xref: /linux/fs/xfs/xfs_zone_gc.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2023-2025 Christoph Hellwig.
4  * Copyright (c) 2024-2025, Western Digital Corporation or its affiliates.
5  */
6 #include "xfs.h"
7 #include "xfs_shared.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_inode.h"
13 #include "xfs_btree.h"
14 #include "xfs_trans.h"
15 #include "xfs_icache.h"
16 #include "xfs_rmap.h"
17 #include "xfs_rtbitmap.h"
18 #include "xfs_rtrmap_btree.h"
19 #include "xfs_zone_alloc.h"
20 #include "xfs_zone_priv.h"
21 #include "xfs_zones.h"
22 #include "xfs_trace.h"
23 
24 /*
25  * Implement Garbage Collection (GC) of partially used zoned.
26  *
27  * To support the purely sequential writes in each zone, zoned XFS needs to be
28  * able to move data remaining in a zone out of it to reset the zone to prepare
29  * for writing to it again.
30  *
31  * This is done by the GC thread implemented in this file.  To support that a
32  * number of zones (XFS_GC_ZONES) is reserved from the user visible capacity to
33  * write the garbage collected data into.
34  *
35  * Whenever the available space is below the chosen threshold, the GC thread
36  * looks for potential non-empty but not fully used zones that are worth
37  * reclaiming.  Once found the rmap for the victim zone is queried, and after
38  * a bit of sorting to reduce fragmentation, the still live extents are read
39  * into memory and written to the GC target zone, and the bmap btree of the
40  * files is updated to point to the new location.  To avoid taking the IOLOCK
41  * and MMAPLOCK for the entire GC process and thus affecting the latency of
42  * user reads and writes to the files, the GC writes are speculative and the
43  * I/O completion checks that no other writes happened for the affected regions
44  * before remapping.
45  *
46  * Once a zone does not contain any valid data, be that through GC or user
47  * block removal, it is queued for for a zone reset.  The reset operation
48  * carefully ensures that the RT device cache is flushed and all transactions
49  * referencing the rmap have been committed to disk.
50  */
51 
52 /*
53  * Size of each GC scratch pad.  This is also the upper bound for each
54  * GC I/O, which helps to keep latency down.
55  */
56 #define XFS_GC_CHUNK_SIZE	SZ_1M
57 
58 /*
59  * Scratchpad data to read GCed data into.
60  *
61  * The offset member tracks where the next allocation starts, and freed tracks
62  * the amount of space that is not used anymore.
63  */
64 #define XFS_ZONE_GC_NR_SCRATCH	2
65 struct xfs_zone_scratch {
66 	struct folio			*folio;
67 	unsigned int			offset;
68 	unsigned int			freed;
69 };
70 
71 /*
72  * Chunk that is read and written for each GC operation.
73  *
74  * Note that for writes to actual zoned devices, the chunk can be split when
75  * reaching the hardware limit.
76  */
77 struct xfs_gc_bio {
78 	struct xfs_zone_gc_data		*data;
79 
80 	/*
81 	 * Entry into the reading/writing/resetting list.  Only accessed from
82 	 * the GC thread, so no locking needed.
83 	 */
84 	struct list_head		entry;
85 
86 	/*
87 	 * State of this gc_bio.  Done means the current I/O completed.
88 	 * Set from the bio end I/O handler, read from the GC thread.
89 	 */
90 	enum {
91 		XFS_GC_BIO_NEW,
92 		XFS_GC_BIO_DONE,
93 	} state;
94 
95 	/*
96 	 * Pointer to the inode and byte range in the inode that this
97 	 * GC chunk is operating on.
98 	 */
99 	struct xfs_inode		*ip;
100 	loff_t				offset;
101 	unsigned int			len;
102 
103 	/*
104 	 * Existing startblock (in the zone to be freed) and newly assigned
105 	 * daddr in the zone GCed into.
106 	 */
107 	xfs_fsblock_t			old_startblock;
108 	xfs_daddr_t			new_daddr;
109 	struct xfs_zone_scratch		*scratch;
110 
111 	/* Are we writing to a sequential write required zone? */
112 	bool				is_seq;
113 
114 	/* Open Zone being written to */
115 	struct xfs_open_zone		*oz;
116 
117 	struct xfs_rtgroup		*victim_rtg;
118 
119 	/* Bio used for reads and writes, including the bvec used by it */
120 	struct bio			bio;	/* must be last */
121 };
122 
123 #define XFS_ZONE_GC_RECS		1024
124 
125 /* iterator, needs to be reinitialized for each victim zone */
126 struct xfs_zone_gc_iter {
127 	struct xfs_rtgroup		*victim_rtg;
128 	unsigned int			rec_count;
129 	unsigned int			rec_idx;
130 	xfs_agblock_t			next_startblock;
131 	struct xfs_rmap_irec		*recs;
132 };
133 
134 /*
135  * Per-mount GC state.
136  */
137 struct xfs_zone_gc_data {
138 	struct xfs_mount		*mp;
139 
140 	/* bioset used to allocate the gc_bios */
141 	struct bio_set			bio_set;
142 
143 	/*
144 	 * Scratchpad used, and index to indicated which one is used.
145 	 */
146 	struct xfs_zone_scratch		scratch[XFS_ZONE_GC_NR_SCRATCH];
147 	unsigned int			scratch_idx;
148 
149 	/*
150 	 * List of bios currently being read, written and reset.
151 	 * These lists are only accessed by the GC thread itself, and must only
152 	 * be processed in order.
153 	 */
154 	struct list_head		reading;
155 	struct list_head		writing;
156 	struct list_head		resetting;
157 
158 	/*
159 	 * Iterator for the victim zone.
160 	 */
161 	struct xfs_zone_gc_iter		iter;
162 };
163 
164 /*
165  * We aim to keep enough zones free in stock to fully use the open zone limit
166  * for data placement purposes. Additionally, the m_zonegc_low_space tunable
167  * can be set to make sure a fraction of the unused blocks are available for
168  * writing.
169  */
170 bool
xfs_zoned_need_gc(struct xfs_mount * mp)171 xfs_zoned_need_gc(
172 	struct xfs_mount	*mp)
173 {
174 	s64			available, free, threshold;
175 	s32			remainder;
176 
177 	if (!xfs_zoned_have_reclaimable(mp->m_zone_info))
178 		return false;
179 
180 	available = xfs_estimate_freecounter(mp, XC_FREE_RTAVAILABLE);
181 
182 	if (available <
183 	    xfs_rtgs_to_rfsbs(mp, mp->m_max_open_zones - XFS_OPEN_GC_ZONES))
184 		return true;
185 
186 	free = xfs_estimate_freecounter(mp, XC_FREE_RTEXTENTS);
187 
188 	threshold = div_s64_rem(free, 100, &remainder);
189 	threshold = threshold * mp->m_zonegc_low_space +
190 		    remainder * div_s64(mp->m_zonegc_low_space, 100);
191 
192 	if (available < threshold)
193 		return true;
194 
195 	return false;
196 }
197 
198 static struct xfs_zone_gc_data *
xfs_zone_gc_data_alloc(struct xfs_mount * mp)199 xfs_zone_gc_data_alloc(
200 	struct xfs_mount	*mp)
201 {
202 	struct xfs_zone_gc_data	*data;
203 	int			i;
204 
205 	data = kzalloc(sizeof(*data), GFP_KERNEL);
206 	if (!data)
207 		return NULL;
208 	data->iter.recs = kcalloc(XFS_ZONE_GC_RECS, sizeof(*data->iter.recs),
209 			GFP_KERNEL);
210 	if (!data->iter.recs)
211 		goto out_free_data;
212 
213 	/*
214 	 * We actually only need a single bio_vec.  It would be nice to have
215 	 * a flag that only allocates the inline bvecs and not the separate
216 	 * bvec pool.
217 	 */
218 	if (bioset_init(&data->bio_set, 16, offsetof(struct xfs_gc_bio, bio),
219 			BIOSET_NEED_BVECS))
220 		goto out_free_recs;
221 	for (i = 0; i < XFS_ZONE_GC_NR_SCRATCH; i++) {
222 		data->scratch[i].folio =
223 			folio_alloc(GFP_KERNEL, get_order(XFS_GC_CHUNK_SIZE));
224 		if (!data->scratch[i].folio)
225 			goto out_free_scratch;
226 	}
227 	INIT_LIST_HEAD(&data->reading);
228 	INIT_LIST_HEAD(&data->writing);
229 	INIT_LIST_HEAD(&data->resetting);
230 	data->mp = mp;
231 	return data;
232 
233 out_free_scratch:
234 	while (--i >= 0)
235 		folio_put(data->scratch[i].folio);
236 	bioset_exit(&data->bio_set);
237 out_free_recs:
238 	kfree(data->iter.recs);
239 out_free_data:
240 	kfree(data);
241 	return NULL;
242 }
243 
244 static void
xfs_zone_gc_data_free(struct xfs_zone_gc_data * data)245 xfs_zone_gc_data_free(
246 	struct xfs_zone_gc_data	*data)
247 {
248 	int			i;
249 
250 	for (i = 0; i < XFS_ZONE_GC_NR_SCRATCH; i++)
251 		folio_put(data->scratch[i].folio);
252 	bioset_exit(&data->bio_set);
253 	kfree(data->iter.recs);
254 	kfree(data);
255 }
256 
257 static void
xfs_zone_gc_iter_init(struct xfs_zone_gc_iter * iter,struct xfs_rtgroup * victim_rtg)258 xfs_zone_gc_iter_init(
259 	struct xfs_zone_gc_iter	*iter,
260 	struct xfs_rtgroup	*victim_rtg)
261 
262 {
263 	iter->next_startblock = 0;
264 	iter->rec_count = 0;
265 	iter->rec_idx = 0;
266 	iter->victim_rtg = victim_rtg;
267 	atomic_inc(&victim_rtg->rtg_gccount);
268 }
269 
270 /*
271  * Query the rmap of the victim zone to gather the records to evacuate.
272  */
273 static int
xfs_zone_gc_query_cb(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * irec,void * private)274 xfs_zone_gc_query_cb(
275 	struct xfs_btree_cur	*cur,
276 	const struct xfs_rmap_irec *irec,
277 	void			*private)
278 {
279 	struct xfs_zone_gc_iter	*iter = private;
280 
281 	ASSERT(!XFS_RMAP_NON_INODE_OWNER(irec->rm_owner));
282 	ASSERT(!xfs_is_sb_inum(cur->bc_mp, irec->rm_owner));
283 	ASSERT(!(irec->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK)));
284 
285 	iter->recs[iter->rec_count] = *irec;
286 	if (++iter->rec_count == XFS_ZONE_GC_RECS) {
287 		iter->next_startblock =
288 			irec->rm_startblock + irec->rm_blockcount;
289 		return 1;
290 	}
291 	return 0;
292 }
293 
294 static int
xfs_zone_gc_rmap_rec_cmp(const void * a,const void * b)295 xfs_zone_gc_rmap_rec_cmp(
296 	const void			*a,
297 	const void			*b)
298 {
299 	const struct xfs_rmap_irec	*reca = a;
300 	const struct xfs_rmap_irec	*recb = b;
301 	int				diff;
302 
303 	diff = cmp_int(reca->rm_owner, recb->rm_owner);
304 	if (diff)
305 		return diff;
306 	return cmp_int(reca->rm_offset, recb->rm_offset);
307 }
308 
309 static int
xfs_zone_gc_query(struct xfs_mount * mp,struct xfs_zone_gc_iter * iter)310 xfs_zone_gc_query(
311 	struct xfs_mount	*mp,
312 	struct xfs_zone_gc_iter	*iter)
313 {
314 	struct xfs_rtgroup	*rtg = iter->victim_rtg;
315 	struct xfs_rmap_irec	ri_low = { };
316 	struct xfs_rmap_irec	ri_high;
317 	struct xfs_btree_cur	*cur;
318 	struct xfs_trans	*tp;
319 	int			error;
320 
321 	ASSERT(iter->next_startblock <= rtg_blocks(rtg));
322 	if (iter->next_startblock == rtg_blocks(rtg))
323 		goto done;
324 
325 	ASSERT(iter->next_startblock < rtg_blocks(rtg));
326 	ri_low.rm_startblock = iter->next_startblock;
327 	memset(&ri_high, 0xFF, sizeof(ri_high));
328 
329 	iter->rec_idx = 0;
330 	iter->rec_count = 0;
331 
332 	tp = xfs_trans_alloc_empty(mp);
333 	xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
334 	cur = xfs_rtrmapbt_init_cursor(tp, rtg);
335 	error = xfs_rmap_query_range(cur, &ri_low, &ri_high,
336 			xfs_zone_gc_query_cb, iter);
337 	xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_RMAP);
338 	xfs_btree_del_cursor(cur, error < 0 ? error : 0);
339 	xfs_trans_cancel(tp);
340 
341 	if (error < 0)
342 		return error;
343 
344 	/*
345 	 * Sort the rmap records by inode number and increasing offset to
346 	 * defragment the mappings.
347 	 *
348 	 * This could be further enhanced by an even bigger look ahead window,
349 	 * but that's better left until we have better detection of changes to
350 	 * inode mapping to avoid the potential of GCing already dead data.
351 	 */
352 	sort(iter->recs, iter->rec_count, sizeof(iter->recs[0]),
353 			xfs_zone_gc_rmap_rec_cmp, NULL);
354 
355 	if (error == 0) {
356 		/*
357 		 * We finished iterating through the zone.
358 		 */
359 		iter->next_startblock = rtg_blocks(rtg);
360 		if (iter->rec_count == 0)
361 			goto done;
362 	}
363 
364 	return 0;
365 done:
366 	atomic_dec(&iter->victim_rtg->rtg_gccount);
367 	xfs_rtgroup_rele(iter->victim_rtg);
368 	iter->victim_rtg = NULL;
369 	return 0;
370 }
371 
372 static bool
xfs_zone_gc_iter_next(struct xfs_mount * mp,struct xfs_zone_gc_iter * iter,struct xfs_rmap_irec * chunk_rec,struct xfs_inode ** ipp)373 xfs_zone_gc_iter_next(
374 	struct xfs_mount	*mp,
375 	struct xfs_zone_gc_iter	*iter,
376 	struct xfs_rmap_irec	*chunk_rec,
377 	struct xfs_inode	**ipp)
378 {
379 	struct xfs_rmap_irec	*irec;
380 	int			error;
381 
382 	if (!iter->victim_rtg)
383 		return false;
384 
385 retry:
386 	if (iter->rec_idx == iter->rec_count) {
387 		error = xfs_zone_gc_query(mp, iter);
388 		if (error)
389 			goto fail;
390 		if (!iter->victim_rtg)
391 			return false;
392 	}
393 
394 	irec = &iter->recs[iter->rec_idx];
395 	error = xfs_iget(mp, NULL, irec->rm_owner,
396 			XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE, 0, ipp);
397 	if (error) {
398 		/*
399 		 * If the inode was already deleted, skip over it.
400 		 */
401 		if (error == -ENOENT) {
402 			iter->rec_idx++;
403 			goto retry;
404 		}
405 		goto fail;
406 	}
407 
408 	if (!S_ISREG(VFS_I(*ipp)->i_mode) || !XFS_IS_REALTIME_INODE(*ipp)) {
409 		iter->rec_idx++;
410 		xfs_irele(*ipp);
411 		goto retry;
412 	}
413 
414 	*chunk_rec = *irec;
415 	return true;
416 
417 fail:
418 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
419 	return false;
420 }
421 
422 static void
xfs_zone_gc_iter_advance(struct xfs_zone_gc_iter * iter,xfs_extlen_t count_fsb)423 xfs_zone_gc_iter_advance(
424 	struct xfs_zone_gc_iter	*iter,
425 	xfs_extlen_t		count_fsb)
426 {
427 	struct xfs_rmap_irec	*irec = &iter->recs[iter->rec_idx];
428 
429 	irec->rm_offset += count_fsb;
430 	irec->rm_startblock += count_fsb;
431 	irec->rm_blockcount -= count_fsb;
432 	if (!irec->rm_blockcount)
433 		iter->rec_idx++;
434 }
435 
436 static struct xfs_rtgroup *
xfs_zone_gc_pick_victim_from(struct xfs_mount * mp,uint32_t bucket)437 xfs_zone_gc_pick_victim_from(
438 	struct xfs_mount	*mp,
439 	uint32_t		bucket)
440 {
441 	struct xfs_zone_info	*zi = mp->m_zone_info;
442 	uint32_t		victim_used = U32_MAX;
443 	struct xfs_rtgroup	*victim_rtg = NULL;
444 	uint32_t		bit;
445 
446 	if (!zi->zi_used_bucket_entries[bucket])
447 		return NULL;
448 
449 	for_each_set_bit(bit, zi->zi_used_bucket_bitmap[bucket],
450 			mp->m_sb.sb_rgcount) {
451 		struct xfs_rtgroup *rtg = xfs_rtgroup_grab(mp, bit);
452 
453 		if (!rtg)
454 			continue;
455 
456 		/*
457 		 * If the zone is already undergoing GC, don't pick it again.
458 		 *
459 		 * This prevents us from picking one of the zones for which we
460 		 * already submitted GC I/O, but for which the remapping hasn't
461 		 * concluded yet.  This won't cause data corruption, but
462 		 * increases write amplification and slows down GC, so this is
463 		 * a bad thing.
464 		 */
465 		if (atomic_read(&rtg->rtg_gccount)) {
466 			xfs_rtgroup_rele(rtg);
467 			continue;
468 		}
469 
470 		/* skip zones that are just waiting for a reset */
471 		if (rtg_rmap(rtg)->i_used_blocks == 0 ||
472 		    rtg_rmap(rtg)->i_used_blocks >= victim_used) {
473 			xfs_rtgroup_rele(rtg);
474 			continue;
475 		}
476 
477 		if (victim_rtg)
478 			xfs_rtgroup_rele(victim_rtg);
479 		victim_rtg = rtg;
480 		victim_used = rtg_rmap(rtg)->i_used_blocks;
481 
482 		/*
483 		 * Any zone that is less than 1 percent used is fair game for
484 		 * instant reclaim. All of these zones are in the last
485 		 * bucket, so avoid the expensive division for the zones
486 		 * in the other buckets.
487 		 */
488 		if (bucket == 0 &&
489 		    rtg_rmap(rtg)->i_used_blocks < rtg_blocks(rtg) / 100)
490 			break;
491 	}
492 
493 	return victim_rtg;
494 }
495 
496 /*
497  * Iterate through all zones marked as reclaimable and find a candidate to
498  * reclaim.
499  */
500 static bool
xfs_zone_gc_select_victim(struct xfs_zone_gc_data * data)501 xfs_zone_gc_select_victim(
502 	struct xfs_zone_gc_data	*data)
503 {
504 	struct xfs_zone_gc_iter	*iter = &data->iter;
505 	struct xfs_mount	*mp = data->mp;
506 	struct xfs_zone_info	*zi = mp->m_zone_info;
507 	struct xfs_rtgroup	*victim_rtg = NULL;
508 	unsigned int		bucket;
509 
510 	spin_lock(&zi->zi_used_buckets_lock);
511 	for (bucket = 0; bucket < XFS_ZONE_USED_BUCKETS; bucket++) {
512 		victim_rtg = xfs_zone_gc_pick_victim_from(mp, bucket);
513 		if (victim_rtg)
514 			break;
515 	}
516 	spin_unlock(&zi->zi_used_buckets_lock);
517 
518 	if (!victim_rtg)
519 		return false;
520 
521 	trace_xfs_zone_gc_select_victim(victim_rtg, bucket);
522 	xfs_zone_gc_iter_init(iter, victim_rtg);
523 	return true;
524 }
525 
526 static struct xfs_open_zone *
xfs_zone_gc_steal_open(struct xfs_zone_info * zi)527 xfs_zone_gc_steal_open(
528 	struct xfs_zone_info	*zi)
529 {
530 	struct xfs_open_zone	*oz, *found = NULL;
531 
532 	spin_lock(&zi->zi_open_zones_lock);
533 	list_for_each_entry(oz, &zi->zi_open_zones, oz_entry) {
534 		if (!found || oz->oz_allocated < found->oz_allocated)
535 			found = oz;
536 	}
537 
538 	if (found) {
539 		found->oz_is_gc = true;
540 		list_del_init(&found->oz_entry);
541 		zi->zi_nr_open_zones--;
542 	}
543 
544 	spin_unlock(&zi->zi_open_zones_lock);
545 	return found;
546 }
547 
548 static struct xfs_open_zone *
xfs_zone_gc_select_target(struct xfs_mount * mp)549 xfs_zone_gc_select_target(
550 	struct xfs_mount	*mp)
551 {
552 	struct xfs_zone_info	*zi = mp->m_zone_info;
553 	struct xfs_open_zone	*oz = zi->zi_open_gc_zone;
554 
555 	/*
556 	 * We need to wait for pending writes to finish.
557 	 */
558 	if (oz && oz->oz_written < rtg_blocks(oz->oz_rtg))
559 		return NULL;
560 
561 	ASSERT(zi->zi_nr_open_zones <=
562 		mp->m_max_open_zones - XFS_OPEN_GC_ZONES);
563 	oz = xfs_open_zone(mp, WRITE_LIFE_NOT_SET, true);
564 	if (oz)
565 		trace_xfs_zone_gc_target_opened(oz->oz_rtg);
566 	spin_lock(&zi->zi_open_zones_lock);
567 	zi->zi_open_gc_zone = oz;
568 	spin_unlock(&zi->zi_open_zones_lock);
569 	return oz;
570 }
571 
572 /*
573  * Ensure we have a valid open zone to write the GC data to.
574  *
575  * If the current target zone has space keep writing to it, else first wait for
576  * all pending writes and then pick a new one.
577  */
578 static struct xfs_open_zone *
xfs_zone_gc_ensure_target(struct xfs_mount * mp)579 xfs_zone_gc_ensure_target(
580 	struct xfs_mount	*mp)
581 {
582 	struct xfs_open_zone	*oz = mp->m_zone_info->zi_open_gc_zone;
583 
584 	if (!oz || oz->oz_allocated == rtg_blocks(oz->oz_rtg))
585 		return xfs_zone_gc_select_target(mp);
586 	return oz;
587 }
588 
589 static unsigned int
xfs_zone_gc_scratch_available(struct xfs_zone_gc_data * data)590 xfs_zone_gc_scratch_available(
591 	struct xfs_zone_gc_data	*data)
592 {
593 	return XFS_GC_CHUNK_SIZE - data->scratch[data->scratch_idx].offset;
594 }
595 
596 static bool
xfs_zone_gc_space_available(struct xfs_zone_gc_data * data)597 xfs_zone_gc_space_available(
598 	struct xfs_zone_gc_data	*data)
599 {
600 	struct xfs_open_zone	*oz;
601 
602 	oz = xfs_zone_gc_ensure_target(data->mp);
603 	if (!oz)
604 		return false;
605 	return oz->oz_allocated < rtg_blocks(oz->oz_rtg) &&
606 		xfs_zone_gc_scratch_available(data);
607 }
608 
609 static void
xfs_zone_gc_end_io(struct bio * bio)610 xfs_zone_gc_end_io(
611 	struct bio		*bio)
612 {
613 	struct xfs_gc_bio	*chunk =
614 		container_of(bio, struct xfs_gc_bio, bio);
615 	struct xfs_zone_gc_data	*data = chunk->data;
616 
617 	WRITE_ONCE(chunk->state, XFS_GC_BIO_DONE);
618 	wake_up_process(data->mp->m_zone_info->zi_gc_thread);
619 }
620 
621 static struct xfs_open_zone *
xfs_zone_gc_alloc_blocks(struct xfs_zone_gc_data * data,xfs_extlen_t * count_fsb,xfs_daddr_t * daddr,bool * is_seq)622 xfs_zone_gc_alloc_blocks(
623 	struct xfs_zone_gc_data	*data,
624 	xfs_extlen_t		*count_fsb,
625 	xfs_daddr_t		*daddr,
626 	bool			*is_seq)
627 {
628 	struct xfs_mount	*mp = data->mp;
629 	struct xfs_open_zone	*oz;
630 
631 	oz = xfs_zone_gc_ensure_target(mp);
632 	if (!oz)
633 		return NULL;
634 
635 	*count_fsb = min(*count_fsb,
636 		XFS_B_TO_FSB(mp, xfs_zone_gc_scratch_available(data)));
637 
638 	/*
639 	 * Directly allocate GC blocks from the reserved pool.
640 	 *
641 	 * If we'd take them from the normal pool we could be stealing blocks
642 	 * from a regular writer, which would then have to wait for GC and
643 	 * deadlock.
644 	 */
645 	spin_lock(&mp->m_sb_lock);
646 	*count_fsb = min(*count_fsb,
647 			rtg_blocks(oz->oz_rtg) - oz->oz_allocated);
648 	*count_fsb = min3(*count_fsb,
649 			mp->m_free[XC_FREE_RTEXTENTS].res_avail,
650 			mp->m_free[XC_FREE_RTAVAILABLE].res_avail);
651 	mp->m_free[XC_FREE_RTEXTENTS].res_avail -= *count_fsb;
652 	mp->m_free[XC_FREE_RTAVAILABLE].res_avail -= *count_fsb;
653 	spin_unlock(&mp->m_sb_lock);
654 
655 	if (!*count_fsb)
656 		return NULL;
657 
658 	*daddr = xfs_gbno_to_daddr(&oz->oz_rtg->rtg_group, 0);
659 	*is_seq = bdev_zone_is_seq(mp->m_rtdev_targp->bt_bdev, *daddr);
660 	if (!*is_seq)
661 		*daddr += XFS_FSB_TO_BB(mp, oz->oz_allocated);
662 	oz->oz_allocated += *count_fsb;
663 	atomic_inc(&oz->oz_ref);
664 	return oz;
665 }
666 
667 static bool
xfs_zone_gc_start_chunk(struct xfs_zone_gc_data * data)668 xfs_zone_gc_start_chunk(
669 	struct xfs_zone_gc_data	*data)
670 {
671 	struct xfs_zone_gc_iter	*iter = &data->iter;
672 	struct xfs_mount	*mp = data->mp;
673 	struct block_device	*bdev = mp->m_rtdev_targp->bt_bdev;
674 	struct xfs_open_zone	*oz;
675 	struct xfs_rmap_irec	irec;
676 	struct xfs_gc_bio	*chunk;
677 	struct xfs_inode	*ip;
678 	struct bio		*bio;
679 	xfs_daddr_t		daddr;
680 	bool			is_seq;
681 
682 	if (xfs_is_shutdown(mp))
683 		return false;
684 
685 	if (!xfs_zone_gc_iter_next(mp, iter, &irec, &ip))
686 		return false;
687 	oz = xfs_zone_gc_alloc_blocks(data, &irec.rm_blockcount, &daddr,
688 			&is_seq);
689 	if (!oz) {
690 		xfs_irele(ip);
691 		return false;
692 	}
693 
694 	bio = bio_alloc_bioset(bdev, 1, REQ_OP_READ, GFP_NOFS, &data->bio_set);
695 
696 	chunk = container_of(bio, struct xfs_gc_bio, bio);
697 	chunk->ip = ip;
698 	chunk->offset = XFS_FSB_TO_B(mp, irec.rm_offset);
699 	chunk->len = XFS_FSB_TO_B(mp, irec.rm_blockcount);
700 	chunk->old_startblock =
701 		xfs_rgbno_to_rtb(iter->victim_rtg, irec.rm_startblock);
702 	chunk->new_daddr = daddr;
703 	chunk->is_seq = is_seq;
704 	chunk->scratch = &data->scratch[data->scratch_idx];
705 	chunk->data = data;
706 	chunk->oz = oz;
707 	chunk->victim_rtg = iter->victim_rtg;
708 	atomic_inc(&chunk->victim_rtg->rtg_group.xg_active_ref);
709 	atomic_inc(&chunk->victim_rtg->rtg_gccount);
710 
711 	bio->bi_iter.bi_sector = xfs_rtb_to_daddr(mp, chunk->old_startblock);
712 	bio->bi_end_io = xfs_zone_gc_end_io;
713 	bio_add_folio_nofail(bio, chunk->scratch->folio, chunk->len,
714 			chunk->scratch->offset);
715 	chunk->scratch->offset += chunk->len;
716 	if (chunk->scratch->offset == XFS_GC_CHUNK_SIZE) {
717 		data->scratch_idx =
718 			(data->scratch_idx + 1) % XFS_ZONE_GC_NR_SCRATCH;
719 	}
720 	WRITE_ONCE(chunk->state, XFS_GC_BIO_NEW);
721 	list_add_tail(&chunk->entry, &data->reading);
722 	xfs_zone_gc_iter_advance(iter, irec.rm_blockcount);
723 
724 	submit_bio(bio);
725 	return true;
726 }
727 
728 static void
xfs_zone_gc_free_chunk(struct xfs_gc_bio * chunk)729 xfs_zone_gc_free_chunk(
730 	struct xfs_gc_bio	*chunk)
731 {
732 	atomic_dec(&chunk->victim_rtg->rtg_gccount);
733 	xfs_rtgroup_rele(chunk->victim_rtg);
734 	list_del(&chunk->entry);
735 	xfs_open_zone_put(chunk->oz);
736 	xfs_irele(chunk->ip);
737 	bio_put(&chunk->bio);
738 }
739 
740 static void
xfs_zone_gc_submit_write(struct xfs_zone_gc_data * data,struct xfs_gc_bio * chunk)741 xfs_zone_gc_submit_write(
742 	struct xfs_zone_gc_data	*data,
743 	struct xfs_gc_bio	*chunk)
744 {
745 	if (chunk->is_seq) {
746 		chunk->bio.bi_opf &= ~REQ_OP_WRITE;
747 		chunk->bio.bi_opf |= REQ_OP_ZONE_APPEND;
748 	}
749 	chunk->bio.bi_iter.bi_sector = chunk->new_daddr;
750 	chunk->bio.bi_end_io = xfs_zone_gc_end_io;
751 	submit_bio(&chunk->bio);
752 }
753 
754 static struct xfs_gc_bio *
xfs_zone_gc_split_write(struct xfs_zone_gc_data * data,struct xfs_gc_bio * chunk)755 xfs_zone_gc_split_write(
756 	struct xfs_zone_gc_data	*data,
757 	struct xfs_gc_bio	*chunk)
758 {
759 	struct queue_limits	*lim =
760 		&bdev_get_queue(chunk->bio.bi_bdev)->limits;
761 	struct xfs_gc_bio	*split_chunk;
762 	int			split_sectors;
763 	unsigned int		split_len;
764 	struct bio		*split;
765 	unsigned int		nsegs;
766 
767 	if (!chunk->is_seq)
768 		return NULL;
769 
770 	split_sectors = bio_split_rw_at(&chunk->bio, lim, &nsegs,
771 			lim->max_zone_append_sectors << SECTOR_SHIFT);
772 	if (!split_sectors)
773 		return NULL;
774 
775 	/* ensure the split chunk is still block size aligned */
776 	split_sectors = ALIGN_DOWN(split_sectors << SECTOR_SHIFT,
777 			data->mp->m_sb.sb_blocksize) >> SECTOR_SHIFT;
778 	split_len = split_sectors << SECTOR_SHIFT;
779 
780 	split = bio_split(&chunk->bio, split_sectors, GFP_NOFS, &data->bio_set);
781 	split_chunk = container_of(split, struct xfs_gc_bio, bio);
782 	split_chunk->data = data;
783 	ihold(VFS_I(chunk->ip));
784 	split_chunk->ip = chunk->ip;
785 	split_chunk->is_seq = chunk->is_seq;
786 	split_chunk->scratch = chunk->scratch;
787 	split_chunk->offset = chunk->offset;
788 	split_chunk->len = split_len;
789 	split_chunk->old_startblock = chunk->old_startblock;
790 	split_chunk->new_daddr = chunk->new_daddr;
791 	split_chunk->oz = chunk->oz;
792 	atomic_inc(&chunk->oz->oz_ref);
793 
794 	split_chunk->victim_rtg = chunk->victim_rtg;
795 	atomic_inc(&chunk->victim_rtg->rtg_group.xg_active_ref);
796 	atomic_inc(&chunk->victim_rtg->rtg_gccount);
797 
798 	chunk->offset += split_len;
799 	chunk->len -= split_len;
800 	chunk->old_startblock += XFS_B_TO_FSB(data->mp, split_len);
801 
802 	/* add right before the original chunk */
803 	WRITE_ONCE(split_chunk->state, XFS_GC_BIO_NEW);
804 	list_add_tail(&split_chunk->entry, &chunk->entry);
805 	return split_chunk;
806 }
807 
808 static void
xfs_zone_gc_write_chunk(struct xfs_gc_bio * chunk)809 xfs_zone_gc_write_chunk(
810 	struct xfs_gc_bio	*chunk)
811 {
812 	struct xfs_zone_gc_data	*data = chunk->data;
813 	struct xfs_mount	*mp = chunk->ip->i_mount;
814 	phys_addr_t		bvec_paddr =
815 		bvec_phys(bio_first_bvec_all(&chunk->bio));
816 	struct xfs_gc_bio	*split_chunk;
817 
818 	if (chunk->bio.bi_status)
819 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
820 	if (xfs_is_shutdown(mp)) {
821 		xfs_zone_gc_free_chunk(chunk);
822 		return;
823 	}
824 
825 	WRITE_ONCE(chunk->state, XFS_GC_BIO_NEW);
826 	list_move_tail(&chunk->entry, &data->writing);
827 
828 	bio_reset(&chunk->bio, mp->m_rtdev_targp->bt_bdev, REQ_OP_WRITE);
829 	bio_add_folio_nofail(&chunk->bio, chunk->scratch->folio, chunk->len,
830 			offset_in_folio(chunk->scratch->folio, bvec_paddr));
831 
832 	while ((split_chunk = xfs_zone_gc_split_write(data, chunk)))
833 		xfs_zone_gc_submit_write(data, split_chunk);
834 	xfs_zone_gc_submit_write(data, chunk);
835 }
836 
837 static void
xfs_zone_gc_finish_chunk(struct xfs_gc_bio * chunk)838 xfs_zone_gc_finish_chunk(
839 	struct xfs_gc_bio	*chunk)
840 {
841 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
842 	struct xfs_inode	*ip = chunk->ip;
843 	struct xfs_mount	*mp = ip->i_mount;
844 	int			error;
845 
846 	if (chunk->bio.bi_status)
847 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
848 	if (xfs_is_shutdown(mp)) {
849 		xfs_zone_gc_free_chunk(chunk);
850 		return;
851 	}
852 
853 	chunk->scratch->freed += chunk->len;
854 	if (chunk->scratch->freed == chunk->scratch->offset) {
855 		chunk->scratch->offset = 0;
856 		chunk->scratch->freed = 0;
857 	}
858 
859 	/*
860 	 * Cycle through the iolock and wait for direct I/O and layouts to
861 	 * ensure no one is reading from the old mapping before it goes away.
862 	 *
863 	 * Note that xfs_zoned_end_io() below checks that no other writer raced
864 	 * with us to update the mapping by checking that the old startblock
865 	 * didn't change.
866 	 */
867 	xfs_ilock(ip, iolock);
868 	error = xfs_break_layouts(VFS_I(ip), &iolock, BREAK_UNMAP);
869 	if (!error)
870 		inode_dio_wait(VFS_I(ip));
871 	xfs_iunlock(ip, iolock);
872 	if (error)
873 		goto free;
874 
875 	if (chunk->is_seq)
876 		chunk->new_daddr = chunk->bio.bi_iter.bi_sector;
877 	error = xfs_zoned_end_io(ip, chunk->offset, chunk->len,
878 			chunk->new_daddr, chunk->oz, chunk->old_startblock);
879 free:
880 	if (error)
881 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
882 	xfs_zone_gc_free_chunk(chunk);
883 }
884 
885 static void
xfs_zone_gc_finish_reset(struct xfs_gc_bio * chunk)886 xfs_zone_gc_finish_reset(
887 	struct xfs_gc_bio	*chunk)
888 {
889 	struct xfs_rtgroup	*rtg = chunk->bio.bi_private;
890 	struct xfs_mount	*mp = rtg_mount(rtg);
891 	struct xfs_zone_info	*zi = mp->m_zone_info;
892 
893 	if (chunk->bio.bi_status) {
894 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
895 		goto out;
896 	}
897 
898 	xfs_group_set_mark(&rtg->rtg_group, XFS_RTG_FREE);
899 	atomic_inc(&zi->zi_nr_free_zones);
900 
901 	xfs_zoned_add_available(mp, rtg_blocks(rtg));
902 
903 	wake_up_all(&zi->zi_zone_wait);
904 out:
905 	list_del(&chunk->entry);
906 	bio_put(&chunk->bio);
907 }
908 
909 static bool
xfs_zone_gc_prepare_reset(struct bio * bio,struct xfs_rtgroup * rtg)910 xfs_zone_gc_prepare_reset(
911 	struct bio		*bio,
912 	struct xfs_rtgroup	*rtg)
913 {
914 	trace_xfs_zone_reset(rtg);
915 
916 	ASSERT(rtg_rmap(rtg)->i_used_blocks == 0);
917 	bio->bi_iter.bi_sector = xfs_gbno_to_daddr(&rtg->rtg_group, 0);
918 	if (!bdev_zone_is_seq(bio->bi_bdev, bio->bi_iter.bi_sector)) {
919 		if (!bdev_max_discard_sectors(bio->bi_bdev))
920 			return false;
921 		bio->bi_opf = REQ_OP_DISCARD | REQ_SYNC;
922 		bio->bi_iter.bi_size =
923 			XFS_FSB_TO_B(rtg_mount(rtg), rtg_blocks(rtg));
924 	}
925 
926 	return true;
927 }
928 
929 int
xfs_zone_gc_reset_sync(struct xfs_rtgroup * rtg)930 xfs_zone_gc_reset_sync(
931 	struct xfs_rtgroup	*rtg)
932 {
933 	int			error = 0;
934 	struct bio		bio;
935 
936 	bio_init(&bio, rtg_mount(rtg)->m_rtdev_targp->bt_bdev, NULL, 0,
937 			REQ_OP_ZONE_RESET);
938 	if (xfs_zone_gc_prepare_reset(&bio, rtg))
939 		error = submit_bio_wait(&bio);
940 	bio_uninit(&bio);
941 
942 	return error;
943 }
944 
945 static void
xfs_zone_gc_reset_zones(struct xfs_zone_gc_data * data,struct xfs_group * reset_list)946 xfs_zone_gc_reset_zones(
947 	struct xfs_zone_gc_data	*data,
948 	struct xfs_group	*reset_list)
949 {
950 	struct xfs_group	*next = reset_list;
951 
952 	if (blkdev_issue_flush(data->mp->m_rtdev_targp->bt_bdev) < 0) {
953 		xfs_force_shutdown(data->mp, SHUTDOWN_META_IO_ERROR);
954 		return;
955 	}
956 
957 	do {
958 		struct xfs_rtgroup	*rtg = to_rtg(next);
959 		struct xfs_gc_bio	*chunk;
960 		struct bio		*bio;
961 
962 		xfs_log_force_inode(rtg_rmap(rtg));
963 
964 		next = rtg_group(rtg)->xg_next_reset;
965 		rtg_group(rtg)->xg_next_reset = NULL;
966 
967 		bio = bio_alloc_bioset(rtg_mount(rtg)->m_rtdev_targp->bt_bdev,
968 				0, REQ_OP_ZONE_RESET, GFP_NOFS, &data->bio_set);
969 		bio->bi_private = rtg;
970 		bio->bi_end_io = xfs_zone_gc_end_io;
971 
972 		chunk = container_of(bio, struct xfs_gc_bio, bio);
973 		chunk->data = data;
974 		WRITE_ONCE(chunk->state, XFS_GC_BIO_NEW);
975 		list_add_tail(&chunk->entry, &data->resetting);
976 
977 		/*
978 		 * Also use the bio to drive the state machine when neither
979 		 * zone reset nor discard is supported to keep things simple.
980 		 */
981 		if (xfs_zone_gc_prepare_reset(bio, rtg))
982 			submit_bio(bio);
983 		else
984 			bio_endio(bio);
985 	} while (next);
986 }
987 
988 static bool
xfs_zone_gc_should_start_new_work(struct xfs_zone_gc_data * data)989 xfs_zone_gc_should_start_new_work(
990 	struct xfs_zone_gc_data	*data)
991 {
992 	if (xfs_is_shutdown(data->mp))
993 		return false;
994 	if (!xfs_zone_gc_space_available(data))
995 		return false;
996 
997 	if (!data->iter.victim_rtg) {
998 		if (kthread_should_stop() || kthread_should_park())
999 			return false;
1000 		if (!xfs_zoned_need_gc(data->mp))
1001 			return false;
1002 		if (!xfs_zone_gc_select_victim(data))
1003 			return false;
1004 	}
1005 
1006 	return true;
1007 }
1008 
1009 /*
1010  * Handle the work to read and write data for GC and to reset the zones,
1011  * including handling all completions.
1012  *
1013  * Note that the order of the chunks is preserved so that we don't undo the
1014  * optimal order established by xfs_zone_gc_query().
1015  */
1016 static void
xfs_zone_gc_handle_work(struct xfs_zone_gc_data * data)1017 xfs_zone_gc_handle_work(
1018 	struct xfs_zone_gc_data	*data)
1019 {
1020 	struct xfs_zone_info	*zi = data->mp->m_zone_info;
1021 	struct xfs_gc_bio	*chunk, *next;
1022 	struct xfs_group	*reset_list;
1023 	struct blk_plug		plug;
1024 
1025 	spin_lock(&zi->zi_reset_list_lock);
1026 	reset_list = zi->zi_reset_list;
1027 	zi->zi_reset_list = NULL;
1028 	spin_unlock(&zi->zi_reset_list_lock);
1029 
1030 	if (reset_list) {
1031 		set_current_state(TASK_RUNNING);
1032 		xfs_zone_gc_reset_zones(data, reset_list);
1033 	}
1034 
1035 	list_for_each_entry_safe(chunk, next, &data->resetting, entry) {
1036 		if (READ_ONCE(chunk->state) != XFS_GC_BIO_DONE)
1037 			break;
1038 		set_current_state(TASK_RUNNING);
1039 		xfs_zone_gc_finish_reset(chunk);
1040 	}
1041 
1042 	list_for_each_entry_safe(chunk, next, &data->writing, entry) {
1043 		if (READ_ONCE(chunk->state) != XFS_GC_BIO_DONE)
1044 			break;
1045 		set_current_state(TASK_RUNNING);
1046 		xfs_zone_gc_finish_chunk(chunk);
1047 	}
1048 
1049 	blk_start_plug(&plug);
1050 	list_for_each_entry_safe(chunk, next, &data->reading, entry) {
1051 		if (READ_ONCE(chunk->state) != XFS_GC_BIO_DONE)
1052 			break;
1053 		set_current_state(TASK_RUNNING);
1054 		xfs_zone_gc_write_chunk(chunk);
1055 	}
1056 	blk_finish_plug(&plug);
1057 
1058 	if (xfs_zone_gc_should_start_new_work(data)) {
1059 		set_current_state(TASK_RUNNING);
1060 		blk_start_plug(&plug);
1061 		while (xfs_zone_gc_start_chunk(data))
1062 			;
1063 		blk_finish_plug(&plug);
1064 	}
1065 }
1066 
1067 /*
1068  * Note that the current GC algorithm would break reflinks and thus duplicate
1069  * data that was shared by multiple owners before.  Because of that reflinks
1070  * are currently not supported on zoned file systems and can't be created or
1071  * mounted.
1072  */
1073 static int
xfs_zoned_gcd(void * private)1074 xfs_zoned_gcd(
1075 	void			*private)
1076 {
1077 	struct xfs_zone_gc_data	*data = private;
1078 	struct xfs_mount	*mp = data->mp;
1079 	struct xfs_zone_info	*zi = mp->m_zone_info;
1080 	unsigned int		nofs_flag;
1081 
1082 	nofs_flag = memalloc_nofs_save();
1083 	set_freezable();
1084 
1085 	for (;;) {
1086 		set_current_state(TASK_INTERRUPTIBLE | TASK_FREEZABLE);
1087 		xfs_set_zonegc_running(mp);
1088 
1089 		xfs_zone_gc_handle_work(data);
1090 
1091 		/*
1092 		 * Only sleep if nothing set the state to running.  Else check for
1093 		 * work again as someone might have queued up more work and woken
1094 		 * us in the meantime.
1095 		 */
1096 		if (get_current_state() == TASK_RUNNING) {
1097 			try_to_freeze();
1098 			continue;
1099 		}
1100 
1101 		if (list_empty(&data->reading) &&
1102 		    list_empty(&data->writing) &&
1103 		    list_empty(&data->resetting) &&
1104 		    !zi->zi_reset_list) {
1105 			xfs_clear_zonegc_running(mp);
1106 			xfs_zoned_resv_wake_all(mp);
1107 
1108 			if (kthread_should_stop()) {
1109 				__set_current_state(TASK_RUNNING);
1110 				break;
1111 			}
1112 
1113 			if (kthread_should_park()) {
1114 				__set_current_state(TASK_RUNNING);
1115 				kthread_parkme();
1116 				continue;
1117 			}
1118 		}
1119 
1120 		schedule();
1121 	}
1122 	xfs_clear_zonegc_running(mp);
1123 
1124 	if (data->iter.victim_rtg)
1125 		xfs_rtgroup_rele(data->iter.victim_rtg);
1126 
1127 	memalloc_nofs_restore(nofs_flag);
1128 	xfs_zone_gc_data_free(data);
1129 	return 0;
1130 }
1131 
1132 void
xfs_zone_gc_start(struct xfs_mount * mp)1133 xfs_zone_gc_start(
1134 	struct xfs_mount	*mp)
1135 {
1136 	if (xfs_has_zoned(mp))
1137 		kthread_unpark(mp->m_zone_info->zi_gc_thread);
1138 }
1139 
1140 void
xfs_zone_gc_stop(struct xfs_mount * mp)1141 xfs_zone_gc_stop(
1142 	struct xfs_mount	*mp)
1143 {
1144 	if (xfs_has_zoned(mp))
1145 		kthread_park(mp->m_zone_info->zi_gc_thread);
1146 }
1147 
1148 int
xfs_zone_gc_mount(struct xfs_mount * mp)1149 xfs_zone_gc_mount(
1150 	struct xfs_mount	*mp)
1151 {
1152 	struct xfs_zone_info	*zi = mp->m_zone_info;
1153 	struct xfs_zone_gc_data	*data;
1154 	struct xfs_open_zone	*oz;
1155 	int			error;
1156 
1157 	/*
1158 	 * If there are no free zones available for GC, pick the open zone with
1159 	 * the least used space to GC into.  This should only happen after an
1160 	 * unclean shutdown near ENOSPC while GC was ongoing.
1161 	 *
1162 	 * We also need to do this for the first gc zone allocation if we
1163 	 * unmounted while at the open limit.
1164 	 */
1165 	if (!xfs_group_marked(mp, XG_TYPE_RTG, XFS_RTG_FREE) ||
1166 	    zi->zi_nr_open_zones == mp->m_max_open_zones)
1167 		oz = xfs_zone_gc_steal_open(zi);
1168 	else
1169 		oz = xfs_open_zone(mp, WRITE_LIFE_NOT_SET, true);
1170 	if (!oz) {
1171 		xfs_warn(mp, "unable to allocate a zone for gc");
1172 		error = -EIO;
1173 		goto out;
1174 	}
1175 
1176 	trace_xfs_zone_gc_target_opened(oz->oz_rtg);
1177 	zi->zi_open_gc_zone = oz;
1178 
1179 	data = xfs_zone_gc_data_alloc(mp);
1180 	if (!data) {
1181 		error = -ENOMEM;
1182 		goto out_put_gc_zone;
1183 	}
1184 
1185 	zi->zi_gc_thread = kthread_create(xfs_zoned_gcd, data,
1186 			"xfs-zone-gc/%s", mp->m_super->s_id);
1187 	if (IS_ERR(zi->zi_gc_thread)) {
1188 		xfs_warn(mp, "unable to create zone gc thread");
1189 		error = PTR_ERR(zi->zi_gc_thread);
1190 		goto out_free_gc_data;
1191 	}
1192 
1193 	/* xfs_zone_gc_start will unpark for rw mounts */
1194 	kthread_park(zi->zi_gc_thread);
1195 	return 0;
1196 
1197 out_free_gc_data:
1198 	kfree(data);
1199 out_put_gc_zone:
1200 	xfs_open_zone_put(zi->zi_open_gc_zone);
1201 out:
1202 	return error;
1203 }
1204 
1205 void
xfs_zone_gc_unmount(struct xfs_mount * mp)1206 xfs_zone_gc_unmount(
1207 	struct xfs_mount	*mp)
1208 {
1209 	struct xfs_zone_info	*zi = mp->m_zone_info;
1210 
1211 	kthread_stop(zi->zi_gc_thread);
1212 	if (zi->zi_open_gc_zone)
1213 		xfs_open_zone_put(zi->zi_open_gc_zone);
1214 }
1215