1 /*
2 * SMI (Serial Memory Controller) device driver for Serial NOR Flash on
3 * SPEAr platform
4 * The serial nor interface is largely based on m25p80.c, however the SPI
5 * interface has been replaced by SMI.
6 *
7 * Copyright © 2010 STMicroelectronics.
8 * Ashish Priyadarshi
9 * Shiraz Hashim <shiraz.linux.kernel@gmail.com>
10 *
11 * This file is licensed under the terms of the GNU General Public
12 * License version 2. This program is licensed "as is" without any
13 * warranty of any kind, whether express or implied.
14 */
15
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/ioport.h>
24 #include <linux/jiffies.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/param.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/mtd/spear_smi.h>
33 #include <linux/mutex.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/wait.h>
37 #include <linux/of.h>
38 #include <linux/of_address.h>
39
40 /* SMI clock rate */
41 #define SMI_MAX_CLOCK_FREQ 50000000 /* 50 MHz */
42
43 /* MAX time out to safely come out of a erase or write busy conditions */
44 #define SMI_PROBE_TIMEOUT (HZ / 10)
45 #define SMI_MAX_TIME_OUT (3 * HZ)
46
47 /* timeout for command completion */
48 #define SMI_CMD_TIMEOUT (HZ / 10)
49
50 /* registers of smi */
51 #define SMI_CR1 0x0 /* SMI control register 1 */
52 #define SMI_CR2 0x4 /* SMI control register 2 */
53 #define SMI_SR 0x8 /* SMI status register */
54 #define SMI_TR 0xC /* SMI transmit register */
55 #define SMI_RR 0x10 /* SMI receive register */
56
57 /* defines for control_reg 1 */
58 #define BANK_EN (0xF << 0) /* enables all banks */
59 #define DSEL_TIME (0x6 << 4) /* Deselect time 6 + 1 SMI_CK periods */
60 #define SW_MODE (0x1 << 28) /* enables SW Mode */
61 #define WB_MODE (0x1 << 29) /* Write Burst Mode */
62 #define FAST_MODE (0x1 << 15) /* Fast Mode */
63 #define HOLD1 (0x1 << 16) /* Clock Hold period selection */
64
65 /* defines for control_reg 2 */
66 #define SEND (0x1 << 7) /* Send data */
67 #define TFIE (0x1 << 8) /* Transmission Flag Interrupt Enable */
68 #define WCIE (0x1 << 9) /* Write Complete Interrupt Enable */
69 #define RD_STATUS_REG (0x1 << 10) /* reads status reg */
70 #define WE (0x1 << 11) /* Write Enable */
71
72 #define TX_LEN_SHIFT 0
73 #define RX_LEN_SHIFT 4
74 #define BANK_SHIFT 12
75
76 /* defines for status register */
77 #define SR_WIP 0x1 /* Write in progress */
78 #define SR_WEL 0x2 /* Write enable latch */
79 #define SR_BP0 0x4 /* Block protect 0 */
80 #define SR_BP1 0x8 /* Block protect 1 */
81 #define SR_BP2 0x10 /* Block protect 2 */
82 #define SR_SRWD 0x80 /* SR write protect */
83 #define TFF 0x100 /* Transfer Finished Flag */
84 #define WCF 0x200 /* Transfer Finished Flag */
85 #define ERF1 0x400 /* Forbidden Write Request */
86 #define ERF2 0x800 /* Forbidden Access */
87
88 #define WM_SHIFT 12
89
90 /* flash opcodes */
91 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
92
93 /* Flash Device Ids maintenance section */
94
95 /* data structure to maintain flash ids from different vendors */
96 struct flash_device {
97 char *name;
98 u8 erase_cmd;
99 u32 device_id;
100 u32 pagesize;
101 unsigned long sectorsize;
102 unsigned long size_in_bytes;
103 };
104
105 #define FLASH_ID(n, es, id, psize, ssize, size) \
106 { \
107 .name = n, \
108 .erase_cmd = es, \
109 .device_id = id, \
110 .pagesize = psize, \
111 .sectorsize = ssize, \
112 .size_in_bytes = size \
113 }
114
115 static struct flash_device flash_devices[] = {
116 FLASH_ID("st m25p16" , 0xd8, 0x00152020, 0x100, 0x10000, 0x200000),
117 FLASH_ID("st m25p32" , 0xd8, 0x00162020, 0x100, 0x10000, 0x400000),
118 FLASH_ID("st m25p64" , 0xd8, 0x00172020, 0x100, 0x10000, 0x800000),
119 FLASH_ID("st m25p128" , 0xd8, 0x00182020, 0x100, 0x40000, 0x1000000),
120 FLASH_ID("st m25p05" , 0xd8, 0x00102020, 0x80 , 0x8000 , 0x10000),
121 FLASH_ID("st m25p10" , 0xd8, 0x00112020, 0x80 , 0x8000 , 0x20000),
122 FLASH_ID("st m25p20" , 0xd8, 0x00122020, 0x100, 0x10000, 0x40000),
123 FLASH_ID("st m25p40" , 0xd8, 0x00132020, 0x100, 0x10000, 0x80000),
124 FLASH_ID("st m25p80" , 0xd8, 0x00142020, 0x100, 0x10000, 0x100000),
125 FLASH_ID("st m45pe10" , 0xd8, 0x00114020, 0x100, 0x10000, 0x20000),
126 FLASH_ID("st m45pe20" , 0xd8, 0x00124020, 0x100, 0x10000, 0x40000),
127 FLASH_ID("st m45pe40" , 0xd8, 0x00134020, 0x100, 0x10000, 0x80000),
128 FLASH_ID("st m45pe80" , 0xd8, 0x00144020, 0x100, 0x10000, 0x100000),
129 FLASH_ID("sp s25fl004" , 0xd8, 0x00120201, 0x100, 0x10000, 0x80000),
130 FLASH_ID("sp s25fl008" , 0xd8, 0x00130201, 0x100, 0x10000, 0x100000),
131 FLASH_ID("sp s25fl016" , 0xd8, 0x00140201, 0x100, 0x10000, 0x200000),
132 FLASH_ID("sp s25fl032" , 0xd8, 0x00150201, 0x100, 0x10000, 0x400000),
133 FLASH_ID("sp s25fl064" , 0xd8, 0x00160201, 0x100, 0x10000, 0x800000),
134 FLASH_ID("atmel 25f512" , 0x52, 0x0065001F, 0x80 , 0x8000 , 0x10000),
135 FLASH_ID("atmel 25f1024" , 0x52, 0x0060001F, 0x100, 0x8000 , 0x20000),
136 FLASH_ID("atmel 25f2048" , 0x52, 0x0063001F, 0x100, 0x10000, 0x40000),
137 FLASH_ID("atmel 25f4096" , 0x52, 0x0064001F, 0x100, 0x10000, 0x80000),
138 FLASH_ID("atmel 25fs040" , 0xd7, 0x0004661F, 0x100, 0x10000, 0x80000),
139 FLASH_ID("mac 25l512" , 0xd8, 0x001020C2, 0x010, 0x10000, 0x10000),
140 FLASH_ID("mac 25l1005" , 0xd8, 0x001120C2, 0x010, 0x10000, 0x20000),
141 FLASH_ID("mac 25l2005" , 0xd8, 0x001220C2, 0x010, 0x10000, 0x40000),
142 FLASH_ID("mac 25l4005" , 0xd8, 0x001320C2, 0x010, 0x10000, 0x80000),
143 FLASH_ID("mac 25l4005a" , 0xd8, 0x001320C2, 0x010, 0x10000, 0x80000),
144 FLASH_ID("mac 25l8005" , 0xd8, 0x001420C2, 0x010, 0x10000, 0x100000),
145 FLASH_ID("mac 25l1605" , 0xd8, 0x001520C2, 0x100, 0x10000, 0x200000),
146 FLASH_ID("mac 25l1605a" , 0xd8, 0x001520C2, 0x010, 0x10000, 0x200000),
147 FLASH_ID("mac 25l3205" , 0xd8, 0x001620C2, 0x100, 0x10000, 0x400000),
148 FLASH_ID("mac 25l3205a" , 0xd8, 0x001620C2, 0x100, 0x10000, 0x400000),
149 FLASH_ID("mac 25l6405" , 0xd8, 0x001720C2, 0x100, 0x10000, 0x800000),
150 };
151
152 /* Define spear specific structures */
153
154 struct spear_snor_flash;
155
156 /**
157 * struct spear_smi - Structure for SMI Device
158 *
159 * @clk: functional clock
160 * @status: current status register of SMI.
161 * @clk_rate: functional clock rate of SMI (default: SMI_MAX_CLOCK_FREQ)
162 * @lock: lock to prevent parallel access of SMI.
163 * @io_base: base address for registers of SMI.
164 * @pdev: platform device
165 * @cmd_complete: queue to wait for command completion of NOR-flash.
166 * @num_flashes: number of flashes actually present on board.
167 * @flash: separate structure for each Serial NOR-flash attached to SMI.
168 */
169 struct spear_smi {
170 struct clk *clk;
171 u32 status;
172 unsigned long clk_rate;
173 struct mutex lock;
174 void __iomem *io_base;
175 struct platform_device *pdev;
176 wait_queue_head_t cmd_complete;
177 u32 num_flashes;
178 struct spear_snor_flash *flash[MAX_NUM_FLASH_CHIP];
179 };
180
181 /**
182 * struct spear_snor_flash - Structure for Serial NOR Flash
183 *
184 * @bank: Bank number(0, 1, 2, 3) for each NOR-flash.
185 * @dev_id: Device ID of NOR-flash.
186 * @lock: lock to manage flash read, write and erase operations
187 * @mtd: MTD info for each NOR-flash.
188 * @num_parts: Total number of partition in each bank of NOR-flash.
189 * @parts: Partition info for each bank of NOR-flash.
190 * @page_size: Page size of NOR-flash.
191 * @base_addr: Base address of NOR-flash.
192 * @erase_cmd: erase command may vary on different flash types
193 * @fast_mode: flash supports read in fast mode
194 */
195 struct spear_snor_flash {
196 u32 bank;
197 u32 dev_id;
198 struct mutex lock;
199 struct mtd_info mtd;
200 u32 num_parts;
201 struct mtd_partition *parts;
202 u32 page_size;
203 void __iomem *base_addr;
204 u8 erase_cmd;
205 u8 fast_mode;
206 };
207
get_flash_data(struct mtd_info * mtd)208 static inline struct spear_snor_flash *get_flash_data(struct mtd_info *mtd)
209 {
210 return container_of(mtd, struct spear_snor_flash, mtd);
211 }
212
213 /**
214 * spear_smi_read_sr - Read status register of flash through SMI
215 * @dev: structure of SMI information.
216 * @bank: bank to which flash is connected
217 *
218 * This routine will return the status register of the flash chip present at the
219 * given bank.
220 */
spear_smi_read_sr(struct spear_smi * dev,u32 bank)221 static int spear_smi_read_sr(struct spear_smi *dev, u32 bank)
222 {
223 int ret;
224 u32 ctrlreg1;
225
226 mutex_lock(&dev->lock);
227 dev->status = 0; /* Will be set in interrupt handler */
228
229 ctrlreg1 = readl(dev->io_base + SMI_CR1);
230 /* program smi in hw mode */
231 writel(ctrlreg1 & ~(SW_MODE | WB_MODE), dev->io_base + SMI_CR1);
232
233 /* performing a rsr instruction in hw mode */
234 writel((bank << BANK_SHIFT) | RD_STATUS_REG | TFIE,
235 dev->io_base + SMI_CR2);
236
237 /* wait for tff */
238 ret = wait_event_interruptible_timeout(dev->cmd_complete,
239 dev->status & TFF, SMI_CMD_TIMEOUT);
240
241 /* copy dev->status (lower 16 bits) in order to release lock */
242 if (ret > 0)
243 ret = dev->status & 0xffff;
244 else if (ret == 0)
245 ret = -ETIMEDOUT;
246
247 /* restore the ctrl regs state */
248 writel(ctrlreg1, dev->io_base + SMI_CR1);
249 writel(0, dev->io_base + SMI_CR2);
250 mutex_unlock(&dev->lock);
251
252 return ret;
253 }
254
255 /**
256 * spear_smi_wait_till_ready - wait till flash is ready
257 * @dev: structure of SMI information.
258 * @bank: flash corresponding to this bank
259 * @timeout: timeout for busy wait condition
260 *
261 * This routine checks for WIP (write in progress) bit in Status register
262 * If successful the routine returns 0 else -EBUSY
263 */
spear_smi_wait_till_ready(struct spear_smi * dev,u32 bank,unsigned long timeout)264 static int spear_smi_wait_till_ready(struct spear_smi *dev, u32 bank,
265 unsigned long timeout)
266 {
267 unsigned long finish;
268 int status;
269
270 finish = jiffies + timeout;
271 do {
272 status = spear_smi_read_sr(dev, bank);
273 if (status < 0) {
274 if (status == -ETIMEDOUT)
275 continue; /* try till finish */
276 return status;
277 } else if (!(status & SR_WIP)) {
278 return 0;
279 }
280
281 cond_resched();
282 } while (!time_after_eq(jiffies, finish));
283
284 dev_err(&dev->pdev->dev, "smi controller is busy, timeout\n");
285 return -EBUSY;
286 }
287
288 /**
289 * spear_smi_int_handler - SMI Interrupt Handler.
290 * @irq: irq number
291 * @dev_id: structure of SMI device, embedded in dev_id.
292 *
293 * The handler clears all interrupt conditions and records the status in
294 * dev->status which is used by the driver later.
295 */
spear_smi_int_handler(int irq,void * dev_id)296 static irqreturn_t spear_smi_int_handler(int irq, void *dev_id)
297 {
298 u32 status = 0;
299 struct spear_smi *dev = dev_id;
300
301 status = readl(dev->io_base + SMI_SR);
302
303 if (unlikely(!status))
304 return IRQ_NONE;
305
306 /* clear all interrupt conditions */
307 writel(0, dev->io_base + SMI_SR);
308
309 /* copy the status register in dev->status */
310 dev->status |= status;
311
312 /* send the completion */
313 wake_up_interruptible(&dev->cmd_complete);
314
315 return IRQ_HANDLED;
316 }
317
318 /**
319 * spear_smi_hw_init - initializes the smi controller.
320 * @dev: structure of smi device
321 *
322 * this routine initializes the smi controller wit the default values
323 */
spear_smi_hw_init(struct spear_smi * dev)324 static void spear_smi_hw_init(struct spear_smi *dev)
325 {
326 unsigned long rate = 0;
327 u32 prescale = 0;
328 u32 val;
329
330 rate = clk_get_rate(dev->clk);
331
332 /* functional clock of smi */
333 prescale = DIV_ROUND_UP(rate, dev->clk_rate);
334
335 /*
336 * setting the standard values, fast mode, prescaler for
337 * SMI_MAX_CLOCK_FREQ (50MHz) operation and bank enable
338 */
339 val = HOLD1 | BANK_EN | DSEL_TIME | (prescale << 8);
340
341 mutex_lock(&dev->lock);
342 /* clear all interrupt conditions */
343 writel(0, dev->io_base + SMI_SR);
344
345 writel(val, dev->io_base + SMI_CR1);
346 mutex_unlock(&dev->lock);
347 }
348
349 /**
350 * get_flash_index - match chip id from a flash list.
351 * @flash_id: a valid nor flash chip id obtained from board.
352 *
353 * try to validate the chip id by matching from a list, if not found then simply
354 * returns negative. In case of success returns index in to the flash devices
355 * array.
356 */
get_flash_index(u32 flash_id)357 static int get_flash_index(u32 flash_id)
358 {
359 int index;
360
361 /* Matches chip-id to entire list of 'serial-nor flash' ids */
362 for (index = 0; index < ARRAY_SIZE(flash_devices); index++) {
363 if (flash_devices[index].device_id == flash_id)
364 return index;
365 }
366
367 /* Memory chip is not listed and not supported */
368 return -ENODEV;
369 }
370
371 /**
372 * spear_smi_write_enable - Enable the flash to do write operation
373 * @dev: structure of SMI device
374 * @bank: enable write for flash connected to this bank
375 *
376 * Set write enable latch with Write Enable command.
377 * Returns 0 on success.
378 */
spear_smi_write_enable(struct spear_smi * dev,u32 bank)379 static int spear_smi_write_enable(struct spear_smi *dev, u32 bank)
380 {
381 int ret;
382 u32 ctrlreg1;
383
384 mutex_lock(&dev->lock);
385 dev->status = 0; /* Will be set in interrupt handler */
386
387 ctrlreg1 = readl(dev->io_base + SMI_CR1);
388 /* program smi in h/w mode */
389 writel(ctrlreg1 & ~SW_MODE, dev->io_base + SMI_CR1);
390
391 /* give the flash, write enable command */
392 writel((bank << BANK_SHIFT) | WE | TFIE, dev->io_base + SMI_CR2);
393
394 ret = wait_event_interruptible_timeout(dev->cmd_complete,
395 dev->status & TFF, SMI_CMD_TIMEOUT);
396
397 /* restore the ctrl regs state */
398 writel(ctrlreg1, dev->io_base + SMI_CR1);
399 writel(0, dev->io_base + SMI_CR2);
400
401 if (ret == 0) {
402 ret = -EIO;
403 dev_err(&dev->pdev->dev,
404 "smi controller failed on write enable\n");
405 } else if (ret > 0) {
406 /* check whether write mode status is set for required bank */
407 if (dev->status & (1 << (bank + WM_SHIFT)))
408 ret = 0;
409 else {
410 dev_err(&dev->pdev->dev, "couldn't enable write\n");
411 ret = -EIO;
412 }
413 }
414
415 mutex_unlock(&dev->lock);
416 return ret;
417 }
418
419 static inline u32
get_sector_erase_cmd(struct spear_snor_flash * flash,u32 offset)420 get_sector_erase_cmd(struct spear_snor_flash *flash, u32 offset)
421 {
422 u32 cmd;
423 u8 *x = (u8 *)&cmd;
424
425 x[0] = flash->erase_cmd;
426 x[1] = offset >> 16;
427 x[2] = offset >> 8;
428 x[3] = offset;
429
430 return cmd;
431 }
432
433 /**
434 * spear_smi_erase_sector - erase one sector of flash
435 * @dev: structure of SMI information
436 * @command: erase command to be send
437 * @bank: bank to which this command needs to be send
438 * @bytes: size of command
439 *
440 * Erase one sector of flash memory at offset ``offset'' which is any
441 * address within the sector which should be erased.
442 * Returns 0 if successful, non-zero otherwise.
443 */
spear_smi_erase_sector(struct spear_smi * dev,u32 bank,u32 command,u32 bytes)444 static int spear_smi_erase_sector(struct spear_smi *dev,
445 u32 bank, u32 command, u32 bytes)
446 {
447 u32 ctrlreg1 = 0;
448 int ret;
449
450 ret = spear_smi_wait_till_ready(dev, bank, SMI_MAX_TIME_OUT);
451 if (ret)
452 return ret;
453
454 ret = spear_smi_write_enable(dev, bank);
455 if (ret)
456 return ret;
457
458 mutex_lock(&dev->lock);
459
460 ctrlreg1 = readl(dev->io_base + SMI_CR1);
461 writel((ctrlreg1 | SW_MODE) & ~WB_MODE, dev->io_base + SMI_CR1);
462
463 /* send command in sw mode */
464 writel(command, dev->io_base + SMI_TR);
465
466 writel((bank << BANK_SHIFT) | SEND | TFIE | (bytes << TX_LEN_SHIFT),
467 dev->io_base + SMI_CR2);
468
469 ret = wait_event_interruptible_timeout(dev->cmd_complete,
470 dev->status & TFF, SMI_CMD_TIMEOUT);
471
472 if (ret == 0) {
473 ret = -EIO;
474 dev_err(&dev->pdev->dev, "sector erase failed\n");
475 } else if (ret > 0)
476 ret = 0; /* success */
477
478 /* restore ctrl regs */
479 writel(ctrlreg1, dev->io_base + SMI_CR1);
480 writel(0, dev->io_base + SMI_CR2);
481
482 mutex_unlock(&dev->lock);
483 return ret;
484 }
485
486 /**
487 * spear_mtd_erase - perform flash erase operation as requested by user
488 * @mtd: Provides the memory characteristics
489 * @e_info: Provides the erase information
490 *
491 * Erase an address range on the flash chip. The address range may extend
492 * one or more erase sectors. Return an error is there is a problem erasing.
493 */
spear_mtd_erase(struct mtd_info * mtd,struct erase_info * e_info)494 static int spear_mtd_erase(struct mtd_info *mtd, struct erase_info *e_info)
495 {
496 struct spear_snor_flash *flash = get_flash_data(mtd);
497 struct spear_smi *dev = mtd->priv;
498 u32 addr, command, bank;
499 int len, ret;
500
501 if (!flash || !dev)
502 return -ENODEV;
503
504 bank = flash->bank;
505 if (bank > dev->num_flashes - 1) {
506 dev_err(&dev->pdev->dev, "Invalid Bank Num");
507 return -EINVAL;
508 }
509
510 addr = e_info->addr;
511 len = e_info->len;
512
513 mutex_lock(&flash->lock);
514
515 /* now erase sectors in loop */
516 while (len) {
517 command = get_sector_erase_cmd(flash, addr);
518 /* preparing the command for flash */
519 ret = spear_smi_erase_sector(dev, bank, command, 4);
520 if (ret) {
521 mutex_unlock(&flash->lock);
522 return ret;
523 }
524 addr += mtd->erasesize;
525 len -= mtd->erasesize;
526 }
527
528 mutex_unlock(&flash->lock);
529
530 return 0;
531 }
532
533 /**
534 * spear_mtd_read - performs flash read operation as requested by the user
535 * @mtd: MTD information of the memory bank
536 * @from: Address from which to start read
537 * @len: Number of bytes to be read
538 * @retlen: Fills the Number of bytes actually read
539 * @buf: Fills this after reading
540 *
541 * Read an address range from the flash chip. The address range
542 * may be any size provided it is within the physical boundaries.
543 * Returns 0 on success, non zero otherwise
544 */
spear_mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u8 * buf)545 static int spear_mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
546 size_t *retlen, u8 *buf)
547 {
548 struct spear_snor_flash *flash = get_flash_data(mtd);
549 struct spear_smi *dev = mtd->priv;
550 void __iomem *src;
551 u32 ctrlreg1, val;
552 int ret;
553
554 if (!flash || !dev)
555 return -ENODEV;
556
557 if (flash->bank > dev->num_flashes - 1) {
558 dev_err(&dev->pdev->dev, "Invalid Bank Num");
559 return -EINVAL;
560 }
561
562 /* select address as per bank number */
563 src = flash->base_addr + from;
564
565 mutex_lock(&flash->lock);
566
567 /* wait till previous write/erase is done. */
568 ret = spear_smi_wait_till_ready(dev, flash->bank, SMI_MAX_TIME_OUT);
569 if (ret) {
570 mutex_unlock(&flash->lock);
571 return ret;
572 }
573
574 mutex_lock(&dev->lock);
575 /* put smi in hw mode not wbt mode */
576 ctrlreg1 = val = readl(dev->io_base + SMI_CR1);
577 val &= ~(SW_MODE | WB_MODE);
578 if (flash->fast_mode)
579 val |= FAST_MODE;
580
581 writel(val, dev->io_base + SMI_CR1);
582
583 memcpy_fromio(buf, src, len);
584
585 /* restore ctrl reg1 */
586 writel(ctrlreg1, dev->io_base + SMI_CR1);
587 mutex_unlock(&dev->lock);
588
589 *retlen = len;
590 mutex_unlock(&flash->lock);
591
592 return 0;
593 }
594
595 /*
596 * The purpose of this function is to ensure a memcpy_toio() with byte writes
597 * only. Its structure is inspired from the ARM implementation of _memcpy_toio()
598 * which also does single byte writes but cannot be used here as this is just an
599 * implementation detail and not part of the API. Not mentioning the comment
600 * stating that _memcpy_toio() should be optimized.
601 */
spear_smi_memcpy_toio_b(volatile void __iomem * dest,const void * src,size_t len)602 static void spear_smi_memcpy_toio_b(volatile void __iomem *dest,
603 const void *src, size_t len)
604 {
605 const unsigned char *from = src;
606
607 while (len) {
608 len--;
609 writeb(*from, dest);
610 from++;
611 dest++;
612 }
613 }
614
spear_smi_cpy_toio(struct spear_smi * dev,u32 bank,void __iomem * dest,const void * src,size_t len)615 static inline int spear_smi_cpy_toio(struct spear_smi *dev, u32 bank,
616 void __iomem *dest, const void *src, size_t len)
617 {
618 int ret;
619 u32 ctrlreg1;
620
621 /* wait until finished previous write command. */
622 ret = spear_smi_wait_till_ready(dev, bank, SMI_MAX_TIME_OUT);
623 if (ret)
624 return ret;
625
626 /* put smi in write enable */
627 ret = spear_smi_write_enable(dev, bank);
628 if (ret)
629 return ret;
630
631 /* put smi in hw, write burst mode */
632 mutex_lock(&dev->lock);
633
634 ctrlreg1 = readl(dev->io_base + SMI_CR1);
635 writel((ctrlreg1 | WB_MODE) & ~SW_MODE, dev->io_base + SMI_CR1);
636
637 /*
638 * In Write Burst mode (WB_MODE), the specs states that writes must be:
639 * - incremental
640 * - of the same size
641 * The ARM implementation of memcpy_toio() will optimize the number of
642 * I/O by using as much 4-byte writes as possible, surrounded by
643 * 2-byte/1-byte access if:
644 * - the destination is not 4-byte aligned
645 * - the length is not a multiple of 4-byte.
646 * Avoid this alternance of write access size by using our own 'byte
647 * access' helper if at least one of the two conditions above is true.
648 */
649 if (IS_ALIGNED(len, sizeof(u32)) &&
650 IS_ALIGNED((uintptr_t)dest, sizeof(u32)))
651 memcpy_toio(dest, src, len);
652 else
653 spear_smi_memcpy_toio_b(dest, src, len);
654
655 writel(ctrlreg1, dev->io_base + SMI_CR1);
656
657 mutex_unlock(&dev->lock);
658 return 0;
659 }
660
661 /**
662 * spear_mtd_write - performs write operation as requested by the user.
663 * @mtd: MTD information of the memory bank.
664 * @to: Address to write.
665 * @len: Number of bytes to be written.
666 * @retlen: Number of bytes actually wrote.
667 * @buf: Buffer from which the data to be taken.
668 *
669 * Write an address range to the flash chip. Data must be written in
670 * flash_page_size chunks. The address range may be any size provided
671 * it is within the physical boundaries.
672 * Returns 0 on success, non zero otherwise
673 */
spear_mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u8 * buf)674 static int spear_mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
675 size_t *retlen, const u8 *buf)
676 {
677 struct spear_snor_flash *flash = get_flash_data(mtd);
678 struct spear_smi *dev = mtd->priv;
679 void __iomem *dest;
680 u32 page_offset, page_size;
681 int ret;
682
683 if (!flash || !dev)
684 return -ENODEV;
685
686 if (flash->bank > dev->num_flashes - 1) {
687 dev_err(&dev->pdev->dev, "Invalid Bank Num");
688 return -EINVAL;
689 }
690
691 /* select address as per bank number */
692 dest = flash->base_addr + to;
693 mutex_lock(&flash->lock);
694
695 page_offset = (u32)to % flash->page_size;
696
697 /* do if all the bytes fit onto one page */
698 if (page_offset + len <= flash->page_size) {
699 ret = spear_smi_cpy_toio(dev, flash->bank, dest, buf, len);
700 if (!ret)
701 *retlen += len;
702 } else {
703 u32 i;
704
705 /* the size of data remaining on the first page */
706 page_size = flash->page_size - page_offset;
707
708 ret = spear_smi_cpy_toio(dev, flash->bank, dest, buf,
709 page_size);
710 if (ret)
711 goto err_write;
712 else
713 *retlen += page_size;
714
715 /* write everything in pagesize chunks */
716 for (i = page_size; i < len; i += page_size) {
717 page_size = len - i;
718 if (page_size > flash->page_size)
719 page_size = flash->page_size;
720
721 ret = spear_smi_cpy_toio(dev, flash->bank, dest + i,
722 buf + i, page_size);
723 if (ret)
724 break;
725 else
726 *retlen += page_size;
727 }
728 }
729
730 err_write:
731 mutex_unlock(&flash->lock);
732
733 return ret;
734 }
735
736 /**
737 * spear_smi_probe_flash - Detects the NOR Flash chip.
738 * @dev: structure of SMI information.
739 * @bank: bank on which flash must be probed
740 *
741 * This routine will check whether there exists a flash chip on a given memory
742 * bank ID.
743 * Return index of the probed flash in flash devices structure
744 */
spear_smi_probe_flash(struct spear_smi * dev,u32 bank)745 static int spear_smi_probe_flash(struct spear_smi *dev, u32 bank)
746 {
747 int ret;
748 u32 val = 0;
749
750 ret = spear_smi_wait_till_ready(dev, bank, SMI_PROBE_TIMEOUT);
751 if (ret)
752 return ret;
753
754 mutex_lock(&dev->lock);
755
756 dev->status = 0; /* Will be set in interrupt handler */
757 /* put smi in sw mode */
758 val = readl(dev->io_base + SMI_CR1);
759 writel(val | SW_MODE, dev->io_base + SMI_CR1);
760
761 /* send readid command in sw mode */
762 writel(OPCODE_RDID, dev->io_base + SMI_TR);
763
764 val = (bank << BANK_SHIFT) | SEND | (1 << TX_LEN_SHIFT) |
765 (3 << RX_LEN_SHIFT) | TFIE;
766 writel(val, dev->io_base + SMI_CR2);
767
768 /* wait for TFF */
769 ret = wait_event_interruptible_timeout(dev->cmd_complete,
770 dev->status & TFF, SMI_CMD_TIMEOUT);
771 if (ret <= 0) {
772 ret = -ENODEV;
773 goto err_probe;
774 }
775
776 /* get memory chip id */
777 val = readl(dev->io_base + SMI_RR);
778 val &= 0x00ffffff;
779 ret = get_flash_index(val);
780
781 err_probe:
782 /* clear sw mode */
783 val = readl(dev->io_base + SMI_CR1);
784 writel(val & ~SW_MODE, dev->io_base + SMI_CR1);
785
786 mutex_unlock(&dev->lock);
787 return ret;
788 }
789
790
791 #ifdef CONFIG_OF
spear_smi_probe_config_dt(struct platform_device * pdev,struct device_node * np)792 static int spear_smi_probe_config_dt(struct platform_device *pdev,
793 struct device_node *np)
794 {
795 struct spear_smi_plat_data *pdata = dev_get_platdata(&pdev->dev);
796 struct device_node *pp;
797 const __be32 *addr;
798 u32 val;
799 int len;
800 int i = 0;
801
802 if (!np)
803 return -ENODEV;
804
805 of_property_read_u32(np, "clock-rate", &val);
806 pdata->clk_rate = val;
807
808 pdata->board_flash_info = devm_kzalloc(&pdev->dev,
809 sizeof(*pdata->board_flash_info),
810 GFP_KERNEL);
811 if (!pdata->board_flash_info)
812 return -ENOMEM;
813
814 /* Fill structs for each subnode (flash device) */
815 for_each_child_of_node(np, pp) {
816 pdata->np[i] = pp;
817
818 /* Read base-addr and size from DT */
819 addr = of_get_property(pp, "reg", &len);
820 pdata->board_flash_info->mem_base = be32_to_cpup(&addr[0]);
821 pdata->board_flash_info->size = be32_to_cpup(&addr[1]);
822
823 pdata->board_flash_info->fast_mode =
824 of_property_read_bool(pp, "st,smi-fast-mode");
825
826 i++;
827 }
828
829 pdata->num_flashes = i;
830
831 return 0;
832 }
833 #else
spear_smi_probe_config_dt(struct platform_device * pdev,struct device_node * np)834 static int spear_smi_probe_config_dt(struct platform_device *pdev,
835 struct device_node *np)
836 {
837 return -ENOSYS;
838 }
839 #endif
840
spear_smi_setup_banks(struct platform_device * pdev,u32 bank,struct device_node * np)841 static int spear_smi_setup_banks(struct platform_device *pdev,
842 u32 bank, struct device_node *np)
843 {
844 struct spear_smi *dev = platform_get_drvdata(pdev);
845 struct spear_smi_flash_info *flash_info;
846 struct spear_smi_plat_data *pdata;
847 struct spear_snor_flash *flash;
848 struct mtd_partition *parts = NULL;
849 int count = 0;
850 int flash_index;
851 int ret = 0;
852
853 pdata = dev_get_platdata(&pdev->dev);
854 if (bank > pdata->num_flashes - 1)
855 return -EINVAL;
856
857 flash_info = &pdata->board_flash_info[bank];
858 if (!flash_info)
859 return -ENODEV;
860
861 flash = devm_kzalloc(&pdev->dev, sizeof(*flash), GFP_ATOMIC);
862 if (!flash)
863 return -ENOMEM;
864 flash->bank = bank;
865 flash->fast_mode = flash_info->fast_mode ? 1 : 0;
866 mutex_init(&flash->lock);
867
868 /* verify whether nor flash is really present on board */
869 flash_index = spear_smi_probe_flash(dev, bank);
870 if (flash_index < 0) {
871 dev_info(&dev->pdev->dev, "smi-nor%d not found\n", bank);
872 return flash_index;
873 }
874 /* map the memory for nor flash chip */
875 flash->base_addr = devm_ioremap(&pdev->dev, flash_info->mem_base,
876 flash_info->size);
877 if (!flash->base_addr)
878 return -EIO;
879
880 dev->flash[bank] = flash;
881 flash->mtd.priv = dev;
882
883 if (flash_info->name)
884 flash->mtd.name = flash_info->name;
885 else
886 flash->mtd.name = flash_devices[flash_index].name;
887
888 flash->mtd.dev.parent = &pdev->dev;
889 mtd_set_of_node(&flash->mtd, np);
890 flash->mtd.type = MTD_NORFLASH;
891 flash->mtd.writesize = 1;
892 flash->mtd.flags = MTD_CAP_NORFLASH;
893 flash->mtd.size = flash_info->size;
894 flash->mtd.erasesize = flash_devices[flash_index].sectorsize;
895 flash->page_size = flash_devices[flash_index].pagesize;
896 flash->mtd.writebufsize = flash->page_size;
897 flash->erase_cmd = flash_devices[flash_index].erase_cmd;
898 flash->mtd._erase = spear_mtd_erase;
899 flash->mtd._read = spear_mtd_read;
900 flash->mtd._write = spear_mtd_write;
901 flash->dev_id = flash_devices[flash_index].device_id;
902
903 dev_info(&dev->pdev->dev, "mtd .name=%s .size=%llx(%lluM)\n",
904 flash->mtd.name, flash->mtd.size,
905 flash->mtd.size / (1024 * 1024));
906
907 dev_info(&dev->pdev->dev, ".erasesize = 0x%x(%uK)\n",
908 flash->mtd.erasesize, flash->mtd.erasesize / 1024);
909
910 #ifndef CONFIG_OF
911 if (flash_info->partitions) {
912 parts = flash_info->partitions;
913 count = flash_info->nr_partitions;
914 }
915 #endif
916
917 ret = mtd_device_register(&flash->mtd, parts, count);
918 if (ret) {
919 dev_err(&dev->pdev->dev, "Err MTD partition=%d\n", ret);
920 return ret;
921 }
922
923 return 0;
924 }
925
926 /**
927 * spear_smi_probe - Entry routine
928 * @pdev: platform device structure
929 *
930 * This is the first routine which gets invoked during booting and does all
931 * initialization/allocation work. The routine looks for available memory banks,
932 * and do proper init for any found one.
933 * Returns 0 on success, non zero otherwise
934 */
spear_smi_probe(struct platform_device * pdev)935 static int spear_smi_probe(struct platform_device *pdev)
936 {
937 struct device_node *np = pdev->dev.of_node;
938 struct spear_smi_plat_data *pdata = NULL;
939 struct spear_smi *dev;
940 int irq, ret = 0;
941 int i;
942
943 if (np) {
944 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
945 if (!pdata) {
946 ret = -ENOMEM;
947 goto err;
948 }
949 pdev->dev.platform_data = pdata;
950 ret = spear_smi_probe_config_dt(pdev, np);
951 if (ret) {
952 ret = -ENODEV;
953 dev_err(&pdev->dev, "no platform data\n");
954 goto err;
955 }
956 } else {
957 pdata = dev_get_platdata(&pdev->dev);
958 if (!pdata) {
959 ret = -ENODEV;
960 dev_err(&pdev->dev, "no platform data\n");
961 goto err;
962 }
963 }
964
965 irq = platform_get_irq(pdev, 0);
966 if (irq < 0) {
967 ret = -ENODEV;
968 goto err;
969 }
970
971 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
972 if (!dev) {
973 ret = -ENOMEM;
974 goto err;
975 }
976
977 dev->io_base = devm_platform_ioremap_resource(pdev, 0);
978 if (IS_ERR(dev->io_base)) {
979 ret = PTR_ERR(dev->io_base);
980 goto err;
981 }
982
983 dev->pdev = pdev;
984 dev->clk_rate = pdata->clk_rate;
985
986 if (dev->clk_rate > SMI_MAX_CLOCK_FREQ)
987 dev->clk_rate = SMI_MAX_CLOCK_FREQ;
988
989 dev->num_flashes = pdata->num_flashes;
990
991 if (dev->num_flashes > MAX_NUM_FLASH_CHIP) {
992 dev_err(&pdev->dev, "exceeding max number of flashes\n");
993 dev->num_flashes = MAX_NUM_FLASH_CHIP;
994 }
995
996 dev->clk = devm_clk_get_enabled(&pdev->dev, NULL);
997 if (IS_ERR(dev->clk)) {
998 ret = PTR_ERR(dev->clk);
999 goto err;
1000 }
1001
1002 ret = devm_request_irq(&pdev->dev, irq, spear_smi_int_handler, 0,
1003 pdev->name, dev);
1004 if (ret) {
1005 dev_err(&dev->pdev->dev, "SMI IRQ allocation failed\n");
1006 goto err;
1007 }
1008
1009 mutex_init(&dev->lock);
1010 init_waitqueue_head(&dev->cmd_complete);
1011 spear_smi_hw_init(dev);
1012 platform_set_drvdata(pdev, dev);
1013
1014 /* loop for each serial nor-flash which is connected to smi */
1015 for (i = 0; i < dev->num_flashes; i++) {
1016 ret = spear_smi_setup_banks(pdev, i, pdata->np[i]);
1017 if (ret) {
1018 dev_err(&dev->pdev->dev, "bank setup failed\n");
1019 goto err;
1020 }
1021 }
1022
1023 return 0;
1024 err:
1025 return ret;
1026 }
1027
1028 /**
1029 * spear_smi_remove - Exit routine
1030 * @pdev: platform device structure
1031 *
1032 * free all allocations and delete the partitions.
1033 */
spear_smi_remove(struct platform_device * pdev)1034 static void spear_smi_remove(struct platform_device *pdev)
1035 {
1036 struct spear_smi *dev;
1037 struct spear_snor_flash *flash;
1038 int i;
1039
1040 dev = platform_get_drvdata(pdev);
1041
1042 /* clean up for all nor flash */
1043 for (i = 0; i < dev->num_flashes; i++) {
1044 flash = dev->flash[i];
1045 if (!flash)
1046 continue;
1047
1048 /* clean up mtd stuff */
1049 WARN_ON(mtd_device_unregister(&flash->mtd));
1050 }
1051 }
1052
1053 #ifdef CONFIG_PM_SLEEP
spear_smi_suspend(struct device * dev)1054 static int spear_smi_suspend(struct device *dev)
1055 {
1056 struct spear_smi *sdev = dev_get_drvdata(dev);
1057
1058 if (sdev && sdev->clk)
1059 clk_disable_unprepare(sdev->clk);
1060
1061 return 0;
1062 }
1063
spear_smi_resume(struct device * dev)1064 static int spear_smi_resume(struct device *dev)
1065 {
1066 struct spear_smi *sdev = dev_get_drvdata(dev);
1067 int ret = -EPERM;
1068
1069 if (sdev && sdev->clk)
1070 ret = clk_prepare_enable(sdev->clk);
1071
1072 if (!ret)
1073 spear_smi_hw_init(sdev);
1074 return ret;
1075 }
1076 #endif
1077
1078 static SIMPLE_DEV_PM_OPS(spear_smi_pm_ops, spear_smi_suspend, spear_smi_resume);
1079
1080 #ifdef CONFIG_OF
1081 static const struct of_device_id spear_smi_id_table[] = {
1082 { .compatible = "st,spear600-smi" },
1083 {}
1084 };
1085 MODULE_DEVICE_TABLE(of, spear_smi_id_table);
1086 #endif
1087
1088 static struct platform_driver spear_smi_driver = {
1089 .driver = {
1090 .name = "smi",
1091 .bus = &platform_bus_type,
1092 .of_match_table = of_match_ptr(spear_smi_id_table),
1093 .pm = &spear_smi_pm_ops,
1094 },
1095 .probe = spear_smi_probe,
1096 .remove_new = spear_smi_remove,
1097 };
1098 module_platform_driver(spear_smi_driver);
1099
1100 MODULE_LICENSE("GPL");
1101 MODULE_AUTHOR("Ashish Priyadarshi, Shiraz Hashim <shiraz.linux.kernel@gmail.com>");
1102 MODULE_DESCRIPTION("MTD SMI driver for serial nor flash chips");
1103