xref: /linux/drivers/gpu/drm/drm_pagemap.c (revision 9b043680446067358913edc2e9dd71bf8ffae208)
1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /*
3  * Copyright © 2024-2025 Intel Corporation
4  */
5 
6 #include <linux/dma-fence.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/migrate.h>
9 #include <linux/pagemap.h>
10 #include <drm/drm_drv.h>
11 #include <drm/drm_pagemap.h>
12 
13 /**
14  * DOC: Overview
15  *
16  * The DRM pagemap layer is intended to augment the dev_pagemap functionality by
17  * providing a way to populate a struct mm_struct virtual range with device
18  * private pages and to provide helpers to abstract device memory allocations,
19  * to migrate memory back and forth between device memory and system RAM and
20  * to handle access (and in the future migration) between devices implementing
21  * a fast interconnect that is not necessarily visible to the rest of the
22  * system.
23  *
24  * Typically the DRM pagemap receives requests from one or more DRM GPU SVM
25  * instances to populate struct mm_struct virtual ranges with memory, and the
26  * migration is best effort only and may thus fail. The implementation should
27  * also handle device unbinding by blocking (return an -ENODEV) error for new
28  * population requests and after that migrate all device pages to system ram.
29  */
30 
31 /**
32  * DOC: Migration
33  *
34  * Migration granularity typically follows the GPU SVM range requests, but
35  * if there are clashes, due to races or due to the fact that multiple GPU
36  * SVM instances have different views of the ranges used, and because of that
37  * parts of a requested range is already present in the requested device memory,
38  * the implementation has a variety of options. It can fail and it can choose
39  * to populate only the part of the range that isn't already in device memory,
40  * and it can evict the range to system before trying to migrate. Ideally an
41  * implementation would just try to migrate the missing part of the range and
42  * allocate just enough memory to do so.
43  *
44  * When migrating to system memory as a response to a cpu fault or a device
45  * memory eviction request, currently a full device memory allocation is
46  * migrated back to system. Moving forward this might need improvement for
47  * situations where a single page needs bouncing between system memory and
48  * device memory due to, for example, atomic operations.
49  *
50  * Key DRM pagemap components:
51  *
52  * - Device Memory Allocations:
53  *      Embedded structure containing enough information for the drm_pagemap to
54  *      migrate to / from device memory.
55  *
56  * - Device Memory Operations:
57  *      Define the interface for driver-specific device memory operations
58  *      release memory, populate pfns, and copy to / from device memory.
59  */
60 
61 /**
62  * struct drm_pagemap_zdd - GPU SVM zone device data
63  *
64  * @refcount: Reference count for the zdd
65  * @devmem_allocation: device memory allocation
66  * @device_private_page_owner: Device private pages owner
67  *
68  * This structure serves as a generic wrapper installed in
69  * page->zone_device_data. It provides infrastructure for looking up a device
70  * memory allocation upon CPU page fault and asynchronously releasing device
71  * memory once the CPU has no page references. Asynchronous release is useful
72  * because CPU page references can be dropped in IRQ contexts, while releasing
73  * device memory likely requires sleeping locks.
74  */
75 struct drm_pagemap_zdd {
76 	struct kref refcount;
77 	struct drm_pagemap_devmem *devmem_allocation;
78 	void *device_private_page_owner;
79 };
80 
81 /**
82  * drm_pagemap_zdd_alloc() - Allocate a zdd structure.
83  * @device_private_page_owner: Device private pages owner
84  *
85  * This function allocates and initializes a new zdd structure. It sets up the
86  * reference count and initializes the destroy work.
87  *
88  * Return: Pointer to the allocated zdd on success, ERR_PTR() on failure.
89  */
90 static struct drm_pagemap_zdd *
drm_pagemap_zdd_alloc(void * device_private_page_owner)91 drm_pagemap_zdd_alloc(void *device_private_page_owner)
92 {
93 	struct drm_pagemap_zdd *zdd;
94 
95 	zdd = kmalloc(sizeof(*zdd), GFP_KERNEL);
96 	if (!zdd)
97 		return NULL;
98 
99 	kref_init(&zdd->refcount);
100 	zdd->devmem_allocation = NULL;
101 	zdd->device_private_page_owner = device_private_page_owner;
102 
103 	return zdd;
104 }
105 
106 /**
107  * drm_pagemap_zdd_get() - Get a reference to a zdd structure.
108  * @zdd: Pointer to the zdd structure.
109  *
110  * This function increments the reference count of the provided zdd structure.
111  *
112  * Return: Pointer to the zdd structure.
113  */
drm_pagemap_zdd_get(struct drm_pagemap_zdd * zdd)114 static struct drm_pagemap_zdd *drm_pagemap_zdd_get(struct drm_pagemap_zdd *zdd)
115 {
116 	kref_get(&zdd->refcount);
117 	return zdd;
118 }
119 
120 /**
121  * drm_pagemap_zdd_destroy() - Destroy a zdd structure.
122  * @ref: Pointer to the reference count structure.
123  *
124  * This function queues the destroy_work of the zdd for asynchronous destruction.
125  */
drm_pagemap_zdd_destroy(struct kref * ref)126 static void drm_pagemap_zdd_destroy(struct kref *ref)
127 {
128 	struct drm_pagemap_zdd *zdd =
129 		container_of(ref, struct drm_pagemap_zdd, refcount);
130 	struct drm_pagemap_devmem *devmem = zdd->devmem_allocation;
131 
132 	if (devmem) {
133 		complete_all(&devmem->detached);
134 		if (devmem->ops->devmem_release)
135 			devmem->ops->devmem_release(devmem);
136 	}
137 	kfree(zdd);
138 }
139 
140 /**
141  * drm_pagemap_zdd_put() - Put a zdd reference.
142  * @zdd: Pointer to the zdd structure.
143  *
144  * This function decrements the reference count of the provided zdd structure
145  * and schedules its destruction if the count drops to zero.
146  */
drm_pagemap_zdd_put(struct drm_pagemap_zdd * zdd)147 static void drm_pagemap_zdd_put(struct drm_pagemap_zdd *zdd)
148 {
149 	kref_put(&zdd->refcount, drm_pagemap_zdd_destroy);
150 }
151 
152 /**
153  * drm_pagemap_migration_unlock_put_page() - Put a migration page
154  * @page: Pointer to the page to put
155  *
156  * This function unlocks and puts a page.
157  */
drm_pagemap_migration_unlock_put_page(struct page * page)158 static void drm_pagemap_migration_unlock_put_page(struct page *page)
159 {
160 	unlock_page(page);
161 	put_page(page);
162 }
163 
164 /**
165  * drm_pagemap_migration_unlock_put_pages() - Put migration pages
166  * @npages: Number of pages
167  * @migrate_pfn: Array of migrate page frame numbers
168  *
169  * This function unlocks and puts an array of pages.
170  */
drm_pagemap_migration_unlock_put_pages(unsigned long npages,unsigned long * migrate_pfn)171 static void drm_pagemap_migration_unlock_put_pages(unsigned long npages,
172 						   unsigned long *migrate_pfn)
173 {
174 	unsigned long i;
175 
176 	for (i = 0; i < npages; ++i) {
177 		struct page *page;
178 
179 		if (!migrate_pfn[i])
180 			continue;
181 
182 		page = migrate_pfn_to_page(migrate_pfn[i]);
183 		drm_pagemap_migration_unlock_put_page(page);
184 		migrate_pfn[i] = 0;
185 	}
186 }
187 
188 /**
189  * drm_pagemap_get_devmem_page() - Get a reference to a device memory page
190  * @page: Pointer to the page
191  * @zdd: Pointer to the GPU SVM zone device data
192  *
193  * This function associates the given page with the specified GPU SVM zone
194  * device data and initializes it for zone device usage.
195  */
drm_pagemap_get_devmem_page(struct page * page,struct drm_pagemap_zdd * zdd)196 static void drm_pagemap_get_devmem_page(struct page *page,
197 					struct drm_pagemap_zdd *zdd)
198 {
199 	page->zone_device_data = drm_pagemap_zdd_get(zdd);
200 	zone_device_page_init(page, 0);
201 }
202 
203 /**
204  * drm_pagemap_migrate_map_pages() - Map migration pages for GPU SVM migration
205  * @dev: The device for which the pages are being mapped
206  * @pagemap_addr: Array to store DMA information corresponding to mapped pages
207  * @migrate_pfn: Array of migrate page frame numbers to map
208  * @npages: Number of pages to map
209  * @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL)
210  *
211  * This function maps pages of memory for migration usage in GPU SVM. It
212  * iterates over each page frame number provided in @migrate_pfn, maps the
213  * corresponding page, and stores the DMA address in the provided @dma_addr
214  * array.
215  *
216  * Returns: 0 on success, -EFAULT if an error occurs during mapping.
217  */
drm_pagemap_migrate_map_pages(struct device * dev,struct drm_pagemap_addr * pagemap_addr,unsigned long * migrate_pfn,unsigned long npages,enum dma_data_direction dir)218 static int drm_pagemap_migrate_map_pages(struct device *dev,
219 					 struct drm_pagemap_addr *pagemap_addr,
220 					 unsigned long *migrate_pfn,
221 					 unsigned long npages,
222 					 enum dma_data_direction dir)
223 {
224 	unsigned long i;
225 
226 	for (i = 0; i < npages;) {
227 		struct page *page = migrate_pfn_to_page(migrate_pfn[i]);
228 		dma_addr_t dma_addr;
229 		struct folio *folio;
230 		unsigned int order = 0;
231 
232 		if (!page)
233 			goto next;
234 
235 		if (WARN_ON_ONCE(is_zone_device_page(page)))
236 			return -EFAULT;
237 
238 		folio = page_folio(page);
239 		order = folio_order(folio);
240 
241 		dma_addr = dma_map_page(dev, page, 0, page_size(page), dir);
242 		if (dma_mapping_error(dev, dma_addr))
243 			return -EFAULT;
244 
245 		pagemap_addr[i] =
246 			drm_pagemap_addr_encode(dma_addr,
247 						DRM_INTERCONNECT_SYSTEM,
248 						order, dir);
249 
250 next:
251 		i += NR_PAGES(order);
252 	}
253 
254 	return 0;
255 }
256 
257 /**
258  * drm_pagemap_migrate_unmap_pages() - Unmap pages previously mapped for GPU SVM migration
259  * @dev: The device for which the pages were mapped
260  * @pagemap_addr: Array of DMA information corresponding to mapped pages
261  * @npages: Number of pages to unmap
262  * @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL)
263  *
264  * This function unmaps previously mapped pages of memory for GPU Shared Virtual
265  * Memory (SVM). It iterates over each DMA address provided in @dma_addr, checks
266  * if it's valid and not already unmapped, and unmaps the corresponding page.
267  */
drm_pagemap_migrate_unmap_pages(struct device * dev,struct drm_pagemap_addr * pagemap_addr,unsigned long npages,enum dma_data_direction dir)268 static void drm_pagemap_migrate_unmap_pages(struct device *dev,
269 					    struct drm_pagemap_addr *pagemap_addr,
270 					    unsigned long npages,
271 					    enum dma_data_direction dir)
272 {
273 	unsigned long i;
274 
275 	for (i = 0; i < npages;) {
276 		if (!pagemap_addr[i].addr || dma_mapping_error(dev, pagemap_addr[i].addr))
277 			goto next;
278 
279 		dma_unmap_page(dev, pagemap_addr[i].addr, PAGE_SIZE << pagemap_addr[i].order, dir);
280 
281 next:
282 		i += NR_PAGES(pagemap_addr[i].order);
283 	}
284 }
285 
286 static unsigned long
npages_in_range(unsigned long start,unsigned long end)287 npages_in_range(unsigned long start, unsigned long end)
288 {
289 	return (end - start) >> PAGE_SHIFT;
290 }
291 
292 /**
293  * drm_pagemap_migrate_to_devmem() - Migrate a struct mm_struct range to device memory
294  * @devmem_allocation: The device memory allocation to migrate to.
295  * The caller should hold a reference to the device memory allocation,
296  * and the reference is consumed by this function unless it returns with
297  * an error.
298  * @mm: Pointer to the struct mm_struct.
299  * @start: Start of the virtual address range to migrate.
300  * @end: End of the virtual address range to migrate.
301  * @timeslice_ms: The time requested for the migrated pagemap pages to
302  * be present in @mm before being allowed to be migrated back.
303  * @pgmap_owner: Not used currently, since only system memory is considered.
304  *
305  * This function migrates the specified virtual address range to device memory.
306  * It performs the necessary setup and invokes the driver-specific operations for
307  * migration to device memory. Expected to be called while holding the mmap lock in
308  * at least read mode.
309  *
310  * Note: The @timeslice_ms parameter can typically be used to force data to
311  * remain in pagemap pages long enough for a GPU to perform a task and to prevent
312  * a migration livelock. One alternative would be for the GPU driver to block
313  * in a mmu_notifier for the specified amount of time, but adding the
314  * functionality to the pagemap is likely nicer to the system as a whole.
315  *
316  * Return: %0 on success, negative error code on failure.
317  */
drm_pagemap_migrate_to_devmem(struct drm_pagemap_devmem * devmem_allocation,struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long timeslice_ms,void * pgmap_owner)318 int drm_pagemap_migrate_to_devmem(struct drm_pagemap_devmem *devmem_allocation,
319 				  struct mm_struct *mm,
320 				  unsigned long start, unsigned long end,
321 				  unsigned long timeslice_ms,
322 				  void *pgmap_owner)
323 {
324 	const struct drm_pagemap_devmem_ops *ops = devmem_allocation->ops;
325 	struct migrate_vma migrate = {
326 		.start		= start,
327 		.end		= end,
328 		.pgmap_owner	= pgmap_owner,
329 		.flags		= MIGRATE_VMA_SELECT_SYSTEM,
330 	};
331 	unsigned long i, npages = npages_in_range(start, end);
332 	struct vm_area_struct *vas;
333 	struct drm_pagemap_zdd *zdd = NULL;
334 	struct page **pages;
335 	struct drm_pagemap_addr *pagemap_addr;
336 	void *buf;
337 	int err;
338 
339 	mmap_assert_locked(mm);
340 
341 	if (!ops->populate_devmem_pfn || !ops->copy_to_devmem ||
342 	    !ops->copy_to_ram)
343 		return -EOPNOTSUPP;
344 
345 	vas = vma_lookup(mm, start);
346 	if (!vas) {
347 		err = -ENOENT;
348 		goto err_out;
349 	}
350 
351 	if (end > vas->vm_end || start < vas->vm_start) {
352 		err = -EINVAL;
353 		goto err_out;
354 	}
355 
356 	if (!vma_is_anonymous(vas)) {
357 		err = -EBUSY;
358 		goto err_out;
359 	}
360 
361 	buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*pagemap_addr) +
362 		       sizeof(*pages), GFP_KERNEL);
363 	if (!buf) {
364 		err = -ENOMEM;
365 		goto err_out;
366 	}
367 	pagemap_addr = buf + (2 * sizeof(*migrate.src) * npages);
368 	pages = buf + (2 * sizeof(*migrate.src) + sizeof(*pagemap_addr)) * npages;
369 
370 	zdd = drm_pagemap_zdd_alloc(pgmap_owner);
371 	if (!zdd) {
372 		err = -ENOMEM;
373 		goto err_free;
374 	}
375 
376 	migrate.vma = vas;
377 	migrate.src = buf;
378 	migrate.dst = migrate.src + npages;
379 
380 	err = migrate_vma_setup(&migrate);
381 	if (err)
382 		goto err_free;
383 
384 	if (!migrate.cpages) {
385 		err = -EFAULT;
386 		goto err_free;
387 	}
388 
389 	if (migrate.cpages != npages) {
390 		err = -EBUSY;
391 		goto err_finalize;
392 	}
393 
394 	err = ops->populate_devmem_pfn(devmem_allocation, npages, migrate.dst);
395 	if (err)
396 		goto err_finalize;
397 
398 	err = drm_pagemap_migrate_map_pages(devmem_allocation->dev, pagemap_addr,
399 					    migrate.src, npages, DMA_TO_DEVICE);
400 
401 	if (err)
402 		goto err_finalize;
403 
404 	for (i = 0; i < npages; ++i) {
405 		struct page *page = pfn_to_page(migrate.dst[i]);
406 
407 		pages[i] = page;
408 		migrate.dst[i] = migrate_pfn(migrate.dst[i]);
409 		drm_pagemap_get_devmem_page(page, zdd);
410 	}
411 
412 	err = ops->copy_to_devmem(pages, pagemap_addr, npages,
413 				  devmem_allocation->pre_migrate_fence);
414 	if (err)
415 		goto err_finalize;
416 
417 	dma_fence_put(devmem_allocation->pre_migrate_fence);
418 	devmem_allocation->pre_migrate_fence = NULL;
419 
420 	/* Upon success bind devmem allocation to range and zdd */
421 	devmem_allocation->timeslice_expiration = get_jiffies_64() +
422 		msecs_to_jiffies(timeslice_ms);
423 	zdd->devmem_allocation = devmem_allocation;	/* Owns ref */
424 
425 err_finalize:
426 	if (err)
427 		drm_pagemap_migration_unlock_put_pages(npages, migrate.dst);
428 	migrate_vma_pages(&migrate);
429 	migrate_vma_finalize(&migrate);
430 	drm_pagemap_migrate_unmap_pages(devmem_allocation->dev, pagemap_addr, npages,
431 					DMA_TO_DEVICE);
432 err_free:
433 	if (zdd)
434 		drm_pagemap_zdd_put(zdd);
435 	kvfree(buf);
436 err_out:
437 	return err;
438 }
439 EXPORT_SYMBOL_GPL(drm_pagemap_migrate_to_devmem);
440 
441 /**
442  * drm_pagemap_migrate_populate_ram_pfn() - Populate RAM PFNs for a VM area
443  * @vas: Pointer to the VM area structure, can be NULL
444  * @fault_page: Fault page
445  * @npages: Number of pages to populate
446  * @mpages: Number of pages to migrate
447  * @src_mpfn: Source array of migrate PFNs
448  * @mpfn: Array of migrate PFNs to populate
449  * @addr: Start address for PFN allocation
450  *
451  * This function populates the RAM migrate page frame numbers (PFNs) for the
452  * specified VM area structure. It allocates and locks pages in the VM area for
453  * RAM usage. If vas is non-NULL use alloc_page_vma for allocation, if NULL use
454  * alloc_page for allocation.
455  *
456  * Return: 0 on success, negative error code on failure.
457  */
drm_pagemap_migrate_populate_ram_pfn(struct vm_area_struct * vas,struct page * fault_page,unsigned long npages,unsigned long * mpages,unsigned long * src_mpfn,unsigned long * mpfn,unsigned long addr)458 static int drm_pagemap_migrate_populate_ram_pfn(struct vm_area_struct *vas,
459 						struct page *fault_page,
460 						unsigned long npages,
461 						unsigned long *mpages,
462 						unsigned long *src_mpfn,
463 						unsigned long *mpfn,
464 						unsigned long addr)
465 {
466 	unsigned long i;
467 
468 	for (i = 0; i < npages;) {
469 		struct page *page = NULL, *src_page;
470 		struct folio *folio;
471 		unsigned int order = 0;
472 
473 		if (!(src_mpfn[i] & MIGRATE_PFN_MIGRATE))
474 			goto next;
475 
476 		src_page = migrate_pfn_to_page(src_mpfn[i]);
477 		if (!src_page)
478 			goto next;
479 
480 		if (fault_page) {
481 			if (src_page->zone_device_data !=
482 			    fault_page->zone_device_data)
483 				goto next;
484 		}
485 
486 		order = folio_order(page_folio(src_page));
487 
488 		/* TODO: Support fallback to single pages if THP allocation fails */
489 		if (vas)
490 			folio = vma_alloc_folio(GFP_HIGHUSER, order, vas, addr);
491 		else
492 			folio = folio_alloc(GFP_HIGHUSER, order);
493 
494 		if (!folio)
495 			goto free_pages;
496 
497 		page = folio_page(folio, 0);
498 		mpfn[i] = migrate_pfn(page_to_pfn(page));
499 
500 next:
501 		if (page)
502 			addr += page_size(page);
503 		else
504 			addr += PAGE_SIZE;
505 
506 		i += NR_PAGES(order);
507 	}
508 
509 	for (i = 0; i < npages;) {
510 		struct page *page = migrate_pfn_to_page(mpfn[i]);
511 		unsigned int order = 0;
512 
513 		if (!page)
514 			goto next_lock;
515 
516 		WARN_ON_ONCE(!folio_trylock(page_folio(page)));
517 
518 		order = folio_order(page_folio(page));
519 		*mpages += NR_PAGES(order);
520 
521 next_lock:
522 		i += NR_PAGES(order);
523 	}
524 
525 	return 0;
526 
527 free_pages:
528 	for (i = 0; i < npages;) {
529 		struct page *page = migrate_pfn_to_page(mpfn[i]);
530 		unsigned int order = 0;
531 
532 		if (!page)
533 			goto next_put;
534 
535 		put_page(page);
536 		mpfn[i] = 0;
537 
538 		order = folio_order(page_folio(page));
539 
540 next_put:
541 		i += NR_PAGES(order);
542 	}
543 	return -ENOMEM;
544 }
545 
546 /**
547  * drm_pagemap_evict_to_ram() - Evict GPU SVM range to RAM
548  * @devmem_allocation: Pointer to the device memory allocation
549  *
550  * Similar to __drm_pagemap_migrate_to_ram but does not require mmap lock and
551  * migration done via migrate_device_* functions.
552  *
553  * Return: 0 on success, negative error code on failure.
554  */
drm_pagemap_evict_to_ram(struct drm_pagemap_devmem * devmem_allocation)555 int drm_pagemap_evict_to_ram(struct drm_pagemap_devmem *devmem_allocation)
556 {
557 	const struct drm_pagemap_devmem_ops *ops = devmem_allocation->ops;
558 	unsigned long npages, mpages = 0;
559 	struct page **pages;
560 	unsigned long *src, *dst;
561 	struct drm_pagemap_addr *pagemap_addr;
562 	void *buf;
563 	int i, err = 0;
564 	unsigned int retry_count = 2;
565 
566 	npages = devmem_allocation->size >> PAGE_SHIFT;
567 
568 retry:
569 	if (!mmget_not_zero(devmem_allocation->mm))
570 		return -EFAULT;
571 
572 	buf = kvcalloc(npages, 2 * sizeof(*src) + sizeof(*pagemap_addr) +
573 		       sizeof(*pages), GFP_KERNEL);
574 	if (!buf) {
575 		err = -ENOMEM;
576 		goto err_out;
577 	}
578 	src = buf;
579 	dst = buf + (sizeof(*src) * npages);
580 	pagemap_addr = buf + (2 * sizeof(*src) * npages);
581 	pages = buf + (2 * sizeof(*src) + sizeof(*pagemap_addr)) * npages;
582 
583 	err = ops->populate_devmem_pfn(devmem_allocation, npages, src);
584 	if (err)
585 		goto err_free;
586 
587 	err = migrate_device_pfns(src, npages);
588 	if (err)
589 		goto err_free;
590 
591 	err = drm_pagemap_migrate_populate_ram_pfn(NULL, NULL, npages, &mpages,
592 						   src, dst, 0);
593 	if (err || !mpages)
594 		goto err_finalize;
595 
596 	err = drm_pagemap_migrate_map_pages(devmem_allocation->dev, pagemap_addr,
597 					    dst, npages, DMA_FROM_DEVICE);
598 	if (err)
599 		goto err_finalize;
600 
601 	for (i = 0; i < npages; ++i)
602 		pages[i] = migrate_pfn_to_page(src[i]);
603 
604 	err = ops->copy_to_ram(pages, pagemap_addr, npages, NULL);
605 	if (err)
606 		goto err_finalize;
607 
608 err_finalize:
609 	if (err)
610 		drm_pagemap_migration_unlock_put_pages(npages, dst);
611 	migrate_device_pages(src, dst, npages);
612 	migrate_device_finalize(src, dst, npages);
613 	drm_pagemap_migrate_unmap_pages(devmem_allocation->dev, pagemap_addr, npages,
614 					DMA_FROM_DEVICE);
615 err_free:
616 	kvfree(buf);
617 err_out:
618 	mmput_async(devmem_allocation->mm);
619 
620 	if (completion_done(&devmem_allocation->detached))
621 		return 0;
622 
623 	if (retry_count--) {
624 		cond_resched();
625 		goto retry;
626 	}
627 
628 	return err ?: -EBUSY;
629 }
630 EXPORT_SYMBOL_GPL(drm_pagemap_evict_to_ram);
631 
632 /**
633  * __drm_pagemap_migrate_to_ram() - Migrate GPU SVM range to RAM (internal)
634  * @vas: Pointer to the VM area structure
635  * @device_private_page_owner: Device private pages owner
636  * @page: Pointer to the page for fault handling (can be NULL)
637  * @fault_addr: Fault address
638  * @size: Size of migration
639  *
640  * This internal function performs the migration of the specified GPU SVM range
641  * to RAM. It sets up the migration, populates + dma maps RAM PFNs, and
642  * invokes the driver-specific operations for migration to RAM.
643  *
644  * Return: 0 on success, negative error code on failure.
645  */
__drm_pagemap_migrate_to_ram(struct vm_area_struct * vas,void * device_private_page_owner,struct page * page,unsigned long fault_addr,unsigned long size)646 static int __drm_pagemap_migrate_to_ram(struct vm_area_struct *vas,
647 					void *device_private_page_owner,
648 					struct page *page,
649 					unsigned long fault_addr,
650 					unsigned long size)
651 {
652 	struct migrate_vma migrate = {
653 		.vma		= vas,
654 		.pgmap_owner	= device_private_page_owner,
655 		.flags		= MIGRATE_VMA_SELECT_DEVICE_PRIVATE |
656 		MIGRATE_VMA_SELECT_DEVICE_COHERENT,
657 		.fault_page	= page,
658 	};
659 	struct drm_pagemap_zdd *zdd;
660 	const struct drm_pagemap_devmem_ops *ops;
661 	struct device *dev = NULL;
662 	unsigned long npages, mpages = 0;
663 	struct page **pages;
664 	struct drm_pagemap_addr *pagemap_addr;
665 	unsigned long start, end;
666 	void *buf;
667 	int i, err = 0;
668 
669 	if (page) {
670 		zdd = page->zone_device_data;
671 		if (time_before64(get_jiffies_64(),
672 				  zdd->devmem_allocation->timeslice_expiration))
673 			return 0;
674 	}
675 
676 	start = ALIGN_DOWN(fault_addr, size);
677 	end = ALIGN(fault_addr + 1, size);
678 
679 	/* Corner where VMA area struct has been partially unmapped */
680 	if (start < vas->vm_start)
681 		start = vas->vm_start;
682 	if (end > vas->vm_end)
683 		end = vas->vm_end;
684 
685 	migrate.start = start;
686 	migrate.end = end;
687 	npages = npages_in_range(start, end);
688 
689 	buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*pagemap_addr) +
690 		       sizeof(*pages), GFP_KERNEL);
691 	if (!buf) {
692 		err = -ENOMEM;
693 		goto err_out;
694 	}
695 	pagemap_addr = buf + (2 * sizeof(*migrate.src) * npages);
696 	pages = buf + (2 * sizeof(*migrate.src) + sizeof(*pagemap_addr)) * npages;
697 
698 	migrate.vma = vas;
699 	migrate.src = buf;
700 	migrate.dst = migrate.src + npages;
701 
702 	err = migrate_vma_setup(&migrate);
703 	if (err)
704 		goto err_free;
705 
706 	/* Raced with another CPU fault, nothing to do */
707 	if (!migrate.cpages)
708 		goto err_free;
709 
710 	if (!page) {
711 		for (i = 0; i < npages; ++i) {
712 			if (!(migrate.src[i] & MIGRATE_PFN_MIGRATE))
713 				continue;
714 
715 			page = migrate_pfn_to_page(migrate.src[i]);
716 			break;
717 		}
718 
719 		if (!page)
720 			goto err_finalize;
721 	}
722 	zdd = page->zone_device_data;
723 	ops = zdd->devmem_allocation->ops;
724 	dev = zdd->devmem_allocation->dev;
725 
726 	err = drm_pagemap_migrate_populate_ram_pfn(vas, page, npages, &mpages,
727 						   migrate.src, migrate.dst,
728 						   start);
729 	if (err)
730 		goto err_finalize;
731 
732 	err = drm_pagemap_migrate_map_pages(dev, pagemap_addr, migrate.dst, npages,
733 					    DMA_FROM_DEVICE);
734 	if (err)
735 		goto err_finalize;
736 
737 	for (i = 0; i < npages; ++i)
738 		pages[i] = migrate_pfn_to_page(migrate.src[i]);
739 
740 	err = ops->copy_to_ram(pages, pagemap_addr, npages, NULL);
741 	if (err)
742 		goto err_finalize;
743 
744 err_finalize:
745 	if (err)
746 		drm_pagemap_migration_unlock_put_pages(npages, migrate.dst);
747 	migrate_vma_pages(&migrate);
748 	migrate_vma_finalize(&migrate);
749 	if (dev)
750 		drm_pagemap_migrate_unmap_pages(dev, pagemap_addr, npages,
751 						DMA_FROM_DEVICE);
752 err_free:
753 	kvfree(buf);
754 err_out:
755 
756 	return err;
757 }
758 
759 /**
760  * drm_pagemap_folio_free() - Put GPU SVM zone device data associated with a folio
761  * @folio: Pointer to the folio
762  *
763  * This function is a callback used to put the GPU SVM zone device data
764  * associated with a page when it is being released.
765  */
drm_pagemap_folio_free(struct folio * folio)766 static void drm_pagemap_folio_free(struct folio *folio)
767 {
768 	drm_pagemap_zdd_put(folio->page.zone_device_data);
769 }
770 
771 /**
772  * drm_pagemap_migrate_to_ram() - Migrate a virtual range to RAM (page fault handler)
773  * @vmf: Pointer to the fault information structure
774  *
775  * This function is a page fault handler used to migrate a virtual range
776  * to ram. The device memory allocation in which the device page is found is
777  * migrated in its entirety.
778  *
779  * Returns:
780  * VM_FAULT_SIGBUS on failure, 0 on success.
781  */
drm_pagemap_migrate_to_ram(struct vm_fault * vmf)782 static vm_fault_t drm_pagemap_migrate_to_ram(struct vm_fault *vmf)
783 {
784 	struct drm_pagemap_zdd *zdd = vmf->page->zone_device_data;
785 	int err;
786 
787 	err = __drm_pagemap_migrate_to_ram(vmf->vma,
788 					   zdd->device_private_page_owner,
789 					   vmf->page, vmf->address,
790 					   zdd->devmem_allocation->size);
791 
792 	return err ? VM_FAULT_SIGBUS : 0;
793 }
794 
795 static const struct dev_pagemap_ops drm_pagemap_pagemap_ops = {
796 	.folio_free = drm_pagemap_folio_free,
797 	.migrate_to_ram = drm_pagemap_migrate_to_ram,
798 };
799 
800 /**
801  * drm_pagemap_pagemap_ops_get() - Retrieve GPU SVM device page map operations
802  *
803  * Returns:
804  * Pointer to the GPU SVM device page map operations structure.
805  */
drm_pagemap_pagemap_ops_get(void)806 const struct dev_pagemap_ops *drm_pagemap_pagemap_ops_get(void)
807 {
808 	return &drm_pagemap_pagemap_ops;
809 }
810 EXPORT_SYMBOL_GPL(drm_pagemap_pagemap_ops_get);
811 
812 /**
813  * drm_pagemap_devmem_init() - Initialize a drm_pagemap device memory allocation
814  *
815  * @devmem_allocation: The struct drm_pagemap_devmem to initialize.
816  * @dev: Pointer to the device structure which device memory allocation belongs to
817  * @mm: Pointer to the mm_struct for the address space
818  * @ops: Pointer to the operations structure for GPU SVM device memory
819  * @dpagemap: The struct drm_pagemap we're allocating from.
820  * @size: Size of device memory allocation
821  * @pre_migrate_fence: Fence to wait for or pipeline behind before migration starts.
822  * (May be NULL).
823  */
drm_pagemap_devmem_init(struct drm_pagemap_devmem * devmem_allocation,struct device * dev,struct mm_struct * mm,const struct drm_pagemap_devmem_ops * ops,struct drm_pagemap * dpagemap,size_t size,struct dma_fence * pre_migrate_fence)824 void drm_pagemap_devmem_init(struct drm_pagemap_devmem *devmem_allocation,
825 			     struct device *dev, struct mm_struct *mm,
826 			     const struct drm_pagemap_devmem_ops *ops,
827 			     struct drm_pagemap *dpagemap, size_t size,
828 			     struct dma_fence *pre_migrate_fence)
829 {
830 	init_completion(&devmem_allocation->detached);
831 	devmem_allocation->dev = dev;
832 	devmem_allocation->mm = mm;
833 	devmem_allocation->ops = ops;
834 	devmem_allocation->dpagemap = dpagemap;
835 	devmem_allocation->size = size;
836 	devmem_allocation->pre_migrate_fence = pre_migrate_fence;
837 }
838 EXPORT_SYMBOL_GPL(drm_pagemap_devmem_init);
839 
840 /**
841  * drm_pagemap_page_to_dpagemap() - Return a pointer the drm_pagemap of a page
842  * @page: The struct page.
843  *
844  * Return: A pointer to the struct drm_pagemap of a device private page that
845  * was populated from the struct drm_pagemap. If the page was *not* populated
846  * from a struct drm_pagemap, the result is undefined and the function call
847  * may result in dereferencing and invalid address.
848  */
drm_pagemap_page_to_dpagemap(struct page * page)849 struct drm_pagemap *drm_pagemap_page_to_dpagemap(struct page *page)
850 {
851 	struct drm_pagemap_zdd *zdd = page->zone_device_data;
852 
853 	return zdd->devmem_allocation->dpagemap;
854 }
855 EXPORT_SYMBOL_GPL(drm_pagemap_page_to_dpagemap);
856 
857 /**
858  * drm_pagemap_populate_mm() - Populate a virtual range with device memory pages
859  * @dpagemap: Pointer to the drm_pagemap managing the device memory
860  * @start: Start of the virtual range to populate.
861  * @end: End of the virtual range to populate.
862  * @mm: Pointer to the virtual address space.
863  * @timeslice_ms: The time requested for the migrated pagemap pages to
864  * be present in @mm before being allowed to be migrated back.
865  *
866  * Attempt to populate a virtual range with device memory pages,
867  * clearing them or migrating data from the existing pages if necessary.
868  * The function is best effort only, and implementations may vary
869  * in how hard they try to satisfy the request.
870  *
871  * Return: %0 on success, negative error code on error. If the hardware
872  * device was removed / unbound the function will return %-ENODEV.
873  */
drm_pagemap_populate_mm(struct drm_pagemap * dpagemap,unsigned long start,unsigned long end,struct mm_struct * mm,unsigned long timeslice_ms)874 int drm_pagemap_populate_mm(struct drm_pagemap *dpagemap,
875 			    unsigned long start, unsigned long end,
876 			    struct mm_struct *mm,
877 			    unsigned long timeslice_ms)
878 {
879 	int err;
880 
881 	if (!mmget_not_zero(mm))
882 		return -EFAULT;
883 	mmap_read_lock(mm);
884 	err = dpagemap->ops->populate_mm(dpagemap, start, end, mm,
885 					 timeslice_ms);
886 	mmap_read_unlock(mm);
887 	mmput(mm);
888 
889 	return err;
890 }
891 EXPORT_SYMBOL(drm_pagemap_populate_mm);
892