xref: /linux/drivers/spi/spi-mem.c (revision 9a36b58a88f62398dbd005e5f3648f257ae2b9b4)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 #include <linux/dmaengine.h>
9 #include <linux/iopoll.h>
10 #include <linux/pm_runtime.h>
11 #include <linux/spi/spi.h>
12 #include <linux/spi/spi-mem.h>
13 #include <linux/sched/task_stack.h>
14 
15 #include "internals.h"
16 
17 #define SPI_MEM_MAX_BUSWIDTH		8
18 
19 /**
20  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
21  *					  memory operation
22  * @ctlr: the SPI controller requesting this dma_map()
23  * @op: the memory operation containing the buffer to map
24  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
25  *	 function
26  *
27  * Some controllers might want to do DMA on the data buffer embedded in @op.
28  * This helper prepares everything for you and provides a ready-to-use
29  * sg_table. This function is not intended to be called from spi drivers.
30  * Only SPI controller drivers should use it.
31  * Note that the caller must ensure the memory region pointed by
32  * op->data.buf.{in,out} is DMA-able before calling this function.
33  *
34  * Return: 0 in case of success, a negative error code otherwise.
35  */
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)36 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
37 				       const struct spi_mem_op *op,
38 				       struct sg_table *sgt)
39 {
40 	struct device *dmadev;
41 
42 	if (!op->data.nbytes)
43 		return -EINVAL;
44 
45 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
46 		dmadev = ctlr->dma_tx->device->dev;
47 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
48 		dmadev = ctlr->dma_rx->device->dev;
49 	else
50 		dmadev = ctlr->dev.parent;
51 
52 	if (!dmadev)
53 		return -EINVAL;
54 
55 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
56 			   op->data.dir == SPI_MEM_DATA_IN ?
57 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
58 }
59 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
60 
61 /**
62  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
63  *					    memory operation
64  * @ctlr: the SPI controller requesting this dma_unmap()
65  * @op: the memory operation containing the buffer to unmap
66  * @sgt: a pointer to an sg_table previously initialized by
67  *	 spi_controller_dma_map_mem_op_data()
68  *
69  * Some controllers might want to do DMA on the data buffer embedded in @op.
70  * This helper prepares things so that the CPU can access the
71  * op->data.buf.{in,out} buffer again.
72  *
73  * This function is not intended to be called from SPI drivers. Only SPI
74  * controller drivers should use it.
75  *
76  * This function should be called after the DMA operation has finished and is
77  * only valid if the previous spi_controller_dma_map_mem_op_data() call
78  * returned 0.
79  *
80  * Return: 0 in case of success, a negative error code otherwise.
81  */
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)82 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
83 					  const struct spi_mem_op *op,
84 					  struct sg_table *sgt)
85 {
86 	struct device *dmadev;
87 
88 	if (!op->data.nbytes)
89 		return;
90 
91 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
92 		dmadev = ctlr->dma_tx->device->dev;
93 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
94 		dmadev = ctlr->dma_rx->device->dev;
95 	else
96 		dmadev = ctlr->dev.parent;
97 
98 	spi_unmap_buf(ctlr, dmadev, sgt,
99 		      op->data.dir == SPI_MEM_DATA_IN ?
100 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
101 }
102 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
103 
spi_check_buswidth_req(struct spi_mem * mem,u8 buswidth,bool tx)104 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
105 {
106 	u32 mode = mem->spi->mode;
107 
108 	switch (buswidth) {
109 	case 1:
110 		return 0;
111 
112 	case 2:
113 		if ((tx &&
114 		     (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
115 		    (!tx &&
116 		     (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
117 			return 0;
118 
119 		break;
120 
121 	case 4:
122 		if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
123 		    (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
124 			return 0;
125 
126 		break;
127 
128 	case 8:
129 		if ((tx && (mode & SPI_TX_OCTAL)) ||
130 		    (!tx && (mode & SPI_RX_OCTAL)))
131 			return 0;
132 
133 		break;
134 
135 	default:
136 		break;
137 	}
138 
139 	return -ENOTSUPP;
140 }
141 
spi_mem_check_buswidth(struct spi_mem * mem,const struct spi_mem_op * op)142 static bool spi_mem_check_buswidth(struct spi_mem *mem,
143 				   const struct spi_mem_op *op)
144 {
145 	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
146 		return false;
147 
148 	if (op->addr.nbytes &&
149 	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
150 		return false;
151 
152 	if (op->dummy.nbytes &&
153 	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
154 		return false;
155 
156 	if (op->data.dir != SPI_MEM_NO_DATA &&
157 	    spi_check_buswidth_req(mem, op->data.buswidth,
158 				   op->data.dir == SPI_MEM_DATA_OUT))
159 		return false;
160 
161 	return true;
162 }
163 
spi_mem_default_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)164 bool spi_mem_default_supports_op(struct spi_mem *mem,
165 				 const struct spi_mem_op *op)
166 {
167 	struct spi_controller *ctlr = mem->spi->controller;
168 	bool op_is_dtr =
169 		op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr;
170 
171 	if (op_is_dtr) {
172 		if (!spi_mem_controller_is_capable(ctlr, dtr))
173 			return false;
174 
175 		if (op->data.swap16 && !spi_mem_controller_is_capable(ctlr, swap16))
176 			return false;
177 
178 		if (op->cmd.nbytes != 2)
179 			return false;
180 	} else {
181 		if (op->cmd.nbytes != 1)
182 			return false;
183 	}
184 
185 	if (op->data.ecc) {
186 		if (!spi_mem_controller_is_capable(ctlr, ecc))
187 			return false;
188 	}
189 
190 	if (op->max_freq && mem->spi->controller->min_speed_hz &&
191 	    op->max_freq < mem->spi->controller->min_speed_hz)
192 		return false;
193 
194 	if (op->max_freq &&
195 	    op->max_freq < mem->spi->max_speed_hz) {
196 		if (!spi_mem_controller_is_capable(ctlr, per_op_freq))
197 			return false;
198 	}
199 
200 	return spi_mem_check_buswidth(mem, op);
201 }
202 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
203 
spi_mem_buswidth_is_valid(u8 buswidth)204 static bool spi_mem_buswidth_is_valid(u8 buswidth)
205 {
206 	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
207 		return false;
208 
209 	return true;
210 }
211 
spi_mem_check_op(const struct spi_mem_op * op)212 static int spi_mem_check_op(const struct spi_mem_op *op)
213 {
214 	if (!op->cmd.buswidth || !op->cmd.nbytes)
215 		return -EINVAL;
216 
217 	if ((op->addr.nbytes && !op->addr.buswidth) ||
218 	    (op->dummy.nbytes && !op->dummy.buswidth) ||
219 	    (op->data.nbytes && !op->data.buswidth))
220 		return -EINVAL;
221 
222 	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
223 	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
224 	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
225 	    !spi_mem_buswidth_is_valid(op->data.buswidth))
226 		return -EINVAL;
227 
228 	/* Buffers must be DMA-able. */
229 	if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_IN &&
230 			 object_is_on_stack(op->data.buf.in)))
231 		return -EINVAL;
232 
233 	if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_OUT &&
234 			 object_is_on_stack(op->data.buf.out)))
235 		return -EINVAL;
236 
237 	return 0;
238 }
239 
spi_mem_internal_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)240 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
241 					 const struct spi_mem_op *op)
242 {
243 	struct spi_controller *ctlr = mem->spi->controller;
244 
245 	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
246 		return ctlr->mem_ops->supports_op(mem, op);
247 
248 	return spi_mem_default_supports_op(mem, op);
249 }
250 
251 /**
252  * spi_mem_supports_op() - Check if a memory device and the controller it is
253  *			   connected to support a specific memory operation
254  * @mem: the SPI memory
255  * @op: the memory operation to check
256  *
257  * Some controllers are only supporting Single or Dual IOs, others might only
258  * support specific opcodes, or it can even be that the controller and device
259  * both support Quad IOs but the hardware prevents you from using it because
260  * only 2 IO lines are connected.
261  *
262  * This function checks whether a specific operation is supported.
263  *
264  * Return: true if @op is supported, false otherwise.
265  */
spi_mem_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)266 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
267 {
268 	/* Make sure the operation frequency is correct before going futher */
269 	spi_mem_adjust_op_freq(mem, (struct spi_mem_op *)op);
270 
271 	if (spi_mem_check_op(op))
272 		return false;
273 
274 	return spi_mem_internal_supports_op(mem, op);
275 }
276 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
277 
spi_mem_access_start(struct spi_mem * mem)278 static int spi_mem_access_start(struct spi_mem *mem)
279 {
280 	struct spi_controller *ctlr = mem->spi->controller;
281 
282 	/*
283 	 * Flush the message queue before executing our SPI memory
284 	 * operation to prevent preemption of regular SPI transfers.
285 	 */
286 	spi_flush_queue(ctlr);
287 
288 	if (ctlr->auto_runtime_pm) {
289 		int ret;
290 
291 		ret = pm_runtime_resume_and_get(ctlr->dev.parent);
292 		if (ret < 0) {
293 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
294 				ret);
295 			return ret;
296 		}
297 	}
298 
299 	mutex_lock(&ctlr->bus_lock_mutex);
300 	mutex_lock(&ctlr->io_mutex);
301 
302 	return 0;
303 }
304 
spi_mem_access_end(struct spi_mem * mem)305 static void spi_mem_access_end(struct spi_mem *mem)
306 {
307 	struct spi_controller *ctlr = mem->spi->controller;
308 
309 	mutex_unlock(&ctlr->io_mutex);
310 	mutex_unlock(&ctlr->bus_lock_mutex);
311 
312 	if (ctlr->auto_runtime_pm)
313 		pm_runtime_put(ctlr->dev.parent);
314 }
315 
spi_mem_add_op_stats(struct spi_statistics __percpu * pcpu_stats,const struct spi_mem_op * op,int exec_op_ret)316 static void spi_mem_add_op_stats(struct spi_statistics __percpu *pcpu_stats,
317 				 const struct spi_mem_op *op, int exec_op_ret)
318 {
319 	struct spi_statistics *stats;
320 	u64 len, l2len;
321 
322 	get_cpu();
323 	stats = this_cpu_ptr(pcpu_stats);
324 	u64_stats_update_begin(&stats->syncp);
325 
326 	/*
327 	 * We do not have the concept of messages or transfers. Let's consider
328 	 * that one operation is equivalent to one message and one transfer.
329 	 */
330 	u64_stats_inc(&stats->messages);
331 	u64_stats_inc(&stats->transfers);
332 
333 	/* Use the sum of all lengths as bytes count and histogram value. */
334 	len = op->cmd.nbytes + op->addr.nbytes;
335 	len += op->dummy.nbytes + op->data.nbytes;
336 	u64_stats_add(&stats->bytes, len);
337 	l2len = min(fls(len), SPI_STATISTICS_HISTO_SIZE) - 1;
338 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
339 
340 	/* Only account for data bytes as transferred bytes. */
341 	if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
342 		u64_stats_add(&stats->bytes_tx, op->data.nbytes);
343 	if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
344 		u64_stats_add(&stats->bytes_rx, op->data.nbytes);
345 
346 	/*
347 	 * A timeout is not an error, following the same behavior as
348 	 * spi_transfer_one_message().
349 	 */
350 	if (exec_op_ret == -ETIMEDOUT)
351 		u64_stats_inc(&stats->timedout);
352 	else if (exec_op_ret)
353 		u64_stats_inc(&stats->errors);
354 
355 	u64_stats_update_end(&stats->syncp);
356 	put_cpu();
357 }
358 
359 /**
360  * spi_mem_exec_op() - Execute a memory operation
361  * @mem: the SPI memory
362  * @op: the memory operation to execute
363  *
364  * Executes a memory operation.
365  *
366  * This function first checks that @op is supported and then tries to execute
367  * it.
368  *
369  * Return: 0 in case of success, a negative error code otherwise.
370  */
spi_mem_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)371 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
372 {
373 	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
374 	struct spi_controller *ctlr = mem->spi->controller;
375 	struct spi_transfer xfers[4] = { };
376 	struct spi_message msg;
377 	u8 *tmpbuf;
378 	int ret;
379 
380 	/* Make sure the operation frequency is correct before going futher */
381 	spi_mem_adjust_op_freq(mem, (struct spi_mem_op *)op);
382 
383 	dev_vdbg(&mem->spi->dev, "[cmd: 0x%02x][%dB addr: %#8llx][%2dB dummy][%4dB data %s] %d%c-%d%c-%d%c-%d%c @ %uHz\n",
384 		 op->cmd.opcode,
385 		 op->addr.nbytes, (op->addr.nbytes ? op->addr.val : 0),
386 		 op->dummy.nbytes,
387 		 op->data.nbytes, (op->data.nbytes ? (op->data.dir == SPI_MEM_DATA_IN ? " read" : "write") : "     "),
388 		 op->cmd.buswidth, op->cmd.dtr ? 'D' : 'S',
389 		 op->addr.buswidth, op->addr.dtr ? 'D' : 'S',
390 		 op->dummy.buswidth, op->dummy.dtr ? 'D' : 'S',
391 		 op->data.buswidth, op->data.dtr ? 'D' : 'S',
392 		 op->max_freq ? op->max_freq : mem->spi->max_speed_hz);
393 
394 	ret = spi_mem_check_op(op);
395 	if (ret)
396 		return ret;
397 
398 	if (!spi_mem_internal_supports_op(mem, op))
399 		return -EOPNOTSUPP;
400 
401 	if (ctlr->mem_ops && ctlr->mem_ops->exec_op && !spi_get_csgpiod(mem->spi, 0)) {
402 		ret = spi_mem_access_start(mem);
403 		if (ret)
404 			return ret;
405 
406 		ret = ctlr->mem_ops->exec_op(mem, op);
407 
408 		spi_mem_access_end(mem);
409 
410 		/*
411 		 * Some controllers only optimize specific paths (typically the
412 		 * read path) and expect the core to use the regular SPI
413 		 * interface in other cases.
414 		 */
415 		if (!ret || (ret != -ENOTSUPP && ret != -EOPNOTSUPP)) {
416 			spi_mem_add_op_stats(ctlr->pcpu_statistics, op, ret);
417 			spi_mem_add_op_stats(mem->spi->pcpu_statistics, op, ret);
418 
419 			return ret;
420 		}
421 	}
422 
423 	tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
424 
425 	/*
426 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
427 	 * we're guaranteed that this buffer is DMA-able, as required by the
428 	 * SPI layer.
429 	 */
430 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
431 	if (!tmpbuf)
432 		return -ENOMEM;
433 
434 	spi_message_init(&msg);
435 
436 	tmpbuf[0] = op->cmd.opcode;
437 	xfers[xferpos].tx_buf = tmpbuf;
438 	xfers[xferpos].len = op->cmd.nbytes;
439 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
440 	xfers[xferpos].speed_hz = op->max_freq;
441 	spi_message_add_tail(&xfers[xferpos], &msg);
442 	xferpos++;
443 	totalxferlen++;
444 
445 	if (op->addr.nbytes) {
446 		int i;
447 
448 		for (i = 0; i < op->addr.nbytes; i++)
449 			tmpbuf[i + 1] = op->addr.val >>
450 					(8 * (op->addr.nbytes - i - 1));
451 
452 		xfers[xferpos].tx_buf = tmpbuf + 1;
453 		xfers[xferpos].len = op->addr.nbytes;
454 		xfers[xferpos].tx_nbits = op->addr.buswidth;
455 		xfers[xferpos].speed_hz = op->max_freq;
456 		spi_message_add_tail(&xfers[xferpos], &msg);
457 		xferpos++;
458 		totalxferlen += op->addr.nbytes;
459 	}
460 
461 	if (op->dummy.nbytes) {
462 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
463 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
464 		xfers[xferpos].len = op->dummy.nbytes;
465 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
466 		xfers[xferpos].dummy_data = 1;
467 		xfers[xferpos].speed_hz = op->max_freq;
468 		spi_message_add_tail(&xfers[xferpos], &msg);
469 		xferpos++;
470 		totalxferlen += op->dummy.nbytes;
471 	}
472 
473 	if (op->data.nbytes) {
474 		if (op->data.dir == SPI_MEM_DATA_IN) {
475 			xfers[xferpos].rx_buf = op->data.buf.in;
476 			xfers[xferpos].rx_nbits = op->data.buswidth;
477 		} else {
478 			xfers[xferpos].tx_buf = op->data.buf.out;
479 			xfers[xferpos].tx_nbits = op->data.buswidth;
480 		}
481 
482 		xfers[xferpos].len = op->data.nbytes;
483 		xfers[xferpos].speed_hz = op->max_freq;
484 		spi_message_add_tail(&xfers[xferpos], &msg);
485 		xferpos++;
486 		totalxferlen += op->data.nbytes;
487 	}
488 
489 	ret = spi_sync(mem->spi, &msg);
490 
491 	kfree(tmpbuf);
492 
493 	if (ret)
494 		return ret;
495 
496 	if (msg.actual_length != totalxferlen)
497 		return -EIO;
498 
499 	return 0;
500 }
501 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
502 
503 /**
504  * spi_mem_get_name() - Return the SPI mem device name to be used by the
505  *			upper layer if necessary
506  * @mem: the SPI memory
507  *
508  * This function allows SPI mem users to retrieve the SPI mem device name.
509  * It is useful if the upper layer needs to expose a custom name for
510  * compatibility reasons.
511  *
512  * Return: a string containing the name of the memory device to be used
513  *	   by the SPI mem user
514  */
spi_mem_get_name(struct spi_mem * mem)515 const char *spi_mem_get_name(struct spi_mem *mem)
516 {
517 	return mem->name;
518 }
519 EXPORT_SYMBOL_GPL(spi_mem_get_name);
520 
521 /**
522  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
523  *			      match controller limitations
524  * @mem: the SPI memory
525  * @op: the operation to adjust
526  *
527  * Some controllers have FIFO limitations and must split a data transfer
528  * operation into multiple ones, others require a specific alignment for
529  * optimized accesses. This function allows SPI mem drivers to split a single
530  * operation into multiple sub-operations when required.
531  *
532  * Return: a negative error code if the controller can't properly adjust @op,
533  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
534  *	   can't be handled in a single step.
535  */
spi_mem_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)536 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
537 {
538 	struct spi_controller *ctlr = mem->spi->controller;
539 	size_t len;
540 
541 	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
542 		return ctlr->mem_ops->adjust_op_size(mem, op);
543 
544 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
545 		len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
546 
547 		if (len > spi_max_transfer_size(mem->spi))
548 			return -EINVAL;
549 
550 		op->data.nbytes = min3((size_t)op->data.nbytes,
551 				       spi_max_transfer_size(mem->spi),
552 				       spi_max_message_size(mem->spi) -
553 				       len);
554 		if (!op->data.nbytes)
555 			return -EINVAL;
556 	}
557 
558 	return 0;
559 }
560 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
561 
562 /**
563  * spi_mem_adjust_op_freq() - Adjust the frequency of a SPI mem operation to
564  *			      match controller, PCB and chip limitations
565  * @mem: the SPI memory
566  * @op: the operation to adjust
567  *
568  * Some chips have per-op frequency limitations and must adapt the maximum
569  * speed. This function allows SPI mem drivers to set @op->max_freq to the
570  * maximum supported value.
571  */
spi_mem_adjust_op_freq(struct spi_mem * mem,struct spi_mem_op * op)572 void spi_mem_adjust_op_freq(struct spi_mem *mem, struct spi_mem_op *op)
573 {
574 	if (!op->max_freq || op->max_freq > mem->spi->max_speed_hz)
575 		op->max_freq = mem->spi->max_speed_hz;
576 }
577 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_freq);
578 
579 /**
580  * spi_mem_calc_op_duration() - Derives the theoretical length (in ns) of an
581  *			        operation. This helps finding the best variant
582  *			        among a list of possible choices.
583  * @mem: the SPI memory
584  * @op: the operation to benchmark
585  *
586  * Some chips have per-op frequency limitations, PCBs usually have their own
587  * limitations as well, and controllers can support dual, quad or even octal
588  * modes, sometimes in DTR. All these combinations make it impossible to
589  * statically list the best combination for all situations. If we want something
590  * accurate, all these combinations should be rated (eg. with a time estimate)
591  * and the best pick should be taken based on these calculations.
592  *
593  * Returns a ns estimate for the time this op would take, except if no
594  * frequency limit has been set, in this case we return the number of
595  * cycles nevertheless to allow callers to distinguish which operation
596  * would be the fastest at iso-frequency.
597  */
spi_mem_calc_op_duration(struct spi_mem * mem,struct spi_mem_op * op)598 u64 spi_mem_calc_op_duration(struct spi_mem *mem, struct spi_mem_op *op)
599 {
600 	u64 ncycles = 0;
601 	u64 ps_per_cycles, duration;
602 
603 	spi_mem_adjust_op_freq(mem, op);
604 
605 	if (op->max_freq) {
606 		ps_per_cycles = 1000000000000ULL;
607 		do_div(ps_per_cycles, op->max_freq);
608 	} else {
609 		/* In this case, the unit is no longer a time unit */
610 		ps_per_cycles = 1;
611 	}
612 
613 	ncycles += ((op->cmd.nbytes * 8) / op->cmd.buswidth) / (op->cmd.dtr ? 2 : 1);
614 	ncycles += ((op->addr.nbytes * 8) / op->addr.buswidth) / (op->addr.dtr ? 2 : 1);
615 
616 	/* Dummy bytes are optional for some SPI flash memory operations */
617 	if (op->dummy.nbytes)
618 		ncycles += ((op->dummy.nbytes * 8) / op->dummy.buswidth) / (op->dummy.dtr ? 2 : 1);
619 
620 	ncycles += ((op->data.nbytes * 8) / op->data.buswidth) / (op->data.dtr ? 2 : 1);
621 
622 	/* Derive the duration in ps */
623 	duration = ncycles * ps_per_cycles;
624 	/* Convert into ns */
625 	do_div(duration, 1000);
626 
627 	return duration;
628 }
629 EXPORT_SYMBOL_GPL(spi_mem_calc_op_duration);
630 
spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,void * buf)631 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
632 				      u64 offs, size_t len, void *buf)
633 {
634 	struct spi_mem_op op = desc->info.op_tmpl;
635 	int ret;
636 
637 	op.addr.val = desc->info.offset + offs;
638 	op.data.buf.in = buf;
639 	op.data.nbytes = len;
640 	ret = spi_mem_adjust_op_size(desc->mem, &op);
641 	if (ret)
642 		return ret;
643 
644 	ret = spi_mem_exec_op(desc->mem, &op);
645 	if (ret)
646 		return ret;
647 
648 	return op.data.nbytes;
649 }
650 
spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,const void * buf)651 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
652 				       u64 offs, size_t len, const void *buf)
653 {
654 	struct spi_mem_op op = desc->info.op_tmpl;
655 	int ret;
656 
657 	op.addr.val = desc->info.offset + offs;
658 	op.data.buf.out = buf;
659 	op.data.nbytes = len;
660 	ret = spi_mem_adjust_op_size(desc->mem, &op);
661 	if (ret)
662 		return ret;
663 
664 	ret = spi_mem_exec_op(desc->mem, &op);
665 	if (ret)
666 		return ret;
667 
668 	return op.data.nbytes;
669 }
670 
671 /**
672  * spi_mem_dirmap_create() - Create a direct mapping descriptor
673  * @mem: SPI mem device this direct mapping should be created for
674  * @info: direct mapping information
675  *
676  * This function is creating a direct mapping descriptor which can then be used
677  * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
678  * If the SPI controller driver does not support direct mapping, this function
679  * falls back to an implementation using spi_mem_exec_op(), so that the caller
680  * doesn't have to bother implementing a fallback on his own.
681  *
682  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
683  */
684 struct spi_mem_dirmap_desc *
spi_mem_dirmap_create(struct spi_mem * mem,const struct spi_mem_dirmap_info * info)685 spi_mem_dirmap_create(struct spi_mem *mem,
686 		      const struct spi_mem_dirmap_info *info)
687 {
688 	struct spi_controller *ctlr = mem->spi->controller;
689 	struct spi_mem_dirmap_desc *desc;
690 	int ret = -ENOTSUPP;
691 
692 	/* Make sure the number of address cycles is between 1 and 8 bytes. */
693 	if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
694 		return ERR_PTR(-EINVAL);
695 
696 	/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
697 	if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
698 		return ERR_PTR(-EINVAL);
699 
700 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
701 	if (!desc)
702 		return ERR_PTR(-ENOMEM);
703 
704 	desc->mem = mem;
705 	desc->info = *info;
706 	if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
707 		ret = ctlr->mem_ops->dirmap_create(desc);
708 
709 	if (ret) {
710 		desc->nodirmap = true;
711 		if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
712 			ret = -EOPNOTSUPP;
713 		else
714 			ret = 0;
715 	}
716 
717 	if (ret) {
718 		kfree(desc);
719 		return ERR_PTR(ret);
720 	}
721 
722 	return desc;
723 }
724 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
725 
726 /**
727  * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
728  * @desc: the direct mapping descriptor to destroy
729  *
730  * This function destroys a direct mapping descriptor previously created by
731  * spi_mem_dirmap_create().
732  */
spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc * desc)733 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
734 {
735 	struct spi_controller *ctlr = desc->mem->spi->controller;
736 
737 	if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
738 		ctlr->mem_ops->dirmap_destroy(desc);
739 
740 	kfree(desc);
741 }
742 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
743 
devm_spi_mem_dirmap_release(struct device * dev,void * res)744 static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
745 {
746 	struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
747 
748 	spi_mem_dirmap_destroy(desc);
749 }
750 
751 /**
752  * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
753  *				  it to a device
754  * @dev: device the dirmap desc will be attached to
755  * @mem: SPI mem device this direct mapping should be created for
756  * @info: direct mapping information
757  *
758  * devm_ variant of the spi_mem_dirmap_create() function. See
759  * spi_mem_dirmap_create() for more details.
760  *
761  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
762  */
763 struct spi_mem_dirmap_desc *
devm_spi_mem_dirmap_create(struct device * dev,struct spi_mem * mem,const struct spi_mem_dirmap_info * info)764 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
765 			   const struct spi_mem_dirmap_info *info)
766 {
767 	struct spi_mem_dirmap_desc **ptr, *desc;
768 
769 	ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
770 			   GFP_KERNEL);
771 	if (!ptr)
772 		return ERR_PTR(-ENOMEM);
773 
774 	desc = spi_mem_dirmap_create(mem, info);
775 	if (IS_ERR(desc)) {
776 		devres_free(ptr);
777 	} else {
778 		*ptr = desc;
779 		devres_add(dev, ptr);
780 	}
781 
782 	return desc;
783 }
784 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
785 
devm_spi_mem_dirmap_match(struct device * dev,void * res,void * data)786 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
787 {
788 	struct spi_mem_dirmap_desc **ptr = res;
789 
790 	if (WARN_ON(!ptr || !*ptr))
791 		return 0;
792 
793 	return *ptr == data;
794 }
795 
796 /**
797  * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
798  *				   to a device
799  * @dev: device the dirmap desc is attached to
800  * @desc: the direct mapping descriptor to destroy
801  *
802  * devm_ variant of the spi_mem_dirmap_destroy() function. See
803  * spi_mem_dirmap_destroy() for more details.
804  */
devm_spi_mem_dirmap_destroy(struct device * dev,struct spi_mem_dirmap_desc * desc)805 void devm_spi_mem_dirmap_destroy(struct device *dev,
806 				 struct spi_mem_dirmap_desc *desc)
807 {
808 	devres_release(dev, devm_spi_mem_dirmap_release,
809 		       devm_spi_mem_dirmap_match, desc);
810 }
811 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
812 
813 /**
814  * spi_mem_dirmap_read() - Read data through a direct mapping
815  * @desc: direct mapping descriptor
816  * @offs: offset to start reading from. Note that this is not an absolute
817  *	  offset, but the offset within the direct mapping which already has
818  *	  its own offset
819  * @len: length in bytes
820  * @buf: destination buffer. This buffer must be DMA-able
821  *
822  * This function reads data from a memory device using a direct mapping
823  * previously instantiated with spi_mem_dirmap_create().
824  *
825  * Return: the amount of data read from the memory device or a negative error
826  * code. Note that the returned size might be smaller than @len, and the caller
827  * is responsible for calling spi_mem_dirmap_read() again when that happens.
828  */
spi_mem_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,void * buf)829 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
830 			    u64 offs, size_t len, void *buf)
831 {
832 	struct spi_controller *ctlr = desc->mem->spi->controller;
833 	ssize_t ret;
834 
835 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
836 		return -EINVAL;
837 
838 	if (!len)
839 		return 0;
840 
841 	if (desc->nodirmap) {
842 		ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
843 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
844 		ret = spi_mem_access_start(desc->mem);
845 		if (ret)
846 			return ret;
847 
848 		ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
849 
850 		spi_mem_access_end(desc->mem);
851 	} else {
852 		ret = -ENOTSUPP;
853 	}
854 
855 	return ret;
856 }
857 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
858 
859 /**
860  * spi_mem_dirmap_write() - Write data through a direct mapping
861  * @desc: direct mapping descriptor
862  * @offs: offset to start writing from. Note that this is not an absolute
863  *	  offset, but the offset within the direct mapping which already has
864  *	  its own offset
865  * @len: length in bytes
866  * @buf: source buffer. This buffer must be DMA-able
867  *
868  * This function writes data to a memory device using a direct mapping
869  * previously instantiated with spi_mem_dirmap_create().
870  *
871  * Return: the amount of data written to the memory device or a negative error
872  * code. Note that the returned size might be smaller than @len, and the caller
873  * is responsible for calling spi_mem_dirmap_write() again when that happens.
874  */
spi_mem_dirmap_write(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,const void * buf)875 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
876 			     u64 offs, size_t len, const void *buf)
877 {
878 	struct spi_controller *ctlr = desc->mem->spi->controller;
879 	ssize_t ret;
880 
881 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
882 		return -EINVAL;
883 
884 	if (!len)
885 		return 0;
886 
887 	if (desc->nodirmap) {
888 		ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
889 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
890 		ret = spi_mem_access_start(desc->mem);
891 		if (ret)
892 			return ret;
893 
894 		ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
895 
896 		spi_mem_access_end(desc->mem);
897 	} else {
898 		ret = -ENOTSUPP;
899 	}
900 
901 	return ret;
902 }
903 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
904 
to_spi_mem_drv(struct device_driver * drv)905 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
906 {
907 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
908 }
909 
spi_mem_read_status(struct spi_mem * mem,const struct spi_mem_op * op,u16 * status)910 static int spi_mem_read_status(struct spi_mem *mem,
911 			       const struct spi_mem_op *op,
912 			       u16 *status)
913 {
914 	const u8 *bytes = (u8 *)op->data.buf.in;
915 	int ret;
916 
917 	ret = spi_mem_exec_op(mem, op);
918 	if (ret)
919 		return ret;
920 
921 	if (op->data.nbytes > 1)
922 		*status = ((u16)bytes[0] << 8) | bytes[1];
923 	else
924 		*status = bytes[0];
925 
926 	return 0;
927 }
928 
929 /**
930  * spi_mem_poll_status() - Poll memory device status
931  * @mem: SPI memory device
932  * @op: the memory operation to execute
933  * @mask: status bitmask to ckeck
934  * @match: (status & mask) expected value
935  * @initial_delay_us: delay in us before starting to poll
936  * @polling_delay_us: time to sleep between reads in us
937  * @timeout_ms: timeout in milliseconds
938  *
939  * This function polls a status register and returns when
940  * (status & mask) == match or when the timeout has expired.
941  *
942  * Return: 0 in case of success, -ETIMEDOUT in case of error,
943  *         -EOPNOTSUPP if not supported.
944  */
spi_mem_poll_status(struct spi_mem * mem,const struct spi_mem_op * op,u16 mask,u16 match,unsigned long initial_delay_us,unsigned long polling_delay_us,u16 timeout_ms)945 int spi_mem_poll_status(struct spi_mem *mem,
946 			const struct spi_mem_op *op,
947 			u16 mask, u16 match,
948 			unsigned long initial_delay_us,
949 			unsigned long polling_delay_us,
950 			u16 timeout_ms)
951 {
952 	struct spi_controller *ctlr = mem->spi->controller;
953 	int ret = -EOPNOTSUPP;
954 	int read_status_ret;
955 	u16 status;
956 
957 	if (op->data.nbytes < 1 || op->data.nbytes > 2 ||
958 	    op->data.dir != SPI_MEM_DATA_IN)
959 		return -EINVAL;
960 
961 	if (ctlr->mem_ops && ctlr->mem_ops->poll_status && !spi_get_csgpiod(mem->spi, 0)) {
962 		ret = spi_mem_access_start(mem);
963 		if (ret)
964 			return ret;
965 
966 		ret = ctlr->mem_ops->poll_status(mem, op, mask, match,
967 						 initial_delay_us, polling_delay_us,
968 						 timeout_ms);
969 
970 		spi_mem_access_end(mem);
971 	}
972 
973 	if (ret == -EOPNOTSUPP) {
974 		if (!spi_mem_supports_op(mem, op))
975 			return ret;
976 
977 		if (initial_delay_us < 10)
978 			udelay(initial_delay_us);
979 		else
980 			usleep_range((initial_delay_us >> 2) + 1,
981 				     initial_delay_us);
982 
983 		ret = read_poll_timeout(spi_mem_read_status, read_status_ret,
984 					(read_status_ret || ((status) & mask) == match),
985 					polling_delay_us, timeout_ms * 1000, false, mem,
986 					op, &status);
987 		if (read_status_ret)
988 			return read_status_ret;
989 	}
990 
991 	return ret;
992 }
993 EXPORT_SYMBOL_GPL(spi_mem_poll_status);
994 
spi_mem_probe(struct spi_device * spi)995 static int spi_mem_probe(struct spi_device *spi)
996 {
997 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
998 	struct spi_controller *ctlr = spi->controller;
999 	struct spi_mem *mem;
1000 
1001 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
1002 	if (!mem)
1003 		return -ENOMEM;
1004 
1005 	mem->spi = spi;
1006 
1007 	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
1008 		mem->name = ctlr->mem_ops->get_name(mem);
1009 	else
1010 		mem->name = dev_name(&spi->dev);
1011 
1012 	if (IS_ERR_OR_NULL(mem->name))
1013 		return PTR_ERR_OR_ZERO(mem->name);
1014 
1015 	spi_set_drvdata(spi, mem);
1016 
1017 	return memdrv->probe(mem);
1018 }
1019 
spi_mem_remove(struct spi_device * spi)1020 static void spi_mem_remove(struct spi_device *spi)
1021 {
1022 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
1023 	struct spi_mem *mem = spi_get_drvdata(spi);
1024 
1025 	if (memdrv->remove)
1026 		memdrv->remove(mem);
1027 }
1028 
spi_mem_shutdown(struct spi_device * spi)1029 static void spi_mem_shutdown(struct spi_device *spi)
1030 {
1031 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
1032 	struct spi_mem *mem = spi_get_drvdata(spi);
1033 
1034 	if (memdrv->shutdown)
1035 		memdrv->shutdown(mem);
1036 }
1037 
1038 /**
1039  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
1040  * @memdrv: the SPI memory driver to register
1041  * @owner: the owner of this driver
1042  *
1043  * Registers a SPI memory driver.
1044  *
1045  * Return: 0 in case of success, a negative error core otherwise.
1046  */
1047 
spi_mem_driver_register_with_owner(struct spi_mem_driver * memdrv,struct module * owner)1048 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
1049 				       struct module *owner)
1050 {
1051 	memdrv->spidrv.probe = spi_mem_probe;
1052 	memdrv->spidrv.remove = spi_mem_remove;
1053 	memdrv->spidrv.shutdown = spi_mem_shutdown;
1054 
1055 	return __spi_register_driver(owner, &memdrv->spidrv);
1056 }
1057 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
1058 
1059 /**
1060  * spi_mem_driver_unregister() - Unregister a SPI memory driver
1061  * @memdrv: the SPI memory driver to unregister
1062  *
1063  * Unregisters a SPI memory driver.
1064  */
spi_mem_driver_unregister(struct spi_mem_driver * memdrv)1065 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
1066 {
1067 	spi_unregister_driver(&memdrv->spidrv);
1068 }
1069 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
1070