1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Sleepable Read-Copy Update mechanism for mutual exclusion. 4 * 5 * Copyright (C) IBM Corporation, 2006 6 * Copyright (C) Fujitsu, 2012 7 * 8 * Authors: Paul McKenney <paulmck@linux.ibm.com> 9 * Lai Jiangshan <laijs@cn.fujitsu.com> 10 * 11 * For detailed explanation of Read-Copy Update mechanism see - 12 * Documentation/RCU/ *.txt 13 * 14 */ 15 16 #define pr_fmt(fmt) "rcu: " fmt 17 18 #include <linux/export.h> 19 #include <linux/mutex.h> 20 #include <linux/percpu.h> 21 #include <linux/preempt.h> 22 #include <linux/rcupdate_wait.h> 23 #include <linux/sched.h> 24 #include <linux/smp.h> 25 #include <linux/delay.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/srcu.h> 29 30 #include "rcu.h" 31 #include "rcu_segcblist.h" 32 33 /* Holdoff in nanoseconds for auto-expediting. */ 34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 36 module_param(exp_holdoff, ulong, 0444); 37 38 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 39 static ulong counter_wrap_check = (ULONG_MAX >> 2); 40 module_param(counter_wrap_check, ulong, 0444); 41 42 /* 43 * Control conversion to SRCU_SIZE_BIG: 44 * 0: Don't convert at all. 45 * 1: Convert at init_srcu_struct() time. 46 * 2: Convert when rcutorture invokes srcu_torture_stats_print(). 47 * 3: Decide at boot time based on system shape (default). 48 * 0x1x: Convert when excessive contention encountered. 49 */ 50 #define SRCU_SIZING_NONE 0 51 #define SRCU_SIZING_INIT 1 52 #define SRCU_SIZING_TORTURE 2 53 #define SRCU_SIZING_AUTO 3 54 #define SRCU_SIZING_CONTEND 0x10 55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x) 56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE)) 57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT)) 58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE)) 59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND) 60 static int convert_to_big = SRCU_SIZING_AUTO; 61 module_param(convert_to_big, int, 0444); 62 63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */ 64 static int big_cpu_lim __read_mostly = 128; 65 module_param(big_cpu_lim, int, 0444); 66 67 /* Contention events per jiffy to initiate transition to big. */ 68 static int small_contention_lim __read_mostly = 100; 69 module_param(small_contention_lim, int, 0444); 70 71 /* Early-boot callback-management, so early that no lock is required! */ 72 static LIST_HEAD(srcu_boot_list); 73 static bool __read_mostly srcu_init_done; 74 75 static void srcu_invoke_callbacks(struct work_struct *work); 76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); 77 static void process_srcu(struct work_struct *work); 78 static void srcu_delay_timer(struct timer_list *t); 79 80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 81 #define spin_lock_rcu_node(p) \ 82 do { \ 83 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 84 smp_mb__after_unlock_lock(); \ 85 } while (0) 86 87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 88 89 #define spin_lock_irq_rcu_node(p) \ 90 do { \ 91 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 92 smp_mb__after_unlock_lock(); \ 93 } while (0) 94 95 #define spin_unlock_irq_rcu_node(p) \ 96 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 97 98 #define spin_lock_irqsave_rcu_node(p, flags) \ 99 do { \ 100 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 101 smp_mb__after_unlock_lock(); \ 102 } while (0) 103 104 #define spin_trylock_irqsave_rcu_node(p, flags) \ 105 ({ \ 106 bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 107 \ 108 if (___locked) \ 109 smp_mb__after_unlock_lock(); \ 110 ___locked; \ 111 }) 112 113 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 114 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 115 116 /* 117 * Initialize SRCU per-CPU data. Note that statically allocated 118 * srcu_struct structures might already have srcu_read_lock() and 119 * srcu_read_unlock() running against them. So if the is_static 120 * parameter is set, don't initialize ->srcu_ctrs[].srcu_locks and 121 * ->srcu_ctrs[].srcu_unlocks. 122 */ 123 static void init_srcu_struct_data(struct srcu_struct *ssp) 124 { 125 int cpu; 126 struct srcu_data *sdp; 127 128 /* 129 * Initialize the per-CPU srcu_data array, which feeds into the 130 * leaves of the srcu_node tree. 131 */ 132 for_each_possible_cpu(cpu) { 133 sdp = per_cpu_ptr(ssp->sda, cpu); 134 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 135 rcu_segcblist_init(&sdp->srcu_cblist); 136 sdp->srcu_cblist_invoking = false; 137 sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq; 138 sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq; 139 sdp->srcu_barrier_head.next = &sdp->srcu_barrier_head; 140 sdp->mynode = NULL; 141 sdp->cpu = cpu; 142 INIT_WORK(&sdp->work, srcu_invoke_callbacks); 143 timer_setup(&sdp->delay_work, srcu_delay_timer, 0); 144 sdp->ssp = ssp; 145 } 146 } 147 148 /* Invalid seq state, used during snp node initialization */ 149 #define SRCU_SNP_INIT_SEQ 0x2 150 151 /* 152 * Check whether sequence number corresponding to snp node, 153 * is invalid. 154 */ 155 static inline bool srcu_invl_snp_seq(unsigned long s) 156 { 157 return s == SRCU_SNP_INIT_SEQ; 158 } 159 160 /* 161 * Allocated and initialize SRCU combining tree. Returns @true if 162 * allocation succeeded and @false otherwise. 163 */ 164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags) 165 { 166 int cpu; 167 int i; 168 int level = 0; 169 int levelspread[RCU_NUM_LVLS]; 170 struct srcu_data *sdp; 171 struct srcu_node *snp; 172 struct srcu_node *snp_first; 173 174 /* Initialize geometry if it has not already been initialized. */ 175 rcu_init_geometry(); 176 ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags); 177 if (!ssp->srcu_sup->node) 178 return false; 179 180 /* Work out the overall tree geometry. */ 181 ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0]; 182 for (i = 1; i < rcu_num_lvls; i++) 183 ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1]; 184 rcu_init_levelspread(levelspread, num_rcu_lvl); 185 186 /* Each pass through this loop initializes one srcu_node structure. */ 187 srcu_for_each_node_breadth_first(ssp, snp) { 188 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 189 BUILD_BUG_ON(ARRAY_SIZE(snp->srcu_have_cbs) != 190 ARRAY_SIZE(snp->srcu_data_have_cbs)); 191 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 192 snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ; 193 snp->srcu_data_have_cbs[i] = 0; 194 } 195 snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ; 196 snp->grplo = -1; 197 snp->grphi = -1; 198 if (snp == &ssp->srcu_sup->node[0]) { 199 /* Root node, special case. */ 200 snp->srcu_parent = NULL; 201 continue; 202 } 203 204 /* Non-root node. */ 205 if (snp == ssp->srcu_sup->level[level + 1]) 206 level++; 207 snp->srcu_parent = ssp->srcu_sup->level[level - 1] + 208 (snp - ssp->srcu_sup->level[level]) / 209 levelspread[level - 1]; 210 } 211 212 /* 213 * Initialize the per-CPU srcu_data array, which feeds into the 214 * leaves of the srcu_node tree. 215 */ 216 level = rcu_num_lvls - 1; 217 snp_first = ssp->srcu_sup->level[level]; 218 for_each_possible_cpu(cpu) { 219 sdp = per_cpu_ptr(ssp->sda, cpu); 220 sdp->mynode = &snp_first[cpu / levelspread[level]]; 221 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 222 if (snp->grplo < 0) 223 snp->grplo = cpu; 224 snp->grphi = cpu; 225 } 226 sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo); 227 } 228 smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER); 229 return true; 230 } 231 232 /* 233 * Initialize non-compile-time initialized fields, including the 234 * associated srcu_node and srcu_data structures. The is_static parameter 235 * tells us that ->sda has already been wired up to srcu_data. 236 */ 237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) 238 { 239 if (!is_static) 240 ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL); 241 if (!ssp->srcu_sup) 242 return -ENOMEM; 243 if (!is_static) 244 spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 245 ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL; 246 ssp->srcu_sup->node = NULL; 247 mutex_init(&ssp->srcu_sup->srcu_cb_mutex); 248 mutex_init(&ssp->srcu_sup->srcu_gp_mutex); 249 ssp->srcu_sup->srcu_gp_seq = SRCU_GP_SEQ_INITIAL_VAL; 250 ssp->srcu_sup->srcu_barrier_seq = 0; 251 mutex_init(&ssp->srcu_sup->srcu_barrier_mutex); 252 atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0); 253 INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu); 254 ssp->srcu_sup->sda_is_static = is_static; 255 if (!is_static) { 256 ssp->sda = alloc_percpu(struct srcu_data); 257 ssp->srcu_ctrp = &ssp->sda->srcu_ctrs[0]; 258 } 259 if (!ssp->sda) 260 goto err_free_sup; 261 init_srcu_struct_data(ssp); 262 ssp->srcu_sup->srcu_gp_seq_needed_exp = SRCU_GP_SEQ_INITIAL_VAL; 263 ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns(); 264 if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) { 265 if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) 266 goto err_free_sda; 267 WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG); 268 } 269 ssp->srcu_sup->srcu_ssp = ssp; 270 smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed, 271 SRCU_GP_SEQ_INITIAL_VAL); /* Init done. */ 272 return 0; 273 274 err_free_sda: 275 if (!is_static) { 276 free_percpu(ssp->sda); 277 ssp->sda = NULL; 278 } 279 err_free_sup: 280 if (!is_static) { 281 kfree(ssp->srcu_sup); 282 ssp->srcu_sup = NULL; 283 } 284 return -ENOMEM; 285 } 286 287 #ifdef CONFIG_DEBUG_LOCK_ALLOC 288 289 int __init_srcu_struct(struct srcu_struct *ssp, const char *name, 290 struct lock_class_key *key) 291 { 292 /* Don't re-initialize a lock while it is held. */ 293 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); 294 lockdep_init_map(&ssp->dep_map, name, key, 0); 295 return init_srcu_struct_fields(ssp, false); 296 } 297 EXPORT_SYMBOL_GPL(__init_srcu_struct); 298 299 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 300 301 /** 302 * init_srcu_struct - initialize a sleep-RCU structure 303 * @ssp: structure to initialize. 304 * 305 * Must invoke this on a given srcu_struct before passing that srcu_struct 306 * to any other function. Each srcu_struct represents a separate domain 307 * of SRCU protection. 308 */ 309 int init_srcu_struct(struct srcu_struct *ssp) 310 { 311 return init_srcu_struct_fields(ssp, false); 312 } 313 EXPORT_SYMBOL_GPL(init_srcu_struct); 314 315 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 316 317 /* 318 * Initiate a transition to SRCU_SIZE_BIG with lock held. 319 */ 320 static void __srcu_transition_to_big(struct srcu_struct *ssp) 321 { 322 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 323 smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC); 324 } 325 326 /* 327 * Initiate an idempotent transition to SRCU_SIZE_BIG. 328 */ 329 static void srcu_transition_to_big(struct srcu_struct *ssp) 330 { 331 unsigned long flags; 332 333 /* Double-checked locking on ->srcu_size-state. */ 334 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) 335 return; 336 spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); 337 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) { 338 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 339 return; 340 } 341 __srcu_transition_to_big(ssp); 342 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 343 } 344 345 /* 346 * Check to see if the just-encountered contention event justifies 347 * a transition to SRCU_SIZE_BIG. 348 */ 349 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp) 350 { 351 unsigned long j; 352 353 if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state) 354 return; 355 j = jiffies; 356 if (ssp->srcu_sup->srcu_size_jiffies != j) { 357 ssp->srcu_sup->srcu_size_jiffies = j; 358 ssp->srcu_sup->srcu_n_lock_retries = 0; 359 } 360 if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim) 361 return; 362 __srcu_transition_to_big(ssp); 363 } 364 365 /* 366 * Acquire the specified srcu_data structure's ->lock, but check for 367 * excessive contention, which results in initiation of a transition 368 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module 369 * parameter permits this. 370 */ 371 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags) 372 { 373 struct srcu_struct *ssp = sdp->ssp; 374 375 if (spin_trylock_irqsave_rcu_node(sdp, *flags)) 376 return; 377 spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); 378 spin_lock_irqsave_check_contention(ssp); 379 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags); 380 spin_lock_irqsave_rcu_node(sdp, *flags); 381 } 382 383 /* 384 * Acquire the specified srcu_struct structure's ->lock, but check for 385 * excessive contention, which results in initiation of a transition 386 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module 387 * parameter permits this. 388 */ 389 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags) 390 { 391 if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags)) 392 return; 393 spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); 394 spin_lock_irqsave_check_contention(ssp); 395 } 396 397 /* 398 * First-use initialization of statically allocated srcu_struct 399 * structure. Wiring up the combining tree is more than can be 400 * done with compile-time initialization, so this check is added 401 * to each update-side SRCU primitive. Use ssp->lock, which -is- 402 * compile-time initialized, to resolve races involving multiple 403 * CPUs trying to garner first-use privileges. 404 */ 405 static void check_init_srcu_struct(struct srcu_struct *ssp) 406 { 407 unsigned long flags; 408 409 /* The smp_load_acquire() pairs with the smp_store_release(). */ 410 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/ 411 return; /* Already initialized. */ 412 spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); 413 if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) { 414 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 415 return; 416 } 417 init_srcu_struct_fields(ssp, true); 418 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 419 } 420 421 /* 422 * Is the current or any upcoming grace period to be expedited? 423 */ 424 static bool srcu_gp_is_expedited(struct srcu_struct *ssp) 425 { 426 struct srcu_usage *sup = ssp->srcu_sup; 427 428 return ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)); 429 } 430 431 /* 432 * Computes approximate total of the readers' ->srcu_ctrs[].srcu_locks 433 * values for the rank of per-CPU counters specified by idx, and returns 434 * true if the caller did the proper barrier (gp), and if the count of 435 * the locks matches that of the unlocks passed in. 436 */ 437 static bool srcu_readers_lock_idx(struct srcu_struct *ssp, int idx, bool gp, unsigned long unlocks) 438 { 439 int cpu; 440 unsigned long mask = 0; 441 unsigned long sum = 0; 442 443 for_each_possible_cpu(cpu) { 444 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 445 446 sum += atomic_long_read(&sdp->srcu_ctrs[idx].srcu_locks); 447 if (IS_ENABLED(CONFIG_PROVE_RCU)) 448 mask = mask | READ_ONCE(sdp->srcu_reader_flavor); 449 } 450 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)), 451 "Mixed reader flavors for srcu_struct at %ps.\n", ssp); 452 if (mask & SRCU_READ_FLAVOR_SLOWGP && !gp) 453 return false; 454 return sum == unlocks; 455 } 456 457 /* 458 * Returns approximate total of the readers' ->srcu_ctrs[].srcu_unlocks 459 * values for the rank of per-CPU counters specified by idx. 460 */ 461 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx, unsigned long *rdm) 462 { 463 int cpu; 464 unsigned long mask = 0; 465 unsigned long sum = 0; 466 467 for_each_possible_cpu(cpu) { 468 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 469 470 sum += atomic_long_read(&sdp->srcu_ctrs[idx].srcu_unlocks); 471 mask = mask | READ_ONCE(sdp->srcu_reader_flavor); 472 } 473 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)), 474 "Mixed reader flavors for srcu_struct at %ps.\n", ssp); 475 *rdm = mask; 476 return sum; 477 } 478 479 /* 480 * Return true if the number of pre-existing readers is determined to 481 * be zero. 482 */ 483 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) 484 { 485 bool did_gp; 486 unsigned long rdm; 487 unsigned long unlocks; 488 489 unlocks = srcu_readers_unlock_idx(ssp, idx, &rdm); 490 did_gp = !!(rdm & SRCU_READ_FLAVOR_SLOWGP); 491 492 /* 493 * Make sure that a lock is always counted if the corresponding 494 * unlock is counted. Needs to be a smp_mb() as the read side may 495 * contain a read from a variable that is written to before the 496 * synchronize_srcu() in the write side. In this case smp_mb()s 497 * A and B (or X and Y) act like the store buffering pattern. 498 * 499 * This smp_mb() also pairs with smp_mb() C (or, in the case of X, 500 * Z) to prevent accesses after the synchronize_srcu() from being 501 * executed before the grace period ends. 502 */ 503 if (!did_gp) 504 smp_mb(); /* A */ 505 else if (srcu_gp_is_expedited(ssp)) 506 synchronize_rcu_expedited(); /* X */ 507 else 508 synchronize_rcu(); /* X */ 509 510 /* 511 * If the locks are the same as the unlocks, then there must have 512 * been no readers on this index at some point in this function. 513 * But there might be more readers, as a task might have read 514 * the current ->srcu_ctrp but not yet have incremented its CPU's 515 * ->srcu_ctrs[idx].srcu_locks counter. In fact, it is possible 516 * that most of the tasks have been preempted between fetching 517 * ->srcu_ctrp and incrementing ->srcu_ctrs[idx].srcu_locks. And 518 * there could be almost (ULONG_MAX / sizeof(struct task_struct)) 519 * tasks in a system whose address space was fully populated 520 * with memory. Call this quantity Nt. 521 * 522 * So suppose that the updater is preempted at this 523 * point in the code for a long time. That now-preempted 524 * updater has already flipped ->srcu_ctrp (possibly during 525 * the preceding grace period), done an smp_mb() (again, 526 * possibly during the preceding grace period), and summed up 527 * the ->srcu_ctrs[idx].srcu_unlocks counters. How many times 528 * can a given one of the aforementioned Nt tasks increment the 529 * old ->srcu_ctrp value's ->srcu_ctrs[idx].srcu_locks counter, 530 * in the absence of nesting? 531 * 532 * It can clearly do so once, given that it has already fetched 533 * the old value of ->srcu_ctrp and is just about to use that 534 * value to index its increment of ->srcu_ctrs[idx].srcu_locks. 535 * But as soon as it leaves that SRCU read-side critical section, 536 * it will increment ->srcu_ctrs[idx].srcu_unlocks, which must 537 * follow the updater's above read from that same value. Thus, 538 as soon the reading task does an smp_mb() and a later fetch from 539 * ->srcu_ctrp, that task will be guaranteed to get the new index. 540 * Except that the increment of ->srcu_ctrs[idx].srcu_unlocks 541 * in __srcu_read_unlock() is after the smp_mb(), and the fetch 542 * from ->srcu_ctrp in __srcu_read_lock() is before the smp_mb(). 543 * Thus, that task might not see the new value of ->srcu_ctrp until 544 * the -second- __srcu_read_lock(), which in turn means that this 545 * task might well increment ->srcu_ctrs[idx].srcu_locks for the 546 * old value of ->srcu_ctrp twice, not just once. 547 * 548 * However, it is important to note that a given smp_mb() takes 549 * effect not just for the task executing it, but also for any 550 * later task running on that same CPU. 551 * 552 * That is, there can be almost Nt + Nc further increments 553 * of ->srcu_ctrs[idx].srcu_locks for the old index, where Nc 554 * is the number of CPUs. But this is OK because the size of 555 * the task_struct structure limits the value of Nt and current 556 * systems limit Nc to a few thousand. 557 * 558 * OK, but what about nesting? This does impose a limit on 559 * nesting of half of the size of the task_struct structure 560 * (measured in bytes), which should be sufficient. A late 2022 561 * TREE01 rcutorture run reported this size to be no less than 562 * 9408 bytes, allowing up to 4704 levels of nesting, which is 563 * comfortably beyond excessive. Especially on 64-bit systems, 564 * which are unlikely to be configured with an address space fully 565 * populated with memory, at least not anytime soon. 566 */ 567 return srcu_readers_lock_idx(ssp, idx, did_gp, unlocks); 568 } 569 570 /** 571 * srcu_readers_active - returns true if there are readers. and false 572 * otherwise 573 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). 574 * 575 * Note that this is not an atomic primitive, and can therefore suffer 576 * severe errors when invoked on an active srcu_struct. That said, it 577 * can be useful as an error check at cleanup time. 578 */ 579 static bool srcu_readers_active(struct srcu_struct *ssp) 580 { 581 int cpu; 582 unsigned long sum = 0; 583 584 for_each_possible_cpu(cpu) { 585 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 586 587 sum += atomic_long_read(&sdp->srcu_ctrs[0].srcu_locks); 588 sum += atomic_long_read(&sdp->srcu_ctrs[1].srcu_locks); 589 sum -= atomic_long_read(&sdp->srcu_ctrs[0].srcu_unlocks); 590 sum -= atomic_long_read(&sdp->srcu_ctrs[1].srcu_unlocks); 591 } 592 return sum; 593 } 594 595 /* 596 * We use an adaptive strategy for synchronize_srcu() and especially for 597 * synchronize_srcu_expedited(). We spin for a fixed time period 598 * (defined below, boot time configurable) to allow SRCU readers to exit 599 * their read-side critical sections. If there are still some readers 600 * after one jiffy, we repeatedly block for one jiffy time periods. 601 * The blocking time is increased as the grace-period age increases, 602 * with max blocking time capped at 10 jiffies. 603 */ 604 #define SRCU_DEFAULT_RETRY_CHECK_DELAY 5 605 606 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY; 607 module_param(srcu_retry_check_delay, ulong, 0444); 608 609 #define SRCU_INTERVAL 1 // Base delay if no expedited GPs pending. 610 #define SRCU_MAX_INTERVAL 10 // Maximum incremental delay from slow readers. 611 612 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO 3UL // Lowmark on default per-GP-phase 613 // no-delay instances. 614 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI 1000UL // Highmark on default per-GP-phase 615 // no-delay instances. 616 617 #define SRCU_UL_CLAMP_LO(val, low) ((val) > (low) ? (val) : (low)) 618 #define SRCU_UL_CLAMP_HI(val, high) ((val) < (high) ? (val) : (high)) 619 #define SRCU_UL_CLAMP(val, low, high) SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high)) 620 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto 621 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay() 622 // called from process_srcu(). 623 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED \ 624 (2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY) 625 626 // Maximum per-GP-phase consecutive no-delay instances. 627 #define SRCU_DEFAULT_MAX_NODELAY_PHASE \ 628 SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED, \ 629 SRCU_DEFAULT_MAX_NODELAY_PHASE_LO, \ 630 SRCU_DEFAULT_MAX_NODELAY_PHASE_HI) 631 632 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE; 633 module_param(srcu_max_nodelay_phase, ulong, 0444); 634 635 // Maximum consecutive no-delay instances. 636 #define SRCU_DEFAULT_MAX_NODELAY (SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ? \ 637 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100) 638 639 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY; 640 module_param(srcu_max_nodelay, ulong, 0444); 641 642 /* 643 * Return grace-period delay, zero if there are expedited grace 644 * periods pending, SRCU_INTERVAL otherwise. 645 */ 646 static unsigned long srcu_get_delay(struct srcu_struct *ssp) 647 { 648 unsigned long gpstart; 649 unsigned long j; 650 unsigned long jbase = SRCU_INTERVAL; 651 struct srcu_usage *sup = ssp->srcu_sup; 652 653 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 654 if (srcu_gp_is_expedited(ssp)) 655 jbase = 0; 656 if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) { 657 j = jiffies - 1; 658 gpstart = READ_ONCE(sup->srcu_gp_start); 659 if (time_after(j, gpstart)) 660 jbase += j - gpstart; 661 if (!jbase) { 662 ASSERT_EXCLUSIVE_WRITER(sup->srcu_n_exp_nodelay); 663 WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1); 664 if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase) 665 jbase = 1; 666 } 667 } 668 return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase; 669 } 670 671 /** 672 * cleanup_srcu_struct - deconstruct a sleep-RCU structure 673 * @ssp: structure to clean up. 674 * 675 * Must invoke this after you are finished using a given srcu_struct that 676 * was initialized via init_srcu_struct(), else you leak memory. 677 */ 678 void cleanup_srcu_struct(struct srcu_struct *ssp) 679 { 680 int cpu; 681 unsigned long delay; 682 struct srcu_usage *sup = ssp->srcu_sup; 683 684 spin_lock_irq_rcu_node(ssp->srcu_sup); 685 delay = srcu_get_delay(ssp); 686 spin_unlock_irq_rcu_node(ssp->srcu_sup); 687 if (WARN_ON(!delay)) 688 return; /* Just leak it! */ 689 if (WARN_ON(srcu_readers_active(ssp))) 690 return; /* Just leak it! */ 691 flush_delayed_work(&sup->work); 692 for_each_possible_cpu(cpu) { 693 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 694 695 timer_delete_sync(&sdp->delay_work); 696 flush_work(&sdp->work); 697 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) 698 return; /* Forgot srcu_barrier(), so just leak it! */ 699 } 700 if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) || 701 WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) || 702 WARN_ON(srcu_readers_active(ssp))) { 703 pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n", 704 __func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)), 705 rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed); 706 return; // Caller forgot to stop doing call_srcu()? 707 // Or caller invoked start_poll_synchronize_srcu() 708 // and then cleanup_srcu_struct() before that grace 709 // period ended? 710 } 711 kfree(sup->node); 712 sup->node = NULL; 713 sup->srcu_size_state = SRCU_SIZE_SMALL; 714 if (!sup->sda_is_static) { 715 free_percpu(ssp->sda); 716 ssp->sda = NULL; 717 kfree(sup); 718 ssp->srcu_sup = NULL; 719 } 720 } 721 EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 722 723 /* 724 * Check for consistent reader flavor. 725 */ 726 void __srcu_check_read_flavor(struct srcu_struct *ssp, int read_flavor) 727 { 728 int old_read_flavor; 729 struct srcu_data *sdp; 730 731 /* NMI-unsafe use in NMI is a bad sign, as is multi-bit read_flavor values. */ 732 WARN_ON_ONCE((read_flavor != SRCU_READ_FLAVOR_NMI) && in_nmi()); 733 WARN_ON_ONCE(read_flavor & (read_flavor - 1)); 734 735 sdp = raw_cpu_ptr(ssp->sda); 736 old_read_flavor = READ_ONCE(sdp->srcu_reader_flavor); 737 if (!old_read_flavor) { 738 old_read_flavor = cmpxchg(&sdp->srcu_reader_flavor, 0, read_flavor); 739 if (!old_read_flavor) 740 return; 741 } 742 WARN_ONCE(old_read_flavor != read_flavor, "CPU %d old state %d new state %d\n", sdp->cpu, old_read_flavor, read_flavor); 743 } 744 EXPORT_SYMBOL_GPL(__srcu_check_read_flavor); 745 746 /* 747 * Counts the new reader in the appropriate per-CPU element of the 748 * srcu_struct. 749 * Returns a guaranteed non-negative index that must be passed to the 750 * matching __srcu_read_unlock(). 751 */ 752 int __srcu_read_lock(struct srcu_struct *ssp) 753 { 754 struct srcu_ctr __percpu *scp = READ_ONCE(ssp->srcu_ctrp); 755 756 this_cpu_inc(scp->srcu_locks.counter); 757 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 758 return __srcu_ptr_to_ctr(ssp, scp); 759 } 760 EXPORT_SYMBOL_GPL(__srcu_read_lock); 761 762 /* 763 * Removes the count for the old reader from the appropriate per-CPU 764 * element of the srcu_struct. Note that this may well be a different 765 * CPU than that which was incremented by the corresponding srcu_read_lock(). 766 */ 767 void __srcu_read_unlock(struct srcu_struct *ssp, int idx) 768 { 769 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 770 this_cpu_inc(__srcu_ctr_to_ptr(ssp, idx)->srcu_unlocks.counter); 771 } 772 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 773 774 #ifdef CONFIG_NEED_SRCU_NMI_SAFE 775 776 /* 777 * Counts the new reader in the appropriate per-CPU element of the 778 * srcu_struct, but in an NMI-safe manner using RMW atomics. 779 * Returns an index that must be passed to the matching srcu_read_unlock(). 780 */ 781 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp) 782 { 783 struct srcu_ctr __percpu *scpp = READ_ONCE(ssp->srcu_ctrp); 784 struct srcu_ctr *scp = raw_cpu_ptr(scpp); 785 786 atomic_long_inc(&scp->srcu_locks); 787 smp_mb__after_atomic(); /* B */ /* Avoid leaking the critical section. */ 788 return __srcu_ptr_to_ctr(ssp, scpp); 789 } 790 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe); 791 792 /* 793 * Removes the count for the old reader from the appropriate per-CPU 794 * element of the srcu_struct. Note that this may well be a different 795 * CPU than that which was incremented by the corresponding srcu_read_lock(). 796 */ 797 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx) 798 { 799 smp_mb__before_atomic(); /* C */ /* Avoid leaking the critical section. */ 800 atomic_long_inc(&raw_cpu_ptr(__srcu_ctr_to_ptr(ssp, idx))->srcu_unlocks); 801 } 802 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe); 803 804 #endif // CONFIG_NEED_SRCU_NMI_SAFE 805 806 /* 807 * Start an SRCU grace period. 808 */ 809 static void srcu_gp_start(struct srcu_struct *ssp) 810 { 811 int state; 812 813 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 814 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)); 815 WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies); 816 WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0); 817 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 818 rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq); 819 state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq); 820 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 821 } 822 823 824 static void srcu_delay_timer(struct timer_list *t) 825 { 826 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); 827 828 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 829 } 830 831 static void srcu_queue_delayed_work_on(struct srcu_data *sdp, 832 unsigned long delay) 833 { 834 if (!delay) { 835 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 836 return; 837 } 838 839 timer_reduce(&sdp->delay_work, jiffies + delay); 840 } 841 842 /* 843 * Schedule callback invocation for the specified srcu_data structure, 844 * if possible, on the corresponding CPU. 845 */ 846 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 847 { 848 srcu_queue_delayed_work_on(sdp, delay); 849 } 850 851 /* 852 * Schedule callback invocation for all srcu_data structures associated 853 * with the specified srcu_node structure that have callbacks for the 854 * just-completed grace period, the one corresponding to idx. If possible, 855 * schedule this invocation on the corresponding CPUs. 856 */ 857 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, 858 unsigned long mask, unsigned long delay) 859 { 860 int cpu; 861 862 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 863 if (!(mask & (1UL << (cpu - snp->grplo)))) 864 continue; 865 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); 866 } 867 } 868 869 /* 870 * Note the end of an SRCU grace period. Initiates callback invocation 871 * and starts a new grace period if needed. 872 * 873 * The ->srcu_cb_mutex acquisition does not protect any data, but 874 * instead prevents more than one grace period from starting while we 875 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 876 * array to have a finite number of elements. 877 */ 878 static void srcu_gp_end(struct srcu_struct *ssp) 879 { 880 unsigned long cbdelay = 1; 881 bool cbs; 882 bool last_lvl; 883 int cpu; 884 unsigned long gpseq; 885 int idx; 886 unsigned long mask; 887 struct srcu_data *sdp; 888 unsigned long sgsne; 889 struct srcu_node *snp; 890 int ss_state; 891 struct srcu_usage *sup = ssp->srcu_sup; 892 893 /* Prevent more than one additional grace period. */ 894 mutex_lock(&sup->srcu_cb_mutex); 895 896 /* End the current grace period. */ 897 spin_lock_irq_rcu_node(sup); 898 idx = rcu_seq_state(sup->srcu_gp_seq); 899 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 900 if (srcu_gp_is_expedited(ssp)) 901 cbdelay = 0; 902 903 WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns()); 904 rcu_seq_end(&sup->srcu_gp_seq); 905 gpseq = rcu_seq_current(&sup->srcu_gp_seq); 906 if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq)) 907 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq); 908 spin_unlock_irq_rcu_node(sup); 909 mutex_unlock(&sup->srcu_gp_mutex); 910 /* A new grace period can start at this point. But only one. */ 911 912 /* Initiate callback invocation as needed. */ 913 ss_state = smp_load_acquire(&sup->srcu_size_state); 914 if (ss_state < SRCU_SIZE_WAIT_BARRIER) { 915 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()), 916 cbdelay); 917 } else { 918 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 919 srcu_for_each_node_breadth_first(ssp, snp) { 920 spin_lock_irq_rcu_node(snp); 921 cbs = false; 922 last_lvl = snp >= sup->level[rcu_num_lvls - 1]; 923 if (last_lvl) 924 cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq; 925 snp->srcu_have_cbs[idx] = gpseq; 926 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 927 sgsne = snp->srcu_gp_seq_needed_exp; 928 if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq)) 929 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq); 930 if (ss_state < SRCU_SIZE_BIG) 931 mask = ~0; 932 else 933 mask = snp->srcu_data_have_cbs[idx]; 934 snp->srcu_data_have_cbs[idx] = 0; 935 spin_unlock_irq_rcu_node(snp); 936 if (cbs) 937 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); 938 } 939 } 940 941 /* Occasionally prevent srcu_data counter wrap. */ 942 if (!(gpseq & counter_wrap_check)) 943 for_each_possible_cpu(cpu) { 944 sdp = per_cpu_ptr(ssp->sda, cpu); 945 spin_lock_irq_rcu_node(sdp); 946 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100)) 947 sdp->srcu_gp_seq_needed = gpseq; 948 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100)) 949 sdp->srcu_gp_seq_needed_exp = gpseq; 950 spin_unlock_irq_rcu_node(sdp); 951 } 952 953 /* Callback initiation done, allow grace periods after next. */ 954 mutex_unlock(&sup->srcu_cb_mutex); 955 956 /* Start a new grace period if needed. */ 957 spin_lock_irq_rcu_node(sup); 958 gpseq = rcu_seq_current(&sup->srcu_gp_seq); 959 if (!rcu_seq_state(gpseq) && 960 ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) { 961 srcu_gp_start(ssp); 962 spin_unlock_irq_rcu_node(sup); 963 srcu_reschedule(ssp, 0); 964 } else { 965 spin_unlock_irq_rcu_node(sup); 966 } 967 968 /* Transition to big if needed. */ 969 if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) { 970 if (ss_state == SRCU_SIZE_ALLOC) 971 init_srcu_struct_nodes(ssp, GFP_KERNEL); 972 else 973 smp_store_release(&sup->srcu_size_state, ss_state + 1); 974 } 975 } 976 977 /* 978 * Funnel-locking scheme to scalably mediate many concurrent expedited 979 * grace-period requests. This function is invoked for the first known 980 * expedited request for a grace period that has already been requested, 981 * but without expediting. To start a completely new grace period, 982 * whether expedited or not, use srcu_funnel_gp_start() instead. 983 */ 984 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, 985 unsigned long s) 986 { 987 unsigned long flags; 988 unsigned long sgsne; 989 990 if (snp) 991 for (; snp != NULL; snp = snp->srcu_parent) { 992 sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp); 993 if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) || 994 (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s))) 995 return; 996 spin_lock_irqsave_rcu_node(snp, flags); 997 sgsne = snp->srcu_gp_seq_needed_exp; 998 if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) { 999 spin_unlock_irqrestore_rcu_node(snp, flags); 1000 return; 1001 } 1002 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 1003 spin_unlock_irqrestore_rcu_node(snp, flags); 1004 } 1005 spin_lock_irqsave_ssp_contention(ssp, &flags); 1006 if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s)) 1007 WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s); 1008 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 1009 } 1010 1011 /* 1012 * Funnel-locking scheme to scalably mediate many concurrent grace-period 1013 * requests. The winner has to do the work of actually starting grace 1014 * period s. Losers must either ensure that their desired grace-period 1015 * number is recorded on at least their leaf srcu_node structure, or they 1016 * must take steps to invoke their own callbacks. 1017 * 1018 * Note that this function also does the work of srcu_funnel_exp_start(), 1019 * in some cases by directly invoking it. 1020 * 1021 * The srcu read lock should be hold around this function. And s is a seq snap 1022 * after holding that lock. 1023 */ 1024 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, 1025 unsigned long s, bool do_norm) 1026 { 1027 unsigned long flags; 1028 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 1029 unsigned long sgsne; 1030 struct srcu_node *snp; 1031 struct srcu_node *snp_leaf; 1032 unsigned long snp_seq; 1033 struct srcu_usage *sup = ssp->srcu_sup; 1034 1035 /* Ensure that snp node tree is fully initialized before traversing it */ 1036 if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 1037 snp_leaf = NULL; 1038 else 1039 snp_leaf = sdp->mynode; 1040 1041 if (snp_leaf) 1042 /* Each pass through the loop does one level of the srcu_node tree. */ 1043 for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) { 1044 if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf) 1045 return; /* GP already done and CBs recorded. */ 1046 spin_lock_irqsave_rcu_node(snp, flags); 1047 snp_seq = snp->srcu_have_cbs[idx]; 1048 if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) { 1049 if (snp == snp_leaf && snp_seq == s) 1050 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 1051 spin_unlock_irqrestore_rcu_node(snp, flags); 1052 if (snp == snp_leaf && snp_seq != s) { 1053 srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0); 1054 return; 1055 } 1056 if (!do_norm) 1057 srcu_funnel_exp_start(ssp, snp, s); 1058 return; 1059 } 1060 snp->srcu_have_cbs[idx] = s; 1061 if (snp == snp_leaf) 1062 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 1063 sgsne = snp->srcu_gp_seq_needed_exp; 1064 if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s))) 1065 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 1066 spin_unlock_irqrestore_rcu_node(snp, flags); 1067 } 1068 1069 /* Top of tree, must ensure the grace period will be started. */ 1070 spin_lock_irqsave_ssp_contention(ssp, &flags); 1071 if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) { 1072 /* 1073 * Record need for grace period s. Pair with load 1074 * acquire setting up for initialization. 1075 */ 1076 smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/ 1077 } 1078 if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s)) 1079 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s); 1080 1081 /* If grace period not already in progress, start it. */ 1082 if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && 1083 rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) { 1084 srcu_gp_start(ssp); 1085 1086 // And how can that list_add() in the "else" clause 1087 // possibly be safe for concurrent execution? Well, 1088 // it isn't. And it does not have to be. After all, it 1089 // can only be executed during early boot when there is only 1090 // the one boot CPU running with interrupts still disabled. 1091 if (likely(srcu_init_done)) 1092 queue_delayed_work(rcu_gp_wq, &sup->work, 1093 !!srcu_get_delay(ssp)); 1094 else if (list_empty(&sup->work.work.entry)) 1095 list_add(&sup->work.work.entry, &srcu_boot_list); 1096 } 1097 spin_unlock_irqrestore_rcu_node(sup, flags); 1098 } 1099 1100 /* 1101 * Wait until all readers counted by array index idx complete, but 1102 * loop an additional time if there is an expedited grace period pending. 1103 * The caller must ensure that ->srcu_ctrp is not changed while checking. 1104 */ 1105 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) 1106 { 1107 unsigned long curdelay; 1108 1109 spin_lock_irq_rcu_node(ssp->srcu_sup); 1110 curdelay = !srcu_get_delay(ssp); 1111 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1112 1113 for (;;) { 1114 if (srcu_readers_active_idx_check(ssp, idx)) 1115 return true; 1116 if ((--trycount + curdelay) <= 0) 1117 return false; 1118 udelay(srcu_retry_check_delay); 1119 } 1120 } 1121 1122 /* 1123 * Increment the ->srcu_ctrp counter so that future SRCU readers will 1124 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 1125 * us to wait for pre-existing readers in a starvation-free manner. 1126 */ 1127 static void srcu_flip(struct srcu_struct *ssp) 1128 { 1129 /* 1130 * Because the flip of ->srcu_ctrp is executed only if the 1131 * preceding call to srcu_readers_active_idx_check() found that 1132 * the ->srcu_ctrs[].srcu_unlocks and ->srcu_ctrs[].srcu_locks sums 1133 * matched and because that summing uses atomic_long_read(), 1134 * there is ordering due to a control dependency between that 1135 * summing and the WRITE_ONCE() in this call to srcu_flip(). 1136 * This ordering ensures that if this updater saw a given reader's 1137 * increment from __srcu_read_lock(), that reader was using a value 1138 * of ->srcu_ctrp from before the previous call to srcu_flip(), 1139 * which should be quite rare. This ordering thus helps forward 1140 * progress because the grace period could otherwise be delayed 1141 * by additional calls to __srcu_read_lock() using that old (soon 1142 * to be new) value of ->srcu_ctrp. 1143 * 1144 * This sum-equality check and ordering also ensures that if 1145 * a given call to __srcu_read_lock() uses the new value of 1146 * ->srcu_ctrp, this updater's earlier scans cannot have seen 1147 * that reader's increments, which is all to the good, because 1148 * this grace period need not wait on that reader. After all, 1149 * if those earlier scans had seen that reader, there would have 1150 * been a sum mismatch and this code would not be reached. 1151 * 1152 * This means that the following smp_mb() is redundant, but 1153 * it stays until either (1) Compilers learn about this sort of 1154 * control dependency or (2) Some production workload running on 1155 * a production system is unduly delayed by this slowpath smp_mb(). 1156 * Except for _lite() readers, where it is inoperative, which 1157 * means that it is a good thing that it is redundant. 1158 */ 1159 smp_mb(); /* E */ /* Pairs with B and C. */ 1160 1161 WRITE_ONCE(ssp->srcu_ctrp, 1162 &ssp->sda->srcu_ctrs[!(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0])]); 1163 1164 /* 1165 * Ensure that if the updater misses an __srcu_read_unlock() 1166 * increment, that task's __srcu_read_lock() following its next 1167 * __srcu_read_lock() or __srcu_read_unlock() will see the above 1168 * counter update. Note that both this memory barrier and the 1169 * one in srcu_readers_active_idx_check() provide the guarantee 1170 * for __srcu_read_lock(). 1171 * 1172 * Note that this is a performance optimization, in which we spend 1173 * an otherwise unnecessary smp_mb() in order to reduce the number 1174 * of full per-CPU-variable scans in srcu_readers_lock_idx() and 1175 * srcu_readers_unlock_idx(). But this performance optimization 1176 * is not so optimal for SRCU-fast, where we would be spending 1177 * not smp_mb(), but rather synchronize_rcu(). At the same time, 1178 * the overhead of the smp_mb() is in the noise, so there is no 1179 * point in omitting it in the SRCU-fast case. So the same code 1180 * is executed either way. 1181 */ 1182 smp_mb(); /* D */ /* Pairs with C. */ 1183 } 1184 1185 /* 1186 * If SRCU is likely idle, in other words, the next SRCU grace period 1187 * should be expedited, return true, otherwise return false. Except that 1188 * in the presence of _lite() readers, always return false. 1189 * 1190 * Note that it is OK for several current from-idle requests for a new 1191 * grace period from idle to specify expediting because they will all end 1192 * up requesting the same grace period anyhow. So no loss. 1193 * 1194 * Note also that if any CPU (including the current one) is still invoking 1195 * callbacks, this function will nevertheless say "idle". This is not 1196 * ideal, but the overhead of checking all CPUs' callback lists is even 1197 * less ideal, especially on large systems. Furthermore, the wakeup 1198 * can happen before the callback is fully removed, so we have no choice 1199 * but to accept this type of error. 1200 * 1201 * This function is also subject to counter-wrap errors, but let's face 1202 * it, if this function was preempted for enough time for the counters 1203 * to wrap, it really doesn't matter whether or not we expedite the grace 1204 * period. The extra overhead of a needlessly expedited grace period is 1205 * negligible when amortized over that time period, and the extra latency 1206 * of a needlessly non-expedited grace period is similarly negligible. 1207 */ 1208 static bool srcu_should_expedite(struct srcu_struct *ssp) 1209 { 1210 unsigned long curseq; 1211 unsigned long flags; 1212 struct srcu_data *sdp; 1213 unsigned long t; 1214 unsigned long tlast; 1215 1216 check_init_srcu_struct(ssp); 1217 /* If _lite() readers, don't do unsolicited expediting. */ 1218 if (this_cpu_read(ssp->sda->srcu_reader_flavor) & SRCU_READ_FLAVOR_SLOWGP) 1219 return false; 1220 /* If the local srcu_data structure has callbacks, not idle. */ 1221 sdp = raw_cpu_ptr(ssp->sda); 1222 spin_lock_irqsave_rcu_node(sdp, flags); 1223 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 1224 spin_unlock_irqrestore_rcu_node(sdp, flags); 1225 return false; /* Callbacks already present, so not idle. */ 1226 } 1227 spin_unlock_irqrestore_rcu_node(sdp, flags); 1228 1229 /* 1230 * No local callbacks, so probabilistically probe global state. 1231 * Exact information would require acquiring locks, which would 1232 * kill scalability, hence the probabilistic nature of the probe. 1233 */ 1234 1235 /* First, see if enough time has passed since the last GP. */ 1236 t = ktime_get_mono_fast_ns(); 1237 tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end); 1238 if (exp_holdoff == 0 || 1239 time_in_range_open(t, tlast, tlast + exp_holdoff)) 1240 return false; /* Too soon after last GP. */ 1241 1242 /* Next, check for probable idleness. */ 1243 curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); 1244 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 1245 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed))) 1246 return false; /* Grace period in progress, so not idle. */ 1247 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 1248 if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)) 1249 return false; /* GP # changed, so not idle. */ 1250 return true; /* With reasonable probability, idle! */ 1251 } 1252 1253 /* 1254 * SRCU callback function to leak a callback. 1255 */ 1256 static void srcu_leak_callback(struct rcu_head *rhp) 1257 { 1258 } 1259 1260 /* 1261 * Start an SRCU grace period, and also queue the callback if non-NULL. 1262 */ 1263 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp, 1264 struct rcu_head *rhp, bool do_norm) 1265 { 1266 unsigned long flags; 1267 int idx; 1268 bool needexp = false; 1269 bool needgp = false; 1270 unsigned long s; 1271 struct srcu_data *sdp; 1272 struct srcu_node *sdp_mynode; 1273 int ss_state; 1274 1275 check_init_srcu_struct(ssp); 1276 /* 1277 * While starting a new grace period, make sure we are in an 1278 * SRCU read-side critical section so that the grace-period 1279 * sequence number cannot wrap around in the meantime. 1280 */ 1281 idx = __srcu_read_lock_nmisafe(ssp); 1282 ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state); 1283 if (ss_state < SRCU_SIZE_WAIT_CALL) 1284 sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id()); 1285 else 1286 sdp = raw_cpu_ptr(ssp->sda); 1287 spin_lock_irqsave_sdp_contention(sdp, &flags); 1288 if (rhp) 1289 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp); 1290 /* 1291 * It's crucial to capture the snapshot 's' for acceleration before 1292 * reading the current gp_seq that is used for advancing. This is 1293 * essential because if the acceleration snapshot is taken after a 1294 * failed advancement attempt, there's a risk that a grace period may 1295 * conclude and a new one may start in the interim. If the snapshot is 1296 * captured after this sequence of events, the acceleration snapshot 's' 1297 * could be excessively advanced, leading to acceleration failure. 1298 * In such a scenario, an 'acceleration leak' can occur, where new 1299 * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment. 1300 * Also note that encountering advancing failures is a normal 1301 * occurrence when the grace period for RCU_WAIT_TAIL is in progress. 1302 * 1303 * To see this, consider the following events which occur if 1304 * rcu_seq_snap() were to be called after advance: 1305 * 1306 * 1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the 1307 * RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8). 1308 * 1309 * 2) The grace period for RCU_WAIT_TAIL is seen as started but not 1310 * completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1. 1311 * 1312 * 3) This value is passed to rcu_segcblist_advance() which can't move 1313 * any segment forward and fails. 1314 * 1315 * 4) srcu_gp_start_if_needed() still proceeds with callback acceleration. 1316 * But then the call to rcu_seq_snap() observes the grace period for the 1317 * RCU_WAIT_TAIL segment as completed and the subsequent one for the 1318 * RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1) 1319 * so it returns a snapshot of the next grace period, which is X + 12. 1320 * 1321 * 5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the 1322 * freshly enqueued callback in RCU_NEXT_TAIL can't move to 1323 * RCU_NEXT_READY_TAIL which already has callbacks for a previous grace 1324 * period (gp_num = X + 8). So acceleration fails. 1325 */ 1326 s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); 1327 if (rhp) { 1328 rcu_segcblist_advance(&sdp->srcu_cblist, 1329 rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); 1330 /* 1331 * Acceleration can never fail because the base current gp_seq 1332 * used for acceleration is <= the value of gp_seq used for 1333 * advancing. This means that RCU_NEXT_TAIL segment will 1334 * always be able to be emptied by the acceleration into the 1335 * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments. 1336 */ 1337 WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s)); 1338 } 1339 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 1340 sdp->srcu_gp_seq_needed = s; 1341 needgp = true; 1342 } 1343 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 1344 sdp->srcu_gp_seq_needed_exp = s; 1345 needexp = true; 1346 } 1347 spin_unlock_irqrestore_rcu_node(sdp, flags); 1348 1349 /* Ensure that snp node tree is fully initialized before traversing it */ 1350 if (ss_state < SRCU_SIZE_WAIT_BARRIER) 1351 sdp_mynode = NULL; 1352 else 1353 sdp_mynode = sdp->mynode; 1354 1355 if (needgp) 1356 srcu_funnel_gp_start(ssp, sdp, s, do_norm); 1357 else if (needexp) 1358 srcu_funnel_exp_start(ssp, sdp_mynode, s); 1359 __srcu_read_unlock_nmisafe(ssp, idx); 1360 return s; 1361 } 1362 1363 /* 1364 * Enqueue an SRCU callback on the srcu_data structure associated with 1365 * the current CPU and the specified srcu_struct structure, initiating 1366 * grace-period processing if it is not already running. 1367 * 1368 * Note that all CPUs must agree that the grace period extended beyond 1369 * all pre-existing SRCU read-side critical section. On systems with 1370 * more than one CPU, this means that when "func()" is invoked, each CPU 1371 * is guaranteed to have executed a full memory barrier since the end of 1372 * its last corresponding SRCU read-side critical section whose beginning 1373 * preceded the call to call_srcu(). It also means that each CPU executing 1374 * an SRCU read-side critical section that continues beyond the start of 1375 * "func()" must have executed a memory barrier after the call_srcu() 1376 * but before the beginning of that SRCU read-side critical section. 1377 * Note that these guarantees include CPUs that are offline, idle, or 1378 * executing in user mode, as well as CPUs that are executing in the kernel. 1379 * 1380 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the 1381 * resulting SRCU callback function "func()", then both CPU A and CPU 1382 * B are guaranteed to execute a full memory barrier during the time 1383 * interval between the call to call_srcu() and the invocation of "func()". 1384 * This guarantee applies even if CPU A and CPU B are the same CPU (but 1385 * again only if the system has more than one CPU). 1386 * 1387 * Of course, these guarantees apply only for invocations of call_srcu(), 1388 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 1389 * srcu_struct structure. 1390 */ 1391 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 1392 rcu_callback_t func, bool do_norm) 1393 { 1394 if (debug_rcu_head_queue(rhp)) { 1395 /* Probable double call_srcu(), so leak the callback. */ 1396 WRITE_ONCE(rhp->func, srcu_leak_callback); 1397 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 1398 return; 1399 } 1400 rhp->func = func; 1401 (void)srcu_gp_start_if_needed(ssp, rhp, do_norm); 1402 } 1403 1404 /** 1405 * call_srcu() - Queue a callback for invocation after an SRCU grace period 1406 * @ssp: srcu_struct in queue the callback 1407 * @rhp: structure to be used for queueing the SRCU callback. 1408 * @func: function to be invoked after the SRCU grace period 1409 * 1410 * The callback function will be invoked some time after a full SRCU 1411 * grace period elapses, in other words after all pre-existing SRCU 1412 * read-side critical sections have completed. However, the callback 1413 * function might well execute concurrently with other SRCU read-side 1414 * critical sections that started after call_srcu() was invoked. SRCU 1415 * read-side critical sections are delimited by srcu_read_lock() and 1416 * srcu_read_unlock(), and may be nested. 1417 * 1418 * The callback will be invoked from process context, but with bh 1419 * disabled. The callback function must therefore be fast and must 1420 * not block. 1421 * 1422 * See the description of call_rcu() for more detailed information on 1423 * memory ordering guarantees. 1424 */ 1425 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 1426 rcu_callback_t func) 1427 { 1428 __call_srcu(ssp, rhp, func, true); 1429 } 1430 EXPORT_SYMBOL_GPL(call_srcu); 1431 1432 /* 1433 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 1434 */ 1435 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) 1436 { 1437 struct rcu_synchronize rcu; 1438 1439 srcu_lock_sync(&ssp->dep_map); 1440 1441 RCU_LOCKDEP_WARN(lockdep_is_held(ssp) || 1442 lock_is_held(&rcu_bh_lock_map) || 1443 lock_is_held(&rcu_lock_map) || 1444 lock_is_held(&rcu_sched_lock_map), 1445 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 1446 1447 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 1448 return; 1449 might_sleep(); 1450 check_init_srcu_struct(ssp); 1451 init_completion(&rcu.completion); 1452 init_rcu_head_on_stack(&rcu.head); 1453 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); 1454 wait_for_completion(&rcu.completion); 1455 destroy_rcu_head_on_stack(&rcu.head); 1456 1457 /* 1458 * Make sure that later code is ordered after the SRCU grace 1459 * period. This pairs with the spin_lock_irq_rcu_node() 1460 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 1461 * because the current CPU might have been totally uninvolved with 1462 * (and thus unordered against) that grace period. 1463 */ 1464 smp_mb(); 1465 } 1466 1467 /** 1468 * synchronize_srcu_expedited - Brute-force SRCU grace period 1469 * @ssp: srcu_struct with which to synchronize. 1470 * 1471 * Wait for an SRCU grace period to elapse, but be more aggressive about 1472 * spinning rather than blocking when waiting. 1473 * 1474 * Note that synchronize_srcu_expedited() has the same deadlock and 1475 * memory-ordering properties as does synchronize_srcu(). 1476 */ 1477 void synchronize_srcu_expedited(struct srcu_struct *ssp) 1478 { 1479 __synchronize_srcu(ssp, rcu_gp_is_normal()); 1480 } 1481 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 1482 1483 /** 1484 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 1485 * @ssp: srcu_struct with which to synchronize. 1486 * 1487 * Wait for the count to drain to zero of both indexes. To avoid the 1488 * possible starvation of synchronize_srcu(), it waits for the count of 1489 * the index=!(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]) to drain to zero 1490 * at first, and then flip the ->srcu_ctrp and wait for the count of the 1491 * other index. 1492 * 1493 * Can block; must be called from process context. 1494 * 1495 * Note that it is illegal to call synchronize_srcu() from the corresponding 1496 * SRCU read-side critical section; doing so will result in deadlock. 1497 * However, it is perfectly legal to call synchronize_srcu() on one 1498 * srcu_struct from some other srcu_struct's read-side critical section, 1499 * as long as the resulting graph of srcu_structs is acyclic. 1500 * 1501 * There are memory-ordering constraints implied by synchronize_srcu(). 1502 * On systems with more than one CPU, when synchronize_srcu() returns, 1503 * each CPU is guaranteed to have executed a full memory barrier since 1504 * the end of its last corresponding SRCU read-side critical section 1505 * whose beginning preceded the call to synchronize_srcu(). In addition, 1506 * each CPU having an SRCU read-side critical section that extends beyond 1507 * the return from synchronize_srcu() is guaranteed to have executed a 1508 * full memory barrier after the beginning of synchronize_srcu() and before 1509 * the beginning of that SRCU read-side critical section. Note that these 1510 * guarantees include CPUs that are offline, idle, or executing in user mode, 1511 * as well as CPUs that are executing in the kernel. 1512 * 1513 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 1514 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 1515 * to have executed a full memory barrier during the execution of 1516 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 1517 * are the same CPU, but again only if the system has more than one CPU. 1518 * 1519 * Of course, these memory-ordering guarantees apply only when 1520 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 1521 * passed the same srcu_struct structure. 1522 * 1523 * Implementation of these memory-ordering guarantees is similar to 1524 * that of synchronize_rcu(). 1525 * 1526 * If SRCU is likely idle as determined by srcu_should_expedite(), 1527 * expedite the first request. This semantic was provided by Classic SRCU, 1528 * and is relied upon by its users, so TREE SRCU must also provide it. 1529 * Note that detecting idleness is heuristic and subject to both false 1530 * positives and negatives. 1531 */ 1532 void synchronize_srcu(struct srcu_struct *ssp) 1533 { 1534 if (srcu_should_expedite(ssp) || rcu_gp_is_expedited()) 1535 synchronize_srcu_expedited(ssp); 1536 else 1537 __synchronize_srcu(ssp, true); 1538 } 1539 EXPORT_SYMBOL_GPL(synchronize_srcu); 1540 1541 /** 1542 * get_state_synchronize_srcu - Provide an end-of-grace-period cookie 1543 * @ssp: srcu_struct to provide cookie for. 1544 * 1545 * This function returns a cookie that can be passed to 1546 * poll_state_synchronize_srcu(), which will return true if a full grace 1547 * period has elapsed in the meantime. It is the caller's responsibility 1548 * to make sure that grace period happens, for example, by invoking 1549 * call_srcu() after return from get_state_synchronize_srcu(). 1550 */ 1551 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp) 1552 { 1553 // Any prior manipulation of SRCU-protected data must happen 1554 // before the load from ->srcu_gp_seq. 1555 smp_mb(); 1556 return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); 1557 } 1558 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu); 1559 1560 /** 1561 * start_poll_synchronize_srcu - Provide cookie and start grace period 1562 * @ssp: srcu_struct to provide cookie for. 1563 * 1564 * This function returns a cookie that can be passed to 1565 * poll_state_synchronize_srcu(), which will return true if a full grace 1566 * period has elapsed in the meantime. Unlike get_state_synchronize_srcu(), 1567 * this function also ensures that any needed SRCU grace period will be 1568 * started. This convenience does come at a cost in terms of CPU overhead. 1569 */ 1570 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp) 1571 { 1572 return srcu_gp_start_if_needed(ssp, NULL, true); 1573 } 1574 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu); 1575 1576 /** 1577 * poll_state_synchronize_srcu - Has cookie's grace period ended? 1578 * @ssp: srcu_struct to provide cookie for. 1579 * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu(). 1580 * 1581 * This function takes the cookie that was returned from either 1582 * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and 1583 * returns @true if an SRCU grace period elapsed since the time that the 1584 * cookie was created. 1585 * 1586 * Because cookies are finite in size, wrapping/overflow is possible. 1587 * This is more pronounced on 32-bit systems where cookies are 32 bits, 1588 * where in theory wrapping could happen in about 14 hours assuming 1589 * 25-microsecond expedited SRCU grace periods. However, a more likely 1590 * overflow lower bound is on the order of 24 days in the case of 1591 * one-millisecond SRCU grace periods. Of course, wrapping in a 64-bit 1592 * system requires geologic timespans, as in more than seven million years 1593 * even for expedited SRCU grace periods. 1594 * 1595 * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems 1596 * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU. This uses 1597 * a 16-bit cookie, which rcutorture routinely wraps in a matter of a 1598 * few minutes. If this proves to be a problem, this counter will be 1599 * expanded to the same size as for Tree SRCU. 1600 */ 1601 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie) 1602 { 1603 if (cookie != SRCU_GET_STATE_COMPLETED && 1604 !rcu_seq_done_exact(&ssp->srcu_sup->srcu_gp_seq, cookie)) 1605 return false; 1606 // Ensure that the end of the SRCU grace period happens before 1607 // any subsequent code that the caller might execute. 1608 smp_mb(); // ^^^ 1609 return true; 1610 } 1611 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu); 1612 1613 /* 1614 * Callback function for srcu_barrier() use. 1615 */ 1616 static void srcu_barrier_cb(struct rcu_head *rhp) 1617 { 1618 struct srcu_data *sdp; 1619 struct srcu_struct *ssp; 1620 1621 rhp->next = rhp; // Mark the callback as having been invoked. 1622 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1623 ssp = sdp->ssp; 1624 if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) 1625 complete(&ssp->srcu_sup->srcu_barrier_completion); 1626 } 1627 1628 /* 1629 * Enqueue an srcu_barrier() callback on the specified srcu_data 1630 * structure's ->cblist. but only if that ->cblist already has at least one 1631 * callback enqueued. Note that if a CPU already has callbacks enqueue, 1632 * it must have already registered the need for a future grace period, 1633 * so all we need do is enqueue a callback that will use the same grace 1634 * period as the last callback already in the queue. 1635 */ 1636 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp) 1637 { 1638 spin_lock_irq_rcu_node(sdp); 1639 atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt); 1640 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1641 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1642 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1643 &sdp->srcu_barrier_head)) { 1644 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1645 atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt); 1646 } 1647 spin_unlock_irq_rcu_node(sdp); 1648 } 1649 1650 /** 1651 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1652 * @ssp: srcu_struct on which to wait for in-flight callbacks. 1653 */ 1654 void srcu_barrier(struct srcu_struct *ssp) 1655 { 1656 int cpu; 1657 int idx; 1658 unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq); 1659 1660 check_init_srcu_struct(ssp); 1661 mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex); 1662 if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) { 1663 smp_mb(); /* Force ordering following return. */ 1664 mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); 1665 return; /* Someone else did our work for us. */ 1666 } 1667 rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq); 1668 init_completion(&ssp->srcu_sup->srcu_barrier_completion); 1669 1670 /* Initial count prevents reaching zero until all CBs are posted. */ 1671 atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1); 1672 1673 idx = __srcu_read_lock_nmisafe(ssp); 1674 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 1675 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, get_boot_cpu_id())); 1676 else 1677 for_each_possible_cpu(cpu) 1678 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu)); 1679 __srcu_read_unlock_nmisafe(ssp, idx); 1680 1681 /* Remove the initial count, at which point reaching zero can happen. */ 1682 if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) 1683 complete(&ssp->srcu_sup->srcu_barrier_completion); 1684 wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion); 1685 1686 rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq); 1687 mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); 1688 } 1689 EXPORT_SYMBOL_GPL(srcu_barrier); 1690 1691 /** 1692 * srcu_batches_completed - return batches completed. 1693 * @ssp: srcu_struct on which to report batch completion. 1694 * 1695 * Report the number of batches, correlated with, but not necessarily 1696 * precisely the same as, the number of grace periods that have elapsed. 1697 */ 1698 unsigned long srcu_batches_completed(struct srcu_struct *ssp) 1699 { 1700 return READ_ONCE(ssp->srcu_sup->srcu_gp_seq); 1701 } 1702 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1703 1704 /* 1705 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1706 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1707 * completed in that state. 1708 */ 1709 static void srcu_advance_state(struct srcu_struct *ssp) 1710 { 1711 int idx; 1712 1713 mutex_lock(&ssp->srcu_sup->srcu_gp_mutex); 1714 1715 /* 1716 * Because readers might be delayed for an extended period after 1717 * fetching ->srcu_ctrp for their index, at any point in time there 1718 * might well be readers using both idx=0 and idx=1. We therefore 1719 * need to wait for readers to clear from both index values before 1720 * invoking a callback. 1721 * 1722 * The load-acquire ensures that we see the accesses performed 1723 * by the prior grace period. 1724 */ 1725 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */ 1726 if (idx == SRCU_STATE_IDLE) { 1727 spin_lock_irq_rcu_node(ssp->srcu_sup); 1728 if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { 1729 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)); 1730 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1731 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1732 return; 1733 } 1734 idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)); 1735 if (idx == SRCU_STATE_IDLE) 1736 srcu_gp_start(ssp); 1737 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1738 if (idx != SRCU_STATE_IDLE) { 1739 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1740 return; /* Someone else started the grace period. */ 1741 } 1742 } 1743 1744 if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1745 idx = !(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]); 1746 if (!try_check_zero(ssp, idx, 1)) { 1747 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1748 return; /* readers present, retry later. */ 1749 } 1750 srcu_flip(ssp); 1751 spin_lock_irq_rcu_node(ssp->srcu_sup); 1752 rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2); 1753 ssp->srcu_sup->srcu_n_exp_nodelay = 0; 1754 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1755 } 1756 1757 if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1758 1759 /* 1760 * SRCU read-side critical sections are normally short, 1761 * so check at least twice in quick succession after a flip. 1762 */ 1763 idx = !(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]); 1764 if (!try_check_zero(ssp, idx, 2)) { 1765 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1766 return; /* readers present, retry later. */ 1767 } 1768 ssp->srcu_sup->srcu_n_exp_nodelay = 0; 1769 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ 1770 } 1771 } 1772 1773 /* 1774 * Invoke a limited number of SRCU callbacks that have passed through 1775 * their grace period. If there are more to do, SRCU will reschedule 1776 * the workqueue. Note that needed memory barriers have been executed 1777 * in this task's context by srcu_readers_active_idx_check(). 1778 */ 1779 static void srcu_invoke_callbacks(struct work_struct *work) 1780 { 1781 long len; 1782 bool more; 1783 struct rcu_cblist ready_cbs; 1784 struct rcu_head *rhp; 1785 struct srcu_data *sdp; 1786 struct srcu_struct *ssp; 1787 1788 sdp = container_of(work, struct srcu_data, work); 1789 1790 ssp = sdp->ssp; 1791 rcu_cblist_init(&ready_cbs); 1792 spin_lock_irq_rcu_node(sdp); 1793 WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL)); 1794 rcu_segcblist_advance(&sdp->srcu_cblist, 1795 rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); 1796 /* 1797 * Although this function is theoretically re-entrant, concurrent 1798 * callbacks invocation is disallowed to avoid executing an SRCU barrier 1799 * too early. 1800 */ 1801 if (sdp->srcu_cblist_invoking || 1802 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1803 spin_unlock_irq_rcu_node(sdp); 1804 return; /* Someone else on the job or nothing to do. */ 1805 } 1806 1807 /* We are on the job! Extract and invoke ready callbacks. */ 1808 sdp->srcu_cblist_invoking = true; 1809 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1810 len = ready_cbs.len; 1811 spin_unlock_irq_rcu_node(sdp); 1812 rhp = rcu_cblist_dequeue(&ready_cbs); 1813 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1814 debug_rcu_head_unqueue(rhp); 1815 debug_rcu_head_callback(rhp); 1816 local_bh_disable(); 1817 rhp->func(rhp); 1818 local_bh_enable(); 1819 } 1820 WARN_ON_ONCE(ready_cbs.len); 1821 1822 /* 1823 * Update counts, accelerate new callbacks, and if needed, 1824 * schedule another round of callback invocation. 1825 */ 1826 spin_lock_irq_rcu_node(sdp); 1827 rcu_segcblist_add_len(&sdp->srcu_cblist, -len); 1828 sdp->srcu_cblist_invoking = false; 1829 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1830 spin_unlock_irq_rcu_node(sdp); 1831 /* An SRCU barrier or callbacks from previous nesting work pending */ 1832 if (more) 1833 srcu_schedule_cbs_sdp(sdp, 0); 1834 } 1835 1836 /* 1837 * Finished one round of SRCU grace period. Start another if there are 1838 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1839 */ 1840 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) 1841 { 1842 bool pushgp = true; 1843 1844 spin_lock_irq_rcu_node(ssp->srcu_sup); 1845 if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { 1846 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) { 1847 /* All requests fulfilled, time to go idle. */ 1848 pushgp = false; 1849 } 1850 } else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) { 1851 /* Outstanding request and no GP. Start one. */ 1852 srcu_gp_start(ssp); 1853 } 1854 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1855 1856 if (pushgp) 1857 queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay); 1858 } 1859 1860 /* 1861 * This is the work-queue function that handles SRCU grace periods. 1862 */ 1863 static void process_srcu(struct work_struct *work) 1864 { 1865 unsigned long curdelay; 1866 unsigned long j; 1867 struct srcu_struct *ssp; 1868 struct srcu_usage *sup; 1869 1870 sup = container_of(work, struct srcu_usage, work.work); 1871 ssp = sup->srcu_ssp; 1872 1873 srcu_advance_state(ssp); 1874 spin_lock_irq_rcu_node(ssp->srcu_sup); 1875 curdelay = srcu_get_delay(ssp); 1876 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1877 if (curdelay) { 1878 WRITE_ONCE(sup->reschedule_count, 0); 1879 } else { 1880 j = jiffies; 1881 if (READ_ONCE(sup->reschedule_jiffies) == j) { 1882 ASSERT_EXCLUSIVE_WRITER(sup->reschedule_count); 1883 WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1); 1884 if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay) 1885 curdelay = 1; 1886 } else { 1887 WRITE_ONCE(sup->reschedule_count, 1); 1888 WRITE_ONCE(sup->reschedule_jiffies, j); 1889 } 1890 } 1891 srcu_reschedule(ssp, curdelay); 1892 } 1893 1894 void srcutorture_get_gp_data(struct srcu_struct *ssp, int *flags, 1895 unsigned long *gp_seq) 1896 { 1897 *flags = 0; 1898 *gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); 1899 } 1900 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1901 1902 static const char * const srcu_size_state_name[] = { 1903 "SRCU_SIZE_SMALL", 1904 "SRCU_SIZE_ALLOC", 1905 "SRCU_SIZE_WAIT_BARRIER", 1906 "SRCU_SIZE_WAIT_CALL", 1907 "SRCU_SIZE_WAIT_CBS1", 1908 "SRCU_SIZE_WAIT_CBS2", 1909 "SRCU_SIZE_WAIT_CBS3", 1910 "SRCU_SIZE_WAIT_CBS4", 1911 "SRCU_SIZE_BIG", 1912 "SRCU_SIZE_???", 1913 }; 1914 1915 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) 1916 { 1917 int cpu; 1918 int idx; 1919 unsigned long s0 = 0, s1 = 0; 1920 int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state); 1921 int ss_state_idx = ss_state; 1922 1923 idx = ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]; 1924 if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name)) 1925 ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1; 1926 pr_alert("%s%s Tree SRCU g%ld state %d (%s)", 1927 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state, 1928 srcu_size_state_name[ss_state_idx]); 1929 if (!ssp->sda) { 1930 // Called after cleanup_srcu_struct(), perhaps. 1931 pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n"); 1932 } else { 1933 pr_cont(" per-CPU(idx=%d):", idx); 1934 for_each_possible_cpu(cpu) { 1935 unsigned long l0, l1; 1936 unsigned long u0, u1; 1937 long c0, c1; 1938 struct srcu_data *sdp; 1939 1940 sdp = per_cpu_ptr(ssp->sda, cpu); 1941 u0 = data_race(atomic_long_read(&sdp->srcu_ctrs[!idx].srcu_unlocks)); 1942 u1 = data_race(atomic_long_read(&sdp->srcu_ctrs[idx].srcu_unlocks)); 1943 1944 /* 1945 * Make sure that a lock is always counted if the corresponding 1946 * unlock is counted. 1947 */ 1948 smp_rmb(); 1949 1950 l0 = data_race(atomic_long_read(&sdp->srcu_ctrs[!idx].srcu_locks)); 1951 l1 = data_race(atomic_long_read(&sdp->srcu_ctrs[idx].srcu_locks)); 1952 1953 c0 = l0 - u0; 1954 c1 = l1 - u1; 1955 pr_cont(" %d(%ld,%ld %c)", 1956 cpu, c0, c1, 1957 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]); 1958 s0 += c0; 1959 s1 += c1; 1960 } 1961 pr_cont(" T(%ld,%ld)\n", s0, s1); 1962 } 1963 if (SRCU_SIZING_IS_TORTURE()) 1964 srcu_transition_to_big(ssp); 1965 } 1966 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1967 1968 static int __init srcu_bootup_announce(void) 1969 { 1970 pr_info("Hierarchical SRCU implementation.\n"); 1971 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1972 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1973 if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY) 1974 pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay); 1975 if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY) 1976 pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay); 1977 pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase); 1978 return 0; 1979 } 1980 early_initcall(srcu_bootup_announce); 1981 1982 void __init srcu_init(void) 1983 { 1984 struct srcu_usage *sup; 1985 1986 /* Decide on srcu_struct-size strategy. */ 1987 if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) { 1988 if (nr_cpu_ids >= big_cpu_lim) { 1989 convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention. 1990 pr_info("%s: Setting srcu_struct sizes to big.\n", __func__); 1991 } else { 1992 convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND; 1993 pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__); 1994 } 1995 } 1996 1997 /* 1998 * Once that is set, call_srcu() can follow the normal path and 1999 * queue delayed work. This must follow RCU workqueues creation 2000 * and timers initialization. 2001 */ 2002 srcu_init_done = true; 2003 while (!list_empty(&srcu_boot_list)) { 2004 sup = list_first_entry(&srcu_boot_list, struct srcu_usage, 2005 work.work.entry); 2006 list_del_init(&sup->work.work.entry); 2007 if (SRCU_SIZING_IS(SRCU_SIZING_INIT) && 2008 sup->srcu_size_state == SRCU_SIZE_SMALL) 2009 sup->srcu_size_state = SRCU_SIZE_ALLOC; 2010 queue_work(rcu_gp_wq, &sup->work.work); 2011 } 2012 } 2013 2014 #ifdef CONFIG_MODULES 2015 2016 /* Initialize any global-scope srcu_struct structures used by this module. */ 2017 static int srcu_module_coming(struct module *mod) 2018 { 2019 int i; 2020 struct srcu_struct *ssp; 2021 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 2022 2023 for (i = 0; i < mod->num_srcu_structs; i++) { 2024 ssp = *(sspp++); 2025 ssp->sda = alloc_percpu(struct srcu_data); 2026 if (WARN_ON_ONCE(!ssp->sda)) 2027 return -ENOMEM; 2028 ssp->srcu_ctrp = &ssp->sda->srcu_ctrs[0]; 2029 } 2030 return 0; 2031 } 2032 2033 /* Clean up any global-scope srcu_struct structures used by this module. */ 2034 static void srcu_module_going(struct module *mod) 2035 { 2036 int i; 2037 struct srcu_struct *ssp; 2038 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 2039 2040 for (i = 0; i < mod->num_srcu_structs; i++) { 2041 ssp = *(sspp++); 2042 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) && 2043 !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static)) 2044 cleanup_srcu_struct(ssp); 2045 if (!WARN_ON(srcu_readers_active(ssp))) 2046 free_percpu(ssp->sda); 2047 } 2048 } 2049 2050 /* Handle one module, either coming or going. */ 2051 static int srcu_module_notify(struct notifier_block *self, 2052 unsigned long val, void *data) 2053 { 2054 struct module *mod = data; 2055 int ret = 0; 2056 2057 switch (val) { 2058 case MODULE_STATE_COMING: 2059 ret = srcu_module_coming(mod); 2060 break; 2061 case MODULE_STATE_GOING: 2062 srcu_module_going(mod); 2063 break; 2064 default: 2065 break; 2066 } 2067 return ret; 2068 } 2069 2070 static struct notifier_block srcu_module_nb = { 2071 .notifier_call = srcu_module_notify, 2072 .priority = 0, 2073 }; 2074 2075 static __init int init_srcu_module_notifier(void) 2076 { 2077 int ret; 2078 2079 ret = register_module_notifier(&srcu_module_nb); 2080 if (ret) 2081 pr_warn("Failed to register srcu module notifier\n"); 2082 return ret; 2083 } 2084 late_initcall(init_srcu_module_notifier); 2085 2086 #endif /* #ifdef CONFIG_MODULES */ 2087