 /*
117 * Construct a damon_region struct
118 *
119 * Returns the pointer to the new struct if success, or NULL otherwise
120 */
damon_new_region(unsigned long start,unsigned long end)121 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
122 {
123 struct damon_region *region;
124
125 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
126 if (!region)
127 return NULL;
128
129 region->ar.start = start;
130 region->ar.end = end;
131 region->nr_accesses = 0;
132 region->nr_accesses_bp = 0;
133 INIT_LIST_HEAD(®ion->list);
134
135 region->age = 0;
136 region->last_nr_accesses = 0;
137
138 return region;
139 }
140
damon_add_region(struct damon_region * r,struct damon_target * t)141 void damon_add_region(struct damon_region *r, struct damon_target *t)
142 {
143 list_add_tail(&r->list, &t->regions_list);
144 t->nr_regions++;
145 }
146
damon_del_region(struct damon_region * r,struct damon_target * t)147 static void damon_del_region(struct damon_region *r, struct damon_target *t)
148 {
149 list_del(&r->list);
150 t->nr_regions--;
151 }
152
damon_free_region(struct damon_region * r)153 static void damon_free_region(struct damon_region *r)
154 {
155 kmem_cache_free(damon_region_cache, r);
156 }
157
damon_destroy_region(struct damon_region * r,struct damon_target * t)158 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
159 {
160 damon_del_region(r, t);
161 damon_free_region(r);
162 }
163
164 /*
165 * Check whether a region is intersecting an address range
166 *
167 * Returns true if it is.
168 */
damon_intersect(struct damon_region * r,struct damon_addr_range * re)169 static bool damon_intersect(struct damon_region *r,
170 struct damon_addr_range *re)
171 {
172 return !(r->ar.end <= re->start || re->end <= r->ar.start);
173 }
174
175 /*
176 * Fill holes in regions with new regions.
177 */
damon_fill_regions_holes(struct damon_region * first,struct damon_region * last,struct damon_target * t)178 static int damon_fill_regions_holes(struct damon_region *first,
179 struct damon_region *last, struct damon_target *t)
180 {
181 struct damon_region *r = first;
182
183 damon_for_each_region_from(r, t) {
184 struct damon_region *next, *newr;
185
186 if (r == last)
187 break;
188 next = damon_next_region(r);
189 if (r->ar.end != next->ar.start) {
190 newr = damon_new_region(r->ar.end, next->ar.start);
191 if (!newr)
192 return -ENOMEM;
193 damon_insert_region(newr, r, next, t);
194 }
195 }
196 return 0;
197 }
198
199 /*
200 * damon_set_regions() - Set regions of a target for given address ranges.
201 * @t: the given target.
202 * @ranges: array of new monitoring target ranges.
203 * @nr_ranges: length of @ranges.
204 *
205 * This function adds new regions to, or modify existing regions of a
206 * monitoring target to fit in specific ranges.
207 *
208 * Return: 0 if success, or negative error code otherwise.
209 */
damon_set_regions(struct damon_target * t,struct damon_addr_range * ranges,unsigned int nr_ranges)210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
211 unsigned int nr_ranges)
212 {
213 struct damon_region *r, *next;
214 unsigned int i;
215 int err;
216
217 /* Remove regions which are not in the new ranges */
218 damon_for_each_region_safe(r, next, t) {
219 for (i = 0; i < nr_ranges; i++) {
220 if (damon_intersect(r, &ranges[i]))
221 break;
222 }
223 if (i == nr_ranges)
224 damon_destroy_region(r, t);
225 }
226
227 r = damon_first_region(t);
228 /* Add new regions or resize existing regions to fit in the ranges */
229 for (i = 0; i < nr_ranges; i++) {
230 struct damon_region *first = NULL, *last, *newr;
231 struct damon_addr_range *range;
232
233 range = &ranges[i];
234 /* Get the first/last regions intersecting with the range */
235 damon_for_each_region_from(r, t) {
236 if (damon_intersect(r, range)) {
237 if (!first)
238 first = r;
239 last = r;
240 }
241 if (r->ar.start >= range->end)
242 break;
243 }
244 if (!first) {
245 /* no region intersects with this range */
246 newr = damon_new_region(
247 ALIGN_DOWN(range->start,
248 DAMON_MIN_REGION),
249 ALIGN(range->end, DAMON_MIN_REGION));
250 if (!newr)
251 return -ENOMEM;
252 damon_insert_region(newr, damon_prev_region(r), r, t);
253 } else {
254 /* resize intersecting regions to fit in this range */
255 first->ar.start = ALIGN_DOWN(range->start,
256 DAMON_MIN_REGION);
257 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
258
259 /* fill possible holes in the range */
260 err = damon_fill_regions_holes(first, last, t);
261 if (err)
262 return err;
263 }
264 }
265 return 0;
266 }
267
damos_new_filter(enum damos_filter_type type,bool matching,bool allow)268 struct damos_filter *damos_new_filter(enum damos_filter_type type,
269 bool matching, bool allow)
270 {
271 struct damos_filter *filter;
272
273 filter = kmalloc(sizeof(*filter), GFP_KERNEL);
274 if (!filter)
275 return NULL;
276 filter->type = type;
277 filter->matching = matching;
278 filter->allow = allow;
279 INIT_LIST_HEAD(&filter->list);
280 return filter;
281 }
282
283 /**
284 * damos_filter_for_ops() - Return if the filter is ops-hndled one.
285 * @type: type of the filter.
286 *
287 * Return: true if the filter of @type needs to be handled by ops layer, false
288 * otherwise.
289 */
damos_filter_for_ops(enum damos_filter_type type)290 bool damos_filter_for_ops(enum damos_filter_type type)
291 {
292 switch (type) {
293 case DAMOS_FILTER_TYPE_ADDR:
294 case DAMOS_FILTER_TYPE_TARGET:
295 return false;
296 default:
297 break;
298 }
299 return true;
300 }
301
damos_add_filter(struct damos * s,struct damos_filter * f)302 void damos_add_filter(struct damos *s, struct damos_filter *f)
303 {
304 if (damos_filter_for_ops(f->type))
305 list_add_tail(&f->list, &s->ops_filters);
306 else
307 list_add_tail(&f->list, &s->filters);
308 }
309
damos_del_filter(struct damos_filter * f)310 static void damos_del_filter(struct damos_filter *f)
311 {
312 list_del(&f->list);
313 }
314
damos_free_filter(struct damos_filter * f)315 static void damos_free_filter(struct damos_filter *f)
316 {
317 kfree(f);
318 }
319
damos_destroy_filter(struct damos_filter * f)320 void damos_destroy_filter(struct damos_filter *f)
321 {
322 damos_del_filter(f);
323 damos_free_filter(f);
324 }
325
damos_new_quota_goal(enum damos_quota_goal_metric metric,unsigned long target_value)326 struct damos_quota_goal *damos_new_quota_goal(
327 enum damos_quota_goal_metric metric,
328 unsigned long target_value)
329 {
330 struct damos_quota_goal *goal;
331
332 goal = kmalloc(sizeof(*goal), GFP_KERNEL);
333 if (!goal)
334 return NULL;
335 goal->metric = metric;
336 goal->target_value = target_value;
337 INIT_LIST_HEAD(&goal->list);
338 return goal;
339 }
340
damos_add_quota_goal(struct damos_quota * q,struct damos_quota_goal * g)341 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
342 {
343 list_add_tail(&g->list, &q->goals);
344 }
345
damos_del_quota_goal(struct damos_quota_goal * g)346 static void damos_del_quota_goal(struct damos_quota_goal *g)
347 {
348 list_del(&g->list);
349 }
350
damos_free_quota_goal(struct damos_quota_goal * g)351 static void damos_free_quota_goal(struct damos_quota_goal *g)
352 {
353 kfree(g);
354 }
355
damos_destroy_quota_goal(struct damos_quota_goal * g)356 void damos_destroy_quota_goal(struct damos_quota_goal *g)
357 {
358 damos_del_quota_goal(g);
359 damos_free_quota_goal(g);
360 }
361
362 /* initialize fields of @quota that normally API users wouldn't set */
damos_quota_init(struct damos_quota * quota)363 static struct damos_quota *damos_quota_init(struct damos_quota *quota)
364 {
365 quota->esz = 0;
366 quota->total_charged_sz = 0;
367 quota->total_charged_ns = 0;
368 quota->charged_sz = 0;
369 quota->charged_from = 0;
370 quota->charge_target_from = NULL;
371 quota->charge_addr_from = 0;
372 quota->esz_bp = 0;
373 return quota;
374 }
375
damon_new_scheme(struct damos_access_pattern * pattern,enum damos_action action,unsigned long apply_interval_us,struct damos_quota * quota,struct damos_watermarks * wmarks,int target_nid)376 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
377 enum damos_action action,
378 unsigned long apply_interval_us,
379 struct damos_quota *quota,
380 struct damos_watermarks *wmarks,
381 int target_nid)
382 {
383 struct damos *scheme;
384
385 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
386 if (!scheme)
387 return NULL;
388 scheme->pattern = *pattern;
389 scheme->action = action;
390 scheme->apply_interval_us = apply_interval_us;
391 /*
392 * next_apply_sis will be set when kdamond starts. While kdamond is
393 * running, it will also updated when it is added to the DAMON context,
394 * or damon_attrs are updated.
395 */
396 scheme->next_apply_sis = 0;
397 scheme->walk_completed = false;
398 INIT_LIST_HEAD(&scheme->filters);
399 INIT_LIST_HEAD(&scheme->ops_filters);
400 scheme->stat = (struct damos_stat){};
401 INIT_LIST_HEAD(&scheme->list);
402
403 scheme->quota = *(damos_quota_init(quota));
404 /* quota.goals should be separately set by caller */
405 INIT_LIST_HEAD(&scheme->quota.goals);
406
407 scheme->wmarks = *wmarks;
408 scheme->wmarks.activated = true;
409
410 scheme->target_nid = target_nid;
411
412 return scheme;
413 }
414
damos_set_next_apply_sis(struct damos * s,struct damon_ctx * ctx)415 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
416 {
417 unsigned long sample_interval = ctx->attrs.sample_interval ?
418 ctx->attrs.sample_interval : 1;
419 unsigned long apply_interval = s->apply_interval_us ?
420 s->apply_interval_us : ctx->attrs.aggr_interval;
421
422 s->next_apply_sis = ctx->passed_sample_intervals +
423 apply_interval / sample_interval;
424 }
425
damon_add_scheme(struct damon_ctx * ctx,struct damos * s)426 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
427 {
428 list_add_tail(&s->list, &ctx->schemes);
429 damos_set_next_apply_sis(s, ctx);
430 }
431
damon_del_scheme(struct damos * s)432 static void damon_del_scheme(struct damos *s)
433 {
434 list_del(&s->list);
435 }
436
damon_free_scheme(struct damos * s)437 static void damon_free_scheme(struct damos *s)
438 {
439 kfree(s);
440 }
441
damon_destroy_scheme(struct damos * s)442 void damon_destroy_scheme(struct damos *s)
443 {
444 struct damos_quota_goal *g, *g_next;
445 struct damos_filter *f, *next;
446
447 damos_for_each_quota_goal_safe(g, g_next, &s->quota)
448 damos_destroy_quota_goal(g);
449
450 damos_for_each_filter_safe(f, next, s)
451 damos_destroy_filter(f);
452 damon_del_scheme(s);
453 damon_free_scheme(s);
454 }
455
456 /*
457 * Construct a damon_target struct
458 *
459 * Returns the pointer to the new struct if success, or NULL otherwise
460 */
damon_new_target(void)461 struct damon_target *damon_new_target(void)
462 {
463 struct damon_target *t;
464
465 t = kmalloc(sizeof(*t), GFP_KERNEL);
466 if (!t)
467 return NULL;
468
469 t->pid = NULL;
470 t->nr_regions = 0;
471 INIT_LIST_HEAD(&t->regions_list);
472 INIT_LIST_HEAD(&t->list);
473
474 return t;
475 }
476
damon_add_target(struct damon_ctx * ctx,struct damon_target * t)477 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
478 {
479 list_add_tail(&t->list, &ctx->adaptive_targets);
480 }
481
damon_targets_empty(struct damon_ctx * ctx)482 bool damon_targets_empty(struct damon_ctx *ctx)
483 {
484 return list_empty(&ctx->adaptive_targets);
485 }
486
damon_del_target(struct damon_target * t)487 static void damon_del_target(struct damon_target *t)
488 {
489 list_del(&t->list);
490 }
491
damon_free_target(struct damon_target * t)492 void damon_free_target(struct damon_target *t)
493 {
494 struct damon_region *r, *next;
495
496 damon_for_each_region_safe(r, next, t)
497 damon_free_region(r);
498 kfree(t);
499 }
500
damon_destroy_target(struct damon_target * t)501 void damon_destroy_target(struct damon_target *t)
502 {
503 damon_del_target(t);
504 damon_free_target(t);
505 }
506
damon_nr_regions(struct damon_target * t)507 unsigned int damon_nr_regions(struct damon_target *t)
508 {
509 return t->nr_regions;
510 }
511
damon_new_ctx(void)512 struct damon_ctx *damon_new_ctx(void)
513 {
514 struct damon_ctx *ctx;
515
516 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
517 if (!ctx)
518 return NULL;
519
520 init_completion(&ctx->kdamond_started);
521
522 ctx->attrs.sample_interval = 5 * 1000;
523 ctx->attrs.aggr_interval = 100 * 1000;
524 ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
525
526 ctx->passed_sample_intervals = 0;
527 /* These will be set from kdamond_init_ctx() */
528 ctx->next_aggregation_sis = 0;
529 ctx->next_ops_update_sis = 0;
530
531 mutex_init(&ctx->kdamond_lock);
532 mutex_init(&ctx->call_control_lock);
533 mutex_init(&ctx->walk_control_lock);
534
535 ctx->attrs.min_nr_regions = 10;
536 ctx->attrs.max_nr_regions = 1000;
537
538 INIT_LIST_HEAD(&ctx->adaptive_targets);
539 INIT_LIST_HEAD(&ctx->schemes);
540
541 return ctx;
542 }
543
damon_destroy_targets(struct damon_ctx * ctx)544 static void damon_destroy_targets(struct damon_ctx *ctx)
545 {
546 struct damon_target *t, *next_t;
547
548 if (ctx->ops.cleanup) {
549 ctx->ops.cleanup(ctx);
550 return;
551 }
552
553 damon_for_each_target_safe(t, next_t, ctx)
554 damon_destroy_target(t);
555 }
556
damon_destroy_ctx(struct damon_ctx * ctx)557 void damon_destroy_ctx(struct damon_ctx *ctx)
558 {
559 struct damos *s, *next_s;
560
561 damon_destroy_targets(ctx);
562
563 damon_for_each_scheme_safe(s, next_s, ctx)
564 damon_destroy_scheme(s);
565
566 kfree(ctx);
567 }
568
damon_age_for_new_attrs(unsigned int age,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)569 static unsigned int damon_age_for_new_attrs(unsigned int age,
570 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
571 {
572 return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
573 }
574
575 /* convert access ratio in bp (per 10,000) to nr_accesses */
damon_accesses_bp_to_nr_accesses(unsigned int accesses_bp,struct damon_attrs * attrs)576 static unsigned int damon_accesses_bp_to_nr_accesses(
577 unsigned int accesses_bp, struct damon_attrs *attrs)
578 {
579 return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
580 }
581
582 /*
583 * Convert nr_accesses to access ratio in bp (per 10,000).
584 *
585 * Callers should ensure attrs.aggr_interval is not zero, like
586 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would
587 * happen.
588 */
damon_nr_accesses_to_accesses_bp(unsigned int nr_accesses,struct damon_attrs * attrs)589 static unsigned int damon_nr_accesses_to_accesses_bp(
590 unsigned int nr_accesses, struct damon_attrs *attrs)
591 {
592 return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
593 }
594
damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)595 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
596 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
597 {
598 return damon_accesses_bp_to_nr_accesses(
599 damon_nr_accesses_to_accesses_bp(
600 nr_accesses, old_attrs),
601 new_attrs);
602 }
603
damon_update_monitoring_result(struct damon_region * r,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs,bool aggregating)604 static void damon_update_monitoring_result(struct damon_region *r,
605 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs,
606 bool aggregating)
607 {
608 if (!aggregating) {
609 r->nr_accesses = damon_nr_accesses_for_new_attrs(
610 r->nr_accesses, old_attrs, new_attrs);
611 r->nr_accesses_bp = r->nr_accesses * 10000;
612 } else {
613 /*
614 * if this is called in the middle of the aggregation, reset
615 * the aggregations we made so far for this aggregation
616 * interval. In other words, make the status like
617 * kdamond_reset_aggregated() is called.
618 */
619 r->last_nr_accesses = damon_nr_accesses_for_new_attrs(
620 r->last_nr_accesses, old_attrs, new_attrs);
621 r->nr_accesses_bp = r->last_nr_accesses * 10000;
622 r->nr_accesses = 0;
623 }
624 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
625 }
626
627 /*
628 * region->nr_accesses is the number of sampling intervals in the last
629 * aggregation interval that access to the region has found, and region->age is
630 * the number of aggregation intervals that its access pattern has maintained.
631 * For the reason, the real meaning of the two fields depend on current
632 * sampling interval and aggregation interval. This function updates
633 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
634 */
damon_update_monitoring_results(struct damon_ctx * ctx,struct damon_attrs * new_attrs,bool aggregating)635 static void damon_update_monitoring_results(struct damon_ctx *ctx,
636 struct damon_attrs *new_attrs, bool aggregating)
637 {
638 struct damon_attrs *old_attrs = &ctx->attrs;
639 struct damon_target *t;
640 struct damon_region *r;
641
642 /* if any interval is zero, simply forgive conversion */
643 if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
644 !new_attrs->sample_interval ||
645 !new_attrs->aggr_interval)
646 return;
647
648 damon_for_each_target(t, ctx)
649 damon_for_each_region(r, t)
650 damon_update_monitoring_result(
651 r, old_attrs, new_attrs, aggregating);
652 }
653
654 /*
655 * damon_valid_intervals_goal() - return if the intervals goal of @attrs is
656 * valid.
657 */
damon_valid_intervals_goal(struct damon_attrs * attrs)658 static bool damon_valid_intervals_goal(struct damon_attrs *attrs)
659 {
660 struct damon_intervals_goal *goal = &attrs->intervals_goal;
661
662 /* tuning is disabled */
663 if (!goal->aggrs)
664 return true;
665 if (goal->min_sample_us > goal->max_sample_us)
666 return false;
667 if (attrs->sample_interval < goal->min_sample_us ||
668 goal->max_sample_us < attrs->sample_interval)
669 return false;
670 return true;
671 }
672
673 /**
674 * damon_set_attrs() - Set attributes for the monitoring.
675 * @ctx: monitoring context
676 * @attrs: monitoring attributes
677 *
678 * This function should be called while the kdamond is not running, an access
679 * check results aggregation is not ongoing (e.g., from &struct
680 * damon_callback->after_aggregation or &struct
681 * damon_callback->after_wmarks_check callbacks), or from damon_call().
682 *
683 * Every time interval is in micro-seconds.
684 *
685 * Return: 0 on success, negative error code otherwise.
686 */
damon_set_attrs(struct damon_ctx * ctx,struct damon_attrs * attrs)687 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
688 {
689 unsigned long sample_interval = attrs->sample_interval ?
690 attrs->sample_interval : 1;
691 struct damos *s;
692 bool aggregating = ctx->passed_sample_intervals <
693 ctx->next_aggregation_sis;
694
695 if (!damon_valid_intervals_goal(attrs))
696 return -EINVAL;
697
698 if (attrs->min_nr_regions < 3)
699 return -EINVAL;
700 if (attrs->min_nr_regions > attrs->max_nr_regions)
701 return -EINVAL;
702 if (attrs->sample_interval > attrs->aggr_interval)
703 return -EINVAL;
704
705 /* calls from core-external doesn't set this. */
706 if (!attrs->aggr_samples)
707 attrs->aggr_samples = attrs->aggr_interval / sample_interval;
708
709 ctx->next_aggregation_sis = ctx->passed_sample_intervals +
710 attrs->aggr_interval / sample_interval;
711 ctx->next_ops_update_sis = ctx->passed_sample_intervals +
712 attrs->ops_update_interval / sample_interval;
713
714 damon_update_monitoring_results(ctx, attrs, aggregating);
715 ctx->attrs = *attrs;
716
717 damon_for_each_scheme(s, ctx)
718 damos_set_next_apply_sis(s, ctx);
719
720 return 0;
721 }
722
723 /**
724 * damon_set_schemes() - Set data access monitoring based operation schemes.
725 * @ctx: monitoring context
726 * @schemes: array of the schemes
727 * @nr_schemes: number of entries in @schemes
728 *
729 * This function should not be called while the kdamond of the context is
730 * running.
731 */
damon_set_schemes(struct damon_ctx * ctx,struct damos ** schemes,ssize_t nr_schemes)732 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
733 ssize_t nr_schemes)
734 {
735 struct damos *s, *next;
736 ssize_t i;
737
738 damon_for_each_scheme_safe(s, next, ctx)
739 damon_destroy_scheme(s);
740 for (i = 0; i < nr_schemes; i++)
741 damon_add_scheme(ctx, schemes[i]);
742 }
743
damos_nth_quota_goal(int n,struct damos_quota * q)744 static struct damos_quota_goal *damos_nth_quota_goal(
745 int n, struct damos_quota *q)
746 {
747 struct damos_quota_goal *goal;
748 int i = 0;
749
750 damos_for_each_quota_goal(goal, q) {
751 if (i++ == n)
752 return goal;
753 }
754 return NULL;
755 }
756
damos_commit_quota_goal(struct damos_quota_goal * dst,struct damos_quota_goal * src)757 static void damos_commit_quota_goal(
758 struct damos_quota_goal *dst, struct damos_quota_goal *src)
759 {
760 dst->metric = src->metric;
761 dst->target_value = src->target_value;
762 if (dst->metric == DAMOS_QUOTA_USER_INPUT)
763 dst->current_value = src->current_value;
764 /* keep last_psi_total as is, since it will be updated in next cycle */
765 }
766
767 /**
768 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota.
769 * @dst: The commit destination DAMOS quota.
770 * @src: The commit source DAMOS quota.
771 *
772 * Copies user-specified parameters for quota goals from @src to @dst. Users
773 * should use this function for quota goals-level parameters update of running
774 * DAMON contexts, instead of manual in-place updates.
775 *
776 * This function should be called from parameters-update safe context, like
777 * DAMON callbacks.
778 */
damos_commit_quota_goals(struct damos_quota * dst,struct damos_quota * src)779 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src)
780 {
781 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal;
782 int i = 0, j = 0;
783
784 damos_for_each_quota_goal_safe(dst_goal, next, dst) {
785 src_goal = damos_nth_quota_goal(i++, src);
786 if (src_goal)
787 damos_commit_quota_goal(dst_goal, src_goal);
788 else
789 damos_destroy_quota_goal(dst_goal);
790 }
791 damos_for_each_quota_goal_safe(src_goal, next, src) {
792 if (j++ < i)
793 continue;
794 new_goal = damos_new_quota_goal(
795 src_goal->metric, src_goal->target_value);
796 if (!new_goal)
797 return -ENOMEM;
798 damos_add_quota_goal(dst, new_goal);
799 }
800 return 0;
801 }
802
damos_commit_quota(struct damos_quota * dst,struct damos_quota * src)803 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src)
804 {
805 int err;
806
807 dst->reset_interval = src->reset_interval;
808 dst->ms = src->ms;
809 dst->sz = src->sz;
810 err = damos_commit_quota_goals(dst, src);
811 if (err)
812 return err;
813 dst->weight_sz = src->weight_sz;
814 dst->weight_nr_accesses = src->weight_nr_accesses;
815 dst->weight_age = src->weight_age;
816 return 0;
817 }
818
damos_nth_filter(int n,struct damos * s)819 static struct damos_filter *damos_nth_filter(int n, struct damos *s)
820 {
821 struct damos_filter *filter;
822 int i = 0;
823
824 damos_for_each_filter(filter, s) {
825 if (i++ == n)
826 return filter;
827 }
828 return NULL;
829 }
830
damos_commit_filter_arg(struct damos_filter * dst,struct damos_filter * src)831 static void damos_commit_filter_arg(
832 struct damos_filter *dst, struct damos_filter *src)
833 {
834 switch (dst->type) {
835 case DAMOS_FILTER_TYPE_MEMCG:
836 dst->memcg_id = src->memcg_id;
837 break;
838 case DAMOS_FILTER_TYPE_ADDR:
839 dst->addr_range = src->addr_range;
840 break;
841 case DAMOS_FILTER_TYPE_TARGET:
842 dst->target_idx = src->target_idx;
843 break;
844 case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE:
845 dst->sz_range = src->sz_range;
846 break;
847 default:
848 break;
849 }
850 }
851
damos_commit_filter(struct damos_filter * dst,struct damos_filter * src)852 static void damos_commit_filter(
853 struct damos_filter *dst, struct damos_filter *src)
854 {
855 dst->type = src->type;
856 dst->matching = src->matching;
857 damos_commit_filter_arg(dst, src);
858 }
859
damos_commit_core_filters(struct damos * dst,struct damos * src)860 static int damos_commit_core_filters(struct damos *dst, struct damos *src)
861 {
862 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
863 int i = 0, j = 0;
864
865 damos_for_each_filter_safe(dst_filter, next, dst) {
866 src_filter = damos_nth_filter(i++, src);
867 if (src_filter)
868 damos_commit_filter(dst_filter, src_filter);
869 else
870 damos_destroy_filter(dst_filter);
871 }
872
873 damos_for_each_filter_safe(src_filter, next, src) {
874 if (j++ < i)
875 continue;
876
877 new_filter = damos_new_filter(
878 src_filter->type, src_filter->matching,
879 src_filter->allow);
880 if (!new_filter)
881 return -ENOMEM;
882 damos_commit_filter_arg(new_filter, src_filter);
883 damos_add_filter(dst, new_filter);
884 }
885 return 0;
886 }
887
damos_commit_ops_filters(struct damos * dst,struct damos * src)888 static int damos_commit_ops_filters(struct damos *dst, struct damos *src)
889 {
890 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
891 int i = 0, j = 0;
892
893 damos_for_each_ops_filter_safe(dst_filter, next, dst) {
894 src_filter = damos_nth_filter(i++, src);
895 if (src_filter)
896 damos_commit_filter(dst_filter, src_filter);
897 else
898 damos_destroy_filter(dst_filter);
899 }
900
901 damos_for_each_ops_filter_safe(src_filter, next, src) {
902 if (j++ < i)
903 continue;
904
905 new_filter = damos_new_filter(
906 src_filter->type, src_filter->matching,
907 src_filter->allow);
908 if (!new_filter)
909 return -ENOMEM;
910 damos_commit_filter_arg(new_filter, src_filter);
911 damos_add_filter(dst, new_filter);
912 }
913 return 0;
914 }
915
916 /**
917 * damos_filters_default_reject() - decide whether to reject memory that didn't
918 * match with any given filter.
919 * @filters: Given DAMOS filters of a group.
920 */
damos_filters_default_reject(struct list_head * filters)921 static bool damos_filters_default_reject(struct list_head *filters)
922 {
923 struct damos_filter *last_filter;
924
925 if (list_empty(filters))
926 return false;
927 last_filter = list_last_entry(filters, struct damos_filter, list);
928 return last_filter->allow;
929 }
930
damos_set_filters_default_reject(struct damos * s)931 static void damos_set_filters_default_reject(struct damos *s)
932 {
933 if (!list_empty(&s->ops_filters))
934 s->core_filters_default_reject = false;
935 else
936 s->core_filters_default_reject =
937 damos_filters_default_reject(&s->filters);
938 s->ops_filters_default_reject =
939 damos_filters_default_reject(&s->ops_filters);
940 }
941
damos_commit_filters(struct damos * dst,struct damos * src)942 static int damos_commit_filters(struct damos *dst, struct damos *src)
943 {
944 int err;
945
946 err = damos_commit_core_filters(dst, src);
947 if (err)
948 return err;
949 err = damos_commit_ops_filters(dst, src);
950 if (err)
951 return err;
952 damos_set_filters_default_reject(dst);
953 return 0;
954 }
955
damon_nth_scheme(int n,struct damon_ctx * ctx)956 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx)
957 {
958 struct damos *s;
959 int i = 0;
960
961 damon_for_each_scheme(s, ctx) {
962 if (i++ == n)
963 return s;
964 }
965 return NULL;
966 }
967
damos_commit(struct damos * dst,struct damos * src)968 static int damos_commit(struct damos *dst, struct damos *src)
969 {
970 int err;
971
972 dst->pattern = src->pattern;
973 dst->action = src->action;
974 dst->apply_interval_us = src->apply_interval_us;
975
976 err = damos_commit_quota(&dst->quota, &src->quota);
977 if (err)
978 return err;
979
980 dst->wmarks = src->wmarks;
981
982 err = damos_commit_filters(dst, src);
983 return err;
984 }
985
damon_commit_schemes(struct damon_ctx * dst,struct damon_ctx * src)986 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src)
987 {
988 struct damos *dst_scheme, *next, *src_scheme, *new_scheme;
989 int i = 0, j = 0, err;
990
991 damon_for_each_scheme_safe(dst_scheme, next, dst) {
992 src_scheme = damon_nth_scheme(i++, src);
993 if (src_scheme) {
994 err = damos_commit(dst_scheme, src_scheme);
995 if (err)
996 return err;
997 } else {
998 damon_destroy_scheme(dst_scheme);
999 }
1000 }
1001
1002 damon_for_each_scheme_safe(src_scheme, next, src) {
1003 if (j++ < i)
1004 continue;
1005 new_scheme = damon_new_scheme(&src_scheme->pattern,
1006 src_scheme->action,
1007 src_scheme->apply_interval_us,
1008 &src_scheme->quota, &src_scheme->wmarks,
1009 NUMA_NO_NODE);
1010 if (!new_scheme)
1011 return -ENOMEM;
1012 err = damos_commit(new_scheme, src_scheme);
1013 if (err) {
1014 damon_destroy_scheme(new_scheme);
1015 return err;
1016 }
1017 damon_add_scheme(dst, new_scheme);
1018 }
1019 return 0;
1020 }
1021
damon_nth_target(int n,struct damon_ctx * ctx)1022 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx)
1023 {
1024 struct damon_target *t;
1025 int i = 0;
1026
1027 damon_for_each_target(t, ctx) {
1028 if (i++ == n)
1029 return t;
1030 }
1031 return NULL;
1032 }
1033
1034 /*
1035 * The caller should ensure the regions of @src are
1036 * 1. valid (end >= src) and
1037 * 2. sorted by starting address.
1038 *
1039 * If @src has no region, @dst keeps current regions.
1040 */
damon_commit_target_regions(struct damon_target * dst,struct damon_target * src)1041 static int damon_commit_target_regions(
1042 struct damon_target *dst, struct damon_target *src)
1043 {
1044 struct damon_region *src_region;
1045 struct damon_addr_range *ranges;
1046 int i = 0, err;
1047
1048 damon_for_each_region(src_region, src)
1049 i++;
1050 if (!i)
1051 return 0;
1052
1053 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN);
1054 if (!ranges)
1055 return -ENOMEM;
1056 i = 0;
1057 damon_for_each_region(src_region, src)
1058 ranges[i++] = src_region->ar;
1059 err = damon_set_regions(dst, ranges, i);
1060 kfree(ranges);
1061 return err;
1062 }
1063
damon_commit_target(struct damon_target * dst,bool dst_has_pid,struct damon_target * src,bool src_has_pid)1064 static int damon_commit_target(
1065 struct damon_target *dst, bool dst_has_pid,
1066 struct damon_target *src, bool src_has_pid)
1067 {
1068 int err;
1069
1070 err = damon_commit_target_regions(dst, src);
1071 if (err)
1072 return err;
1073 if (dst_has_pid)
1074 put_pid(dst->pid);
1075 if (src_has_pid)
1076 get_pid(src->pid);
1077 dst->pid = src->pid;
1078 return 0;
1079 }
1080
damon_commit_targets(struct damon_ctx * dst,struct damon_ctx * src)1081 static int damon_commit_targets(
1082 struct damon_ctx *dst, struct damon_ctx *src)
1083 {
1084 struct damon_target *dst_target, *next, *src_target, *new_target;
1085 int i = 0, j = 0, err;
1086
1087 damon_for_each_target_safe(dst_target, next, dst) {
1088 src_target = damon_nth_target(i++, src);
1089 if (src_target) {
1090 err = damon_commit_target(
1091 dst_target, damon_target_has_pid(dst),
1092 src_target, damon_target_has_pid(src));
1093 if (err)
1094 return err;
1095 } else {
1096 if (damon_target_has_pid(dst))
1097 put_pid(dst_target->pid);
1098 damon_destroy_target(dst_target);
1099 }
1100 }
1101
1102 damon_for_each_target_safe(src_target, next, src) {
1103 if (j++ < i)
1104 continue;
1105 new_target = damon_new_target();
1106 if (!new_target)
1107 return -ENOMEM;
1108 err = damon_commit_target(new_target, false,
1109 src_target, damon_target_has_pid(src));
1110 if (err) {
1111 damon_destroy_target(new_target);
1112 return err;
1113 }
1114 damon_add_target(dst, new_target);
1115 }
1116 return 0;
1117 }
1118
1119 /**
1120 * damon_commit_ctx() - Commit parameters of a DAMON context to another.
1121 * @dst: The commit destination DAMON context.
1122 * @src: The commit source DAMON context.
1123 *
1124 * This function copies user-specified parameters from @src to @dst and update
1125 * the internal status and results accordingly. Users should use this function
1126 * for context-level parameters update of running context, instead of manual
1127 * in-place updates.
1128 *
1129 * This function should be called from parameters-update safe context, like
1130 * DAMON callbacks.
1131 */
damon_commit_ctx(struct damon_ctx * dst,struct damon_ctx * src)1132 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src)
1133 {
1134 int err;
1135
1136 err = damon_commit_schemes(dst, src);
1137 if (err)
1138 return err;
1139 err = damon_commit_targets(dst, src);
1140 if (err)
1141 return err;
1142 /*
1143 * schemes and targets should be updated first, since
1144 * 1. damon_set_attrs() updates monitoring results of targets and
1145 * next_apply_sis of schemes, and
1146 * 2. ops update should be done after pid handling is done (target
1147 * committing require putting pids).
1148 */
1149 err = damon_set_attrs(dst, &src->attrs);
1150 if (err)
1151 return err;
1152 dst->ops = src->ops;
1153
1154 return 0;
1155 }
1156
1157 /**
1158 * damon_nr_running_ctxs() - Return number of currently running contexts.
1159 */
damon_nr_running_ctxs(void)1160 int damon_nr_running_ctxs(void)
1161 {
1162 int nr_ctxs;
1163
1164 mutex_lock(&damon_lock);
1165 nr_ctxs = nr_running_ctxs;
1166 mutex_unlock(&damon_lock);
1167
1168 return nr_ctxs;
1169 }
1170
1171 /* Returns the size upper limit for each monitoring region */
damon_region_sz_limit(struct damon_ctx * ctx)1172 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
1173 {
1174 struct damon_target *t;
1175 struct damon_region *r;
1176 unsigned long sz = 0;
1177
1178 damon_for_each_target(t, ctx) {
1179 damon_for_each_region(r, t)
1180 sz += damon_sz_region(r);
1181 }
1182
1183 if (ctx->attrs.min_nr_regions)
1184 sz /= ctx->attrs.min_nr_regions;
1185 if (sz < DAMON_MIN_REGION)
1186 sz = DAMON_MIN_REGION;
1187
1188 return sz;
1189 }
1190
1191 static int kdamond_fn(void *data);
1192
1193 /*
1194 * __damon_start() - Starts monitoring with given context.
1195 * @ctx: monitoring context
1196 *
1197 * This function should be called while damon_lock is hold.
1198 *
1199 * Return: 0 on success, negative error code otherwise.
1200 */
__damon_start(struct damon_ctx * ctx)1201 static int __damon_start(struct damon_ctx *ctx)
1202 {
1203 int err = -EBUSY;
1204
1205 mutex_lock(&ctx->kdamond_lock);
1206 if (!ctx->kdamond) {
1207 err = 0;
1208 reinit_completion(&ctx->kdamond_started);
1209 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
1210 nr_running_ctxs);
1211 if (IS_ERR(ctx->kdamond)) {
1212 err = PTR_ERR(ctx->kdamond);
1213 ctx->kdamond = NULL;
1214 } else {
1215 wait_for_completion(&ctx->kdamond_started);
1216 }
1217 }
1218 mutex_unlock(&ctx->kdamond_lock);
1219
1220 return err;
1221 }
1222
1223 /**
1224 * damon_start() - Starts the monitorings for a given group of contexts.
1225 * @ctxs: an array of the pointers for contexts to start monitoring
1226 * @nr_ctxs: size of @ctxs
1227 * @exclusive: exclusiveness of this contexts group
1228 *
1229 * This function starts a group of monitoring threads for a group of monitoring
1230 * contexts. One thread per each context is created and run in parallel. The
1231 * caller should handle synchronization between the threads by itself. If
1232 * @exclusive is true and a group of threads that created by other
1233 * 'damon_start()' call is currently running, this function does nothing but
1234 * returns -EBUSY.
1235 *
1236 * Return: 0 on success, negative error code otherwise.
1237 */
damon_start(struct damon_ctx ** ctxs,int nr_ctxs,bool exclusive)1238 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
1239 {
1240 int i;
1241 int err = 0;
1242
1243 mutex_lock(&damon_lock);
1244 if ((exclusive && nr_running_ctxs) ||
1245 (!exclusive && running_exclusive_ctxs)) {
1246 mutex_unlock(&damon_lock);
1247 return -EBUSY;
1248 }
1249
1250 for (i = 0; i < nr_ctxs; i++) {
1251 err = __damon_start(ctxs[i]);
1252 if (err)
1253 break;
1254 nr_running_ctxs++;
1255 }
1256 if (exclusive && nr_running_ctxs)
1257 running_exclusive_ctxs = true;
1258 mutex_unlock(&damon_lock);
1259
1260 return err;
1261 }
1262
1263 /*
1264 * __damon_stop() - Stops monitoring of a given context.
1265 * @ctx: monitoring context
1266 *
1267 * Return: 0 on success, negative error code otherwise.
1268 */
__damon_stop(struct damon_ctx * ctx)1269 static int __damon_stop(struct damon_ctx *ctx)
1270 {
1271 struct task_struct *tsk;
1272
1273 mutex_lock(&ctx->kdamond_lock);
1274 tsk = ctx->kdamond;
1275 if (tsk) {
1276 get_task_struct(tsk);
1277 mutex_unlock(&ctx->kdamond_lock);
1278 kthread_stop_put(tsk);
1279 return 0;
1280 }
1281 mutex_unlock(&ctx->kdamond_lock);
1282
1283 return -EPERM;
1284 }
1285
1286 /**
1287 * damon_stop() - Stops the monitorings for a given group of contexts.
1288 * @ctxs: an array of the pointers for contexts to stop monitoring
1289 * @nr_ctxs: size of @ctxs
1290 *
1291 * Return: 0 on success, negative error code otherwise.
1292 */
damon_stop(struct damon_ctx ** ctxs,int nr_ctxs)1293 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
1294 {
1295 int i, err = 0;
1296
1297 for (i = 0; i < nr_ctxs; i++) {
1298 /* nr_running_ctxs is decremented in kdamond_fn */
1299 err = __damon_stop(ctxs[i]);
1300 if (err)
1301 break;
1302 }
1303 return err;
1304 }
1305
damon_is_running(struct damon_ctx * ctx)1306 static bool damon_is_running(struct damon_ctx *ctx)
1307 {
1308 bool running;
1309
1310 mutex_lock(&ctx->kdamond_lock);
1311 running = ctx->kdamond != NULL;
1312 mutex_unlock(&ctx->kdamond_lock);
1313 return running;
1314 }
1315
1316 /**
1317 * damon_call() - Invoke a given function on DAMON worker thread (kdamond).
1318 * @ctx: DAMON context to call the function for.
1319 * @control: Control variable of the call request.
1320 *
1321 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an
1322 * argument data that respectively passed via &damon_call_control->fn and
1323 * &damon_call_control->data of @control, and wait until the kdamond finishes
1324 * handling of the request.
1325 *
1326 * The kdamond executes the function with the argument in the main loop, just
1327 * after a sampling of the iteration is finished. The function can hence
1328 * safely access the internal data of the &struct damon_ctx without additional
1329 * synchronization. The return value of the function will be saved in
1330 * &damon_call_control->return_code.
1331 *
1332 * Return: 0 on success, negative error code otherwise.
1333 */
damon_call(struct damon_ctx * ctx,struct damon_call_control * control)1334 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control)
1335 {
1336 init_completion(&control->completion);
1337 control->canceled = false;
1338
1339 mutex_lock(&ctx->call_control_lock);
1340 if (ctx->call_control) {
1341 mutex_unlock(&ctx->call_control_lock);
1342 return -EBUSY;
1343 }
1344 ctx->call_control = control;
1345 mutex_unlock(&ctx->call_control_lock);
1346 if (!damon_is_running(ctx))
1347 return -EINVAL;
1348 wait_for_completion(&control->completion);
1349 if (control->canceled)
1350 return -ECANCELED;
1351 return 0;
1352 }
1353
1354 /**
1355 * damos_walk() - Invoke a given functions while DAMOS walk regions.
1356 * @ctx: DAMON context to call the functions for.
1357 * @control: Control variable of the walk request.
1358 *
1359 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region
1360 * that the kdamond will apply DAMOS action to, and wait until the kdamond
1361 * finishes handling of the request.
1362 *
1363 * The kdamond executes the given function in the main loop, for each region
1364 * just after it applied any DAMOS actions of @ctx to it. The invocation is
1365 * made only within one &damos->apply_interval_us since damos_walk()
1366 * invocation, for each scheme. The given callback function can hence safely
1367 * access the internal data of &struct damon_ctx and &struct damon_region that
1368 * each of the scheme will apply the action for next interval, without
1369 * additional synchronizations against the kdamond. If every scheme of @ctx
1370 * passed at least one &damos->apply_interval_us, kdamond marks the request as
1371 * completed so that damos_walk() can wakeup and return.
1372 *
1373 * Return: 0 on success, negative error code otherwise.
1374 */
damos_walk(struct damon_ctx * ctx,struct damos_walk_control * control)1375 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control)
1376 {
1377 init_completion(&control->completion);
1378 control->canceled = false;
1379 mutex_lock(&ctx->walk_control_lock);
1380 if (ctx->walk_control) {
1381 mutex_unlock(&ctx->walk_control_lock);
1382 return -EBUSY;
1383 }
1384 ctx->walk_control = control;
1385 mutex_unlock(&ctx->walk_control_lock);
1386 if (!damon_is_running(ctx))
1387 return -EINVAL;
1388 wait_for_completion(&control->completion);
1389 if (control->canceled)
1390 return -ECANCELED;
1391 return 0;
1392 }
1393
1394 /*
1395 * Reset the aggregated monitoring results ('nr_accesses' of each region).
1396 */
kdamond_reset_aggregated(struct damon_ctx * c)1397 static void kdamond_reset_aggregated(struct damon_ctx *c)
1398 {
1399 struct damon_target *t;
1400 unsigned int ti = 0; /* target's index */
1401
1402 damon_for_each_target(t, c) {
1403 struct damon_region *r;
1404
1405 damon_for_each_region(r, t) {
1406 trace_damon_aggregated(ti, r, damon_nr_regions(t));
1407 r->last_nr_accesses = r->nr_accesses;
1408 r->nr_accesses = 0;
1409 }
1410 ti++;
1411 }
1412 }
1413
damon_get_intervals_score(struct damon_ctx * c)1414 static unsigned long damon_get_intervals_score(struct damon_ctx *c)
1415 {
1416 struct damon_target *t;
1417 struct damon_region *r;
1418 unsigned long sz_region, max_access_events = 0, access_events = 0;
1419 unsigned long target_access_events;
1420 unsigned long goal_bp = c->attrs.intervals_goal.access_bp;
1421
1422 damon_for_each_target(t, c) {
1423 damon_for_each_region(r, t) {
1424 sz_region = damon_sz_region(r);
1425 max_access_events += sz_region * c->attrs.aggr_samples;
1426 access_events += sz_region * r->nr_accesses;
1427 }
1428 }
1429 target_access_events = max_access_events * goal_bp / 10000;
1430 return access_events * 10000 / target_access_events;
1431 }
1432
1433 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1434 unsigned long score);
1435
damon_get_intervals_adaptation_bp(struct damon_ctx * c)1436 static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c)
1437 {
1438 unsigned long score_bp, adaptation_bp;
1439
1440 score_bp = damon_get_intervals_score(c);
1441 adaptation_bp = damon_feed_loop_next_input(100000000, score_bp) /
1442 10000;
1443 /*
1444 * adaptaion_bp ranges from 1 to 20,000. Avoid too rapid reduction of
1445 * the intervals by rescaling [1,10,000] to [5000, 10,000].
1446 */
1447 if (adaptation_bp <= 10000)
1448 adaptation_bp = 5000 + adaptation_bp / 2;
1449 return adaptation_bp;
1450 }
1451
kdamond_tune_intervals(struct damon_ctx * c)1452 static void kdamond_tune_intervals(struct damon_ctx *c)
1453 {
1454 unsigned long adaptation_bp;
1455 struct damon_attrs new_attrs;
1456 struct damon_intervals_goal *goal;
1457
1458 adaptation_bp = damon_get_intervals_adaptation_bp(c);
1459 if (adaptation_bp == 10000)
1460 return;
1461
1462 new_attrs = c->attrs;
1463 goal = &c->attrs.intervals_goal;
1464 new_attrs.sample_interval = min(goal->max_sample_us,
1465 c->attrs.sample_interval * adaptation_bp / 10000);
1466 new_attrs.sample_interval = max(goal->min_sample_us,
1467 new_attrs.sample_interval);
1468 new_attrs.aggr_interval = new_attrs.sample_interval *
1469 c->attrs.aggr_samples;
1470 damon_set_attrs(c, &new_attrs);
1471 }
1472
1473 static void damon_split_region_at(struct damon_target *t,
1474 struct damon_region *r, unsigned long sz_r);
1475
__damos_valid_target(struct damon_region * r,struct damos * s)1476 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
1477 {
1478 unsigned long sz;
1479 unsigned int nr_accesses = r->nr_accesses_bp / 10000;
1480
1481 sz = damon_sz_region(r);
1482 return s->pattern.min_sz_region <= sz &&
1483 sz <= s->pattern.max_sz_region &&
1484 s->pattern.min_nr_accesses <= nr_accesses &&
1485 nr_accesses <= s->pattern.max_nr_accesses &&
1486 s->pattern.min_age_region <= r->age &&
1487 r->age <= s->pattern.max_age_region;
1488 }
1489
damos_valid_target(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1490 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
1491 struct damon_region *r, struct damos *s)
1492 {
1493 bool ret = __damos_valid_target(r, s);
1494
1495 if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
1496 return ret;
1497
1498 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
1499 }
1500
1501 /*
1502 * damos_skip_charged_region() - Check if the given region or starting part of
1503 * it is already charged for the DAMOS quota.
1504 * @t: The target of the region.
1505 * @rp: The pointer to the region.
1506 * @s: The scheme to be applied.
1507 *
1508 * If a quota of a scheme has exceeded in a quota charge window, the scheme's
1509 * action would applied to only a part of the target access pattern fulfilling
1510 * regions. To avoid applying the scheme action to only already applied
1511 * regions, DAMON skips applying the scheme action to the regions that charged
1512 * in the previous charge window.
1513 *
1514 * This function checks if a given region should be skipped or not for the
1515 * reason. If only the starting part of the region has previously charged,
1516 * this function splits the region into two so that the second one covers the
1517 * area that not charged in the previous charge widnow and saves the second
1518 * region in *rp and returns false, so that the caller can apply DAMON action
1519 * to the second one.
1520 *
1521 * Return: true if the region should be entirely skipped, false otherwise.
1522 */
damos_skip_charged_region(struct damon_target * t,struct damon_region ** rp,struct damos * s)1523 static bool damos_skip_charged_region(struct damon_target *t,
1524 struct damon_region **rp, struct damos *s)
1525 {
1526 struct damon_region *r = *rp;
1527 struct damos_quota *quota = &s->quota;
1528 unsigned long sz_to_skip;
1529
1530 /* Skip previously charged regions */
1531 if (quota->charge_target_from) {
1532 if (t != quota->charge_target_from)
1533 return true;
1534 if (r == damon_last_region(t)) {
1535 quota->charge_target_from = NULL;
1536 quota->charge_addr_from = 0;
1537 return true;
1538 }
1539 if (quota->charge_addr_from &&
1540 r->ar.end <= quota->charge_addr_from)
1541 return true;
1542
1543 if (quota->charge_addr_from && r->ar.start <
1544 quota->charge_addr_from) {
1545 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
1546 r->ar.start, DAMON_MIN_REGION);
1547 if (!sz_to_skip) {
1548 if (damon_sz_region(r) <= DAMON_MIN_REGION)
1549 return true;
1550 sz_to_skip = DAMON_MIN_REGION;
1551 }
1552 damon_split_region_at(t, r, sz_to_skip);
1553 r = damon_next_region(r);
1554 *rp = r;
1555 }
1556 quota->charge_target_from = NULL;
1557 quota->charge_addr_from = 0;
1558 }
1559 return false;
1560 }
1561
damos_update_stat(struct damos * s,unsigned long sz_tried,unsigned long sz_applied,unsigned long sz_ops_filter_passed)1562 static void damos_update_stat(struct damos *s,
1563 unsigned long sz_tried, unsigned long sz_applied,
1564 unsigned long sz_ops_filter_passed)
1565 {
1566 s->stat.nr_tried++;
1567 s->stat.sz_tried += sz_tried;
1568 if (sz_applied)
1569 s->stat.nr_applied++;
1570 s->stat.sz_applied += sz_applied;
1571 s->stat.sz_ops_filter_passed += sz_ops_filter_passed;
1572 }
1573
damos_filter_match(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos_filter * filter)1574 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t,
1575 struct damon_region *r, struct damos_filter *filter)
1576 {
1577 bool matched = false;
1578 struct damon_target *ti;
1579 int target_idx = 0;
1580 unsigned long start, end;
1581
1582 switch (filter->type) {
1583 case DAMOS_FILTER_TYPE_TARGET:
1584 damon_for_each_target(ti, ctx) {
1585 if (ti == t)
1586 break;
1587 target_idx++;
1588 }
1589 matched = target_idx == filter->target_idx;
1590 break;
1591 case DAMOS_FILTER_TYPE_ADDR:
1592 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
1593 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
1594
1595 /* inside the range */
1596 if (start <= r->ar.start && r->ar.end <= end) {
1597 matched = true;
1598 break;
1599 }
1600 /* outside of the range */
1601 if (r->ar.end <= start || end <= r->ar.start) {
1602 matched = false;
1603 break;
1604 }
1605 /* start before the range and overlap */
1606 if (r->ar.start < start) {
1607 damon_split_region_at(t, r, start - r->ar.start);
1608 matched = false;
1609 break;
1610 }
1611 /* start inside the range */
1612 damon_split_region_at(t, r, end - r->ar.start);
1613 matched = true;
1614 break;
1615 default:
1616 return false;
1617 }
1618
1619 return matched == filter->matching;
1620 }
1621
damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s)1622 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1623 struct damon_region *r, struct damos *s)
1624 {
1625 struct damos_filter *filter;
1626
1627 s->core_filters_allowed = false;
1628 damos_for_each_filter(filter, s) {
1629 if (damos_filter_match(ctx, t, r, filter)) {
1630 if (filter->allow)
1631 s->core_filters_allowed = true;
1632 return !filter->allow;
1633 }
1634 }
1635 return s->core_filters_default_reject;
1636 }
1637
1638 /*
1639 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn.
1640 * @ctx: The context of &damon_ctx->walk_control.
1641 * @t: The monitoring target of @r that @s will be applied.
1642 * @r: The region of @t that @s will be applied.
1643 * @s: The scheme of @ctx that will be applied to @r.
1644 *
1645 * This function is called from kdamond whenever it asked the operation set to
1646 * apply a DAMOS scheme action to a region. If a DAMOS walk request is
1647 * installed by damos_walk() and not yet uninstalled, invoke it.
1648 */
damos_walk_call_walk(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s,unsigned long sz_filter_passed)1649 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t,
1650 struct damon_region *r, struct damos *s,
1651 unsigned long sz_filter_passed)
1652 {
1653 struct damos_walk_control *control;
1654
1655 if (s->walk_completed)
1656 return;
1657
1658 control = ctx->walk_control;
1659 if (!control)
1660 return;
1661
1662 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed);
1663 }
1664
1665 /*
1666 * damos_walk_complete() - Complete DAMOS walk request if all walks are done.
1667 * @ctx: The context of &damon_ctx->walk_control.
1668 * @s: A scheme of @ctx that all walks are now done.
1669 *
1670 * This function is called when kdamond finished applying the action of a DAMOS
1671 * scheme to all regions that eligible for the given &damos->apply_interval_us.
1672 * If every scheme of @ctx including @s now finished walking for at least one
1673 * &damos->apply_interval_us, this function makrs the handling of the given
1674 * DAMOS walk request is done, so that damos_walk() can wake up and return.
1675 */
damos_walk_complete(struct damon_ctx * ctx,struct damos * s)1676 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s)
1677 {
1678 struct damos *siter;
1679 struct damos_walk_control *control;
1680
1681 control = ctx->walk_control;
1682 if (!control)
1683 return;
1684
1685 s->walk_completed = true;
1686 /* if all schemes completed, signal completion to walker */
1687 damon_for_each_scheme(siter, ctx) {
1688 if (!siter->walk_completed)
1689 return;
1690 }
1691 damon_for_each_scheme(siter, ctx)
1692 siter->walk_completed = false;
1693
1694 complete(&control->completion);
1695 ctx->walk_control = NULL;
1696 }
1697
1698 /*
1699 * damos_walk_cancel() - Cancel the current DAMOS walk request.
1700 * @ctx: The context of &damon_ctx->walk_control.
1701 *
1702 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS
1703 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond
1704 * is already out of the main loop and therefore gonna be terminated, and hence
1705 * cannot continue the walks. This function therefore marks the walk request
1706 * as canceled, so that damos_walk() can wake up and return.
1707 */
damos_walk_cancel(struct damon_ctx * ctx)1708 static void damos_walk_cancel(struct damon_ctx *ctx)
1709 {
1710 struct damos_walk_control *control;
1711
1712 mutex_lock(&ctx->walk_control_lock);
1713 control = ctx->walk_control;
1714 mutex_unlock(&ctx->walk_control_lock);
1715
1716 if (!control)
1717 return;
1718 control->canceled = true;
1719 complete(&control->completion);
1720 mutex_lock(&ctx->walk_control_lock);
1721 ctx->walk_control = NULL;
1722 mutex_unlock(&ctx->walk_control_lock);
1723 }
1724
damos_apply_scheme(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1725 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
1726 struct damon_region *r, struct damos *s)
1727 {
1728 struct damos_quota *quota = &s->quota;
1729 unsigned long sz = damon_sz_region(r);
1730 struct timespec64 begin, end;
1731 unsigned long sz_applied = 0;
1732 unsigned long sz_ops_filter_passed = 0;
1733 /*
1734 * We plan to support multiple context per kdamond, as DAMON sysfs
1735 * implies with 'nr_contexts' file. Nevertheless, only single context
1736 * per kdamond is supported for now. So, we can simply use '0' context
1737 * index here.
1738 */
1739 unsigned int cidx = 0;
1740 struct damos *siter; /* schemes iterator */
1741 unsigned int sidx = 0;
1742 struct damon_target *titer; /* targets iterator */
1743 unsigned int tidx = 0;
1744 bool do_trace = false;
1745
1746 /* get indices for trace_damos_before_apply() */
1747 if (trace_damos_before_apply_enabled()) {
1748 damon_for_each_scheme(siter, c) {
1749 if (siter == s)
1750 break;
1751 sidx++;
1752 }
1753 damon_for_each_target(titer, c) {
1754 if (titer == t)
1755 break;
1756 tidx++;
1757 }
1758 do_trace = true;
1759 }
1760
1761 if (c->ops.apply_scheme) {
1762 if (quota->esz && quota->charged_sz + sz > quota->esz) {
1763 sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
1764 DAMON_MIN_REGION);
1765 if (!sz)
1766 goto update_stat;
1767 damon_split_region_at(t, r, sz);
1768 }
1769 if (damos_filter_out(c, t, r, s))
1770 return;
1771 ktime_get_coarse_ts64(&begin);
1772 trace_damos_before_apply(cidx, sidx, tidx, r,
1773 damon_nr_regions(t), do_trace);
1774 sz_applied = c->ops.apply_scheme(c, t, r, s,
1775 &sz_ops_filter_passed);
1776 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed);
1777 ktime_get_coarse_ts64(&end);
1778 quota->total_charged_ns += timespec64_to_ns(&end) -
1779 timespec64_to_ns(&begin);
1780 quota->charged_sz += sz;
1781 if (quota->esz && quota->charged_sz >= quota->esz) {
1782 quota->charge_target_from = t;
1783 quota->charge_addr_from = r->ar.end + 1;
1784 }
1785 }
1786 if (s->action != DAMOS_STAT)
1787 r->age = 0;
1788
1789 update_stat:
1790 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed);
1791 }
1792
damon_do_apply_schemes(struct damon_ctx * c,struct damon_target * t,struct damon_region * r)1793 static void damon_do_apply_schemes(struct damon_ctx *c,
1794 struct damon_target *t,
1795 struct damon_region *r)
1796 {
1797 struct damos *s;
1798
1799 damon_for_each_scheme(s, c) {
1800 struct damos_quota *quota = &s->quota;
1801
1802 if (c->passed_sample_intervals < s->next_apply_sis)
1803 continue;
1804
1805 if (!s->wmarks.activated)
1806 continue;
1807
1808 /* Check the quota */
1809 if (quota->esz && quota->charged_sz >= quota->esz)
1810 continue;
1811
1812 if (damos_skip_charged_region(t, &r, s))
1813 continue;
1814
1815 if (!damos_valid_target(c, t, r, s))
1816 continue;
1817
1818 damos_apply_scheme(c, t, r, s);
1819 }
1820 }
1821
1822 /*
1823 * damon_feed_loop_next_input() - get next input to achieve a target score.
1824 * @last_input The last input.
1825 * @score Current score that made with @last_input.
1826 *
1827 * Calculate next input to achieve the target score, based on the last input
1828 * and current score. Assuming the input and the score are positively
1829 * proportional, calculate how much compensation should be added to or
1830 * subtracted from the last input as a proportion of the last input. Avoid
1831 * next input always being zero by setting it non-zero always. In short form
1832 * (assuming support of float and signed calculations), the algorithm is as
1833 * below.
1834 *
1835 * next_input = max(last_input * ((goal - current) / goal + 1), 1)
1836 *
1837 * For simple implementation, we assume the target score is always 10,000. The
1838 * caller should adjust @score for this.
1839 *
1840 * Returns next input that assumed to achieve the target score.
1841 */
damon_feed_loop_next_input(unsigned long last_input,unsigned long score)1842 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1843 unsigned long score)
1844 {
1845 const unsigned long goal = 10000;
1846 /* Set minimum input as 10000 to avoid compensation be zero */
1847 const unsigned long min_input = 10000;
1848 unsigned long score_goal_diff, compensation;
1849 bool over_achieving = score > goal;
1850
1851 if (score == goal)
1852 return last_input;
1853 if (score >= goal * 2)
1854 return min_input;
1855
1856 if (over_achieving)
1857 score_goal_diff = score - goal;
1858 else
1859 score_goal_diff = goal - score;
1860
1861 if (last_input < ULONG_MAX / score_goal_diff)
1862 compensation = last_input * score_goal_diff / goal;
1863 else
1864 compensation = last_input / goal * score_goal_diff;
1865
1866 if (over_achieving)
1867 return max(last_input - compensation, min_input);
1868 if (last_input < ULONG_MAX - compensation)
1869 return last_input + compensation;
1870 return ULONG_MAX;
1871 }
1872
1873 #ifdef CONFIG_PSI
1874
damos_get_some_mem_psi_total(void)1875 static u64 damos_get_some_mem_psi_total(void)
1876 {
1877 if (static_branch_likely(&psi_disabled))
1878 return 0;
1879 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2],
1880 NSEC_PER_USEC);
1881 }
1882
1883 #else /* CONFIG_PSI */
1884
damos_get_some_mem_psi_total(void)1885 static inline u64 damos_get_some_mem_psi_total(void)
1886 {
1887 return 0;
1888 };
1889
1890 #endif /* CONFIG_PSI */
1891
damos_set_quota_goal_current_value(struct damos_quota_goal * goal)1892 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
1893 {
1894 u64 now_psi_total;
1895
1896 switch (goal->metric) {
1897 case DAMOS_QUOTA_USER_INPUT:
1898 /* User should already set goal->current_value */
1899 break;
1900 case DAMOS_QUOTA_SOME_MEM_PSI_US:
1901 now_psi_total = damos_get_some_mem_psi_total();
1902 goal->current_value = now_psi_total - goal->last_psi_total;
1903 goal->last_psi_total = now_psi_total;
1904 break;
1905 default:
1906 break;
1907 }
1908 }
1909
1910 /* Return the highest score since it makes schemes least aggressive */
damos_quota_score(struct damos_quota * quota)1911 static unsigned long damos_quota_score(struct damos_quota *quota)
1912 {
1913 struct damos_quota_goal *goal;
1914 unsigned long highest_score = 0;
1915
1916 damos_for_each_quota_goal(goal, quota) {
1917 damos_set_quota_goal_current_value(goal);
1918 highest_score = max(highest_score,
1919 goal->current_value * 10000 /
1920 goal->target_value);
1921 }
1922
1923 return highest_score;
1924 }
1925
1926 /*
1927 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
1928 */
damos_set_effective_quota(struct damos_quota * quota)1929 static void damos_set_effective_quota(struct damos_quota *quota)
1930 {
1931 unsigned long throughput;
1932 unsigned long esz = ULONG_MAX;
1933
1934 if (!quota->ms && list_empty("a->goals)) {
1935 quota->esz = quota->sz;
1936 return;
1937 }
1938
1939 if (!list_empty("a->goals)) {
1940 unsigned long score = damos_quota_score(quota);
1941
1942 quota->esz_bp = damon_feed_loop_next_input(
1943 max(quota->esz_bp, 10000UL),
1944 score);
1945 esz = quota->esz_bp / 10000;
1946 }
1947
1948 if (quota->ms) {
1949 if (quota->total_charged_ns)
1950 throughput = quota->total_charged_sz * 1000000 /
1951 quota->total_charged_ns;
1952 else
1953 throughput = PAGE_SIZE * 1024;
1954 esz = min(throughput * quota->ms, esz);
1955 }
1956
1957 if (quota->sz && quota->sz < esz)
1958 esz = quota->sz;
1959
1960 quota->esz = esz;
1961 }
1962
damos_adjust_quota(struct damon_ctx * c,struct damos * s)1963 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1964 {
1965 struct damos_quota *quota = &s->quota;
1966 struct damon_target *t;
1967 struct damon_region *r;
1968 unsigned long cumulated_sz;
1969 unsigned int score, max_score = 0;
1970
1971 if (!quota->ms && !quota->sz && list_empty("a->goals))
1972 return;
1973
1974 /* New charge window starts */
1975 if (time_after_eq(jiffies, quota->charged_from +
1976 msecs_to_jiffies(quota->reset_interval))) {
1977 if (quota->esz && quota->charged_sz >= quota->esz)
1978 s->stat.qt_exceeds++;
1979 quota->total_charged_sz += quota->charged_sz;
1980 quota->charged_from = jiffies;
1981 quota->charged_sz = 0;
1982 damos_set_effective_quota(quota);
1983 }
1984
1985 if (!c->ops.get_scheme_score)
1986 return;
1987
1988 /* Fill up the score histogram */
1989 memset(c->regions_score_histogram, 0,
1990 sizeof(*c->regions_score_histogram) *
1991 (DAMOS_MAX_SCORE + 1));
1992 damon_for_each_target(t, c) {
1993 damon_for_each_region(r, t) {
1994 if (!__damos_valid_target(r, s))
1995 continue;
1996 score = c->ops.get_scheme_score(c, t, r, s);
1997 c->regions_score_histogram[score] +=
1998 damon_sz_region(r);
1999 if (score > max_score)
2000 max_score = score;
2001 }
2002 }
2003
2004 /* Set the min score limit */
2005 for (cumulated_sz = 0, score = max_score; ; score--) {
2006 cumulated_sz += c->regions_score_histogram[score];
2007 if (cumulated_sz >= quota->esz || !score)
2008 break;
2009 }
2010 quota->min_score = score;
2011 }
2012
kdamond_apply_schemes(struct damon_ctx * c)2013 static void kdamond_apply_schemes(struct damon_ctx *c)
2014 {
2015 struct damon_target *t;
2016 struct damon_region *r, *next_r;
2017 struct damos *s;
2018 unsigned long sample_interval = c->attrs.sample_interval ?
2019 c->attrs.sample_interval : 1;
2020 bool has_schemes_to_apply = false;
2021
2022 damon_for_each_scheme(s, c) {
2023 if (c->passed_sample_intervals < s->next_apply_sis)
2024 continue;
2025
2026 if (!s->wmarks.activated)
2027 continue;
2028
2029 has_schemes_to_apply = true;
2030
2031 damos_adjust_quota(c, s);
2032 }
2033
2034 if (!has_schemes_to_apply)
2035 return;
2036
2037 mutex_lock(&c->walk_control_lock);
2038 damon_for_each_target(t, c) {
2039 damon_for_each_region_safe(r, next_r, t)
2040 damon_do_apply_schemes(c, t, r);
2041 }
2042
2043 damon_for_each_scheme(s, c) {
2044 if (c->passed_sample_intervals < s->next_apply_sis)
2045 continue;
2046 damos_walk_complete(c, s);
2047 s->next_apply_sis = c->passed_sample_intervals +
2048 (s->apply_interval_us ? s->apply_interval_us :
2049 c->attrs.aggr_interval) / sample_interval;
2050 s->last_applied = NULL;
2051 }
2052 mutex_unlock(&c->walk_control_lock);
2053 }
2054
2055 /*
2056 * Merge two adjacent regions into one region
2057 */
damon_merge_two_regions(struct damon_target * t,struct damon_region * l,struct damon_region * r)2058 static void damon_merge_two_regions(struct damon_target *t,
2059 struct damon_region *l, struct damon_region *r)
2060 {
2061 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
2062
2063 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
2064 (sz_l + sz_r);
2065 l->nr_accesses_bp = l->nr_accesses * 10000;
2066 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
2067 l->ar.end = r->ar.end;
2068 damon_destroy_region(r, t);
2069 }
2070
2071 /*
2072 * Merge adjacent regions having similar access frequencies
2073 *
2074 * t target affected by this merge operation
2075 * thres '->nr_accesses' diff threshold for the merge
2076 * sz_limit size upper limit of each region
2077 */
damon_merge_regions_of(struct damon_target * t,unsigned int thres,unsigned long sz_limit)2078 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
2079 unsigned long sz_limit)
2080 {
2081 struct damon_region *r, *prev = NULL, *next;
2082
2083 damon_for_each_region_safe(r, next, t) {
2084 if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
2085 r->age = 0;
2086 else
2087 r->age++;
2088
2089 if (prev && prev->ar.end == r->ar.start &&
2090 abs(prev->nr_accesses - r->nr_accesses) <= thres &&
2091 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
2092 damon_merge_two_regions(t, prev, r);
2093 else
2094 prev = r;
2095 }
2096 }
2097
2098 /*
2099 * Merge adjacent regions having similar access frequencies
2100 *
2101 * threshold '->nr_accesses' diff threshold for the merge
2102 * sz_limit size upper limit of each region
2103 *
2104 * This function merges monitoring target regions which are adjacent and their
2105 * access frequencies are similar. This is for minimizing the monitoring
2106 * overhead under the dynamically changeable access pattern. If a merge was
2107 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
2108 *
2109 * The total number of regions could be higher than the user-defined limit,
2110 * max_nr_regions for some cases. For example, the user can update
2111 * max_nr_regions to a number that lower than the current number of regions
2112 * while DAMON is running. For such a case, repeat merging until the limit is
2113 * met while increasing @threshold up to possible maximum level.
2114 */
kdamond_merge_regions(struct damon_ctx * c,unsigned int threshold,unsigned long sz_limit)2115 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
2116 unsigned long sz_limit)
2117 {
2118 struct damon_target *t;
2119 unsigned int nr_regions;
2120 unsigned int max_thres;
2121
2122 max_thres = c->attrs.aggr_interval /
2123 (c->attrs.sample_interval ? c->attrs.sample_interval : 1);
2124 do {
2125 nr_regions = 0;
2126 damon_for_each_target(t, c) {
2127 damon_merge_regions_of(t, threshold, sz_limit);
2128 nr_regions += damon_nr_regions(t);
2129 }
2130 threshold = max(1, threshold * 2);
2131 } while (nr_regions > c->attrs.max_nr_regions &&
2132 threshold / 2 < max_thres);
2133 }
2134
2135 /*
2136 * Split a region in two
2137 *
2138 * r the region to be split
2139 * sz_r size of the first sub-region that will be made
2140 */
damon_split_region_at(struct damon_target * t,struct damon_region * r,unsigned long sz_r)2141 static void damon_split_region_at(struct damon_target *t,
2142 struct damon_region *r, unsigned long sz_r)
2143 {
2144 struct damon_region *new;
2145
2146 new = damon_new_region(r->ar.start + sz_r, r->ar.end);
2147 if (!new)
2148 return;
2149
2150 r->ar.end = new->ar.start;
2151
2152 new->age = r->age;
2153 new->last_nr_accesses = r->last_nr_accesses;
2154 new->nr_accesses_bp = r->nr_accesses_bp;
2155 new->nr_accesses = r->nr_accesses;
2156
2157 damon_insert_region(new, r, damon_next_region(r), t);
2158 }
2159
2160 /* Split every region in the given target into 'nr_subs' regions */
damon_split_regions_of(struct damon_target * t,int nr_subs)2161 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
2162 {
2163 struct damon_region *r, *next;
2164 unsigned long sz_region, sz_sub = 0;
2165 int i;
2166
2167 damon_for_each_region_safe(r, next, t) {
2168 sz_region = damon_sz_region(r);
2169
2170 for (i = 0; i < nr_subs - 1 &&
2171 sz_region > 2 * DAMON_MIN_REGION; i++) {
2172 /*
2173 * Randomly select size of left sub-region to be at
2174 * least 10 percent and at most 90% of original region
2175 */
2176 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
2177 sz_region / 10, DAMON_MIN_REGION);
2178 /* Do not allow blank region */
2179 if (sz_sub == 0 || sz_sub >= sz_region)
2180 continue;
2181
2182 damon_split_region_at(t, r, sz_sub);
2183 sz_region = sz_sub;
2184 }
2185 }
2186 }
2187
2188 /*
2189 * Split every target region into randomly-sized small regions
2190 *
2191 * This function splits every target region into random-sized small regions if
2192 * current total number of the regions is equal or smaller than half of the
2193 * user-specified maximum number of regions. This is for maximizing the
2194 * monitoring accuracy under the dynamically changeable access patterns. If a
2195 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
2196 * it.
2197 */
kdamond_split_regions(struct damon_ctx * ctx)2198 static void kdamond_split_regions(struct damon_ctx *ctx)
2199 {
2200 struct damon_target *t;
2201 unsigned int nr_regions = 0;
2202 static unsigned int last_nr_regions;
2203 int nr_subregions = 2;
2204
2205 damon_for_each_target(t, ctx)
2206 nr_regions += damon_nr_regions(t);
2207
2208 if (nr_regions > ctx->attrs.max_nr_regions / 2)
2209 return;
2210
2211 /* Maybe the middle of the region has different access frequency */
2212 if (last_nr_regions == nr_regions &&
2213 nr_regions < ctx->attrs.max_nr_regions / 3)
2214 nr_subregions = 3;
2215
2216 damon_for_each_target(t, ctx)
2217 damon_split_regions_of(t, nr_subregions);
2218
2219 last_nr_regions = nr_regions;
2220 }
2221
2222 /*
2223 * Check whether current monitoring should be stopped
2224 *
2225 * The monitoring is stopped when either the user requested to stop, or all
2226 * monitoring targets are invalid.
2227 *
2228 * Returns true if need to stop current monitoring.
2229 */
kdamond_need_stop(struct damon_ctx * ctx)2230 static bool kdamond_need_stop(struct damon_ctx *ctx)
2231 {
2232 struct damon_target *t;
2233
2234 if (kthread_should_stop())
2235 return true;
2236
2237 if (!ctx->ops.target_valid)
2238 return false;
2239
2240 damon_for_each_target(t, ctx) {
2241 if (ctx->ops.target_valid(t))
2242 return false;
2243 }
2244
2245 return true;
2246 }
2247
damos_get_wmark_metric_value(enum damos_wmark_metric metric,unsigned long * metric_value)2248 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric,
2249 unsigned long *metric_value)
2250 {
2251 switch (metric) {
2252 case DAMOS_WMARK_FREE_MEM_RATE:
2253 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 /
2254 totalram_pages();
2255 return 0;
2256 default:
2257 break;
2258 }
2259 return -EINVAL;
2260 }
2261
2262 /*
2263 * Returns zero if the scheme is active. Else, returns time to wait for next
2264 * watermark check in micro-seconds.
2265 */
damos_wmark_wait_us(struct damos * scheme)2266 static unsigned long damos_wmark_wait_us(struct damos *scheme)
2267 {
2268 unsigned long metric;
2269
2270 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric))
2271 return 0;
2272
2273 /* higher than high watermark or lower than low watermark */
2274 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
2275 if (scheme->wmarks.activated)
2276 pr_debug("deactivate a scheme (%d) for %s wmark\n",
2277 scheme->action,
2278 str_high_low(metric > scheme->wmarks.high));
2279 scheme->wmarks.activated = false;
2280 return scheme->wmarks.interval;
2281 }
2282
2283 /* inactive and higher than middle watermark */
2284 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
2285 !scheme->wmarks.activated)
2286 return scheme->wmarks.interval;
2287
2288 if (!scheme->wmarks.activated)
2289 pr_debug("activate a scheme (%d)\n", scheme->action);
2290 scheme->wmarks.activated = true;
2291 return 0;
2292 }
2293
kdamond_usleep(unsigned long usecs)2294 static void kdamond_usleep(unsigned long usecs)
2295 {
2296 if (usecs >= USLEEP_RANGE_UPPER_BOUND)
2297 schedule_timeout_idle(usecs_to_jiffies(usecs));
2298 else
2299 usleep_range_idle(usecs, usecs + 1);
2300 }
2301
2302 /*
2303 * kdamond_call() - handle damon_call_control.
2304 * @ctx: The &struct damon_ctx of the kdamond.
2305 * @cancel: Whether to cancel the invocation of the function.
2306 *
2307 * If there is a &struct damon_call_control request that registered via
2308 * &damon_call() on @ctx, do or cancel the invocation of the function depending
2309 * on @cancel. @cancel is set when the kdamond is deactivated by DAMOS
2310 * watermarks, or the kdamond is already out of the main loop and therefore
2311 * will be terminated.
2312 */
kdamond_call(struct damon_ctx * ctx,bool cancel)2313 static void kdamond_call(struct damon_ctx *ctx, bool cancel)
2314 {
2315 struct damon_call_control *control;
2316 int ret = 0;
2317
2318 mutex_lock(&ctx->call_control_lock);
2319 control = ctx->call_control;
2320 mutex_unlock(&ctx->call_control_lock);
2321 if (!control)
2322 return;
2323 if (cancel) {
2324 control->canceled = true;
2325 } else {
2326 ret = control->fn(control->data);
2327 control->return_code = ret;
2328 }
2329 complete(&control->completion);
2330 mutex_lock(&ctx->call_control_lock);
2331 ctx->call_control = NULL;
2332 mutex_unlock(&ctx->call_control_lock);
2333 }
2334
2335 /* Returns negative error code if it's not activated but should return */
kdamond_wait_activation(struct damon_ctx * ctx)2336 static int kdamond_wait_activation(struct damon_ctx *ctx)
2337 {
2338 struct damos *s;
2339 unsigned long wait_time;
2340 unsigned long min_wait_time = 0;
2341 bool init_wait_time = false;
2342
2343 while (!kdamond_need_stop(ctx)) {
2344 damon_for_each_scheme(s, ctx) {
2345 wait_time = damos_wmark_wait_us(s);
2346 if (!init_wait_time || wait_time < min_wait_time) {
2347 init_wait_time = true;
2348 min_wait_time = wait_time;
2349 }
2350 }
2351 if (!min_wait_time)
2352 return 0;
2353
2354 kdamond_usleep(min_wait_time);
2355
2356 if (ctx->callback.after_wmarks_check &&
2357 ctx->callback.after_wmarks_check(ctx))
2358 break;
2359 kdamond_call(ctx, true);
2360 damos_walk_cancel(ctx);
2361 }
2362 return -EBUSY;
2363 }
2364
kdamond_init_ctx(struct damon_ctx * ctx)2365 static void kdamond_init_ctx(struct damon_ctx *ctx)
2366 {
2367 unsigned long sample_interval = ctx->attrs.sample_interval ?
2368 ctx->attrs.sample_interval : 1;
2369 unsigned long apply_interval;
2370 struct damos *scheme;
2371
2372 ctx->passed_sample_intervals = 0;
2373 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
2374 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
2375 sample_interval;
2376 ctx->next_intervals_tune_sis = ctx->next_aggregation_sis *
2377 ctx->attrs.intervals_goal.aggrs;
2378
2379 damon_for_each_scheme(scheme, ctx) {
2380 apply_interval = scheme->apply_interval_us ?
2381 scheme->apply_interval_us : ctx->attrs.aggr_interval;
2382 scheme->next_apply_sis = apply_interval / sample_interval;
2383 damos_set_filters_default_reject(scheme);
2384 }
2385 }
2386
2387 /*
2388 * The monitoring daemon that runs as a kernel thread
2389 */
kdamond_fn(void * data)2390 static int kdamond_fn(void *data)
2391 {
2392 struct damon_ctx *ctx = data;
2393 struct damon_target *t;
2394 struct damon_region *r, *next;
2395 unsigned int max_nr_accesses = 0;
2396 unsigned long sz_limit = 0;
2397
2398 pr_debug("kdamond (%d) starts\n", current->pid);
2399
2400 complete(&ctx->kdamond_started);
2401 kdamond_init_ctx(ctx);
2402
2403 if (ctx->ops.init)
2404 ctx->ops.init(ctx);
2405 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1,
2406 sizeof(*ctx->regions_score_histogram), GFP_KERNEL);
2407 if (!ctx->regions_score_histogram)
2408 goto done;
2409
2410 sz_limit = damon_region_sz_limit(ctx);
2411
2412 while (!kdamond_need_stop(ctx)) {
2413 /*
2414 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
2415 * be changed from after_wmarks_check() or after_aggregation()
2416 * callbacks. Read the values here, and use those for this
2417 * iteration. That is, damon_set_attrs() updated new values
2418 * are respected from next iteration.
2419 */
2420 unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
2421 unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
2422 unsigned long sample_interval = ctx->attrs.sample_interval;
2423
2424 if (kdamond_wait_activation(ctx))
2425 break;
2426
2427 if (ctx->ops.prepare_access_checks)
2428 ctx->ops.prepare_access_checks(ctx);
2429
2430 kdamond_usleep(sample_interval);
2431 ctx->passed_sample_intervals++;
2432
2433 if (ctx->ops.check_accesses)
2434 max_nr_accesses = ctx->ops.check_accesses(ctx);
2435
2436 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2437 kdamond_merge_regions(ctx,
2438 max_nr_accesses / 10,
2439 sz_limit);
2440 if (ctx->callback.after_aggregation &&
2441 ctx->callback.after_aggregation(ctx))
2442 break;
2443 }
2444
2445 /*
2446 * do kdamond_call() and kdamond_apply_schemes() after
2447 * kdamond_merge_regions() if possible, to reduce overhead
2448 */
2449 kdamond_call(ctx, false);
2450 if (!list_empty(&ctx->schemes))
2451 kdamond_apply_schemes(ctx);
2452 else
2453 damos_walk_cancel(ctx);
2454
2455 sample_interval = ctx->attrs.sample_interval ?
2456 ctx->attrs.sample_interval : 1;
2457 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2458 if (ctx->attrs.intervals_goal.aggrs &&
2459 ctx->passed_sample_intervals >=
2460 ctx->next_intervals_tune_sis) {
2461 /*
2462 * ctx->next_aggregation_sis might be updated
2463 * from kdamond_call(). In the case,
2464 * damon_set_attrs() which will be called from
2465 * kdamond_tune_interval() may wrongly think
2466 * this is in the middle of the current
2467 * aggregation, and make aggregation
2468 * information reset for all regions. Then,
2469 * following kdamond_reset_aggregated() call
2470 * will make the region information invalid,
2471 * particularly for ->nr_accesses_bp.
2472 *
2473 * Reset ->next_aggregation_sis to avoid that.
2474 * It will anyway correctly updated after this
2475 * if caluse.
2476 */
2477 ctx->next_aggregation_sis =
2478 next_aggregation_sis;
2479 ctx->next_intervals_tune_sis +=
2480 ctx->attrs.aggr_samples *
2481 ctx->attrs.intervals_goal.aggrs;
2482 kdamond_tune_intervals(ctx);
2483 sample_interval = ctx->attrs.sample_interval ?
2484 ctx->attrs.sample_interval : 1;
2485
2486 }
2487 ctx->next_aggregation_sis = next_aggregation_sis +
2488 ctx->attrs.aggr_interval / sample_interval;
2489
2490 kdamond_reset_aggregated(ctx);
2491 kdamond_split_regions(ctx);
2492 }
2493
2494 if (ctx->passed_sample_intervals >= next_ops_update_sis) {
2495 ctx->next_ops_update_sis = next_ops_update_sis +
2496 ctx->attrs.ops_update_interval /
2497 sample_interval;
2498 if (ctx->ops.update)
2499 ctx->ops.update(ctx);
2500 sz_limit = damon_region_sz_limit(ctx);
2501 }
2502 }
2503 done:
2504 damon_for_each_target(t, ctx) {
2505 damon_for_each_region_safe(r, next, t)
2506 damon_destroy_region(r, t);
2507 }
2508
2509 if (ctx->callback.before_terminate)
2510 ctx->callback.before_terminate(ctx);
2511 if (ctx->ops.cleanup)
2512 ctx->ops.cleanup(ctx);
2513 kfree(ctx->regions_score_histogram);
2514
2515 pr_debug("kdamond (%d) finishes\n", current->pid);
2516 mutex_lock(&ctx->kdamond_lock);
2517 ctx->kdamond = NULL;
2518 mutex_unlock(&ctx->kdamond_lock);
2519
2520 kdamond_call(ctx, true);
2521 damos_walk_cancel(ctx);
2522
2523 mutex_lock(&damon_lock);
2524 nr_running_ctxs--;
2525 if (!nr_running_ctxs && running_exclusive_ctxs)
2526 running_exclusive_ctxs = false;
2527 mutex_unlock(&damon_lock);
2528
2529 return 0;
2530 }
2531
2532 /*
2533 * struct damon_system_ram_region - System RAM resource address region of
2534 * [@start, @end).
2535 * @start: Start address of the region (inclusive).
2536 * @end: End address of the region (exclusive).
2537 */
2538 struct damon_system_ram_region {
2539 unsigned long start;
2540 unsigned long end;
2541 };
2542
walk_system_ram(struct resource * res,void * arg)2543 static int walk_system_ram(struct resource *res, void *arg)
2544 {
2545 struct damon_system_ram_region *a = arg;
2546
2547 if (a->end - a->start < resource_size(res)) {
2548 a->start = res->start;
2549 a->end = res->end;
2550 }
2551 return 0;
2552 }
2553
2554 /*
2555 * Find biggest 'System RAM' resource and store its start and end address in
2556 * @start and @end, respectively. If no System RAM is found, returns false.
2557 */
damon_find_biggest_system_ram(unsigned long * start,unsigned long * end)2558 static bool damon_find_biggest_system_ram(unsigned long *start,
2559 unsigned long *end)
2560
2561 {
2562 struct damon_system_ram_region arg = {};
2563
2564 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
2565 if (arg.end <= arg.start)
2566 return false;
2567
2568 *start = arg.start;
2569 *end = arg.end;
2570 return true;
2571 }
2572
2573 /**
2574 * damon_set_region_biggest_system_ram_default() - Set the region of the given
2575 * monitoring target as requested, or biggest 'System RAM'.
2576 * @t: The monitoring target to set the region.
2577 * @start: The pointer to the start address of the region.
2578 * @end: The pointer to the end address of the region.
2579 *
2580 * This function sets the region of @t as requested by @start and @end. If the
2581 * values of @start and @end are zero, however, this function finds the biggest
2582 * 'System RAM' resource and sets the region to cover the resource. In the
2583 * latter case, this function saves the start and end addresses of the resource
2584 * in @start and @end, respectively.
2585 *
2586 * Return: 0 on success, negative error code otherwise.
2587 */
damon_set_region_biggest_system_ram_default(struct damon_target * t,unsigned long * start,unsigned long * end)2588 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
2589 unsigned long *start, unsigned long *end)
2590 {
2591 struct damon_addr_range addr_range;
2592
2593 if (*start > *end)
2594 return -EINVAL;
2595
2596 if (!*start && !*end &&
2597 !damon_find_biggest_system_ram(start, end))
2598 return -EINVAL;
2599
2600 addr_range.start = *start;
2601 addr_range.end = *end;
2602 return damon_set_regions(t, &addr_range, 1);
2603 }
2604
2605 /*
2606 * damon_moving_sum() - Calculate an inferred moving sum value.
2607 * @mvsum: Inferred sum of the last @len_window values.
2608 * @nomvsum: Non-moving sum of the last discrete @len_window window values.
2609 * @len_window: The number of last values to take care of.
2610 * @new_value: New value that will be added to the pseudo moving sum.
2611 *
2612 * Moving sum (moving average * window size) is good for handling noise, but
2613 * the cost of keeping past values can be high for arbitrary window size. This
2614 * function implements a lightweight pseudo moving sum function that doesn't
2615 * keep the past window values.
2616 *
2617 * It simply assumes there was no noise in the past, and get the no-noise
2618 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a
2619 * non-moving sum of the last window. For example, if @len_window is 10 and we
2620 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
2621 * values. Hence, this function simply drops @nomvsum / @len_window from
2622 * given @mvsum and add @new_value.
2623 *
2624 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
2625 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For
2626 * calculating next moving sum with a new value, we should drop 0 from 50 and
2627 * add the new value. However, this function assumes it got value 5 for each
2628 * of the last ten times. Based on the assumption, when the next value is
2629 * measured, it drops the assumed past value, 5 from the current sum, and add
2630 * the new value to get the updated pseduo-moving average.
2631 *
2632 * This means the value could have errors, but the errors will be disappeared
2633 * for every @len_window aligned calls. For example, if @len_window is 10, the
2634 * pseudo moving sum with 11th value to 19th value would have an error. But
2635 * the sum with 20th value will not have the error.
2636 *
2637 * Return: Pseudo-moving average after getting the @new_value.
2638 */
damon_moving_sum(unsigned int mvsum,unsigned int nomvsum,unsigned int len_window,unsigned int new_value)2639 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
2640 unsigned int len_window, unsigned int new_value)
2641 {
2642 return mvsum - nomvsum / len_window + new_value;
2643 }
2644
2645 /**
2646 * damon_update_region_access_rate() - Update the access rate of a region.
2647 * @r: The DAMON region to update for its access check result.
2648 * @accessed: Whether the region has accessed during last sampling interval.
2649 * @attrs: The damon_attrs of the DAMON context.
2650 *
2651 * Update the access rate of a region with the region's last sampling interval
2652 * access check result.
2653 *
2654 * Usually this will be called by &damon_operations->check_accesses callback.
2655 */
damon_update_region_access_rate(struct damon_region * r,bool accessed,struct damon_attrs * attrs)2656 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
2657 struct damon_attrs *attrs)
2658 {
2659 unsigned int len_window = 1;
2660
2661 /*
2662 * sample_interval can be zero, but cannot be larger than
2663 * aggr_interval, owing to validation of damon_set_attrs().
2664 */
2665 if (attrs->sample_interval)
2666 len_window = damon_max_nr_accesses(attrs);
2667 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
2668 r->last_nr_accesses * 10000, len_window,
2669 accessed ? 10000 : 0);
2670
2671 if (accessed)
2672 r->nr_accesses++;
2673 }
2674
damon_init(void)2675 static int __init damon_init(void)
2676 {
2677 damon_region_cache = KMEM_CACHE(damon_region, 0);
2678 if (unlikely(!damon_region_cache)) {
2679 pr_err("creating damon_region_cache fails\n");
2680 return -ENOMEM;
2681 }
2682
2683 return 0;
2684 }
2685
2686 subsys_initcall(damon_init);
2687
2688 #include "tests/core-kunit.h"
2689