1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SCSI Primary Commands (SPC) parsing and emulation.
4 *
5 * (c) Copyright 2002-2013 Datera, Inc.
6 *
7 * Nicholas A. Bellinger <nab@kernel.org>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/unaligned.h>
13
14 #include <scsi/scsi_proto.h>
15 #include <scsi/scsi_common.h>
16 #include <scsi/scsi_tcq.h>
17
18 #include <target/target_core_base.h>
19 #include <target/target_core_backend.h>
20 #include <target/target_core_fabric.h>
21
22 #include "target_core_internal.h"
23 #include "target_core_alua.h"
24 #include "target_core_pr.h"
25 #include "target_core_ua.h"
26 #include "target_core_xcopy.h"
27
spc_fill_alua_data(struct se_lun * lun,unsigned char * buf)28 static void spc_fill_alua_data(struct se_lun *lun, unsigned char *buf)
29 {
30 struct t10_alua_tg_pt_gp *tg_pt_gp;
31
32 /*
33 * Set SCCS for MAINTENANCE_IN + REPORT_TARGET_PORT_GROUPS.
34 */
35 buf[5] = 0x80;
36
37 /*
38 * Set TPGS field for explicit and/or implicit ALUA access type
39 * and opteration.
40 *
41 * See spc4r17 section 6.4.2 Table 135
42 */
43 rcu_read_lock();
44 tg_pt_gp = rcu_dereference(lun->lun_tg_pt_gp);
45 if (tg_pt_gp)
46 buf[5] |= tg_pt_gp->tg_pt_gp_alua_access_type;
47 rcu_read_unlock();
48 }
49
50 static u16
spc_find_scsi_transport_vd(int proto_id)51 spc_find_scsi_transport_vd(int proto_id)
52 {
53 switch (proto_id) {
54 case SCSI_PROTOCOL_FCP:
55 return SCSI_VERSION_DESCRIPTOR_FCP4;
56 case SCSI_PROTOCOL_ISCSI:
57 return SCSI_VERSION_DESCRIPTOR_ISCSI;
58 case SCSI_PROTOCOL_SAS:
59 return SCSI_VERSION_DESCRIPTOR_SAS3;
60 case SCSI_PROTOCOL_SBP:
61 return SCSI_VERSION_DESCRIPTOR_SBP3;
62 case SCSI_PROTOCOL_SRP:
63 return SCSI_VERSION_DESCRIPTOR_SRP;
64 default:
65 pr_warn("Cannot find VERSION DESCRIPTOR value for unknown SCSI"
66 " transport PROTOCOL IDENTIFIER %#x\n", proto_id);
67 return 0;
68 }
69 }
70
71 sense_reason_t
spc_emulate_inquiry_std(struct se_cmd * cmd,unsigned char * buf)72 spc_emulate_inquiry_std(struct se_cmd *cmd, unsigned char *buf)
73 {
74 struct se_lun *lun = cmd->se_lun;
75 struct se_portal_group *tpg = lun->lun_tpg;
76 struct se_device *dev = cmd->se_dev;
77 struct se_session *sess = cmd->se_sess;
78
79 /* Set RMB (removable media) for tape devices */
80 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
81 buf[1] = 0x80;
82
83 buf[2] = 0x06; /* SPC-4 */
84
85 /*
86 * NORMACA and HISUP = 0, RESPONSE DATA FORMAT = 2
87 *
88 * SPC4 says:
89 * A RESPONSE DATA FORMAT field set to 2h indicates that the
90 * standard INQUIRY data is in the format defined in this
91 * standard. Response data format values less than 2h are
92 * obsolete. Response data format values greater than 2h are
93 * reserved.
94 */
95 buf[3] = 2;
96
97 /*
98 * Enable SCCS and TPGS fields for Emulated ALUA
99 */
100 spc_fill_alua_data(lun, buf);
101
102 /*
103 * Set Third-Party Copy (3PC) bit to indicate support for EXTENDED_COPY
104 */
105 if (dev->dev_attrib.emulate_3pc)
106 buf[5] |= 0x8;
107 /*
108 * Set Protection (PROTECT) bit when DIF has been enabled on the
109 * device, and the fabric supports VERIFY + PASS. Also report
110 * PROTECT=1 if sess_prot_type has been configured to allow T10-PI
111 * to unprotected devices.
112 */
113 if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
114 if (dev->dev_attrib.pi_prot_type || cmd->se_sess->sess_prot_type)
115 buf[5] |= 0x1;
116 }
117
118 /*
119 * Set MULTIP bit to indicate presence of multiple SCSI target ports
120 */
121 if (dev->export_count > 1)
122 buf[6] |= 0x10;
123
124 buf[7] = 0x2; /* CmdQue=1 */
125
126 /*
127 * ASCII data fields described as being left-aligned shall have any
128 * unused bytes at the end of the field (i.e., highest offset) and the
129 * unused bytes shall be filled with ASCII space characters (20h).
130 */
131 memset(&buf[8], 0x20,
132 INQUIRY_VENDOR_LEN + INQUIRY_MODEL_LEN + INQUIRY_REVISION_LEN);
133 memcpy(&buf[8], dev->t10_wwn.vendor,
134 strnlen(dev->t10_wwn.vendor, INQUIRY_VENDOR_LEN));
135 memcpy(&buf[16], dev->t10_wwn.model,
136 strnlen(dev->t10_wwn.model, INQUIRY_MODEL_LEN));
137 memcpy(&buf[32], dev->t10_wwn.revision,
138 strnlen(dev->t10_wwn.revision, INQUIRY_REVISION_LEN));
139
140 /*
141 * Set the VERSION DESCRIPTOR fields
142 */
143 put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SAM5, &buf[58]);
144 put_unaligned_be16(spc_find_scsi_transport_vd(tpg->proto_id), &buf[60]);
145 put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SPC4, &buf[62]);
146 if (cmd->se_dev->transport->get_device_type(dev) == TYPE_DISK)
147 put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SBC3, &buf[64]);
148
149 buf[4] = 91; /* Set additional length to 91 */
150
151 return 0;
152 }
153 EXPORT_SYMBOL(spc_emulate_inquiry_std);
154
155 /* unit serial number */
156 static sense_reason_t
spc_emulate_evpd_80(struct se_cmd * cmd,unsigned char * buf)157 spc_emulate_evpd_80(struct se_cmd *cmd, unsigned char *buf)
158 {
159 struct se_device *dev = cmd->se_dev;
160 u16 len;
161
162 if (dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL) {
163 len = sprintf(&buf[4], "%s", dev->t10_wwn.unit_serial);
164 len++; /* Extra Byte for NULL Terminator */
165 buf[3] = len;
166 }
167 return 0;
168 }
169
170 /*
171 * Generate NAA IEEE Registered Extended designator
172 */
spc_gen_naa_6h_vendor_specific(struct se_device * dev,unsigned char * buf)173 void spc_gen_naa_6h_vendor_specific(struct se_device *dev,
174 unsigned char *buf)
175 {
176 unsigned char *p = &dev->t10_wwn.unit_serial[0];
177 u32 company_id = dev->t10_wwn.company_id;
178 int cnt, off = 0;
179 bool next = true;
180
181 /*
182 * Start NAA IEEE Registered Extended Identifier/Designator
183 */
184 buf[off] = 0x6 << 4;
185
186 /* IEEE COMPANY_ID */
187 buf[off++] |= (company_id >> 20) & 0xf;
188 buf[off++] = (company_id >> 12) & 0xff;
189 buf[off++] = (company_id >> 4) & 0xff;
190 buf[off] = (company_id & 0xf) << 4;
191
192 /*
193 * Generate up to 36 bits of VENDOR SPECIFIC IDENTIFIER starting on
194 * byte 3 bit 3-0 for NAA IEEE Registered Extended DESIGNATOR field
195 * format, followed by 64 bits of VENDOR SPECIFIC IDENTIFIER EXTENSION
196 * to complete the payload. These are based from VPD=0x80 PRODUCT SERIAL
197 * NUMBER set via vpd_unit_serial in target_core_configfs.c to ensure
198 * per device uniqeness.
199 */
200 for (cnt = off + 13; *p && off < cnt; p++) {
201 int val = hex_to_bin(*p);
202
203 if (val < 0)
204 continue;
205
206 if (next) {
207 next = false;
208 buf[off++] |= val;
209 } else {
210 next = true;
211 buf[off] = val << 4;
212 }
213 }
214 }
215
216 /*
217 * Device identification VPD, for a complete list of
218 * DESIGNATOR TYPEs see spc4r17 Table 459.
219 */
220 sense_reason_t
spc_emulate_evpd_83(struct se_cmd * cmd,unsigned char * buf)221 spc_emulate_evpd_83(struct se_cmd *cmd, unsigned char *buf)
222 {
223 struct se_device *dev = cmd->se_dev;
224 struct se_lun *lun = cmd->se_lun;
225 struct se_portal_group *tpg = NULL;
226 struct t10_alua_lu_gp_member *lu_gp_mem;
227 struct t10_alua_tg_pt_gp *tg_pt_gp;
228 unsigned char *prod = &dev->t10_wwn.model[0];
229 u32 off = 0;
230 u16 len = 0, id_len;
231
232 off = 4;
233
234 /*
235 * NAA IEEE Registered Extended Assigned designator format, see
236 * spc4r17 section 7.7.3.6.5
237 *
238 * We depend upon a target_core_mod/ConfigFS provided
239 * /sys/kernel/config/target/core/$HBA/$DEV/wwn/vpd_unit_serial
240 * value in order to return the NAA id.
241 */
242 if (!(dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL))
243 goto check_t10_vend_desc;
244
245 /* CODE SET == Binary */
246 buf[off++] = 0x1;
247
248 /* Set ASSOCIATION == addressed logical unit: 0)b */
249 buf[off] = 0x00;
250
251 /* Identifier/Designator type == NAA identifier */
252 buf[off++] |= 0x3;
253 off++;
254
255 /* Identifier/Designator length */
256 buf[off++] = 0x10;
257
258 /* NAA IEEE Registered Extended designator */
259 spc_gen_naa_6h_vendor_specific(dev, &buf[off]);
260
261 len = 20;
262 off = (len + 4);
263
264 check_t10_vend_desc:
265 /*
266 * T10 Vendor Identifier Page, see spc4r17 section 7.7.3.4
267 */
268 id_len = 8; /* For Vendor field */
269
270 if (dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL)
271 id_len += sprintf(&buf[off+12], "%s:%s", prod,
272 &dev->t10_wwn.unit_serial[0]);
273 buf[off] = 0x2; /* ASCII */
274 buf[off+1] = 0x1; /* T10 Vendor ID */
275 buf[off+2] = 0x0;
276 /* left align Vendor ID and pad with spaces */
277 memset(&buf[off+4], 0x20, INQUIRY_VENDOR_LEN);
278 memcpy(&buf[off+4], dev->t10_wwn.vendor,
279 strnlen(dev->t10_wwn.vendor, INQUIRY_VENDOR_LEN));
280 /* Extra Byte for NULL Terminator */
281 id_len++;
282 /* Identifier Length */
283 buf[off+3] = id_len;
284 /* Header size for Designation descriptor */
285 len += (id_len + 4);
286 off += (id_len + 4);
287
288 if (1) {
289 struct t10_alua_lu_gp *lu_gp;
290 u32 padding, scsi_name_len, scsi_target_len;
291 u16 lu_gp_id = 0;
292 u16 tg_pt_gp_id = 0;
293 u16 tpgt;
294
295 tpg = lun->lun_tpg;
296 /*
297 * Relative target port identifer, see spc4r17
298 * section 7.7.3.7
299 *
300 * Get the PROTOCOL IDENTIFIER as defined by spc4r17
301 * section 7.5.1 Table 362
302 */
303 buf[off] = tpg->proto_id << 4;
304 buf[off++] |= 0x1; /* CODE SET == Binary */
305 buf[off] = 0x80; /* Set PIV=1 */
306 /* Set ASSOCIATION == target port: 01b */
307 buf[off] |= 0x10;
308 /* DESIGNATOR TYPE == Relative target port identifer */
309 buf[off++] |= 0x4;
310 off++; /* Skip over Reserved */
311 buf[off++] = 4; /* DESIGNATOR LENGTH */
312 /* Skip over Obsolete field in RTPI payload
313 * in Table 472 */
314 off += 2;
315 put_unaligned_be16(lun->lun_tpg->tpg_rtpi, &buf[off]);
316 off += 2;
317 len += 8; /* Header size + Designation descriptor */
318 /*
319 * Target port group identifier, see spc4r17
320 * section 7.7.3.8
321 *
322 * Get the PROTOCOL IDENTIFIER as defined by spc4r17
323 * section 7.5.1 Table 362
324 */
325 rcu_read_lock();
326 tg_pt_gp = rcu_dereference(lun->lun_tg_pt_gp);
327 if (!tg_pt_gp) {
328 rcu_read_unlock();
329 goto check_lu_gp;
330 }
331 tg_pt_gp_id = tg_pt_gp->tg_pt_gp_id;
332 rcu_read_unlock();
333
334 buf[off] = tpg->proto_id << 4;
335 buf[off++] |= 0x1; /* CODE SET == Binary */
336 buf[off] = 0x80; /* Set PIV=1 */
337 /* Set ASSOCIATION == target port: 01b */
338 buf[off] |= 0x10;
339 /* DESIGNATOR TYPE == Target port group identifier */
340 buf[off++] |= 0x5;
341 off++; /* Skip over Reserved */
342 buf[off++] = 4; /* DESIGNATOR LENGTH */
343 off += 2; /* Skip over Reserved Field */
344 put_unaligned_be16(tg_pt_gp_id, &buf[off]);
345 off += 2;
346 len += 8; /* Header size + Designation descriptor */
347 /*
348 * Logical Unit Group identifier, see spc4r17
349 * section 7.7.3.8
350 */
351 check_lu_gp:
352 lu_gp_mem = dev->dev_alua_lu_gp_mem;
353 if (!lu_gp_mem)
354 goto check_scsi_name;
355
356 spin_lock(&lu_gp_mem->lu_gp_mem_lock);
357 lu_gp = lu_gp_mem->lu_gp;
358 if (!lu_gp) {
359 spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
360 goto check_scsi_name;
361 }
362 lu_gp_id = lu_gp->lu_gp_id;
363 spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
364
365 buf[off++] |= 0x1; /* CODE SET == Binary */
366 /* DESIGNATOR TYPE == Logical Unit Group identifier */
367 buf[off++] |= 0x6;
368 off++; /* Skip over Reserved */
369 buf[off++] = 4; /* DESIGNATOR LENGTH */
370 off += 2; /* Skip over Reserved Field */
371 put_unaligned_be16(lu_gp_id, &buf[off]);
372 off += 2;
373 len += 8; /* Header size + Designation descriptor */
374 /*
375 * SCSI name string designator, see spc4r17
376 * section 7.7.3.11
377 *
378 * Get the PROTOCOL IDENTIFIER as defined by spc4r17
379 * section 7.5.1 Table 362
380 */
381 check_scsi_name:
382 buf[off] = tpg->proto_id << 4;
383 buf[off++] |= 0x3; /* CODE SET == UTF-8 */
384 buf[off] = 0x80; /* Set PIV=1 */
385 /* Set ASSOCIATION == target port: 01b */
386 buf[off] |= 0x10;
387 /* DESIGNATOR TYPE == SCSI name string */
388 buf[off++] |= 0x8;
389 off += 2; /* Skip over Reserved and length */
390 /*
391 * SCSI name string identifer containing, $FABRIC_MOD
392 * dependent information. For LIO-Target and iSCSI
393 * Target Port, this means "<iSCSI name>,t,0x<TPGT> in
394 * UTF-8 encoding.
395 */
396 tpgt = tpg->se_tpg_tfo->tpg_get_tag(tpg);
397 scsi_name_len = sprintf(&buf[off], "%s,t,0x%04x",
398 tpg->se_tpg_tfo->tpg_get_wwn(tpg), tpgt);
399 scsi_name_len += 1 /* Include NULL terminator */;
400 /*
401 * The null-terminated, null-padded (see 4.4.2) SCSI
402 * NAME STRING field contains a UTF-8 format string.
403 * The number of bytes in the SCSI NAME STRING field
404 * (i.e., the value in the DESIGNATOR LENGTH field)
405 * shall be no larger than 256 and shall be a multiple
406 * of four.
407 */
408 padding = ((-scsi_name_len) & 3);
409 if (padding)
410 scsi_name_len += padding;
411 if (scsi_name_len > 256)
412 scsi_name_len = 256;
413
414 buf[off-1] = scsi_name_len;
415 off += scsi_name_len;
416 /* Header size + Designation descriptor */
417 len += (scsi_name_len + 4);
418
419 /*
420 * Target device designator
421 */
422 buf[off] = tpg->proto_id << 4;
423 buf[off++] |= 0x3; /* CODE SET == UTF-8 */
424 buf[off] = 0x80; /* Set PIV=1 */
425 /* Set ASSOCIATION == target device: 10b */
426 buf[off] |= 0x20;
427 /* DESIGNATOR TYPE == SCSI name string */
428 buf[off++] |= 0x8;
429 off += 2; /* Skip over Reserved and length */
430 /*
431 * SCSI name string identifer containing, $FABRIC_MOD
432 * dependent information. For LIO-Target and iSCSI
433 * Target Port, this means "<iSCSI name>" in
434 * UTF-8 encoding.
435 */
436 scsi_target_len = sprintf(&buf[off], "%s",
437 tpg->se_tpg_tfo->tpg_get_wwn(tpg));
438 scsi_target_len += 1 /* Include NULL terminator */;
439 /*
440 * The null-terminated, null-padded (see 4.4.2) SCSI
441 * NAME STRING field contains a UTF-8 format string.
442 * The number of bytes in the SCSI NAME STRING field
443 * (i.e., the value in the DESIGNATOR LENGTH field)
444 * shall be no larger than 256 and shall be a multiple
445 * of four.
446 */
447 padding = ((-scsi_target_len) & 3);
448 if (padding)
449 scsi_target_len += padding;
450 if (scsi_target_len > 256)
451 scsi_target_len = 256;
452
453 buf[off-1] = scsi_target_len;
454 off += scsi_target_len;
455
456 /* Header size + Designation descriptor */
457 len += (scsi_target_len + 4);
458 }
459 put_unaligned_be16(len, &buf[2]); /* Page Length for VPD 0x83 */
460 return 0;
461 }
462 EXPORT_SYMBOL(spc_emulate_evpd_83);
463
464 /* Extended INQUIRY Data VPD Page */
465 static sense_reason_t
spc_emulate_evpd_86(struct se_cmd * cmd,unsigned char * buf)466 spc_emulate_evpd_86(struct se_cmd *cmd, unsigned char *buf)
467 {
468 struct se_device *dev = cmd->se_dev;
469 struct se_session *sess = cmd->se_sess;
470
471 buf[3] = 0x3c;
472 /*
473 * Set GRD_CHK + REF_CHK for TYPE1 protection, or GRD_CHK
474 * only for TYPE3 protection.
475 */
476 if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
477 if (dev->dev_attrib.pi_prot_type == TARGET_DIF_TYPE1_PROT ||
478 cmd->se_sess->sess_prot_type == TARGET_DIF_TYPE1_PROT)
479 buf[4] = 0x5;
480 else if (dev->dev_attrib.pi_prot_type == TARGET_DIF_TYPE3_PROT ||
481 cmd->se_sess->sess_prot_type == TARGET_DIF_TYPE3_PROT)
482 buf[4] = 0x4;
483 }
484
485 /* logical unit supports type 1 and type 3 protection */
486 if ((dev->transport->get_device_type(dev) == TYPE_DISK) &&
487 (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) &&
488 (dev->dev_attrib.pi_prot_type || cmd->se_sess->sess_prot_type)) {
489 buf[4] |= (0x3 << 3);
490 }
491
492 /* Set HEADSUP, ORDSUP, SIMPSUP */
493 buf[5] = 0x07;
494
495 /* If WriteCache emulation is enabled, set V_SUP */
496 if (target_check_wce(dev))
497 buf[6] = 0x01;
498 /* If an LBA map is present set R_SUP */
499 spin_lock(&cmd->se_dev->t10_alua.lba_map_lock);
500 if (!list_empty(&dev->t10_alua.lba_map_list))
501 buf[8] = 0x10;
502 spin_unlock(&cmd->se_dev->t10_alua.lba_map_lock);
503 return 0;
504 }
505
506 /* Block Limits VPD page */
507 static sense_reason_t
spc_emulate_evpd_b0(struct se_cmd * cmd,unsigned char * buf)508 spc_emulate_evpd_b0(struct se_cmd *cmd, unsigned char *buf)
509 {
510 struct se_device *dev = cmd->se_dev;
511 u32 mtl = 0;
512 int have_tp = 0, opt, min;
513 u32 io_max_blocks;
514
515 /*
516 * Following spc3r22 section 6.5.3 Block Limits VPD page, when
517 * emulate_tpu=1 or emulate_tpws=1 we will be expect a
518 * different page length for Thin Provisioning.
519 */
520 if (dev->dev_attrib.emulate_tpu || dev->dev_attrib.emulate_tpws)
521 have_tp = 1;
522
523 buf[0] = dev->transport->get_device_type(dev);
524 buf[3] = have_tp ? 0x3c : 0x10;
525
526 /* Set WSNZ to 1 */
527 buf[4] = 0x01;
528 /*
529 * Set MAXIMUM COMPARE AND WRITE LENGTH
530 */
531 if (dev->dev_attrib.emulate_caw)
532 buf[5] = 0x01;
533
534 /*
535 * Set OPTIMAL TRANSFER LENGTH GRANULARITY
536 */
537 if (dev->transport->get_io_min && (min = dev->transport->get_io_min(dev)))
538 put_unaligned_be16(min / dev->dev_attrib.block_size, &buf[6]);
539 else
540 put_unaligned_be16(1, &buf[6]);
541
542 /*
543 * Set MAXIMUM TRANSFER LENGTH
544 *
545 * XXX: Currently assumes single PAGE_SIZE per scatterlist for fabrics
546 * enforcing maximum HW scatter-gather-list entry limit
547 */
548 if (cmd->se_tfo->max_data_sg_nents) {
549 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE) /
550 dev->dev_attrib.block_size;
551 }
552 io_max_blocks = mult_frac(dev->dev_attrib.hw_max_sectors,
553 dev->dev_attrib.hw_block_size,
554 dev->dev_attrib.block_size);
555 put_unaligned_be32(min_not_zero(mtl, io_max_blocks), &buf[8]);
556
557 /*
558 * Set OPTIMAL TRANSFER LENGTH
559 */
560 if (dev->transport->get_io_opt && (opt = dev->transport->get_io_opt(dev)))
561 put_unaligned_be32(opt / dev->dev_attrib.block_size, &buf[12]);
562 else
563 put_unaligned_be32(dev->dev_attrib.optimal_sectors, &buf[12]);
564
565 /*
566 * Exit now if we don't support TP.
567 */
568 if (!have_tp)
569 goto max_write_same;
570
571 /*
572 * Set MAXIMUM UNMAP LBA COUNT
573 */
574 put_unaligned_be32(dev->dev_attrib.max_unmap_lba_count, &buf[20]);
575
576 /*
577 * Set MAXIMUM UNMAP BLOCK DESCRIPTOR COUNT
578 */
579 put_unaligned_be32(dev->dev_attrib.max_unmap_block_desc_count,
580 &buf[24]);
581
582 /*
583 * Set OPTIMAL UNMAP GRANULARITY
584 */
585 put_unaligned_be32(dev->dev_attrib.unmap_granularity, &buf[28]);
586
587 /*
588 * UNMAP GRANULARITY ALIGNMENT
589 */
590 put_unaligned_be32(dev->dev_attrib.unmap_granularity_alignment,
591 &buf[32]);
592 if (dev->dev_attrib.unmap_granularity_alignment != 0)
593 buf[32] |= 0x80; /* Set the UGAVALID bit */
594
595 /*
596 * MAXIMUM WRITE SAME LENGTH
597 */
598 max_write_same:
599 put_unaligned_be64(dev->dev_attrib.max_write_same_len, &buf[36]);
600
601 return 0;
602 }
603
604 /* Block Device Characteristics VPD page */
605 static sense_reason_t
spc_emulate_evpd_b1(struct se_cmd * cmd,unsigned char * buf)606 spc_emulate_evpd_b1(struct se_cmd *cmd, unsigned char *buf)
607 {
608 struct se_device *dev = cmd->se_dev;
609
610 buf[0] = dev->transport->get_device_type(dev);
611 buf[3] = 0x3c;
612 buf[5] = dev->dev_attrib.is_nonrot ? 1 : 0;
613
614 return 0;
615 }
616
617 /* Thin Provisioning VPD */
618 static sense_reason_t
spc_emulate_evpd_b2(struct se_cmd * cmd,unsigned char * buf)619 spc_emulate_evpd_b2(struct se_cmd *cmd, unsigned char *buf)
620 {
621 struct se_device *dev = cmd->se_dev;
622
623 /*
624 * From spc3r22 section 6.5.4 Thin Provisioning VPD page:
625 *
626 * The PAGE LENGTH field is defined in SPC-4. If the DP bit is set to
627 * zero, then the page length shall be set to 0004h. If the DP bit
628 * is set to one, then the page length shall be set to the value
629 * defined in table 162.
630 */
631 buf[0] = dev->transport->get_device_type(dev);
632
633 /*
634 * Set Hardcoded length mentioned above for DP=0
635 */
636 put_unaligned_be16(0x0004, &buf[2]);
637
638 /*
639 * The THRESHOLD EXPONENT field indicates the threshold set size in
640 * LBAs as a power of 2 (i.e., the threshold set size is equal to
641 * 2(threshold exponent)).
642 *
643 * Note that this is currently set to 0x00 as mkp says it will be
644 * changing again. We can enable this once it has settled in T10
645 * and is actually used by Linux/SCSI ML code.
646 */
647 buf[4] = 0x00;
648
649 /*
650 * A TPU bit set to one indicates that the device server supports
651 * the UNMAP command (see 5.25). A TPU bit set to zero indicates
652 * that the device server does not support the UNMAP command.
653 */
654 if (dev->dev_attrib.emulate_tpu != 0)
655 buf[5] = 0x80;
656
657 /*
658 * A TPWS bit set to one indicates that the device server supports
659 * the use of the WRITE SAME (16) command (see 5.42) to unmap LBAs.
660 * A TPWS bit set to zero indicates that the device server does not
661 * support the use of the WRITE SAME (16) command to unmap LBAs.
662 */
663 if (dev->dev_attrib.emulate_tpws != 0)
664 buf[5] |= 0x40 | 0x20;
665
666 /*
667 * The unmap_zeroes_data set means that the underlying device supports
668 * REQ_OP_DISCARD and has the discard_zeroes_data bit set. This
669 * satisfies the SBC requirements for LBPRZ, meaning that a subsequent
670 * read will return zeroes after an UNMAP or WRITE SAME (16) to an LBA
671 * See sbc4r36 6.6.4.
672 */
673 if (((dev->dev_attrib.emulate_tpu != 0) ||
674 (dev->dev_attrib.emulate_tpws != 0)) &&
675 (dev->dev_attrib.unmap_zeroes_data != 0))
676 buf[5] |= 0x04;
677
678 return 0;
679 }
680
681 /* Referrals VPD page */
682 static sense_reason_t
spc_emulate_evpd_b3(struct se_cmd * cmd,unsigned char * buf)683 spc_emulate_evpd_b3(struct se_cmd *cmd, unsigned char *buf)
684 {
685 struct se_device *dev = cmd->se_dev;
686
687 buf[0] = dev->transport->get_device_type(dev);
688 buf[3] = 0x0c;
689 put_unaligned_be32(dev->t10_alua.lba_map_segment_size, &buf[8]);
690 put_unaligned_be32(dev->t10_alua.lba_map_segment_multiplier, &buf[12]);
691
692 return 0;
693 }
694
695 static sense_reason_t
696 spc_emulate_evpd_00(struct se_cmd *cmd, unsigned char *buf);
697
698 static struct {
699 uint8_t page;
700 sense_reason_t (*emulate)(struct se_cmd *, unsigned char *);
701 } evpd_handlers[] = {
702 { .page = 0x00, .emulate = spc_emulate_evpd_00 },
703 { .page = 0x80, .emulate = spc_emulate_evpd_80 },
704 { .page = 0x83, .emulate = spc_emulate_evpd_83 },
705 { .page = 0x86, .emulate = spc_emulate_evpd_86 },
706 { .page = 0xb0, .emulate = spc_emulate_evpd_b0 },
707 { .page = 0xb1, .emulate = spc_emulate_evpd_b1 },
708 { .page = 0xb2, .emulate = spc_emulate_evpd_b2 },
709 { .page = 0xb3, .emulate = spc_emulate_evpd_b3 },
710 };
711
712 /* supported vital product data pages */
713 static sense_reason_t
spc_emulate_evpd_00(struct se_cmd * cmd,unsigned char * buf)714 spc_emulate_evpd_00(struct se_cmd *cmd, unsigned char *buf)
715 {
716 int p;
717
718 /*
719 * Only report the INQUIRY EVPD=1 pages after a valid NAA
720 * Registered Extended LUN WWN has been set via ConfigFS
721 * during device creation/restart.
722 */
723 if (cmd->se_dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL) {
724 buf[3] = ARRAY_SIZE(evpd_handlers);
725 for (p = 0; p < ARRAY_SIZE(evpd_handlers); ++p)
726 buf[p + 4] = evpd_handlers[p].page;
727 }
728
729 return 0;
730 }
731
732 static sense_reason_t
spc_emulate_inquiry(struct se_cmd * cmd)733 spc_emulate_inquiry(struct se_cmd *cmd)
734 {
735 struct se_device *dev = cmd->se_dev;
736 unsigned char *rbuf;
737 unsigned char *cdb = cmd->t_task_cdb;
738 unsigned char *buf;
739 sense_reason_t ret;
740 int p;
741 int len = 0;
742
743 buf = kzalloc(SE_INQUIRY_BUF, GFP_KERNEL);
744 if (!buf) {
745 pr_err("Unable to allocate response buffer for INQUIRY\n");
746 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
747 }
748
749 buf[0] = dev->transport->get_device_type(dev);
750
751 if (!(cdb[1] & 0x1)) {
752 if (cdb[2]) {
753 pr_err("INQUIRY with EVPD==0 but PAGE CODE=%02x\n",
754 cdb[2]);
755 ret = TCM_INVALID_CDB_FIELD;
756 goto out;
757 }
758
759 ret = spc_emulate_inquiry_std(cmd, buf);
760 len = buf[4] + 5;
761 goto out;
762 }
763
764 for (p = 0; p < ARRAY_SIZE(evpd_handlers); ++p) {
765 if (cdb[2] == evpd_handlers[p].page) {
766 buf[1] = cdb[2];
767 ret = evpd_handlers[p].emulate(cmd, buf);
768 len = get_unaligned_be16(&buf[2]) + 4;
769 goto out;
770 }
771 }
772
773 pr_debug("Unknown VPD Code: 0x%02x\n", cdb[2]);
774 ret = TCM_INVALID_CDB_FIELD;
775
776 out:
777 rbuf = transport_kmap_data_sg(cmd);
778 if (rbuf) {
779 memcpy(rbuf, buf, min_t(u32, SE_INQUIRY_BUF, cmd->data_length));
780 transport_kunmap_data_sg(cmd);
781 }
782 kfree(buf);
783
784 if (!ret)
785 target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, len);
786 return ret;
787 }
788
spc_modesense_rwrecovery(struct se_cmd * cmd,u8 pc,u8 * p)789 static int spc_modesense_rwrecovery(struct se_cmd *cmd, u8 pc, u8 *p)
790 {
791 p[0] = 0x01;
792 p[1] = 0x0a;
793
794 /* No changeable values for now */
795 if (pc == 1)
796 goto out;
797
798 out:
799 return 12;
800 }
801
spc_modesense_control(struct se_cmd * cmd,u8 pc,u8 * p)802 static int spc_modesense_control(struct se_cmd *cmd, u8 pc, u8 *p)
803 {
804 struct se_device *dev = cmd->se_dev;
805 struct se_session *sess = cmd->se_sess;
806
807 p[0] = 0x0a;
808 p[1] = 0x0a;
809
810 /* No changeable values for now */
811 if (pc == 1)
812 goto out;
813
814 /* GLTSD: No implicit save of log parameters */
815 p[2] = (1 << 1);
816 if (target_sense_desc_format(dev))
817 /* D_SENSE: Descriptor format sense data for 64bit sectors */
818 p[2] |= (1 << 2);
819
820 /*
821 * From spc4r23, 7.4.7 Control mode page
822 *
823 * The QUEUE ALGORITHM MODIFIER field (see table 368) specifies
824 * restrictions on the algorithm used for reordering commands
825 * having the SIMPLE task attribute (see SAM-4).
826 *
827 * Table 368 -- QUEUE ALGORITHM MODIFIER field
828 * Code Description
829 * 0h Restricted reordering
830 * 1h Unrestricted reordering allowed
831 * 2h to 7h Reserved
832 * 8h to Fh Vendor specific
833 *
834 * A value of zero in the QUEUE ALGORITHM MODIFIER field specifies that
835 * the device server shall order the processing sequence of commands
836 * having the SIMPLE task attribute such that data integrity is maintained
837 * for that I_T nexus (i.e., if the transmission of new SCSI transport protocol
838 * requests is halted at any time, the final value of all data observable
839 * on the medium shall be the same as if all the commands had been processed
840 * with the ORDERED task attribute).
841 *
842 * A value of one in the QUEUE ALGORITHM MODIFIER field specifies that the
843 * device server may reorder the processing sequence of commands having the
844 * SIMPLE task attribute in any manner. Any data integrity exposures related to
845 * command sequence order shall be explicitly handled by the application client
846 * through the selection of appropriate ommands and task attributes.
847 */
848 p[3] = (dev->dev_attrib.emulate_rest_reord == 1) ? 0x00 : 0x10;
849 /*
850 * From spc4r17, section 7.4.6 Control mode Page
851 *
852 * Unit Attention interlocks control (UN_INTLCK_CTRL) to code 00b
853 *
854 * 00b: The logical unit shall clear any unit attention condition
855 * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
856 * status and shall not establish a unit attention condition when a com-
857 * mand is completed with BUSY, TASK SET FULL, or RESERVATION CONFLICT
858 * status.
859 *
860 * 10b: The logical unit shall not clear any unit attention condition
861 * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
862 * status and shall not establish a unit attention condition when
863 * a command is completed with BUSY, TASK SET FULL, or RESERVATION
864 * CONFLICT status.
865 *
866 * 11b a The logical unit shall not clear any unit attention condition
867 * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
868 * status and shall establish a unit attention condition for the
869 * initiator port associated with the I_T nexus on which the BUSY,
870 * TASK SET FULL, or RESERVATION CONFLICT status is being returned.
871 * Depending on the status, the additional sense code shall be set to
872 * PREVIOUS BUSY STATUS, PREVIOUS TASK SET FULL STATUS, or PREVIOUS
873 * RESERVATION CONFLICT STATUS. Until it is cleared by a REQUEST SENSE
874 * command, a unit attention condition shall be established only once
875 * for a BUSY, TASK SET FULL, or RESERVATION CONFLICT status regardless
876 * to the number of commands completed with one of those status codes.
877 */
878 switch (dev->dev_attrib.emulate_ua_intlck_ctrl) {
879 case TARGET_UA_INTLCK_CTRL_ESTABLISH_UA:
880 p[4] = 0x30;
881 break;
882 case TARGET_UA_INTLCK_CTRL_NO_CLEAR:
883 p[4] = 0x20;
884 break;
885 default: /* TARGET_UA_INTLCK_CTRL_CLEAR */
886 p[4] = 0x00;
887 break;
888 }
889 /*
890 * From spc4r17, section 7.4.6 Control mode Page
891 *
892 * Task Aborted Status (TAS) bit set to zero.
893 *
894 * A task aborted status (TAS) bit set to zero specifies that aborted
895 * tasks shall be terminated by the device server without any response
896 * to the application client. A TAS bit set to one specifies that tasks
897 * aborted by the actions of an I_T nexus other than the I_T nexus on
898 * which the command was received shall be completed with TASK ABORTED
899 * status (see SAM-4).
900 */
901 p[5] = (dev->dev_attrib.emulate_tas) ? 0x40 : 0x00;
902 /*
903 * From spc4r30, section 7.5.7 Control mode page
904 *
905 * Application Tag Owner (ATO) bit set to one.
906 *
907 * If the ATO bit is set to one the device server shall not modify the
908 * LOGICAL BLOCK APPLICATION TAG field and, depending on the protection
909 * type, shall not modify the contents of the LOGICAL BLOCK REFERENCE
910 * TAG field.
911 */
912 if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
913 if (dev->dev_attrib.pi_prot_type || sess->sess_prot_type)
914 p[5] |= 0x80;
915 }
916
917 p[8] = 0xff;
918 p[9] = 0xff;
919 p[11] = 30;
920
921 out:
922 return 12;
923 }
924
spc_modesense_caching(struct se_cmd * cmd,u8 pc,u8 * p)925 static int spc_modesense_caching(struct se_cmd *cmd, u8 pc, u8 *p)
926 {
927 struct se_device *dev = cmd->se_dev;
928
929 p[0] = 0x08;
930 p[1] = 0x12;
931
932 /* No changeable values for now */
933 if (pc == 1)
934 goto out;
935
936 if (target_check_wce(dev))
937 p[2] = 0x04; /* Write Cache Enable */
938 p[12] = 0x20; /* Disabled Read Ahead */
939
940 out:
941 return 20;
942 }
943
spc_modesense_informational_exceptions(struct se_cmd * cmd,u8 pc,unsigned char * p)944 static int spc_modesense_informational_exceptions(struct se_cmd *cmd, u8 pc, unsigned char *p)
945 {
946 p[0] = 0x1c;
947 p[1] = 0x0a;
948
949 /* No changeable values for now */
950 if (pc == 1)
951 goto out;
952
953 out:
954 return 12;
955 }
956
957 static struct {
958 uint8_t page;
959 uint8_t subpage;
960 int (*emulate)(struct se_cmd *, u8, unsigned char *);
961 } modesense_handlers[] = {
962 { .page = 0x01, .subpage = 0x00, .emulate = spc_modesense_rwrecovery },
963 { .page = 0x08, .subpage = 0x00, .emulate = spc_modesense_caching },
964 { .page = 0x0a, .subpage = 0x00, .emulate = spc_modesense_control },
965 { .page = 0x1c, .subpage = 0x00, .emulate = spc_modesense_informational_exceptions },
966 };
967
spc_modesense_write_protect(unsigned char * buf,int type)968 static void spc_modesense_write_protect(unsigned char *buf, int type)
969 {
970 /*
971 * I believe that the WP bit (bit 7) in the mode header is the same for
972 * all device types..
973 */
974 switch (type) {
975 case TYPE_DISK:
976 case TYPE_TAPE:
977 default:
978 buf[0] |= 0x80; /* WP bit */
979 break;
980 }
981 }
982
spc_modesense_dpofua(unsigned char * buf,int type)983 static void spc_modesense_dpofua(unsigned char *buf, int type)
984 {
985 switch (type) {
986 case TYPE_DISK:
987 buf[0] |= 0x10; /* DPOFUA bit */
988 break;
989 default:
990 break;
991 }
992 }
993
spc_modesense_blockdesc(unsigned char * buf,u64 blocks,u32 block_size)994 static int spc_modesense_blockdesc(unsigned char *buf, u64 blocks, u32 block_size)
995 {
996 *buf++ = 8;
997 put_unaligned_be32(min(blocks, 0xffffffffull), buf);
998 buf += 4;
999 put_unaligned_be32(block_size, buf);
1000 return 9;
1001 }
1002
spc_modesense_long_blockdesc(unsigned char * buf,u64 blocks,u32 block_size)1003 static int spc_modesense_long_blockdesc(unsigned char *buf, u64 blocks, u32 block_size)
1004 {
1005 if (blocks <= 0xffffffff)
1006 return spc_modesense_blockdesc(buf + 3, blocks, block_size) + 3;
1007
1008 *buf++ = 1; /* LONGLBA */
1009 buf += 2;
1010 *buf++ = 16;
1011 put_unaligned_be64(blocks, buf);
1012 buf += 12;
1013 put_unaligned_be32(block_size, buf);
1014
1015 return 17;
1016 }
1017
spc_emulate_modesense(struct se_cmd * cmd)1018 static sense_reason_t spc_emulate_modesense(struct se_cmd *cmd)
1019 {
1020 struct se_device *dev = cmd->se_dev;
1021 char *cdb = cmd->t_task_cdb;
1022 unsigned char buf[SE_MODE_PAGE_BUF], *rbuf;
1023 int type = dev->transport->get_device_type(dev);
1024 int ten = (cmd->t_task_cdb[0] == MODE_SENSE_10);
1025 bool dbd = !!(cdb[1] & 0x08);
1026 bool llba = ten ? !!(cdb[1] & 0x10) : false;
1027 u8 pc = cdb[2] >> 6;
1028 u8 page = cdb[2] & 0x3f;
1029 u8 subpage = cdb[3];
1030 int length = 0;
1031 int ret;
1032 int i;
1033
1034 memset(buf, 0, SE_MODE_PAGE_BUF);
1035
1036 /*
1037 * Skip over MODE DATA LENGTH + MEDIUM TYPE fields to byte 3 for
1038 * MODE_SENSE_10 and byte 2 for MODE_SENSE (6).
1039 */
1040 length = ten ? 3 : 2;
1041
1042 /* DEVICE-SPECIFIC PARAMETER */
1043 if (cmd->se_lun->lun_access_ro || target_lun_is_rdonly(cmd))
1044 spc_modesense_write_protect(&buf[length], type);
1045
1046 /*
1047 * SBC only allows us to enable FUA and DPO together. Fortunately
1048 * DPO is explicitly specified as a hint, so a noop is a perfectly
1049 * valid implementation.
1050 */
1051 if (target_check_fua(dev))
1052 spc_modesense_dpofua(&buf[length], type);
1053
1054 ++length;
1055
1056 /* BLOCK DESCRIPTOR */
1057
1058 /*
1059 * For now we only include a block descriptor for disk (SBC)
1060 * devices; other command sets use a slightly different format.
1061 */
1062 if (!dbd && type == TYPE_DISK) {
1063 u64 blocks = dev->transport->get_blocks(dev);
1064 u32 block_size = dev->dev_attrib.block_size;
1065
1066 if (ten) {
1067 if (llba) {
1068 length += spc_modesense_long_blockdesc(&buf[length],
1069 blocks, block_size);
1070 } else {
1071 length += 3;
1072 length += spc_modesense_blockdesc(&buf[length],
1073 blocks, block_size);
1074 }
1075 } else {
1076 length += spc_modesense_blockdesc(&buf[length], blocks,
1077 block_size);
1078 }
1079 } else {
1080 if (ten)
1081 length += 4;
1082 else
1083 length += 1;
1084 }
1085
1086 if (page == 0x3f) {
1087 if (subpage != 0x00 && subpage != 0xff) {
1088 pr_warn("MODE_SENSE: Invalid subpage code: 0x%02x\n", subpage);
1089 return TCM_INVALID_CDB_FIELD;
1090 }
1091
1092 for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i) {
1093 /*
1094 * Tricky way to say all subpage 00h for
1095 * subpage==0, all subpages for subpage==0xff
1096 * (and we just checked above that those are
1097 * the only two possibilities).
1098 */
1099 if ((modesense_handlers[i].subpage & ~subpage) == 0) {
1100 ret = modesense_handlers[i].emulate(cmd, pc, &buf[length]);
1101 if (!ten && length + ret >= 255)
1102 break;
1103 length += ret;
1104 }
1105 }
1106
1107 goto set_length;
1108 }
1109
1110 for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i)
1111 if (modesense_handlers[i].page == page &&
1112 modesense_handlers[i].subpage == subpage) {
1113 length += modesense_handlers[i].emulate(cmd, pc, &buf[length]);
1114 goto set_length;
1115 }
1116
1117 /*
1118 * We don't intend to implement:
1119 * - obsolete page 03h "format parameters" (checked by Solaris)
1120 */
1121 if (page != 0x03)
1122 pr_err("MODE SENSE: unimplemented page/subpage: 0x%02x/0x%02x\n",
1123 page, subpage);
1124
1125 return TCM_UNKNOWN_MODE_PAGE;
1126
1127 set_length:
1128 if (ten)
1129 put_unaligned_be16(length - 2, buf);
1130 else
1131 buf[0] = length - 1;
1132
1133 rbuf = transport_kmap_data_sg(cmd);
1134 if (rbuf) {
1135 memcpy(rbuf, buf, min_t(u32, SE_MODE_PAGE_BUF, cmd->data_length));
1136 transport_kunmap_data_sg(cmd);
1137 }
1138
1139 target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, length);
1140 return 0;
1141 }
1142
spc_emulate_modeselect(struct se_cmd * cmd)1143 static sense_reason_t spc_emulate_modeselect(struct se_cmd *cmd)
1144 {
1145 char *cdb = cmd->t_task_cdb;
1146 bool ten = cdb[0] == MODE_SELECT_10;
1147 int off = ten ? 8 : 4;
1148 bool pf = !!(cdb[1] & 0x10);
1149 u8 page, subpage;
1150 unsigned char *buf;
1151 unsigned char tbuf[SE_MODE_PAGE_BUF];
1152 int length;
1153 sense_reason_t ret = 0;
1154 int i;
1155
1156 if (!cmd->data_length) {
1157 target_complete_cmd(cmd, SAM_STAT_GOOD);
1158 return 0;
1159 }
1160
1161 if (cmd->data_length < off + 2)
1162 return TCM_PARAMETER_LIST_LENGTH_ERROR;
1163
1164 buf = transport_kmap_data_sg(cmd);
1165 if (!buf)
1166 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1167
1168 if (!pf) {
1169 ret = TCM_INVALID_CDB_FIELD;
1170 goto out;
1171 }
1172
1173 page = buf[off] & 0x3f;
1174 subpage = buf[off] & 0x40 ? buf[off + 1] : 0;
1175
1176 for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i)
1177 if (modesense_handlers[i].page == page &&
1178 modesense_handlers[i].subpage == subpage) {
1179 memset(tbuf, 0, SE_MODE_PAGE_BUF);
1180 length = modesense_handlers[i].emulate(cmd, 0, tbuf);
1181 goto check_contents;
1182 }
1183
1184 ret = TCM_UNKNOWN_MODE_PAGE;
1185 goto out;
1186
1187 check_contents:
1188 if (cmd->data_length < off + length) {
1189 ret = TCM_PARAMETER_LIST_LENGTH_ERROR;
1190 goto out;
1191 }
1192
1193 if (memcmp(buf + off, tbuf, length))
1194 ret = TCM_INVALID_PARAMETER_LIST;
1195
1196 out:
1197 transport_kunmap_data_sg(cmd);
1198
1199 if (!ret)
1200 target_complete_cmd(cmd, SAM_STAT_GOOD);
1201 return ret;
1202 }
1203
spc_emulate_request_sense(struct se_cmd * cmd)1204 static sense_reason_t spc_emulate_request_sense(struct se_cmd *cmd)
1205 {
1206 unsigned char *cdb = cmd->t_task_cdb;
1207 unsigned char *rbuf;
1208 u8 ua_asc = 0, ua_ascq = 0;
1209 unsigned char buf[SE_SENSE_BUF];
1210 bool desc_format = target_sense_desc_format(cmd->se_dev);
1211
1212 memset(buf, 0, SE_SENSE_BUF);
1213
1214 if (cdb[1] & 0x01) {
1215 pr_err("REQUEST_SENSE description emulation not"
1216 " supported\n");
1217 return TCM_INVALID_CDB_FIELD;
1218 }
1219
1220 rbuf = transport_kmap_data_sg(cmd);
1221 if (!rbuf)
1222 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1223
1224 if (!core_scsi3_ua_clear_for_request_sense(cmd, &ua_asc, &ua_ascq))
1225 scsi_build_sense_buffer(desc_format, buf, UNIT_ATTENTION,
1226 ua_asc, ua_ascq);
1227 else
1228 scsi_build_sense_buffer(desc_format, buf, NO_SENSE, 0x0, 0x0);
1229
1230 memcpy(rbuf, buf, min_t(u32, sizeof(buf), cmd->data_length));
1231 transport_kunmap_data_sg(cmd);
1232
1233 target_complete_cmd(cmd, SAM_STAT_GOOD);
1234 return 0;
1235 }
1236
spc_emulate_report_luns(struct se_cmd * cmd)1237 sense_reason_t spc_emulate_report_luns(struct se_cmd *cmd)
1238 {
1239 struct se_dev_entry *deve;
1240 struct se_session *sess = cmd->se_sess;
1241 struct se_node_acl *nacl;
1242 struct scsi_lun slun;
1243 unsigned char *buf;
1244 u32 lun_count = 0, offset = 8;
1245 __be32 len;
1246
1247 buf = transport_kmap_data_sg(cmd);
1248 if (cmd->data_length && !buf)
1249 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1250
1251 /*
1252 * If no struct se_session pointer is present, this struct se_cmd is
1253 * coming via a target_core_mod PASSTHROUGH op, and not through
1254 * a $FABRIC_MOD. In that case, report LUN=0 only.
1255 */
1256 if (!sess)
1257 goto done;
1258
1259 nacl = sess->se_node_acl;
1260
1261 rcu_read_lock();
1262 hlist_for_each_entry_rcu(deve, &nacl->lun_entry_hlist, link) {
1263 /*
1264 * We determine the correct LUN LIST LENGTH even once we
1265 * have reached the initial allocation length.
1266 * See SPC2-R20 7.19.
1267 */
1268 lun_count++;
1269 if (offset >= cmd->data_length)
1270 continue;
1271
1272 int_to_scsilun(deve->mapped_lun, &slun);
1273 memcpy(buf + offset, &slun,
1274 min(8u, cmd->data_length - offset));
1275 offset += 8;
1276 }
1277 rcu_read_unlock();
1278
1279 /*
1280 * See SPC3 r07, page 159.
1281 */
1282 done:
1283 /*
1284 * If no LUNs are accessible, report virtual LUN 0.
1285 */
1286 if (lun_count == 0) {
1287 int_to_scsilun(0, &slun);
1288 if (cmd->data_length > 8)
1289 memcpy(buf + offset, &slun,
1290 min(8u, cmd->data_length - offset));
1291 lun_count = 1;
1292 }
1293
1294 if (buf) {
1295 len = cpu_to_be32(lun_count * 8);
1296 memcpy(buf, &len, min_t(int, sizeof len, cmd->data_length));
1297 transport_kunmap_data_sg(cmd);
1298 }
1299
1300 target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, 8 + lun_count * 8);
1301 return 0;
1302 }
1303 EXPORT_SYMBOL(spc_emulate_report_luns);
1304
1305 static sense_reason_t
spc_emulate_testunitready(struct se_cmd * cmd)1306 spc_emulate_testunitready(struct se_cmd *cmd)
1307 {
1308 target_complete_cmd(cmd, SAM_STAT_GOOD);
1309 return 0;
1310 }
1311
set_dpofua_usage_bits(u8 * usage_bits,struct se_device * dev)1312 static void set_dpofua_usage_bits(u8 *usage_bits, struct se_device *dev)
1313 {
1314 if (!target_check_fua(dev))
1315 usage_bits[1] &= ~0x18;
1316 else
1317 usage_bits[1] |= 0x18;
1318 }
1319
set_dpofua_usage_bits32(u8 * usage_bits,struct se_device * dev)1320 static void set_dpofua_usage_bits32(u8 *usage_bits, struct se_device *dev)
1321 {
1322 if (!target_check_fua(dev))
1323 usage_bits[10] &= ~0x18;
1324 else
1325 usage_bits[10] |= 0x18;
1326 }
1327
1328 static struct target_opcode_descriptor tcm_opcode_read6 = {
1329 .support = SCSI_SUPPORT_FULL,
1330 .opcode = READ_6,
1331 .cdb_size = 6,
1332 .usage_bits = {READ_6, 0x1f, 0xff, 0xff,
1333 0xff, SCSI_CONTROL_MASK},
1334 };
1335
1336 static struct target_opcode_descriptor tcm_opcode_read10 = {
1337 .support = SCSI_SUPPORT_FULL,
1338 .opcode = READ_10,
1339 .cdb_size = 10,
1340 .usage_bits = {READ_10, 0xf8, 0xff, 0xff,
1341 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1342 0xff, SCSI_CONTROL_MASK},
1343 .update_usage_bits = set_dpofua_usage_bits,
1344 };
1345
1346 static struct target_opcode_descriptor tcm_opcode_read12 = {
1347 .support = SCSI_SUPPORT_FULL,
1348 .opcode = READ_12,
1349 .cdb_size = 12,
1350 .usage_bits = {READ_12, 0xf8, 0xff, 0xff,
1351 0xff, 0xff, 0xff, 0xff,
1352 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1353 .update_usage_bits = set_dpofua_usage_bits,
1354 };
1355
1356 static struct target_opcode_descriptor tcm_opcode_read16 = {
1357 .support = SCSI_SUPPORT_FULL,
1358 .opcode = READ_16,
1359 .cdb_size = 16,
1360 .usage_bits = {READ_16, 0xf8, 0xff, 0xff,
1361 0xff, 0xff, 0xff, 0xff,
1362 0xff, 0xff, 0xff, 0xff,
1363 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1364 .update_usage_bits = set_dpofua_usage_bits,
1365 };
1366
1367 static struct target_opcode_descriptor tcm_opcode_write6 = {
1368 .support = SCSI_SUPPORT_FULL,
1369 .opcode = WRITE_6,
1370 .cdb_size = 6,
1371 .usage_bits = {WRITE_6, 0x1f, 0xff, 0xff,
1372 0xff, SCSI_CONTROL_MASK},
1373 };
1374
1375 static struct target_opcode_descriptor tcm_opcode_write10 = {
1376 .support = SCSI_SUPPORT_FULL,
1377 .opcode = WRITE_10,
1378 .cdb_size = 10,
1379 .usage_bits = {WRITE_10, 0xf8, 0xff, 0xff,
1380 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1381 0xff, SCSI_CONTROL_MASK},
1382 .update_usage_bits = set_dpofua_usage_bits,
1383 };
1384
1385 static struct target_opcode_descriptor tcm_opcode_write_verify10 = {
1386 .support = SCSI_SUPPORT_FULL,
1387 .opcode = WRITE_VERIFY,
1388 .cdb_size = 10,
1389 .usage_bits = {WRITE_VERIFY, 0xf0, 0xff, 0xff,
1390 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1391 0xff, SCSI_CONTROL_MASK},
1392 .update_usage_bits = set_dpofua_usage_bits,
1393 };
1394
1395 static struct target_opcode_descriptor tcm_opcode_write12 = {
1396 .support = SCSI_SUPPORT_FULL,
1397 .opcode = WRITE_12,
1398 .cdb_size = 12,
1399 .usage_bits = {WRITE_12, 0xf8, 0xff, 0xff,
1400 0xff, 0xff, 0xff, 0xff,
1401 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1402 .update_usage_bits = set_dpofua_usage_bits,
1403 };
1404
1405 static struct target_opcode_descriptor tcm_opcode_write16 = {
1406 .support = SCSI_SUPPORT_FULL,
1407 .opcode = WRITE_16,
1408 .cdb_size = 16,
1409 .usage_bits = {WRITE_16, 0xf8, 0xff, 0xff,
1410 0xff, 0xff, 0xff, 0xff,
1411 0xff, 0xff, 0xff, 0xff,
1412 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1413 .update_usage_bits = set_dpofua_usage_bits,
1414 };
1415
1416 static struct target_opcode_descriptor tcm_opcode_write_verify16 = {
1417 .support = SCSI_SUPPORT_FULL,
1418 .opcode = WRITE_VERIFY_16,
1419 .cdb_size = 16,
1420 .usage_bits = {WRITE_VERIFY_16, 0xf0, 0xff, 0xff,
1421 0xff, 0xff, 0xff, 0xff,
1422 0xff, 0xff, 0xff, 0xff,
1423 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1424 .update_usage_bits = set_dpofua_usage_bits,
1425 };
1426
tcm_is_ws_enabled(struct target_opcode_descriptor * descr,struct se_cmd * cmd)1427 static bool tcm_is_ws_enabled(struct target_opcode_descriptor *descr,
1428 struct se_cmd *cmd)
1429 {
1430 struct exec_cmd_ops *ops = cmd->protocol_data;
1431 struct se_device *dev = cmd->se_dev;
1432
1433 return (dev->dev_attrib.emulate_tpws && !!ops->execute_unmap) ||
1434 !!ops->execute_write_same;
1435 }
1436
1437 static struct target_opcode_descriptor tcm_opcode_write_same32 = {
1438 .support = SCSI_SUPPORT_FULL,
1439 .serv_action_valid = 1,
1440 .opcode = VARIABLE_LENGTH_CMD,
1441 .service_action = WRITE_SAME_32,
1442 .cdb_size = 32,
1443 .usage_bits = {VARIABLE_LENGTH_CMD, SCSI_CONTROL_MASK, 0x00, 0x00,
1444 0x00, 0x00, SCSI_GROUP_NUMBER_MASK, 0x18,
1445 0x00, WRITE_SAME_32, 0xe8, 0x00,
1446 0xff, 0xff, 0xff, 0xff,
1447 0xff, 0xff, 0xff, 0xff,
1448 0x00, 0x00, 0x00, 0x00,
1449 0x00, 0x00, 0x00, 0x00,
1450 0xff, 0xff, 0xff, 0xff},
1451 .enabled = tcm_is_ws_enabled,
1452 .update_usage_bits = set_dpofua_usage_bits32,
1453 };
1454
tcm_is_caw_enabled(struct target_opcode_descriptor * descr,struct se_cmd * cmd)1455 static bool tcm_is_caw_enabled(struct target_opcode_descriptor *descr,
1456 struct se_cmd *cmd)
1457 {
1458 struct se_device *dev = cmd->se_dev;
1459
1460 return dev->dev_attrib.emulate_caw;
1461 }
1462
1463 static struct target_opcode_descriptor tcm_opcode_compare_write = {
1464 .support = SCSI_SUPPORT_FULL,
1465 .opcode = COMPARE_AND_WRITE,
1466 .cdb_size = 16,
1467 .usage_bits = {COMPARE_AND_WRITE, 0x18, 0xff, 0xff,
1468 0xff, 0xff, 0xff, 0xff,
1469 0xff, 0xff, 0x00, 0x00,
1470 0x00, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1471 .enabled = tcm_is_caw_enabled,
1472 .update_usage_bits = set_dpofua_usage_bits,
1473 };
1474
1475 static struct target_opcode_descriptor tcm_opcode_read_capacity = {
1476 .support = SCSI_SUPPORT_FULL,
1477 .opcode = READ_CAPACITY,
1478 .cdb_size = 10,
1479 .usage_bits = {READ_CAPACITY, 0x00, 0xff, 0xff,
1480 0xff, 0xff, 0x00, 0x00,
1481 0x01, SCSI_CONTROL_MASK},
1482 };
1483
1484 static struct target_opcode_descriptor tcm_opcode_read_capacity16 = {
1485 .support = SCSI_SUPPORT_FULL,
1486 .serv_action_valid = 1,
1487 .opcode = SERVICE_ACTION_IN_16,
1488 .service_action = SAI_READ_CAPACITY_16,
1489 .cdb_size = 16,
1490 .usage_bits = {SERVICE_ACTION_IN_16, SAI_READ_CAPACITY_16, 0x00, 0x00,
1491 0x00, 0x00, 0x00, 0x00,
1492 0x00, 0x00, 0xff, 0xff,
1493 0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1494 };
1495
tcm_is_rep_ref_enabled(struct target_opcode_descriptor * descr,struct se_cmd * cmd)1496 static bool tcm_is_rep_ref_enabled(struct target_opcode_descriptor *descr,
1497 struct se_cmd *cmd)
1498 {
1499 struct se_device *dev = cmd->se_dev;
1500
1501 spin_lock(&dev->t10_alua.lba_map_lock);
1502 if (list_empty(&dev->t10_alua.lba_map_list)) {
1503 spin_unlock(&dev->t10_alua.lba_map_lock);
1504 return false;
1505 }
1506 spin_unlock(&dev->t10_alua.lba_map_lock);
1507 return true;
1508 }
1509
1510 static struct target_opcode_descriptor tcm_opcode_read_report_refferals = {
1511 .support = SCSI_SUPPORT_FULL,
1512 .serv_action_valid = 1,
1513 .opcode = SERVICE_ACTION_IN_16,
1514 .service_action = SAI_REPORT_REFERRALS,
1515 .cdb_size = 16,
1516 .usage_bits = {SERVICE_ACTION_IN_16, SAI_REPORT_REFERRALS, 0x00, 0x00,
1517 0x00, 0x00, 0x00, 0x00,
1518 0x00, 0x00, 0xff, 0xff,
1519 0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1520 .enabled = tcm_is_rep_ref_enabled,
1521 };
1522
1523 static struct target_opcode_descriptor tcm_opcode_sync_cache = {
1524 .support = SCSI_SUPPORT_FULL,
1525 .opcode = SYNCHRONIZE_CACHE,
1526 .cdb_size = 10,
1527 .usage_bits = {SYNCHRONIZE_CACHE, 0x02, 0xff, 0xff,
1528 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1529 0xff, SCSI_CONTROL_MASK},
1530 };
1531
1532 static struct target_opcode_descriptor tcm_opcode_sync_cache16 = {
1533 .support = SCSI_SUPPORT_FULL,
1534 .opcode = SYNCHRONIZE_CACHE_16,
1535 .cdb_size = 16,
1536 .usage_bits = {SYNCHRONIZE_CACHE_16, 0x02, 0xff, 0xff,
1537 0xff, 0xff, 0xff, 0xff,
1538 0xff, 0xff, 0xff, 0xff,
1539 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1540 };
1541
tcm_is_unmap_enabled(struct target_opcode_descriptor * descr,struct se_cmd * cmd)1542 static bool tcm_is_unmap_enabled(struct target_opcode_descriptor *descr,
1543 struct se_cmd *cmd)
1544 {
1545 struct exec_cmd_ops *ops = cmd->protocol_data;
1546 struct se_device *dev = cmd->se_dev;
1547
1548 return ops->execute_unmap && dev->dev_attrib.emulate_tpu;
1549 }
1550
1551 static struct target_opcode_descriptor tcm_opcode_unmap = {
1552 .support = SCSI_SUPPORT_FULL,
1553 .opcode = UNMAP,
1554 .cdb_size = 10,
1555 .usage_bits = {UNMAP, 0x00, 0x00, 0x00,
1556 0x00, 0x00, SCSI_GROUP_NUMBER_MASK, 0xff,
1557 0xff, SCSI_CONTROL_MASK},
1558 .enabled = tcm_is_unmap_enabled,
1559 };
1560
1561 static struct target_opcode_descriptor tcm_opcode_write_same = {
1562 .support = SCSI_SUPPORT_FULL,
1563 .opcode = WRITE_SAME,
1564 .cdb_size = 10,
1565 .usage_bits = {WRITE_SAME, 0xe8, 0xff, 0xff,
1566 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1567 0xff, SCSI_CONTROL_MASK},
1568 .enabled = tcm_is_ws_enabled,
1569 };
1570
1571 static struct target_opcode_descriptor tcm_opcode_write_same16 = {
1572 .support = SCSI_SUPPORT_FULL,
1573 .opcode = WRITE_SAME_16,
1574 .cdb_size = 16,
1575 .usage_bits = {WRITE_SAME_16, 0xe8, 0xff, 0xff,
1576 0xff, 0xff, 0xff, 0xff,
1577 0xff, 0xff, 0xff, 0xff,
1578 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1579 .enabled = tcm_is_ws_enabled,
1580 };
1581
1582 static struct target_opcode_descriptor tcm_opcode_verify = {
1583 .support = SCSI_SUPPORT_FULL,
1584 .opcode = VERIFY,
1585 .cdb_size = 10,
1586 .usage_bits = {VERIFY, 0x00, 0xff, 0xff,
1587 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1588 0xff, SCSI_CONTROL_MASK},
1589 };
1590
1591 static struct target_opcode_descriptor tcm_opcode_verify16 = {
1592 .support = SCSI_SUPPORT_FULL,
1593 .opcode = VERIFY_16,
1594 .cdb_size = 16,
1595 .usage_bits = {VERIFY_16, 0x00, 0xff, 0xff,
1596 0xff, 0xff, 0xff, 0xff,
1597 0xff, 0xff, 0xff, 0xff,
1598 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1599 };
1600
1601 static struct target_opcode_descriptor tcm_opcode_start_stop = {
1602 .support = SCSI_SUPPORT_FULL,
1603 .opcode = START_STOP,
1604 .cdb_size = 6,
1605 .usage_bits = {START_STOP, 0x01, 0x00, 0x00,
1606 0x01, SCSI_CONTROL_MASK},
1607 };
1608
1609 static struct target_opcode_descriptor tcm_opcode_mode_select = {
1610 .support = SCSI_SUPPORT_FULL,
1611 .opcode = MODE_SELECT,
1612 .cdb_size = 6,
1613 .usage_bits = {MODE_SELECT, 0x10, 0x00, 0x00,
1614 0xff, SCSI_CONTROL_MASK},
1615 };
1616
1617 static struct target_opcode_descriptor tcm_opcode_mode_select10 = {
1618 .support = SCSI_SUPPORT_FULL,
1619 .opcode = MODE_SELECT_10,
1620 .cdb_size = 10,
1621 .usage_bits = {MODE_SELECT_10, 0x10, 0x00, 0x00,
1622 0x00, 0x00, 0x00, 0xff,
1623 0xff, SCSI_CONTROL_MASK},
1624 };
1625
1626 static struct target_opcode_descriptor tcm_opcode_mode_sense = {
1627 .support = SCSI_SUPPORT_FULL,
1628 .opcode = MODE_SENSE,
1629 .cdb_size = 6,
1630 .usage_bits = {MODE_SENSE, 0x08, 0xff, 0xff,
1631 0xff, SCSI_CONTROL_MASK},
1632 };
1633
1634 static struct target_opcode_descriptor tcm_opcode_mode_sense10 = {
1635 .support = SCSI_SUPPORT_FULL,
1636 .opcode = MODE_SENSE_10,
1637 .cdb_size = 10,
1638 .usage_bits = {MODE_SENSE_10, 0x18, 0xff, 0xff,
1639 0x00, 0x00, 0x00, 0xff,
1640 0xff, SCSI_CONTROL_MASK},
1641 };
1642
1643 static struct target_opcode_descriptor tcm_opcode_pri_read_keys = {
1644 .support = SCSI_SUPPORT_FULL,
1645 .serv_action_valid = 1,
1646 .opcode = PERSISTENT_RESERVE_IN,
1647 .service_action = PRI_READ_KEYS,
1648 .cdb_size = 10,
1649 .usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_KEYS, 0x00, 0x00,
1650 0x00, 0x00, 0x00, 0xff,
1651 0xff, SCSI_CONTROL_MASK},
1652 };
1653
1654 static struct target_opcode_descriptor tcm_opcode_pri_read_resrv = {
1655 .support = SCSI_SUPPORT_FULL,
1656 .serv_action_valid = 1,
1657 .opcode = PERSISTENT_RESERVE_IN,
1658 .service_action = PRI_READ_RESERVATION,
1659 .cdb_size = 10,
1660 .usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_RESERVATION, 0x00, 0x00,
1661 0x00, 0x00, 0x00, 0xff,
1662 0xff, SCSI_CONTROL_MASK},
1663 };
1664
tcm_is_pr_enabled(struct target_opcode_descriptor * descr,struct se_cmd * cmd)1665 static bool tcm_is_pr_enabled(struct target_opcode_descriptor *descr,
1666 struct se_cmd *cmd)
1667 {
1668 struct se_device *dev = cmd->se_dev;
1669
1670 if (!dev->dev_attrib.emulate_pr)
1671 return false;
1672
1673 if (!(dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH_PGR))
1674 return true;
1675
1676 switch (descr->opcode) {
1677 case RESERVE:
1678 case RESERVE_10:
1679 case RELEASE:
1680 case RELEASE_10:
1681 /*
1682 * The pr_ops which are used by the backend modules don't
1683 * support these commands.
1684 */
1685 return false;
1686 case PERSISTENT_RESERVE_OUT:
1687 switch (descr->service_action) {
1688 case PRO_REGISTER_AND_MOVE:
1689 case PRO_REPLACE_LOST_RESERVATION:
1690 /*
1691 * The backend modules don't have access to ports and
1692 * I_T nexuses so they can't handle these type of
1693 * requests.
1694 */
1695 return false;
1696 }
1697 break;
1698 case PERSISTENT_RESERVE_IN:
1699 if (descr->service_action == PRI_READ_FULL_STATUS)
1700 return false;
1701 break;
1702 }
1703
1704 return true;
1705 }
1706
1707 static struct target_opcode_descriptor tcm_opcode_pri_read_caps = {
1708 .support = SCSI_SUPPORT_FULL,
1709 .serv_action_valid = 1,
1710 .opcode = PERSISTENT_RESERVE_IN,
1711 .service_action = PRI_REPORT_CAPABILITIES,
1712 .cdb_size = 10,
1713 .usage_bits = {PERSISTENT_RESERVE_IN, PRI_REPORT_CAPABILITIES, 0x00, 0x00,
1714 0x00, 0x00, 0x00, 0xff,
1715 0xff, SCSI_CONTROL_MASK},
1716 .enabled = tcm_is_pr_enabled,
1717 };
1718
1719 static struct target_opcode_descriptor tcm_opcode_pri_read_full_status = {
1720 .support = SCSI_SUPPORT_FULL,
1721 .serv_action_valid = 1,
1722 .opcode = PERSISTENT_RESERVE_IN,
1723 .service_action = PRI_READ_FULL_STATUS,
1724 .cdb_size = 10,
1725 .usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_FULL_STATUS, 0x00, 0x00,
1726 0x00, 0x00, 0x00, 0xff,
1727 0xff, SCSI_CONTROL_MASK},
1728 .enabled = tcm_is_pr_enabled,
1729 };
1730
1731 static struct target_opcode_descriptor tcm_opcode_pro_register = {
1732 .support = SCSI_SUPPORT_FULL,
1733 .serv_action_valid = 1,
1734 .opcode = PERSISTENT_RESERVE_OUT,
1735 .service_action = PRO_REGISTER,
1736 .cdb_size = 10,
1737 .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_REGISTER, 0xff, 0x00,
1738 0x00, 0xff, 0xff, 0xff,
1739 0xff, SCSI_CONTROL_MASK},
1740 .enabled = tcm_is_pr_enabled,
1741 };
1742
1743 static struct target_opcode_descriptor tcm_opcode_pro_reserve = {
1744 .support = SCSI_SUPPORT_FULL,
1745 .serv_action_valid = 1,
1746 .opcode = PERSISTENT_RESERVE_OUT,
1747 .service_action = PRO_RESERVE,
1748 .cdb_size = 10,
1749 .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_RESERVE, 0xff, 0x00,
1750 0x00, 0xff, 0xff, 0xff,
1751 0xff, SCSI_CONTROL_MASK},
1752 .enabled = tcm_is_pr_enabled,
1753 };
1754
1755 static struct target_opcode_descriptor tcm_opcode_pro_release = {
1756 .support = SCSI_SUPPORT_FULL,
1757 .serv_action_valid = 1,
1758 .opcode = PERSISTENT_RESERVE_OUT,
1759 .service_action = PRO_RELEASE,
1760 .cdb_size = 10,
1761 .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_RELEASE, 0xff, 0x00,
1762 0x00, 0xff, 0xff, 0xff,
1763 0xff, SCSI_CONTROL_MASK},
1764 .enabled = tcm_is_pr_enabled,
1765 };
1766
1767 static struct target_opcode_descriptor tcm_opcode_pro_clear = {
1768 .support = SCSI_SUPPORT_FULL,
1769 .serv_action_valid = 1,
1770 .opcode = PERSISTENT_RESERVE_OUT,
1771 .service_action = PRO_CLEAR,
1772 .cdb_size = 10,
1773 .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_CLEAR, 0xff, 0x00,
1774 0x00, 0xff, 0xff, 0xff,
1775 0xff, SCSI_CONTROL_MASK},
1776 .enabled = tcm_is_pr_enabled,
1777 };
1778
1779 static struct target_opcode_descriptor tcm_opcode_pro_preempt = {
1780 .support = SCSI_SUPPORT_FULL,
1781 .serv_action_valid = 1,
1782 .opcode = PERSISTENT_RESERVE_OUT,
1783 .service_action = PRO_PREEMPT,
1784 .cdb_size = 10,
1785 .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_PREEMPT, 0xff, 0x00,
1786 0x00, 0xff, 0xff, 0xff,
1787 0xff, SCSI_CONTROL_MASK},
1788 .enabled = tcm_is_pr_enabled,
1789 };
1790
1791 static struct target_opcode_descriptor tcm_opcode_pro_preempt_abort = {
1792 .support = SCSI_SUPPORT_FULL,
1793 .serv_action_valid = 1,
1794 .opcode = PERSISTENT_RESERVE_OUT,
1795 .service_action = PRO_PREEMPT_AND_ABORT,
1796 .cdb_size = 10,
1797 .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_PREEMPT_AND_ABORT, 0xff, 0x00,
1798 0x00, 0xff, 0xff, 0xff,
1799 0xff, SCSI_CONTROL_MASK},
1800 .enabled = tcm_is_pr_enabled,
1801 };
1802
1803 static struct target_opcode_descriptor tcm_opcode_pro_reg_ign_exist = {
1804 .support = SCSI_SUPPORT_FULL,
1805 .serv_action_valid = 1,
1806 .opcode = PERSISTENT_RESERVE_OUT,
1807 .service_action = PRO_REGISTER_AND_IGNORE_EXISTING_KEY,
1808 .cdb_size = 10,
1809 .usage_bits = {
1810 PERSISTENT_RESERVE_OUT, PRO_REGISTER_AND_IGNORE_EXISTING_KEY,
1811 0xff, 0x00,
1812 0x00, 0xff, 0xff, 0xff,
1813 0xff, SCSI_CONTROL_MASK},
1814 .enabled = tcm_is_pr_enabled,
1815 };
1816
1817 static struct target_opcode_descriptor tcm_opcode_pro_register_move = {
1818 .support = SCSI_SUPPORT_FULL,
1819 .serv_action_valid = 1,
1820 .opcode = PERSISTENT_RESERVE_OUT,
1821 .service_action = PRO_REGISTER_AND_MOVE,
1822 .cdb_size = 10,
1823 .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_REGISTER_AND_MOVE, 0xff, 0x00,
1824 0x00, 0xff, 0xff, 0xff,
1825 0xff, SCSI_CONTROL_MASK},
1826 .enabled = tcm_is_pr_enabled,
1827 };
1828
1829 static struct target_opcode_descriptor tcm_opcode_release = {
1830 .support = SCSI_SUPPORT_FULL,
1831 .opcode = RELEASE,
1832 .cdb_size = 6,
1833 .usage_bits = {RELEASE, 0x00, 0x00, 0x00,
1834 0x00, SCSI_CONTROL_MASK},
1835 .enabled = tcm_is_pr_enabled,
1836 };
1837
1838 static struct target_opcode_descriptor tcm_opcode_release10 = {
1839 .support = SCSI_SUPPORT_FULL,
1840 .opcode = RELEASE_10,
1841 .cdb_size = 10,
1842 .usage_bits = {RELEASE_10, 0x00, 0x00, 0x00,
1843 0x00, 0x00, 0x00, 0xff,
1844 0xff, SCSI_CONTROL_MASK},
1845 .enabled = tcm_is_pr_enabled,
1846 };
1847
1848 static struct target_opcode_descriptor tcm_opcode_reserve = {
1849 .support = SCSI_SUPPORT_FULL,
1850 .opcode = RESERVE,
1851 .cdb_size = 6,
1852 .usage_bits = {RESERVE, 0x00, 0x00, 0x00,
1853 0x00, SCSI_CONTROL_MASK},
1854 .enabled = tcm_is_pr_enabled,
1855 };
1856
1857 static struct target_opcode_descriptor tcm_opcode_reserve10 = {
1858 .support = SCSI_SUPPORT_FULL,
1859 .opcode = RESERVE_10,
1860 .cdb_size = 10,
1861 .usage_bits = {RESERVE_10, 0x00, 0x00, 0x00,
1862 0x00, 0x00, 0x00, 0xff,
1863 0xff, SCSI_CONTROL_MASK},
1864 .enabled = tcm_is_pr_enabled,
1865 };
1866
1867 static struct target_opcode_descriptor tcm_opcode_request_sense = {
1868 .support = SCSI_SUPPORT_FULL,
1869 .opcode = REQUEST_SENSE,
1870 .cdb_size = 6,
1871 .usage_bits = {REQUEST_SENSE, 0x00, 0x00, 0x00,
1872 0xff, SCSI_CONTROL_MASK},
1873 };
1874
1875 static struct target_opcode_descriptor tcm_opcode_inquiry = {
1876 .support = SCSI_SUPPORT_FULL,
1877 .opcode = INQUIRY,
1878 .cdb_size = 6,
1879 .usage_bits = {INQUIRY, 0x01, 0xff, 0xff,
1880 0xff, SCSI_CONTROL_MASK},
1881 };
1882
tcm_is_3pc_enabled(struct target_opcode_descriptor * descr,struct se_cmd * cmd)1883 static bool tcm_is_3pc_enabled(struct target_opcode_descriptor *descr,
1884 struct se_cmd *cmd)
1885 {
1886 struct se_device *dev = cmd->se_dev;
1887
1888 return dev->dev_attrib.emulate_3pc;
1889 }
1890
1891 static struct target_opcode_descriptor tcm_opcode_extended_copy_lid1 = {
1892 .support = SCSI_SUPPORT_FULL,
1893 .serv_action_valid = 1,
1894 .opcode = EXTENDED_COPY,
1895 .cdb_size = 16,
1896 .usage_bits = {EXTENDED_COPY, 0x00, 0x00, 0x00,
1897 0x00, 0x00, 0x00, 0x00,
1898 0x00, 0x00, 0xff, 0xff,
1899 0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1900 .enabled = tcm_is_3pc_enabled,
1901 };
1902
1903 static struct target_opcode_descriptor tcm_opcode_rcv_copy_res_op_params = {
1904 .support = SCSI_SUPPORT_FULL,
1905 .serv_action_valid = 1,
1906 .opcode = RECEIVE_COPY_RESULTS,
1907 .service_action = RCR_SA_OPERATING_PARAMETERS,
1908 .cdb_size = 16,
1909 .usage_bits = {RECEIVE_COPY_RESULTS, RCR_SA_OPERATING_PARAMETERS,
1910 0x00, 0x00,
1911 0x00, 0x00, 0x00, 0x00,
1912 0x00, 0x00, 0xff, 0xff,
1913 0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1914 .enabled = tcm_is_3pc_enabled,
1915 };
1916
1917 static struct target_opcode_descriptor tcm_opcode_report_luns = {
1918 .support = SCSI_SUPPORT_FULL,
1919 .opcode = REPORT_LUNS,
1920 .cdb_size = 12,
1921 .usage_bits = {REPORT_LUNS, 0x00, 0xff, 0x00,
1922 0x00, 0x00, 0xff, 0xff,
1923 0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1924 };
1925
1926 static struct target_opcode_descriptor tcm_opcode_test_unit_ready = {
1927 .support = SCSI_SUPPORT_FULL,
1928 .opcode = TEST_UNIT_READY,
1929 .cdb_size = 6,
1930 .usage_bits = {TEST_UNIT_READY, 0x00, 0x00, 0x00,
1931 0x00, SCSI_CONTROL_MASK},
1932 };
1933
1934 static struct target_opcode_descriptor tcm_opcode_report_target_pgs = {
1935 .support = SCSI_SUPPORT_FULL,
1936 .serv_action_valid = 1,
1937 .opcode = MAINTENANCE_IN,
1938 .service_action = MI_REPORT_TARGET_PGS,
1939 .cdb_size = 12,
1940 .usage_bits = {MAINTENANCE_IN, 0xE0 | MI_REPORT_TARGET_PGS, 0x00, 0x00,
1941 0x00, 0x00, 0xff, 0xff,
1942 0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1943 };
1944
spc_rsoc_enabled(struct target_opcode_descriptor * descr,struct se_cmd * cmd)1945 static bool spc_rsoc_enabled(struct target_opcode_descriptor *descr,
1946 struct se_cmd *cmd)
1947 {
1948 struct se_device *dev = cmd->se_dev;
1949
1950 return dev->dev_attrib.emulate_rsoc;
1951 }
1952
1953 static struct target_opcode_descriptor tcm_opcode_report_supp_opcodes = {
1954 .support = SCSI_SUPPORT_FULL,
1955 .serv_action_valid = 1,
1956 .opcode = MAINTENANCE_IN,
1957 .service_action = MI_REPORT_SUPPORTED_OPERATION_CODES,
1958 .cdb_size = 12,
1959 .usage_bits = {MAINTENANCE_IN, MI_REPORT_SUPPORTED_OPERATION_CODES,
1960 0x87, 0xff,
1961 0xff, 0xff, 0xff, 0xff,
1962 0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1963 .enabled = spc_rsoc_enabled,
1964 };
1965
tcm_is_set_tpg_enabled(struct target_opcode_descriptor * descr,struct se_cmd * cmd)1966 static bool tcm_is_set_tpg_enabled(struct target_opcode_descriptor *descr,
1967 struct se_cmd *cmd)
1968 {
1969 struct t10_alua_tg_pt_gp *l_tg_pt_gp;
1970 struct se_lun *l_lun = cmd->se_lun;
1971
1972 rcu_read_lock();
1973 l_tg_pt_gp = rcu_dereference(l_lun->lun_tg_pt_gp);
1974 if (!l_tg_pt_gp) {
1975 rcu_read_unlock();
1976 return false;
1977 }
1978 if (!(l_tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_EXPLICIT_ALUA)) {
1979 rcu_read_unlock();
1980 return false;
1981 }
1982 rcu_read_unlock();
1983
1984 return true;
1985 }
1986
1987 static struct target_opcode_descriptor tcm_opcode_set_tpg = {
1988 .support = SCSI_SUPPORT_FULL,
1989 .serv_action_valid = 1,
1990 .opcode = MAINTENANCE_OUT,
1991 .service_action = MO_SET_TARGET_PGS,
1992 .cdb_size = 12,
1993 .usage_bits = {MAINTENANCE_OUT, MO_SET_TARGET_PGS, 0x00, 0x00,
1994 0x00, 0x00, 0xff, 0xff,
1995 0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1996 .enabled = tcm_is_set_tpg_enabled,
1997 };
1998
1999 static struct target_opcode_descriptor *tcm_supported_opcodes[] = {
2000 &tcm_opcode_read6,
2001 &tcm_opcode_read10,
2002 &tcm_opcode_read12,
2003 &tcm_opcode_read16,
2004 &tcm_opcode_write6,
2005 &tcm_opcode_write10,
2006 &tcm_opcode_write_verify10,
2007 &tcm_opcode_write12,
2008 &tcm_opcode_write16,
2009 &tcm_opcode_write_verify16,
2010 &tcm_opcode_write_same32,
2011 &tcm_opcode_compare_write,
2012 &tcm_opcode_read_capacity,
2013 &tcm_opcode_read_capacity16,
2014 &tcm_opcode_read_report_refferals,
2015 &tcm_opcode_sync_cache,
2016 &tcm_opcode_sync_cache16,
2017 &tcm_opcode_unmap,
2018 &tcm_opcode_write_same,
2019 &tcm_opcode_write_same16,
2020 &tcm_opcode_verify,
2021 &tcm_opcode_verify16,
2022 &tcm_opcode_start_stop,
2023 &tcm_opcode_mode_select,
2024 &tcm_opcode_mode_select10,
2025 &tcm_opcode_mode_sense,
2026 &tcm_opcode_mode_sense10,
2027 &tcm_opcode_pri_read_keys,
2028 &tcm_opcode_pri_read_resrv,
2029 &tcm_opcode_pri_read_caps,
2030 &tcm_opcode_pri_read_full_status,
2031 &tcm_opcode_pro_register,
2032 &tcm_opcode_pro_reserve,
2033 &tcm_opcode_pro_release,
2034 &tcm_opcode_pro_clear,
2035 &tcm_opcode_pro_preempt,
2036 &tcm_opcode_pro_preempt_abort,
2037 &tcm_opcode_pro_reg_ign_exist,
2038 &tcm_opcode_pro_register_move,
2039 &tcm_opcode_release,
2040 &tcm_opcode_release10,
2041 &tcm_opcode_reserve,
2042 &tcm_opcode_reserve10,
2043 &tcm_opcode_request_sense,
2044 &tcm_opcode_inquiry,
2045 &tcm_opcode_extended_copy_lid1,
2046 &tcm_opcode_rcv_copy_res_op_params,
2047 &tcm_opcode_report_luns,
2048 &tcm_opcode_test_unit_ready,
2049 &tcm_opcode_report_target_pgs,
2050 &tcm_opcode_report_supp_opcodes,
2051 &tcm_opcode_set_tpg,
2052 };
2053
2054 static int
spc_rsoc_encode_command_timeouts_descriptor(unsigned char * buf,u8 ctdp,struct target_opcode_descriptor * descr)2055 spc_rsoc_encode_command_timeouts_descriptor(unsigned char *buf, u8 ctdp,
2056 struct target_opcode_descriptor *descr)
2057 {
2058 if (!ctdp)
2059 return 0;
2060
2061 put_unaligned_be16(0xa, buf);
2062 buf[3] = descr->specific_timeout;
2063 put_unaligned_be32(descr->nominal_timeout, &buf[4]);
2064 put_unaligned_be32(descr->recommended_timeout, &buf[8]);
2065
2066 return 12;
2067 }
2068
2069 static int
spc_rsoc_encode_command_descriptor(unsigned char * buf,u8 ctdp,struct target_opcode_descriptor * descr)2070 spc_rsoc_encode_command_descriptor(unsigned char *buf, u8 ctdp,
2071 struct target_opcode_descriptor *descr)
2072 {
2073 int td_size = 0;
2074
2075 buf[0] = descr->opcode;
2076
2077 put_unaligned_be16(descr->service_action, &buf[2]);
2078
2079 buf[5] = (ctdp << 1) | descr->serv_action_valid;
2080 put_unaligned_be16(descr->cdb_size, &buf[6]);
2081
2082 td_size = spc_rsoc_encode_command_timeouts_descriptor(&buf[8], ctdp,
2083 descr);
2084
2085 return 8 + td_size;
2086 }
2087
2088 static int
spc_rsoc_encode_one_command_descriptor(unsigned char * buf,u8 ctdp,struct target_opcode_descriptor * descr,struct se_device * dev)2089 spc_rsoc_encode_one_command_descriptor(unsigned char *buf, u8 ctdp,
2090 struct target_opcode_descriptor *descr,
2091 struct se_device *dev)
2092 {
2093 int td_size = 0;
2094
2095 if (!descr) {
2096 buf[1] = (ctdp << 7) | SCSI_SUPPORT_NOT_SUPPORTED;
2097 return 2;
2098 }
2099
2100 buf[1] = (ctdp << 7) | SCSI_SUPPORT_FULL;
2101 put_unaligned_be16(descr->cdb_size, &buf[2]);
2102 memcpy(&buf[4], descr->usage_bits, descr->cdb_size);
2103 if (descr->update_usage_bits)
2104 descr->update_usage_bits(&buf[4], dev);
2105
2106 td_size = spc_rsoc_encode_command_timeouts_descriptor(
2107 &buf[4 + descr->cdb_size], ctdp, descr);
2108
2109 return 4 + descr->cdb_size + td_size;
2110 }
2111
2112 static sense_reason_t
spc_rsoc_get_descr(struct se_cmd * cmd,struct target_opcode_descriptor ** opcode)2113 spc_rsoc_get_descr(struct se_cmd *cmd, struct target_opcode_descriptor **opcode)
2114 {
2115 struct target_opcode_descriptor *descr;
2116 struct se_session *sess = cmd->se_sess;
2117 unsigned char *cdb = cmd->t_task_cdb;
2118 u8 opts = cdb[2] & 0x3;
2119 u8 requested_opcode;
2120 u16 requested_sa;
2121 int i;
2122
2123 requested_opcode = cdb[3];
2124 requested_sa = ((u16)cdb[4]) << 8 | cdb[5];
2125 *opcode = NULL;
2126
2127 if (opts > 3) {
2128 pr_debug("TARGET_CORE[%s]: Invalid REPORT SUPPORTED OPERATION CODES"
2129 " with unsupported REPORTING OPTIONS %#x for 0x%08llx from %s\n",
2130 cmd->se_tfo->fabric_name, opts,
2131 cmd->se_lun->unpacked_lun,
2132 sess->se_node_acl->initiatorname);
2133 return TCM_INVALID_CDB_FIELD;
2134 }
2135
2136 for (i = 0; i < ARRAY_SIZE(tcm_supported_opcodes); i++) {
2137 descr = tcm_supported_opcodes[i];
2138 if (descr->opcode != requested_opcode)
2139 continue;
2140
2141 switch (opts) {
2142 case 0x1:
2143 /*
2144 * If the REQUESTED OPERATION CODE field specifies an
2145 * operation code for which the device server implements
2146 * service actions, then the device server shall
2147 * terminate the command with CHECK CONDITION status,
2148 * with the sense key set to ILLEGAL REQUEST, and the
2149 * additional sense code set to INVALID FIELD IN CDB
2150 */
2151 if (descr->serv_action_valid)
2152 return TCM_INVALID_CDB_FIELD;
2153
2154 if (!descr->enabled || descr->enabled(descr, cmd))
2155 *opcode = descr;
2156 break;
2157 case 0x2:
2158 /*
2159 * If the REQUESTED OPERATION CODE field specifies an
2160 * operation code for which the device server does not
2161 * implement service actions, then the device server
2162 * shall terminate the command with CHECK CONDITION
2163 * status, with the sense key set to ILLEGAL REQUEST,
2164 * and the additional sense code set to INVALID FIELD IN CDB.
2165 */
2166 if (descr->serv_action_valid &&
2167 descr->service_action == requested_sa) {
2168 if (!descr->enabled || descr->enabled(descr,
2169 cmd))
2170 *opcode = descr;
2171 } else if (!descr->serv_action_valid)
2172 return TCM_INVALID_CDB_FIELD;
2173 break;
2174 case 0x3:
2175 /*
2176 * The command support data for the operation code and
2177 * service action a specified in the REQUESTED OPERATION
2178 * CODE field and REQUESTED SERVICE ACTION field shall
2179 * be returned in the one_command parameter data format.
2180 */
2181 if (descr->service_action == requested_sa)
2182 if (!descr->enabled || descr->enabled(descr,
2183 cmd))
2184 *opcode = descr;
2185 break;
2186 }
2187 }
2188
2189 return 0;
2190 }
2191
2192 static sense_reason_t
spc_emulate_report_supp_op_codes(struct se_cmd * cmd)2193 spc_emulate_report_supp_op_codes(struct se_cmd *cmd)
2194 {
2195 int descr_num = ARRAY_SIZE(tcm_supported_opcodes);
2196 struct target_opcode_descriptor *descr = NULL;
2197 unsigned char *cdb = cmd->t_task_cdb;
2198 u8 rctd = (cdb[2] >> 7) & 0x1;
2199 unsigned char *buf = NULL;
2200 int response_length = 0;
2201 u8 opts = cdb[2] & 0x3;
2202 unsigned char *rbuf;
2203 sense_reason_t ret = 0;
2204 int i;
2205
2206 if (!cmd->se_dev->dev_attrib.emulate_rsoc)
2207 return TCM_UNSUPPORTED_SCSI_OPCODE;
2208
2209 rbuf = transport_kmap_data_sg(cmd);
2210 if (cmd->data_length && !rbuf) {
2211 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2212 goto out;
2213 }
2214
2215 if (opts == 0)
2216 response_length = 4 + (8 + rctd * 12) * descr_num;
2217 else {
2218 ret = spc_rsoc_get_descr(cmd, &descr);
2219 if (ret)
2220 goto out;
2221
2222 if (descr)
2223 response_length = 4 + descr->cdb_size + rctd * 12;
2224 else
2225 response_length = 2;
2226 }
2227
2228 buf = kzalloc(response_length, GFP_KERNEL);
2229 if (!buf) {
2230 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2231 goto out;
2232 }
2233 response_length = 0;
2234
2235 if (opts == 0) {
2236 response_length += 4;
2237
2238 for (i = 0; i < ARRAY_SIZE(tcm_supported_opcodes); i++) {
2239 descr = tcm_supported_opcodes[i];
2240 if (descr->enabled && !descr->enabled(descr, cmd))
2241 continue;
2242
2243 response_length += spc_rsoc_encode_command_descriptor(
2244 &buf[response_length], rctd, descr);
2245 }
2246 put_unaligned_be32(response_length - 3, buf);
2247 } else {
2248 response_length = spc_rsoc_encode_one_command_descriptor(
2249 &buf[response_length], rctd, descr,
2250 cmd->se_dev);
2251 }
2252
2253 memcpy(rbuf, buf, min_t(u32, response_length, cmd->data_length));
2254 out:
2255 kfree(buf);
2256 transport_kunmap_data_sg(cmd);
2257
2258 if (!ret)
2259 target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, response_length);
2260 return ret;
2261 }
2262
2263 sense_reason_t
spc_parse_cdb(struct se_cmd * cmd,unsigned int * size)2264 spc_parse_cdb(struct se_cmd *cmd, unsigned int *size)
2265 {
2266 struct se_device *dev = cmd->se_dev;
2267 unsigned char *cdb = cmd->t_task_cdb;
2268
2269 switch (cdb[0]) {
2270 case RESERVE:
2271 case RESERVE_10:
2272 case RELEASE:
2273 case RELEASE_10:
2274 if (!dev->dev_attrib.emulate_pr)
2275 return TCM_UNSUPPORTED_SCSI_OPCODE;
2276
2277 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH_PGR)
2278 return TCM_UNSUPPORTED_SCSI_OPCODE;
2279 break;
2280 case PERSISTENT_RESERVE_IN:
2281 case PERSISTENT_RESERVE_OUT:
2282 if (!dev->dev_attrib.emulate_pr)
2283 return TCM_UNSUPPORTED_SCSI_OPCODE;
2284 break;
2285 }
2286
2287 switch (cdb[0]) {
2288 case MODE_SELECT:
2289 *size = cdb[4];
2290 cmd->execute_cmd = spc_emulate_modeselect;
2291 break;
2292 case MODE_SELECT_10:
2293 *size = get_unaligned_be16(&cdb[7]);
2294 cmd->execute_cmd = spc_emulate_modeselect;
2295 break;
2296 case MODE_SENSE:
2297 *size = cdb[4];
2298 cmd->execute_cmd = spc_emulate_modesense;
2299 break;
2300 case MODE_SENSE_10:
2301 *size = get_unaligned_be16(&cdb[7]);
2302 cmd->execute_cmd = spc_emulate_modesense;
2303 break;
2304 case LOG_SELECT:
2305 case LOG_SENSE:
2306 *size = get_unaligned_be16(&cdb[7]);
2307 break;
2308 case PERSISTENT_RESERVE_IN:
2309 *size = get_unaligned_be16(&cdb[7]);
2310 cmd->execute_cmd = target_scsi3_emulate_pr_in;
2311 break;
2312 case PERSISTENT_RESERVE_OUT:
2313 *size = get_unaligned_be32(&cdb[5]);
2314 cmd->execute_cmd = target_scsi3_emulate_pr_out;
2315 break;
2316 case RELEASE:
2317 case RELEASE_10:
2318 if (cdb[0] == RELEASE_10)
2319 *size = get_unaligned_be16(&cdb[7]);
2320 else
2321 *size = cmd->data_length;
2322
2323 cmd->execute_cmd = target_scsi2_reservation_release;
2324 break;
2325 case RESERVE:
2326 case RESERVE_10:
2327 /*
2328 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2329 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2330 */
2331 if (cdb[0] == RESERVE_10)
2332 *size = get_unaligned_be16(&cdb[7]);
2333 else
2334 *size = cmd->data_length;
2335
2336 cmd->execute_cmd = target_scsi2_reservation_reserve;
2337 break;
2338 case REQUEST_SENSE:
2339 *size = cdb[4];
2340 cmd->execute_cmd = spc_emulate_request_sense;
2341 break;
2342 case INQUIRY:
2343 *size = get_unaligned_be16(&cdb[3]);
2344
2345 /*
2346 * Do implicit HEAD_OF_QUEUE processing for INQUIRY.
2347 * See spc4r17 section 5.3
2348 */
2349 cmd->sam_task_attr = TCM_HEAD_TAG;
2350 cmd->execute_cmd = spc_emulate_inquiry;
2351 break;
2352 case SECURITY_PROTOCOL_IN:
2353 case SECURITY_PROTOCOL_OUT:
2354 *size = get_unaligned_be32(&cdb[6]);
2355 break;
2356 case EXTENDED_COPY:
2357 *size = get_unaligned_be32(&cdb[10]);
2358 cmd->execute_cmd = target_do_xcopy;
2359 break;
2360 case RECEIVE_COPY_RESULTS:
2361 *size = get_unaligned_be32(&cdb[10]);
2362 cmd->execute_cmd = target_do_receive_copy_results;
2363 break;
2364 case READ_ATTRIBUTE:
2365 case WRITE_ATTRIBUTE:
2366 *size = get_unaligned_be32(&cdb[10]);
2367 break;
2368 case RECEIVE_DIAGNOSTIC:
2369 case SEND_DIAGNOSTIC:
2370 *size = get_unaligned_be16(&cdb[3]);
2371 break;
2372 case WRITE_BUFFER:
2373 *size = get_unaligned_be24(&cdb[6]);
2374 break;
2375 case REPORT_LUNS:
2376 cmd->execute_cmd = spc_emulate_report_luns;
2377 *size = get_unaligned_be32(&cdb[6]);
2378 /*
2379 * Do implicit HEAD_OF_QUEUE processing for REPORT_LUNS
2380 * See spc4r17 section 5.3
2381 */
2382 cmd->sam_task_attr = TCM_HEAD_TAG;
2383 break;
2384 case TEST_UNIT_READY:
2385 cmd->execute_cmd = spc_emulate_testunitready;
2386 *size = 0;
2387 break;
2388 case MAINTENANCE_IN:
2389 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2390 /*
2391 * MAINTENANCE_IN from SCC-2
2392 * Check for emulated MI_REPORT_TARGET_PGS
2393 */
2394 if ((cdb[1] & 0x1f) == MI_REPORT_TARGET_PGS) {
2395 cmd->execute_cmd =
2396 target_emulate_report_target_port_groups;
2397 }
2398 if ((cdb[1] & 0x1f) ==
2399 MI_REPORT_SUPPORTED_OPERATION_CODES)
2400 cmd->execute_cmd =
2401 spc_emulate_report_supp_op_codes;
2402 *size = get_unaligned_be32(&cdb[6]);
2403 } else {
2404 /*
2405 * GPCMD_SEND_KEY from multi media commands
2406 */
2407 *size = get_unaligned_be16(&cdb[8]);
2408 }
2409 break;
2410 case MAINTENANCE_OUT:
2411 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2412 /*
2413 * MAINTENANCE_OUT from SCC-2
2414 * Check for emulated MO_SET_TARGET_PGS.
2415 */
2416 if (cdb[1] == MO_SET_TARGET_PGS) {
2417 cmd->execute_cmd =
2418 target_emulate_set_target_port_groups;
2419 }
2420 *size = get_unaligned_be32(&cdb[6]);
2421 } else {
2422 /*
2423 * GPCMD_SEND_KEY from multi media commands
2424 */
2425 *size = get_unaligned_be16(&cdb[8]);
2426 }
2427 break;
2428 default:
2429 return TCM_UNSUPPORTED_SCSI_OPCODE;
2430 }
2431
2432 return 0;
2433 }
2434 EXPORT_SYMBOL(spc_parse_cdb);
2435