1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SCSI Primary Commands (SPC) parsing and emulation.
4 *
5 * (c) Copyright 2002-2013 Datera, Inc.
6 *
7 * Nicholas A. Bellinger <nab@kernel.org>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/unaligned.h>
13
14 #include <scsi/scsi_proto.h>
15 #include <scsi/scsi_common.h>
16 #include <scsi/scsi_tcq.h>
17
18 #include <target/target_core_base.h>
19 #include <target/target_core_backend.h>
20 #include <target/target_core_fabric.h>
21
22 #include "target_core_internal.h"
23 #include "target_core_alua.h"
24 #include "target_core_pr.h"
25 #include "target_core_ua.h"
26 #include "target_core_xcopy.h"
27
spc_fill_alua_data(struct se_lun * lun,unsigned char * buf)28 static void spc_fill_alua_data(struct se_lun *lun, unsigned char *buf)
29 {
30 struct t10_alua_tg_pt_gp *tg_pt_gp;
31
32 /*
33 * Set SCCS for MAINTENANCE_IN + REPORT_TARGET_PORT_GROUPS.
34 */
35 buf[5] = 0x80;
36
37 /*
38 * Set TPGS field for explicit and/or implicit ALUA access type
39 * and opteration.
40 *
41 * See spc4r17 section 6.4.2 Table 135
42 */
43 rcu_read_lock();
44 tg_pt_gp = rcu_dereference(lun->lun_tg_pt_gp);
45 if (tg_pt_gp)
46 buf[5] |= tg_pt_gp->tg_pt_gp_alua_access_type;
47 rcu_read_unlock();
48 }
49
50 static u16
spc_find_scsi_transport_vd(int proto_id)51 spc_find_scsi_transport_vd(int proto_id)
52 {
53 switch (proto_id) {
54 case SCSI_PROTOCOL_FCP:
55 return SCSI_VERSION_DESCRIPTOR_FCP4;
56 case SCSI_PROTOCOL_ISCSI:
57 return SCSI_VERSION_DESCRIPTOR_ISCSI;
58 case SCSI_PROTOCOL_SAS:
59 return SCSI_VERSION_DESCRIPTOR_SAS3;
60 case SCSI_PROTOCOL_SBP:
61 return SCSI_VERSION_DESCRIPTOR_SBP3;
62 case SCSI_PROTOCOL_SRP:
63 return SCSI_VERSION_DESCRIPTOR_SRP;
64 default:
65 pr_warn("Cannot find VERSION DESCRIPTOR value for unknown SCSI"
66 " transport PROTOCOL IDENTIFIER %#x\n", proto_id);
67 return 0;
68 }
69 }
70
71 sense_reason_t
spc_emulate_inquiry_std(struct se_cmd * cmd,unsigned char * buf)72 spc_emulate_inquiry_std(struct se_cmd *cmd, unsigned char *buf)
73 {
74 struct se_lun *lun = cmd->se_lun;
75 struct se_portal_group *tpg = lun->lun_tpg;
76 struct se_device *dev = cmd->se_dev;
77 struct se_session *sess = cmd->se_sess;
78
79 /* Set RMB (removable media) for tape devices */
80 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
81 buf[1] = 0x80;
82
83 buf[2] = 0x06; /* SPC-4 */
84
85 /*
86 * NORMACA and HISUP = 0, RESPONSE DATA FORMAT = 2
87 *
88 * SPC4 says:
89 * A RESPONSE DATA FORMAT field set to 2h indicates that the
90 * standard INQUIRY data is in the format defined in this
91 * standard. Response data format values less than 2h are
92 * obsolete. Response data format values greater than 2h are
93 * reserved.
94 */
95 buf[3] = 2;
96
97 /*
98 * Enable SCCS and TPGS fields for Emulated ALUA
99 */
100 spc_fill_alua_data(lun, buf);
101
102 /*
103 * Set Third-Party Copy (3PC) bit to indicate support for EXTENDED_COPY
104 */
105 if (dev->dev_attrib.emulate_3pc)
106 buf[5] |= 0x8;
107 /*
108 * Set Protection (PROTECT) bit when DIF has been enabled on the
109 * device, and the fabric supports VERIFY + PASS. Also report
110 * PROTECT=1 if sess_prot_type has been configured to allow T10-PI
111 * to unprotected devices.
112 */
113 if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
114 if (dev->dev_attrib.pi_prot_type || cmd->se_sess->sess_prot_type)
115 buf[5] |= 0x1;
116 }
117
118 /*
119 * Set MULTIP bit to indicate presence of multiple SCSI target ports
120 */
121 if (dev->export_count > 1)
122 buf[6] |= 0x10;
123
124 buf[7] = 0x2; /* CmdQue=1 */
125
126 /*
127 * ASCII data fields described as being left-aligned shall have any
128 * unused bytes at the end of the field (i.e., highest offset) and the
129 * unused bytes shall be filled with ASCII space characters (20h).
130 */
131 memset(&buf[8], 0x20,
132 INQUIRY_VENDOR_LEN + INQUIRY_MODEL_LEN + INQUIRY_REVISION_LEN);
133 memcpy(&buf[8], dev->t10_wwn.vendor,
134 strnlen(dev->t10_wwn.vendor, INQUIRY_VENDOR_LEN));
135 memcpy(&buf[16], dev->t10_wwn.model,
136 strnlen(dev->t10_wwn.model, INQUIRY_MODEL_LEN));
137 memcpy(&buf[32], dev->t10_wwn.revision,
138 strnlen(dev->t10_wwn.revision, INQUIRY_REVISION_LEN));
139
140 /*
141 * Set the VERSION DESCRIPTOR fields
142 */
143 put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SAM5, &buf[58]);
144 put_unaligned_be16(spc_find_scsi_transport_vd(tpg->proto_id), &buf[60]);
145 put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SPC4, &buf[62]);
146 if (cmd->se_dev->transport->get_device_type(dev) == TYPE_DISK)
147 put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SBC3, &buf[64]);
148
149 buf[4] = 91; /* Set additional length to 91 */
150
151 return 0;
152 }
153 EXPORT_SYMBOL(spc_emulate_inquiry_std);
154
155 /* unit serial number */
156 static sense_reason_t
spc_emulate_evpd_80(struct se_cmd * cmd,unsigned char * buf)157 spc_emulate_evpd_80(struct se_cmd *cmd, unsigned char *buf)
158 {
159 struct se_device *dev = cmd->se_dev;
160 u16 len;
161
162 if (dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL) {
163 len = sprintf(&buf[4], "%s", dev->t10_wwn.unit_serial);
164 len++; /* Extra Byte for NULL Terminator */
165 buf[3] = len;
166 }
167 return 0;
168 }
169
170 /*
171 * Generate NAA IEEE Registered Extended designator
172 */
spc_gen_naa_6h_vendor_specific(struct se_device * dev,unsigned char * buf)173 void spc_gen_naa_6h_vendor_specific(struct se_device *dev,
174 unsigned char *buf)
175 {
176 unsigned char *p = &dev->t10_wwn.unit_serial[0];
177 u32 company_id = dev->t10_wwn.company_id;
178 int cnt, off = 0;
179 bool next = true;
180
181 /*
182 * Start NAA IEEE Registered Extended Identifier/Designator
183 */
184 buf[off] = 0x6 << 4;
185
186 /* IEEE COMPANY_ID */
187 buf[off++] |= (company_id >> 20) & 0xf;
188 buf[off++] = (company_id >> 12) & 0xff;
189 buf[off++] = (company_id >> 4) & 0xff;
190 buf[off] = (company_id & 0xf) << 4;
191
192 /*
193 * Generate up to 36 bits of VENDOR SPECIFIC IDENTIFIER starting on
194 * byte 3 bit 3-0 for NAA IEEE Registered Extended DESIGNATOR field
195 * format, followed by 64 bits of VENDOR SPECIFIC IDENTIFIER EXTENSION
196 * to complete the payload. These are based from VPD=0x80 PRODUCT SERIAL
197 * NUMBER set via vpd_unit_serial in target_core_configfs.c to ensure
198 * per device uniqeness.
199 */
200 for (cnt = off + 13; *p && off < cnt; p++) {
201 int val = hex_to_bin(*p);
202
203 if (val < 0)
204 continue;
205
206 if (next) {
207 next = false;
208 buf[off++] |= val;
209 } else {
210 next = true;
211 buf[off] = val << 4;
212 }
213 }
214 }
215
216 /*
217 * Device identification VPD, for a complete list of
218 * DESIGNATOR TYPEs see spc4r17 Table 459.
219 */
220 sense_reason_t
spc_emulate_evpd_83(struct se_cmd * cmd,unsigned char * buf)221 spc_emulate_evpd_83(struct se_cmd *cmd, unsigned char *buf)
222 {
223 struct se_device *dev = cmd->se_dev;
224 struct se_lun *lun = cmd->se_lun;
225 struct se_portal_group *tpg = NULL;
226 struct t10_alua_lu_gp_member *lu_gp_mem;
227 struct t10_alua_tg_pt_gp *tg_pt_gp;
228 unsigned char *prod = &dev->t10_wwn.model[0];
229 u32 off = 0;
230 u16 len = 0, id_len;
231
232 off = 4;
233
234 /*
235 * NAA IEEE Registered Extended Assigned designator format, see
236 * spc4r17 section 7.7.3.6.5
237 *
238 * We depend upon a target_core_mod/ConfigFS provided
239 * /sys/kernel/config/target/core/$HBA/$DEV/wwn/vpd_unit_serial
240 * value in order to return the NAA id.
241 */
242 if (!(dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL))
243 goto check_t10_vend_desc;
244
245 /* CODE SET == Binary */
246 buf[off++] = 0x1;
247
248 /* Set ASSOCIATION == addressed logical unit: 0)b */
249 buf[off] = 0x00;
250
251 /* Identifier/Designator type == NAA identifier */
252 buf[off++] |= 0x3;
253 off++;
254
255 /* Identifier/Designator length */
256 buf[off++] = 0x10;
257
258 /* NAA IEEE Registered Extended designator */
259 spc_gen_naa_6h_vendor_specific(dev, &buf[off]);
260
261 len = 20;
262 off = (len + 4);
263
264 check_t10_vend_desc:
265 /*
266 * T10 Vendor Identifier Page, see spc4r17 section 7.7.3.4
267 */
268 id_len = 8; /* For Vendor field */
269
270 if (dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL)
271 id_len += sprintf(&buf[off+12], "%s:%s", prod,
272 &dev->t10_wwn.unit_serial[0]);
273 buf[off] = 0x2; /* ASCII */
274 buf[off+1] = 0x1; /* T10 Vendor ID */
275 buf[off+2] = 0x0;
276 /* left align Vendor ID and pad with spaces */
277 memset(&buf[off+4], 0x20, INQUIRY_VENDOR_LEN);
278 memcpy(&buf[off+4], dev->t10_wwn.vendor,
279 strnlen(dev->t10_wwn.vendor, INQUIRY_VENDOR_LEN));
280 /* Extra Byte for NULL Terminator */
281 id_len++;
282 /* Identifier Length */
283 buf[off+3] = id_len;
284 /* Header size for Designation descriptor */
285 len += (id_len + 4);
286 off += (id_len + 4);
287
288 if (1) {
289 struct t10_alua_lu_gp *lu_gp;
290 u32 padding, scsi_name_len, scsi_target_len;
291 u16 lu_gp_id = 0;
292 u16 tg_pt_gp_id = 0;
293 u16 tpgt;
294
295 tpg = lun->lun_tpg;
296 /*
297 * Relative target port identifer, see spc4r17
298 * section 7.7.3.7
299 *
300 * Get the PROTOCOL IDENTIFIER as defined by spc4r17
301 * section 7.5.1 Table 362
302 */
303 buf[off] = tpg->proto_id << 4;
304 buf[off++] |= 0x1; /* CODE SET == Binary */
305 buf[off] = 0x80; /* Set PIV=1 */
306 /* Set ASSOCIATION == target port: 01b */
307 buf[off] |= 0x10;
308 /* DESIGNATOR TYPE == Relative target port identifer */
309 buf[off++] |= 0x4;
310 off++; /* Skip over Reserved */
311 buf[off++] = 4; /* DESIGNATOR LENGTH */
312 /* Skip over Obsolete field in RTPI payload
313 * in Table 472 */
314 off += 2;
315 put_unaligned_be16(lun->lun_tpg->tpg_rtpi, &buf[off]);
316 off += 2;
317 len += 8; /* Header size + Designation descriptor */
318 /*
319 * Target port group identifier, see spc4r17
320 * section 7.7.3.8
321 *
322 * Get the PROTOCOL IDENTIFIER as defined by spc4r17
323 * section 7.5.1 Table 362
324 */
325 rcu_read_lock();
326 tg_pt_gp = rcu_dereference(lun->lun_tg_pt_gp);
327 if (!tg_pt_gp) {
328 rcu_read_unlock();
329 goto check_lu_gp;
330 }
331 tg_pt_gp_id = tg_pt_gp->tg_pt_gp_id;
332 rcu_read_unlock();
333
334 buf[off] = tpg->proto_id << 4;
335 buf[off++] |= 0x1; /* CODE SET == Binary */
336 buf[off] = 0x80; /* Set PIV=1 */
337 /* Set ASSOCIATION == target port: 01b */
338 buf[off] |= 0x10;
339 /* DESIGNATOR TYPE == Target port group identifier */
340 buf[off++] |= 0x5;
341 off++; /* Skip over Reserved */
342 buf[off++] = 4; /* DESIGNATOR LENGTH */
343 off += 2; /* Skip over Reserved Field */
344 put_unaligned_be16(tg_pt_gp_id, &buf[off]);
345 off += 2;
346 len += 8; /* Header size + Designation descriptor */
347 /*
348 * Logical Unit Group identifier, see spc4r17
349 * section 7.7.3.8
350 */
351 check_lu_gp:
352 lu_gp_mem = dev->dev_alua_lu_gp_mem;
353 if (!lu_gp_mem)
354 goto check_scsi_name;
355
356 spin_lock(&lu_gp_mem->lu_gp_mem_lock);
357 lu_gp = lu_gp_mem->lu_gp;
358 if (!lu_gp) {
359 spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
360 goto check_scsi_name;
361 }
362 lu_gp_id = lu_gp->lu_gp_id;
363 spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
364
365 buf[off++] |= 0x1; /* CODE SET == Binary */
366 /* DESIGNATOR TYPE == Logical Unit Group identifier */
367 buf[off++] |= 0x6;
368 off++; /* Skip over Reserved */
369 buf[off++] = 4; /* DESIGNATOR LENGTH */
370 off += 2; /* Skip over Reserved Field */
371 put_unaligned_be16(lu_gp_id, &buf[off]);
372 off += 2;
373 len += 8; /* Header size + Designation descriptor */
374 /*
375 * SCSI name string designator, see spc4r17
376 * section 7.7.3.11
377 *
378 * Get the PROTOCOL IDENTIFIER as defined by spc4r17
379 * section 7.5.1 Table 362
380 */
381 check_scsi_name:
382 buf[off] = tpg->proto_id << 4;
383 buf[off++] |= 0x3; /* CODE SET == UTF-8 */
384 buf[off] = 0x80; /* Set PIV=1 */
385 /* Set ASSOCIATION == target port: 01b */
386 buf[off] |= 0x10;
387 /* DESIGNATOR TYPE == SCSI name string */
388 buf[off++] |= 0x8;
389 off += 2; /* Skip over Reserved and length */
390 /*
391 * SCSI name string identifer containing, $FABRIC_MOD
392 * dependent information. For LIO-Target and iSCSI
393 * Target Port, this means "<iSCSI name>,t,0x<TPGT> in
394 * UTF-8 encoding.
395 */
396 tpgt = tpg->se_tpg_tfo->tpg_get_tag(tpg);
397 scsi_name_len = sprintf(&buf[off], "%s,t,0x%04x",
398 tpg->se_tpg_tfo->tpg_get_wwn(tpg), tpgt);
399 scsi_name_len += 1 /* Include NULL terminator */;
400 /*
401 * The null-terminated, null-padded (see 4.4.2) SCSI
402 * NAME STRING field contains a UTF-8 format string.
403 * The number of bytes in the SCSI NAME STRING field
404 * (i.e., the value in the DESIGNATOR LENGTH field)
405 * shall be no larger than 256 and shall be a multiple
406 * of four.
407 */
408 padding = ((-scsi_name_len) & 3);
409 if (padding)
410 scsi_name_len += padding;
411 if (scsi_name_len > 256)
412 scsi_name_len = 256;
413
414 buf[off-1] = scsi_name_len;
415 off += scsi_name_len;
416 /* Header size + Designation descriptor */
417 len += (scsi_name_len + 4);
418
419 /*
420 * Target device designator
421 */
422 buf[off] = tpg->proto_id << 4;
423 buf[off++] |= 0x3; /* CODE SET == UTF-8 */
424 buf[off] = 0x80; /* Set PIV=1 */
425 /* Set ASSOCIATION == target device: 10b */
426 buf[off] |= 0x20;
427 /* DESIGNATOR TYPE == SCSI name string */
428 buf[off++] |= 0x8;
429 off += 2; /* Skip over Reserved and length */
430 /*
431 * SCSI name string identifer containing, $FABRIC_MOD
432 * dependent information. For LIO-Target and iSCSI
433 * Target Port, this means "<iSCSI name>" in
434 * UTF-8 encoding.
435 */
436 scsi_target_len = sprintf(&buf[off], "%s",
437 tpg->se_tpg_tfo->tpg_get_wwn(tpg));
438 scsi_target_len += 1 /* Include NULL terminator */;
439 /*
440 * The null-terminated, null-padded (see 4.4.2) SCSI
441 * NAME STRING field contains a UTF-8 format string.
442 * The number of bytes in the SCSI NAME STRING field
443 * (i.e., the value in the DESIGNATOR LENGTH field)
444 * shall be no larger than 256 and shall be a multiple
445 * of four.
446 */
447 padding = ((-scsi_target_len) & 3);
448 if (padding)
449 scsi_target_len += padding;
450 if (scsi_target_len > 256)
451 scsi_target_len = 256;
452
453 buf[off-1] = scsi_target_len;
454 off += scsi_target_len;
455
456 /* Header size + Designation descriptor */
457 len += (scsi_target_len + 4);
458 }
459 put_unaligned_be16(len, &buf[2]); /* Page Length for VPD 0x83 */
460 return 0;
461 }
462 EXPORT_SYMBOL(spc_emulate_evpd_83);
463
464 /* Extended INQUIRY Data VPD Page */
465 static sense_reason_t
spc_emulate_evpd_86(struct se_cmd * cmd,unsigned char * buf)466 spc_emulate_evpd_86(struct se_cmd *cmd, unsigned char *buf)
467 {
468 struct se_device *dev = cmd->se_dev;
469 struct se_session *sess = cmd->se_sess;
470
471 buf[3] = 0x3c;
472 /*
473 * Set GRD_CHK + REF_CHK for TYPE1 protection, or GRD_CHK
474 * only for TYPE3 protection.
475 */
476 if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
477 if (dev->dev_attrib.pi_prot_type == TARGET_DIF_TYPE1_PROT ||
478 cmd->se_sess->sess_prot_type == TARGET_DIF_TYPE1_PROT)
479 buf[4] = 0x5;
480 else if (dev->dev_attrib.pi_prot_type == TARGET_DIF_TYPE3_PROT ||
481 cmd->se_sess->sess_prot_type == TARGET_DIF_TYPE3_PROT)
482 buf[4] = 0x4;
483 }
484
485 /* logical unit supports type 1 and type 3 protection */
486 if ((dev->transport->get_device_type(dev) == TYPE_DISK) &&
487 (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) &&
488 (dev->dev_attrib.pi_prot_type || cmd->se_sess->sess_prot_type)) {
489 buf[4] |= (0x3 << 3);
490 }
491
492 /* Set HEADSUP, ORDSUP, SIMPSUP */
493 buf[5] = 0x07;
494
495 /* If WriteCache emulation is enabled, set V_SUP */
496 if (target_check_wce(dev))
497 buf[6] = 0x01;
498 /* If an LBA map is present set R_SUP */
499 spin_lock(&cmd->se_dev->t10_alua.lba_map_lock);
500 if (!list_empty(&dev->t10_alua.lba_map_list))
501 buf[8] = 0x10;
502 spin_unlock(&cmd->se_dev->t10_alua.lba_map_lock);
503 return 0;
504 }
505
506 /* Block Limits VPD page */
507 static sense_reason_t
spc_emulate_evpd_b0(struct se_cmd * cmd,unsigned char * buf)508 spc_emulate_evpd_b0(struct se_cmd *cmd, unsigned char *buf)
509 {
510 struct se_device *dev = cmd->se_dev;
511 u32 mtl = 0;
512 int have_tp = 0, opt, min;
513 u32 io_max_blocks;
514
515 /*
516 * Following spc3r22 section 6.5.3 Block Limits VPD page, when
517 * emulate_tpu=1 or emulate_tpws=1 we will be expect a
518 * different page length for Thin Provisioning.
519 */
520 if (dev->dev_attrib.emulate_tpu || dev->dev_attrib.emulate_tpws)
521 have_tp = 1;
522
523 buf[0] = dev->transport->get_device_type(dev);
524
525 /* Set WSNZ to 1 */
526 buf[4] = 0x01;
527 /*
528 * Set MAXIMUM COMPARE AND WRITE LENGTH
529 */
530 if (dev->dev_attrib.emulate_caw)
531 buf[5] = 0x01;
532
533 /*
534 * Set OPTIMAL TRANSFER LENGTH GRANULARITY
535 */
536 if (dev->transport->get_io_min && (min = dev->transport->get_io_min(dev)))
537 put_unaligned_be16(min / dev->dev_attrib.block_size, &buf[6]);
538 else
539 put_unaligned_be16(1, &buf[6]);
540
541 /*
542 * Set MAXIMUM TRANSFER LENGTH
543 *
544 * XXX: Currently assumes single PAGE_SIZE per scatterlist for fabrics
545 * enforcing maximum HW scatter-gather-list entry limit
546 */
547 if (cmd->se_tfo->max_data_sg_nents) {
548 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE) /
549 dev->dev_attrib.block_size;
550 }
551 io_max_blocks = mult_frac(dev->dev_attrib.hw_max_sectors,
552 dev->dev_attrib.hw_block_size,
553 dev->dev_attrib.block_size);
554 put_unaligned_be32(min_not_zero(mtl, io_max_blocks), &buf[8]);
555
556 /*
557 * Set OPTIMAL TRANSFER LENGTH
558 */
559 if (dev->transport->get_io_opt && (opt = dev->transport->get_io_opt(dev)))
560 put_unaligned_be32(opt / dev->dev_attrib.block_size, &buf[12]);
561 else
562 put_unaligned_be32(dev->dev_attrib.optimal_sectors, &buf[12]);
563
564 put_unaligned_be16(12, &buf[2]);
565
566 if (!have_tp)
567 goto try_atomic;
568
569 /*
570 * Set MAXIMUM UNMAP LBA COUNT
571 */
572 put_unaligned_be32(dev->dev_attrib.max_unmap_lba_count, &buf[20]);
573
574 /*
575 * Set MAXIMUM UNMAP BLOCK DESCRIPTOR COUNT
576 */
577 put_unaligned_be32(dev->dev_attrib.max_unmap_block_desc_count,
578 &buf[24]);
579
580 /*
581 * Set OPTIMAL UNMAP GRANULARITY
582 */
583 put_unaligned_be32(dev->dev_attrib.unmap_granularity, &buf[28]);
584
585 /*
586 * UNMAP GRANULARITY ALIGNMENT
587 */
588 put_unaligned_be32(dev->dev_attrib.unmap_granularity_alignment,
589 &buf[32]);
590 if (dev->dev_attrib.unmap_granularity_alignment != 0)
591 buf[32] |= 0x80; /* Set the UGAVALID bit */
592
593 /*
594 * MAXIMUM WRITE SAME LENGTH
595 */
596 put_unaligned_be64(dev->dev_attrib.max_write_same_len, &buf[36]);
597
598 put_unaligned_be16(40, &buf[2]);
599
600 try_atomic:
601 /*
602 * ATOMIC
603 */
604 if (!dev->dev_attrib.atomic_max_len)
605 goto done;
606
607 if (dev->dev_attrib.atomic_max_len < io_max_blocks)
608 put_unaligned_be32(dev->dev_attrib.atomic_max_len, &buf[44]);
609 else
610 put_unaligned_be32(io_max_blocks, &buf[44]);
611
612 put_unaligned_be32(dev->dev_attrib.atomic_alignment, &buf[48]);
613 put_unaligned_be32(dev->dev_attrib.atomic_granularity, &buf[52]);
614 put_unaligned_be32(dev->dev_attrib.atomic_max_with_boundary, &buf[56]);
615 put_unaligned_be32(dev->dev_attrib.atomic_max_boundary, &buf[60]);
616
617 put_unaligned_be16(60, &buf[2]);
618 done:
619 return 0;
620 }
621
622 /* Block Device Characteristics VPD page */
623 static sense_reason_t
spc_emulate_evpd_b1(struct se_cmd * cmd,unsigned char * buf)624 spc_emulate_evpd_b1(struct se_cmd *cmd, unsigned char *buf)
625 {
626 struct se_device *dev = cmd->se_dev;
627
628 buf[0] = dev->transport->get_device_type(dev);
629 buf[3] = 0x3c;
630 buf[5] = dev->dev_attrib.is_nonrot ? 1 : 0;
631
632 return 0;
633 }
634
635 /* Thin Provisioning VPD */
636 static sense_reason_t
spc_emulate_evpd_b2(struct se_cmd * cmd,unsigned char * buf)637 spc_emulate_evpd_b2(struct se_cmd *cmd, unsigned char *buf)
638 {
639 struct se_device *dev = cmd->se_dev;
640
641 /*
642 * From spc3r22 section 6.5.4 Thin Provisioning VPD page:
643 *
644 * The PAGE LENGTH field is defined in SPC-4. If the DP bit is set to
645 * zero, then the page length shall be set to 0004h. If the DP bit
646 * is set to one, then the page length shall be set to the value
647 * defined in table 162.
648 */
649 buf[0] = dev->transport->get_device_type(dev);
650
651 /*
652 * Set Hardcoded length mentioned above for DP=0
653 */
654 put_unaligned_be16(0x0004, &buf[2]);
655
656 /*
657 * The THRESHOLD EXPONENT field indicates the threshold set size in
658 * LBAs as a power of 2 (i.e., the threshold set size is equal to
659 * 2(threshold exponent)).
660 *
661 * Note that this is currently set to 0x00 as mkp says it will be
662 * changing again. We can enable this once it has settled in T10
663 * and is actually used by Linux/SCSI ML code.
664 */
665 buf[4] = 0x00;
666
667 /*
668 * A TPU bit set to one indicates that the device server supports
669 * the UNMAP command (see 5.25). A TPU bit set to zero indicates
670 * that the device server does not support the UNMAP command.
671 */
672 if (dev->dev_attrib.emulate_tpu != 0)
673 buf[5] = 0x80;
674
675 /*
676 * A TPWS bit set to one indicates that the device server supports
677 * the use of the WRITE SAME (16) command (see 5.42) to unmap LBAs.
678 * A TPWS bit set to zero indicates that the device server does not
679 * support the use of the WRITE SAME (16) command to unmap LBAs.
680 */
681 if (dev->dev_attrib.emulate_tpws != 0)
682 buf[5] |= 0x40 | 0x20;
683
684 /*
685 * The unmap_zeroes_data set means that the underlying device supports
686 * REQ_OP_DISCARD and has the discard_zeroes_data bit set. This
687 * satisfies the SBC requirements for LBPRZ, meaning that a subsequent
688 * read will return zeroes after an UNMAP or WRITE SAME (16) to an LBA
689 * See sbc4r36 6.6.4.
690 */
691 if (((dev->dev_attrib.emulate_tpu != 0) ||
692 (dev->dev_attrib.emulate_tpws != 0)) &&
693 (dev->dev_attrib.unmap_zeroes_data != 0))
694 buf[5] |= 0x04;
695
696 return 0;
697 }
698
699 /* Referrals VPD page */
700 static sense_reason_t
spc_emulate_evpd_b3(struct se_cmd * cmd,unsigned char * buf)701 spc_emulate_evpd_b3(struct se_cmd *cmd, unsigned char *buf)
702 {
703 struct se_device *dev = cmd->se_dev;
704
705 buf[0] = dev->transport->get_device_type(dev);
706 buf[3] = 0x0c;
707 put_unaligned_be32(dev->t10_alua.lba_map_segment_size, &buf[8]);
708 put_unaligned_be32(dev->t10_alua.lba_map_segment_multiplier, &buf[12]);
709
710 return 0;
711 }
712
713 static sense_reason_t
714 spc_emulate_evpd_00(struct se_cmd *cmd, unsigned char *buf);
715
716 static struct {
717 uint8_t page;
718 sense_reason_t (*emulate)(struct se_cmd *, unsigned char *);
719 } evpd_handlers[] = {
720 { .page = 0x00, .emulate = spc_emulate_evpd_00 },
721 { .page = 0x80, .emulate = spc_emulate_evpd_80 },
722 { .page = 0x83, .emulate = spc_emulate_evpd_83 },
723 { .page = 0x86, .emulate = spc_emulate_evpd_86 },
724 { .page = 0xb0, .emulate = spc_emulate_evpd_b0 },
725 { .page = 0xb1, .emulate = spc_emulate_evpd_b1 },
726 { .page = 0xb2, .emulate = spc_emulate_evpd_b2 },
727 { .page = 0xb3, .emulate = spc_emulate_evpd_b3 },
728 };
729
730 /* supported vital product data pages */
731 static sense_reason_t
spc_emulate_evpd_00(struct se_cmd * cmd,unsigned char * buf)732 spc_emulate_evpd_00(struct se_cmd *cmd, unsigned char *buf)
733 {
734 int p;
735
736 /*
737 * Only report the INQUIRY EVPD=1 pages after a valid NAA
738 * Registered Extended LUN WWN has been set via ConfigFS
739 * during device creation/restart.
740 */
741 if (cmd->se_dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL) {
742 buf[3] = ARRAY_SIZE(evpd_handlers);
743 for (p = 0; p < ARRAY_SIZE(evpd_handlers); ++p)
744 buf[p + 4] = evpd_handlers[p].page;
745 }
746
747 return 0;
748 }
749
750 static sense_reason_t
spc_emulate_inquiry(struct se_cmd * cmd)751 spc_emulate_inquiry(struct se_cmd *cmd)
752 {
753 struct se_device *dev = cmd->se_dev;
754 unsigned char *rbuf;
755 unsigned char *cdb = cmd->t_task_cdb;
756 unsigned char *buf;
757 sense_reason_t ret;
758 int p;
759 int len = 0;
760
761 buf = kzalloc(SE_INQUIRY_BUF, GFP_KERNEL);
762 if (!buf) {
763 pr_err("Unable to allocate response buffer for INQUIRY\n");
764 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
765 }
766
767 buf[0] = dev->transport->get_device_type(dev);
768
769 if (!(cdb[1] & 0x1)) {
770 if (cdb[2]) {
771 pr_err("INQUIRY with EVPD==0 but PAGE CODE=%02x\n",
772 cdb[2]);
773 ret = TCM_INVALID_CDB_FIELD;
774 goto out;
775 }
776
777 ret = spc_emulate_inquiry_std(cmd, buf);
778 len = buf[4] + 5;
779 goto out;
780 }
781
782 for (p = 0; p < ARRAY_SIZE(evpd_handlers); ++p) {
783 if (cdb[2] == evpd_handlers[p].page) {
784 buf[1] = cdb[2];
785 ret = evpd_handlers[p].emulate(cmd, buf);
786 len = get_unaligned_be16(&buf[2]) + 4;
787 goto out;
788 }
789 }
790
791 pr_debug("Unknown VPD Code: 0x%02x\n", cdb[2]);
792 ret = TCM_INVALID_CDB_FIELD;
793
794 out:
795 rbuf = transport_kmap_data_sg(cmd);
796 if (rbuf) {
797 memcpy(rbuf, buf, min_t(u32, SE_INQUIRY_BUF, cmd->data_length));
798 transport_kunmap_data_sg(cmd);
799 }
800 kfree(buf);
801
802 if (!ret)
803 target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, len);
804 return ret;
805 }
806
spc_modesense_rwrecovery(struct se_cmd * cmd,u8 pc,u8 * p)807 static int spc_modesense_rwrecovery(struct se_cmd *cmd, u8 pc, u8 *p)
808 {
809 p[0] = 0x01;
810 p[1] = 0x0a;
811
812 /* No changeable values for now */
813 if (pc == 1)
814 goto out;
815
816 out:
817 return 12;
818 }
819
spc_modesense_control(struct se_cmd * cmd,u8 pc,u8 * p)820 static int spc_modesense_control(struct se_cmd *cmd, u8 pc, u8 *p)
821 {
822 struct se_device *dev = cmd->se_dev;
823 struct se_session *sess = cmd->se_sess;
824
825 p[0] = 0x0a;
826 p[1] = 0x0a;
827
828 /* No changeable values for now */
829 if (pc == 1)
830 goto out;
831
832 /* GLTSD: No implicit save of log parameters */
833 p[2] = (1 << 1);
834 if (target_sense_desc_format(dev))
835 /* D_SENSE: Descriptor format sense data for 64bit sectors */
836 p[2] |= (1 << 2);
837
838 /*
839 * From spc4r23, 7.4.7 Control mode page
840 *
841 * The QUEUE ALGORITHM MODIFIER field (see table 368) specifies
842 * restrictions on the algorithm used for reordering commands
843 * having the SIMPLE task attribute (see SAM-4).
844 *
845 * Table 368 -- QUEUE ALGORITHM MODIFIER field
846 * Code Description
847 * 0h Restricted reordering
848 * 1h Unrestricted reordering allowed
849 * 2h to 7h Reserved
850 * 8h to Fh Vendor specific
851 *
852 * A value of zero in the QUEUE ALGORITHM MODIFIER field specifies that
853 * the device server shall order the processing sequence of commands
854 * having the SIMPLE task attribute such that data integrity is maintained
855 * for that I_T nexus (i.e., if the transmission of new SCSI transport protocol
856 * requests is halted at any time, the final value of all data observable
857 * on the medium shall be the same as if all the commands had been processed
858 * with the ORDERED task attribute).
859 *
860 * A value of one in the QUEUE ALGORITHM MODIFIER field specifies that the
861 * device server may reorder the processing sequence of commands having the
862 * SIMPLE task attribute in any manner. Any data integrity exposures related to
863 * command sequence order shall be explicitly handled by the application client
864 * through the selection of appropriate ommands and task attributes.
865 */
866 p[3] = (dev->dev_attrib.emulate_rest_reord == 1) ? 0x00 : 0x10;
867 /*
868 * From spc4r17, section 7.4.6 Control mode Page
869 *
870 * Unit Attention interlocks control (UN_INTLCK_CTRL) to code 00b
871 *
872 * 00b: The logical unit shall clear any unit attention condition
873 * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
874 * status and shall not establish a unit attention condition when a com-
875 * mand is completed with BUSY, TASK SET FULL, or RESERVATION CONFLICT
876 * status.
877 *
878 * 10b: The logical unit shall not clear any unit attention condition
879 * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
880 * status and shall not establish a unit attention condition when
881 * a command is completed with BUSY, TASK SET FULL, or RESERVATION
882 * CONFLICT status.
883 *
884 * 11b a The logical unit shall not clear any unit attention condition
885 * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
886 * status and shall establish a unit attention condition for the
887 * initiator port associated with the I_T nexus on which the BUSY,
888 * TASK SET FULL, or RESERVATION CONFLICT status is being returned.
889 * Depending on the status, the additional sense code shall be set to
890 * PREVIOUS BUSY STATUS, PREVIOUS TASK SET FULL STATUS, or PREVIOUS
891 * RESERVATION CONFLICT STATUS. Until it is cleared by a REQUEST SENSE
892 * command, a unit attention condition shall be established only once
893 * for a BUSY, TASK SET FULL, or RESERVATION CONFLICT status regardless
894 * to the number of commands completed with one of those status codes.
895 */
896 switch (dev->dev_attrib.emulate_ua_intlck_ctrl) {
897 case TARGET_UA_INTLCK_CTRL_ESTABLISH_UA:
898 p[4] = 0x30;
899 break;
900 case TARGET_UA_INTLCK_CTRL_NO_CLEAR:
901 p[4] = 0x20;
902 break;
903 default: /* TARGET_UA_INTLCK_CTRL_CLEAR */
904 p[4] = 0x00;
905 break;
906 }
907 /*
908 * From spc4r17, section 7.4.6 Control mode Page
909 *
910 * Task Aborted Status (TAS) bit set to zero.
911 *
912 * A task aborted status (TAS) bit set to zero specifies that aborted
913 * tasks shall be terminated by the device server without any response
914 * to the application client. A TAS bit set to one specifies that tasks
915 * aborted by the actions of an I_T nexus other than the I_T nexus on
916 * which the command was received shall be completed with TASK ABORTED
917 * status (see SAM-4).
918 */
919 p[5] = (dev->dev_attrib.emulate_tas) ? 0x40 : 0x00;
920 /*
921 * From spc4r30, section 7.5.7 Control mode page
922 *
923 * Application Tag Owner (ATO) bit set to one.
924 *
925 * If the ATO bit is set to one the device server shall not modify the
926 * LOGICAL BLOCK APPLICATION TAG field and, depending on the protection
927 * type, shall not modify the contents of the LOGICAL BLOCK REFERENCE
928 * TAG field.
929 */
930 if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
931 if (dev->dev_attrib.pi_prot_type || sess->sess_prot_type)
932 p[5] |= 0x80;
933 }
934
935 p[8] = 0xff;
936 p[9] = 0xff;
937 p[11] = 30;
938
939 out:
940 return 12;
941 }
942
spc_modesense_caching(struct se_cmd * cmd,u8 pc,u8 * p)943 static int spc_modesense_caching(struct se_cmd *cmd, u8 pc, u8 *p)
944 {
945 struct se_device *dev = cmd->se_dev;
946
947 p[0] = 0x08;
948 p[1] = 0x12;
949
950 /* No changeable values for now */
951 if (pc == 1)
952 goto out;
953
954 if (target_check_wce(dev))
955 p[2] = 0x04; /* Write Cache Enable */
956 p[12] = 0x20; /* Disabled Read Ahead */
957
958 out:
959 return 20;
960 }
961
spc_modesense_informational_exceptions(struct se_cmd * cmd,u8 pc,unsigned char * p)962 static int spc_modesense_informational_exceptions(struct se_cmd *cmd, u8 pc, unsigned char *p)
963 {
964 p[0] = 0x1c;
965 p[1] = 0x0a;
966
967 /* No changeable values for now */
968 if (pc == 1)
969 goto out;
970
971 out:
972 return 12;
973 }
974
975 static struct {
976 uint8_t page;
977 uint8_t subpage;
978 int (*emulate)(struct se_cmd *, u8, unsigned char *);
979 } modesense_handlers[] = {
980 { .page = 0x01, .subpage = 0x00, .emulate = spc_modesense_rwrecovery },
981 { .page = 0x08, .subpage = 0x00, .emulate = spc_modesense_caching },
982 { .page = 0x0a, .subpage = 0x00, .emulate = spc_modesense_control },
983 { .page = 0x1c, .subpage = 0x00, .emulate = spc_modesense_informational_exceptions },
984 };
985
spc_modesense_write_protect(unsigned char * buf,int type)986 static void spc_modesense_write_protect(unsigned char *buf, int type)
987 {
988 /*
989 * I believe that the WP bit (bit 7) in the mode header is the same for
990 * all device types..
991 */
992 switch (type) {
993 case TYPE_DISK:
994 case TYPE_TAPE:
995 default:
996 buf[0] |= 0x80; /* WP bit */
997 break;
998 }
999 }
1000
spc_modesense_dpofua(unsigned char * buf,int type)1001 static void spc_modesense_dpofua(unsigned char *buf, int type)
1002 {
1003 switch (type) {
1004 case TYPE_DISK:
1005 buf[0] |= 0x10; /* DPOFUA bit */
1006 break;
1007 default:
1008 break;
1009 }
1010 }
1011
spc_modesense_blockdesc(unsigned char * buf,u64 blocks,u32 block_size)1012 static int spc_modesense_blockdesc(unsigned char *buf, u64 blocks, u32 block_size)
1013 {
1014 *buf++ = 8;
1015 put_unaligned_be32(min(blocks, 0xffffffffull), buf);
1016 buf += 4;
1017 put_unaligned_be32(block_size, buf);
1018 return 9;
1019 }
1020
spc_modesense_long_blockdesc(unsigned char * buf,u64 blocks,u32 block_size)1021 static int spc_modesense_long_blockdesc(unsigned char *buf, u64 blocks, u32 block_size)
1022 {
1023 if (blocks <= 0xffffffff)
1024 return spc_modesense_blockdesc(buf + 3, blocks, block_size) + 3;
1025
1026 *buf++ = 1; /* LONGLBA */
1027 buf += 2;
1028 *buf++ = 16;
1029 put_unaligned_be64(blocks, buf);
1030 buf += 12;
1031 put_unaligned_be32(block_size, buf);
1032
1033 return 17;
1034 }
1035
spc_emulate_modesense(struct se_cmd * cmd)1036 static sense_reason_t spc_emulate_modesense(struct se_cmd *cmd)
1037 {
1038 struct se_device *dev = cmd->se_dev;
1039 char *cdb = cmd->t_task_cdb;
1040 unsigned char buf[SE_MODE_PAGE_BUF], *rbuf;
1041 int type = dev->transport->get_device_type(dev);
1042 int ten = (cmd->t_task_cdb[0] == MODE_SENSE_10);
1043 bool dbd = !!(cdb[1] & 0x08);
1044 bool llba = ten ? !!(cdb[1] & 0x10) : false;
1045 u8 pc = cdb[2] >> 6;
1046 u8 page = cdb[2] & 0x3f;
1047 u8 subpage = cdb[3];
1048 int length = 0;
1049 int ret;
1050 int i;
1051
1052 memset(buf, 0, SE_MODE_PAGE_BUF);
1053
1054 /*
1055 * Skip over MODE DATA LENGTH + MEDIUM TYPE fields to byte 3 for
1056 * MODE_SENSE_10 and byte 2 for MODE_SENSE (6).
1057 */
1058 length = ten ? 3 : 2;
1059
1060 /* DEVICE-SPECIFIC PARAMETER */
1061 if (cmd->se_lun->lun_access_ro || target_lun_is_rdonly(cmd))
1062 spc_modesense_write_protect(&buf[length], type);
1063
1064 /*
1065 * SBC only allows us to enable FUA and DPO together. Fortunately
1066 * DPO is explicitly specified as a hint, so a noop is a perfectly
1067 * valid implementation.
1068 */
1069 if (target_check_fua(dev))
1070 spc_modesense_dpofua(&buf[length], type);
1071
1072 ++length;
1073
1074 /* BLOCK DESCRIPTOR */
1075
1076 /*
1077 * For now we only include a block descriptor for disk (SBC)
1078 * devices; other command sets use a slightly different format.
1079 */
1080 if (!dbd && type == TYPE_DISK) {
1081 u64 blocks = dev->transport->get_blocks(dev);
1082 u32 block_size = dev->dev_attrib.block_size;
1083
1084 if (ten) {
1085 if (llba) {
1086 length += spc_modesense_long_blockdesc(&buf[length],
1087 blocks, block_size);
1088 } else {
1089 length += 3;
1090 length += spc_modesense_blockdesc(&buf[length],
1091 blocks, block_size);
1092 }
1093 } else {
1094 length += spc_modesense_blockdesc(&buf[length], blocks,
1095 block_size);
1096 }
1097 } else {
1098 if (ten)
1099 length += 4;
1100 else
1101 length += 1;
1102 }
1103
1104 if (page == 0x3f) {
1105 if (subpage != 0x00 && subpage != 0xff) {
1106 pr_warn("MODE_SENSE: Invalid subpage code: 0x%02x\n", subpage);
1107 return TCM_INVALID_CDB_FIELD;
1108 }
1109
1110 for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i) {
1111 /*
1112 * Tricky way to say all subpage 00h for
1113 * subpage==0, all subpages for subpage==0xff
1114 * (and we just checked above that those are
1115 * the only two possibilities).
1116 */
1117 if ((modesense_handlers[i].subpage & ~subpage) == 0) {
1118 ret = modesense_handlers[i].emulate(cmd, pc, &buf[length]);
1119 if (!ten && length + ret >= 255)
1120 break;
1121 length += ret;
1122 }
1123 }
1124
1125 goto set_length;
1126 }
1127
1128 for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i)
1129 if (modesense_handlers[i].page == page &&
1130 modesense_handlers[i].subpage == subpage) {
1131 length += modesense_handlers[i].emulate(cmd, pc, &buf[length]);
1132 goto set_length;
1133 }
1134
1135 /*
1136 * We don't intend to implement:
1137 * - obsolete page 03h "format parameters" (checked by Solaris)
1138 */
1139 if (page != 0x03)
1140 pr_err("MODE SENSE: unimplemented page/subpage: 0x%02x/0x%02x\n",
1141 page, subpage);
1142
1143 return TCM_UNKNOWN_MODE_PAGE;
1144
1145 set_length:
1146 if (ten)
1147 put_unaligned_be16(length - 2, buf);
1148 else
1149 buf[0] = length - 1;
1150
1151 rbuf = transport_kmap_data_sg(cmd);
1152 if (rbuf) {
1153 memcpy(rbuf, buf, min_t(u32, SE_MODE_PAGE_BUF, cmd->data_length));
1154 transport_kunmap_data_sg(cmd);
1155 }
1156
1157 target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, length);
1158 return 0;
1159 }
1160
spc_emulate_modeselect(struct se_cmd * cmd)1161 static sense_reason_t spc_emulate_modeselect(struct se_cmd *cmd)
1162 {
1163 char *cdb = cmd->t_task_cdb;
1164 bool ten = cdb[0] == MODE_SELECT_10;
1165 int off = ten ? 8 : 4;
1166 bool pf = !!(cdb[1] & 0x10);
1167 u8 page, subpage;
1168 unsigned char *buf;
1169 unsigned char tbuf[SE_MODE_PAGE_BUF];
1170 int length;
1171 sense_reason_t ret = 0;
1172 int i;
1173
1174 if (!cmd->data_length) {
1175 target_complete_cmd(cmd, SAM_STAT_GOOD);
1176 return 0;
1177 }
1178
1179 if (cmd->data_length < off + 2)
1180 return TCM_PARAMETER_LIST_LENGTH_ERROR;
1181
1182 buf = transport_kmap_data_sg(cmd);
1183 if (!buf)
1184 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1185
1186 if (!pf) {
1187 ret = TCM_INVALID_CDB_FIELD;
1188 goto out;
1189 }
1190
1191 page = buf[off] & 0x3f;
1192 subpage = buf[off] & 0x40 ? buf[off + 1] : 0;
1193
1194 for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i)
1195 if (modesense_handlers[i].page == page &&
1196 modesense_handlers[i].subpage == subpage) {
1197 memset(tbuf, 0, SE_MODE_PAGE_BUF);
1198 length = modesense_handlers[i].emulate(cmd, 0, tbuf);
1199 goto check_contents;
1200 }
1201
1202 ret = TCM_UNKNOWN_MODE_PAGE;
1203 goto out;
1204
1205 check_contents:
1206 if (cmd->data_length < off + length) {
1207 ret = TCM_PARAMETER_LIST_LENGTH_ERROR;
1208 goto out;
1209 }
1210
1211 if (memcmp(buf + off, tbuf, length))
1212 ret = TCM_INVALID_PARAMETER_LIST;
1213
1214 out:
1215 transport_kunmap_data_sg(cmd);
1216
1217 if (!ret)
1218 target_complete_cmd(cmd, SAM_STAT_GOOD);
1219 return ret;
1220 }
1221
spc_emulate_request_sense(struct se_cmd * cmd)1222 static sense_reason_t spc_emulate_request_sense(struct se_cmd *cmd)
1223 {
1224 unsigned char *cdb = cmd->t_task_cdb;
1225 unsigned char *rbuf;
1226 u8 ua_asc = 0, ua_ascq = 0;
1227 unsigned char buf[SE_SENSE_BUF];
1228 bool desc_format = target_sense_desc_format(cmd->se_dev);
1229
1230 memset(buf, 0, SE_SENSE_BUF);
1231
1232 if (cdb[1] & 0x01) {
1233 pr_err("REQUEST_SENSE description emulation not"
1234 " supported\n");
1235 return TCM_INVALID_CDB_FIELD;
1236 }
1237
1238 rbuf = transport_kmap_data_sg(cmd);
1239 if (!rbuf)
1240 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1241
1242 if (!core_scsi3_ua_clear_for_request_sense(cmd, &ua_asc, &ua_ascq))
1243 scsi_build_sense_buffer(desc_format, buf, UNIT_ATTENTION,
1244 ua_asc, ua_ascq);
1245 else
1246 scsi_build_sense_buffer(desc_format, buf, NO_SENSE, 0x0, 0x0);
1247
1248 memcpy(rbuf, buf, min_t(u32, sizeof(buf), cmd->data_length));
1249 transport_kunmap_data_sg(cmd);
1250
1251 target_complete_cmd(cmd, SAM_STAT_GOOD);
1252 return 0;
1253 }
1254
spc_emulate_report_luns(struct se_cmd * cmd)1255 sense_reason_t spc_emulate_report_luns(struct se_cmd *cmd)
1256 {
1257 struct se_dev_entry *deve;
1258 struct se_session *sess = cmd->se_sess;
1259 struct se_node_acl *nacl;
1260 struct scsi_lun slun;
1261 unsigned char *buf;
1262 u32 lun_count = 0, offset = 8;
1263 __be32 len;
1264
1265 buf = transport_kmap_data_sg(cmd);
1266 if (cmd->data_length && !buf)
1267 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1268
1269 /*
1270 * If no struct se_session pointer is present, this struct se_cmd is
1271 * coming via a target_core_mod PASSTHROUGH op, and not through
1272 * a $FABRIC_MOD. In that case, report LUN=0 only.
1273 */
1274 if (!sess)
1275 goto done;
1276
1277 nacl = sess->se_node_acl;
1278
1279 rcu_read_lock();
1280 hlist_for_each_entry_rcu(deve, &nacl->lun_entry_hlist, link) {
1281 /*
1282 * We determine the correct LUN LIST LENGTH even once we
1283 * have reached the initial allocation length.
1284 * See SPC2-R20 7.19.
1285 */
1286 lun_count++;
1287 if (offset >= cmd->data_length)
1288 continue;
1289
1290 int_to_scsilun(deve->mapped_lun, &slun);
1291 memcpy(buf + offset, &slun,
1292 min(8u, cmd->data_length - offset));
1293 offset += 8;
1294 }
1295 rcu_read_unlock();
1296
1297 /*
1298 * See SPC3 r07, page 159.
1299 */
1300 done:
1301 /*
1302 * If no LUNs are accessible, report virtual LUN 0.
1303 */
1304 if (lun_count == 0) {
1305 int_to_scsilun(0, &slun);
1306 if (cmd->data_length > 8)
1307 memcpy(buf + offset, &slun,
1308 min(8u, cmd->data_length - offset));
1309 lun_count = 1;
1310 }
1311
1312 if (buf) {
1313 len = cpu_to_be32(lun_count * 8);
1314 memcpy(buf, &len, min_t(int, sizeof len, cmd->data_length));
1315 transport_kunmap_data_sg(cmd);
1316 }
1317
1318 target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, 8 + lun_count * 8);
1319 return 0;
1320 }
1321 EXPORT_SYMBOL(spc_emulate_report_luns);
1322
1323 static sense_reason_t
spc_emulate_testunitready(struct se_cmd * cmd)1324 spc_emulate_testunitready(struct se_cmd *cmd)
1325 {
1326 target_complete_cmd(cmd, SAM_STAT_GOOD);
1327 return 0;
1328 }
1329
set_dpofua_usage_bits(u8 * usage_bits,struct se_device * dev)1330 static void set_dpofua_usage_bits(u8 *usage_bits, struct se_device *dev)
1331 {
1332 if (!target_check_fua(dev))
1333 usage_bits[1] &= ~0x18;
1334 else
1335 usage_bits[1] |= 0x18;
1336 }
1337
set_dpofua_usage_bits32(u8 * usage_bits,struct se_device * dev)1338 static void set_dpofua_usage_bits32(u8 *usage_bits, struct se_device *dev)
1339 {
1340 if (!target_check_fua(dev))
1341 usage_bits[10] &= ~0x18;
1342 else
1343 usage_bits[10] |= 0x18;
1344 }
1345
1346 static const struct target_opcode_descriptor tcm_opcode_read6 = {
1347 .support = SCSI_SUPPORT_FULL,
1348 .opcode = READ_6,
1349 .cdb_size = 6,
1350 .usage_bits = {READ_6, 0x1f, 0xff, 0xff,
1351 0xff, SCSI_CONTROL_MASK},
1352 };
1353
1354 static const struct target_opcode_descriptor tcm_opcode_read10 = {
1355 .support = SCSI_SUPPORT_FULL,
1356 .opcode = READ_10,
1357 .cdb_size = 10,
1358 .usage_bits = {READ_10, 0xf8, 0xff, 0xff,
1359 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1360 0xff, SCSI_CONTROL_MASK},
1361 .update_usage_bits = set_dpofua_usage_bits,
1362 };
1363
1364 static const struct target_opcode_descriptor tcm_opcode_read12 = {
1365 .support = SCSI_SUPPORT_FULL,
1366 .opcode = READ_12,
1367 .cdb_size = 12,
1368 .usage_bits = {READ_12, 0xf8, 0xff, 0xff,
1369 0xff, 0xff, 0xff, 0xff,
1370 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1371 .update_usage_bits = set_dpofua_usage_bits,
1372 };
1373
1374 static const struct target_opcode_descriptor tcm_opcode_read16 = {
1375 .support = SCSI_SUPPORT_FULL,
1376 .opcode = READ_16,
1377 .cdb_size = 16,
1378 .usage_bits = {READ_16, 0xf8, 0xff, 0xff,
1379 0xff, 0xff, 0xff, 0xff,
1380 0xff, 0xff, 0xff, 0xff,
1381 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1382 .update_usage_bits = set_dpofua_usage_bits,
1383 };
1384
1385 static const struct target_opcode_descriptor tcm_opcode_write6 = {
1386 .support = SCSI_SUPPORT_FULL,
1387 .opcode = WRITE_6,
1388 .cdb_size = 6,
1389 .usage_bits = {WRITE_6, 0x1f, 0xff, 0xff,
1390 0xff, SCSI_CONTROL_MASK},
1391 };
1392
1393 static const struct target_opcode_descriptor tcm_opcode_write10 = {
1394 .support = SCSI_SUPPORT_FULL,
1395 .opcode = WRITE_10,
1396 .cdb_size = 10,
1397 .usage_bits = {WRITE_10, 0xf8, 0xff, 0xff,
1398 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1399 0xff, SCSI_CONTROL_MASK},
1400 .update_usage_bits = set_dpofua_usage_bits,
1401 };
1402
1403 static const struct target_opcode_descriptor tcm_opcode_write_verify10 = {
1404 .support = SCSI_SUPPORT_FULL,
1405 .opcode = WRITE_VERIFY,
1406 .cdb_size = 10,
1407 .usage_bits = {WRITE_VERIFY, 0xf0, 0xff, 0xff,
1408 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1409 0xff, SCSI_CONTROL_MASK},
1410 .update_usage_bits = set_dpofua_usage_bits,
1411 };
1412
1413 static const struct target_opcode_descriptor tcm_opcode_write12 = {
1414 .support = SCSI_SUPPORT_FULL,
1415 .opcode = WRITE_12,
1416 .cdb_size = 12,
1417 .usage_bits = {WRITE_12, 0xf8, 0xff, 0xff,
1418 0xff, 0xff, 0xff, 0xff,
1419 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1420 .update_usage_bits = set_dpofua_usage_bits,
1421 };
1422
1423 static const struct target_opcode_descriptor tcm_opcode_write16 = {
1424 .support = SCSI_SUPPORT_FULL,
1425 .opcode = WRITE_16,
1426 .cdb_size = 16,
1427 .usage_bits = {WRITE_16, 0xf8, 0xff, 0xff,
1428 0xff, 0xff, 0xff, 0xff,
1429 0xff, 0xff, 0xff, 0xff,
1430 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1431 .update_usage_bits = set_dpofua_usage_bits,
1432 };
1433
1434 static const struct target_opcode_descriptor tcm_opcode_write_verify16 = {
1435 .support = SCSI_SUPPORT_FULL,
1436 .opcode = WRITE_VERIFY_16,
1437 .cdb_size = 16,
1438 .usage_bits = {WRITE_VERIFY_16, 0xf0, 0xff, 0xff,
1439 0xff, 0xff, 0xff, 0xff,
1440 0xff, 0xff, 0xff, 0xff,
1441 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1442 .update_usage_bits = set_dpofua_usage_bits,
1443 };
1444
tcm_is_ws_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)1445 static bool tcm_is_ws_enabled(const struct target_opcode_descriptor *descr,
1446 struct se_cmd *cmd)
1447 {
1448 struct exec_cmd_ops *ops = cmd->protocol_data;
1449 struct se_device *dev = cmd->se_dev;
1450
1451 return (dev->dev_attrib.emulate_tpws && !!ops->execute_unmap) ||
1452 !!ops->execute_write_same;
1453 }
1454
1455 static const struct target_opcode_descriptor tcm_opcode_write_same32 = {
1456 .support = SCSI_SUPPORT_FULL,
1457 .serv_action_valid = 1,
1458 .opcode = VARIABLE_LENGTH_CMD,
1459 .service_action = WRITE_SAME_32,
1460 .cdb_size = 32,
1461 .usage_bits = {VARIABLE_LENGTH_CMD, SCSI_CONTROL_MASK, 0x00, 0x00,
1462 0x00, 0x00, SCSI_GROUP_NUMBER_MASK, 0x18,
1463 0x00, WRITE_SAME_32, 0xe8, 0x00,
1464 0xff, 0xff, 0xff, 0xff,
1465 0xff, 0xff, 0xff, 0xff,
1466 0x00, 0x00, 0x00, 0x00,
1467 0x00, 0x00, 0x00, 0x00,
1468 0xff, 0xff, 0xff, 0xff},
1469 .enabled = tcm_is_ws_enabled,
1470 .update_usage_bits = set_dpofua_usage_bits32,
1471 };
1472
tcm_is_atomic_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)1473 static bool tcm_is_atomic_enabled(const struct target_opcode_descriptor *descr,
1474 struct se_cmd *cmd)
1475 {
1476 return cmd->se_dev->dev_attrib.atomic_max_len;
1477 }
1478
1479 static struct target_opcode_descriptor tcm_opcode_write_atomic16 = {
1480 .support = SCSI_SUPPORT_FULL,
1481 .opcode = WRITE_ATOMIC_16,
1482 .cdb_size = 16,
1483 .usage_bits = {WRITE_ATOMIC_16, 0xf8, 0xff, 0xff,
1484 0xff, 0xff, 0xff, 0xff,
1485 0xff, 0xff, 0xff, 0xff,
1486 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1487 .enabled = tcm_is_atomic_enabled,
1488 .update_usage_bits = set_dpofua_usage_bits,
1489 };
1490
tcm_is_caw_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)1491 static bool tcm_is_caw_enabled(const struct target_opcode_descriptor *descr,
1492 struct se_cmd *cmd)
1493 {
1494 struct se_device *dev = cmd->se_dev;
1495
1496 return dev->dev_attrib.emulate_caw;
1497 }
1498
1499 static const struct target_opcode_descriptor tcm_opcode_compare_write = {
1500 .support = SCSI_SUPPORT_FULL,
1501 .opcode = COMPARE_AND_WRITE,
1502 .cdb_size = 16,
1503 .usage_bits = {COMPARE_AND_WRITE, 0x18, 0xff, 0xff,
1504 0xff, 0xff, 0xff, 0xff,
1505 0xff, 0xff, 0x00, 0x00,
1506 0x00, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1507 .enabled = tcm_is_caw_enabled,
1508 .update_usage_bits = set_dpofua_usage_bits,
1509 };
1510
1511 static const struct target_opcode_descriptor tcm_opcode_read_capacity = {
1512 .support = SCSI_SUPPORT_FULL,
1513 .opcode = READ_CAPACITY,
1514 .cdb_size = 10,
1515 .usage_bits = {READ_CAPACITY, 0x00, 0xff, 0xff,
1516 0xff, 0xff, 0x00, 0x00,
1517 0x01, SCSI_CONTROL_MASK},
1518 };
1519
1520 static const struct target_opcode_descriptor tcm_opcode_read_capacity16 = {
1521 .support = SCSI_SUPPORT_FULL,
1522 .serv_action_valid = 1,
1523 .opcode = SERVICE_ACTION_IN_16,
1524 .service_action = SAI_READ_CAPACITY_16,
1525 .cdb_size = 16,
1526 .usage_bits = {SERVICE_ACTION_IN_16, SAI_READ_CAPACITY_16, 0x00, 0x00,
1527 0x00, 0x00, 0x00, 0x00,
1528 0x00, 0x00, 0xff, 0xff,
1529 0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1530 };
1531
tcm_is_rep_ref_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)1532 static bool tcm_is_rep_ref_enabled(const struct target_opcode_descriptor *descr,
1533 struct se_cmd *cmd)
1534 {
1535 struct se_device *dev = cmd->se_dev;
1536
1537 spin_lock(&dev->t10_alua.lba_map_lock);
1538 if (list_empty(&dev->t10_alua.lba_map_list)) {
1539 spin_unlock(&dev->t10_alua.lba_map_lock);
1540 return false;
1541 }
1542 spin_unlock(&dev->t10_alua.lba_map_lock);
1543 return true;
1544 }
1545
1546 static const struct target_opcode_descriptor tcm_opcode_read_report_refferals = {
1547 .support = SCSI_SUPPORT_FULL,
1548 .serv_action_valid = 1,
1549 .opcode = SERVICE_ACTION_IN_16,
1550 .service_action = SAI_REPORT_REFERRALS,
1551 .cdb_size = 16,
1552 .usage_bits = {SERVICE_ACTION_IN_16, SAI_REPORT_REFERRALS, 0x00, 0x00,
1553 0x00, 0x00, 0x00, 0x00,
1554 0x00, 0x00, 0xff, 0xff,
1555 0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1556 .enabled = tcm_is_rep_ref_enabled,
1557 };
1558
1559 static const struct target_opcode_descriptor tcm_opcode_sync_cache = {
1560 .support = SCSI_SUPPORT_FULL,
1561 .opcode = SYNCHRONIZE_CACHE,
1562 .cdb_size = 10,
1563 .usage_bits = {SYNCHRONIZE_CACHE, 0x02, 0xff, 0xff,
1564 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1565 0xff, SCSI_CONTROL_MASK},
1566 };
1567
1568 static const struct target_opcode_descriptor tcm_opcode_sync_cache16 = {
1569 .support = SCSI_SUPPORT_FULL,
1570 .opcode = SYNCHRONIZE_CACHE_16,
1571 .cdb_size = 16,
1572 .usage_bits = {SYNCHRONIZE_CACHE_16, 0x02, 0xff, 0xff,
1573 0xff, 0xff, 0xff, 0xff,
1574 0xff, 0xff, 0xff, 0xff,
1575 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1576 };
1577
tcm_is_unmap_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)1578 static bool tcm_is_unmap_enabled(const struct target_opcode_descriptor *descr,
1579 struct se_cmd *cmd)
1580 {
1581 struct exec_cmd_ops *ops = cmd->protocol_data;
1582 struct se_device *dev = cmd->se_dev;
1583
1584 return ops->execute_unmap && dev->dev_attrib.emulate_tpu;
1585 }
1586
1587 static const struct target_opcode_descriptor tcm_opcode_unmap = {
1588 .support = SCSI_SUPPORT_FULL,
1589 .opcode = UNMAP,
1590 .cdb_size = 10,
1591 .usage_bits = {UNMAP, 0x00, 0x00, 0x00,
1592 0x00, 0x00, SCSI_GROUP_NUMBER_MASK, 0xff,
1593 0xff, SCSI_CONTROL_MASK},
1594 .enabled = tcm_is_unmap_enabled,
1595 };
1596
1597 static const struct target_opcode_descriptor tcm_opcode_write_same = {
1598 .support = SCSI_SUPPORT_FULL,
1599 .opcode = WRITE_SAME,
1600 .cdb_size = 10,
1601 .usage_bits = {WRITE_SAME, 0xe8, 0xff, 0xff,
1602 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1603 0xff, SCSI_CONTROL_MASK},
1604 .enabled = tcm_is_ws_enabled,
1605 };
1606
1607 static const struct target_opcode_descriptor tcm_opcode_write_same16 = {
1608 .support = SCSI_SUPPORT_FULL,
1609 .opcode = WRITE_SAME_16,
1610 .cdb_size = 16,
1611 .usage_bits = {WRITE_SAME_16, 0xe8, 0xff, 0xff,
1612 0xff, 0xff, 0xff, 0xff,
1613 0xff, 0xff, 0xff, 0xff,
1614 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1615 .enabled = tcm_is_ws_enabled,
1616 };
1617
1618 static const struct target_opcode_descriptor tcm_opcode_verify = {
1619 .support = SCSI_SUPPORT_FULL,
1620 .opcode = VERIFY,
1621 .cdb_size = 10,
1622 .usage_bits = {VERIFY, 0x00, 0xff, 0xff,
1623 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1624 0xff, SCSI_CONTROL_MASK},
1625 };
1626
1627 static const struct target_opcode_descriptor tcm_opcode_verify16 = {
1628 .support = SCSI_SUPPORT_FULL,
1629 .opcode = VERIFY_16,
1630 .cdb_size = 16,
1631 .usage_bits = {VERIFY_16, 0x00, 0xff, 0xff,
1632 0xff, 0xff, 0xff, 0xff,
1633 0xff, 0xff, 0xff, 0xff,
1634 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1635 };
1636
1637 static const struct target_opcode_descriptor tcm_opcode_start_stop = {
1638 .support = SCSI_SUPPORT_FULL,
1639 .opcode = START_STOP,
1640 .cdb_size = 6,
1641 .usage_bits = {START_STOP, 0x01, 0x00, 0x00,
1642 0x01, SCSI_CONTROL_MASK},
1643 };
1644
1645 static const struct target_opcode_descriptor tcm_opcode_mode_select = {
1646 .support = SCSI_SUPPORT_FULL,
1647 .opcode = MODE_SELECT,
1648 .cdb_size = 6,
1649 .usage_bits = {MODE_SELECT, 0x10, 0x00, 0x00,
1650 0xff, SCSI_CONTROL_MASK},
1651 };
1652
1653 static const struct target_opcode_descriptor tcm_opcode_mode_select10 = {
1654 .support = SCSI_SUPPORT_FULL,
1655 .opcode = MODE_SELECT_10,
1656 .cdb_size = 10,
1657 .usage_bits = {MODE_SELECT_10, 0x10, 0x00, 0x00,
1658 0x00, 0x00, 0x00, 0xff,
1659 0xff, SCSI_CONTROL_MASK},
1660 };
1661
1662 static const struct target_opcode_descriptor tcm_opcode_mode_sense = {
1663 .support = SCSI_SUPPORT_FULL,
1664 .opcode = MODE_SENSE,
1665 .cdb_size = 6,
1666 .usage_bits = {MODE_SENSE, 0x08, 0xff, 0xff,
1667 0xff, SCSI_CONTROL_MASK},
1668 };
1669
1670 static const struct target_opcode_descriptor tcm_opcode_mode_sense10 = {
1671 .support = SCSI_SUPPORT_FULL,
1672 .opcode = MODE_SENSE_10,
1673 .cdb_size = 10,
1674 .usage_bits = {MODE_SENSE_10, 0x18, 0xff, 0xff,
1675 0x00, 0x00, 0x00, 0xff,
1676 0xff, SCSI_CONTROL_MASK},
1677 };
1678
1679 static const struct target_opcode_descriptor tcm_opcode_pri_read_keys = {
1680 .support = SCSI_SUPPORT_FULL,
1681 .serv_action_valid = 1,
1682 .opcode = PERSISTENT_RESERVE_IN,
1683 .service_action = PRI_READ_KEYS,
1684 .cdb_size = 10,
1685 .usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_KEYS, 0x00, 0x00,
1686 0x00, 0x00, 0x00, 0xff,
1687 0xff, SCSI_CONTROL_MASK},
1688 };
1689
1690 static const struct target_opcode_descriptor tcm_opcode_pri_read_resrv = {
1691 .support = SCSI_SUPPORT_FULL,
1692 .serv_action_valid = 1,
1693 .opcode = PERSISTENT_RESERVE_IN,
1694 .service_action = PRI_READ_RESERVATION,
1695 .cdb_size = 10,
1696 .usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_RESERVATION, 0x00, 0x00,
1697 0x00, 0x00, 0x00, 0xff,
1698 0xff, SCSI_CONTROL_MASK},
1699 };
1700
tcm_is_pr_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)1701 static bool tcm_is_pr_enabled(const struct target_opcode_descriptor *descr,
1702 struct se_cmd *cmd)
1703 {
1704 struct se_device *dev = cmd->se_dev;
1705
1706 if (!dev->dev_attrib.emulate_pr)
1707 return false;
1708
1709 if (!(dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH_PGR))
1710 return true;
1711
1712 switch (descr->opcode) {
1713 case RESERVE_6:
1714 case RESERVE_10:
1715 case RELEASE_6:
1716 case RELEASE_10:
1717 /*
1718 * The pr_ops which are used by the backend modules don't
1719 * support these commands.
1720 */
1721 return false;
1722 case PERSISTENT_RESERVE_OUT:
1723 switch (descr->service_action) {
1724 case PRO_REGISTER_AND_MOVE:
1725 case PRO_REPLACE_LOST_RESERVATION:
1726 /*
1727 * The backend modules don't have access to ports and
1728 * I_T nexuses so they can't handle these type of
1729 * requests.
1730 */
1731 return false;
1732 }
1733 break;
1734 case PERSISTENT_RESERVE_IN:
1735 if (descr->service_action == PRI_READ_FULL_STATUS)
1736 return false;
1737 break;
1738 }
1739
1740 return true;
1741 }
1742
1743 static const struct target_opcode_descriptor tcm_opcode_pri_read_caps = {
1744 .support = SCSI_SUPPORT_FULL,
1745 .serv_action_valid = 1,
1746 .opcode = PERSISTENT_RESERVE_IN,
1747 .service_action = PRI_REPORT_CAPABILITIES,
1748 .cdb_size = 10,
1749 .usage_bits = {PERSISTENT_RESERVE_IN, PRI_REPORT_CAPABILITIES, 0x00, 0x00,
1750 0x00, 0x00, 0x00, 0xff,
1751 0xff, SCSI_CONTROL_MASK},
1752 .enabled = tcm_is_pr_enabled,
1753 };
1754
1755 static const struct target_opcode_descriptor tcm_opcode_pri_read_full_status = {
1756 .support = SCSI_SUPPORT_FULL,
1757 .serv_action_valid = 1,
1758 .opcode = PERSISTENT_RESERVE_IN,
1759 .service_action = PRI_READ_FULL_STATUS,
1760 .cdb_size = 10,
1761 .usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_FULL_STATUS, 0x00, 0x00,
1762 0x00, 0x00, 0x00, 0xff,
1763 0xff, SCSI_CONTROL_MASK},
1764 .enabled = tcm_is_pr_enabled,
1765 };
1766
1767 static const struct target_opcode_descriptor tcm_opcode_pro_register = {
1768 .support = SCSI_SUPPORT_FULL,
1769 .serv_action_valid = 1,
1770 .opcode = PERSISTENT_RESERVE_OUT,
1771 .service_action = PRO_REGISTER,
1772 .cdb_size = 10,
1773 .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_REGISTER, 0xff, 0x00,
1774 0x00, 0xff, 0xff, 0xff,
1775 0xff, SCSI_CONTROL_MASK},
1776 .enabled = tcm_is_pr_enabled,
1777 };
1778
1779 static const struct target_opcode_descriptor tcm_opcode_pro_reserve = {
1780 .support = SCSI_SUPPORT_FULL,
1781 .serv_action_valid = 1,
1782 .opcode = PERSISTENT_RESERVE_OUT,
1783 .service_action = PRO_RESERVE,
1784 .cdb_size = 10,
1785 .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_RESERVE, 0xff, 0x00,
1786 0x00, 0xff, 0xff, 0xff,
1787 0xff, SCSI_CONTROL_MASK},
1788 .enabled = tcm_is_pr_enabled,
1789 };
1790
1791 static const struct target_opcode_descriptor tcm_opcode_pro_release = {
1792 .support = SCSI_SUPPORT_FULL,
1793 .serv_action_valid = 1,
1794 .opcode = PERSISTENT_RESERVE_OUT,
1795 .service_action = PRO_RELEASE,
1796 .cdb_size = 10,
1797 .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_RELEASE, 0xff, 0x00,
1798 0x00, 0xff, 0xff, 0xff,
1799 0xff, SCSI_CONTROL_MASK},
1800 .enabled = tcm_is_pr_enabled,
1801 };
1802
1803 static const struct target_opcode_descriptor tcm_opcode_pro_clear = {
1804 .support = SCSI_SUPPORT_FULL,
1805 .serv_action_valid = 1,
1806 .opcode = PERSISTENT_RESERVE_OUT,
1807 .service_action = PRO_CLEAR,
1808 .cdb_size = 10,
1809 .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_CLEAR, 0xff, 0x00,
1810 0x00, 0xff, 0xff, 0xff,
1811 0xff, SCSI_CONTROL_MASK},
1812 .enabled = tcm_is_pr_enabled,
1813 };
1814
1815 static const struct target_opcode_descriptor tcm_opcode_pro_preempt = {
1816 .support = SCSI_SUPPORT_FULL,
1817 .serv_action_valid = 1,
1818 .opcode = PERSISTENT_RESERVE_OUT,
1819 .service_action = PRO_PREEMPT,
1820 .cdb_size = 10,
1821 .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_PREEMPT, 0xff, 0x00,
1822 0x00, 0xff, 0xff, 0xff,
1823 0xff, SCSI_CONTROL_MASK},
1824 .enabled = tcm_is_pr_enabled,
1825 };
1826
1827 static const struct target_opcode_descriptor tcm_opcode_pro_preempt_abort = {
1828 .support = SCSI_SUPPORT_FULL,
1829 .serv_action_valid = 1,
1830 .opcode = PERSISTENT_RESERVE_OUT,
1831 .service_action = PRO_PREEMPT_AND_ABORT,
1832 .cdb_size = 10,
1833 .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_PREEMPT_AND_ABORT, 0xff, 0x00,
1834 0x00, 0xff, 0xff, 0xff,
1835 0xff, SCSI_CONTROL_MASK},
1836 .enabled = tcm_is_pr_enabled,
1837 };
1838
1839 static const struct target_opcode_descriptor tcm_opcode_pro_reg_ign_exist = {
1840 .support = SCSI_SUPPORT_FULL,
1841 .serv_action_valid = 1,
1842 .opcode = PERSISTENT_RESERVE_OUT,
1843 .service_action = PRO_REGISTER_AND_IGNORE_EXISTING_KEY,
1844 .cdb_size = 10,
1845 .usage_bits = {
1846 PERSISTENT_RESERVE_OUT, PRO_REGISTER_AND_IGNORE_EXISTING_KEY,
1847 0xff, 0x00,
1848 0x00, 0xff, 0xff, 0xff,
1849 0xff, SCSI_CONTROL_MASK},
1850 .enabled = tcm_is_pr_enabled,
1851 };
1852
1853 static const struct target_opcode_descriptor tcm_opcode_pro_register_move = {
1854 .support = SCSI_SUPPORT_FULL,
1855 .serv_action_valid = 1,
1856 .opcode = PERSISTENT_RESERVE_OUT,
1857 .service_action = PRO_REGISTER_AND_MOVE,
1858 .cdb_size = 10,
1859 .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_REGISTER_AND_MOVE, 0xff, 0x00,
1860 0x00, 0xff, 0xff, 0xff,
1861 0xff, SCSI_CONTROL_MASK},
1862 .enabled = tcm_is_pr_enabled,
1863 };
1864
1865 static const struct target_opcode_descriptor tcm_opcode_release = {
1866 .support = SCSI_SUPPORT_FULL,
1867 .opcode = RELEASE_6,
1868 .cdb_size = 6,
1869 .usage_bits = {RELEASE_6, 0x00, 0x00, 0x00,
1870 0x00, SCSI_CONTROL_MASK},
1871 .enabled = tcm_is_pr_enabled,
1872 };
1873
1874 static const struct target_opcode_descriptor tcm_opcode_release10 = {
1875 .support = SCSI_SUPPORT_FULL,
1876 .opcode = RELEASE_10,
1877 .cdb_size = 10,
1878 .usage_bits = {RELEASE_10, 0x00, 0x00, 0x00,
1879 0x00, 0x00, 0x00, 0xff,
1880 0xff, SCSI_CONTROL_MASK},
1881 .enabled = tcm_is_pr_enabled,
1882 };
1883
1884 static const struct target_opcode_descriptor tcm_opcode_reserve = {
1885 .support = SCSI_SUPPORT_FULL,
1886 .opcode = RESERVE_6,
1887 .cdb_size = 6,
1888 .usage_bits = {RESERVE_6, 0x00, 0x00, 0x00,
1889 0x00, SCSI_CONTROL_MASK},
1890 .enabled = tcm_is_pr_enabled,
1891 };
1892
1893 static const struct target_opcode_descriptor tcm_opcode_reserve10 = {
1894 .support = SCSI_SUPPORT_FULL,
1895 .opcode = RESERVE_10,
1896 .cdb_size = 10,
1897 .usage_bits = {RESERVE_10, 0x00, 0x00, 0x00,
1898 0x00, 0x00, 0x00, 0xff,
1899 0xff, SCSI_CONTROL_MASK},
1900 .enabled = tcm_is_pr_enabled,
1901 };
1902
1903 static const struct target_opcode_descriptor tcm_opcode_request_sense = {
1904 .support = SCSI_SUPPORT_FULL,
1905 .opcode = REQUEST_SENSE,
1906 .cdb_size = 6,
1907 .usage_bits = {REQUEST_SENSE, 0x00, 0x00, 0x00,
1908 0xff, SCSI_CONTROL_MASK},
1909 };
1910
1911 static const struct target_opcode_descriptor tcm_opcode_inquiry = {
1912 .support = SCSI_SUPPORT_FULL,
1913 .opcode = INQUIRY,
1914 .cdb_size = 6,
1915 .usage_bits = {INQUIRY, 0x01, 0xff, 0xff,
1916 0xff, SCSI_CONTROL_MASK},
1917 };
1918
tcm_is_3pc_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)1919 static bool tcm_is_3pc_enabled(const struct target_opcode_descriptor *descr,
1920 struct se_cmd *cmd)
1921 {
1922 struct se_device *dev = cmd->se_dev;
1923
1924 return dev->dev_attrib.emulate_3pc;
1925 }
1926
1927 static const struct target_opcode_descriptor tcm_opcode_extended_copy_lid1 = {
1928 .support = SCSI_SUPPORT_FULL,
1929 .serv_action_valid = 1,
1930 .opcode = EXTENDED_COPY,
1931 .cdb_size = 16,
1932 .usage_bits = {EXTENDED_COPY, 0x00, 0x00, 0x00,
1933 0x00, 0x00, 0x00, 0x00,
1934 0x00, 0x00, 0xff, 0xff,
1935 0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1936 .enabled = tcm_is_3pc_enabled,
1937 };
1938
1939 static const struct target_opcode_descriptor tcm_opcode_rcv_copy_res_op_params = {
1940 .support = SCSI_SUPPORT_FULL,
1941 .serv_action_valid = 1,
1942 .opcode = RECEIVE_COPY_RESULTS,
1943 .service_action = RCR_SA_OPERATING_PARAMETERS,
1944 .cdb_size = 16,
1945 .usage_bits = {RECEIVE_COPY_RESULTS, RCR_SA_OPERATING_PARAMETERS,
1946 0x00, 0x00,
1947 0x00, 0x00, 0x00, 0x00,
1948 0x00, 0x00, 0xff, 0xff,
1949 0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1950 .enabled = tcm_is_3pc_enabled,
1951 };
1952
1953 static const struct target_opcode_descriptor tcm_opcode_report_luns = {
1954 .support = SCSI_SUPPORT_FULL,
1955 .opcode = REPORT_LUNS,
1956 .cdb_size = 12,
1957 .usage_bits = {REPORT_LUNS, 0x00, 0xff, 0x00,
1958 0x00, 0x00, 0xff, 0xff,
1959 0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1960 };
1961
1962 static const struct target_opcode_descriptor tcm_opcode_test_unit_ready = {
1963 .support = SCSI_SUPPORT_FULL,
1964 .opcode = TEST_UNIT_READY,
1965 .cdb_size = 6,
1966 .usage_bits = {TEST_UNIT_READY, 0x00, 0x00, 0x00,
1967 0x00, SCSI_CONTROL_MASK},
1968 };
1969
1970 static const struct target_opcode_descriptor tcm_opcode_report_target_pgs = {
1971 .support = SCSI_SUPPORT_FULL,
1972 .serv_action_valid = 1,
1973 .opcode = MAINTENANCE_IN,
1974 .service_action = MI_REPORT_TARGET_PGS,
1975 .cdb_size = 12,
1976 .usage_bits = {MAINTENANCE_IN, 0xE0 | MI_REPORT_TARGET_PGS, 0x00, 0x00,
1977 0x00, 0x00, 0xff, 0xff,
1978 0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1979 };
1980
spc_rsoc_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)1981 static bool spc_rsoc_enabled(const struct target_opcode_descriptor *descr,
1982 struct se_cmd *cmd)
1983 {
1984 struct se_device *dev = cmd->se_dev;
1985
1986 return dev->dev_attrib.emulate_rsoc;
1987 }
1988
1989 static const struct target_opcode_descriptor tcm_opcode_report_supp_opcodes = {
1990 .support = SCSI_SUPPORT_FULL,
1991 .serv_action_valid = 1,
1992 .opcode = MAINTENANCE_IN,
1993 .service_action = MI_REPORT_SUPPORTED_OPERATION_CODES,
1994 .cdb_size = 12,
1995 .usage_bits = {MAINTENANCE_IN, MI_REPORT_SUPPORTED_OPERATION_CODES,
1996 0x87, 0xff,
1997 0xff, 0xff, 0xff, 0xff,
1998 0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1999 .enabled = spc_rsoc_enabled,
2000 };
2001
tcm_is_set_tpg_enabled(const struct target_opcode_descriptor * descr,struct se_cmd * cmd)2002 static bool tcm_is_set_tpg_enabled(const struct target_opcode_descriptor *descr,
2003 struct se_cmd *cmd)
2004 {
2005 struct t10_alua_tg_pt_gp *l_tg_pt_gp;
2006 struct se_lun *l_lun = cmd->se_lun;
2007
2008 rcu_read_lock();
2009 l_tg_pt_gp = rcu_dereference(l_lun->lun_tg_pt_gp);
2010 if (!l_tg_pt_gp) {
2011 rcu_read_unlock();
2012 return false;
2013 }
2014 if (!(l_tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_EXPLICIT_ALUA)) {
2015 rcu_read_unlock();
2016 return false;
2017 }
2018 rcu_read_unlock();
2019
2020 return true;
2021 }
2022
2023 static const struct target_opcode_descriptor tcm_opcode_set_tpg = {
2024 .support = SCSI_SUPPORT_FULL,
2025 .serv_action_valid = 1,
2026 .opcode = MAINTENANCE_OUT,
2027 .service_action = MO_SET_TARGET_PGS,
2028 .cdb_size = 12,
2029 .usage_bits = {MAINTENANCE_OUT, MO_SET_TARGET_PGS, 0x00, 0x00,
2030 0x00, 0x00, 0xff, 0xff,
2031 0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
2032 .enabled = tcm_is_set_tpg_enabled,
2033 };
2034
2035 static const struct target_opcode_descriptor *tcm_supported_opcodes[] = {
2036 &tcm_opcode_read6,
2037 &tcm_opcode_read10,
2038 &tcm_opcode_read12,
2039 &tcm_opcode_read16,
2040 &tcm_opcode_write6,
2041 &tcm_opcode_write10,
2042 &tcm_opcode_write_verify10,
2043 &tcm_opcode_write12,
2044 &tcm_opcode_write16,
2045 &tcm_opcode_write_verify16,
2046 &tcm_opcode_write_same32,
2047 &tcm_opcode_write_atomic16,
2048 &tcm_opcode_compare_write,
2049 &tcm_opcode_read_capacity,
2050 &tcm_opcode_read_capacity16,
2051 &tcm_opcode_read_report_refferals,
2052 &tcm_opcode_sync_cache,
2053 &tcm_opcode_sync_cache16,
2054 &tcm_opcode_unmap,
2055 &tcm_opcode_write_same,
2056 &tcm_opcode_write_same16,
2057 &tcm_opcode_verify,
2058 &tcm_opcode_verify16,
2059 &tcm_opcode_start_stop,
2060 &tcm_opcode_mode_select,
2061 &tcm_opcode_mode_select10,
2062 &tcm_opcode_mode_sense,
2063 &tcm_opcode_mode_sense10,
2064 &tcm_opcode_pri_read_keys,
2065 &tcm_opcode_pri_read_resrv,
2066 &tcm_opcode_pri_read_caps,
2067 &tcm_opcode_pri_read_full_status,
2068 &tcm_opcode_pro_register,
2069 &tcm_opcode_pro_reserve,
2070 &tcm_opcode_pro_release,
2071 &tcm_opcode_pro_clear,
2072 &tcm_opcode_pro_preempt,
2073 &tcm_opcode_pro_preempt_abort,
2074 &tcm_opcode_pro_reg_ign_exist,
2075 &tcm_opcode_pro_register_move,
2076 &tcm_opcode_release,
2077 &tcm_opcode_release10,
2078 &tcm_opcode_reserve,
2079 &tcm_opcode_reserve10,
2080 &tcm_opcode_request_sense,
2081 &tcm_opcode_inquiry,
2082 &tcm_opcode_extended_copy_lid1,
2083 &tcm_opcode_rcv_copy_res_op_params,
2084 &tcm_opcode_report_luns,
2085 &tcm_opcode_test_unit_ready,
2086 &tcm_opcode_report_target_pgs,
2087 &tcm_opcode_report_supp_opcodes,
2088 &tcm_opcode_set_tpg,
2089 };
2090
2091 static int
spc_rsoc_encode_command_timeouts_descriptor(unsigned char * buf,u8 ctdp,const struct target_opcode_descriptor * descr)2092 spc_rsoc_encode_command_timeouts_descriptor(unsigned char *buf, u8 ctdp,
2093 const struct target_opcode_descriptor *descr)
2094 {
2095 if (!ctdp)
2096 return 0;
2097
2098 put_unaligned_be16(0xa, buf);
2099 buf[3] = descr->specific_timeout;
2100 put_unaligned_be32(descr->nominal_timeout, &buf[4]);
2101 put_unaligned_be32(descr->recommended_timeout, &buf[8]);
2102
2103 return 12;
2104 }
2105
2106 static int
spc_rsoc_encode_command_descriptor(unsigned char * buf,u8 ctdp,const struct target_opcode_descriptor * descr)2107 spc_rsoc_encode_command_descriptor(unsigned char *buf, u8 ctdp,
2108 const struct target_opcode_descriptor *descr)
2109 {
2110 int td_size = 0;
2111
2112 buf[0] = descr->opcode;
2113
2114 put_unaligned_be16(descr->service_action, &buf[2]);
2115
2116 buf[5] = (ctdp << 1) | descr->serv_action_valid;
2117 put_unaligned_be16(descr->cdb_size, &buf[6]);
2118
2119 td_size = spc_rsoc_encode_command_timeouts_descriptor(&buf[8], ctdp,
2120 descr);
2121
2122 return 8 + td_size;
2123 }
2124
2125 static int
spc_rsoc_encode_one_command_descriptor(unsigned char * buf,u8 ctdp,const struct target_opcode_descriptor * descr,struct se_device * dev)2126 spc_rsoc_encode_one_command_descriptor(unsigned char *buf, u8 ctdp,
2127 const struct target_opcode_descriptor *descr,
2128 struct se_device *dev)
2129 {
2130 int td_size = 0;
2131
2132 if (!descr) {
2133 buf[1] = (ctdp << 7) | SCSI_SUPPORT_NOT_SUPPORTED;
2134 return 2;
2135 }
2136
2137 buf[1] = (ctdp << 7) | SCSI_SUPPORT_FULL;
2138 put_unaligned_be16(descr->cdb_size, &buf[2]);
2139 memcpy(&buf[4], descr->usage_bits, descr->cdb_size);
2140 if (descr->update_usage_bits)
2141 descr->update_usage_bits(&buf[4], dev);
2142
2143 td_size = spc_rsoc_encode_command_timeouts_descriptor(
2144 &buf[4 + descr->cdb_size], ctdp, descr);
2145
2146 return 4 + descr->cdb_size + td_size;
2147 }
2148
2149 static sense_reason_t
spc_rsoc_get_descr(struct se_cmd * cmd,const struct target_opcode_descriptor ** opcode)2150 spc_rsoc_get_descr(struct se_cmd *cmd, const struct target_opcode_descriptor **opcode)
2151 {
2152 const struct target_opcode_descriptor *descr;
2153 struct se_session *sess = cmd->se_sess;
2154 unsigned char *cdb = cmd->t_task_cdb;
2155 u8 opts = cdb[2] & 0x3;
2156 u8 requested_opcode;
2157 u16 requested_sa;
2158 int i;
2159
2160 requested_opcode = cdb[3];
2161 requested_sa = ((u16)cdb[4]) << 8 | cdb[5];
2162 *opcode = NULL;
2163
2164 if (opts > 3) {
2165 pr_debug("TARGET_CORE[%s]: Invalid REPORT SUPPORTED OPERATION CODES"
2166 " with unsupported REPORTING OPTIONS %#x for 0x%08llx from %s\n",
2167 cmd->se_tfo->fabric_name, opts,
2168 cmd->se_lun->unpacked_lun,
2169 sess->se_node_acl->initiatorname);
2170 return TCM_INVALID_CDB_FIELD;
2171 }
2172
2173 for (i = 0; i < ARRAY_SIZE(tcm_supported_opcodes); i++) {
2174 descr = tcm_supported_opcodes[i];
2175 if (descr->opcode != requested_opcode)
2176 continue;
2177
2178 switch (opts) {
2179 case 0x1:
2180 /*
2181 * If the REQUESTED OPERATION CODE field specifies an
2182 * operation code for which the device server implements
2183 * service actions, then the device server shall
2184 * terminate the command with CHECK CONDITION status,
2185 * with the sense key set to ILLEGAL REQUEST, and the
2186 * additional sense code set to INVALID FIELD IN CDB
2187 */
2188 if (descr->serv_action_valid)
2189 return TCM_INVALID_CDB_FIELD;
2190
2191 if (!descr->enabled || descr->enabled(descr, cmd)) {
2192 *opcode = descr;
2193 return TCM_NO_SENSE;
2194 }
2195 break;
2196 case 0x2:
2197 /*
2198 * If the REQUESTED OPERATION CODE field specifies an
2199 * operation code for which the device server does not
2200 * implement service actions, then the device server
2201 * shall terminate the command with CHECK CONDITION
2202 * status, with the sense key set to ILLEGAL REQUEST,
2203 * and the additional sense code set to INVALID FIELD IN CDB.
2204 */
2205 if (descr->serv_action_valid &&
2206 descr->service_action == requested_sa) {
2207 if (!descr->enabled || descr->enabled(descr,
2208 cmd)) {
2209 *opcode = descr;
2210 return TCM_NO_SENSE;
2211 }
2212 } else if (!descr->serv_action_valid)
2213 return TCM_INVALID_CDB_FIELD;
2214 break;
2215 case 0x3:
2216 /*
2217 * The command support data for the operation code and
2218 * service action a specified in the REQUESTED OPERATION
2219 * CODE field and REQUESTED SERVICE ACTION field shall
2220 * be returned in the one_command parameter data format.
2221 */
2222 if (descr->service_action == requested_sa)
2223 if (!descr->enabled || descr->enabled(descr,
2224 cmd)) {
2225 *opcode = descr;
2226 return TCM_NO_SENSE;
2227 }
2228 break;
2229 }
2230 }
2231
2232 return TCM_NO_SENSE;
2233 }
2234
2235 static sense_reason_t
spc_emulate_report_supp_op_codes(struct se_cmd * cmd)2236 spc_emulate_report_supp_op_codes(struct se_cmd *cmd)
2237 {
2238 int descr_num = ARRAY_SIZE(tcm_supported_opcodes);
2239 const struct target_opcode_descriptor *descr = NULL;
2240 unsigned char *cdb = cmd->t_task_cdb;
2241 u8 rctd = (cdb[2] >> 7) & 0x1;
2242 unsigned char *buf = NULL;
2243 int response_length = 0;
2244 u8 opts = cdb[2] & 0x3;
2245 unsigned char *rbuf;
2246 sense_reason_t ret = 0;
2247 int i;
2248
2249 if (!cmd->se_dev->dev_attrib.emulate_rsoc)
2250 return TCM_UNSUPPORTED_SCSI_OPCODE;
2251
2252 rbuf = transport_kmap_data_sg(cmd);
2253 if (cmd->data_length && !rbuf) {
2254 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2255 goto out;
2256 }
2257
2258 if (opts == 0)
2259 response_length = 4 + (8 + rctd * 12) * descr_num;
2260 else {
2261 ret = spc_rsoc_get_descr(cmd, &descr);
2262 if (ret)
2263 goto out;
2264
2265 if (descr)
2266 response_length = 4 + descr->cdb_size + rctd * 12;
2267 else
2268 response_length = 2;
2269 }
2270
2271 buf = kzalloc(response_length, GFP_KERNEL);
2272 if (!buf) {
2273 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2274 goto out;
2275 }
2276 response_length = 0;
2277
2278 if (opts == 0) {
2279 response_length += 4;
2280
2281 for (i = 0; i < ARRAY_SIZE(tcm_supported_opcodes); i++) {
2282 descr = tcm_supported_opcodes[i];
2283 if (descr->enabled && !descr->enabled(descr, cmd))
2284 continue;
2285
2286 response_length += spc_rsoc_encode_command_descriptor(
2287 &buf[response_length], rctd, descr);
2288 }
2289 put_unaligned_be32(response_length - 4, buf);
2290 } else {
2291 response_length = spc_rsoc_encode_one_command_descriptor(
2292 &buf[response_length], rctd, descr,
2293 cmd->se_dev);
2294 }
2295
2296 memcpy(rbuf, buf, min_t(u32, response_length, cmd->data_length));
2297 out:
2298 kfree(buf);
2299 transport_kunmap_data_sg(cmd);
2300
2301 if (!ret)
2302 target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, response_length);
2303 return ret;
2304 }
2305
2306 sense_reason_t
spc_parse_cdb(struct se_cmd * cmd,unsigned int * size)2307 spc_parse_cdb(struct se_cmd *cmd, unsigned int *size)
2308 {
2309 struct se_device *dev = cmd->se_dev;
2310 unsigned char *cdb = cmd->t_task_cdb;
2311
2312 switch (cdb[0]) {
2313 case RESERVE_6:
2314 case RESERVE_10:
2315 case RELEASE_6:
2316 case RELEASE_10:
2317 if (!dev->dev_attrib.emulate_pr)
2318 return TCM_UNSUPPORTED_SCSI_OPCODE;
2319
2320 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH_PGR)
2321 return TCM_UNSUPPORTED_SCSI_OPCODE;
2322 break;
2323 case PERSISTENT_RESERVE_IN:
2324 case PERSISTENT_RESERVE_OUT:
2325 if (!dev->dev_attrib.emulate_pr)
2326 return TCM_UNSUPPORTED_SCSI_OPCODE;
2327 break;
2328 }
2329
2330 switch (cdb[0]) {
2331 case MODE_SELECT:
2332 *size = cdb[4];
2333 cmd->execute_cmd = spc_emulate_modeselect;
2334 break;
2335 case MODE_SELECT_10:
2336 *size = get_unaligned_be16(&cdb[7]);
2337 cmd->execute_cmd = spc_emulate_modeselect;
2338 break;
2339 case MODE_SENSE:
2340 *size = cdb[4];
2341 cmd->execute_cmd = spc_emulate_modesense;
2342 break;
2343 case MODE_SENSE_10:
2344 *size = get_unaligned_be16(&cdb[7]);
2345 cmd->execute_cmd = spc_emulate_modesense;
2346 break;
2347 case LOG_SELECT:
2348 case LOG_SENSE:
2349 *size = get_unaligned_be16(&cdb[7]);
2350 break;
2351 case PERSISTENT_RESERVE_IN:
2352 *size = get_unaligned_be16(&cdb[7]);
2353 cmd->execute_cmd = target_scsi3_emulate_pr_in;
2354 break;
2355 case PERSISTENT_RESERVE_OUT:
2356 *size = get_unaligned_be32(&cdb[5]);
2357 cmd->execute_cmd = target_scsi3_emulate_pr_out;
2358 break;
2359 case RELEASE_6:
2360 case RELEASE_10:
2361 if (cdb[0] == RELEASE_10)
2362 *size = get_unaligned_be16(&cdb[7]);
2363 else
2364 *size = cmd->data_length;
2365
2366 cmd->execute_cmd = target_scsi2_reservation_release;
2367 break;
2368 case RESERVE_6:
2369 case RESERVE_10:
2370 /*
2371 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2372 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2373 */
2374 if (cdb[0] == RESERVE_10)
2375 *size = get_unaligned_be16(&cdb[7]);
2376 else
2377 *size = cmd->data_length;
2378
2379 cmd->execute_cmd = target_scsi2_reservation_reserve;
2380 break;
2381 case REQUEST_SENSE:
2382 *size = cdb[4];
2383 cmd->execute_cmd = spc_emulate_request_sense;
2384 break;
2385 case INQUIRY:
2386 *size = get_unaligned_be16(&cdb[3]);
2387
2388 /*
2389 * Do implicit HEAD_OF_QUEUE processing for INQUIRY.
2390 * See spc4r17 section 5.3
2391 */
2392 cmd->sam_task_attr = TCM_HEAD_TAG;
2393 cmd->execute_cmd = spc_emulate_inquiry;
2394 break;
2395 case SECURITY_PROTOCOL_IN:
2396 case SECURITY_PROTOCOL_OUT:
2397 *size = get_unaligned_be32(&cdb[6]);
2398 break;
2399 case EXTENDED_COPY:
2400 *size = get_unaligned_be32(&cdb[10]);
2401 cmd->execute_cmd = target_do_xcopy;
2402 break;
2403 case RECEIVE_COPY_RESULTS:
2404 *size = get_unaligned_be32(&cdb[10]);
2405 cmd->execute_cmd = target_do_receive_copy_results;
2406 break;
2407 case READ_ATTRIBUTE:
2408 case WRITE_ATTRIBUTE:
2409 *size = get_unaligned_be32(&cdb[10]);
2410 break;
2411 case RECEIVE_DIAGNOSTIC:
2412 case SEND_DIAGNOSTIC:
2413 *size = get_unaligned_be16(&cdb[3]);
2414 break;
2415 case WRITE_BUFFER:
2416 *size = get_unaligned_be24(&cdb[6]);
2417 break;
2418 case REPORT_LUNS:
2419 cmd->execute_cmd = spc_emulate_report_luns;
2420 *size = get_unaligned_be32(&cdb[6]);
2421 /*
2422 * Do implicit HEAD_OF_QUEUE processing for REPORT_LUNS
2423 * See spc4r17 section 5.3
2424 */
2425 cmd->sam_task_attr = TCM_HEAD_TAG;
2426 break;
2427 case TEST_UNIT_READY:
2428 cmd->execute_cmd = spc_emulate_testunitready;
2429 *size = 0;
2430 break;
2431 case MAINTENANCE_IN:
2432 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2433 /*
2434 * MAINTENANCE_IN from SCC-2
2435 * Check for emulated MI_REPORT_TARGET_PGS
2436 */
2437 if ((cdb[1] & 0x1f) == MI_REPORT_TARGET_PGS) {
2438 cmd->execute_cmd =
2439 target_emulate_report_target_port_groups;
2440 }
2441 if ((cdb[1] & 0x1f) ==
2442 MI_REPORT_SUPPORTED_OPERATION_CODES)
2443 cmd->execute_cmd =
2444 spc_emulate_report_supp_op_codes;
2445 *size = get_unaligned_be32(&cdb[6]);
2446 } else {
2447 /*
2448 * GPCMD_SEND_KEY from multi media commands
2449 */
2450 *size = get_unaligned_be16(&cdb[8]);
2451 }
2452 break;
2453 case MAINTENANCE_OUT:
2454 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2455 /*
2456 * MAINTENANCE_OUT from SCC-2
2457 * Check for emulated MO_SET_TARGET_PGS.
2458 */
2459 if (cdb[1] == MO_SET_TARGET_PGS) {
2460 cmd->execute_cmd =
2461 target_emulate_set_target_port_groups;
2462 }
2463 *size = get_unaligned_be32(&cdb[6]);
2464 } else {
2465 /*
2466 * GPCMD_SEND_KEY from multi media commands
2467 */
2468 *size = get_unaligned_be16(&cdb[8]);
2469 }
2470 break;
2471 default:
2472 return TCM_UNSUPPORTED_SCSI_OPCODE;
2473 }
2474
2475 return 0;
2476 }
2477 EXPORT_SYMBOL(spc_parse_cdb);
2478