xref: /linux/drivers/spi/spi-mem.c (revision fa5ef105618ae9b5aaa51b3f09e41d88d4514207)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 #include <linux/dmaengine.h>
9 #include <linux/iopoll.h>
10 #include <linux/pm_runtime.h>
11 #include <linux/spi/spi.h>
12 #include <linux/spi/spi-mem.h>
13 #include <linux/sched/task_stack.h>
14 
15 #define CREATE_TRACE_POINTS
16 #include <trace/events/spi-mem.h>
17 
18 #include "internals.h"
19 
20 #define SPI_MEM_MAX_BUSWIDTH		8
21 
22 /**
23  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
24  *					  memory operation
25  * @ctlr: the SPI controller requesting this dma_map()
26  * @op: the memory operation containing the buffer to map
27  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
28  *	 function
29  *
30  * Some controllers might want to do DMA on the data buffer embedded in @op.
31  * This helper prepares everything for you and provides a ready-to-use
32  * sg_table. This function is not intended to be called from spi drivers.
33  * Only SPI controller drivers should use it.
34  * Note that the caller must ensure the memory region pointed by
35  * op->data.buf.{in,out} is DMA-able before calling this function.
36  *
37  * Return: 0 in case of success, a negative error code otherwise.
38  */
39 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
40 				       const struct spi_mem_op *op,
41 				       struct sg_table *sgt)
42 {
43 	struct device *dmadev;
44 
45 	if (!op->data.nbytes)
46 		return -EINVAL;
47 
48 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
49 		dmadev = ctlr->dma_tx->device->dev;
50 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
51 		dmadev = ctlr->dma_rx->device->dev;
52 	else
53 		dmadev = ctlr->dev.parent;
54 
55 	if (!dmadev)
56 		return -EINVAL;
57 
58 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
59 			   op->data.dir == SPI_MEM_DATA_IN ?
60 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
61 }
62 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
63 
64 /**
65  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
66  *					    memory operation
67  * @ctlr: the SPI controller requesting this dma_unmap()
68  * @op: the memory operation containing the buffer to unmap
69  * @sgt: a pointer to an sg_table previously initialized by
70  *	 spi_controller_dma_map_mem_op_data()
71  *
72  * Some controllers might want to do DMA on the data buffer embedded in @op.
73  * This helper prepares things so that the CPU can access the
74  * op->data.buf.{in,out} buffer again.
75  *
76  * This function is not intended to be called from SPI drivers. Only SPI
77  * controller drivers should use it.
78  *
79  * This function should be called after the DMA operation has finished and is
80  * only valid if the previous spi_controller_dma_map_mem_op_data() call
81  * returned 0.
82  *
83  * Return: 0 in case of success, a negative error code otherwise.
84  */
85 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
86 					  const struct spi_mem_op *op,
87 					  struct sg_table *sgt)
88 {
89 	struct device *dmadev;
90 
91 	if (!op->data.nbytes)
92 		return;
93 
94 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
95 		dmadev = ctlr->dma_tx->device->dev;
96 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
97 		dmadev = ctlr->dma_rx->device->dev;
98 	else
99 		dmadev = ctlr->dev.parent;
100 
101 	spi_unmap_buf(ctlr, dmadev, sgt,
102 		      op->data.dir == SPI_MEM_DATA_IN ?
103 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
104 }
105 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
106 
107 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
108 {
109 	u32 mode = mem->spi->mode;
110 
111 	switch (buswidth) {
112 	case 1:
113 		return 0;
114 
115 	case 2:
116 		if ((tx &&
117 		     (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
118 		    (!tx &&
119 		     (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
120 			return 0;
121 
122 		break;
123 
124 	case 4:
125 		if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
126 		    (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
127 			return 0;
128 
129 		break;
130 
131 	case 8:
132 		if ((tx && (mode & SPI_TX_OCTAL)) ||
133 		    (!tx && (mode & SPI_RX_OCTAL)))
134 			return 0;
135 
136 		break;
137 
138 	default:
139 		break;
140 	}
141 
142 	return -ENOTSUPP;
143 }
144 
145 static bool spi_mem_check_buswidth(struct spi_mem *mem,
146 				   const struct spi_mem_op *op)
147 {
148 	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
149 		return false;
150 
151 	if (op->addr.nbytes &&
152 	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
153 		return false;
154 
155 	if (op->dummy.nbytes &&
156 	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
157 		return false;
158 
159 	if (op->data.dir != SPI_MEM_NO_DATA &&
160 	    spi_check_buswidth_req(mem, op->data.buswidth,
161 				   op->data.dir == SPI_MEM_DATA_OUT))
162 		return false;
163 
164 	return true;
165 }
166 
167 bool spi_mem_default_supports_op(struct spi_mem *mem,
168 				 const struct spi_mem_op *op)
169 {
170 	struct spi_controller *ctlr = mem->spi->controller;
171 	bool op_is_dtr =
172 		op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr;
173 
174 	if (op_is_dtr) {
175 		if (!spi_mem_controller_is_capable(ctlr, dtr))
176 			return false;
177 
178 		if (op->data.swap16 && !spi_mem_controller_is_capable(ctlr, swap16))
179 			return false;
180 
181 		if (op->cmd.nbytes != 2)
182 			return false;
183 	} else {
184 		if (op->cmd.nbytes != 1)
185 			return false;
186 	}
187 
188 	if (op->data.ecc) {
189 		if (!spi_mem_controller_is_capable(ctlr, ecc))
190 			return false;
191 	}
192 
193 	if (op->max_freq && mem->spi->controller->min_speed_hz &&
194 	    op->max_freq < mem->spi->controller->min_speed_hz)
195 		return false;
196 
197 	if (op->max_freq &&
198 	    op->max_freq < mem->spi->max_speed_hz) {
199 		if (!spi_mem_controller_is_capable(ctlr, per_op_freq))
200 			return false;
201 	}
202 
203 	return spi_mem_check_buswidth(mem, op);
204 }
205 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
206 
207 static bool spi_mem_buswidth_is_valid(u8 buswidth)
208 {
209 	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
210 		return false;
211 
212 	return true;
213 }
214 
215 static int spi_mem_check_op(const struct spi_mem_op *op)
216 {
217 	if (!op->cmd.buswidth || !op->cmd.nbytes)
218 		return -EINVAL;
219 
220 	if ((op->addr.nbytes && !op->addr.buswidth) ||
221 	    (op->dummy.nbytes && !op->dummy.buswidth) ||
222 	    (op->data.nbytes && !op->data.buswidth))
223 		return -EINVAL;
224 
225 	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
226 	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
227 	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
228 	    !spi_mem_buswidth_is_valid(op->data.buswidth))
229 		return -EINVAL;
230 
231 	/* Buffers must be DMA-able. */
232 	if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_IN &&
233 			 object_is_on_stack(op->data.buf.in)))
234 		return -EINVAL;
235 
236 	if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_OUT &&
237 			 object_is_on_stack(op->data.buf.out)))
238 		return -EINVAL;
239 
240 	return 0;
241 }
242 
243 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
244 					 const struct spi_mem_op *op)
245 {
246 	struct spi_controller *ctlr = mem->spi->controller;
247 
248 	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
249 		return ctlr->mem_ops->supports_op(mem, op);
250 
251 	return spi_mem_default_supports_op(mem, op);
252 }
253 
254 /**
255  * spi_mem_supports_op() - Check if a memory device and the controller it is
256  *			   connected to support a specific memory operation
257  * @mem: the SPI memory
258  * @op: the memory operation to check
259  *
260  * Some controllers are only supporting Single or Dual IOs, others might only
261  * support specific opcodes, or it can even be that the controller and device
262  * both support Quad IOs but the hardware prevents you from using it because
263  * only 2 IO lines are connected.
264  *
265  * This function checks whether a specific operation is supported.
266  *
267  * Return: true if @op is supported, false otherwise.
268  */
269 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
270 {
271 	/* Make sure the operation frequency is correct before going futher */
272 	spi_mem_adjust_op_freq(mem, (struct spi_mem_op *)op);
273 
274 	if (spi_mem_check_op(op))
275 		return false;
276 
277 	return spi_mem_internal_supports_op(mem, op);
278 }
279 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
280 
281 static int spi_mem_access_start(struct spi_mem *mem)
282 {
283 	struct spi_controller *ctlr = mem->spi->controller;
284 
285 	/*
286 	 * Flush the message queue before executing our SPI memory
287 	 * operation to prevent preemption of regular SPI transfers.
288 	 */
289 	spi_flush_queue(ctlr);
290 
291 	if (ctlr->auto_runtime_pm) {
292 		int ret;
293 
294 		ret = pm_runtime_resume_and_get(ctlr->dev.parent);
295 		if (ret < 0) {
296 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
297 				ret);
298 			return ret;
299 		}
300 	}
301 
302 	mutex_lock(&ctlr->bus_lock_mutex);
303 	mutex_lock(&ctlr->io_mutex);
304 
305 	return 0;
306 }
307 
308 static void spi_mem_access_end(struct spi_mem *mem)
309 {
310 	struct spi_controller *ctlr = mem->spi->controller;
311 
312 	mutex_unlock(&ctlr->io_mutex);
313 	mutex_unlock(&ctlr->bus_lock_mutex);
314 
315 	if (ctlr->auto_runtime_pm)
316 		pm_runtime_put(ctlr->dev.parent);
317 }
318 
319 static void spi_mem_add_op_stats(struct spi_statistics __percpu *pcpu_stats,
320 				 const struct spi_mem_op *op, int exec_op_ret)
321 {
322 	struct spi_statistics *stats;
323 	u64 len, l2len;
324 
325 	get_cpu();
326 	stats = this_cpu_ptr(pcpu_stats);
327 	u64_stats_update_begin(&stats->syncp);
328 
329 	/*
330 	 * We do not have the concept of messages or transfers. Let's consider
331 	 * that one operation is equivalent to one message and one transfer.
332 	 */
333 	u64_stats_inc(&stats->messages);
334 	u64_stats_inc(&stats->transfers);
335 
336 	/* Use the sum of all lengths as bytes count and histogram value. */
337 	len = op->cmd.nbytes + op->addr.nbytes;
338 	len += op->dummy.nbytes + op->data.nbytes;
339 	u64_stats_add(&stats->bytes, len);
340 	l2len = min(fls(len), SPI_STATISTICS_HISTO_SIZE) - 1;
341 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
342 
343 	/* Only account for data bytes as transferred bytes. */
344 	if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
345 		u64_stats_add(&stats->bytes_tx, op->data.nbytes);
346 	if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
347 		u64_stats_add(&stats->bytes_rx, op->data.nbytes);
348 
349 	/*
350 	 * A timeout is not an error, following the same behavior as
351 	 * spi_transfer_one_message().
352 	 */
353 	if (exec_op_ret == -ETIMEDOUT)
354 		u64_stats_inc(&stats->timedout);
355 	else if (exec_op_ret)
356 		u64_stats_inc(&stats->errors);
357 
358 	u64_stats_update_end(&stats->syncp);
359 	put_cpu();
360 }
361 
362 /**
363  * spi_mem_exec_op() - Execute a memory operation
364  * @mem: the SPI memory
365  * @op: the memory operation to execute
366  *
367  * Executes a memory operation.
368  *
369  * This function first checks that @op is supported and then tries to execute
370  * it.
371  *
372  * Return: 0 in case of success, a negative error code otherwise.
373  */
374 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
375 {
376 	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
377 	struct spi_controller *ctlr = mem->spi->controller;
378 	struct spi_transfer xfers[4] = { };
379 	struct spi_message msg;
380 	u8 *tmpbuf;
381 	int ret;
382 
383 	/* Make sure the operation frequency is correct before going futher */
384 	spi_mem_adjust_op_freq(mem, (struct spi_mem_op *)op);
385 
386 	dev_vdbg(&mem->spi->dev, "[cmd: 0x%02x][%dB addr: %#8llx][%2dB dummy][%4dB data %s] %d%c-%d%c-%d%c-%d%c @ %uHz\n",
387 		 op->cmd.opcode,
388 		 op->addr.nbytes, (op->addr.nbytes ? op->addr.val : 0),
389 		 op->dummy.nbytes,
390 		 op->data.nbytes, (op->data.nbytes ? (op->data.dir == SPI_MEM_DATA_IN ? " read" : "write") : "     "),
391 		 op->cmd.buswidth, op->cmd.dtr ? 'D' : 'S',
392 		 op->addr.buswidth, op->addr.dtr ? 'D' : 'S',
393 		 op->dummy.buswidth, op->dummy.dtr ? 'D' : 'S',
394 		 op->data.buswidth, op->data.dtr ? 'D' : 'S',
395 		 op->max_freq ? op->max_freq : mem->spi->max_speed_hz);
396 
397 	ret = spi_mem_check_op(op);
398 	if (ret)
399 		return ret;
400 
401 	if (!spi_mem_internal_supports_op(mem, op))
402 		return -EOPNOTSUPP;
403 
404 	if (ctlr->mem_ops && ctlr->mem_ops->exec_op && !spi_get_csgpiod(mem->spi, 0)) {
405 		ret = spi_mem_access_start(mem);
406 		if (ret)
407 			return ret;
408 
409 		trace_spi_mem_start_op(mem, op);
410 		ret = ctlr->mem_ops->exec_op(mem, op);
411 		trace_spi_mem_stop_op(mem, op);
412 
413 		spi_mem_access_end(mem);
414 
415 		/*
416 		 * Some controllers only optimize specific paths (typically the
417 		 * read path) and expect the core to use the regular SPI
418 		 * interface in other cases.
419 		 */
420 		if (!ret || (ret != -ENOTSUPP && ret != -EOPNOTSUPP)) {
421 			spi_mem_add_op_stats(ctlr->pcpu_statistics, op, ret);
422 			spi_mem_add_op_stats(mem->spi->pcpu_statistics, op, ret);
423 
424 			return ret;
425 		}
426 	}
427 
428 	tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
429 
430 	/*
431 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
432 	 * we're guaranteed that this buffer is DMA-able, as required by the
433 	 * SPI layer.
434 	 */
435 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
436 	if (!tmpbuf)
437 		return -ENOMEM;
438 
439 	spi_message_init(&msg);
440 
441 	tmpbuf[0] = op->cmd.opcode;
442 	xfers[xferpos].tx_buf = tmpbuf;
443 	xfers[xferpos].len = op->cmd.nbytes;
444 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
445 	xfers[xferpos].speed_hz = op->max_freq;
446 	spi_message_add_tail(&xfers[xferpos], &msg);
447 	xferpos++;
448 	totalxferlen++;
449 
450 	if (op->addr.nbytes) {
451 		int i;
452 
453 		for (i = 0; i < op->addr.nbytes; i++)
454 			tmpbuf[i + 1] = op->addr.val >>
455 					(8 * (op->addr.nbytes - i - 1));
456 
457 		xfers[xferpos].tx_buf = tmpbuf + 1;
458 		xfers[xferpos].len = op->addr.nbytes;
459 		xfers[xferpos].tx_nbits = op->addr.buswidth;
460 		xfers[xferpos].speed_hz = op->max_freq;
461 		spi_message_add_tail(&xfers[xferpos], &msg);
462 		xferpos++;
463 		totalxferlen += op->addr.nbytes;
464 	}
465 
466 	if (op->dummy.nbytes) {
467 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
468 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
469 		xfers[xferpos].len = op->dummy.nbytes;
470 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
471 		xfers[xferpos].dummy_data = 1;
472 		xfers[xferpos].speed_hz = op->max_freq;
473 		spi_message_add_tail(&xfers[xferpos], &msg);
474 		xferpos++;
475 		totalxferlen += op->dummy.nbytes;
476 	}
477 
478 	if (op->data.nbytes) {
479 		if (op->data.dir == SPI_MEM_DATA_IN) {
480 			xfers[xferpos].rx_buf = op->data.buf.in;
481 			xfers[xferpos].rx_nbits = op->data.buswidth;
482 		} else {
483 			xfers[xferpos].tx_buf = op->data.buf.out;
484 			xfers[xferpos].tx_nbits = op->data.buswidth;
485 		}
486 
487 		xfers[xferpos].len = op->data.nbytes;
488 		xfers[xferpos].speed_hz = op->max_freq;
489 		spi_message_add_tail(&xfers[xferpos], &msg);
490 		xferpos++;
491 		totalxferlen += op->data.nbytes;
492 	}
493 
494 	ret = spi_sync(mem->spi, &msg);
495 
496 	kfree(tmpbuf);
497 
498 	if (ret)
499 		return ret;
500 
501 	if (msg.actual_length != totalxferlen)
502 		return -EIO;
503 
504 	return 0;
505 }
506 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
507 
508 /**
509  * spi_mem_get_name() - Return the SPI mem device name to be used by the
510  *			upper layer if necessary
511  * @mem: the SPI memory
512  *
513  * This function allows SPI mem users to retrieve the SPI mem device name.
514  * It is useful if the upper layer needs to expose a custom name for
515  * compatibility reasons.
516  *
517  * Return: a string containing the name of the memory device to be used
518  *	   by the SPI mem user
519  */
520 const char *spi_mem_get_name(struct spi_mem *mem)
521 {
522 	return mem->name;
523 }
524 EXPORT_SYMBOL_GPL(spi_mem_get_name);
525 
526 /**
527  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
528  *			      match controller limitations
529  * @mem: the SPI memory
530  * @op: the operation to adjust
531  *
532  * Some controllers have FIFO limitations and must split a data transfer
533  * operation into multiple ones, others require a specific alignment for
534  * optimized accesses. This function allows SPI mem drivers to split a single
535  * operation into multiple sub-operations when required.
536  *
537  * Return: a negative error code if the controller can't properly adjust @op,
538  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
539  *	   can't be handled in a single step.
540  */
541 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
542 {
543 	struct spi_controller *ctlr = mem->spi->controller;
544 	size_t len;
545 
546 	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
547 		return ctlr->mem_ops->adjust_op_size(mem, op);
548 
549 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
550 		len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
551 
552 		if (len > spi_max_transfer_size(mem->spi))
553 			return -EINVAL;
554 
555 		op->data.nbytes = min3((size_t)op->data.nbytes,
556 				       spi_max_transfer_size(mem->spi),
557 				       spi_max_message_size(mem->spi) -
558 				       len);
559 		if (!op->data.nbytes)
560 			return -EINVAL;
561 	}
562 
563 	return 0;
564 }
565 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
566 
567 /**
568  * spi_mem_adjust_op_freq() - Adjust the frequency of a SPI mem operation to
569  *			      match controller, PCB and chip limitations
570  * @mem: the SPI memory
571  * @op: the operation to adjust
572  *
573  * Some chips have per-op frequency limitations and must adapt the maximum
574  * speed. This function allows SPI mem drivers to set @op->max_freq to the
575  * maximum supported value.
576  */
577 void spi_mem_adjust_op_freq(struct spi_mem *mem, struct spi_mem_op *op)
578 {
579 	if (!op->max_freq || op->max_freq > mem->spi->max_speed_hz)
580 		op->max_freq = mem->spi->max_speed_hz;
581 }
582 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_freq);
583 
584 /**
585  * spi_mem_calc_op_duration() - Derives the theoretical length (in ns) of an
586  *			        operation. This helps finding the best variant
587  *			        among a list of possible choices.
588  * @mem: the SPI memory
589  * @op: the operation to benchmark
590  *
591  * Some chips have per-op frequency limitations, PCBs usually have their own
592  * limitations as well, and controllers can support dual, quad or even octal
593  * modes, sometimes in DTR. All these combinations make it impossible to
594  * statically list the best combination for all situations. If we want something
595  * accurate, all these combinations should be rated (eg. with a time estimate)
596  * and the best pick should be taken based on these calculations.
597  *
598  * Returns a ns estimate for the time this op would take, except if no
599  * frequency limit has been set, in this case we return the number of
600  * cycles nevertheless to allow callers to distinguish which operation
601  * would be the fastest at iso-frequency.
602  */
603 u64 spi_mem_calc_op_duration(struct spi_mem *mem, struct spi_mem_op *op)
604 {
605 	u64 ncycles = 0;
606 	u64 ps_per_cycles, duration;
607 
608 	spi_mem_adjust_op_freq(mem, op);
609 
610 	if (op->max_freq) {
611 		ps_per_cycles = 1000000000000ULL;
612 		do_div(ps_per_cycles, op->max_freq);
613 	} else {
614 		/* In this case, the unit is no longer a time unit */
615 		ps_per_cycles = 1;
616 	}
617 
618 	ncycles += ((op->cmd.nbytes * 8) / op->cmd.buswidth) / (op->cmd.dtr ? 2 : 1);
619 	ncycles += ((op->addr.nbytes * 8) / op->addr.buswidth) / (op->addr.dtr ? 2 : 1);
620 
621 	/* Dummy bytes are optional for some SPI flash memory operations */
622 	if (op->dummy.nbytes)
623 		ncycles += ((op->dummy.nbytes * 8) / op->dummy.buswidth) / (op->dummy.dtr ? 2 : 1);
624 
625 	ncycles += ((op->data.nbytes * 8) / op->data.buswidth) / (op->data.dtr ? 2 : 1);
626 
627 	/* Derive the duration in ps */
628 	duration = ncycles * ps_per_cycles;
629 	/* Convert into ns */
630 	do_div(duration, 1000);
631 
632 	return duration;
633 }
634 EXPORT_SYMBOL_GPL(spi_mem_calc_op_duration);
635 
636 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
637 				      u64 offs, size_t len, void *buf)
638 {
639 	struct spi_mem_op op = desc->info.op_tmpl;
640 	int ret;
641 
642 	op.addr.val = desc->info.offset + offs;
643 	op.data.buf.in = buf;
644 	op.data.nbytes = len;
645 	ret = spi_mem_adjust_op_size(desc->mem, &op);
646 	if (ret)
647 		return ret;
648 
649 	ret = spi_mem_exec_op(desc->mem, &op);
650 	if (ret)
651 		return ret;
652 
653 	return op.data.nbytes;
654 }
655 
656 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
657 				       u64 offs, size_t len, const void *buf)
658 {
659 	struct spi_mem_op op = desc->info.op_tmpl;
660 	int ret;
661 
662 	op.addr.val = desc->info.offset + offs;
663 	op.data.buf.out = buf;
664 	op.data.nbytes = len;
665 	ret = spi_mem_adjust_op_size(desc->mem, &op);
666 	if (ret)
667 		return ret;
668 
669 	ret = spi_mem_exec_op(desc->mem, &op);
670 	if (ret)
671 		return ret;
672 
673 	return op.data.nbytes;
674 }
675 
676 /**
677  * spi_mem_dirmap_create() - Create a direct mapping descriptor
678  * @mem: SPI mem device this direct mapping should be created for
679  * @info: direct mapping information
680  *
681  * This function is creating a direct mapping descriptor which can then be used
682  * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
683  * If the SPI controller driver does not support direct mapping, this function
684  * falls back to an implementation using spi_mem_exec_op(), so that the caller
685  * doesn't have to bother implementing a fallback on his own.
686  *
687  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
688  */
689 struct spi_mem_dirmap_desc *
690 spi_mem_dirmap_create(struct spi_mem *mem,
691 		      const struct spi_mem_dirmap_info *info)
692 {
693 	struct spi_controller *ctlr = mem->spi->controller;
694 	struct spi_mem_dirmap_desc *desc;
695 	int ret = -ENOTSUPP;
696 
697 	/* Make sure the number of address cycles is between 1 and 8 bytes. */
698 	if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
699 		return ERR_PTR(-EINVAL);
700 
701 	/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
702 	if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
703 		return ERR_PTR(-EINVAL);
704 
705 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
706 	if (!desc)
707 		return ERR_PTR(-ENOMEM);
708 
709 	desc->mem = mem;
710 	desc->info = *info;
711 	if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
712 		ret = ctlr->mem_ops->dirmap_create(desc);
713 
714 	if (ret) {
715 		desc->nodirmap = true;
716 		if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
717 			ret = -EOPNOTSUPP;
718 		else
719 			ret = 0;
720 	}
721 
722 	if (ret) {
723 		kfree(desc);
724 		return ERR_PTR(ret);
725 	}
726 
727 	return desc;
728 }
729 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
730 
731 /**
732  * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
733  * @desc: the direct mapping descriptor to destroy
734  *
735  * This function destroys a direct mapping descriptor previously created by
736  * spi_mem_dirmap_create().
737  */
738 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
739 {
740 	struct spi_controller *ctlr = desc->mem->spi->controller;
741 
742 	if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
743 		ctlr->mem_ops->dirmap_destroy(desc);
744 
745 	kfree(desc);
746 }
747 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
748 
749 static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
750 {
751 	struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
752 
753 	spi_mem_dirmap_destroy(desc);
754 }
755 
756 /**
757  * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
758  *				  it to a device
759  * @dev: device the dirmap desc will be attached to
760  * @mem: SPI mem device this direct mapping should be created for
761  * @info: direct mapping information
762  *
763  * devm_ variant of the spi_mem_dirmap_create() function. See
764  * spi_mem_dirmap_create() for more details.
765  *
766  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
767  */
768 struct spi_mem_dirmap_desc *
769 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
770 			   const struct spi_mem_dirmap_info *info)
771 {
772 	struct spi_mem_dirmap_desc **ptr, *desc;
773 
774 	ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
775 			   GFP_KERNEL);
776 	if (!ptr)
777 		return ERR_PTR(-ENOMEM);
778 
779 	desc = spi_mem_dirmap_create(mem, info);
780 	if (IS_ERR(desc)) {
781 		devres_free(ptr);
782 	} else {
783 		*ptr = desc;
784 		devres_add(dev, ptr);
785 	}
786 
787 	return desc;
788 }
789 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
790 
791 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
792 {
793 	struct spi_mem_dirmap_desc **ptr = res;
794 
795 	if (WARN_ON(!ptr || !*ptr))
796 		return 0;
797 
798 	return *ptr == data;
799 }
800 
801 /**
802  * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
803  *				   to a device
804  * @dev: device the dirmap desc is attached to
805  * @desc: the direct mapping descriptor to destroy
806  *
807  * devm_ variant of the spi_mem_dirmap_destroy() function. See
808  * spi_mem_dirmap_destroy() for more details.
809  */
810 void devm_spi_mem_dirmap_destroy(struct device *dev,
811 				 struct spi_mem_dirmap_desc *desc)
812 {
813 	devres_release(dev, devm_spi_mem_dirmap_release,
814 		       devm_spi_mem_dirmap_match, desc);
815 }
816 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
817 
818 /**
819  * spi_mem_dirmap_read() - Read data through a direct mapping
820  * @desc: direct mapping descriptor
821  * @offs: offset to start reading from. Note that this is not an absolute
822  *	  offset, but the offset within the direct mapping which already has
823  *	  its own offset
824  * @len: length in bytes
825  * @buf: destination buffer. This buffer must be DMA-able
826  *
827  * This function reads data from a memory device using a direct mapping
828  * previously instantiated with spi_mem_dirmap_create().
829  *
830  * Return: the amount of data read from the memory device or a negative error
831  * code. Note that the returned size might be smaller than @len, and the caller
832  * is responsible for calling spi_mem_dirmap_read() again when that happens.
833  */
834 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
835 			    u64 offs, size_t len, void *buf)
836 {
837 	struct spi_controller *ctlr = desc->mem->spi->controller;
838 	ssize_t ret;
839 
840 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
841 		return -EINVAL;
842 
843 	if (!len)
844 		return 0;
845 
846 	if (desc->nodirmap) {
847 		ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
848 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
849 		ret = spi_mem_access_start(desc->mem);
850 		if (ret)
851 			return ret;
852 
853 		ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
854 
855 		spi_mem_access_end(desc->mem);
856 	} else {
857 		ret = -ENOTSUPP;
858 	}
859 
860 	return ret;
861 }
862 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
863 
864 /**
865  * spi_mem_dirmap_write() - Write data through a direct mapping
866  * @desc: direct mapping descriptor
867  * @offs: offset to start writing from. Note that this is not an absolute
868  *	  offset, but the offset within the direct mapping which already has
869  *	  its own offset
870  * @len: length in bytes
871  * @buf: source buffer. This buffer must be DMA-able
872  *
873  * This function writes data to a memory device using a direct mapping
874  * previously instantiated with spi_mem_dirmap_create().
875  *
876  * Return: the amount of data written to the memory device or a negative error
877  * code. Note that the returned size might be smaller than @len, and the caller
878  * is responsible for calling spi_mem_dirmap_write() again when that happens.
879  */
880 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
881 			     u64 offs, size_t len, const void *buf)
882 {
883 	struct spi_controller *ctlr = desc->mem->spi->controller;
884 	ssize_t ret;
885 
886 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
887 		return -EINVAL;
888 
889 	if (!len)
890 		return 0;
891 
892 	if (desc->nodirmap) {
893 		ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
894 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
895 		ret = spi_mem_access_start(desc->mem);
896 		if (ret)
897 			return ret;
898 
899 		ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
900 
901 		spi_mem_access_end(desc->mem);
902 	} else {
903 		ret = -ENOTSUPP;
904 	}
905 
906 	return ret;
907 }
908 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
909 
910 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
911 {
912 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
913 }
914 
915 static int spi_mem_read_status(struct spi_mem *mem,
916 			       const struct spi_mem_op *op,
917 			       u16 *status)
918 {
919 	const u8 *bytes = (u8 *)op->data.buf.in;
920 	int ret;
921 
922 	ret = spi_mem_exec_op(mem, op);
923 	if (ret)
924 		return ret;
925 
926 	if (op->data.nbytes > 1)
927 		*status = ((u16)bytes[0] << 8) | bytes[1];
928 	else
929 		*status = bytes[0];
930 
931 	return 0;
932 }
933 
934 /**
935  * spi_mem_poll_status() - Poll memory device status
936  * @mem: SPI memory device
937  * @op: the memory operation to execute
938  * @mask: status bitmask to ckeck
939  * @match: (status & mask) expected value
940  * @initial_delay_us: delay in us before starting to poll
941  * @polling_delay_us: time to sleep between reads in us
942  * @timeout_ms: timeout in milliseconds
943  *
944  * This function polls a status register and returns when
945  * (status & mask) == match or when the timeout has expired.
946  *
947  * Return: 0 in case of success, -ETIMEDOUT in case of error,
948  *         -EOPNOTSUPP if not supported.
949  */
950 int spi_mem_poll_status(struct spi_mem *mem,
951 			const struct spi_mem_op *op,
952 			u16 mask, u16 match,
953 			unsigned long initial_delay_us,
954 			unsigned long polling_delay_us,
955 			u16 timeout_ms)
956 {
957 	struct spi_controller *ctlr = mem->spi->controller;
958 	int ret = -EOPNOTSUPP;
959 	int read_status_ret;
960 	u16 status;
961 
962 	if (op->data.nbytes < 1 || op->data.nbytes > 2 ||
963 	    op->data.dir != SPI_MEM_DATA_IN)
964 		return -EINVAL;
965 
966 	if (ctlr->mem_ops && ctlr->mem_ops->poll_status && !spi_get_csgpiod(mem->spi, 0)) {
967 		ret = spi_mem_access_start(mem);
968 		if (ret)
969 			return ret;
970 
971 		ret = ctlr->mem_ops->poll_status(mem, op, mask, match,
972 						 initial_delay_us, polling_delay_us,
973 						 timeout_ms);
974 
975 		spi_mem_access_end(mem);
976 	}
977 
978 	if (ret == -EOPNOTSUPP) {
979 		if (!spi_mem_supports_op(mem, op))
980 			return ret;
981 
982 		if (initial_delay_us < 10)
983 			udelay(initial_delay_us);
984 		else
985 			usleep_range((initial_delay_us >> 2) + 1,
986 				     initial_delay_us);
987 
988 		ret = read_poll_timeout(spi_mem_read_status, read_status_ret,
989 					(read_status_ret || ((status) & mask) == match),
990 					polling_delay_us, timeout_ms * 1000, false, mem,
991 					op, &status);
992 		if (read_status_ret)
993 			return read_status_ret;
994 	}
995 
996 	return ret;
997 }
998 EXPORT_SYMBOL_GPL(spi_mem_poll_status);
999 
1000 static int spi_mem_probe(struct spi_device *spi)
1001 {
1002 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
1003 	struct spi_controller *ctlr = spi->controller;
1004 	struct spi_mem *mem;
1005 
1006 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
1007 	if (!mem)
1008 		return -ENOMEM;
1009 
1010 	mem->spi = spi;
1011 
1012 	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
1013 		mem->name = ctlr->mem_ops->get_name(mem);
1014 	else
1015 		mem->name = dev_name(&spi->dev);
1016 
1017 	if (IS_ERR_OR_NULL(mem->name))
1018 		return PTR_ERR_OR_ZERO(mem->name);
1019 
1020 	spi_set_drvdata(spi, mem);
1021 
1022 	return memdrv->probe(mem);
1023 }
1024 
1025 static void spi_mem_remove(struct spi_device *spi)
1026 {
1027 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
1028 	struct spi_mem *mem = spi_get_drvdata(spi);
1029 
1030 	if (memdrv->remove)
1031 		memdrv->remove(mem);
1032 }
1033 
1034 static void spi_mem_shutdown(struct spi_device *spi)
1035 {
1036 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
1037 	struct spi_mem *mem = spi_get_drvdata(spi);
1038 
1039 	if (memdrv->shutdown)
1040 		memdrv->shutdown(mem);
1041 }
1042 
1043 /**
1044  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
1045  * @memdrv: the SPI memory driver to register
1046  * @owner: the owner of this driver
1047  *
1048  * Registers a SPI memory driver.
1049  *
1050  * Return: 0 in case of success, a negative error core otherwise.
1051  */
1052 
1053 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
1054 				       struct module *owner)
1055 {
1056 	memdrv->spidrv.probe = spi_mem_probe;
1057 	memdrv->spidrv.remove = spi_mem_remove;
1058 	memdrv->spidrv.shutdown = spi_mem_shutdown;
1059 
1060 	return __spi_register_driver(owner, &memdrv->spidrv);
1061 }
1062 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
1063 
1064 /**
1065  * spi_mem_driver_unregister() - Unregister a SPI memory driver
1066  * @memdrv: the SPI memory driver to unregister
1067  *
1068  * Unregisters a SPI memory driver.
1069  */
1070 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
1071 {
1072 	spi_unregister_driver(&memdrv->spidrv);
1073 }
1074 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
1075