xref: /linux/arch/arm64/kvm/vgic/vgic-mmio-v2.c (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv2 MMIO handling functions
4  */
5 
6 #include <linux/irqchip/arm-gic.h>
7 #include <linux/kvm.h>
8 #include <linux/kvm_host.h>
9 #include <linux/nospec.h>
10 
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13 
14 #include "vgic.h"
15 #include "vgic-mmio.h"
16 
17 /*
18  * The Revision field in the IIDR have the following meanings:
19  *
20  * Revision 1: Report GICv2 interrupts as group 0 instead of group 1
21  * Revision 2: Interrupt groups are guest-configurable and signaled using
22  * 	       their configured groups.
23  */
24 
vgic_mmio_read_v2_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)25 static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu,
26 					    gpa_t addr, unsigned int len)
27 {
28 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
29 	u32 value;
30 
31 	switch (addr & 0x0c) {
32 	case GIC_DIST_CTRL:
33 		value = vgic->enabled ? GICD_ENABLE : 0;
34 		break;
35 	case GIC_DIST_CTR:
36 		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
37 		value = (value >> 5) - 1;
38 		value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
39 		break;
40 	case GIC_DIST_IIDR:
41 		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
42 			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
43 			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
44 		break;
45 	default:
46 		return 0;
47 	}
48 
49 	return value;
50 }
51 
vgic_mmio_write_v2_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)52 static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu,
53 				    gpa_t addr, unsigned int len,
54 				    unsigned long val)
55 {
56 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
57 	bool was_enabled = dist->enabled;
58 
59 	switch (addr & 0x0c) {
60 	case GIC_DIST_CTRL:
61 		dist->enabled = val & GICD_ENABLE;
62 		if (!was_enabled && dist->enabled)
63 			vgic_kick_vcpus(vcpu->kvm);
64 		break;
65 	case GIC_DIST_CTR:
66 	case GIC_DIST_IIDR:
67 		/* Nothing to do */
68 		return;
69 	}
70 }
71 
vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)72 static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu,
73 					   gpa_t addr, unsigned int len,
74 					   unsigned long val)
75 {
76 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
77 	u32 reg;
78 
79 	switch (addr & 0x0c) {
80 	case GIC_DIST_IIDR:
81 		reg = vgic_mmio_read_v2_misc(vcpu, addr, len);
82 		if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
83 			return -EINVAL;
84 
85 		/*
86 		 * If we observe a write to GICD_IIDR we know that userspace
87 		 * has been updated and has had a chance to cope with older
88 		 * kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting
89 		 * interrupts as group 1, and therefore we now allow groups to
90 		 * be user writable.  Doing this by default would break
91 		 * migration from old kernels to new kernels with legacy
92 		 * userspace.
93 		 */
94 		reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
95 		switch (reg) {
96 		case KVM_VGIC_IMP_REV_2:
97 		case KVM_VGIC_IMP_REV_3:
98 			vcpu->kvm->arch.vgic.v2_groups_user_writable = true;
99 			dist->implementation_rev = reg;
100 			return 0;
101 		default:
102 			return -EINVAL;
103 		}
104 	}
105 
106 	vgic_mmio_write_v2_misc(vcpu, addr, len, val);
107 	return 0;
108 }
109 
vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)110 static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu,
111 					    gpa_t addr, unsigned int len,
112 					    unsigned long val)
113 {
114 	if (vcpu->kvm->arch.vgic.v2_groups_user_writable)
115 		vgic_mmio_write_group(vcpu, addr, len, val);
116 
117 	return 0;
118 }
119 
vgic_mmio_write_sgir(struct kvm_vcpu * source_vcpu,gpa_t addr,unsigned int len,unsigned long val)120 static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu,
121 				 gpa_t addr, unsigned int len,
122 				 unsigned long val)
123 {
124 	int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus);
125 	int intid = val & 0xf;
126 	int targets = (val >> 16) & 0xff;
127 	int mode = (val >> 24) & 0x03;
128 	struct kvm_vcpu *vcpu;
129 	unsigned long flags, c;
130 
131 	switch (mode) {
132 	case 0x0:		/* as specified by targets */
133 		break;
134 	case 0x1:
135 		targets = (1U << nr_vcpus) - 1;			/* all, ... */
136 		targets &= ~(1U << source_vcpu->vcpu_id);	/* but self */
137 		break;
138 	case 0x2:		/* this very vCPU only */
139 		targets = (1U << source_vcpu->vcpu_id);
140 		break;
141 	case 0x3:		/* reserved */
142 		return;
143 	}
144 
145 	kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) {
146 		struct vgic_irq *irq;
147 
148 		if (!(targets & (1U << c)))
149 			continue;
150 
151 		irq = vgic_get_vcpu_irq(vcpu, intid);
152 
153 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
154 		irq->pending_latch = true;
155 		irq->source |= 1U << source_vcpu->vcpu_id;
156 
157 		vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags);
158 		vgic_put_irq(source_vcpu->kvm, irq);
159 	}
160 }
161 
vgic_mmio_read_target(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)162 static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu,
163 					   gpa_t addr, unsigned int len)
164 {
165 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
166 	int i;
167 	u64 val = 0;
168 
169 	for (i = 0; i < len; i++) {
170 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
171 
172 		val |= (u64)irq->targets << (i * 8);
173 
174 		vgic_put_irq(vcpu->kvm, irq);
175 	}
176 
177 	return val;
178 }
179 
vgic_mmio_write_target(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)180 static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
181 				   gpa_t addr, unsigned int len,
182 				   unsigned long val)
183 {
184 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
185 	u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0);
186 	int i;
187 	unsigned long flags;
188 
189 	/* GICD_ITARGETSR[0-7] are read-only */
190 	if (intid < VGIC_NR_PRIVATE_IRQS)
191 		return;
192 
193 	for (i = 0; i < len; i++) {
194 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, intid + i);
195 		int target;
196 
197 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
198 
199 		irq->targets = (val >> (i * 8)) & cpu_mask;
200 		target = irq->targets ? __ffs(irq->targets) : 0;
201 		irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target);
202 
203 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
204 		vgic_put_irq(vcpu->kvm, irq);
205 	}
206 }
207 
vgic_mmio_read_sgipend(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)208 static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu,
209 					    gpa_t addr, unsigned int len)
210 {
211 	u32 intid = addr & 0x0f;
212 	int i;
213 	u64 val = 0;
214 
215 	for (i = 0; i < len; i++) {
216 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
217 
218 		val |= (u64)irq->source << (i * 8);
219 
220 		vgic_put_irq(vcpu->kvm, irq);
221 	}
222 	return val;
223 }
224 
vgic_mmio_write_sgipendc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)225 static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu,
226 				     gpa_t addr, unsigned int len,
227 				     unsigned long val)
228 {
229 	u32 intid = addr & 0x0f;
230 	int i;
231 	unsigned long flags;
232 
233 	for (i = 0; i < len; i++) {
234 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
235 
236 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
237 
238 		irq->source &= ~((val >> (i * 8)) & 0xff);
239 		if (!irq->source)
240 			irq->pending_latch = false;
241 
242 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
243 		vgic_put_irq(vcpu->kvm, irq);
244 	}
245 }
246 
vgic_mmio_write_sgipends(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)247 static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu,
248 				     gpa_t addr, unsigned int len,
249 				     unsigned long val)
250 {
251 	u32 intid = addr & 0x0f;
252 	int i;
253 	unsigned long flags;
254 
255 	for (i = 0; i < len; i++) {
256 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
257 
258 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
259 
260 		irq->source |= (val >> (i * 8)) & 0xff;
261 
262 		if (irq->source) {
263 			irq->pending_latch = true;
264 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
265 		} else {
266 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
267 		}
268 		vgic_put_irq(vcpu->kvm, irq);
269 	}
270 }
271 
272 #define GICC_ARCH_VERSION_V2	0x2
273 
274 /* These are for userland accesses only, there is no guest-facing emulation. */
vgic_mmio_read_vcpuif(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)275 static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu,
276 					   gpa_t addr, unsigned int len)
277 {
278 	struct vgic_vmcr vmcr;
279 	u32 val;
280 
281 	vgic_get_vmcr(vcpu, &vmcr);
282 
283 	switch (addr & 0xff) {
284 	case GIC_CPU_CTRL:
285 		val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT;
286 		val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT;
287 		val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT;
288 		val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT;
289 		val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT;
290 		val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT;
291 
292 		break;
293 	case GIC_CPU_PRIMASK:
294 		/*
295 		 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
296 		 * PMR field as GICH_VMCR.VMPriMask rather than
297 		 * GICC_PMR.Priority, so we expose the upper five bits of
298 		 * priority mask to userspace using the lower bits in the
299 		 * unsigned long.
300 		 */
301 		val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >>
302 			GICV_PMR_PRIORITY_SHIFT;
303 		break;
304 	case GIC_CPU_BINPOINT:
305 		val = vmcr.bpr;
306 		break;
307 	case GIC_CPU_ALIAS_BINPOINT:
308 		val = vmcr.abpr;
309 		break;
310 	case GIC_CPU_IDENT:
311 		val = ((PRODUCT_ID_KVM << 20) |
312 		       (GICC_ARCH_VERSION_V2 << 16) |
313 		       IMPLEMENTER_ARM);
314 		break;
315 	default:
316 		return 0;
317 	}
318 
319 	return val;
320 }
321 
vgic_mmio_write_vcpuif(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)322 static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu,
323 				   gpa_t addr, unsigned int len,
324 				   unsigned long val)
325 {
326 	struct vgic_vmcr vmcr;
327 
328 	vgic_get_vmcr(vcpu, &vmcr);
329 
330 	switch (addr & 0xff) {
331 	case GIC_CPU_CTRL:
332 		vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0);
333 		vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1);
334 		vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl);
335 		vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn);
336 		vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR);
337 		vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS);
338 
339 		break;
340 	case GIC_CPU_PRIMASK:
341 		/*
342 		 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
343 		 * PMR field as GICH_VMCR.VMPriMask rather than
344 		 * GICC_PMR.Priority, so we expose the upper five bits of
345 		 * priority mask to userspace using the lower bits in the
346 		 * unsigned long.
347 		 */
348 		vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) &
349 			GICV_PMR_PRIORITY_MASK;
350 		break;
351 	case GIC_CPU_BINPOINT:
352 		vmcr.bpr = val;
353 		break;
354 	case GIC_CPU_ALIAS_BINPOINT:
355 		vmcr.abpr = val;
356 		break;
357 	}
358 
359 	vgic_set_vmcr(vcpu, &vmcr);
360 }
361 
vgic_mmio_write_dir(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)362 static void vgic_mmio_write_dir(struct kvm_vcpu *vcpu,
363 				gpa_t addr, unsigned int len,
364 				unsigned long val)
365 {
366 	if (kvm_vgic_global_state.type == VGIC_V2)
367 		vgic_v2_deactivate(vcpu, val);
368 	else
369 		vgic_v3_deactivate(vcpu, val);
370 }
371 
vgic_mmio_read_apr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)372 static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu,
373 					gpa_t addr, unsigned int len)
374 {
375 	int n; /* which APRn is this */
376 
377 	n = (addr >> 2) & 0x3;
378 
379 	if (kvm_vgic_global_state.type == VGIC_V2) {
380 		/* GICv2 hardware systems support max. 32 groups */
381 		if (n != 0)
382 			return 0;
383 		return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr;
384 	} else {
385 		struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
386 
387 		if (n > vgic_v3_max_apr_idx(vcpu))
388 			return 0;
389 
390 		n = array_index_nospec(n, 4);
391 
392 		/* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
393 		return vgicv3->vgic_ap1r[n];
394 	}
395 }
396 
vgic_mmio_write_apr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)397 static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu,
398 				gpa_t addr, unsigned int len,
399 				unsigned long val)
400 {
401 	int n; /* which APRn is this */
402 
403 	n = (addr >> 2) & 0x3;
404 
405 	if (kvm_vgic_global_state.type == VGIC_V2) {
406 		/* GICv2 hardware systems support max. 32 groups */
407 		if (n != 0)
408 			return;
409 		vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val;
410 	} else {
411 		struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
412 
413 		if (n > vgic_v3_max_apr_idx(vcpu))
414 			return;
415 
416 		n = array_index_nospec(n, 4);
417 
418 		/* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
419 		vgicv3->vgic_ap1r[n] = val;
420 	}
421 }
422 
423 static const struct vgic_register_region vgic_v2_dist_registers[] = {
424 	REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL,
425 		vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc,
426 		NULL, vgic_mmio_uaccess_write_v2_misc,
427 		12, VGIC_ACCESS_32bit),
428 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP,
429 		vgic_mmio_read_group, vgic_mmio_write_group,
430 		NULL, vgic_mmio_uaccess_write_v2_group, 1,
431 		VGIC_ACCESS_32bit),
432 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET,
433 		vgic_mmio_read_enable, vgic_mmio_write_senable,
434 		NULL, vgic_uaccess_write_senable, 1,
435 		VGIC_ACCESS_32bit),
436 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR,
437 		vgic_mmio_read_enable, vgic_mmio_write_cenable,
438 		NULL, vgic_uaccess_write_cenable, 1,
439 		VGIC_ACCESS_32bit),
440 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET,
441 		vgic_mmio_read_pending, vgic_mmio_write_spending,
442 		vgic_uaccess_read_pending, vgic_uaccess_write_spending, 1,
443 		VGIC_ACCESS_32bit),
444 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR,
445 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
446 		vgic_uaccess_read_pending, vgic_uaccess_write_cpending, 1,
447 		VGIC_ACCESS_32bit),
448 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET,
449 		vgic_mmio_read_active, vgic_mmio_write_sactive,
450 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
451 		VGIC_ACCESS_32bit),
452 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR,
453 		vgic_mmio_read_active, vgic_mmio_write_cactive,
454 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 1,
455 		VGIC_ACCESS_32bit),
456 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI,
457 		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
458 		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
459 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET,
460 		vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8,
461 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
462 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG,
463 		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
464 		VGIC_ACCESS_32bit),
465 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT,
466 		vgic_mmio_read_raz, vgic_mmio_write_sgir, 4,
467 		VGIC_ACCESS_32bit),
468 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR,
469 		vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16,
470 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
471 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET,
472 		vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16,
473 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
474 };
475 
476 static const struct vgic_register_region vgic_v2_cpu_registers[] = {
477 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL,
478 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
479 		VGIC_ACCESS_32bit),
480 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK,
481 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
482 		VGIC_ACCESS_32bit),
483 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT,
484 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
485 		VGIC_ACCESS_32bit),
486 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT,
487 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
488 		VGIC_ACCESS_32bit),
489 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO,
490 		vgic_mmio_read_apr, vgic_mmio_write_apr, 16,
491 		VGIC_ACCESS_32bit),
492 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT,
493 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
494 		VGIC_ACCESS_32bit),
495 	REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_CPU_DEACTIVATE,
496 		vgic_mmio_read_raz, vgic_mmio_write_dir,
497 		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi,
498 		4, VGIC_ACCESS_32bit),
499 };
500 
vgic_v2_init_dist_iodev(struct vgic_io_device * dev)501 unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev)
502 {
503 	dev->regions = vgic_v2_dist_registers;
504 	dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
505 
506 	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
507 
508 	return SZ_4K;
509 }
510 
vgic_v2_init_cpuif_iodev(struct vgic_io_device * dev)511 unsigned int vgic_v2_init_cpuif_iodev(struct vgic_io_device *dev)
512 {
513 	dev->regions = vgic_v2_cpu_registers;
514 	dev->nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers);
515 
516 	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
517 
518 	return KVM_VGIC_V2_CPU_SIZE;
519 }
520 
vgic_v2_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)521 int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
522 {
523 	const struct vgic_register_region *region;
524 	struct vgic_io_device iodev;
525 	struct vgic_reg_attr reg_attr;
526 	struct kvm_vcpu *vcpu;
527 	gpa_t addr;
528 	int ret;
529 
530 	ret = vgic_v2_parse_attr(dev, attr, &reg_attr);
531 	if (ret)
532 		return ret;
533 
534 	vcpu = reg_attr.vcpu;
535 	addr = reg_attr.addr;
536 
537 	switch (attr->group) {
538 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
539 		iodev.regions = vgic_v2_dist_registers;
540 		iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
541 		iodev.base_addr = 0;
542 		break;
543 	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
544 		iodev.regions = vgic_v2_cpu_registers;
545 		iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers);
546 		iodev.base_addr = 0;
547 		break;
548 	default:
549 		return -ENXIO;
550 	}
551 
552 	/* We only support aligned 32-bit accesses. */
553 	if (addr & 3)
554 		return -ENXIO;
555 
556 	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
557 	if (!region)
558 		return -ENXIO;
559 
560 	return 0;
561 }
562 
vgic_v2_cpuif_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)563 int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write,
564 			  int offset, u32 *val)
565 {
566 	struct vgic_io_device dev = {
567 		.regions = vgic_v2_cpu_registers,
568 		.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers),
569 		.iodev_type = IODEV_CPUIF,
570 	};
571 
572 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
573 }
574 
vgic_v2_dist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)575 int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
576 			 int offset, u32 *val)
577 {
578 	struct vgic_io_device dev = {
579 		.regions = vgic_v2_dist_registers,
580 		.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers),
581 		.iodev_type = IODEV_DIST,
582 	};
583 
584 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
585 }
586