xref: /linux/drivers/target/target_core_spc.c (revision 7eb7f5723df50a7d5564aa609e4c147f669a5cb4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SCSI Primary Commands (SPC) parsing and emulation.
4  *
5  * (c) Copyright 2002-2013 Datera, Inc.
6  *
7  * Nicholas A. Bellinger <nab@kernel.org>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/unaligned.h>
13 
14 #include <scsi/scsi_proto.h>
15 #include <scsi/scsi_common.h>
16 #include <scsi/scsi_tcq.h>
17 
18 #include <target/target_core_base.h>
19 #include <target/target_core_backend.h>
20 #include <target/target_core_fabric.h>
21 
22 #include "target_core_internal.h"
23 #include "target_core_alua.h"
24 #include "target_core_pr.h"
25 #include "target_core_ua.h"
26 #include "target_core_xcopy.h"
27 
spc_fill_alua_data(struct se_lun * lun,unsigned char * buf)28 static void spc_fill_alua_data(struct se_lun *lun, unsigned char *buf)
29 {
30 	struct t10_alua_tg_pt_gp *tg_pt_gp;
31 
32 	/*
33 	 * Set SCCS for MAINTENANCE_IN + REPORT_TARGET_PORT_GROUPS.
34 	 */
35 	buf[5]	= 0x80;
36 
37 	/*
38 	 * Set TPGS field for explicit and/or implicit ALUA access type
39 	 * and opteration.
40 	 *
41 	 * See spc4r17 section 6.4.2 Table 135
42 	 */
43 	rcu_read_lock();
44 	tg_pt_gp = rcu_dereference(lun->lun_tg_pt_gp);
45 	if (tg_pt_gp)
46 		buf[5] |= tg_pt_gp->tg_pt_gp_alua_access_type;
47 	rcu_read_unlock();
48 }
49 
50 static u16
spc_find_scsi_transport_vd(int proto_id)51 spc_find_scsi_transport_vd(int proto_id)
52 {
53 	switch (proto_id) {
54 	case SCSI_PROTOCOL_FCP:
55 		return SCSI_VERSION_DESCRIPTOR_FCP4;
56 	case SCSI_PROTOCOL_ISCSI:
57 		return SCSI_VERSION_DESCRIPTOR_ISCSI;
58 	case SCSI_PROTOCOL_SAS:
59 		return SCSI_VERSION_DESCRIPTOR_SAS3;
60 	case SCSI_PROTOCOL_SBP:
61 		return SCSI_VERSION_DESCRIPTOR_SBP3;
62 	case SCSI_PROTOCOL_SRP:
63 		return SCSI_VERSION_DESCRIPTOR_SRP;
64 	default:
65 		pr_warn("Cannot find VERSION DESCRIPTOR value for unknown SCSI"
66 			" transport PROTOCOL IDENTIFIER %#x\n", proto_id);
67 		return 0;
68 	}
69 }
70 
71 sense_reason_t
spc_emulate_inquiry_std(struct se_cmd * cmd,unsigned char * buf)72 spc_emulate_inquiry_std(struct se_cmd *cmd, unsigned char *buf)
73 {
74 	struct se_lun *lun = cmd->se_lun;
75 	struct se_portal_group *tpg = lun->lun_tpg;
76 	struct se_device *dev = cmd->se_dev;
77 	struct se_session *sess = cmd->se_sess;
78 
79 	/* Set RMB (removable media) for tape devices */
80 	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
81 		buf[1] = 0x80;
82 
83 	buf[2] = 0x06; /* SPC-4 */
84 
85 	/*
86 	 * NORMACA and HISUP = 0, RESPONSE DATA FORMAT = 2
87 	 *
88 	 * SPC4 says:
89 	 *   A RESPONSE DATA FORMAT field set to 2h indicates that the
90 	 *   standard INQUIRY data is in the format defined in this
91 	 *   standard. Response data format values less than 2h are
92 	 *   obsolete. Response data format values greater than 2h are
93 	 *   reserved.
94 	 */
95 	buf[3] = 2;
96 
97 	/*
98 	 * Enable SCCS and TPGS fields for Emulated ALUA
99 	 */
100 	spc_fill_alua_data(lun, buf);
101 
102 	/*
103 	 * Set Third-Party Copy (3PC) bit to indicate support for EXTENDED_COPY
104 	 */
105 	if (dev->dev_attrib.emulate_3pc)
106 		buf[5] |= 0x8;
107 	/*
108 	 * Set Protection (PROTECT) bit when DIF has been enabled on the
109 	 * device, and the fabric supports VERIFY + PASS.  Also report
110 	 * PROTECT=1 if sess_prot_type has been configured to allow T10-PI
111 	 * to unprotected devices.
112 	 */
113 	if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
114 		if (dev->dev_attrib.pi_prot_type || cmd->se_sess->sess_prot_type)
115 			buf[5] |= 0x1;
116 	}
117 
118 	/*
119 	 * Set MULTIP bit to indicate presence of multiple SCSI target ports
120 	 */
121 	if (dev->export_count > 1)
122 		buf[6] |= 0x10;
123 
124 	buf[7] = 0x2; /* CmdQue=1 */
125 
126 	/*
127 	 * ASCII data fields described as being left-aligned shall have any
128 	 * unused bytes at the end of the field (i.e., highest offset) and the
129 	 * unused bytes shall be filled with ASCII space characters (20h).
130 	 */
131 	memset(&buf[8], 0x20,
132 	       INQUIRY_VENDOR_LEN + INQUIRY_MODEL_LEN + INQUIRY_REVISION_LEN);
133 	memcpy(&buf[8], dev->t10_wwn.vendor,
134 	       strnlen(dev->t10_wwn.vendor, INQUIRY_VENDOR_LEN));
135 	memcpy(&buf[16], dev->t10_wwn.model,
136 	       strnlen(dev->t10_wwn.model, INQUIRY_MODEL_LEN));
137 	memcpy(&buf[32], dev->t10_wwn.revision,
138 	       strnlen(dev->t10_wwn.revision, INQUIRY_REVISION_LEN));
139 
140 	/*
141 	 * Set the VERSION DESCRIPTOR fields
142 	 */
143 	put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SAM5, &buf[58]);
144 	put_unaligned_be16(spc_find_scsi_transport_vd(tpg->proto_id), &buf[60]);
145 	put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SPC4, &buf[62]);
146 	if (cmd->se_dev->transport->get_device_type(dev) == TYPE_DISK)
147 		put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SBC3, &buf[64]);
148 
149 	buf[4] = 91; /* Set additional length to 91 */
150 
151 	return 0;
152 }
153 EXPORT_SYMBOL(spc_emulate_inquiry_std);
154 
155 /* unit serial number */
156 static sense_reason_t
spc_emulate_evpd_80(struct se_cmd * cmd,unsigned char * buf)157 spc_emulate_evpd_80(struct se_cmd *cmd, unsigned char *buf)
158 {
159 	struct se_device *dev = cmd->se_dev;
160 	u16 len;
161 
162 	if (dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL) {
163 		len = sprintf(&buf[4], "%s", dev->t10_wwn.unit_serial);
164 		len++; /* Extra Byte for NULL Terminator */
165 		buf[3] = len;
166 	}
167 	return 0;
168 }
169 
170 /*
171  * Generate NAA IEEE Registered Extended designator
172  */
spc_gen_naa_6h_vendor_specific(struct se_device * dev,unsigned char * buf)173 void spc_gen_naa_6h_vendor_specific(struct se_device *dev,
174 				    unsigned char *buf)
175 {
176 	unsigned char *p = &dev->t10_wwn.unit_serial[0];
177 	u32 company_id = dev->t10_wwn.company_id;
178 	int cnt, off = 0;
179 	bool next = true;
180 
181 	/*
182 	 * Start NAA IEEE Registered Extended Identifier/Designator
183 	 */
184 	buf[off] = 0x6 << 4;
185 
186 	/* IEEE COMPANY_ID */
187 	buf[off++] |= (company_id >> 20) & 0xf;
188 	buf[off++] = (company_id >> 12) & 0xff;
189 	buf[off++] = (company_id >> 4) & 0xff;
190 	buf[off] = (company_id & 0xf) << 4;
191 
192 	/*
193 	 * Generate up to 36 bits of VENDOR SPECIFIC IDENTIFIER starting on
194 	 * byte 3 bit 3-0 for NAA IEEE Registered Extended DESIGNATOR field
195 	 * format, followed by 64 bits of VENDOR SPECIFIC IDENTIFIER EXTENSION
196 	 * to complete the payload.  These are based from VPD=0x80 PRODUCT SERIAL
197 	 * NUMBER set via vpd_unit_serial in target_core_configfs.c to ensure
198 	 * per device uniqeness.
199 	 */
200 	for (cnt = off + 13; *p && off < cnt; p++) {
201 		int val = hex_to_bin(*p);
202 
203 		if (val < 0)
204 			continue;
205 
206 		if (next) {
207 			next = false;
208 			buf[off++] |= val;
209 		} else {
210 			next = true;
211 			buf[off] = val << 4;
212 		}
213 	}
214 }
215 
216 /*
217  * Device identification VPD, for a complete list of
218  * DESIGNATOR TYPEs see spc4r17 Table 459.
219  */
220 sense_reason_t
spc_emulate_evpd_83(struct se_cmd * cmd,unsigned char * buf)221 spc_emulate_evpd_83(struct se_cmd *cmd, unsigned char *buf)
222 {
223 	struct se_device *dev = cmd->se_dev;
224 	struct se_lun *lun = cmd->se_lun;
225 	struct se_portal_group *tpg = NULL;
226 	struct t10_alua_lu_gp_member *lu_gp_mem;
227 	struct t10_alua_tg_pt_gp *tg_pt_gp;
228 	unsigned char *prod = &dev->t10_wwn.model[0];
229 	u32 off = 0;
230 	u16 len = 0, id_len;
231 
232 	off = 4;
233 
234 	/*
235 	 * NAA IEEE Registered Extended Assigned designator format, see
236 	 * spc4r17 section 7.7.3.6.5
237 	 *
238 	 * We depend upon a target_core_mod/ConfigFS provided
239 	 * /sys/kernel/config/target/core/$HBA/$DEV/wwn/vpd_unit_serial
240 	 * value in order to return the NAA id.
241 	 */
242 	if (!(dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL))
243 		goto check_t10_vend_desc;
244 
245 	/* CODE SET == Binary */
246 	buf[off++] = 0x1;
247 
248 	/* Set ASSOCIATION == addressed logical unit: 0)b */
249 	buf[off] = 0x00;
250 
251 	/* Identifier/Designator type == NAA identifier */
252 	buf[off++] |= 0x3;
253 	off++;
254 
255 	/* Identifier/Designator length */
256 	buf[off++] = 0x10;
257 
258 	/* NAA IEEE Registered Extended designator */
259 	spc_gen_naa_6h_vendor_specific(dev, &buf[off]);
260 
261 	len = 20;
262 	off = (len + 4);
263 
264 check_t10_vend_desc:
265 	/*
266 	 * T10 Vendor Identifier Page, see spc4r17 section 7.7.3.4
267 	 */
268 	id_len = 8; /* For Vendor field */
269 
270 	if (dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL)
271 		id_len += sprintf(&buf[off+12], "%s:%s", prod,
272 				&dev->t10_wwn.unit_serial[0]);
273 	buf[off] = 0x2; /* ASCII */
274 	buf[off+1] = 0x1; /* T10 Vendor ID */
275 	buf[off+2] = 0x0;
276 	/* left align Vendor ID and pad with spaces */
277 	memset(&buf[off+4], 0x20, INQUIRY_VENDOR_LEN);
278 	memcpy(&buf[off+4], dev->t10_wwn.vendor,
279 	       strnlen(dev->t10_wwn.vendor, INQUIRY_VENDOR_LEN));
280 	/* Extra Byte for NULL Terminator */
281 	id_len++;
282 	/* Identifier Length */
283 	buf[off+3] = id_len;
284 	/* Header size for Designation descriptor */
285 	len += (id_len + 4);
286 	off += (id_len + 4);
287 
288 	if (1) {
289 		struct t10_alua_lu_gp *lu_gp;
290 		u32 padding, scsi_name_len, scsi_target_len;
291 		u16 lu_gp_id = 0;
292 		u16 tg_pt_gp_id = 0;
293 		u16 tpgt;
294 
295 		tpg = lun->lun_tpg;
296 		/*
297 		 * Relative target port identifer, see spc4r17
298 		 * section 7.7.3.7
299 		 *
300 		 * Get the PROTOCOL IDENTIFIER as defined by spc4r17
301 		 * section 7.5.1 Table 362
302 		 */
303 		buf[off] = tpg->proto_id << 4;
304 		buf[off++] |= 0x1; /* CODE SET == Binary */
305 		buf[off] = 0x80; /* Set PIV=1 */
306 		/* Set ASSOCIATION == target port: 01b */
307 		buf[off] |= 0x10;
308 		/* DESIGNATOR TYPE == Relative target port identifer */
309 		buf[off++] |= 0x4;
310 		off++; /* Skip over Reserved */
311 		buf[off++] = 4; /* DESIGNATOR LENGTH */
312 		/* Skip over Obsolete field in RTPI payload
313 		 * in Table 472 */
314 		off += 2;
315 		put_unaligned_be16(lun->lun_tpg->tpg_rtpi, &buf[off]);
316 		off += 2;
317 		len += 8; /* Header size + Designation descriptor */
318 		/*
319 		 * Target port group identifier, see spc4r17
320 		 * section 7.7.3.8
321 		 *
322 		 * Get the PROTOCOL IDENTIFIER as defined by spc4r17
323 		 * section 7.5.1 Table 362
324 		 */
325 		rcu_read_lock();
326 		tg_pt_gp = rcu_dereference(lun->lun_tg_pt_gp);
327 		if (!tg_pt_gp) {
328 			rcu_read_unlock();
329 			goto check_lu_gp;
330 		}
331 		tg_pt_gp_id = tg_pt_gp->tg_pt_gp_id;
332 		rcu_read_unlock();
333 
334 		buf[off] = tpg->proto_id << 4;
335 		buf[off++] |= 0x1; /* CODE SET == Binary */
336 		buf[off] = 0x80; /* Set PIV=1 */
337 		/* Set ASSOCIATION == target port: 01b */
338 		buf[off] |= 0x10;
339 		/* DESIGNATOR TYPE == Target port group identifier */
340 		buf[off++] |= 0x5;
341 		off++; /* Skip over Reserved */
342 		buf[off++] = 4; /* DESIGNATOR LENGTH */
343 		off += 2; /* Skip over Reserved Field */
344 		put_unaligned_be16(tg_pt_gp_id, &buf[off]);
345 		off += 2;
346 		len += 8; /* Header size + Designation descriptor */
347 		/*
348 		 * Logical Unit Group identifier, see spc4r17
349 		 * section 7.7.3.8
350 		 */
351 check_lu_gp:
352 		lu_gp_mem = dev->dev_alua_lu_gp_mem;
353 		if (!lu_gp_mem)
354 			goto check_scsi_name;
355 
356 		spin_lock(&lu_gp_mem->lu_gp_mem_lock);
357 		lu_gp = lu_gp_mem->lu_gp;
358 		if (!lu_gp) {
359 			spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
360 			goto check_scsi_name;
361 		}
362 		lu_gp_id = lu_gp->lu_gp_id;
363 		spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
364 
365 		buf[off++] |= 0x1; /* CODE SET == Binary */
366 		/* DESIGNATOR TYPE == Logical Unit Group identifier */
367 		buf[off++] |= 0x6;
368 		off++; /* Skip over Reserved */
369 		buf[off++] = 4; /* DESIGNATOR LENGTH */
370 		off += 2; /* Skip over Reserved Field */
371 		put_unaligned_be16(lu_gp_id, &buf[off]);
372 		off += 2;
373 		len += 8; /* Header size + Designation descriptor */
374 		/*
375 		 * SCSI name string designator, see spc4r17
376 		 * section 7.7.3.11
377 		 *
378 		 * Get the PROTOCOL IDENTIFIER as defined by spc4r17
379 		 * section 7.5.1 Table 362
380 		 */
381 check_scsi_name:
382 		buf[off] = tpg->proto_id << 4;
383 		buf[off++] |= 0x3; /* CODE SET == UTF-8 */
384 		buf[off] = 0x80; /* Set PIV=1 */
385 		/* Set ASSOCIATION == target port: 01b */
386 		buf[off] |= 0x10;
387 		/* DESIGNATOR TYPE == SCSI name string */
388 		buf[off++] |= 0x8;
389 		off += 2; /* Skip over Reserved and length */
390 		/*
391 		 * SCSI name string identifer containing, $FABRIC_MOD
392 		 * dependent information.  For LIO-Target and iSCSI
393 		 * Target Port, this means "<iSCSI name>,t,0x<TPGT> in
394 		 * UTF-8 encoding.
395 		 */
396 		tpgt = tpg->se_tpg_tfo->tpg_get_tag(tpg);
397 		scsi_name_len = sprintf(&buf[off], "%s,t,0x%04x",
398 					tpg->se_tpg_tfo->tpg_get_wwn(tpg), tpgt);
399 		scsi_name_len += 1 /* Include  NULL terminator */;
400 		/*
401 		 * The null-terminated, null-padded (see 4.4.2) SCSI
402 		 * NAME STRING field contains a UTF-8 format string.
403 		 * The number of bytes in the SCSI NAME STRING field
404 		 * (i.e., the value in the DESIGNATOR LENGTH field)
405 		 * shall be no larger than 256 and shall be a multiple
406 		 * of four.
407 		 */
408 		padding = ((-scsi_name_len) & 3);
409 		if (padding)
410 			scsi_name_len += padding;
411 		if (scsi_name_len > 256)
412 			scsi_name_len = 256;
413 
414 		buf[off-1] = scsi_name_len;
415 		off += scsi_name_len;
416 		/* Header size + Designation descriptor */
417 		len += (scsi_name_len + 4);
418 
419 		/*
420 		 * Target device designator
421 		 */
422 		buf[off] = tpg->proto_id << 4;
423 		buf[off++] |= 0x3; /* CODE SET == UTF-8 */
424 		buf[off] = 0x80; /* Set PIV=1 */
425 		/* Set ASSOCIATION == target device: 10b */
426 		buf[off] |= 0x20;
427 		/* DESIGNATOR TYPE == SCSI name string */
428 		buf[off++] |= 0x8;
429 		off += 2; /* Skip over Reserved and length */
430 		/*
431 		 * SCSI name string identifer containing, $FABRIC_MOD
432 		 * dependent information.  For LIO-Target and iSCSI
433 		 * Target Port, this means "<iSCSI name>" in
434 		 * UTF-8 encoding.
435 		 */
436 		scsi_target_len = sprintf(&buf[off], "%s",
437 					  tpg->se_tpg_tfo->tpg_get_wwn(tpg));
438 		scsi_target_len += 1 /* Include  NULL terminator */;
439 		/*
440 		 * The null-terminated, null-padded (see 4.4.2) SCSI
441 		 * NAME STRING field contains a UTF-8 format string.
442 		 * The number of bytes in the SCSI NAME STRING field
443 		 * (i.e., the value in the DESIGNATOR LENGTH field)
444 		 * shall be no larger than 256 and shall be a multiple
445 		 * of four.
446 		 */
447 		padding = ((-scsi_target_len) & 3);
448 		if (padding)
449 			scsi_target_len += padding;
450 		if (scsi_target_len > 256)
451 			scsi_target_len = 256;
452 
453 		buf[off-1] = scsi_target_len;
454 		off += scsi_target_len;
455 
456 		/* Header size + Designation descriptor */
457 		len += (scsi_target_len + 4);
458 	}
459 	put_unaligned_be16(len, &buf[2]); /* Page Length for VPD 0x83 */
460 	return 0;
461 }
462 EXPORT_SYMBOL(spc_emulate_evpd_83);
463 
464 /* Extended INQUIRY Data VPD Page */
465 static sense_reason_t
spc_emulate_evpd_86(struct se_cmd * cmd,unsigned char * buf)466 spc_emulate_evpd_86(struct se_cmd *cmd, unsigned char *buf)
467 {
468 	struct se_device *dev = cmd->se_dev;
469 	struct se_session *sess = cmd->se_sess;
470 
471 	buf[3] = 0x3c;
472 	/*
473 	 * Set GRD_CHK + REF_CHK for TYPE1 protection, or GRD_CHK
474 	 * only for TYPE3 protection.
475 	 */
476 	if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
477 		if (dev->dev_attrib.pi_prot_type == TARGET_DIF_TYPE1_PROT ||
478 		    cmd->se_sess->sess_prot_type == TARGET_DIF_TYPE1_PROT)
479 			buf[4] = 0x5;
480 		else if (dev->dev_attrib.pi_prot_type == TARGET_DIF_TYPE3_PROT ||
481 			 cmd->se_sess->sess_prot_type == TARGET_DIF_TYPE3_PROT)
482 			buf[4] = 0x4;
483 	}
484 
485 	/* logical unit supports type 1 and type 3 protection */
486 	if ((dev->transport->get_device_type(dev) == TYPE_DISK) &&
487 	    (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) &&
488 	    (dev->dev_attrib.pi_prot_type || cmd->se_sess->sess_prot_type)) {
489 		buf[4] |= (0x3 << 3);
490 	}
491 
492 	/* Set HEADSUP, ORDSUP, SIMPSUP */
493 	buf[5] = 0x07;
494 
495 	/* If WriteCache emulation is enabled, set V_SUP */
496 	if (target_check_wce(dev))
497 		buf[6] = 0x01;
498 	/* If an LBA map is present set R_SUP */
499 	spin_lock(&cmd->se_dev->t10_alua.lba_map_lock);
500 	if (!list_empty(&dev->t10_alua.lba_map_list))
501 		buf[8] = 0x10;
502 	spin_unlock(&cmd->se_dev->t10_alua.lba_map_lock);
503 	return 0;
504 }
505 
506 /* Block Limits VPD page */
507 static sense_reason_t
spc_emulate_evpd_b0(struct se_cmd * cmd,unsigned char * buf)508 spc_emulate_evpd_b0(struct se_cmd *cmd, unsigned char *buf)
509 {
510 	struct se_device *dev = cmd->se_dev;
511 	u32 mtl = 0;
512 	int have_tp = 0, opt, min;
513 	u32 io_max_blocks;
514 
515 	/*
516 	 * Following spc3r22 section 6.5.3 Block Limits VPD page, when
517 	 * emulate_tpu=1 or emulate_tpws=1 we will be expect a
518 	 * different page length for Thin Provisioning.
519 	 */
520 	if (dev->dev_attrib.emulate_tpu || dev->dev_attrib.emulate_tpws)
521 		have_tp = 1;
522 
523 	buf[0] = dev->transport->get_device_type(dev);
524 
525 	/* Set WSNZ to 1 */
526 	buf[4] = 0x01;
527 	/*
528 	 * Set MAXIMUM COMPARE AND WRITE LENGTH
529 	 */
530 	if (dev->dev_attrib.emulate_caw)
531 		buf[5] = 0x01;
532 
533 	/*
534 	 * Set OPTIMAL TRANSFER LENGTH GRANULARITY
535 	 */
536 	if (dev->transport->get_io_min && (min = dev->transport->get_io_min(dev)))
537 		put_unaligned_be16(min / dev->dev_attrib.block_size, &buf[6]);
538 	else
539 		put_unaligned_be16(1, &buf[6]);
540 
541 	/*
542 	 * Set MAXIMUM TRANSFER LENGTH
543 	 *
544 	 * XXX: Currently assumes single PAGE_SIZE per scatterlist for fabrics
545 	 * enforcing maximum HW scatter-gather-list entry limit
546 	 */
547 	if (cmd->se_tfo->max_data_sg_nents) {
548 		mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE) /
549 		       dev->dev_attrib.block_size;
550 	}
551 	io_max_blocks = mult_frac(dev->dev_attrib.hw_max_sectors,
552 			dev->dev_attrib.hw_block_size,
553 			dev->dev_attrib.block_size);
554 	put_unaligned_be32(min_not_zero(mtl, io_max_blocks), &buf[8]);
555 
556 	/*
557 	 * Set OPTIMAL TRANSFER LENGTH
558 	 */
559 	if (dev->transport->get_io_opt && (opt = dev->transport->get_io_opt(dev)))
560 		put_unaligned_be32(opt / dev->dev_attrib.block_size, &buf[12]);
561 	else
562 		put_unaligned_be32(dev->dev_attrib.optimal_sectors, &buf[12]);
563 
564 	put_unaligned_be16(12, &buf[2]);
565 
566 	if (!have_tp)
567 		goto try_atomic;
568 
569 	/*
570 	 * Set MAXIMUM UNMAP LBA COUNT
571 	 */
572 	put_unaligned_be32(dev->dev_attrib.max_unmap_lba_count, &buf[20]);
573 
574 	/*
575 	 * Set MAXIMUM UNMAP BLOCK DESCRIPTOR COUNT
576 	 */
577 	put_unaligned_be32(dev->dev_attrib.max_unmap_block_desc_count,
578 			   &buf[24]);
579 
580 	/*
581 	 * Set OPTIMAL UNMAP GRANULARITY
582 	 */
583 	put_unaligned_be32(dev->dev_attrib.unmap_granularity, &buf[28]);
584 
585 	/*
586 	 * UNMAP GRANULARITY ALIGNMENT
587 	 */
588 	put_unaligned_be32(dev->dev_attrib.unmap_granularity_alignment,
589 			   &buf[32]);
590 	if (dev->dev_attrib.unmap_granularity_alignment != 0)
591 		buf[32] |= 0x80; /* Set the UGAVALID bit */
592 
593 	/*
594 	 * MAXIMUM WRITE SAME LENGTH
595 	 */
596 	put_unaligned_be64(dev->dev_attrib.max_write_same_len, &buf[36]);
597 
598 	put_unaligned_be16(40, &buf[2]);
599 
600 try_atomic:
601 	/*
602 	 * ATOMIC
603 	 */
604 	if (!dev->dev_attrib.atomic_max_len)
605 		goto done;
606 
607 	if (dev->dev_attrib.atomic_max_len < io_max_blocks)
608 		put_unaligned_be32(dev->dev_attrib.atomic_max_len, &buf[44]);
609 	else
610 		put_unaligned_be32(io_max_blocks, &buf[44]);
611 
612 	put_unaligned_be32(dev->dev_attrib.atomic_alignment, &buf[48]);
613 	put_unaligned_be32(dev->dev_attrib.atomic_granularity, &buf[52]);
614 	put_unaligned_be32(dev->dev_attrib.atomic_max_with_boundary, &buf[56]);
615 	put_unaligned_be32(dev->dev_attrib.atomic_max_boundary, &buf[60]);
616 
617 	put_unaligned_be16(60, &buf[2]);
618 done:
619 	return 0;
620 }
621 
622 /* Block Device Characteristics VPD page */
623 static sense_reason_t
spc_emulate_evpd_b1(struct se_cmd * cmd,unsigned char * buf)624 spc_emulate_evpd_b1(struct se_cmd *cmd, unsigned char *buf)
625 {
626 	struct se_device *dev = cmd->se_dev;
627 
628 	buf[0] = dev->transport->get_device_type(dev);
629 	buf[3] = 0x3c;
630 	buf[5] = dev->dev_attrib.is_nonrot ? 1 : 0;
631 
632 	return 0;
633 }
634 
635 /* Thin Provisioning VPD */
636 static sense_reason_t
spc_emulate_evpd_b2(struct se_cmd * cmd,unsigned char * buf)637 spc_emulate_evpd_b2(struct se_cmd *cmd, unsigned char *buf)
638 {
639 	struct se_device *dev = cmd->se_dev;
640 
641 	/*
642 	 * From spc3r22 section 6.5.4 Thin Provisioning VPD page:
643 	 *
644 	 * The PAGE LENGTH field is defined in SPC-4. If the DP bit is set to
645 	 * zero, then the page length shall be set to 0004h.  If the DP bit
646 	 * is set to one, then the page length shall be set to the value
647 	 * defined in table 162.
648 	 */
649 	buf[0] = dev->transport->get_device_type(dev);
650 
651 	/*
652 	 * Set Hardcoded length mentioned above for DP=0
653 	 */
654 	put_unaligned_be16(0x0004, &buf[2]);
655 
656 	/*
657 	 * The THRESHOLD EXPONENT field indicates the threshold set size in
658 	 * LBAs as a power of 2 (i.e., the threshold set size is equal to
659 	 * 2(threshold exponent)).
660 	 *
661 	 * Note that this is currently set to 0x00 as mkp says it will be
662 	 * changing again.  We can enable this once it has settled in T10
663 	 * and is actually used by Linux/SCSI ML code.
664 	 */
665 	buf[4] = 0x00;
666 
667 	/*
668 	 * A TPU bit set to one indicates that the device server supports
669 	 * the UNMAP command (see 5.25). A TPU bit set to zero indicates
670 	 * that the device server does not support the UNMAP command.
671 	 */
672 	if (dev->dev_attrib.emulate_tpu != 0)
673 		buf[5] = 0x80;
674 
675 	/*
676 	 * A TPWS bit set to one indicates that the device server supports
677 	 * the use of the WRITE SAME (16) command (see 5.42) to unmap LBAs.
678 	 * A TPWS bit set to zero indicates that the device server does not
679 	 * support the use of the WRITE SAME (16) command to unmap LBAs.
680 	 */
681 	if (dev->dev_attrib.emulate_tpws != 0)
682 		buf[5] |= 0x40 | 0x20;
683 
684 	/*
685 	 * The unmap_zeroes_data set means that the underlying device supports
686 	 * REQ_OP_DISCARD and has the discard_zeroes_data bit set. This
687 	 * satisfies the SBC requirements for LBPRZ, meaning that a subsequent
688 	 * read will return zeroes after an UNMAP or WRITE SAME (16) to an LBA
689 	 * See sbc4r36 6.6.4.
690 	 */
691 	if (((dev->dev_attrib.emulate_tpu != 0) ||
692 	     (dev->dev_attrib.emulate_tpws != 0)) &&
693 	     (dev->dev_attrib.unmap_zeroes_data != 0))
694 		buf[5] |= 0x04;
695 
696 	return 0;
697 }
698 
699 /* Referrals VPD page */
700 static sense_reason_t
spc_emulate_evpd_b3(struct se_cmd * cmd,unsigned char * buf)701 spc_emulate_evpd_b3(struct se_cmd *cmd, unsigned char *buf)
702 {
703 	struct se_device *dev = cmd->se_dev;
704 
705 	buf[0] = dev->transport->get_device_type(dev);
706 	buf[3] = 0x0c;
707 	put_unaligned_be32(dev->t10_alua.lba_map_segment_size, &buf[8]);
708 	put_unaligned_be32(dev->t10_alua.lba_map_segment_multiplier, &buf[12]);
709 
710 	return 0;
711 }
712 
713 static sense_reason_t
714 spc_emulate_evpd_00(struct se_cmd *cmd, unsigned char *buf);
715 
716 static struct {
717 	uint8_t		page;
718 	sense_reason_t	(*emulate)(struct se_cmd *, unsigned char *);
719 } evpd_handlers[] = {
720 	{ .page = 0x00, .emulate = spc_emulate_evpd_00 },
721 	{ .page = 0x80, .emulate = spc_emulate_evpd_80 },
722 	{ .page = 0x83, .emulate = spc_emulate_evpd_83 },
723 	{ .page = 0x86, .emulate = spc_emulate_evpd_86 },
724 	{ .page = 0xb0, .emulate = spc_emulate_evpd_b0 },
725 	{ .page = 0xb1, .emulate = spc_emulate_evpd_b1 },
726 	{ .page = 0xb2, .emulate = spc_emulate_evpd_b2 },
727 	{ .page = 0xb3, .emulate = spc_emulate_evpd_b3 },
728 };
729 
730 /* supported vital product data pages */
731 static sense_reason_t
spc_emulate_evpd_00(struct se_cmd * cmd,unsigned char * buf)732 spc_emulate_evpd_00(struct se_cmd *cmd, unsigned char *buf)
733 {
734 	int p;
735 
736 	/*
737 	 * Only report the INQUIRY EVPD=1 pages after a valid NAA
738 	 * Registered Extended LUN WWN has been set via ConfigFS
739 	 * during device creation/restart.
740 	 */
741 	if (cmd->se_dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL) {
742 		buf[3] = ARRAY_SIZE(evpd_handlers);
743 		for (p = 0; p < ARRAY_SIZE(evpd_handlers); ++p)
744 			buf[p + 4] = evpd_handlers[p].page;
745 	}
746 
747 	return 0;
748 }
749 
750 static sense_reason_t
spc_emulate_inquiry(struct se_cmd * cmd)751 spc_emulate_inquiry(struct se_cmd *cmd)
752 {
753 	struct se_device *dev = cmd->se_dev;
754 	unsigned char *rbuf;
755 	unsigned char *cdb = cmd->t_task_cdb;
756 	unsigned char *buf;
757 	sense_reason_t ret;
758 	int p;
759 	int len = 0;
760 
761 	buf = kzalloc(SE_INQUIRY_BUF, GFP_KERNEL);
762 	if (!buf) {
763 		pr_err("Unable to allocate response buffer for INQUIRY\n");
764 		return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
765 	}
766 
767 	buf[0] = dev->transport->get_device_type(dev);
768 
769 	if (!(cdb[1] & 0x1)) {
770 		if (cdb[2]) {
771 			pr_err("INQUIRY with EVPD==0 but PAGE CODE=%02x\n",
772 			       cdb[2]);
773 			ret = TCM_INVALID_CDB_FIELD;
774 			goto out;
775 		}
776 
777 		ret = spc_emulate_inquiry_std(cmd, buf);
778 		len = buf[4] + 5;
779 		goto out;
780 	}
781 
782 	for (p = 0; p < ARRAY_SIZE(evpd_handlers); ++p) {
783 		if (cdb[2] == evpd_handlers[p].page) {
784 			buf[1] = cdb[2];
785 			ret = evpd_handlers[p].emulate(cmd, buf);
786 			len = get_unaligned_be16(&buf[2]) + 4;
787 			goto out;
788 		}
789 	}
790 
791 	pr_debug("Unknown VPD Code: 0x%02x\n", cdb[2]);
792 	ret = TCM_INVALID_CDB_FIELD;
793 
794 out:
795 	rbuf = transport_kmap_data_sg(cmd);
796 	if (rbuf) {
797 		memcpy(rbuf, buf, min_t(u32, SE_INQUIRY_BUF, cmd->data_length));
798 		transport_kunmap_data_sg(cmd);
799 	}
800 	kfree(buf);
801 
802 	if (!ret)
803 		target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, len);
804 	return ret;
805 }
806 
spc_modesense_rwrecovery(struct se_cmd * cmd,u8 pc,u8 * p)807 static int spc_modesense_rwrecovery(struct se_cmd *cmd, u8 pc, u8 *p)
808 {
809 	p[0] = 0x01;
810 	p[1] = 0x0a;
811 
812 	/* No changeable values for now */
813 	if (pc == 1)
814 		goto out;
815 
816 out:
817 	return 12;
818 }
819 
spc_modesense_control(struct se_cmd * cmd,u8 pc,u8 * p)820 static int spc_modesense_control(struct se_cmd *cmd, u8 pc, u8 *p)
821 {
822 	struct se_device *dev = cmd->se_dev;
823 	struct se_session *sess = cmd->se_sess;
824 
825 	p[0] = 0x0a;
826 	p[1] = 0x0a;
827 
828 	/* No changeable values for now */
829 	if (pc == 1)
830 		goto out;
831 
832 	/* GLTSD: No implicit save of log parameters */
833 	p[2] = (1 << 1);
834 	if (target_sense_desc_format(dev))
835 		/* D_SENSE: Descriptor format sense data for 64bit sectors */
836 		p[2] |= (1 << 2);
837 
838 	/*
839 	 * From spc4r23, 7.4.7 Control mode page
840 	 *
841 	 * The QUEUE ALGORITHM MODIFIER field (see table 368) specifies
842 	 * restrictions on the algorithm used for reordering commands
843 	 * having the SIMPLE task attribute (see SAM-4).
844 	 *
845 	 *                    Table 368 -- QUEUE ALGORITHM MODIFIER field
846 	 *                         Code      Description
847 	 *                          0h       Restricted reordering
848 	 *                          1h       Unrestricted reordering allowed
849 	 *                          2h to 7h    Reserved
850 	 *                          8h to Fh    Vendor specific
851 	 *
852 	 * A value of zero in the QUEUE ALGORITHM MODIFIER field specifies that
853 	 * the device server shall order the processing sequence of commands
854 	 * having the SIMPLE task attribute such that data integrity is maintained
855 	 * for that I_T nexus (i.e., if the transmission of new SCSI transport protocol
856 	 * requests is halted at any time, the final value of all data observable
857 	 * on the medium shall be the same as if all the commands had been processed
858 	 * with the ORDERED task attribute).
859 	 *
860 	 * A value of one in the QUEUE ALGORITHM MODIFIER field specifies that the
861 	 * device server may reorder the processing sequence of commands having the
862 	 * SIMPLE task attribute in any manner. Any data integrity exposures related to
863 	 * command sequence order shall be explicitly handled by the application client
864 	 * through the selection of appropriate ommands and task attributes.
865 	 */
866 	p[3] = (dev->dev_attrib.emulate_rest_reord == 1) ? 0x00 : 0x10;
867 	/*
868 	 * From spc4r17, section 7.4.6 Control mode Page
869 	 *
870 	 * Unit Attention interlocks control (UN_INTLCK_CTRL) to code 00b
871 	 *
872 	 * 00b: The logical unit shall clear any unit attention condition
873 	 * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
874 	 * status and shall not establish a unit attention condition when a com-
875 	 * mand is completed with BUSY, TASK SET FULL, or RESERVATION CONFLICT
876 	 * status.
877 	 *
878 	 * 10b: The logical unit shall not clear any unit attention condition
879 	 * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
880 	 * status and shall not establish a unit attention condition when
881 	 * a command is completed with BUSY, TASK SET FULL, or RESERVATION
882 	 * CONFLICT status.
883 	 *
884 	 * 11b a The logical unit shall not clear any unit attention condition
885 	 * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
886 	 * status and shall establish a unit attention condition for the
887 	 * initiator port associated with the I_T nexus on which the BUSY,
888 	 * TASK SET FULL, or RESERVATION CONFLICT status is being returned.
889 	 * Depending on the status, the additional sense code shall be set to
890 	 * PREVIOUS BUSY STATUS, PREVIOUS TASK SET FULL STATUS, or PREVIOUS
891 	 * RESERVATION CONFLICT STATUS. Until it is cleared by a REQUEST SENSE
892 	 * command, a unit attention condition shall be established only once
893 	 * for a BUSY, TASK SET FULL, or RESERVATION CONFLICT status regardless
894 	 * to the number of commands completed with one of those status codes.
895 	 */
896 	switch (dev->dev_attrib.emulate_ua_intlck_ctrl) {
897 	case TARGET_UA_INTLCK_CTRL_ESTABLISH_UA:
898 		p[4] = 0x30;
899 		break;
900 	case TARGET_UA_INTLCK_CTRL_NO_CLEAR:
901 		p[4] = 0x20;
902 		break;
903 	default:	/* TARGET_UA_INTLCK_CTRL_CLEAR */
904 		p[4] = 0x00;
905 		break;
906 	}
907 	/*
908 	 * From spc4r17, section 7.4.6 Control mode Page
909 	 *
910 	 * Task Aborted Status (TAS) bit set to zero.
911 	 *
912 	 * A task aborted status (TAS) bit set to zero specifies that aborted
913 	 * tasks shall be terminated by the device server without any response
914 	 * to the application client. A TAS bit set to one specifies that tasks
915 	 * aborted by the actions of an I_T nexus other than the I_T nexus on
916 	 * which the command was received shall be completed with TASK ABORTED
917 	 * status (see SAM-4).
918 	 */
919 	p[5] = (dev->dev_attrib.emulate_tas) ? 0x40 : 0x00;
920 	/*
921 	 * From spc4r30, section 7.5.7 Control mode page
922 	 *
923 	 * Application Tag Owner (ATO) bit set to one.
924 	 *
925 	 * If the ATO bit is set to one the device server shall not modify the
926 	 * LOGICAL BLOCK APPLICATION TAG field and, depending on the protection
927 	 * type, shall not modify the contents of the LOGICAL BLOCK REFERENCE
928 	 * TAG field.
929 	 */
930 	if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
931 		if (dev->dev_attrib.pi_prot_type || sess->sess_prot_type)
932 			p[5] |= 0x80;
933 	}
934 
935 	p[8] = 0xff;
936 	p[9] = 0xff;
937 	p[11] = 30;
938 
939 out:
940 	return 12;
941 }
942 
spc_modesense_caching(struct se_cmd * cmd,u8 pc,u8 * p)943 static int spc_modesense_caching(struct se_cmd *cmd, u8 pc, u8 *p)
944 {
945 	struct se_device *dev = cmd->se_dev;
946 
947 	p[0] = 0x08;
948 	p[1] = 0x12;
949 
950 	/* No changeable values for now */
951 	if (pc == 1)
952 		goto out;
953 
954 	if (target_check_wce(dev))
955 		p[2] = 0x04; /* Write Cache Enable */
956 	p[12] = 0x20; /* Disabled Read Ahead */
957 
958 out:
959 	return 20;
960 }
961 
spc_modesense_informational_exceptions(struct se_cmd * cmd,u8 pc,unsigned char * p)962 static int spc_modesense_informational_exceptions(struct se_cmd *cmd, u8 pc, unsigned char *p)
963 {
964 	p[0] = 0x1c;
965 	p[1] = 0x0a;
966 
967 	/* No changeable values for now */
968 	if (pc == 1)
969 		goto out;
970 
971 out:
972 	return 12;
973 }
974 
975 static struct {
976 	uint8_t		page;
977 	uint8_t		subpage;
978 	int		(*emulate)(struct se_cmd *, u8, unsigned char *);
979 } modesense_handlers[] = {
980 	{ .page = 0x01, .subpage = 0x00, .emulate = spc_modesense_rwrecovery },
981 	{ .page = 0x08, .subpage = 0x00, .emulate = spc_modesense_caching },
982 	{ .page = 0x0a, .subpage = 0x00, .emulate = spc_modesense_control },
983 	{ .page = 0x1c, .subpage = 0x00, .emulate = spc_modesense_informational_exceptions },
984 };
985 
spc_modesense_write_protect(unsigned char * buf,int type)986 static void spc_modesense_write_protect(unsigned char *buf, int type)
987 {
988 	/*
989 	 * I believe that the WP bit (bit 7) in the mode header is the same for
990 	 * all device types..
991 	 */
992 	switch (type) {
993 	case TYPE_DISK:
994 	case TYPE_TAPE:
995 	default:
996 		buf[0] |= 0x80; /* WP bit */
997 		break;
998 	}
999 }
1000 
spc_modesense_dpofua(unsigned char * buf,int type)1001 static void spc_modesense_dpofua(unsigned char *buf, int type)
1002 {
1003 	switch (type) {
1004 	case TYPE_DISK:
1005 		buf[0] |= 0x10; /* DPOFUA bit */
1006 		break;
1007 	default:
1008 		break;
1009 	}
1010 }
1011 
spc_modesense_blockdesc(unsigned char * buf,u64 blocks,u32 block_size)1012 static int spc_modesense_blockdesc(unsigned char *buf, u64 blocks, u32 block_size)
1013 {
1014 	*buf++ = 8;
1015 	put_unaligned_be32(min(blocks, 0xffffffffull), buf);
1016 	buf += 4;
1017 	put_unaligned_be32(block_size, buf);
1018 	return 9;
1019 }
1020 
spc_modesense_long_blockdesc(unsigned char * buf,u64 blocks,u32 block_size)1021 static int spc_modesense_long_blockdesc(unsigned char *buf, u64 blocks, u32 block_size)
1022 {
1023 	if (blocks <= 0xffffffff)
1024 		return spc_modesense_blockdesc(buf + 3, blocks, block_size) + 3;
1025 
1026 	*buf++ = 1;		/* LONGLBA */
1027 	buf += 2;
1028 	*buf++ = 16;
1029 	put_unaligned_be64(blocks, buf);
1030 	buf += 12;
1031 	put_unaligned_be32(block_size, buf);
1032 
1033 	return 17;
1034 }
1035 
spc_emulate_modesense(struct se_cmd * cmd)1036 static sense_reason_t spc_emulate_modesense(struct se_cmd *cmd)
1037 {
1038 	struct se_device *dev = cmd->se_dev;
1039 	char *cdb = cmd->t_task_cdb;
1040 	unsigned char buf[SE_MODE_PAGE_BUF], *rbuf;
1041 	int type = dev->transport->get_device_type(dev);
1042 	int ten = (cmd->t_task_cdb[0] == MODE_SENSE_10);
1043 	bool dbd = !!(cdb[1] & 0x08);
1044 	bool llba = ten ? !!(cdb[1] & 0x10) : false;
1045 	u8 pc = cdb[2] >> 6;
1046 	u8 page = cdb[2] & 0x3f;
1047 	u8 subpage = cdb[3];
1048 	int length = 0;
1049 	int ret;
1050 	int i;
1051 
1052 	memset(buf, 0, SE_MODE_PAGE_BUF);
1053 
1054 	/*
1055 	 * Skip over MODE DATA LENGTH + MEDIUM TYPE fields to byte 3 for
1056 	 * MODE_SENSE_10 and byte 2 for MODE_SENSE (6).
1057 	 */
1058 	length = ten ? 3 : 2;
1059 
1060 	/* DEVICE-SPECIFIC PARAMETER */
1061 	if (cmd->se_lun->lun_access_ro || target_lun_is_rdonly(cmd))
1062 		spc_modesense_write_protect(&buf[length], type);
1063 
1064 	/*
1065 	 * SBC only allows us to enable FUA and DPO together.  Fortunately
1066 	 * DPO is explicitly specified as a hint, so a noop is a perfectly
1067 	 * valid implementation.
1068 	 */
1069 	if (target_check_fua(dev))
1070 		spc_modesense_dpofua(&buf[length], type);
1071 
1072 	++length;
1073 
1074 	/* BLOCK DESCRIPTOR */
1075 
1076 	/*
1077 	 * For now we only include a block descriptor for disk (SBC)
1078 	 * devices; other command sets use a slightly different format.
1079 	 */
1080 	if (!dbd && type == TYPE_DISK) {
1081 		u64 blocks = dev->transport->get_blocks(dev);
1082 		u32 block_size = dev->dev_attrib.block_size;
1083 
1084 		if (ten) {
1085 			if (llba) {
1086 				length += spc_modesense_long_blockdesc(&buf[length],
1087 								       blocks, block_size);
1088 			} else {
1089 				length += 3;
1090 				length += spc_modesense_blockdesc(&buf[length],
1091 								  blocks, block_size);
1092 			}
1093 		} else {
1094 			length += spc_modesense_blockdesc(&buf[length], blocks,
1095 							  block_size);
1096 		}
1097 	} else {
1098 		if (ten)
1099 			length += 4;
1100 		else
1101 			length += 1;
1102 	}
1103 
1104 	if (page == 0x3f) {
1105 		if (subpage != 0x00 && subpage != 0xff) {
1106 			pr_warn("MODE_SENSE: Invalid subpage code: 0x%02x\n", subpage);
1107 			return TCM_INVALID_CDB_FIELD;
1108 		}
1109 
1110 		for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i) {
1111 			/*
1112 			 * Tricky way to say all subpage 00h for
1113 			 * subpage==0, all subpages for subpage==0xff
1114 			 * (and we just checked above that those are
1115 			 * the only two possibilities).
1116 			 */
1117 			if ((modesense_handlers[i].subpage & ~subpage) == 0) {
1118 				ret = modesense_handlers[i].emulate(cmd, pc, &buf[length]);
1119 				if (!ten && length + ret >= 255)
1120 					break;
1121 				length += ret;
1122 			}
1123 		}
1124 
1125 		goto set_length;
1126 	}
1127 
1128 	for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i)
1129 		if (modesense_handlers[i].page == page &&
1130 		    modesense_handlers[i].subpage == subpage) {
1131 			length += modesense_handlers[i].emulate(cmd, pc, &buf[length]);
1132 			goto set_length;
1133 		}
1134 
1135 	/*
1136 	 * We don't intend to implement:
1137 	 *  - obsolete page 03h "format parameters" (checked by Solaris)
1138 	 */
1139 	if (page != 0x03)
1140 		pr_err("MODE SENSE: unimplemented page/subpage: 0x%02x/0x%02x\n",
1141 		       page, subpage);
1142 
1143 	return TCM_UNKNOWN_MODE_PAGE;
1144 
1145 set_length:
1146 	if (ten)
1147 		put_unaligned_be16(length - 2, buf);
1148 	else
1149 		buf[0] = length - 1;
1150 
1151 	rbuf = transport_kmap_data_sg(cmd);
1152 	if (rbuf) {
1153 		memcpy(rbuf, buf, min_t(u32, SE_MODE_PAGE_BUF, cmd->data_length));
1154 		transport_kunmap_data_sg(cmd);
1155 	}
1156 
1157 	target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, length);
1158 	return 0;
1159 }
1160 
spc_emulate_modeselect(struct se_cmd * cmd)1161 static sense_reason_t spc_emulate_modeselect(struct se_cmd *cmd)
1162 {
1163 	char *cdb = cmd->t_task_cdb;
1164 	bool ten = cdb[0] == MODE_SELECT_10;
1165 	int off = ten ? 8 : 4;
1166 	bool pf = !!(cdb[1] & 0x10);
1167 	u8 page, subpage;
1168 	unsigned char *buf;
1169 	unsigned char tbuf[SE_MODE_PAGE_BUF];
1170 	int length;
1171 	sense_reason_t ret = 0;
1172 	int i;
1173 
1174 	if (!cmd->data_length) {
1175 		target_complete_cmd(cmd, SAM_STAT_GOOD);
1176 		return 0;
1177 	}
1178 
1179 	if (cmd->data_length < off + 2)
1180 		return TCM_PARAMETER_LIST_LENGTH_ERROR;
1181 
1182 	buf = transport_kmap_data_sg(cmd);
1183 	if (!buf)
1184 		return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1185 
1186 	if (!pf) {
1187 		ret = TCM_INVALID_CDB_FIELD;
1188 		goto out;
1189 	}
1190 
1191 	page = buf[off] & 0x3f;
1192 	subpage = buf[off] & 0x40 ? buf[off + 1] : 0;
1193 
1194 	for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i)
1195 		if (modesense_handlers[i].page == page &&
1196 		    modesense_handlers[i].subpage == subpage) {
1197 			memset(tbuf, 0, SE_MODE_PAGE_BUF);
1198 			length = modesense_handlers[i].emulate(cmd, 0, tbuf);
1199 			goto check_contents;
1200 		}
1201 
1202 	ret = TCM_UNKNOWN_MODE_PAGE;
1203 	goto out;
1204 
1205 check_contents:
1206 	if (cmd->data_length < off + length) {
1207 		ret = TCM_PARAMETER_LIST_LENGTH_ERROR;
1208 		goto out;
1209 	}
1210 
1211 	if (memcmp(buf + off, tbuf, length))
1212 		ret = TCM_INVALID_PARAMETER_LIST;
1213 
1214 out:
1215 	transport_kunmap_data_sg(cmd);
1216 
1217 	if (!ret)
1218 		target_complete_cmd(cmd, SAM_STAT_GOOD);
1219 	return ret;
1220 }
1221 
spc_emulate_request_sense(struct se_cmd * cmd)1222 static sense_reason_t spc_emulate_request_sense(struct se_cmd *cmd)
1223 {
1224 	unsigned char *cdb = cmd->t_task_cdb;
1225 	unsigned char *rbuf;
1226 	u8 ua_asc = 0, ua_ascq = 0;
1227 	unsigned char buf[SE_SENSE_BUF];
1228 	bool desc_format = target_sense_desc_format(cmd->se_dev);
1229 
1230 	memset(buf, 0, SE_SENSE_BUF);
1231 
1232 	if (cdb[1] & 0x01) {
1233 		pr_err("REQUEST_SENSE description emulation not"
1234 			" supported\n");
1235 		return TCM_INVALID_CDB_FIELD;
1236 	}
1237 
1238 	rbuf = transport_kmap_data_sg(cmd);
1239 	if (!rbuf)
1240 		return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1241 
1242 	if (!core_scsi3_ua_clear_for_request_sense(cmd, &ua_asc, &ua_ascq))
1243 		scsi_build_sense_buffer(desc_format, buf, UNIT_ATTENTION,
1244 					ua_asc, ua_ascq);
1245 	else
1246 		scsi_build_sense_buffer(desc_format, buf, NO_SENSE, 0x0, 0x0);
1247 
1248 	memcpy(rbuf, buf, min_t(u32, sizeof(buf), cmd->data_length));
1249 	transport_kunmap_data_sg(cmd);
1250 
1251 	target_complete_cmd(cmd, SAM_STAT_GOOD);
1252 	return 0;
1253 }
1254 
spc_emulate_report_luns(struct se_cmd * cmd)1255 sense_reason_t spc_emulate_report_luns(struct se_cmd *cmd)
1256 {
1257 	struct se_dev_entry *deve;
1258 	struct se_session *sess = cmd->se_sess;
1259 	struct se_node_acl *nacl;
1260 	struct scsi_lun slun;
1261 	unsigned char *buf;
1262 	u32 lun_count = 0, offset = 8;
1263 	__be32 len;
1264 
1265 	buf = transport_kmap_data_sg(cmd);
1266 	if (cmd->data_length && !buf)
1267 		return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1268 
1269 	/*
1270 	 * If no struct se_session pointer is present, this struct se_cmd is
1271 	 * coming via a target_core_mod PASSTHROUGH op, and not through
1272 	 * a $FABRIC_MOD.  In that case, report LUN=0 only.
1273 	 */
1274 	if (!sess)
1275 		goto done;
1276 
1277 	nacl = sess->se_node_acl;
1278 
1279 	rcu_read_lock();
1280 	hlist_for_each_entry_rcu(deve, &nacl->lun_entry_hlist, link) {
1281 		/*
1282 		 * We determine the correct LUN LIST LENGTH even once we
1283 		 * have reached the initial allocation length.
1284 		 * See SPC2-R20 7.19.
1285 		 */
1286 		lun_count++;
1287 		if (offset >= cmd->data_length)
1288 			continue;
1289 
1290 		int_to_scsilun(deve->mapped_lun, &slun);
1291 		memcpy(buf + offset, &slun,
1292 		       min(8u, cmd->data_length - offset));
1293 		offset += 8;
1294 	}
1295 	rcu_read_unlock();
1296 
1297 	/*
1298 	 * See SPC3 r07, page 159.
1299 	 */
1300 done:
1301 	/*
1302 	 * If no LUNs are accessible, report virtual LUN 0.
1303 	 */
1304 	if (lun_count == 0) {
1305 		int_to_scsilun(0, &slun);
1306 		if (cmd->data_length > 8)
1307 			memcpy(buf + offset, &slun,
1308 			       min(8u, cmd->data_length - offset));
1309 		lun_count = 1;
1310 	}
1311 
1312 	if (buf) {
1313 		len = cpu_to_be32(lun_count * 8);
1314 		memcpy(buf, &len, min_t(int, sizeof len, cmd->data_length));
1315 		transport_kunmap_data_sg(cmd);
1316 	}
1317 
1318 	target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, 8 + lun_count * 8);
1319 	return 0;
1320 }
1321 EXPORT_SYMBOL(spc_emulate_report_luns);
1322 
1323 static sense_reason_t
spc_emulate_testunitready(struct se_cmd * cmd)1324 spc_emulate_testunitready(struct se_cmd *cmd)
1325 {
1326 	target_complete_cmd(cmd, SAM_STAT_GOOD);
1327 	return 0;
1328 }
1329 
set_dpofua_usage_bits(u8 * usage_bits,struct se_device * dev)1330 static void set_dpofua_usage_bits(u8 *usage_bits, struct se_device *dev)
1331 {
1332 	if (!target_check_fua(dev))
1333 		usage_bits[1] &= ~0x18;
1334 	else
1335 		usage_bits[1] |= 0x18;
1336 }
1337 
set_dpofua_usage_bits32(u8 * usage_bits,struct se_device * dev)1338 static void set_dpofua_usage_bits32(u8 *usage_bits, struct se_device *dev)
1339 {
1340 	if (!target_check_fua(dev))
1341 		usage_bits[10] &= ~0x18;
1342 	else
1343 		usage_bits[10] |= 0x18;
1344 }
1345 
1346 static const struct target_opcode_descriptor tcm_opcode_read6 = {
1347 	.support = SCSI_SUPPORT_FULL,
1348 	.opcode = READ_6,
1349 	.cdb_size = 6,
1350 	.usage_bits = {READ_6, 0x1f, 0xff, 0xff,
1351 		       0xff, SCSI_CONTROL_MASK},
1352 };
1353 
1354 static const struct target_opcode_descriptor tcm_opcode_read10 = {
1355 	.support = SCSI_SUPPORT_FULL,
1356 	.opcode = READ_10,
1357 	.cdb_size = 10,
1358 	.usage_bits = {READ_10, 0xf8, 0xff, 0xff,
1359 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1360 		       0xff, SCSI_CONTROL_MASK},
1361 	.update_usage_bits = set_dpofua_usage_bits,
1362 };
1363 
1364 static const struct target_opcode_descriptor tcm_opcode_read12 = {
1365 	.support = SCSI_SUPPORT_FULL,
1366 	.opcode = READ_12,
1367 	.cdb_size = 12,
1368 	.usage_bits = {READ_12, 0xf8, 0xff, 0xff,
1369 		       0xff, 0xff, 0xff, 0xff,
1370 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1371 	.update_usage_bits = set_dpofua_usage_bits,
1372 };
1373 
1374 static const struct target_opcode_descriptor tcm_opcode_read16 = {
1375 	.support = SCSI_SUPPORT_FULL,
1376 	.opcode = READ_16,
1377 	.cdb_size = 16,
1378 	.usage_bits = {READ_16, 0xf8, 0xff, 0xff,
1379 		       0xff, 0xff, 0xff, 0xff,
1380 		       0xff, 0xff, 0xff, 0xff,
1381 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1382 	.update_usage_bits = set_dpofua_usage_bits,
1383 };
1384 
1385 static const struct target_opcode_descriptor tcm_opcode_write6 = {
1386 	.support = SCSI_SUPPORT_FULL,
1387 	.opcode = WRITE_6,
1388 	.cdb_size = 6,
1389 	.usage_bits = {WRITE_6, 0x1f, 0xff, 0xff,
1390 		       0xff, SCSI_CONTROL_MASK},
1391 };
1392 
1393 static const struct target_opcode_descriptor tcm_opcode_write10 = {
1394 	.support = SCSI_SUPPORT_FULL,
1395 	.opcode = WRITE_10,
1396 	.cdb_size = 10,
1397 	.usage_bits = {WRITE_10, 0xf8, 0xff, 0xff,
1398 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1399 		       0xff, SCSI_CONTROL_MASK},
1400 	.update_usage_bits = set_dpofua_usage_bits,
1401 };
1402 
1403 static const struct target_opcode_descriptor tcm_opcode_write_verify10 = {
1404 	.support = SCSI_SUPPORT_FULL,
1405 	.opcode = WRITE_VERIFY,
1406 	.cdb_size = 10,
1407 	.usage_bits = {WRITE_VERIFY, 0xf0, 0xff, 0xff,
1408 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1409 		       0xff, SCSI_CONTROL_MASK},
1410 	.update_usage_bits = set_dpofua_usage_bits,
1411 };
1412 
1413 static const struct target_opcode_descriptor tcm_opcode_write12 = {
1414 	.support = SCSI_SUPPORT_FULL,
1415 	.opcode = WRITE_12,
1416 	.cdb_size = 12,
1417 	.usage_bits = {WRITE_12, 0xf8, 0xff, 0xff,
1418 		       0xff, 0xff, 0xff, 0xff,
1419 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1420 	.update_usage_bits = set_dpofua_usage_bits,
1421 };
1422 
1423 static const struct target_opcode_descriptor tcm_opcode_write16 = {
1424 	.support = SCSI_SUPPORT_FULL,
1425 	.opcode = WRITE_16,
1426 	.cdb_size = 16,
1427 	.usage_bits = {WRITE_16, 0xf8, 0xff, 0xff,
1428 		       0xff, 0xff, 0xff, 0xff,
1429 		       0xff, 0xff, 0xff, 0xff,
1430 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1431 	.update_usage_bits = set_dpofua_usage_bits,
1432 };
1433 
1434 static const struct target_opcode_descriptor tcm_opcode_write_verify16 = {
1435 	.support = SCSI_SUPPORT_FULL,
1436 	.opcode = WRITE_VERIFY_16,
1437 	.cdb_size = 16,
1438 	.usage_bits = {WRITE_VERIFY_16, 0xf0, 0xff, 0xff,
1439 		       0xff, 0xff, 0xff, 0xff,
1440 		       0xff, 0xff, 0xff, 0xff,
1441 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1442 	.update_usage_bits = set_dpofua_usage_bits,
1443 };
1444 
tcm_is_ws_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)1445 static bool tcm_is_ws_enabled(const struct target_opcode_descriptor *descr,
1446 			      struct se_cmd *cmd)
1447 {
1448 	struct exec_cmd_ops *ops = cmd->protocol_data;
1449 	struct se_device *dev = cmd->se_dev;
1450 
1451 	return (dev->dev_attrib.emulate_tpws && !!ops->execute_unmap) ||
1452 	       !!ops->execute_write_same;
1453 }
1454 
1455 static const struct target_opcode_descriptor tcm_opcode_write_same32 = {
1456 	.support = SCSI_SUPPORT_FULL,
1457 	.serv_action_valid = 1,
1458 	.opcode = VARIABLE_LENGTH_CMD,
1459 	.service_action = WRITE_SAME_32,
1460 	.cdb_size = 32,
1461 	.usage_bits = {VARIABLE_LENGTH_CMD, SCSI_CONTROL_MASK, 0x00, 0x00,
1462 		       0x00, 0x00, SCSI_GROUP_NUMBER_MASK, 0x18,
1463 		       0x00, WRITE_SAME_32, 0xe8, 0x00,
1464 		       0xff, 0xff, 0xff, 0xff,
1465 		       0xff, 0xff, 0xff, 0xff,
1466 		       0x00, 0x00, 0x00, 0x00,
1467 		       0x00, 0x00, 0x00, 0x00,
1468 		       0xff, 0xff, 0xff, 0xff},
1469 	.enabled = tcm_is_ws_enabled,
1470 	.update_usage_bits = set_dpofua_usage_bits32,
1471 };
1472 
tcm_is_atomic_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)1473 static bool tcm_is_atomic_enabled(const struct target_opcode_descriptor *descr,
1474 				  struct se_cmd *cmd)
1475 {
1476 	return cmd->se_dev->dev_attrib.atomic_max_len;
1477 }
1478 
1479 static struct target_opcode_descriptor tcm_opcode_write_atomic16 = {
1480 	.support = SCSI_SUPPORT_FULL,
1481 	.opcode = WRITE_ATOMIC_16,
1482 	.cdb_size = 16,
1483 	.usage_bits = {WRITE_ATOMIC_16, 0xf8, 0xff, 0xff,
1484 		       0xff, 0xff, 0xff, 0xff,
1485 		       0xff, 0xff, 0xff, 0xff,
1486 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1487 	.enabled = tcm_is_atomic_enabled,
1488 	.update_usage_bits = set_dpofua_usage_bits,
1489 };
1490 
tcm_is_caw_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)1491 static bool tcm_is_caw_enabled(const struct target_opcode_descriptor *descr,
1492 			       struct se_cmd *cmd)
1493 {
1494 	struct se_device *dev = cmd->se_dev;
1495 
1496 	return dev->dev_attrib.emulate_caw;
1497 }
1498 
1499 static const struct target_opcode_descriptor tcm_opcode_compare_write = {
1500 	.support = SCSI_SUPPORT_FULL,
1501 	.opcode = COMPARE_AND_WRITE,
1502 	.cdb_size = 16,
1503 	.usage_bits = {COMPARE_AND_WRITE, 0x18, 0xff, 0xff,
1504 		       0xff, 0xff, 0xff, 0xff,
1505 		       0xff, 0xff, 0x00, 0x00,
1506 		       0x00, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1507 	.enabled = tcm_is_caw_enabled,
1508 	.update_usage_bits = set_dpofua_usage_bits,
1509 };
1510 
1511 static const struct target_opcode_descriptor tcm_opcode_read_capacity = {
1512 	.support = SCSI_SUPPORT_FULL,
1513 	.opcode = READ_CAPACITY,
1514 	.cdb_size = 10,
1515 	.usage_bits = {READ_CAPACITY, 0x00, 0xff, 0xff,
1516 		       0xff, 0xff, 0x00, 0x00,
1517 		       0x01, SCSI_CONTROL_MASK},
1518 };
1519 
1520 static const struct target_opcode_descriptor tcm_opcode_read_capacity16 = {
1521 	.support = SCSI_SUPPORT_FULL,
1522 	.serv_action_valid = 1,
1523 	.opcode = SERVICE_ACTION_IN_16,
1524 	.service_action = SAI_READ_CAPACITY_16,
1525 	.cdb_size = 16,
1526 	.usage_bits = {SERVICE_ACTION_IN_16, SAI_READ_CAPACITY_16, 0x00, 0x00,
1527 		       0x00, 0x00, 0x00, 0x00,
1528 		       0x00, 0x00, 0xff, 0xff,
1529 		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1530 };
1531 
tcm_is_rep_ref_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)1532 static bool tcm_is_rep_ref_enabled(const struct target_opcode_descriptor *descr,
1533 				   struct se_cmd *cmd)
1534 {
1535 	struct se_device *dev = cmd->se_dev;
1536 
1537 	spin_lock(&dev->t10_alua.lba_map_lock);
1538 	if (list_empty(&dev->t10_alua.lba_map_list)) {
1539 		spin_unlock(&dev->t10_alua.lba_map_lock);
1540 		return false;
1541 	}
1542 	spin_unlock(&dev->t10_alua.lba_map_lock);
1543 	return true;
1544 }
1545 
1546 static const struct target_opcode_descriptor tcm_opcode_read_report_refferals = {
1547 	.support = SCSI_SUPPORT_FULL,
1548 	.serv_action_valid = 1,
1549 	.opcode = SERVICE_ACTION_IN_16,
1550 	.service_action = SAI_REPORT_REFERRALS,
1551 	.cdb_size = 16,
1552 	.usage_bits = {SERVICE_ACTION_IN_16, SAI_REPORT_REFERRALS, 0x00, 0x00,
1553 		       0x00, 0x00, 0x00, 0x00,
1554 		       0x00, 0x00, 0xff, 0xff,
1555 		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1556 	.enabled = tcm_is_rep_ref_enabled,
1557 };
1558 
1559 static const struct target_opcode_descriptor tcm_opcode_sync_cache = {
1560 	.support = SCSI_SUPPORT_FULL,
1561 	.opcode = SYNCHRONIZE_CACHE,
1562 	.cdb_size = 10,
1563 	.usage_bits = {SYNCHRONIZE_CACHE, 0x02, 0xff, 0xff,
1564 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1565 		       0xff, SCSI_CONTROL_MASK},
1566 };
1567 
1568 static const struct target_opcode_descriptor tcm_opcode_sync_cache16 = {
1569 	.support = SCSI_SUPPORT_FULL,
1570 	.opcode = SYNCHRONIZE_CACHE_16,
1571 	.cdb_size = 16,
1572 	.usage_bits = {SYNCHRONIZE_CACHE_16, 0x02, 0xff, 0xff,
1573 		       0xff, 0xff, 0xff, 0xff,
1574 		       0xff, 0xff, 0xff, 0xff,
1575 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1576 };
1577 
tcm_is_unmap_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)1578 static bool tcm_is_unmap_enabled(const struct target_opcode_descriptor *descr,
1579 				 struct se_cmd *cmd)
1580 {
1581 	struct exec_cmd_ops *ops = cmd->protocol_data;
1582 	struct se_device *dev = cmd->se_dev;
1583 
1584 	return ops->execute_unmap && dev->dev_attrib.emulate_tpu;
1585 }
1586 
1587 static const struct target_opcode_descriptor tcm_opcode_unmap = {
1588 	.support = SCSI_SUPPORT_FULL,
1589 	.opcode = UNMAP,
1590 	.cdb_size = 10,
1591 	.usage_bits = {UNMAP, 0x00, 0x00, 0x00,
1592 		       0x00, 0x00, SCSI_GROUP_NUMBER_MASK, 0xff,
1593 		       0xff, SCSI_CONTROL_MASK},
1594 	.enabled = tcm_is_unmap_enabled,
1595 };
1596 
1597 static const struct target_opcode_descriptor tcm_opcode_write_same = {
1598 	.support = SCSI_SUPPORT_FULL,
1599 	.opcode = WRITE_SAME,
1600 	.cdb_size = 10,
1601 	.usage_bits = {WRITE_SAME, 0xe8, 0xff, 0xff,
1602 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1603 		       0xff, SCSI_CONTROL_MASK},
1604 	.enabled = tcm_is_ws_enabled,
1605 };
1606 
1607 static const struct target_opcode_descriptor tcm_opcode_write_same16 = {
1608 	.support = SCSI_SUPPORT_FULL,
1609 	.opcode = WRITE_SAME_16,
1610 	.cdb_size = 16,
1611 	.usage_bits = {WRITE_SAME_16, 0xe8, 0xff, 0xff,
1612 		       0xff, 0xff, 0xff, 0xff,
1613 		       0xff, 0xff, 0xff, 0xff,
1614 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1615 	.enabled = tcm_is_ws_enabled,
1616 };
1617 
1618 static const struct target_opcode_descriptor tcm_opcode_verify = {
1619 	.support = SCSI_SUPPORT_FULL,
1620 	.opcode = VERIFY,
1621 	.cdb_size = 10,
1622 	.usage_bits = {VERIFY, 0x00, 0xff, 0xff,
1623 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1624 		       0xff, SCSI_CONTROL_MASK},
1625 };
1626 
1627 static const struct target_opcode_descriptor tcm_opcode_verify16 = {
1628 	.support = SCSI_SUPPORT_FULL,
1629 	.opcode = VERIFY_16,
1630 	.cdb_size = 16,
1631 	.usage_bits = {VERIFY_16, 0x00, 0xff, 0xff,
1632 		       0xff, 0xff, 0xff, 0xff,
1633 		       0xff, 0xff, 0xff, 0xff,
1634 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1635 };
1636 
1637 static const struct target_opcode_descriptor tcm_opcode_start_stop = {
1638 	.support = SCSI_SUPPORT_FULL,
1639 	.opcode = START_STOP,
1640 	.cdb_size = 6,
1641 	.usage_bits = {START_STOP, 0x01, 0x00, 0x00,
1642 		       0x01, SCSI_CONTROL_MASK},
1643 };
1644 
1645 static const struct target_opcode_descriptor tcm_opcode_mode_select = {
1646 	.support = SCSI_SUPPORT_FULL,
1647 	.opcode = MODE_SELECT,
1648 	.cdb_size = 6,
1649 	.usage_bits = {MODE_SELECT, 0x10, 0x00, 0x00,
1650 		       0xff, SCSI_CONTROL_MASK},
1651 };
1652 
1653 static const struct target_opcode_descriptor tcm_opcode_mode_select10 = {
1654 	.support = SCSI_SUPPORT_FULL,
1655 	.opcode = MODE_SELECT_10,
1656 	.cdb_size = 10,
1657 	.usage_bits = {MODE_SELECT_10, 0x10, 0x00, 0x00,
1658 		       0x00, 0x00, 0x00, 0xff,
1659 		       0xff, SCSI_CONTROL_MASK},
1660 };
1661 
1662 static const struct target_opcode_descriptor tcm_opcode_mode_sense = {
1663 	.support = SCSI_SUPPORT_FULL,
1664 	.opcode = MODE_SENSE,
1665 	.cdb_size = 6,
1666 	.usage_bits = {MODE_SENSE, 0x08, 0xff, 0xff,
1667 		       0xff, SCSI_CONTROL_MASK},
1668 };
1669 
1670 static const struct target_opcode_descriptor tcm_opcode_mode_sense10 = {
1671 	.support = SCSI_SUPPORT_FULL,
1672 	.opcode = MODE_SENSE_10,
1673 	.cdb_size = 10,
1674 	.usage_bits = {MODE_SENSE_10, 0x18, 0xff, 0xff,
1675 		       0x00, 0x00, 0x00, 0xff,
1676 		       0xff, SCSI_CONTROL_MASK},
1677 };
1678 
1679 static const struct target_opcode_descriptor tcm_opcode_pri_read_keys = {
1680 	.support = SCSI_SUPPORT_FULL,
1681 	.serv_action_valid = 1,
1682 	.opcode = PERSISTENT_RESERVE_IN,
1683 	.service_action = PRI_READ_KEYS,
1684 	.cdb_size = 10,
1685 	.usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_KEYS, 0x00, 0x00,
1686 		       0x00, 0x00, 0x00, 0xff,
1687 		       0xff, SCSI_CONTROL_MASK},
1688 };
1689 
1690 static const struct target_opcode_descriptor tcm_opcode_pri_read_resrv = {
1691 	.support = SCSI_SUPPORT_FULL,
1692 	.serv_action_valid = 1,
1693 	.opcode = PERSISTENT_RESERVE_IN,
1694 	.service_action = PRI_READ_RESERVATION,
1695 	.cdb_size = 10,
1696 	.usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_RESERVATION, 0x00, 0x00,
1697 		       0x00, 0x00, 0x00, 0xff,
1698 		       0xff, SCSI_CONTROL_MASK},
1699 };
1700 
tcm_is_pr_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)1701 static bool tcm_is_pr_enabled(const struct target_opcode_descriptor *descr,
1702 			      struct se_cmd *cmd)
1703 {
1704 	struct se_device *dev = cmd->se_dev;
1705 
1706 	if (!dev->dev_attrib.emulate_pr)
1707 		return false;
1708 
1709 	if (!(dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH_PGR))
1710 		return true;
1711 
1712 	switch (descr->opcode) {
1713 	case RESERVE_6:
1714 	case RESERVE_10:
1715 	case RELEASE_6:
1716 	case RELEASE_10:
1717 		/*
1718 		 * The pr_ops which are used by the backend modules don't
1719 		 * support these commands.
1720 		 */
1721 		return false;
1722 	case PERSISTENT_RESERVE_OUT:
1723 		switch (descr->service_action) {
1724 		case PRO_REGISTER_AND_MOVE:
1725 		case PRO_REPLACE_LOST_RESERVATION:
1726 			/*
1727 			 * The backend modules don't have access to ports and
1728 			 * I_T nexuses so they can't handle these type of
1729 			 * requests.
1730 			 */
1731 			return false;
1732 		}
1733 		break;
1734 	case PERSISTENT_RESERVE_IN:
1735 		if (descr->service_action == PRI_READ_FULL_STATUS)
1736 			return false;
1737 		break;
1738 	}
1739 
1740 	return true;
1741 }
1742 
1743 static const struct target_opcode_descriptor tcm_opcode_pri_read_caps = {
1744 	.support = SCSI_SUPPORT_FULL,
1745 	.serv_action_valid = 1,
1746 	.opcode = PERSISTENT_RESERVE_IN,
1747 	.service_action = PRI_REPORT_CAPABILITIES,
1748 	.cdb_size = 10,
1749 	.usage_bits = {PERSISTENT_RESERVE_IN, PRI_REPORT_CAPABILITIES, 0x00, 0x00,
1750 		       0x00, 0x00, 0x00, 0xff,
1751 		       0xff, SCSI_CONTROL_MASK},
1752 	.enabled = tcm_is_pr_enabled,
1753 };
1754 
1755 static const struct target_opcode_descriptor tcm_opcode_pri_read_full_status = {
1756 	.support = SCSI_SUPPORT_FULL,
1757 	.serv_action_valid = 1,
1758 	.opcode = PERSISTENT_RESERVE_IN,
1759 	.service_action = PRI_READ_FULL_STATUS,
1760 	.cdb_size = 10,
1761 	.usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_FULL_STATUS, 0x00, 0x00,
1762 		       0x00, 0x00, 0x00, 0xff,
1763 		       0xff, SCSI_CONTROL_MASK},
1764 	.enabled = tcm_is_pr_enabled,
1765 };
1766 
1767 static const struct target_opcode_descriptor tcm_opcode_pro_register = {
1768 	.support = SCSI_SUPPORT_FULL,
1769 	.serv_action_valid = 1,
1770 	.opcode = PERSISTENT_RESERVE_OUT,
1771 	.service_action = PRO_REGISTER,
1772 	.cdb_size = 10,
1773 	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_REGISTER, 0xff, 0x00,
1774 		       0x00, 0xff, 0xff, 0xff,
1775 		       0xff, SCSI_CONTROL_MASK},
1776 	.enabled = tcm_is_pr_enabled,
1777 };
1778 
1779 static const struct target_opcode_descriptor tcm_opcode_pro_reserve = {
1780 	.support = SCSI_SUPPORT_FULL,
1781 	.serv_action_valid = 1,
1782 	.opcode = PERSISTENT_RESERVE_OUT,
1783 	.service_action = PRO_RESERVE,
1784 	.cdb_size = 10,
1785 	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_RESERVE, 0xff, 0x00,
1786 		       0x00, 0xff, 0xff, 0xff,
1787 		       0xff, SCSI_CONTROL_MASK},
1788 	.enabled = tcm_is_pr_enabled,
1789 };
1790 
1791 static const struct target_opcode_descriptor tcm_opcode_pro_release = {
1792 	.support = SCSI_SUPPORT_FULL,
1793 	.serv_action_valid = 1,
1794 	.opcode = PERSISTENT_RESERVE_OUT,
1795 	.service_action = PRO_RELEASE,
1796 	.cdb_size = 10,
1797 	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_RELEASE, 0xff, 0x00,
1798 		       0x00, 0xff, 0xff, 0xff,
1799 		       0xff, SCSI_CONTROL_MASK},
1800 	.enabled = tcm_is_pr_enabled,
1801 };
1802 
1803 static const struct target_opcode_descriptor tcm_opcode_pro_clear = {
1804 	.support = SCSI_SUPPORT_FULL,
1805 	.serv_action_valid = 1,
1806 	.opcode = PERSISTENT_RESERVE_OUT,
1807 	.service_action = PRO_CLEAR,
1808 	.cdb_size = 10,
1809 	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_CLEAR, 0xff, 0x00,
1810 		       0x00, 0xff, 0xff, 0xff,
1811 		       0xff, SCSI_CONTROL_MASK},
1812 	.enabled = tcm_is_pr_enabled,
1813 };
1814 
1815 static const struct target_opcode_descriptor tcm_opcode_pro_preempt = {
1816 	.support = SCSI_SUPPORT_FULL,
1817 	.serv_action_valid = 1,
1818 	.opcode = PERSISTENT_RESERVE_OUT,
1819 	.service_action = PRO_PREEMPT,
1820 	.cdb_size = 10,
1821 	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_PREEMPT, 0xff, 0x00,
1822 		       0x00, 0xff, 0xff, 0xff,
1823 		       0xff, SCSI_CONTROL_MASK},
1824 	.enabled = tcm_is_pr_enabled,
1825 };
1826 
1827 static const struct target_opcode_descriptor tcm_opcode_pro_preempt_abort = {
1828 	.support = SCSI_SUPPORT_FULL,
1829 	.serv_action_valid = 1,
1830 	.opcode = PERSISTENT_RESERVE_OUT,
1831 	.service_action = PRO_PREEMPT_AND_ABORT,
1832 	.cdb_size = 10,
1833 	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_PREEMPT_AND_ABORT, 0xff, 0x00,
1834 		       0x00, 0xff, 0xff, 0xff,
1835 		       0xff, SCSI_CONTROL_MASK},
1836 	.enabled = tcm_is_pr_enabled,
1837 };
1838 
1839 static const struct target_opcode_descriptor tcm_opcode_pro_reg_ign_exist = {
1840 	.support = SCSI_SUPPORT_FULL,
1841 	.serv_action_valid = 1,
1842 	.opcode = PERSISTENT_RESERVE_OUT,
1843 	.service_action = PRO_REGISTER_AND_IGNORE_EXISTING_KEY,
1844 	.cdb_size = 10,
1845 	.usage_bits = {
1846 		PERSISTENT_RESERVE_OUT, PRO_REGISTER_AND_IGNORE_EXISTING_KEY,
1847 		0xff, 0x00,
1848 		0x00, 0xff, 0xff, 0xff,
1849 		0xff, SCSI_CONTROL_MASK},
1850 	.enabled = tcm_is_pr_enabled,
1851 };
1852 
1853 static const struct target_opcode_descriptor tcm_opcode_pro_register_move = {
1854 	.support = SCSI_SUPPORT_FULL,
1855 	.serv_action_valid = 1,
1856 	.opcode = PERSISTENT_RESERVE_OUT,
1857 	.service_action = PRO_REGISTER_AND_MOVE,
1858 	.cdb_size = 10,
1859 	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_REGISTER_AND_MOVE, 0xff, 0x00,
1860 		       0x00, 0xff, 0xff, 0xff,
1861 		       0xff, SCSI_CONTROL_MASK},
1862 	.enabled = tcm_is_pr_enabled,
1863 };
1864 
1865 static const struct target_opcode_descriptor tcm_opcode_release = {
1866 	.support = SCSI_SUPPORT_FULL,
1867 	.opcode = RELEASE_6,
1868 	.cdb_size = 6,
1869 	.usage_bits = {RELEASE_6, 0x00, 0x00, 0x00,
1870 		       0x00, SCSI_CONTROL_MASK},
1871 	.enabled = tcm_is_pr_enabled,
1872 };
1873 
1874 static const struct target_opcode_descriptor tcm_opcode_release10 = {
1875 	.support = SCSI_SUPPORT_FULL,
1876 	.opcode = RELEASE_10,
1877 	.cdb_size = 10,
1878 	.usage_bits = {RELEASE_10, 0x00, 0x00, 0x00,
1879 		       0x00, 0x00, 0x00, 0xff,
1880 		       0xff, SCSI_CONTROL_MASK},
1881 	.enabled = tcm_is_pr_enabled,
1882 };
1883 
1884 static const struct target_opcode_descriptor tcm_opcode_reserve = {
1885 	.support = SCSI_SUPPORT_FULL,
1886 	.opcode = RESERVE_6,
1887 	.cdb_size = 6,
1888 	.usage_bits = {RESERVE_6, 0x00, 0x00, 0x00,
1889 		       0x00, SCSI_CONTROL_MASK},
1890 	.enabled = tcm_is_pr_enabled,
1891 };
1892 
1893 static const struct target_opcode_descriptor tcm_opcode_reserve10 = {
1894 	.support = SCSI_SUPPORT_FULL,
1895 	.opcode = RESERVE_10,
1896 	.cdb_size = 10,
1897 	.usage_bits = {RESERVE_10, 0x00, 0x00, 0x00,
1898 		       0x00, 0x00, 0x00, 0xff,
1899 		       0xff, SCSI_CONTROL_MASK},
1900 	.enabled = tcm_is_pr_enabled,
1901 };
1902 
1903 static const struct target_opcode_descriptor tcm_opcode_request_sense = {
1904 	.support = SCSI_SUPPORT_FULL,
1905 	.opcode = REQUEST_SENSE,
1906 	.cdb_size = 6,
1907 	.usage_bits = {REQUEST_SENSE, 0x00, 0x00, 0x00,
1908 		       0xff, SCSI_CONTROL_MASK},
1909 };
1910 
1911 static const struct target_opcode_descriptor tcm_opcode_inquiry = {
1912 	.support = SCSI_SUPPORT_FULL,
1913 	.opcode = INQUIRY,
1914 	.cdb_size = 6,
1915 	.usage_bits = {INQUIRY, 0x01, 0xff, 0xff,
1916 		       0xff, SCSI_CONTROL_MASK},
1917 };
1918 
tcm_is_3pc_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)1919 static bool tcm_is_3pc_enabled(const struct target_opcode_descriptor *descr,
1920 			       struct se_cmd *cmd)
1921 {
1922 	struct se_device *dev = cmd->se_dev;
1923 
1924 	return dev->dev_attrib.emulate_3pc;
1925 }
1926 
1927 static const struct target_opcode_descriptor tcm_opcode_extended_copy_lid1 = {
1928 	.support = SCSI_SUPPORT_FULL,
1929 	.serv_action_valid = 1,
1930 	.opcode = EXTENDED_COPY,
1931 	.cdb_size = 16,
1932 	.usage_bits = {EXTENDED_COPY, 0x00, 0x00, 0x00,
1933 		       0x00, 0x00, 0x00, 0x00,
1934 		       0x00, 0x00, 0xff, 0xff,
1935 		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1936 	.enabled = tcm_is_3pc_enabled,
1937 };
1938 
1939 static const struct target_opcode_descriptor tcm_opcode_rcv_copy_res_op_params = {
1940 	.support = SCSI_SUPPORT_FULL,
1941 	.serv_action_valid = 1,
1942 	.opcode = RECEIVE_COPY_RESULTS,
1943 	.service_action = RCR_SA_OPERATING_PARAMETERS,
1944 	.cdb_size = 16,
1945 	.usage_bits = {RECEIVE_COPY_RESULTS, RCR_SA_OPERATING_PARAMETERS,
1946 		       0x00, 0x00,
1947 		       0x00, 0x00, 0x00, 0x00,
1948 		       0x00, 0x00, 0xff, 0xff,
1949 		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1950 	.enabled = tcm_is_3pc_enabled,
1951 };
1952 
1953 static const struct target_opcode_descriptor tcm_opcode_report_luns = {
1954 	.support = SCSI_SUPPORT_FULL,
1955 	.opcode = REPORT_LUNS,
1956 	.cdb_size = 12,
1957 	.usage_bits = {REPORT_LUNS, 0x00, 0xff, 0x00,
1958 		       0x00, 0x00, 0xff, 0xff,
1959 		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1960 };
1961 
1962 static const struct target_opcode_descriptor tcm_opcode_test_unit_ready = {
1963 	.support = SCSI_SUPPORT_FULL,
1964 	.opcode = TEST_UNIT_READY,
1965 	.cdb_size = 6,
1966 	.usage_bits = {TEST_UNIT_READY, 0x00, 0x00, 0x00,
1967 		       0x00, SCSI_CONTROL_MASK},
1968 };
1969 
1970 static const struct target_opcode_descriptor tcm_opcode_report_target_pgs = {
1971 	.support = SCSI_SUPPORT_FULL,
1972 	.serv_action_valid = 1,
1973 	.opcode = MAINTENANCE_IN,
1974 	.service_action = MI_REPORT_TARGET_PGS,
1975 	.cdb_size = 12,
1976 	.usage_bits = {MAINTENANCE_IN, 0xE0 | MI_REPORT_TARGET_PGS, 0x00, 0x00,
1977 		       0x00, 0x00, 0xff, 0xff,
1978 		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1979 };
1980 
spc_rsoc_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)1981 static bool spc_rsoc_enabled(const struct target_opcode_descriptor *descr,
1982 			     struct se_cmd *cmd)
1983 {
1984 	struct se_device *dev = cmd->se_dev;
1985 
1986 	return dev->dev_attrib.emulate_rsoc;
1987 }
1988 
1989 static const struct target_opcode_descriptor tcm_opcode_report_supp_opcodes = {
1990 	.support = SCSI_SUPPORT_FULL,
1991 	.serv_action_valid = 1,
1992 	.opcode = MAINTENANCE_IN,
1993 	.service_action = MI_REPORT_SUPPORTED_OPERATION_CODES,
1994 	.cdb_size = 12,
1995 	.usage_bits = {MAINTENANCE_IN, MI_REPORT_SUPPORTED_OPERATION_CODES,
1996 		       0x87, 0xff,
1997 		       0xff, 0xff, 0xff, 0xff,
1998 		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1999 	.enabled = spc_rsoc_enabled,
2000 };
2001 
tcm_is_set_tpg_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)2002 static bool tcm_is_set_tpg_enabled(const struct target_opcode_descriptor *descr,
2003 				   struct se_cmd *cmd)
2004 {
2005 	struct t10_alua_tg_pt_gp *l_tg_pt_gp;
2006 	struct se_lun *l_lun = cmd->se_lun;
2007 
2008 	rcu_read_lock();
2009 	l_tg_pt_gp = rcu_dereference(l_lun->lun_tg_pt_gp);
2010 	if (!l_tg_pt_gp) {
2011 		rcu_read_unlock();
2012 		return false;
2013 	}
2014 	if (!(l_tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_EXPLICIT_ALUA)) {
2015 		rcu_read_unlock();
2016 		return false;
2017 	}
2018 	rcu_read_unlock();
2019 
2020 	return true;
2021 }
2022 
2023 static const struct target_opcode_descriptor tcm_opcode_set_tpg = {
2024 	.support = SCSI_SUPPORT_FULL,
2025 	.serv_action_valid = 1,
2026 	.opcode = MAINTENANCE_OUT,
2027 	.service_action = MO_SET_TARGET_PGS,
2028 	.cdb_size = 12,
2029 	.usage_bits = {MAINTENANCE_OUT, MO_SET_TARGET_PGS, 0x00, 0x00,
2030 		       0x00, 0x00, 0xff, 0xff,
2031 		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
2032 	.enabled = tcm_is_set_tpg_enabled,
2033 };
2034 
2035 static const struct target_opcode_descriptor *tcm_supported_opcodes[] = {
2036 	&tcm_opcode_read6,
2037 	&tcm_opcode_read10,
2038 	&tcm_opcode_read12,
2039 	&tcm_opcode_read16,
2040 	&tcm_opcode_write6,
2041 	&tcm_opcode_write10,
2042 	&tcm_opcode_write_verify10,
2043 	&tcm_opcode_write12,
2044 	&tcm_opcode_write16,
2045 	&tcm_opcode_write_verify16,
2046 	&tcm_opcode_write_same32,
2047 	&tcm_opcode_write_atomic16,
2048 	&tcm_opcode_compare_write,
2049 	&tcm_opcode_read_capacity,
2050 	&tcm_opcode_read_capacity16,
2051 	&tcm_opcode_read_report_refferals,
2052 	&tcm_opcode_sync_cache,
2053 	&tcm_opcode_sync_cache16,
2054 	&tcm_opcode_unmap,
2055 	&tcm_opcode_write_same,
2056 	&tcm_opcode_write_same16,
2057 	&tcm_opcode_verify,
2058 	&tcm_opcode_verify16,
2059 	&tcm_opcode_start_stop,
2060 	&tcm_opcode_mode_select,
2061 	&tcm_opcode_mode_select10,
2062 	&tcm_opcode_mode_sense,
2063 	&tcm_opcode_mode_sense10,
2064 	&tcm_opcode_pri_read_keys,
2065 	&tcm_opcode_pri_read_resrv,
2066 	&tcm_opcode_pri_read_caps,
2067 	&tcm_opcode_pri_read_full_status,
2068 	&tcm_opcode_pro_register,
2069 	&tcm_opcode_pro_reserve,
2070 	&tcm_opcode_pro_release,
2071 	&tcm_opcode_pro_clear,
2072 	&tcm_opcode_pro_preempt,
2073 	&tcm_opcode_pro_preempt_abort,
2074 	&tcm_opcode_pro_reg_ign_exist,
2075 	&tcm_opcode_pro_register_move,
2076 	&tcm_opcode_release,
2077 	&tcm_opcode_release10,
2078 	&tcm_opcode_reserve,
2079 	&tcm_opcode_reserve10,
2080 	&tcm_opcode_request_sense,
2081 	&tcm_opcode_inquiry,
2082 	&tcm_opcode_extended_copy_lid1,
2083 	&tcm_opcode_rcv_copy_res_op_params,
2084 	&tcm_opcode_report_luns,
2085 	&tcm_opcode_test_unit_ready,
2086 	&tcm_opcode_report_target_pgs,
2087 	&tcm_opcode_report_supp_opcodes,
2088 	&tcm_opcode_set_tpg,
2089 };
2090 
2091 static int
spc_rsoc_encode_command_timeouts_descriptor(unsigned char * buf,u8 ctdp,const struct target_opcode_descriptor * descr)2092 spc_rsoc_encode_command_timeouts_descriptor(unsigned char *buf, u8 ctdp,
2093 				const struct target_opcode_descriptor *descr)
2094 {
2095 	if (!ctdp)
2096 		return 0;
2097 
2098 	put_unaligned_be16(0xa, buf);
2099 	buf[3] = descr->specific_timeout;
2100 	put_unaligned_be32(descr->nominal_timeout, &buf[4]);
2101 	put_unaligned_be32(descr->recommended_timeout, &buf[8]);
2102 
2103 	return 12;
2104 }
2105 
2106 static int
spc_rsoc_encode_command_descriptor(unsigned char * buf,u8 ctdp,const struct target_opcode_descriptor * descr)2107 spc_rsoc_encode_command_descriptor(unsigned char *buf, u8 ctdp,
2108 				   const struct target_opcode_descriptor *descr)
2109 {
2110 	int td_size = 0;
2111 
2112 	buf[0] = descr->opcode;
2113 
2114 	put_unaligned_be16(descr->service_action, &buf[2]);
2115 
2116 	buf[5] = (ctdp << 1) | descr->serv_action_valid;
2117 	put_unaligned_be16(descr->cdb_size, &buf[6]);
2118 
2119 	td_size = spc_rsoc_encode_command_timeouts_descriptor(&buf[8], ctdp,
2120 							      descr);
2121 
2122 	return 8 + td_size;
2123 }
2124 
2125 static int
spc_rsoc_encode_one_command_descriptor(unsigned char * buf,u8 ctdp,const struct target_opcode_descriptor * descr,struct se_device * dev)2126 spc_rsoc_encode_one_command_descriptor(unsigned char *buf, u8 ctdp,
2127 				       const struct target_opcode_descriptor *descr,
2128 				       struct se_device *dev)
2129 {
2130 	int td_size = 0;
2131 
2132 	if (!descr) {
2133 		buf[1] = (ctdp << 7) | SCSI_SUPPORT_NOT_SUPPORTED;
2134 		return 2;
2135 	}
2136 
2137 	buf[1] = (ctdp << 7) | SCSI_SUPPORT_FULL;
2138 	put_unaligned_be16(descr->cdb_size, &buf[2]);
2139 	memcpy(&buf[4], descr->usage_bits, descr->cdb_size);
2140 	if (descr->update_usage_bits)
2141 		descr->update_usage_bits(&buf[4], dev);
2142 
2143 	td_size = spc_rsoc_encode_command_timeouts_descriptor(
2144 			&buf[4 + descr->cdb_size], ctdp, descr);
2145 
2146 	return 4 + descr->cdb_size + td_size;
2147 }
2148 
2149 static sense_reason_t
spc_rsoc_get_descr(struct se_cmd * cmd,const struct target_opcode_descriptor ** opcode)2150 spc_rsoc_get_descr(struct se_cmd *cmd, const struct target_opcode_descriptor **opcode)
2151 {
2152 	const struct target_opcode_descriptor *descr;
2153 	struct se_session *sess = cmd->se_sess;
2154 	unsigned char *cdb = cmd->t_task_cdb;
2155 	u8 opts = cdb[2] & 0x3;
2156 	u8 requested_opcode;
2157 	u16 requested_sa;
2158 	int i;
2159 
2160 	requested_opcode = cdb[3];
2161 	requested_sa = ((u16)cdb[4]) << 8 | cdb[5];
2162 	*opcode = NULL;
2163 
2164 	if (opts > 3) {
2165 		pr_debug("TARGET_CORE[%s]: Invalid REPORT SUPPORTED OPERATION CODES"
2166 			" with unsupported REPORTING OPTIONS %#x for 0x%08llx from %s\n",
2167 			cmd->se_tfo->fabric_name, opts,
2168 			cmd->se_lun->unpacked_lun,
2169 			sess->se_node_acl->initiatorname);
2170 		return TCM_INVALID_CDB_FIELD;
2171 	}
2172 
2173 	for (i = 0; i < ARRAY_SIZE(tcm_supported_opcodes); i++) {
2174 		descr = tcm_supported_opcodes[i];
2175 		if (descr->opcode != requested_opcode)
2176 			continue;
2177 
2178 		switch (opts) {
2179 		case 0x1:
2180 			/*
2181 			 * If the REQUESTED OPERATION CODE field specifies an
2182 			 * operation code for which the device server implements
2183 			 * service actions, then the device server shall
2184 			 * terminate the command with CHECK CONDITION status,
2185 			 * with the sense key set to ILLEGAL REQUEST, and the
2186 			 * additional sense code set to INVALID FIELD IN CDB
2187 			 */
2188 			if (descr->serv_action_valid)
2189 				return TCM_INVALID_CDB_FIELD;
2190 
2191 			if (!descr->enabled || descr->enabled(descr, cmd)) {
2192 				*opcode = descr;
2193 				return TCM_NO_SENSE;
2194 			}
2195 			break;
2196 		case 0x2:
2197 			/*
2198 			 * If the REQUESTED OPERATION CODE field specifies an
2199 			 * operation code for which the device server does not
2200 			 * implement service actions, then the device server
2201 			 * shall terminate the command with CHECK CONDITION
2202 			 * status, with the sense key set to ILLEGAL REQUEST,
2203 			 * and the additional sense code set to INVALID FIELD IN CDB.
2204 			 */
2205 			if (descr->serv_action_valid &&
2206 			    descr->service_action == requested_sa) {
2207 				if (!descr->enabled || descr->enabled(descr,
2208 								      cmd)) {
2209 					*opcode = descr;
2210 					return TCM_NO_SENSE;
2211 				}
2212 			} else if (!descr->serv_action_valid)
2213 				return TCM_INVALID_CDB_FIELD;
2214 			break;
2215 		case 0x3:
2216 			/*
2217 			 * The command support data for the operation code and
2218 			 * service action a specified in the REQUESTED OPERATION
2219 			 * CODE field and REQUESTED SERVICE ACTION field shall
2220 			 * be returned in the one_command parameter data format.
2221 			 */
2222 			if (descr->service_action == requested_sa)
2223 				if (!descr->enabled || descr->enabled(descr,
2224 								      cmd)) {
2225 					*opcode = descr;
2226 					return TCM_NO_SENSE;
2227 				}
2228 			break;
2229 		}
2230 	}
2231 
2232 	return TCM_NO_SENSE;
2233 }
2234 
2235 static sense_reason_t
spc_emulate_report_supp_op_codes(struct se_cmd * cmd)2236 spc_emulate_report_supp_op_codes(struct se_cmd *cmd)
2237 {
2238 	int descr_num = ARRAY_SIZE(tcm_supported_opcodes);
2239 	const struct target_opcode_descriptor *descr = NULL;
2240 	unsigned char *cdb = cmd->t_task_cdb;
2241 	u8 rctd = (cdb[2] >> 7) & 0x1;
2242 	unsigned char *buf = NULL;
2243 	int response_length = 0;
2244 	u8 opts = cdb[2] & 0x3;
2245 	unsigned char *rbuf;
2246 	sense_reason_t ret = 0;
2247 	int i;
2248 
2249 	if (!cmd->se_dev->dev_attrib.emulate_rsoc)
2250 		return TCM_UNSUPPORTED_SCSI_OPCODE;
2251 
2252 	rbuf = transport_kmap_data_sg(cmd);
2253 	if (cmd->data_length && !rbuf) {
2254 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2255 		goto out;
2256 	}
2257 
2258 	if (opts == 0)
2259 		response_length = 4 + (8 + rctd * 12) * descr_num;
2260 	else {
2261 		ret = spc_rsoc_get_descr(cmd, &descr);
2262 		if (ret)
2263 			goto out;
2264 
2265 		if (descr)
2266 			response_length = 4 + descr->cdb_size + rctd * 12;
2267 		else
2268 			response_length = 2;
2269 	}
2270 
2271 	buf = kzalloc(response_length, GFP_KERNEL);
2272 	if (!buf) {
2273 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2274 		goto out;
2275 	}
2276 	response_length = 0;
2277 
2278 	if (opts == 0) {
2279 		response_length += 4;
2280 
2281 		for (i = 0; i < ARRAY_SIZE(tcm_supported_opcodes); i++) {
2282 			descr = tcm_supported_opcodes[i];
2283 			if (descr->enabled && !descr->enabled(descr, cmd))
2284 				continue;
2285 
2286 			response_length += spc_rsoc_encode_command_descriptor(
2287 					&buf[response_length], rctd, descr);
2288 		}
2289 		put_unaligned_be32(response_length - 4, buf);
2290 	} else {
2291 		response_length = spc_rsoc_encode_one_command_descriptor(
2292 				&buf[response_length], rctd, descr,
2293 				cmd->se_dev);
2294 	}
2295 
2296 	memcpy(rbuf, buf, min_t(u32, response_length, cmd->data_length));
2297 out:
2298 	kfree(buf);
2299 	transport_kunmap_data_sg(cmd);
2300 
2301 	if (!ret)
2302 		target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, response_length);
2303 	return ret;
2304 }
2305 
2306 sense_reason_t
spc_parse_cdb(struct se_cmd * cmd,unsigned int * size)2307 spc_parse_cdb(struct se_cmd *cmd, unsigned int *size)
2308 {
2309 	struct se_device *dev = cmd->se_dev;
2310 	unsigned char *cdb = cmd->t_task_cdb;
2311 
2312 	switch (cdb[0]) {
2313 	case RESERVE_6:
2314 	case RESERVE_10:
2315 	case RELEASE_6:
2316 	case RELEASE_10:
2317 		if (!dev->dev_attrib.emulate_pr)
2318 			return TCM_UNSUPPORTED_SCSI_OPCODE;
2319 
2320 		if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH_PGR)
2321 			return TCM_UNSUPPORTED_SCSI_OPCODE;
2322 		break;
2323 	case PERSISTENT_RESERVE_IN:
2324 	case PERSISTENT_RESERVE_OUT:
2325 		if (!dev->dev_attrib.emulate_pr)
2326 			return TCM_UNSUPPORTED_SCSI_OPCODE;
2327 		break;
2328 	}
2329 
2330 	switch (cdb[0]) {
2331 	case MODE_SELECT:
2332 		*size = cdb[4];
2333 		cmd->execute_cmd = spc_emulate_modeselect;
2334 		break;
2335 	case MODE_SELECT_10:
2336 		*size = get_unaligned_be16(&cdb[7]);
2337 		cmd->execute_cmd = spc_emulate_modeselect;
2338 		break;
2339 	case MODE_SENSE:
2340 		*size = cdb[4];
2341 		cmd->execute_cmd = spc_emulate_modesense;
2342 		break;
2343 	case MODE_SENSE_10:
2344 		*size = get_unaligned_be16(&cdb[7]);
2345 		cmd->execute_cmd = spc_emulate_modesense;
2346 		break;
2347 	case LOG_SELECT:
2348 	case LOG_SENSE:
2349 		*size = get_unaligned_be16(&cdb[7]);
2350 		break;
2351 	case PERSISTENT_RESERVE_IN:
2352 		*size = get_unaligned_be16(&cdb[7]);
2353 		cmd->execute_cmd = target_scsi3_emulate_pr_in;
2354 		break;
2355 	case PERSISTENT_RESERVE_OUT:
2356 		*size = get_unaligned_be32(&cdb[5]);
2357 		cmd->execute_cmd = target_scsi3_emulate_pr_out;
2358 		break;
2359 	case RELEASE_6:
2360 	case RELEASE_10:
2361 		if (cdb[0] == RELEASE_10)
2362 			*size = get_unaligned_be16(&cdb[7]);
2363 		else
2364 			*size = cmd->data_length;
2365 
2366 		cmd->execute_cmd = target_scsi2_reservation_release;
2367 		break;
2368 	case RESERVE_6:
2369 	case RESERVE_10:
2370 		/*
2371 		 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2372 		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2373 		 */
2374 		if (cdb[0] == RESERVE_10)
2375 			*size = get_unaligned_be16(&cdb[7]);
2376 		else
2377 			*size = cmd->data_length;
2378 
2379 		cmd->execute_cmd = target_scsi2_reservation_reserve;
2380 		break;
2381 	case REQUEST_SENSE:
2382 		*size = cdb[4];
2383 		cmd->execute_cmd = spc_emulate_request_sense;
2384 		break;
2385 	case INQUIRY:
2386 		*size = get_unaligned_be16(&cdb[3]);
2387 
2388 		/*
2389 		 * Do implicit HEAD_OF_QUEUE processing for INQUIRY.
2390 		 * See spc4r17 section 5.3
2391 		 */
2392 		cmd->sam_task_attr = TCM_HEAD_TAG;
2393 		cmd->execute_cmd = spc_emulate_inquiry;
2394 		break;
2395 	case SECURITY_PROTOCOL_IN:
2396 	case SECURITY_PROTOCOL_OUT:
2397 		*size = get_unaligned_be32(&cdb[6]);
2398 		break;
2399 	case EXTENDED_COPY:
2400 		*size = get_unaligned_be32(&cdb[10]);
2401 		cmd->execute_cmd = target_do_xcopy;
2402 		break;
2403 	case RECEIVE_COPY_RESULTS:
2404 		*size = get_unaligned_be32(&cdb[10]);
2405 		cmd->execute_cmd = target_do_receive_copy_results;
2406 		break;
2407 	case READ_ATTRIBUTE:
2408 	case WRITE_ATTRIBUTE:
2409 		*size = get_unaligned_be32(&cdb[10]);
2410 		break;
2411 	case RECEIVE_DIAGNOSTIC:
2412 	case SEND_DIAGNOSTIC:
2413 		*size = get_unaligned_be16(&cdb[3]);
2414 		break;
2415 	case WRITE_BUFFER:
2416 		*size = get_unaligned_be24(&cdb[6]);
2417 		break;
2418 	case REPORT_LUNS:
2419 		cmd->execute_cmd = spc_emulate_report_luns;
2420 		*size = get_unaligned_be32(&cdb[6]);
2421 		/*
2422 		 * Do implicit HEAD_OF_QUEUE processing for REPORT_LUNS
2423 		 * See spc4r17 section 5.3
2424 		 */
2425 		cmd->sam_task_attr = TCM_HEAD_TAG;
2426 		break;
2427 	case TEST_UNIT_READY:
2428 		cmd->execute_cmd = spc_emulate_testunitready;
2429 		*size = 0;
2430 		break;
2431 	case MAINTENANCE_IN:
2432 		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2433 			/*
2434 			 * MAINTENANCE_IN from SCC-2
2435 			 * Check for emulated MI_REPORT_TARGET_PGS
2436 			 */
2437 			if ((cdb[1] & 0x1f) == MI_REPORT_TARGET_PGS) {
2438 				cmd->execute_cmd =
2439 					target_emulate_report_target_port_groups;
2440 			}
2441 			if ((cdb[1] & 0x1f) ==
2442 			    MI_REPORT_SUPPORTED_OPERATION_CODES)
2443 				cmd->execute_cmd =
2444 					spc_emulate_report_supp_op_codes;
2445 			*size = get_unaligned_be32(&cdb[6]);
2446 		} else {
2447 			/*
2448 			 * GPCMD_SEND_KEY from multi media commands
2449 			 */
2450 			*size = get_unaligned_be16(&cdb[8]);
2451 		}
2452 		break;
2453 	case MAINTENANCE_OUT:
2454 		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2455 			/*
2456 			 * MAINTENANCE_OUT from SCC-2
2457 			 * Check for emulated MO_SET_TARGET_PGS.
2458 			 */
2459 			if (cdb[1] == MO_SET_TARGET_PGS) {
2460 				cmd->execute_cmd =
2461 					target_emulate_set_target_port_groups;
2462 			}
2463 			*size = get_unaligned_be32(&cdb[6]);
2464 		} else {
2465 			/*
2466 			 * GPCMD_SEND_KEY from multi media commands
2467 			 */
2468 			*size = get_unaligned_be16(&cdb[8]);
2469 		}
2470 		break;
2471 	default:
2472 		return TCM_UNSUPPORTED_SCSI_OPCODE;
2473 	}
2474 
2475 	return 0;
2476 }
2477 EXPORT_SYMBOL(spc_parse_cdb);
2478