1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /*
3 * Copyright © 2024-2025 Intel Corporation
4 */
5
6 #include <linux/dma-fence.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/migrate.h>
9 #include <linux/pagemap.h>
10 #include <drm/drm_drv.h>
11 #include <drm/drm_pagemap.h>
12
13 /**
14 * DOC: Overview
15 *
16 * The DRM pagemap layer is intended to augment the dev_pagemap functionality by
17 * providing a way to populate a struct mm_struct virtual range with device
18 * private pages and to provide helpers to abstract device memory allocations,
19 * to migrate memory back and forth between device memory and system RAM and
20 * to handle access (and in the future migration) between devices implementing
21 * a fast interconnect that is not necessarily visible to the rest of the
22 * system.
23 *
24 * Typically the DRM pagemap receives requests from one or more DRM GPU SVM
25 * instances to populate struct mm_struct virtual ranges with memory, and the
26 * migration is best effort only and may thus fail. The implementation should
27 * also handle device unbinding by blocking (return an -ENODEV) error for new
28 * population requests and after that migrate all device pages to system ram.
29 */
30
31 /**
32 * DOC: Migration
33 *
34 * Migration granularity typically follows the GPU SVM range requests, but
35 * if there are clashes, due to races or due to the fact that multiple GPU
36 * SVM instances have different views of the ranges used, and because of that
37 * parts of a requested range is already present in the requested device memory,
38 * the implementation has a variety of options. It can fail and it can choose
39 * to populate only the part of the range that isn't already in device memory,
40 * and it can evict the range to system before trying to migrate. Ideally an
41 * implementation would just try to migrate the missing part of the range and
42 * allocate just enough memory to do so.
43 *
44 * When migrating to system memory as a response to a cpu fault or a device
45 * memory eviction request, currently a full device memory allocation is
46 * migrated back to system. Moving forward this might need improvement for
47 * situations where a single page needs bouncing between system memory and
48 * device memory due to, for example, atomic operations.
49 *
50 * Key DRM pagemap components:
51 *
52 * - Device Memory Allocations:
53 * Embedded structure containing enough information for the drm_pagemap to
54 * migrate to / from device memory.
55 *
56 * - Device Memory Operations:
57 * Define the interface for driver-specific device memory operations
58 * release memory, populate pfns, and copy to / from device memory.
59 */
60
61 /**
62 * struct drm_pagemap_zdd - GPU SVM zone device data
63 *
64 * @refcount: Reference count for the zdd
65 * @devmem_allocation: device memory allocation
66 * @device_private_page_owner: Device private pages owner
67 *
68 * This structure serves as a generic wrapper installed in
69 * page->zone_device_data. It provides infrastructure for looking up a device
70 * memory allocation upon CPU page fault and asynchronously releasing device
71 * memory once the CPU has no page references. Asynchronous release is useful
72 * because CPU page references can be dropped in IRQ contexts, while releasing
73 * device memory likely requires sleeping locks.
74 */
75 struct drm_pagemap_zdd {
76 struct kref refcount;
77 struct drm_pagemap_devmem *devmem_allocation;
78 void *device_private_page_owner;
79 };
80
81 /**
82 * drm_pagemap_zdd_alloc() - Allocate a zdd structure.
83 * @device_private_page_owner: Device private pages owner
84 *
85 * This function allocates and initializes a new zdd structure. It sets up the
86 * reference count and initializes the destroy work.
87 *
88 * Return: Pointer to the allocated zdd on success, ERR_PTR() on failure.
89 */
90 static struct drm_pagemap_zdd *
drm_pagemap_zdd_alloc(void * device_private_page_owner)91 drm_pagemap_zdd_alloc(void *device_private_page_owner)
92 {
93 struct drm_pagemap_zdd *zdd;
94
95 zdd = kmalloc(sizeof(*zdd), GFP_KERNEL);
96 if (!zdd)
97 return NULL;
98
99 kref_init(&zdd->refcount);
100 zdd->devmem_allocation = NULL;
101 zdd->device_private_page_owner = device_private_page_owner;
102
103 return zdd;
104 }
105
106 /**
107 * drm_pagemap_zdd_get() - Get a reference to a zdd structure.
108 * @zdd: Pointer to the zdd structure.
109 *
110 * This function increments the reference count of the provided zdd structure.
111 *
112 * Return: Pointer to the zdd structure.
113 */
drm_pagemap_zdd_get(struct drm_pagemap_zdd * zdd)114 static struct drm_pagemap_zdd *drm_pagemap_zdd_get(struct drm_pagemap_zdd *zdd)
115 {
116 kref_get(&zdd->refcount);
117 return zdd;
118 }
119
120 /**
121 * drm_pagemap_zdd_destroy() - Destroy a zdd structure.
122 * @ref: Pointer to the reference count structure.
123 *
124 * This function queues the destroy_work of the zdd for asynchronous destruction.
125 */
drm_pagemap_zdd_destroy(struct kref * ref)126 static void drm_pagemap_zdd_destroy(struct kref *ref)
127 {
128 struct drm_pagemap_zdd *zdd =
129 container_of(ref, struct drm_pagemap_zdd, refcount);
130 struct drm_pagemap_devmem *devmem = zdd->devmem_allocation;
131
132 if (devmem) {
133 complete_all(&devmem->detached);
134 if (devmem->ops->devmem_release)
135 devmem->ops->devmem_release(devmem);
136 }
137 kfree(zdd);
138 }
139
140 /**
141 * drm_pagemap_zdd_put() - Put a zdd reference.
142 * @zdd: Pointer to the zdd structure.
143 *
144 * This function decrements the reference count of the provided zdd structure
145 * and schedules its destruction if the count drops to zero.
146 */
drm_pagemap_zdd_put(struct drm_pagemap_zdd * zdd)147 static void drm_pagemap_zdd_put(struct drm_pagemap_zdd *zdd)
148 {
149 kref_put(&zdd->refcount, drm_pagemap_zdd_destroy);
150 }
151
152 /**
153 * drm_pagemap_migration_unlock_put_page() - Put a migration page
154 * @page: Pointer to the page to put
155 *
156 * This function unlocks and puts a page.
157 */
drm_pagemap_migration_unlock_put_page(struct page * page)158 static void drm_pagemap_migration_unlock_put_page(struct page *page)
159 {
160 unlock_page(page);
161 put_page(page);
162 }
163
164 /**
165 * drm_pagemap_migration_unlock_put_pages() - Put migration pages
166 * @npages: Number of pages
167 * @migrate_pfn: Array of migrate page frame numbers
168 *
169 * This function unlocks and puts an array of pages.
170 */
drm_pagemap_migration_unlock_put_pages(unsigned long npages,unsigned long * migrate_pfn)171 static void drm_pagemap_migration_unlock_put_pages(unsigned long npages,
172 unsigned long *migrate_pfn)
173 {
174 unsigned long i;
175
176 for (i = 0; i < npages; ++i) {
177 struct page *page;
178
179 if (!migrate_pfn[i])
180 continue;
181
182 page = migrate_pfn_to_page(migrate_pfn[i]);
183 drm_pagemap_migration_unlock_put_page(page);
184 migrate_pfn[i] = 0;
185 }
186 }
187
188 /**
189 * drm_pagemap_get_devmem_page() - Get a reference to a device memory page
190 * @page: Pointer to the page
191 * @zdd: Pointer to the GPU SVM zone device data
192 *
193 * This function associates the given page with the specified GPU SVM zone
194 * device data and initializes it for zone device usage.
195 */
drm_pagemap_get_devmem_page(struct page * page,struct drm_pagemap_zdd * zdd)196 static void drm_pagemap_get_devmem_page(struct page *page,
197 struct drm_pagemap_zdd *zdd)
198 {
199 page->zone_device_data = drm_pagemap_zdd_get(zdd);
200 zone_device_page_init(page, 0);
201 }
202
203 /**
204 * drm_pagemap_migrate_map_pages() - Map migration pages for GPU SVM migration
205 * @dev: The device for which the pages are being mapped
206 * @pagemap_addr: Array to store DMA information corresponding to mapped pages
207 * @migrate_pfn: Array of migrate page frame numbers to map
208 * @npages: Number of pages to map
209 * @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL)
210 *
211 * This function maps pages of memory for migration usage in GPU SVM. It
212 * iterates over each page frame number provided in @migrate_pfn, maps the
213 * corresponding page, and stores the DMA address in the provided @dma_addr
214 * array.
215 *
216 * Returns: 0 on success, -EFAULT if an error occurs during mapping.
217 */
drm_pagemap_migrate_map_pages(struct device * dev,struct drm_pagemap_addr * pagemap_addr,unsigned long * migrate_pfn,unsigned long npages,enum dma_data_direction dir)218 static int drm_pagemap_migrate_map_pages(struct device *dev,
219 struct drm_pagemap_addr *pagemap_addr,
220 unsigned long *migrate_pfn,
221 unsigned long npages,
222 enum dma_data_direction dir)
223 {
224 unsigned long i;
225
226 for (i = 0; i < npages;) {
227 struct page *page = migrate_pfn_to_page(migrate_pfn[i]);
228 dma_addr_t dma_addr;
229 struct folio *folio;
230 unsigned int order = 0;
231
232 if (!page)
233 goto next;
234
235 if (WARN_ON_ONCE(is_zone_device_page(page)))
236 return -EFAULT;
237
238 folio = page_folio(page);
239 order = folio_order(folio);
240
241 dma_addr = dma_map_page(dev, page, 0, page_size(page), dir);
242 if (dma_mapping_error(dev, dma_addr))
243 return -EFAULT;
244
245 pagemap_addr[i] =
246 drm_pagemap_addr_encode(dma_addr,
247 DRM_INTERCONNECT_SYSTEM,
248 order, dir);
249
250 next:
251 i += NR_PAGES(order);
252 }
253
254 return 0;
255 }
256
257 /**
258 * drm_pagemap_migrate_unmap_pages() - Unmap pages previously mapped for GPU SVM migration
259 * @dev: The device for which the pages were mapped
260 * @pagemap_addr: Array of DMA information corresponding to mapped pages
261 * @npages: Number of pages to unmap
262 * @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL)
263 *
264 * This function unmaps previously mapped pages of memory for GPU Shared Virtual
265 * Memory (SVM). It iterates over each DMA address provided in @dma_addr, checks
266 * if it's valid and not already unmapped, and unmaps the corresponding page.
267 */
drm_pagemap_migrate_unmap_pages(struct device * dev,struct drm_pagemap_addr * pagemap_addr,unsigned long npages,enum dma_data_direction dir)268 static void drm_pagemap_migrate_unmap_pages(struct device *dev,
269 struct drm_pagemap_addr *pagemap_addr,
270 unsigned long npages,
271 enum dma_data_direction dir)
272 {
273 unsigned long i;
274
275 for (i = 0; i < npages;) {
276 if (!pagemap_addr[i].addr || dma_mapping_error(dev, pagemap_addr[i].addr))
277 goto next;
278
279 dma_unmap_page(dev, pagemap_addr[i].addr, PAGE_SIZE << pagemap_addr[i].order, dir);
280
281 next:
282 i += NR_PAGES(pagemap_addr[i].order);
283 }
284 }
285
286 static unsigned long
npages_in_range(unsigned long start,unsigned long end)287 npages_in_range(unsigned long start, unsigned long end)
288 {
289 return (end - start) >> PAGE_SHIFT;
290 }
291
292 /**
293 * drm_pagemap_migrate_to_devmem() - Migrate a struct mm_struct range to device memory
294 * @devmem_allocation: The device memory allocation to migrate to.
295 * The caller should hold a reference to the device memory allocation,
296 * and the reference is consumed by this function unless it returns with
297 * an error.
298 * @mm: Pointer to the struct mm_struct.
299 * @start: Start of the virtual address range to migrate.
300 * @end: End of the virtual address range to migrate.
301 * @timeslice_ms: The time requested for the migrated pagemap pages to
302 * be present in @mm before being allowed to be migrated back.
303 * @pgmap_owner: Not used currently, since only system memory is considered.
304 *
305 * This function migrates the specified virtual address range to device memory.
306 * It performs the necessary setup and invokes the driver-specific operations for
307 * migration to device memory. Expected to be called while holding the mmap lock in
308 * at least read mode.
309 *
310 * Note: The @timeslice_ms parameter can typically be used to force data to
311 * remain in pagemap pages long enough for a GPU to perform a task and to prevent
312 * a migration livelock. One alternative would be for the GPU driver to block
313 * in a mmu_notifier for the specified amount of time, but adding the
314 * functionality to the pagemap is likely nicer to the system as a whole.
315 *
316 * Return: %0 on success, negative error code on failure.
317 */
drm_pagemap_migrate_to_devmem(struct drm_pagemap_devmem * devmem_allocation,struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long timeslice_ms,void * pgmap_owner)318 int drm_pagemap_migrate_to_devmem(struct drm_pagemap_devmem *devmem_allocation,
319 struct mm_struct *mm,
320 unsigned long start, unsigned long end,
321 unsigned long timeslice_ms,
322 void *pgmap_owner)
323 {
324 const struct drm_pagemap_devmem_ops *ops = devmem_allocation->ops;
325 struct migrate_vma migrate = {
326 .start = start,
327 .end = end,
328 .pgmap_owner = pgmap_owner,
329 .flags = MIGRATE_VMA_SELECT_SYSTEM,
330 };
331 unsigned long i, npages = npages_in_range(start, end);
332 struct vm_area_struct *vas;
333 struct drm_pagemap_zdd *zdd = NULL;
334 struct page **pages;
335 struct drm_pagemap_addr *pagemap_addr;
336 void *buf;
337 int err;
338
339 mmap_assert_locked(mm);
340
341 if (!ops->populate_devmem_pfn || !ops->copy_to_devmem ||
342 !ops->copy_to_ram)
343 return -EOPNOTSUPP;
344
345 vas = vma_lookup(mm, start);
346 if (!vas) {
347 err = -ENOENT;
348 goto err_out;
349 }
350
351 if (end > vas->vm_end || start < vas->vm_start) {
352 err = -EINVAL;
353 goto err_out;
354 }
355
356 if (!vma_is_anonymous(vas)) {
357 err = -EBUSY;
358 goto err_out;
359 }
360
361 buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*pagemap_addr) +
362 sizeof(*pages), GFP_KERNEL);
363 if (!buf) {
364 err = -ENOMEM;
365 goto err_out;
366 }
367 pagemap_addr = buf + (2 * sizeof(*migrate.src) * npages);
368 pages = buf + (2 * sizeof(*migrate.src) + sizeof(*pagemap_addr)) * npages;
369
370 zdd = drm_pagemap_zdd_alloc(pgmap_owner);
371 if (!zdd) {
372 err = -ENOMEM;
373 goto err_free;
374 }
375
376 migrate.vma = vas;
377 migrate.src = buf;
378 migrate.dst = migrate.src + npages;
379
380 err = migrate_vma_setup(&migrate);
381 if (err)
382 goto err_free;
383
384 if (!migrate.cpages) {
385 err = -EFAULT;
386 goto err_free;
387 }
388
389 if (migrate.cpages != npages) {
390 err = -EBUSY;
391 goto err_finalize;
392 }
393
394 err = ops->populate_devmem_pfn(devmem_allocation, npages, migrate.dst);
395 if (err)
396 goto err_finalize;
397
398 err = drm_pagemap_migrate_map_pages(devmem_allocation->dev, pagemap_addr,
399 migrate.src, npages, DMA_TO_DEVICE);
400
401 if (err)
402 goto err_finalize;
403
404 for (i = 0; i < npages; ++i) {
405 struct page *page = pfn_to_page(migrate.dst[i]);
406
407 pages[i] = page;
408 migrate.dst[i] = migrate_pfn(migrate.dst[i]);
409 drm_pagemap_get_devmem_page(page, zdd);
410 }
411
412 err = ops->copy_to_devmem(pages, pagemap_addr, npages,
413 devmem_allocation->pre_migrate_fence);
414 if (err)
415 goto err_finalize;
416
417 dma_fence_put(devmem_allocation->pre_migrate_fence);
418 devmem_allocation->pre_migrate_fence = NULL;
419
420 /* Upon success bind devmem allocation to range and zdd */
421 devmem_allocation->timeslice_expiration = get_jiffies_64() +
422 msecs_to_jiffies(timeslice_ms);
423 zdd->devmem_allocation = devmem_allocation; /* Owns ref */
424
425 err_finalize:
426 if (err)
427 drm_pagemap_migration_unlock_put_pages(npages, migrate.dst);
428 migrate_vma_pages(&migrate);
429 migrate_vma_finalize(&migrate);
430 drm_pagemap_migrate_unmap_pages(devmem_allocation->dev, pagemap_addr, npages,
431 DMA_TO_DEVICE);
432 err_free:
433 if (zdd)
434 drm_pagemap_zdd_put(zdd);
435 kvfree(buf);
436 err_out:
437 return err;
438 }
439 EXPORT_SYMBOL_GPL(drm_pagemap_migrate_to_devmem);
440
441 /**
442 * drm_pagemap_migrate_populate_ram_pfn() - Populate RAM PFNs for a VM area
443 * @vas: Pointer to the VM area structure, can be NULL
444 * @fault_page: Fault page
445 * @npages: Number of pages to populate
446 * @mpages: Number of pages to migrate
447 * @src_mpfn: Source array of migrate PFNs
448 * @mpfn: Array of migrate PFNs to populate
449 * @addr: Start address for PFN allocation
450 *
451 * This function populates the RAM migrate page frame numbers (PFNs) for the
452 * specified VM area structure. It allocates and locks pages in the VM area for
453 * RAM usage. If vas is non-NULL use alloc_page_vma for allocation, if NULL use
454 * alloc_page for allocation.
455 *
456 * Return: 0 on success, negative error code on failure.
457 */
drm_pagemap_migrate_populate_ram_pfn(struct vm_area_struct * vas,struct page * fault_page,unsigned long npages,unsigned long * mpages,unsigned long * src_mpfn,unsigned long * mpfn,unsigned long addr)458 static int drm_pagemap_migrate_populate_ram_pfn(struct vm_area_struct *vas,
459 struct page *fault_page,
460 unsigned long npages,
461 unsigned long *mpages,
462 unsigned long *src_mpfn,
463 unsigned long *mpfn,
464 unsigned long addr)
465 {
466 unsigned long i;
467
468 for (i = 0; i < npages;) {
469 struct page *page = NULL, *src_page;
470 struct folio *folio;
471 unsigned int order = 0;
472
473 if (!(src_mpfn[i] & MIGRATE_PFN_MIGRATE))
474 goto next;
475
476 src_page = migrate_pfn_to_page(src_mpfn[i]);
477 if (!src_page)
478 goto next;
479
480 if (fault_page) {
481 if (src_page->zone_device_data !=
482 fault_page->zone_device_data)
483 goto next;
484 }
485
486 order = folio_order(page_folio(src_page));
487
488 /* TODO: Support fallback to single pages if THP allocation fails */
489 if (vas)
490 folio = vma_alloc_folio(GFP_HIGHUSER, order, vas, addr);
491 else
492 folio = folio_alloc(GFP_HIGHUSER, order);
493
494 if (!folio)
495 goto free_pages;
496
497 page = folio_page(folio, 0);
498 mpfn[i] = migrate_pfn(page_to_pfn(page));
499
500 next:
501 if (page)
502 addr += page_size(page);
503 else
504 addr += PAGE_SIZE;
505
506 i += NR_PAGES(order);
507 }
508
509 for (i = 0; i < npages;) {
510 struct page *page = migrate_pfn_to_page(mpfn[i]);
511 unsigned int order = 0;
512
513 if (!page)
514 goto next_lock;
515
516 WARN_ON_ONCE(!folio_trylock(page_folio(page)));
517
518 order = folio_order(page_folio(page));
519 *mpages += NR_PAGES(order);
520
521 next_lock:
522 i += NR_PAGES(order);
523 }
524
525 return 0;
526
527 free_pages:
528 for (i = 0; i < npages;) {
529 struct page *page = migrate_pfn_to_page(mpfn[i]);
530 unsigned int order = 0;
531
532 if (!page)
533 goto next_put;
534
535 put_page(page);
536 mpfn[i] = 0;
537
538 order = folio_order(page_folio(page));
539
540 next_put:
541 i += NR_PAGES(order);
542 }
543 return -ENOMEM;
544 }
545
546 /**
547 * drm_pagemap_evict_to_ram() - Evict GPU SVM range to RAM
548 * @devmem_allocation: Pointer to the device memory allocation
549 *
550 * Similar to __drm_pagemap_migrate_to_ram but does not require mmap lock and
551 * migration done via migrate_device_* functions.
552 *
553 * Return: 0 on success, negative error code on failure.
554 */
drm_pagemap_evict_to_ram(struct drm_pagemap_devmem * devmem_allocation)555 int drm_pagemap_evict_to_ram(struct drm_pagemap_devmem *devmem_allocation)
556 {
557 const struct drm_pagemap_devmem_ops *ops = devmem_allocation->ops;
558 unsigned long npages, mpages = 0;
559 struct page **pages;
560 unsigned long *src, *dst;
561 struct drm_pagemap_addr *pagemap_addr;
562 void *buf;
563 int i, err = 0;
564 unsigned int retry_count = 2;
565
566 npages = devmem_allocation->size >> PAGE_SHIFT;
567
568 retry:
569 if (!mmget_not_zero(devmem_allocation->mm))
570 return -EFAULT;
571
572 buf = kvcalloc(npages, 2 * sizeof(*src) + sizeof(*pagemap_addr) +
573 sizeof(*pages), GFP_KERNEL);
574 if (!buf) {
575 err = -ENOMEM;
576 goto err_out;
577 }
578 src = buf;
579 dst = buf + (sizeof(*src) * npages);
580 pagemap_addr = buf + (2 * sizeof(*src) * npages);
581 pages = buf + (2 * sizeof(*src) + sizeof(*pagemap_addr)) * npages;
582
583 err = ops->populate_devmem_pfn(devmem_allocation, npages, src);
584 if (err)
585 goto err_free;
586
587 err = migrate_device_pfns(src, npages);
588 if (err)
589 goto err_free;
590
591 err = drm_pagemap_migrate_populate_ram_pfn(NULL, NULL, npages, &mpages,
592 src, dst, 0);
593 if (err || !mpages)
594 goto err_finalize;
595
596 err = drm_pagemap_migrate_map_pages(devmem_allocation->dev, pagemap_addr,
597 dst, npages, DMA_FROM_DEVICE);
598 if (err)
599 goto err_finalize;
600
601 for (i = 0; i < npages; ++i)
602 pages[i] = migrate_pfn_to_page(src[i]);
603
604 err = ops->copy_to_ram(pages, pagemap_addr, npages, NULL);
605 if (err)
606 goto err_finalize;
607
608 err_finalize:
609 if (err)
610 drm_pagemap_migration_unlock_put_pages(npages, dst);
611 migrate_device_pages(src, dst, npages);
612 migrate_device_finalize(src, dst, npages);
613 drm_pagemap_migrate_unmap_pages(devmem_allocation->dev, pagemap_addr, npages,
614 DMA_FROM_DEVICE);
615 err_free:
616 kvfree(buf);
617 err_out:
618 mmput_async(devmem_allocation->mm);
619
620 if (completion_done(&devmem_allocation->detached))
621 return 0;
622
623 if (retry_count--) {
624 cond_resched();
625 goto retry;
626 }
627
628 return err ?: -EBUSY;
629 }
630 EXPORT_SYMBOL_GPL(drm_pagemap_evict_to_ram);
631
632 /**
633 * __drm_pagemap_migrate_to_ram() - Migrate GPU SVM range to RAM (internal)
634 * @vas: Pointer to the VM area structure
635 * @device_private_page_owner: Device private pages owner
636 * @page: Pointer to the page for fault handling (can be NULL)
637 * @fault_addr: Fault address
638 * @size: Size of migration
639 *
640 * This internal function performs the migration of the specified GPU SVM range
641 * to RAM. It sets up the migration, populates + dma maps RAM PFNs, and
642 * invokes the driver-specific operations for migration to RAM.
643 *
644 * Return: 0 on success, negative error code on failure.
645 */
__drm_pagemap_migrate_to_ram(struct vm_area_struct * vas,void * device_private_page_owner,struct page * page,unsigned long fault_addr,unsigned long size)646 static int __drm_pagemap_migrate_to_ram(struct vm_area_struct *vas,
647 void *device_private_page_owner,
648 struct page *page,
649 unsigned long fault_addr,
650 unsigned long size)
651 {
652 struct migrate_vma migrate = {
653 .vma = vas,
654 .pgmap_owner = device_private_page_owner,
655 .flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE |
656 MIGRATE_VMA_SELECT_DEVICE_COHERENT,
657 .fault_page = page,
658 };
659 struct drm_pagemap_zdd *zdd;
660 const struct drm_pagemap_devmem_ops *ops;
661 struct device *dev = NULL;
662 unsigned long npages, mpages = 0;
663 struct page **pages;
664 struct drm_pagemap_addr *pagemap_addr;
665 unsigned long start, end;
666 void *buf;
667 int i, err = 0;
668
669 if (page) {
670 zdd = page->zone_device_data;
671 if (time_before64(get_jiffies_64(),
672 zdd->devmem_allocation->timeslice_expiration))
673 return 0;
674 }
675
676 start = ALIGN_DOWN(fault_addr, size);
677 end = ALIGN(fault_addr + 1, size);
678
679 /* Corner where VMA area struct has been partially unmapped */
680 if (start < vas->vm_start)
681 start = vas->vm_start;
682 if (end > vas->vm_end)
683 end = vas->vm_end;
684
685 migrate.start = start;
686 migrate.end = end;
687 npages = npages_in_range(start, end);
688
689 buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*pagemap_addr) +
690 sizeof(*pages), GFP_KERNEL);
691 if (!buf) {
692 err = -ENOMEM;
693 goto err_out;
694 }
695 pagemap_addr = buf + (2 * sizeof(*migrate.src) * npages);
696 pages = buf + (2 * sizeof(*migrate.src) + sizeof(*pagemap_addr)) * npages;
697
698 migrate.vma = vas;
699 migrate.src = buf;
700 migrate.dst = migrate.src + npages;
701
702 err = migrate_vma_setup(&migrate);
703 if (err)
704 goto err_free;
705
706 /* Raced with another CPU fault, nothing to do */
707 if (!migrate.cpages)
708 goto err_free;
709
710 if (!page) {
711 for (i = 0; i < npages; ++i) {
712 if (!(migrate.src[i] & MIGRATE_PFN_MIGRATE))
713 continue;
714
715 page = migrate_pfn_to_page(migrate.src[i]);
716 break;
717 }
718
719 if (!page)
720 goto err_finalize;
721 }
722 zdd = page->zone_device_data;
723 ops = zdd->devmem_allocation->ops;
724 dev = zdd->devmem_allocation->dev;
725
726 err = drm_pagemap_migrate_populate_ram_pfn(vas, page, npages, &mpages,
727 migrate.src, migrate.dst,
728 start);
729 if (err)
730 goto err_finalize;
731
732 err = drm_pagemap_migrate_map_pages(dev, pagemap_addr, migrate.dst, npages,
733 DMA_FROM_DEVICE);
734 if (err)
735 goto err_finalize;
736
737 for (i = 0; i < npages; ++i)
738 pages[i] = migrate_pfn_to_page(migrate.src[i]);
739
740 err = ops->copy_to_ram(pages, pagemap_addr, npages, NULL);
741 if (err)
742 goto err_finalize;
743
744 err_finalize:
745 if (err)
746 drm_pagemap_migration_unlock_put_pages(npages, migrate.dst);
747 migrate_vma_pages(&migrate);
748 migrate_vma_finalize(&migrate);
749 if (dev)
750 drm_pagemap_migrate_unmap_pages(dev, pagemap_addr, npages,
751 DMA_FROM_DEVICE);
752 err_free:
753 kvfree(buf);
754 err_out:
755
756 return err;
757 }
758
759 /**
760 * drm_pagemap_folio_free() - Put GPU SVM zone device data associated with a folio
761 * @folio: Pointer to the folio
762 *
763 * This function is a callback used to put the GPU SVM zone device data
764 * associated with a page when it is being released.
765 */
drm_pagemap_folio_free(struct folio * folio)766 static void drm_pagemap_folio_free(struct folio *folio)
767 {
768 drm_pagemap_zdd_put(folio->page.zone_device_data);
769 }
770
771 /**
772 * drm_pagemap_migrate_to_ram() - Migrate a virtual range to RAM (page fault handler)
773 * @vmf: Pointer to the fault information structure
774 *
775 * This function is a page fault handler used to migrate a virtual range
776 * to ram. The device memory allocation in which the device page is found is
777 * migrated in its entirety.
778 *
779 * Returns:
780 * VM_FAULT_SIGBUS on failure, 0 on success.
781 */
drm_pagemap_migrate_to_ram(struct vm_fault * vmf)782 static vm_fault_t drm_pagemap_migrate_to_ram(struct vm_fault *vmf)
783 {
784 struct drm_pagemap_zdd *zdd = vmf->page->zone_device_data;
785 int err;
786
787 err = __drm_pagemap_migrate_to_ram(vmf->vma,
788 zdd->device_private_page_owner,
789 vmf->page, vmf->address,
790 zdd->devmem_allocation->size);
791
792 return err ? VM_FAULT_SIGBUS : 0;
793 }
794
795 static const struct dev_pagemap_ops drm_pagemap_pagemap_ops = {
796 .folio_free = drm_pagemap_folio_free,
797 .migrate_to_ram = drm_pagemap_migrate_to_ram,
798 };
799
800 /**
801 * drm_pagemap_pagemap_ops_get() - Retrieve GPU SVM device page map operations
802 *
803 * Returns:
804 * Pointer to the GPU SVM device page map operations structure.
805 */
drm_pagemap_pagemap_ops_get(void)806 const struct dev_pagemap_ops *drm_pagemap_pagemap_ops_get(void)
807 {
808 return &drm_pagemap_pagemap_ops;
809 }
810 EXPORT_SYMBOL_GPL(drm_pagemap_pagemap_ops_get);
811
812 /**
813 * drm_pagemap_devmem_init() - Initialize a drm_pagemap device memory allocation
814 *
815 * @devmem_allocation: The struct drm_pagemap_devmem to initialize.
816 * @dev: Pointer to the device structure which device memory allocation belongs to
817 * @mm: Pointer to the mm_struct for the address space
818 * @ops: Pointer to the operations structure for GPU SVM device memory
819 * @dpagemap: The struct drm_pagemap we're allocating from.
820 * @size: Size of device memory allocation
821 * @pre_migrate_fence: Fence to wait for or pipeline behind before migration starts.
822 * (May be NULL).
823 */
drm_pagemap_devmem_init(struct drm_pagemap_devmem * devmem_allocation,struct device * dev,struct mm_struct * mm,const struct drm_pagemap_devmem_ops * ops,struct drm_pagemap * dpagemap,size_t size,struct dma_fence * pre_migrate_fence)824 void drm_pagemap_devmem_init(struct drm_pagemap_devmem *devmem_allocation,
825 struct device *dev, struct mm_struct *mm,
826 const struct drm_pagemap_devmem_ops *ops,
827 struct drm_pagemap *dpagemap, size_t size,
828 struct dma_fence *pre_migrate_fence)
829 {
830 init_completion(&devmem_allocation->detached);
831 devmem_allocation->dev = dev;
832 devmem_allocation->mm = mm;
833 devmem_allocation->ops = ops;
834 devmem_allocation->dpagemap = dpagemap;
835 devmem_allocation->size = size;
836 devmem_allocation->pre_migrate_fence = pre_migrate_fence;
837 }
838 EXPORT_SYMBOL_GPL(drm_pagemap_devmem_init);
839
840 /**
841 * drm_pagemap_page_to_dpagemap() - Return a pointer the drm_pagemap of a page
842 * @page: The struct page.
843 *
844 * Return: A pointer to the struct drm_pagemap of a device private page that
845 * was populated from the struct drm_pagemap. If the page was *not* populated
846 * from a struct drm_pagemap, the result is undefined and the function call
847 * may result in dereferencing and invalid address.
848 */
drm_pagemap_page_to_dpagemap(struct page * page)849 struct drm_pagemap *drm_pagemap_page_to_dpagemap(struct page *page)
850 {
851 struct drm_pagemap_zdd *zdd = page->zone_device_data;
852
853 return zdd->devmem_allocation->dpagemap;
854 }
855 EXPORT_SYMBOL_GPL(drm_pagemap_page_to_dpagemap);
856
857 /**
858 * drm_pagemap_populate_mm() - Populate a virtual range with device memory pages
859 * @dpagemap: Pointer to the drm_pagemap managing the device memory
860 * @start: Start of the virtual range to populate.
861 * @end: End of the virtual range to populate.
862 * @mm: Pointer to the virtual address space.
863 * @timeslice_ms: The time requested for the migrated pagemap pages to
864 * be present in @mm before being allowed to be migrated back.
865 *
866 * Attempt to populate a virtual range with device memory pages,
867 * clearing them or migrating data from the existing pages if necessary.
868 * The function is best effort only, and implementations may vary
869 * in how hard they try to satisfy the request.
870 *
871 * Return: %0 on success, negative error code on error. If the hardware
872 * device was removed / unbound the function will return %-ENODEV.
873 */
drm_pagemap_populate_mm(struct drm_pagemap * dpagemap,unsigned long start,unsigned long end,struct mm_struct * mm,unsigned long timeslice_ms)874 int drm_pagemap_populate_mm(struct drm_pagemap *dpagemap,
875 unsigned long start, unsigned long end,
876 struct mm_struct *mm,
877 unsigned long timeslice_ms)
878 {
879 int err;
880
881 if (!mmget_not_zero(mm))
882 return -EFAULT;
883 mmap_read_lock(mm);
884 err = dpagemap->ops->populate_mm(dpagemap, start, end, mm,
885 timeslice_ms);
886 mmap_read_unlock(mm);
887 mmput(mm);
888
889 return err;
890 }
891 EXPORT_SYMBOL(drm_pagemap_populate_mm);
892