1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4
5 #include <linux/mm_types_task.h>
6
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/maple_tree.h>
13 #include <linux/rwsem.h>
14 #include <linux/completion.h>
15 #include <linux/cpumask.h>
16 #include <linux/uprobes.h>
17 #include <linux/rcupdate.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/workqueue.h>
20 #include <linux/seqlock.h>
21 #include <linux/percpu_counter.h>
22 #include <linux/types.h>
23 #include <linux/rseq_types.h>
24 #include <linux/bitmap.h>
25
26 #include <asm/mmu.h>
27
28 #ifndef AT_VECTOR_SIZE_ARCH
29 #define AT_VECTOR_SIZE_ARCH 0
30 #endif
31 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
32
33
34 struct address_space;
35 struct futex_private_hash;
36 struct mem_cgroup;
37
38 typedef struct {
39 unsigned long f;
40 } memdesc_flags_t;
41
42 /*
43 * Each physical page in the system has a struct page associated with
44 * it to keep track of whatever it is we are using the page for at the
45 * moment. Note that we have no way to track which tasks are using
46 * a page, though if it is a pagecache page, rmap structures can tell us
47 * who is mapping it.
48 *
49 * If you allocate the page using alloc_pages(), you can use some of the
50 * space in struct page for your own purposes. The five words in the main
51 * union are available, except for bit 0 of the first word which must be
52 * kept clear. Many users use this word to store a pointer to an object
53 * which is guaranteed to be aligned. If you use the same storage as
54 * page->mapping, you must restore it to NULL before freeing the page.
55 *
56 * The mapcount field must not be used for own purposes.
57 *
58 * If you want to use the refcount field, it must be used in such a way
59 * that other CPUs temporarily incrementing and then decrementing the
60 * refcount does not cause problems. On receiving the page from
61 * alloc_pages(), the refcount will be positive.
62 *
63 * If you allocate pages of order > 0, you can use some of the fields
64 * in each subpage, but you may need to restore some of their values
65 * afterwards.
66 *
67 * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
68 * That requires that freelist & counters in struct slab be adjacent and
69 * double-word aligned. Because struct slab currently just reinterprets the
70 * bits of struct page, we align all struct pages to double-word boundaries,
71 * and ensure that 'freelist' is aligned within struct slab.
72 */
73 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
74 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long))
75 #else
76 #define _struct_page_alignment __aligned(sizeof(unsigned long))
77 #endif
78
79 struct page {
80 memdesc_flags_t flags; /* Atomic flags, some possibly
81 * updated asynchronously */
82 /*
83 * Five words (20/40 bytes) are available in this union.
84 * WARNING: bit 0 of the first word is used for PageTail(). That
85 * means the other users of this union MUST NOT use the bit to
86 * avoid collision and false-positive PageTail().
87 */
88 union {
89 struct { /* Page cache and anonymous pages */
90 /**
91 * @lru: Pageout list, eg. active_list protected by
92 * lruvec->lru_lock. Sometimes used as a generic list
93 * by the page owner.
94 */
95 union {
96 struct list_head lru;
97
98 /* Or, free page */
99 struct list_head buddy_list;
100 struct list_head pcp_list;
101 struct llist_node pcp_llist;
102 };
103 struct address_space *mapping;
104 union {
105 pgoff_t __folio_index; /* Our offset within mapping. */
106 unsigned long share; /* share count for fsdax */
107 };
108 /**
109 * @private: Mapping-private opaque data.
110 * Usually used for buffer_heads if PagePrivate.
111 * Used for swp_entry_t if swapcache flag set.
112 * Indicates order in the buddy system if PageBuddy
113 * or on pcp_llist.
114 */
115 unsigned long private;
116 };
117 struct { /* page_pool used by netstack */
118 /**
119 * @pp_magic: magic value to avoid recycling non
120 * page_pool allocated pages.
121 */
122 unsigned long pp_magic;
123 struct page_pool *pp;
124 unsigned long _pp_mapping_pad;
125 unsigned long dma_addr;
126 atomic_long_t pp_ref_count;
127 };
128 struct { /* Tail pages of compound page */
129 unsigned long compound_head; /* Bit zero is set */
130 };
131 struct { /* ZONE_DEVICE pages */
132 /*
133 * The first word is used for compound_head or folio
134 * pgmap
135 */
136 void *_unused_pgmap_compound_head;
137 void *zone_device_data;
138 /*
139 * ZONE_DEVICE private pages are counted as being
140 * mapped so the next 3 words hold the mapping, index,
141 * and private fields from the source anonymous or
142 * page cache page while the page is migrated to device
143 * private memory.
144 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
145 * use the mapping, index, and private fields when
146 * pmem backed DAX files are mapped.
147 */
148 };
149
150 /** @rcu_head: You can use this to free a page by RCU. */
151 struct rcu_head rcu_head;
152 };
153
154 union { /* This union is 4 bytes in size. */
155 /*
156 * For head pages of typed folios, the value stored here
157 * allows for determining what this page is used for. The
158 * tail pages of typed folios will not store a type
159 * (page_type == _mapcount == -1).
160 *
161 * See page-flags.h for a list of page types which are currently
162 * stored here.
163 *
164 * Owners of typed folios may reuse the lower 16 bit of the
165 * head page page_type field after setting the page type,
166 * but must reset these 16 bit to -1 before clearing the
167 * page type.
168 */
169 unsigned int page_type;
170
171 /*
172 * For pages that are part of non-typed folios for which mappings
173 * are tracked via the RMAP, encodes the number of times this page
174 * is directly referenced by a page table.
175 *
176 * Note that the mapcount is always initialized to -1, so that
177 * transitions both from it and to it can be tracked, using
178 * atomic_inc_and_test() and atomic_add_negative(-1).
179 */
180 atomic_t _mapcount;
181 };
182
183 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
184 atomic_t _refcount;
185
186 #ifdef CONFIG_MEMCG
187 unsigned long memcg_data;
188 #elif defined(CONFIG_SLAB_OBJ_EXT)
189 unsigned long _unused_slab_obj_exts;
190 #endif
191
192 /*
193 * On machines where all RAM is mapped into kernel address space,
194 * we can simply calculate the virtual address. On machines with
195 * highmem some memory is mapped into kernel virtual memory
196 * dynamically, so we need a place to store that address.
197 * Note that this field could be 16 bits on x86 ... ;)
198 *
199 * Architectures with slow multiplication can define
200 * WANT_PAGE_VIRTUAL in asm/page.h
201 */
202 #if defined(WANT_PAGE_VIRTUAL)
203 void *virtual; /* Kernel virtual address (NULL if
204 not kmapped, ie. highmem) */
205 #endif /* WANT_PAGE_VIRTUAL */
206
207 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
208 int _last_cpupid;
209 #endif
210
211 #ifdef CONFIG_KMSAN
212 /*
213 * KMSAN metadata for this page:
214 * - shadow page: every bit indicates whether the corresponding
215 * bit of the original page is initialized (0) or not (1);
216 * - origin page: every 4 bytes contain an id of the stack trace
217 * where the uninitialized value was created.
218 */
219 struct page *kmsan_shadow;
220 struct page *kmsan_origin;
221 #endif
222 } _struct_page_alignment;
223
224 /*
225 * struct encoded_page - a nonexistent type marking this pointer
226 *
227 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
228 * with the low bits of the pointer indicating extra context-dependent
229 * information. Only used in mmu_gather handling, and this acts as a type
230 * system check on that use.
231 *
232 * We only really have two guaranteed bits in general, although you could
233 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
234 * for more.
235 *
236 * Use the supplied helper functions to endcode/decode the pointer and bits.
237 */
238 struct encoded_page;
239
240 #define ENCODED_PAGE_BITS 3ul
241
242 /* Perform rmap removal after we have flushed the TLB. */
243 #define ENCODED_PAGE_BIT_DELAY_RMAP 1ul
244
245 /*
246 * The next item in an encoded_page array is the "nr_pages" argument, specifying
247 * the number of consecutive pages starting from this page, that all belong to
248 * the same folio. For example, "nr_pages" corresponds to the number of folio
249 * references that must be dropped. If this bit is not set, "nr_pages" is
250 * implicitly 1.
251 */
252 #define ENCODED_PAGE_BIT_NR_PAGES_NEXT 2ul
253
encode_page(struct page * page,unsigned long flags)254 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
255 {
256 BUILD_BUG_ON(flags > ENCODED_PAGE_BITS);
257 return (struct encoded_page *)(flags | (unsigned long)page);
258 }
259
encoded_page_flags(struct encoded_page * page)260 static inline unsigned long encoded_page_flags(struct encoded_page *page)
261 {
262 return ENCODED_PAGE_BITS & (unsigned long)page;
263 }
264
encoded_page_ptr(struct encoded_page * page)265 static inline struct page *encoded_page_ptr(struct encoded_page *page)
266 {
267 return (struct page *)(~ENCODED_PAGE_BITS & (unsigned long)page);
268 }
269
encode_nr_pages(unsigned long nr)270 static __always_inline struct encoded_page *encode_nr_pages(unsigned long nr)
271 {
272 VM_WARN_ON_ONCE((nr << 2) >> 2 != nr);
273 return (struct encoded_page *)(nr << 2);
274 }
275
encoded_nr_pages(struct encoded_page * page)276 static __always_inline unsigned long encoded_nr_pages(struct encoded_page *page)
277 {
278 return ((unsigned long)page) >> 2;
279 }
280
281 /*
282 * A swap entry has to fit into a "unsigned long", as the entry is hidden
283 * in the "index" field of the swapper address space.
284 */
285 typedef struct {
286 unsigned long val;
287 } swp_entry_t;
288
289 /**
290 * typedef softleaf_t - Describes a page table software leaf entry, abstracted
291 * from its architecture-specific encoding.
292 *
293 * Page table leaf entries are those which do not reference any descendent page
294 * tables but rather either reference a data page, are an empty (or 'none'
295 * entry), or contain a non-present entry.
296 *
297 * If referencing another page table or a data page then the page table entry is
298 * pertinent to hardware - that is it tells the hardware how to decode the page
299 * table entry.
300 *
301 * Otherwise it is a software-defined leaf page table entry, which this type
302 * describes. See leafops.h and specifically @softleaf_type for a list of all
303 * possible kinds of software leaf entry.
304 *
305 * A softleaf_t entry is abstracted from the hardware page table entry, so is
306 * not architecture-specific.
307 *
308 * NOTE: While we transition from the confusing swp_entry_t type used for this
309 * purpose, we simply alias this type. This will be removed once the
310 * transition is complete.
311 */
312 typedef swp_entry_t softleaf_t;
313
314 #if defined(CONFIG_MEMCG) || defined(CONFIG_SLAB_OBJ_EXT)
315 /* We have some extra room after the refcount in tail pages. */
316 #define NR_PAGES_IN_LARGE_FOLIO
317 #endif
318
319 /*
320 * On 32bit, we can cut the required metadata in half, because:
321 * (a) PID_MAX_LIMIT implicitly limits the number of MMs we could ever have,
322 * so we can limit MM IDs to 15 bit (32767).
323 * (b) We don't expect folios where even a single complete PTE mapping by
324 * one MM would exceed 15 bits (order-15).
325 */
326 #ifdef CONFIG_64BIT
327 typedef int mm_id_mapcount_t;
328 #define MM_ID_MAPCOUNT_MAX INT_MAX
329 typedef unsigned int mm_id_t;
330 #else /* !CONFIG_64BIT */
331 typedef short mm_id_mapcount_t;
332 #define MM_ID_MAPCOUNT_MAX SHRT_MAX
333 typedef unsigned short mm_id_t;
334 #endif /* CONFIG_64BIT */
335
336 /* We implicitly use the dummy ID for init-mm etc. where we never rmap pages. */
337 #define MM_ID_DUMMY 0
338 #define MM_ID_MIN (MM_ID_DUMMY + 1)
339
340 /*
341 * We leave the highest bit of each MM id unused, so we can store a flag
342 * in the highest bit of each folio->_mm_id[].
343 */
344 #define MM_ID_BITS ((sizeof(mm_id_t) * BITS_PER_BYTE) - 1)
345 #define MM_ID_MASK ((1U << MM_ID_BITS) - 1)
346 #define MM_ID_MAX MM_ID_MASK
347
348 /*
349 * In order to use bit_spin_lock(), which requires an unsigned long, we
350 * operate on folio->_mm_ids when working on flags.
351 */
352 #define FOLIO_MM_IDS_LOCK_BITNUM MM_ID_BITS
353 #define FOLIO_MM_IDS_LOCK_BIT BIT(FOLIO_MM_IDS_LOCK_BITNUM)
354 #define FOLIO_MM_IDS_SHARED_BITNUM (2 * MM_ID_BITS + 1)
355 #define FOLIO_MM_IDS_SHARED_BIT BIT(FOLIO_MM_IDS_SHARED_BITNUM)
356
357 /**
358 * struct folio - Represents a contiguous set of bytes.
359 * @flags: Identical to the page flags.
360 * @lru: Least Recently Used list; tracks how recently this folio was used.
361 * @mlock_count: Number of times this folio has been pinned by mlock().
362 * @mapping: The file this page belongs to, or refers to the anon_vma for
363 * anonymous memory.
364 * @index: Offset within the file, in units of pages. For anonymous memory,
365 * this is the index from the beginning of the mmap.
366 * @share: number of DAX mappings that reference this folio. See
367 * dax_associate_entry.
368 * @private: Filesystem per-folio data (see folio_attach_private()).
369 * @swap: Used for swp_entry_t if folio_test_swapcache().
370 * @_mapcount: Do not access this member directly. Use folio_mapcount() to
371 * find out how many times this folio is mapped by userspace.
372 * @_refcount: Do not access this member directly. Use folio_ref_count()
373 * to find how many references there are to this folio.
374 * @memcg_data: Memory Control Group data.
375 * @pgmap: Metadata for ZONE_DEVICE mappings
376 * @virtual: Virtual address in the kernel direct map.
377 * @_last_cpupid: IDs of last CPU and last process that accessed the folio.
378 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount().
379 * @_large_mapcount: Do not use directly, call folio_mapcount().
380 * @_nr_pages_mapped: Do not use outside of rmap and debug code.
381 * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
382 * @_nr_pages: Do not use directly, call folio_nr_pages().
383 * @_mm_id: Do not use outside of rmap code.
384 * @_mm_ids: Do not use outside of rmap code.
385 * @_mm_id_mapcount: Do not use outside of rmap code.
386 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
387 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
388 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
389 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
390 * @_deferred_list: Folios to be split under memory pressure.
391 * @_unused_slab_obj_exts: Placeholder to match obj_exts in struct slab.
392 *
393 * A folio is a physically, virtually and logically contiguous set
394 * of bytes. It is a power-of-two in size, and it is aligned to that
395 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is
396 * in the page cache, it is at a file offset which is a multiple of that
397 * power-of-two. It may be mapped into userspace at an address which is
398 * at an arbitrary page offset, but its kernel virtual address is aligned
399 * to its size.
400 */
401 struct folio {
402 /* private: don't document the anon union */
403 union {
404 struct {
405 /* public: */
406 memdesc_flags_t flags;
407 union {
408 struct list_head lru;
409 /* private: avoid cluttering the output */
410 /* For the Unevictable "LRU list" slot */
411 struct {
412 /* Avoid compound_head */
413 void *__filler;
414 /* public: */
415 unsigned int mlock_count;
416 /* private: */
417 };
418 /* public: */
419 struct dev_pagemap *pgmap;
420 };
421 struct address_space *mapping;
422 union {
423 pgoff_t index;
424 unsigned long share;
425 };
426 union {
427 void *private;
428 swp_entry_t swap;
429 };
430 atomic_t _mapcount;
431 atomic_t _refcount;
432 #ifdef CONFIG_MEMCG
433 unsigned long memcg_data;
434 #elif defined(CONFIG_SLAB_OBJ_EXT)
435 unsigned long _unused_slab_obj_exts;
436 #endif
437 #if defined(WANT_PAGE_VIRTUAL)
438 void *virtual;
439 #endif
440 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
441 int _last_cpupid;
442 #endif
443 /* private: the union with struct page is transitional */
444 };
445 struct page page;
446 };
447 union {
448 struct {
449 unsigned long _flags_1;
450 unsigned long _head_1;
451 union {
452 struct {
453 /* public: */
454 atomic_t _large_mapcount;
455 atomic_t _nr_pages_mapped;
456 #ifdef CONFIG_64BIT
457 atomic_t _entire_mapcount;
458 atomic_t _pincount;
459 #endif /* CONFIG_64BIT */
460 mm_id_mapcount_t _mm_id_mapcount[2];
461 union {
462 mm_id_t _mm_id[2];
463 unsigned long _mm_ids;
464 };
465 /* private: the union with struct page is transitional */
466 };
467 unsigned long _usable_1[4];
468 };
469 atomic_t _mapcount_1;
470 atomic_t _refcount_1;
471 /* public: */
472 #ifdef NR_PAGES_IN_LARGE_FOLIO
473 unsigned int _nr_pages;
474 #endif /* NR_PAGES_IN_LARGE_FOLIO */
475 /* private: the union with struct page is transitional */
476 };
477 struct page __page_1;
478 };
479 union {
480 struct {
481 unsigned long _flags_2;
482 unsigned long _head_2;
483 /* public: */
484 struct list_head _deferred_list;
485 #ifndef CONFIG_64BIT
486 atomic_t _entire_mapcount;
487 atomic_t _pincount;
488 #endif /* !CONFIG_64BIT */
489 /* private: the union with struct page is transitional */
490 };
491 struct page __page_2;
492 };
493 union {
494 struct {
495 unsigned long _flags_3;
496 unsigned long _head_3;
497 /* public: */
498 void *_hugetlb_subpool;
499 void *_hugetlb_cgroup;
500 void *_hugetlb_cgroup_rsvd;
501 void *_hugetlb_hwpoison;
502 /* private: the union with struct page is transitional */
503 };
504 struct page __page_3;
505 };
506 };
507
508 #define FOLIO_MATCH(pg, fl) \
509 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
510 FOLIO_MATCH(flags, flags);
511 FOLIO_MATCH(lru, lru);
512 FOLIO_MATCH(mapping, mapping);
513 FOLIO_MATCH(compound_head, lru);
514 FOLIO_MATCH(__folio_index, index);
515 FOLIO_MATCH(private, private);
516 FOLIO_MATCH(_mapcount, _mapcount);
517 FOLIO_MATCH(_refcount, _refcount);
518 #ifdef CONFIG_MEMCG
519 FOLIO_MATCH(memcg_data, memcg_data);
520 #endif
521 #if defined(WANT_PAGE_VIRTUAL)
522 FOLIO_MATCH(virtual, virtual);
523 #endif
524 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
525 FOLIO_MATCH(_last_cpupid, _last_cpupid);
526 #endif
527 #undef FOLIO_MATCH
528 #define FOLIO_MATCH(pg, fl) \
529 static_assert(offsetof(struct folio, fl) == \
530 offsetof(struct page, pg) + sizeof(struct page))
531 FOLIO_MATCH(flags, _flags_1);
532 FOLIO_MATCH(compound_head, _head_1);
533 FOLIO_MATCH(_mapcount, _mapcount_1);
534 FOLIO_MATCH(_refcount, _refcount_1);
535 #undef FOLIO_MATCH
536 #define FOLIO_MATCH(pg, fl) \
537 static_assert(offsetof(struct folio, fl) == \
538 offsetof(struct page, pg) + 2 * sizeof(struct page))
539 FOLIO_MATCH(flags, _flags_2);
540 FOLIO_MATCH(compound_head, _head_2);
541 #undef FOLIO_MATCH
542 #define FOLIO_MATCH(pg, fl) \
543 static_assert(offsetof(struct folio, fl) == \
544 offsetof(struct page, pg) + 3 * sizeof(struct page))
545 FOLIO_MATCH(flags, _flags_3);
546 FOLIO_MATCH(compound_head, _head_3);
547 #undef FOLIO_MATCH
548
549 /**
550 * struct ptdesc - Memory descriptor for page tables.
551 * @pt_flags: enum pt_flags plus zone/node/section.
552 * @pt_rcu_head: For freeing page table pages.
553 * @pt_list: List of used page tables. Used for s390 gmap shadow pages
554 * (which are not linked into the user page tables) and x86
555 * pgds.
556 * @_pt_pad_1: Padding that aliases with page's compound head.
557 * @pmd_huge_pte: Protected by ptdesc->ptl, used for THPs.
558 * @__page_mapping: Aliases with page->mapping. Unused for page tables.
559 * @pt_index: Used for s390 gmap.
560 * @pt_mm: Used for x86 pgds.
561 * @pt_frag_refcount: For fragmented page table tracking. Powerpc only.
562 * @pt_share_count: Used for HugeTLB PMD page table share count.
563 * @_pt_pad_2: Padding to ensure proper alignment.
564 * @ptl: Lock for the page table.
565 * @__page_type: Same as page->page_type. Unused for page tables.
566 * @__page_refcount: Same as page refcount.
567 * @pt_memcg_data: Memcg data. Tracked for page tables here.
568 *
569 * This struct overlays struct page for now. Do not modify without a good
570 * understanding of the issues.
571 */
572 struct ptdesc {
573 memdesc_flags_t pt_flags;
574
575 union {
576 struct rcu_head pt_rcu_head;
577 struct list_head pt_list;
578 struct {
579 unsigned long _pt_pad_1;
580 pgtable_t pmd_huge_pte;
581 };
582 };
583 unsigned long __page_mapping;
584
585 union {
586 pgoff_t pt_index;
587 struct mm_struct *pt_mm;
588 atomic_t pt_frag_refcount;
589 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
590 atomic_t pt_share_count;
591 #endif
592 };
593
594 union {
595 unsigned long _pt_pad_2;
596 #if ALLOC_SPLIT_PTLOCKS
597 spinlock_t *ptl;
598 #else
599 spinlock_t ptl;
600 #endif
601 };
602 unsigned int __page_type;
603 atomic_t __page_refcount;
604 #ifdef CONFIG_MEMCG
605 unsigned long pt_memcg_data;
606 #endif
607 };
608
609 #define TABLE_MATCH(pg, pt) \
610 static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt))
611 TABLE_MATCH(flags, pt_flags);
612 TABLE_MATCH(compound_head, pt_list);
613 TABLE_MATCH(compound_head, _pt_pad_1);
614 TABLE_MATCH(mapping, __page_mapping);
615 TABLE_MATCH(__folio_index, pt_index);
616 TABLE_MATCH(rcu_head, pt_rcu_head);
617 TABLE_MATCH(page_type, __page_type);
618 TABLE_MATCH(_refcount, __page_refcount);
619 #ifdef CONFIG_MEMCG
620 TABLE_MATCH(memcg_data, pt_memcg_data);
621 #endif
622 #undef TABLE_MATCH
623 static_assert(sizeof(struct ptdesc) <= sizeof(struct page));
624
625 #define ptdesc_page(pt) (_Generic((pt), \
626 const struct ptdesc *: (const struct page *)(pt), \
627 struct ptdesc *: (struct page *)(pt)))
628
629 #define ptdesc_folio(pt) (_Generic((pt), \
630 const struct ptdesc *: (const struct folio *)(pt), \
631 struct ptdesc *: (struct folio *)(pt)))
632
633 #define page_ptdesc(p) (_Generic((p), \
634 const struct page *: (const struct ptdesc *)(p), \
635 struct page *: (struct ptdesc *)(p)))
636
637 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
ptdesc_pmd_pts_init(struct ptdesc * ptdesc)638 static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
639 {
640 atomic_set(&ptdesc->pt_share_count, 0);
641 }
642
ptdesc_pmd_pts_inc(struct ptdesc * ptdesc)643 static inline void ptdesc_pmd_pts_inc(struct ptdesc *ptdesc)
644 {
645 atomic_inc(&ptdesc->pt_share_count);
646 }
647
ptdesc_pmd_pts_dec(struct ptdesc * ptdesc)648 static inline void ptdesc_pmd_pts_dec(struct ptdesc *ptdesc)
649 {
650 atomic_dec(&ptdesc->pt_share_count);
651 }
652
ptdesc_pmd_pts_count(const struct ptdesc * ptdesc)653 static inline int ptdesc_pmd_pts_count(const struct ptdesc *ptdesc)
654 {
655 return atomic_read(&ptdesc->pt_share_count);
656 }
657
ptdesc_pmd_is_shared(struct ptdesc * ptdesc)658 static inline bool ptdesc_pmd_is_shared(struct ptdesc *ptdesc)
659 {
660 return !!ptdesc_pmd_pts_count(ptdesc);
661 }
662 #else
ptdesc_pmd_pts_init(struct ptdesc * ptdesc)663 static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
664 {
665 }
666 #endif
667
668 /*
669 * Used for sizing the vmemmap region on some architectures
670 */
671 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page)))
672
673 /*
674 * page_private can be used on tail pages. However, PagePrivate is only
675 * checked by the VM on the head page. So page_private on the tail pages
676 * should be used for data that's ancillary to the head page (eg attaching
677 * buffer heads to tail pages after attaching buffer heads to the head page)
678 */
679 #define page_private(page) ((page)->private)
680
set_page_private(struct page * page,unsigned long private)681 static inline void set_page_private(struct page *page, unsigned long private)
682 {
683 page->private = private;
684 }
685
folio_get_private(const struct folio * folio)686 static inline void *folio_get_private(const struct folio *folio)
687 {
688 return folio->private;
689 }
690
691 typedef unsigned long vm_flags_t;
692
693 /*
694 * freeptr_t represents a SLUB freelist pointer, which might be encoded
695 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
696 */
697 typedef struct { unsigned long v; } freeptr_t;
698
699 /*
700 * A region containing a mapping of a non-memory backed file under NOMMU
701 * conditions. These are held in a global tree and are pinned by the VMAs that
702 * map parts of them.
703 */
704 struct vm_region {
705 struct rb_node vm_rb; /* link in global region tree */
706 vm_flags_t vm_flags; /* VMA vm_flags */
707 unsigned long vm_start; /* start address of region */
708 unsigned long vm_end; /* region initialised to here */
709 unsigned long vm_top; /* region allocated to here */
710 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
711 struct file *vm_file; /* the backing file or NULL */
712
713 int vm_usage; /* region usage count (access under nommu_region_sem) */
714 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
715 * this region */
716 };
717
718 #ifdef CONFIG_USERFAULTFD
719 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
720 struct vm_userfaultfd_ctx {
721 struct userfaultfd_ctx *ctx;
722 };
723 #else /* CONFIG_USERFAULTFD */
724 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
725 struct vm_userfaultfd_ctx {};
726 #endif /* CONFIG_USERFAULTFD */
727
728 struct anon_vma_name {
729 struct kref kref;
730 /* The name needs to be at the end because it is dynamically sized. */
731 char name[];
732 };
733
734 #ifdef CONFIG_ANON_VMA_NAME
735 /*
736 * mmap_lock should be read-locked when calling anon_vma_name(). Caller should
737 * either keep holding the lock while using the returned pointer or it should
738 * raise anon_vma_name refcount before releasing the lock.
739 */
740 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma);
741 struct anon_vma_name *anon_vma_name_alloc(const char *name);
742 void anon_vma_name_free(struct kref *kref);
743 #else /* CONFIG_ANON_VMA_NAME */
anon_vma_name(struct vm_area_struct * vma)744 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
745 {
746 return NULL;
747 }
748
anon_vma_name_alloc(const char * name)749 static inline struct anon_vma_name *anon_vma_name_alloc(const char *name)
750 {
751 return NULL;
752 }
753 #endif
754
755 #define VMA_LOCK_OFFSET 0x40000000
756 #define VMA_REF_LIMIT (VMA_LOCK_OFFSET - 1)
757
758 struct vma_numab_state {
759 /*
760 * Initialised as time in 'jiffies' after which VMA
761 * should be scanned. Delays first scan of new VMA by at
762 * least sysctl_numa_balancing_scan_delay:
763 */
764 unsigned long next_scan;
765
766 /*
767 * Time in jiffies when pids_active[] is reset to
768 * detect phase change behaviour:
769 */
770 unsigned long pids_active_reset;
771
772 /*
773 * Approximate tracking of PIDs that trapped a NUMA hinting
774 * fault. May produce false positives due to hash collisions.
775 *
776 * [0] Previous PID tracking
777 * [1] Current PID tracking
778 *
779 * Window moves after next_pid_reset has expired approximately
780 * every VMA_PID_RESET_PERIOD jiffies:
781 */
782 unsigned long pids_active[2];
783
784 /* MM scan sequence ID when scan first started after VMA creation */
785 int start_scan_seq;
786
787 /*
788 * MM scan sequence ID when the VMA was last completely scanned.
789 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq
790 */
791 int prev_scan_seq;
792 };
793
794 #ifdef __HAVE_PFNMAP_TRACKING
795 struct pfnmap_track_ctx {
796 struct kref kref;
797 unsigned long pfn;
798 unsigned long size; /* in bytes */
799 };
800 #endif
801
802 /* What action should be taken after an .mmap_prepare call is complete? */
803 enum mmap_action_type {
804 MMAP_NOTHING, /* Mapping is complete, no further action. */
805 MMAP_REMAP_PFN, /* Remap PFN range. */
806 MMAP_IO_REMAP_PFN, /* I/O remap PFN range. */
807 };
808
809 /*
810 * Describes an action an mmap_prepare hook can instruct to be taken to complete
811 * the mapping of a VMA. Specified in vm_area_desc.
812 */
813 struct mmap_action {
814 union {
815 /* Remap range. */
816 struct {
817 unsigned long start;
818 unsigned long start_pfn;
819 unsigned long size;
820 pgprot_t pgprot;
821 } remap;
822 };
823 enum mmap_action_type type;
824
825 /*
826 * If specified, this hook is invoked after the selected action has been
827 * successfully completed. Note that the VMA write lock still held.
828 *
829 * The absolute minimum ought to be done here.
830 *
831 * Returns 0 on success, or an error code.
832 */
833 int (*success_hook)(const struct vm_area_struct *vma);
834
835 /*
836 * If specified, this hook is invoked when an error occurred when
837 * attempting the selection action.
838 *
839 * The hook can return an error code in order to filter the error, but
840 * it is not valid to clear the error here.
841 */
842 int (*error_hook)(int err);
843
844 /*
845 * This should be set in rare instances where the operation required
846 * that the rmap should not be able to access the VMA until
847 * completely set up.
848 */
849 bool hide_from_rmap_until_complete :1;
850 };
851
852 /*
853 * Opaque type representing current VMA (vm_area_struct) flag state. Must be
854 * accessed via vma_flags_xxx() helper functions.
855 */
856 #define NUM_VMA_FLAG_BITS BITS_PER_LONG
857 typedef struct {
858 DECLARE_BITMAP(__vma_flags, NUM_VMA_FLAG_BITS);
859 } __private vma_flags_t;
860
861 /*
862 * Describes a VMA that is about to be mmap()'ed. Drivers may choose to
863 * manipulate mutable fields which will cause those fields to be updated in the
864 * resultant VMA.
865 *
866 * Helper functions are not required for manipulating any field.
867 */
868 struct vm_area_desc {
869 /* Immutable state. */
870 const struct mm_struct *const mm;
871 struct file *const file; /* May vary from vm_file in stacked callers. */
872 unsigned long start;
873 unsigned long end;
874
875 /* Mutable fields. Populated with initial state. */
876 pgoff_t pgoff;
877 struct file *vm_file;
878 union {
879 vm_flags_t vm_flags;
880 vma_flags_t vma_flags;
881 };
882 pgprot_t page_prot;
883
884 /* Write-only fields. */
885 const struct vm_operations_struct *vm_ops;
886 void *private_data;
887
888 /* Take further action? */
889 struct mmap_action action;
890 };
891
892 /*
893 * This struct describes a virtual memory area. There is one of these
894 * per VM-area/task. A VM area is any part of the process virtual memory
895 * space that has a special rule for the page-fault handlers (ie a shared
896 * library, the executable area etc).
897 *
898 * Only explicitly marked struct members may be accessed by RCU readers before
899 * getting a stable reference.
900 *
901 * WARNING: when adding new members, please update vm_area_init_from() to copy
902 * them during vm_area_struct content duplication.
903 */
904 struct vm_area_struct {
905 /* The first cache line has the info for VMA tree walking. */
906
907 union {
908 struct {
909 /* VMA covers [vm_start; vm_end) addresses within mm */
910 unsigned long vm_start;
911 unsigned long vm_end;
912 };
913 freeptr_t vm_freeptr; /* Pointer used by SLAB_TYPESAFE_BY_RCU */
914 };
915
916 /*
917 * The address space we belong to.
918 * Unstable RCU readers are allowed to read this.
919 */
920 struct mm_struct *vm_mm;
921 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
922
923 /*
924 * Flags, see mm.h.
925 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
926 * Preferably, use vma_flags_xxx() functions.
927 */
928 union {
929 /* Temporary while VMA flags are being converted. */
930 const vm_flags_t vm_flags;
931 vma_flags_t flags;
932 };
933
934 #ifdef CONFIG_PER_VMA_LOCK
935 /*
936 * Can only be written (using WRITE_ONCE()) while holding both:
937 * - mmap_lock (in write mode)
938 * - vm_refcnt bit at VMA_LOCK_OFFSET is set
939 * Can be read reliably while holding one of:
940 * - mmap_lock (in read or write mode)
941 * - vm_refcnt bit at VMA_LOCK_OFFSET is set or vm_refcnt > 1
942 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
943 * while holding nothing (except RCU to keep the VMA struct allocated).
944 *
945 * This sequence counter is explicitly allowed to overflow; sequence
946 * counter reuse can only lead to occasional unnecessary use of the
947 * slowpath.
948 */
949 unsigned int vm_lock_seq;
950 #endif
951 /*
952 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
953 * list, after a COW of one of the file pages. A MAP_SHARED vma
954 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
955 * or brk vma (with NULL file) can only be in an anon_vma list.
956 */
957 struct list_head anon_vma_chain; /* Serialized by mmap_lock &
958 * page_table_lock */
959 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
960
961 /* Function pointers to deal with this struct. */
962 const struct vm_operations_struct *vm_ops;
963
964 /* Information about our backing store: */
965 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
966 units */
967 struct file * vm_file; /* File we map to (can be NULL). */
968 void * vm_private_data; /* was vm_pte (shared mem) */
969
970 #ifdef CONFIG_SWAP
971 atomic_long_t swap_readahead_info;
972 #endif
973 #ifndef CONFIG_MMU
974 struct vm_region *vm_region; /* NOMMU mapping region */
975 #endif
976 #ifdef CONFIG_NUMA
977 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
978 #endif
979 #ifdef CONFIG_NUMA_BALANCING
980 struct vma_numab_state *numab_state; /* NUMA Balancing state */
981 #endif
982 #ifdef CONFIG_PER_VMA_LOCK
983 /* Unstable RCU readers are allowed to read this. */
984 refcount_t vm_refcnt ____cacheline_aligned_in_smp;
985 #ifdef CONFIG_DEBUG_LOCK_ALLOC
986 struct lockdep_map vmlock_dep_map;
987 #endif
988 #endif
989 /*
990 * For areas with an address space and backing store,
991 * linkage into the address_space->i_mmap interval tree.
992 *
993 */
994 struct {
995 struct rb_node rb;
996 unsigned long rb_subtree_last;
997 } shared;
998 #ifdef CONFIG_ANON_VMA_NAME
999 /*
1000 * For private and shared anonymous mappings, a pointer to a null
1001 * terminated string containing the name given to the vma, or NULL if
1002 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
1003 */
1004 struct anon_vma_name *anon_name;
1005 #endif
1006 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
1007 #ifdef __HAVE_PFNMAP_TRACKING
1008 struct pfnmap_track_ctx *pfnmap_track_ctx;
1009 #endif
1010 } __randomize_layout;
1011
1012 /* Clears all bits in the VMA flags bitmap, non-atomically. */
vma_flags_clear_all(vma_flags_t * flags)1013 static inline void vma_flags_clear_all(vma_flags_t *flags)
1014 {
1015 bitmap_zero(ACCESS_PRIVATE(flags, __vma_flags), NUM_VMA_FLAG_BITS);
1016 }
1017
1018 /*
1019 * Copy value to the first system word of VMA flags, non-atomically.
1020 *
1021 * IMPORTANT: This does not overwrite bytes past the first system word. The
1022 * caller must account for this.
1023 */
vma_flags_overwrite_word(vma_flags_t * flags,unsigned long value)1024 static inline void vma_flags_overwrite_word(vma_flags_t *flags, unsigned long value)
1025 {
1026 *ACCESS_PRIVATE(flags, __vma_flags) = value;
1027 }
1028
1029 /*
1030 * Copy value to the first system word of VMA flags ONCE, non-atomically.
1031 *
1032 * IMPORTANT: This does not overwrite bytes past the first system word. The
1033 * caller must account for this.
1034 */
vma_flags_overwrite_word_once(vma_flags_t * flags,unsigned long value)1035 static inline void vma_flags_overwrite_word_once(vma_flags_t *flags, unsigned long value)
1036 {
1037 unsigned long *bitmap = ACCESS_PRIVATE(flags, __vma_flags);
1038
1039 WRITE_ONCE(*bitmap, value);
1040 }
1041
1042 /* Update the first system word of VMA flags setting bits, non-atomically. */
vma_flags_set_word(vma_flags_t * flags,unsigned long value)1043 static inline void vma_flags_set_word(vma_flags_t *flags, unsigned long value)
1044 {
1045 unsigned long *bitmap = ACCESS_PRIVATE(flags, __vma_flags);
1046
1047 *bitmap |= value;
1048 }
1049
1050 /* Update the first system word of VMA flags clearing bits, non-atomically. */
vma_flags_clear_word(vma_flags_t * flags,unsigned long value)1051 static inline void vma_flags_clear_word(vma_flags_t *flags, unsigned long value)
1052 {
1053 unsigned long *bitmap = ACCESS_PRIVATE(flags, __vma_flags);
1054
1055 *bitmap &= ~value;
1056 }
1057
1058 #ifdef CONFIG_NUMA
1059 #define vma_policy(vma) ((vma)->vm_policy)
1060 #else
1061 #define vma_policy(vma) NULL
1062 #endif
1063
1064 /*
1065 * Opaque type representing current mm_struct flag state. Must be accessed via
1066 * mm_flags_xxx() helper functions.
1067 */
1068 #define NUM_MM_FLAG_BITS (64)
1069 typedef struct {
1070 DECLARE_BITMAP(__mm_flags, NUM_MM_FLAG_BITS);
1071 } __private mm_flags_t;
1072
1073 struct kioctx_table;
1074 struct iommu_mm_data;
1075 struct mm_struct {
1076 struct {
1077 /*
1078 * Fields which are often written to are placed in a separate
1079 * cache line.
1080 */
1081 struct {
1082 /**
1083 * @mm_count: The number of references to &struct
1084 * mm_struct (@mm_users count as 1).
1085 *
1086 * Use mmgrab()/mmdrop() to modify. When this drops to
1087 * 0, the &struct mm_struct is freed.
1088 */
1089 atomic_t mm_count;
1090 } ____cacheline_aligned_in_smp;
1091
1092 struct maple_tree mm_mt;
1093
1094 unsigned long mmap_base; /* base of mmap area */
1095 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
1096 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
1097 /* Base addresses for compatible mmap() */
1098 unsigned long mmap_compat_base;
1099 unsigned long mmap_compat_legacy_base;
1100 #endif
1101 unsigned long task_size; /* size of task vm space */
1102 pgd_t * pgd;
1103
1104 #ifdef CONFIG_MEMBARRIER
1105 /**
1106 * @membarrier_state: Flags controlling membarrier behavior.
1107 *
1108 * This field is close to @pgd to hopefully fit in the same
1109 * cache-line, which needs to be touched by switch_mm().
1110 */
1111 atomic_t membarrier_state;
1112 #endif
1113
1114 /**
1115 * @mm_users: The number of users including userspace.
1116 *
1117 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
1118 * drops to 0 (i.e. when the task exits and there are no other
1119 * temporary reference holders), we also release a reference on
1120 * @mm_count (which may then free the &struct mm_struct if
1121 * @mm_count also drops to 0).
1122 */
1123 atomic_t mm_users;
1124
1125 /* MM CID related storage */
1126 struct mm_mm_cid mm_cid;
1127
1128 #ifdef CONFIG_MMU
1129 atomic_long_t pgtables_bytes; /* size of all page tables */
1130 #endif
1131 int map_count; /* number of VMAs */
1132
1133 spinlock_t page_table_lock; /* Protects page tables and some
1134 * counters
1135 */
1136 /*
1137 * Typically the current mmap_lock's offset is 56 bytes from
1138 * the last cacheline boundary, which is very optimal, as
1139 * its two hot fields 'count' and 'owner' sit in 2 different
1140 * cachelines, and when mmap_lock is highly contended, both
1141 * of the 2 fields will be accessed frequently, current layout
1142 * will help to reduce cache bouncing.
1143 *
1144 * So please be careful with adding new fields before
1145 * mmap_lock, which can easily push the 2 fields into one
1146 * cacheline.
1147 */
1148 struct rw_semaphore mmap_lock;
1149
1150 struct list_head mmlist; /* List of maybe swapped mm's. These
1151 * are globally strung together off
1152 * init_mm.mmlist, and are protected
1153 * by mmlist_lock
1154 */
1155 #ifdef CONFIG_PER_VMA_LOCK
1156 struct rcuwait vma_writer_wait;
1157 /*
1158 * This field has lock-like semantics, meaning it is sometimes
1159 * accessed with ACQUIRE/RELEASE semantics.
1160 * Roughly speaking, incrementing the sequence number is
1161 * equivalent to releasing locks on VMAs; reading the sequence
1162 * number can be part of taking a read lock on a VMA.
1163 * Incremented every time mmap_lock is write-locked/unlocked.
1164 * Initialized to 0, therefore odd values indicate mmap_lock
1165 * is write-locked and even values that it's released.
1166 *
1167 * Can be modified under write mmap_lock using RELEASE
1168 * semantics.
1169 * Can be read with no other protection when holding write
1170 * mmap_lock.
1171 * Can be read with ACQUIRE semantics if not holding write
1172 * mmap_lock.
1173 */
1174 seqcount_t mm_lock_seq;
1175 #endif
1176 #ifdef CONFIG_FUTEX_PRIVATE_HASH
1177 struct mutex futex_hash_lock;
1178 struct futex_private_hash __rcu *futex_phash;
1179 struct futex_private_hash *futex_phash_new;
1180 /* futex-ref */
1181 unsigned long futex_batches;
1182 struct rcu_head futex_rcu;
1183 atomic_long_t futex_atomic;
1184 unsigned int __percpu *futex_ref;
1185 #endif
1186
1187 unsigned long hiwater_rss; /* High-watermark of RSS usage */
1188 unsigned long hiwater_vm; /* High-water virtual memory usage */
1189
1190 unsigned long total_vm; /* Total pages mapped */
1191 unsigned long locked_vm; /* Pages that have PG_mlocked set */
1192 atomic64_t pinned_vm; /* Refcount permanently increased */
1193 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
1194 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
1195 unsigned long stack_vm; /* VM_STACK */
1196 vm_flags_t def_flags;
1197
1198 /**
1199 * @write_protect_seq: Locked when any thread is write
1200 * protecting pages mapped by this mm to enforce a later COW,
1201 * for instance during page table copying for fork().
1202 */
1203 seqcount_t write_protect_seq;
1204
1205 spinlock_t arg_lock; /* protect the below fields */
1206
1207 unsigned long start_code, end_code, start_data, end_data;
1208 unsigned long start_brk, brk, start_stack;
1209 unsigned long arg_start, arg_end, env_start, env_end;
1210
1211 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
1212
1213 #ifdef CONFIG_ARCH_HAS_ELF_CORE_EFLAGS
1214 /* the ABI-related flags from the ELF header. Used for core dump */
1215 unsigned long saved_e_flags;
1216 #endif
1217
1218 struct percpu_counter rss_stat[NR_MM_COUNTERS];
1219
1220 struct linux_binfmt *binfmt;
1221
1222 /* Architecture-specific MM context */
1223 mm_context_t context;
1224
1225 mm_flags_t flags; /* Must use mm_flags_* hlpers to access */
1226
1227 #ifdef CONFIG_AIO
1228 spinlock_t ioctx_lock;
1229 struct kioctx_table __rcu *ioctx_table;
1230 #endif
1231 #ifdef CONFIG_MEMCG
1232 /*
1233 * "owner" points to a task that is regarded as the canonical
1234 * user/owner of this mm. All of the following must be true in
1235 * order for it to be changed:
1236 *
1237 * current == mm->owner
1238 * current->mm != mm
1239 * new_owner->mm == mm
1240 * new_owner->alloc_lock is held
1241 */
1242 struct task_struct __rcu *owner;
1243 #endif
1244 struct user_namespace *user_ns;
1245
1246 /* store ref to file /proc/<pid>/exe symlink points to */
1247 struct file __rcu *exe_file;
1248 #ifdef CONFIG_MMU_NOTIFIER
1249 struct mmu_notifier_subscriptions *notifier_subscriptions;
1250 #endif
1251 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1252 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
1253 #endif
1254 #ifdef CONFIG_NUMA_BALANCING
1255 /*
1256 * numa_next_scan is the next time that PTEs will be remapped
1257 * PROT_NONE to trigger NUMA hinting faults; such faults gather
1258 * statistics and migrate pages to new nodes if necessary.
1259 */
1260 unsigned long numa_next_scan;
1261
1262 /* Restart point for scanning and remapping PTEs. */
1263 unsigned long numa_scan_offset;
1264
1265 /* numa_scan_seq prevents two threads remapping PTEs. */
1266 int numa_scan_seq;
1267 #endif
1268 /*
1269 * An operation with batched TLB flushing is going on. Anything
1270 * that can move process memory needs to flush the TLB when
1271 * moving a PROT_NONE mapped page.
1272 */
1273 atomic_t tlb_flush_pending;
1274 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1275 /* See flush_tlb_batched_pending() */
1276 atomic_t tlb_flush_batched;
1277 #endif
1278 struct uprobes_state uprobes_state;
1279 #ifdef CONFIG_PREEMPT_RT
1280 struct rcu_head delayed_drop;
1281 #endif
1282 #ifdef CONFIG_HUGETLB_PAGE
1283 atomic_long_t hugetlb_usage;
1284 #endif
1285 struct work_struct async_put_work;
1286
1287 #ifdef CONFIG_IOMMU_MM_DATA
1288 struct iommu_mm_data *iommu_mm;
1289 #endif
1290 #ifdef CONFIG_KSM
1291 /*
1292 * Represent how many pages of this process are involved in KSM
1293 * merging (not including ksm_zero_pages).
1294 */
1295 unsigned long ksm_merging_pages;
1296 /*
1297 * Represent how many pages are checked for ksm merging
1298 * including merged and not merged.
1299 */
1300 unsigned long ksm_rmap_items;
1301 /*
1302 * Represent how many empty pages are merged with kernel zero
1303 * pages when enabling KSM use_zero_pages.
1304 */
1305 atomic_long_t ksm_zero_pages;
1306 #endif /* CONFIG_KSM */
1307 #ifdef CONFIG_LRU_GEN_WALKS_MMU
1308 struct {
1309 /* this mm_struct is on lru_gen_mm_list */
1310 struct list_head list;
1311 /*
1312 * Set when switching to this mm_struct, as a hint of
1313 * whether it has been used since the last time per-node
1314 * page table walkers cleared the corresponding bits.
1315 */
1316 unsigned long bitmap;
1317 #ifdef CONFIG_MEMCG
1318 /* points to the memcg of "owner" above */
1319 struct mem_cgroup *memcg;
1320 #endif
1321 } lru_gen;
1322 #endif /* CONFIG_LRU_GEN_WALKS_MMU */
1323 #ifdef CONFIG_MM_ID
1324 mm_id_t mm_id;
1325 #endif /* CONFIG_MM_ID */
1326 } __randomize_layout;
1327
1328 /*
1329 * The mm_cpumask needs to be at the end of mm_struct, because it
1330 * is dynamically sized based on nr_cpu_ids.
1331 */
1332 unsigned long cpu_bitmap[];
1333 };
1334
1335 /* Copy value to the first system word of mm flags, non-atomically. */
__mm_flags_overwrite_word(struct mm_struct * mm,unsigned long value)1336 static inline void __mm_flags_overwrite_word(struct mm_struct *mm, unsigned long value)
1337 {
1338 *ACCESS_PRIVATE(&mm->flags, __mm_flags) = value;
1339 }
1340
1341 /* Obtain a read-only view of the mm flags bitmap. */
__mm_flags_get_bitmap(const struct mm_struct * mm)1342 static inline const unsigned long *__mm_flags_get_bitmap(const struct mm_struct *mm)
1343 {
1344 return (const unsigned long *)ACCESS_PRIVATE(&mm->flags, __mm_flags);
1345 }
1346
1347 /* Read the first system word of mm flags, non-atomically. */
__mm_flags_get_word(const struct mm_struct * mm)1348 static inline unsigned long __mm_flags_get_word(const struct mm_struct *mm)
1349 {
1350 return *__mm_flags_get_bitmap(mm);
1351 }
1352
1353 /*
1354 * Update the first system word of mm flags ONLY, applying the specified mask to
1355 * it, then setting all flags specified by bits.
1356 */
__mm_flags_set_mask_bits_word(struct mm_struct * mm,unsigned long mask,unsigned long bits)1357 static inline void __mm_flags_set_mask_bits_word(struct mm_struct *mm,
1358 unsigned long mask, unsigned long bits)
1359 {
1360 unsigned long *bitmap = ACCESS_PRIVATE(&mm->flags, __mm_flags);
1361
1362 set_mask_bits(bitmap, mask, bits);
1363 }
1364
1365 #define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \
1366 MT_FLAGS_USE_RCU)
1367 extern struct mm_struct init_mm;
1368
1369 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)1370 static inline void mm_init_cpumask(struct mm_struct *mm)
1371 {
1372 unsigned long cpu_bitmap = (unsigned long)mm;
1373
1374 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1375 cpumask_clear((struct cpumask *)cpu_bitmap);
1376 }
1377
1378 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)1379 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
1380 {
1381 return (struct cpumask *)&mm->cpu_bitmap;
1382 }
1383
1384 #ifdef CONFIG_LRU_GEN
1385
1386 struct lru_gen_mm_list {
1387 /* mm_struct list for page table walkers */
1388 struct list_head fifo;
1389 /* protects the list above */
1390 spinlock_t lock;
1391 };
1392
1393 #endif /* CONFIG_LRU_GEN */
1394
1395 #ifdef CONFIG_LRU_GEN_WALKS_MMU
1396
1397 void lru_gen_add_mm(struct mm_struct *mm);
1398 void lru_gen_del_mm(struct mm_struct *mm);
1399 void lru_gen_migrate_mm(struct mm_struct *mm);
1400
lru_gen_init_mm(struct mm_struct * mm)1401 static inline void lru_gen_init_mm(struct mm_struct *mm)
1402 {
1403 INIT_LIST_HEAD(&mm->lru_gen.list);
1404 mm->lru_gen.bitmap = 0;
1405 #ifdef CONFIG_MEMCG
1406 mm->lru_gen.memcg = NULL;
1407 #endif
1408 }
1409
lru_gen_use_mm(struct mm_struct * mm)1410 static inline void lru_gen_use_mm(struct mm_struct *mm)
1411 {
1412 /*
1413 * When the bitmap is set, page reclaim knows this mm_struct has been
1414 * used since the last time it cleared the bitmap. So it might be worth
1415 * walking the page tables of this mm_struct to clear the accessed bit.
1416 */
1417 WRITE_ONCE(mm->lru_gen.bitmap, -1);
1418 }
1419
1420 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
1421
lru_gen_add_mm(struct mm_struct * mm)1422 static inline void lru_gen_add_mm(struct mm_struct *mm)
1423 {
1424 }
1425
lru_gen_del_mm(struct mm_struct * mm)1426 static inline void lru_gen_del_mm(struct mm_struct *mm)
1427 {
1428 }
1429
lru_gen_migrate_mm(struct mm_struct * mm)1430 static inline void lru_gen_migrate_mm(struct mm_struct *mm)
1431 {
1432 }
1433
lru_gen_init_mm(struct mm_struct * mm)1434 static inline void lru_gen_init_mm(struct mm_struct *mm)
1435 {
1436 }
1437
lru_gen_use_mm(struct mm_struct * mm)1438 static inline void lru_gen_use_mm(struct mm_struct *mm)
1439 {
1440 }
1441
1442 #endif /* CONFIG_LRU_GEN_WALKS_MMU */
1443
1444 struct vma_iterator {
1445 struct ma_state mas;
1446 };
1447
1448 #define VMA_ITERATOR(name, __mm, __addr) \
1449 struct vma_iterator name = { \
1450 .mas = { \
1451 .tree = &(__mm)->mm_mt, \
1452 .index = __addr, \
1453 .node = NULL, \
1454 .status = ma_start, \
1455 }, \
1456 }
1457
vma_iter_init(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long addr)1458 static inline void vma_iter_init(struct vma_iterator *vmi,
1459 struct mm_struct *mm, unsigned long addr)
1460 {
1461 mas_init(&vmi->mas, &mm->mm_mt, addr);
1462 }
1463
1464 #ifdef CONFIG_SCHED_MM_CID
1465 /*
1466 * mm_cpus_allowed: Union of all mm's threads allowed CPUs.
1467 */
mm_cpus_allowed(struct mm_struct * mm)1468 static inline cpumask_t *mm_cpus_allowed(struct mm_struct *mm)
1469 {
1470 unsigned long bitmap = (unsigned long)mm;
1471
1472 bitmap += offsetof(struct mm_struct, cpu_bitmap);
1473 /* Skip cpu_bitmap */
1474 bitmap += cpumask_size();
1475 return (struct cpumask *)bitmap;
1476 }
1477
1478 /* Accessor for struct mm_struct's cidmask. */
mm_cidmask(struct mm_struct * mm)1479 static inline unsigned long *mm_cidmask(struct mm_struct *mm)
1480 {
1481 unsigned long cid_bitmap = (unsigned long)mm_cpus_allowed(mm);
1482
1483 /* Skip mm_cpus_allowed */
1484 cid_bitmap += cpumask_size();
1485 return (unsigned long *)cid_bitmap;
1486 }
1487
1488 void mm_init_cid(struct mm_struct *mm, struct task_struct *p);
1489
mm_alloc_cid_noprof(struct mm_struct * mm,struct task_struct * p)1490 static inline int mm_alloc_cid_noprof(struct mm_struct *mm, struct task_struct *p)
1491 {
1492 mm->mm_cid.pcpu = alloc_percpu_noprof(struct mm_cid_pcpu);
1493 if (!mm->mm_cid.pcpu)
1494 return -ENOMEM;
1495 mm_init_cid(mm, p);
1496 return 0;
1497 }
1498 #define mm_alloc_cid(...) alloc_hooks(mm_alloc_cid_noprof(__VA_ARGS__))
1499
mm_destroy_cid(struct mm_struct * mm)1500 static inline void mm_destroy_cid(struct mm_struct *mm)
1501 {
1502 free_percpu(mm->mm_cid.pcpu);
1503 mm->mm_cid.pcpu = NULL;
1504 }
1505
mm_cid_size(void)1506 static inline unsigned int mm_cid_size(void)
1507 {
1508 /* mm_cpus_allowed(), mm_cidmask(). */
1509 return cpumask_size() + bitmap_size(num_possible_cpus());
1510 }
1511
1512 #else /* CONFIG_SCHED_MM_CID */
mm_init_cid(struct mm_struct * mm,struct task_struct * p)1513 static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) { }
mm_alloc_cid(struct mm_struct * mm,struct task_struct * p)1514 static inline int mm_alloc_cid(struct mm_struct *mm, struct task_struct *p) { return 0; }
mm_destroy_cid(struct mm_struct * mm)1515 static inline void mm_destroy_cid(struct mm_struct *mm) { }
mm_cid_size(void)1516 static inline unsigned int mm_cid_size(void)
1517 {
1518 return 0;
1519 }
1520 #endif /* CONFIG_SCHED_MM_CID */
1521
1522 struct mmu_gather;
1523 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
1524 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
1525 extern void tlb_finish_mmu(struct mmu_gather *tlb);
1526
1527 struct vm_fault;
1528
1529 /**
1530 * typedef vm_fault_t - Return type for page fault handlers.
1531 *
1532 * Page fault handlers return a bitmask of %VM_FAULT values.
1533 */
1534 typedef __bitwise unsigned int vm_fault_t;
1535
1536 /**
1537 * enum vm_fault_reason - Page fault handlers return a bitmask of
1538 * these values to tell the core VM what happened when handling the
1539 * fault. Used to decide whether a process gets delivered SIGBUS or
1540 * just gets major/minor fault counters bumped up.
1541 *
1542 * @VM_FAULT_OOM: Out Of Memory
1543 * @VM_FAULT_SIGBUS: Bad access
1544 * @VM_FAULT_MAJOR: Page read from storage
1545 * @VM_FAULT_HWPOISON: Hit poisoned small page
1546 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded
1547 * in upper bits
1548 * @VM_FAULT_SIGSEGV: segmentation fault
1549 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page
1550 * @VM_FAULT_LOCKED: ->fault locked the returned page
1551 * @VM_FAULT_RETRY: ->fault blocked, must retry
1552 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small
1553 * @VM_FAULT_DONE_COW: ->fault has fully handled COW
1554 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs
1555 * fsync() to complete (for synchronous page faults
1556 * in DAX)
1557 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released
1558 * @VM_FAULT_HINDEX_MASK: mask HINDEX value
1559 *
1560 */
1561 enum vm_fault_reason {
1562 VM_FAULT_OOM = (__force vm_fault_t)0x000001,
1563 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002,
1564 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004,
1565 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010,
1566 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
1567 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040,
1568 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100,
1569 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200,
1570 VM_FAULT_RETRY = (__force vm_fault_t)0x000400,
1571 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800,
1572 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000,
1573 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000,
1574 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000,
1575 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000,
1576 };
1577
1578 /* Encode hstate index for a hwpoisoned large page */
1579 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
1580 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
1581
1582 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \
1583 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \
1584 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
1585
1586 #define VM_FAULT_RESULT_TRACE \
1587 { VM_FAULT_OOM, "OOM" }, \
1588 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1589 { VM_FAULT_MAJOR, "MAJOR" }, \
1590 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1591 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1592 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1593 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1594 { VM_FAULT_LOCKED, "LOCKED" }, \
1595 { VM_FAULT_RETRY, "RETRY" }, \
1596 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1597 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1598 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }, \
1599 { VM_FAULT_COMPLETED, "COMPLETED" }
1600
1601 struct vm_special_mapping {
1602 const char *name; /* The name, e.g. "[vdso]". */
1603
1604 /*
1605 * If .fault is not provided, this points to a
1606 * NULL-terminated array of pages that back the special mapping.
1607 *
1608 * This must not be NULL unless .fault is provided.
1609 */
1610 struct page **pages;
1611
1612 /*
1613 * If non-NULL, then this is called to resolve page faults
1614 * on the special mapping. If used, .pages is not checked.
1615 */
1616 vm_fault_t (*fault)(const struct vm_special_mapping *sm,
1617 struct vm_area_struct *vma,
1618 struct vm_fault *vmf);
1619
1620 int (*mremap)(const struct vm_special_mapping *sm,
1621 struct vm_area_struct *new_vma);
1622
1623 void (*close)(const struct vm_special_mapping *sm,
1624 struct vm_area_struct *vma);
1625 };
1626
1627 enum tlb_flush_reason {
1628 TLB_FLUSH_ON_TASK_SWITCH,
1629 TLB_REMOTE_SHOOTDOWN,
1630 TLB_LOCAL_SHOOTDOWN,
1631 TLB_LOCAL_MM_SHOOTDOWN,
1632 TLB_REMOTE_SEND_IPI,
1633 TLB_REMOTE_WRONG_CPU,
1634 NR_TLB_FLUSH_REASONS,
1635 };
1636
1637 /**
1638 * enum fault_flag - Fault flag definitions.
1639 * @FAULT_FLAG_WRITE: Fault was a write fault.
1640 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
1641 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
1642 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
1643 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
1644 * @FAULT_FLAG_TRIED: The fault has been tried once.
1645 * @FAULT_FLAG_USER: The fault originated in userspace.
1646 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
1647 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
1648 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
1649 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
1650 * COW mapping, making sure that an exclusive anon page is
1651 * mapped after the fault.
1652 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
1653 * We should only access orig_pte if this flag set.
1654 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock.
1655 *
1656 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
1657 * whether we would allow page faults to retry by specifying these two
1658 * fault flags correctly. Currently there can be three legal combinations:
1659 *
1660 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
1661 * this is the first try
1662 *
1663 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
1664 * we've already tried at least once
1665 *
1666 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
1667 *
1668 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
1669 * be used. Note that page faults can be allowed to retry for multiple times,
1670 * in which case we'll have an initial fault with flags (a) then later on
1671 * continuous faults with flags (b). We should always try to detect pending
1672 * signals before a retry to make sure the continuous page faults can still be
1673 * interrupted if necessary.
1674 *
1675 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
1676 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
1677 * applied to mappings that are not COW mappings.
1678 */
1679 enum fault_flag {
1680 FAULT_FLAG_WRITE = 1 << 0,
1681 FAULT_FLAG_MKWRITE = 1 << 1,
1682 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
1683 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
1684 FAULT_FLAG_KILLABLE = 1 << 4,
1685 FAULT_FLAG_TRIED = 1 << 5,
1686 FAULT_FLAG_USER = 1 << 6,
1687 FAULT_FLAG_REMOTE = 1 << 7,
1688 FAULT_FLAG_INSTRUCTION = 1 << 8,
1689 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
1690 FAULT_FLAG_UNSHARE = 1 << 10,
1691 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11,
1692 FAULT_FLAG_VMA_LOCK = 1 << 12,
1693 };
1694
1695 typedef unsigned int __bitwise zap_flags_t;
1696
1697 /* Flags for clear_young_dirty_ptes(). */
1698 typedef int __bitwise cydp_t;
1699
1700 /* Clear the access bit */
1701 #define CYDP_CLEAR_YOUNG ((__force cydp_t)BIT(0))
1702
1703 /* Clear the dirty bit */
1704 #define CYDP_CLEAR_DIRTY ((__force cydp_t)BIT(1))
1705
1706 /*
1707 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
1708 * other. Here is what they mean, and how to use them:
1709 *
1710 *
1711 * FIXME: For pages which are part of a filesystem, mappings are subject to the
1712 * lifetime enforced by the filesystem and we need guarantees that longterm
1713 * users like RDMA and V4L2 only establish mappings which coordinate usage with
1714 * the filesystem. Ideas for this coordination include revoking the longterm
1715 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
1716 * added after the problem with filesystems was found FS DAX VMAs are
1717 * specifically failed. Filesystem pages are still subject to bugs and use of
1718 * FOLL_LONGTERM should be avoided on those pages.
1719 *
1720 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
1721 * that region. And so, CMA attempts to migrate the page before pinning, when
1722 * FOLL_LONGTERM is specified.
1723 *
1724 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
1725 * but an additional pin counting system) will be invoked. This is intended for
1726 * anything that gets a page reference and then touches page data (for example,
1727 * Direct IO). This lets the filesystem know that some non-file-system entity is
1728 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
1729 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
1730 * a call to unpin_user_page().
1731 *
1732 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
1733 * and separate refcounting mechanisms, however, and that means that each has
1734 * its own acquire and release mechanisms:
1735 *
1736 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
1737 *
1738 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
1739 *
1740 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
1741 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
1742 * calls applied to them, and that's perfectly OK. This is a constraint on the
1743 * callers, not on the pages.)
1744 *
1745 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
1746 * directly by the caller. That's in order to help avoid mismatches when
1747 * releasing pages: get_user_pages*() pages must be released via put_page(),
1748 * while pin_user_pages*() pages must be released via unpin_user_page().
1749 *
1750 * Please see Documentation/core-api/pin_user_pages.rst for more information.
1751 */
1752
1753 enum {
1754 /* check pte is writable */
1755 FOLL_WRITE = 1 << 0,
1756 /* do get_page on page */
1757 FOLL_GET = 1 << 1,
1758 /* give error on hole if it would be zero */
1759 FOLL_DUMP = 1 << 2,
1760 /* get_user_pages read/write w/o permission */
1761 FOLL_FORCE = 1 << 3,
1762 /*
1763 * if a disk transfer is needed, start the IO and return without waiting
1764 * upon it
1765 */
1766 FOLL_NOWAIT = 1 << 4,
1767 /* do not fault in pages */
1768 FOLL_NOFAULT = 1 << 5,
1769 /* check page is hwpoisoned */
1770 FOLL_HWPOISON = 1 << 6,
1771 /* don't do file mappings */
1772 FOLL_ANON = 1 << 7,
1773 /*
1774 * FOLL_LONGTERM indicates that the page will be held for an indefinite
1775 * time period _often_ under userspace control. This is in contrast to
1776 * iov_iter_get_pages(), whose usages are transient.
1777 */
1778 FOLL_LONGTERM = 1 << 8,
1779 /* split huge pmd before returning */
1780 FOLL_SPLIT_PMD = 1 << 9,
1781 /* allow returning PCI P2PDMA pages */
1782 FOLL_PCI_P2PDMA = 1 << 10,
1783 /* allow interrupts from generic signals */
1784 FOLL_INTERRUPTIBLE = 1 << 11,
1785 /*
1786 * Always honor (trigger) NUMA hinting faults.
1787 *
1788 * FOLL_WRITE implicitly honors NUMA hinting faults because a
1789 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE
1790 * apply). get_user_pages_fast_only() always implicitly honors NUMA
1791 * hinting faults.
1792 */
1793 FOLL_HONOR_NUMA_FAULT = 1 << 12,
1794
1795 /* See also internal only FOLL flags in mm/internal.h */
1796 };
1797
1798 /* mm flags */
1799
1800 /*
1801 * The first two bits represent core dump modes for set-user-ID,
1802 * the modes are SUID_DUMP_* defined in linux/sched/coredump.h
1803 */
1804 #define MMF_DUMPABLE_BITS 2
1805 #define MMF_DUMPABLE_MASK (BIT(MMF_DUMPABLE_BITS) - 1)
1806 /* coredump filter bits */
1807 #define MMF_DUMP_ANON_PRIVATE 2
1808 #define MMF_DUMP_ANON_SHARED 3
1809 #define MMF_DUMP_MAPPED_PRIVATE 4
1810 #define MMF_DUMP_MAPPED_SHARED 5
1811 #define MMF_DUMP_ELF_HEADERS 6
1812 #define MMF_DUMP_HUGETLB_PRIVATE 7
1813 #define MMF_DUMP_HUGETLB_SHARED 8
1814 #define MMF_DUMP_DAX_PRIVATE 9
1815 #define MMF_DUMP_DAX_SHARED 10
1816
1817 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
1818 #define MMF_DUMP_FILTER_BITS 9
1819 #define MMF_DUMP_FILTER_MASK \
1820 ((BIT(MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
1821 #define MMF_DUMP_FILTER_DEFAULT \
1822 (BIT(MMF_DUMP_ANON_PRIVATE) | BIT(MMF_DUMP_ANON_SHARED) | \
1823 BIT(MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
1824
1825 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
1826 # define MMF_DUMP_MASK_DEFAULT_ELF BIT(MMF_DUMP_ELF_HEADERS)
1827 #else
1828 # define MMF_DUMP_MASK_DEFAULT_ELF 0
1829 #endif
1830 /* leave room for more dump flags */
1831 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
1832 #define MMF_VM_HUGEPAGE 17 /* set when mm is available for khugepaged */
1833
1834 #define MMF_HUGE_ZERO_FOLIO 18 /* mm has ever used the global huge zero folio */
1835
1836 #define MMF_HAS_UPROBES 19 /* has uprobes */
1837 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
1838 #define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */
1839 #define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */
1840 #define MMF_DISABLE_THP_EXCEPT_ADVISED 23 /* no THP except when advised (e.g., VM_HUGEPAGE) */
1841 #define MMF_DISABLE_THP_COMPLETELY 24 /* no THP for all VMAs */
1842 #define MMF_DISABLE_THP_MASK (BIT(MMF_DISABLE_THP_COMPLETELY) | \
1843 BIT(MMF_DISABLE_THP_EXCEPT_ADVISED))
1844 #define MMF_OOM_REAP_QUEUED 25 /* mm was queued for oom_reaper */
1845 #define MMF_MULTIPROCESS 26 /* mm is shared between processes */
1846 /*
1847 * MMF_HAS_PINNED: Whether this mm has pinned any pages. This can be either
1848 * replaced in the future by mm.pinned_vm when it becomes stable, or grow into
1849 * a counter on its own. We're aggresive on this bit for now: even if the
1850 * pinned pages were unpinned later on, we'll still keep this bit set for the
1851 * lifecycle of this mm, just for simplicity.
1852 */
1853 #define MMF_HAS_PINNED 27 /* FOLL_PIN has run, never cleared */
1854
1855 #define MMF_HAS_MDWE 28
1856 #define MMF_HAS_MDWE_MASK BIT(MMF_HAS_MDWE)
1857
1858 #define MMF_HAS_MDWE_NO_INHERIT 29
1859
1860 #define MMF_VM_MERGE_ANY 30
1861 #define MMF_VM_MERGE_ANY_MASK BIT(MMF_VM_MERGE_ANY)
1862
1863 #define MMF_TOPDOWN 31 /* mm searches top down by default */
1864 #define MMF_TOPDOWN_MASK BIT(MMF_TOPDOWN)
1865
1866 #define MMF_INIT_LEGACY_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK |\
1867 MMF_DISABLE_THP_MASK | MMF_HAS_MDWE_MASK |\
1868 MMF_VM_MERGE_ANY_MASK | MMF_TOPDOWN_MASK)
1869
1870 /* Legacy flags must fit within 32 bits. */
1871 static_assert((u64)MMF_INIT_LEGACY_MASK <= (u64)UINT_MAX);
1872
1873 /*
1874 * Initialise legacy flags according to masks, propagating selected flags on
1875 * fork. Further flag manipulation can be performed by the caller.
1876 */
mmf_init_legacy_flags(unsigned long flags)1877 static inline unsigned long mmf_init_legacy_flags(unsigned long flags)
1878 {
1879 if (flags & (1UL << MMF_HAS_MDWE_NO_INHERIT))
1880 flags &= ~((1UL << MMF_HAS_MDWE) |
1881 (1UL << MMF_HAS_MDWE_NO_INHERIT));
1882 return flags & MMF_INIT_LEGACY_MASK;
1883 }
1884
1885 #endif /* _LINUX_MM_TYPES_H */
1886