1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112
113 #include "core/dev.h"
114
115 #ifdef CONFIG_NET_RX_BUSY_POLL
116 unsigned int sysctl_net_busy_read __read_mostly;
117 unsigned int sysctl_net_busy_poll __read_mostly;
118 #endif
119
120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
122 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123
124 static int sock_close(struct inode *inode, struct file *file);
125 static __poll_t sock_poll(struct file *file,
126 struct poll_table_struct *wait);
127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
128 #ifdef CONFIG_COMPAT
129 static long compat_sock_ioctl(struct file *file,
130 unsigned int cmd, unsigned long arg);
131 #endif
132 static int sock_fasync(int fd, struct file *filp, int on);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 struct pipe_inode_info *pipe, size_t len,
135 unsigned int flags);
136 static void sock_splice_eof(struct file *file);
137
138 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)139 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
140 {
141 struct socket *sock = f->private_data;
142 const struct proto_ops *ops = READ_ONCE(sock->ops);
143
144 if (ops->show_fdinfo)
145 ops->show_fdinfo(m, sock);
146 }
147 #else
148 #define sock_show_fdinfo NULL
149 #endif
150
151 /*
152 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
153 * in the operation structures but are done directly via the socketcall() multiplexor.
154 */
155
156 static const struct file_operations socket_file_ops = {
157 .owner = THIS_MODULE,
158 .read_iter = sock_read_iter,
159 .write_iter = sock_write_iter,
160 .poll = sock_poll,
161 .unlocked_ioctl = sock_ioctl,
162 #ifdef CONFIG_COMPAT
163 .compat_ioctl = compat_sock_ioctl,
164 #endif
165 .uring_cmd = io_uring_cmd_sock,
166 .mmap = sock_mmap,
167 .release = sock_close,
168 .fasync = sock_fasync,
169 .splice_write = splice_to_socket,
170 .splice_read = sock_splice_read,
171 .splice_eof = sock_splice_eof,
172 .show_fdinfo = sock_show_fdinfo,
173 };
174
175 static const char * const pf_family_names[] = {
176 [PF_UNSPEC] = "PF_UNSPEC",
177 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
178 [PF_INET] = "PF_INET",
179 [PF_AX25] = "PF_AX25",
180 [PF_IPX] = "PF_IPX",
181 [PF_APPLETALK] = "PF_APPLETALK",
182 [PF_NETROM] = "PF_NETROM",
183 [PF_BRIDGE] = "PF_BRIDGE",
184 [PF_ATMPVC] = "PF_ATMPVC",
185 [PF_X25] = "PF_X25",
186 [PF_INET6] = "PF_INET6",
187 [PF_ROSE] = "PF_ROSE",
188 [PF_DECnet] = "PF_DECnet",
189 [PF_NETBEUI] = "PF_NETBEUI",
190 [PF_SECURITY] = "PF_SECURITY",
191 [PF_KEY] = "PF_KEY",
192 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
193 [PF_PACKET] = "PF_PACKET",
194 [PF_ASH] = "PF_ASH",
195 [PF_ECONET] = "PF_ECONET",
196 [PF_ATMSVC] = "PF_ATMSVC",
197 [PF_RDS] = "PF_RDS",
198 [PF_SNA] = "PF_SNA",
199 [PF_IRDA] = "PF_IRDA",
200 [PF_PPPOX] = "PF_PPPOX",
201 [PF_WANPIPE] = "PF_WANPIPE",
202 [PF_LLC] = "PF_LLC",
203 [PF_IB] = "PF_IB",
204 [PF_MPLS] = "PF_MPLS",
205 [PF_CAN] = "PF_CAN",
206 [PF_TIPC] = "PF_TIPC",
207 [PF_BLUETOOTH] = "PF_BLUETOOTH",
208 [PF_IUCV] = "PF_IUCV",
209 [PF_RXRPC] = "PF_RXRPC",
210 [PF_ISDN] = "PF_ISDN",
211 [PF_PHONET] = "PF_PHONET",
212 [PF_IEEE802154] = "PF_IEEE802154",
213 [PF_CAIF] = "PF_CAIF",
214 [PF_ALG] = "PF_ALG",
215 [PF_NFC] = "PF_NFC",
216 [PF_VSOCK] = "PF_VSOCK",
217 [PF_KCM] = "PF_KCM",
218 [PF_QIPCRTR] = "PF_QIPCRTR",
219 [PF_SMC] = "PF_SMC",
220 [PF_XDP] = "PF_XDP",
221 [PF_MCTP] = "PF_MCTP",
222 };
223
224 /*
225 * The protocol list. Each protocol is registered in here.
226 */
227
228 static DEFINE_SPINLOCK(net_family_lock);
229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230
231 /*
232 * Support routines.
233 * Move socket addresses back and forth across the kernel/user
234 * divide and look after the messy bits.
235 */
236
237 /**
238 * move_addr_to_kernel - copy a socket address into kernel space
239 * @uaddr: Address in user space
240 * @kaddr: Address in kernel space
241 * @ulen: Length in user space
242 *
243 * The address is copied into kernel space. If the provided address is
244 * too long an error code of -EINVAL is returned. If the copy gives
245 * invalid addresses -EFAULT is returned. On a success 0 is returned.
246 */
247
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
249 {
250 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251 return -EINVAL;
252 if (ulen == 0)
253 return 0;
254 if (copy_from_user(kaddr, uaddr, ulen))
255 return -EFAULT;
256 return audit_sockaddr(ulen, kaddr);
257 }
258
259 /**
260 * move_addr_to_user - copy an address to user space
261 * @kaddr: kernel space address
262 * @klen: length of address in kernel
263 * @uaddr: user space address
264 * @ulen: pointer to user length field
265 *
266 * The value pointed to by ulen on entry is the buffer length available.
267 * This is overwritten with the buffer space used. -EINVAL is returned
268 * if an overlong buffer is specified or a negative buffer size. -EFAULT
269 * is returned if either the buffer or the length field are not
270 * accessible.
271 * After copying the data up to the limit the user specifies, the true
272 * length of the data is written over the length limit the user
273 * specified. Zero is returned for a success.
274 */
275
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
277 void __user *uaddr, int __user *ulen)
278 {
279 int err;
280 int len;
281
282 BUG_ON(klen > sizeof(struct sockaddr_storage));
283 err = get_user(len, ulen);
284 if (err)
285 return err;
286 if (len > klen)
287 len = klen;
288 if (len < 0)
289 return -EINVAL;
290 if (len) {
291 if (audit_sockaddr(klen, kaddr))
292 return -ENOMEM;
293 if (copy_to_user(uaddr, kaddr, len))
294 return -EFAULT;
295 }
296 /*
297 * "fromlen shall refer to the value before truncation.."
298 * 1003.1g
299 */
300 return __put_user(klen, ulen);
301 }
302
303 static struct kmem_cache *sock_inode_cachep __ro_after_init;
304
sock_alloc_inode(struct super_block * sb)305 static struct inode *sock_alloc_inode(struct super_block *sb)
306 {
307 struct socket_alloc *ei;
308
309 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
310 if (!ei)
311 return NULL;
312 init_waitqueue_head(&ei->socket.wq.wait);
313 ei->socket.wq.fasync_list = NULL;
314 ei->socket.wq.flags = 0;
315
316 ei->socket.state = SS_UNCONNECTED;
317 ei->socket.flags = 0;
318 ei->socket.ops = NULL;
319 ei->socket.sk = NULL;
320 ei->socket.file = NULL;
321
322 return &ei->vfs_inode;
323 }
324
sock_free_inode(struct inode * inode)325 static void sock_free_inode(struct inode *inode)
326 {
327 struct socket_alloc *ei;
328
329 ei = container_of(inode, struct socket_alloc, vfs_inode);
330 kmem_cache_free(sock_inode_cachep, ei);
331 }
332
init_once(void * foo)333 static void init_once(void *foo)
334 {
335 struct socket_alloc *ei = (struct socket_alloc *)foo;
336
337 inode_init_once(&ei->vfs_inode);
338 }
339
init_inodecache(void)340 static void init_inodecache(void)
341 {
342 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
343 sizeof(struct socket_alloc),
344 0,
345 (SLAB_HWCACHE_ALIGN |
346 SLAB_RECLAIM_ACCOUNT |
347 SLAB_ACCOUNT),
348 init_once);
349 BUG_ON(sock_inode_cachep == NULL);
350 }
351
352 static const struct super_operations sockfs_ops = {
353 .alloc_inode = sock_alloc_inode,
354 .free_inode = sock_free_inode,
355 .statfs = simple_statfs,
356 };
357
358 /*
359 * sockfs_dname() is called from d_path().
360 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)361 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
362 {
363 return dynamic_dname(buffer, buflen, "socket:[%lu]",
364 d_inode(dentry)->i_ino);
365 }
366
367 static const struct dentry_operations sockfs_dentry_operations = {
368 .d_dname = sockfs_dname,
369 };
370
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)371 static int sockfs_xattr_get(const struct xattr_handler *handler,
372 struct dentry *dentry, struct inode *inode,
373 const char *suffix, void *value, size_t size)
374 {
375 if (value) {
376 if (dentry->d_name.len + 1 > size)
377 return -ERANGE;
378 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
379 }
380 return dentry->d_name.len + 1;
381 }
382
383 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
384 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
385 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
386
387 static const struct xattr_handler sockfs_xattr_handler = {
388 .name = XATTR_NAME_SOCKPROTONAME,
389 .get = sockfs_xattr_get,
390 };
391
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)392 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
393 struct mnt_idmap *idmap,
394 struct dentry *dentry, struct inode *inode,
395 const char *suffix, const void *value,
396 size_t size, int flags)
397 {
398 /* Handled by LSM. */
399 return -EAGAIN;
400 }
401
402 static const struct xattr_handler sockfs_security_xattr_handler = {
403 .prefix = XATTR_SECURITY_PREFIX,
404 .set = sockfs_security_xattr_set,
405 };
406
407 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
408 &sockfs_xattr_handler,
409 &sockfs_security_xattr_handler,
410 NULL
411 };
412
sockfs_init_fs_context(struct fs_context * fc)413 static int sockfs_init_fs_context(struct fs_context *fc)
414 {
415 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
416 if (!ctx)
417 return -ENOMEM;
418 ctx->ops = &sockfs_ops;
419 ctx->dops = &sockfs_dentry_operations;
420 ctx->xattr = sockfs_xattr_handlers;
421 return 0;
422 }
423
424 static struct vfsmount *sock_mnt __read_mostly;
425
426 static struct file_system_type sock_fs_type = {
427 .name = "sockfs",
428 .init_fs_context = sockfs_init_fs_context,
429 .kill_sb = kill_anon_super,
430 };
431
432 /*
433 * Obtains the first available file descriptor and sets it up for use.
434 *
435 * These functions create file structures and maps them to fd space
436 * of the current process. On success it returns file descriptor
437 * and file struct implicitly stored in sock->file.
438 * Note that another thread may close file descriptor before we return
439 * from this function. We use the fact that now we do not refer
440 * to socket after mapping. If one day we will need it, this
441 * function will increment ref. count on file by 1.
442 *
443 * In any case returned fd MAY BE not valid!
444 * This race condition is unavoidable
445 * with shared fd spaces, we cannot solve it inside kernel,
446 * but we take care of internal coherence yet.
447 */
448
449 /**
450 * sock_alloc_file - Bind a &socket to a &file
451 * @sock: socket
452 * @flags: file status flags
453 * @dname: protocol name
454 *
455 * Returns the &file bound with @sock, implicitly storing it
456 * in sock->file. If dname is %NULL, sets to "".
457 *
458 * On failure @sock is released, and an ERR pointer is returned.
459 *
460 * This function uses GFP_KERNEL internally.
461 */
462
sock_alloc_file(struct socket * sock,int flags,const char * dname)463 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
464 {
465 struct file *file;
466
467 if (!dname)
468 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
469
470 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
471 O_RDWR | (flags & O_NONBLOCK),
472 &socket_file_ops);
473 if (IS_ERR(file)) {
474 sock_release(sock);
475 return file;
476 }
477
478 file->f_mode |= FMODE_NOWAIT;
479 sock->file = file;
480 file->private_data = sock;
481 stream_open(SOCK_INODE(sock), file);
482 /*
483 * Disable permission and pre-content events, but enable legacy
484 * inotify events for legacy users.
485 */
486 file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM);
487 return file;
488 }
489 EXPORT_SYMBOL(sock_alloc_file);
490
sock_map_fd(struct socket * sock,int flags)491 static int sock_map_fd(struct socket *sock, int flags)
492 {
493 struct file *newfile;
494 int fd = get_unused_fd_flags(flags);
495 if (unlikely(fd < 0)) {
496 sock_release(sock);
497 return fd;
498 }
499
500 newfile = sock_alloc_file(sock, flags, NULL);
501 if (!IS_ERR(newfile)) {
502 fd_install(fd, newfile);
503 return fd;
504 }
505
506 put_unused_fd(fd);
507 return PTR_ERR(newfile);
508 }
509
510 /**
511 * sock_from_file - Return the &socket bounded to @file.
512 * @file: file
513 *
514 * On failure returns %NULL.
515 */
516
sock_from_file(struct file * file)517 struct socket *sock_from_file(struct file *file)
518 {
519 if (likely(file->f_op == &socket_file_ops))
520 return file->private_data; /* set in sock_alloc_file */
521
522 return NULL;
523 }
524 EXPORT_SYMBOL(sock_from_file);
525
526 /**
527 * sockfd_lookup - Go from a file number to its socket slot
528 * @fd: file handle
529 * @err: pointer to an error code return
530 *
531 * The file handle passed in is locked and the socket it is bound
532 * to is returned. If an error occurs the err pointer is overwritten
533 * with a negative errno code and NULL is returned. The function checks
534 * for both invalid handles and passing a handle which is not a socket.
535 *
536 * On a success the socket object pointer is returned.
537 */
538
sockfd_lookup(int fd,int * err)539 struct socket *sockfd_lookup(int fd, int *err)
540 {
541 struct file *file;
542 struct socket *sock;
543
544 file = fget(fd);
545 if (!file) {
546 *err = -EBADF;
547 return NULL;
548 }
549
550 sock = sock_from_file(file);
551 if (!sock) {
552 *err = -ENOTSOCK;
553 fput(file);
554 }
555 return sock;
556 }
557 EXPORT_SYMBOL(sockfd_lookup);
558
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)559 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
560 size_t size)
561 {
562 ssize_t len;
563 ssize_t used = 0;
564
565 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
566 if (len < 0)
567 return len;
568 used += len;
569 if (buffer) {
570 if (size < used)
571 return -ERANGE;
572 buffer += len;
573 }
574
575 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
576 used += len;
577 if (buffer) {
578 if (size < used)
579 return -ERANGE;
580 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
581 buffer += len;
582 }
583
584 return used;
585 }
586
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)587 static int sockfs_setattr(struct mnt_idmap *idmap,
588 struct dentry *dentry, struct iattr *iattr)
589 {
590 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
591
592 if (!err && (iattr->ia_valid & ATTR_UID)) {
593 struct socket *sock = SOCKET_I(d_inode(dentry));
594
595 if (sock->sk)
596 sock->sk->sk_uid = iattr->ia_uid;
597 else
598 err = -ENOENT;
599 }
600
601 return err;
602 }
603
604 static const struct inode_operations sockfs_inode_ops = {
605 .listxattr = sockfs_listxattr,
606 .setattr = sockfs_setattr,
607 };
608
609 /**
610 * sock_alloc - allocate a socket
611 *
612 * Allocate a new inode and socket object. The two are bound together
613 * and initialised. The socket is then returned. If we are out of inodes
614 * NULL is returned. This functions uses GFP_KERNEL internally.
615 */
616
sock_alloc(void)617 struct socket *sock_alloc(void)
618 {
619 struct inode *inode;
620 struct socket *sock;
621
622 inode = new_inode_pseudo(sock_mnt->mnt_sb);
623 if (!inode)
624 return NULL;
625
626 sock = SOCKET_I(inode);
627
628 inode->i_ino = get_next_ino();
629 inode->i_mode = S_IFSOCK | S_IRWXUGO;
630 inode->i_uid = current_fsuid();
631 inode->i_gid = current_fsgid();
632 inode->i_op = &sockfs_inode_ops;
633
634 return sock;
635 }
636 EXPORT_SYMBOL(sock_alloc);
637
__sock_release(struct socket * sock,struct inode * inode)638 static void __sock_release(struct socket *sock, struct inode *inode)
639 {
640 const struct proto_ops *ops = READ_ONCE(sock->ops);
641
642 if (ops) {
643 struct module *owner = ops->owner;
644
645 if (inode)
646 inode_lock(inode);
647 ops->release(sock);
648 sock->sk = NULL;
649 if (inode)
650 inode_unlock(inode);
651 sock->ops = NULL;
652 module_put(owner);
653 }
654
655 if (sock->wq.fasync_list)
656 pr_err("%s: fasync list not empty!\n", __func__);
657
658 if (!sock->file) {
659 iput(SOCK_INODE(sock));
660 return;
661 }
662 sock->file = NULL;
663 }
664
665 /**
666 * sock_release - close a socket
667 * @sock: socket to close
668 *
669 * The socket is released from the protocol stack if it has a release
670 * callback, and the inode is then released if the socket is bound to
671 * an inode not a file.
672 */
sock_release(struct socket * sock)673 void sock_release(struct socket *sock)
674 {
675 __sock_release(sock, NULL);
676 }
677 EXPORT_SYMBOL(sock_release);
678
__sock_tx_timestamp(__u32 tsflags,__u8 * tx_flags)679 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
680 {
681 u8 flags = *tx_flags;
682
683 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
684 flags |= SKBTX_HW_TSTAMP_NOBPF;
685
686 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
687 flags |= SKBTX_SW_TSTAMP;
688
689 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
690 flags |= SKBTX_SCHED_TSTAMP;
691
692 if (tsflags & SOF_TIMESTAMPING_TX_COMPLETION)
693 flags |= SKBTX_COMPLETION_TSTAMP;
694
695 *tx_flags = flags;
696 }
697 EXPORT_SYMBOL(__sock_tx_timestamp);
698
699 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
700 size_t));
701 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
702 size_t));
703
call_trace_sock_send_length(struct sock * sk,int ret,int flags)704 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
705 int flags)
706 {
707 trace_sock_send_length(sk, ret, 0);
708 }
709
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)710 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
711 {
712 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
713 inet_sendmsg, sock, msg,
714 msg_data_left(msg));
715 BUG_ON(ret == -EIOCBQUEUED);
716
717 if (trace_sock_send_length_enabled())
718 call_trace_sock_send_length(sock->sk, ret, 0);
719 return ret;
720 }
721
__sock_sendmsg(struct socket * sock,struct msghdr * msg)722 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
723 {
724 int err = security_socket_sendmsg(sock, msg,
725 msg_data_left(msg));
726
727 return err ?: sock_sendmsg_nosec(sock, msg);
728 }
729
730 /**
731 * sock_sendmsg - send a message through @sock
732 * @sock: socket
733 * @msg: message to send
734 *
735 * Sends @msg through @sock, passing through LSM.
736 * Returns the number of bytes sent, or an error code.
737 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)738 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
739 {
740 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
741 struct sockaddr_storage address;
742 int save_len = msg->msg_namelen;
743 int ret;
744
745 if (msg->msg_name) {
746 memcpy(&address, msg->msg_name, msg->msg_namelen);
747 msg->msg_name = &address;
748 }
749
750 ret = __sock_sendmsg(sock, msg);
751 msg->msg_name = save_addr;
752 msg->msg_namelen = save_len;
753
754 return ret;
755 }
756 EXPORT_SYMBOL(sock_sendmsg);
757
758 /**
759 * kernel_sendmsg - send a message through @sock (kernel-space)
760 * @sock: socket
761 * @msg: message header
762 * @vec: kernel vec
763 * @num: vec array length
764 * @size: total message data size
765 *
766 * Builds the message data with @vec and sends it through @sock.
767 * Returns the number of bytes sent, or an error code.
768 */
769
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)770 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
771 struct kvec *vec, size_t num, size_t size)
772 {
773 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
774 return sock_sendmsg(sock, msg);
775 }
776 EXPORT_SYMBOL(kernel_sendmsg);
777
skb_is_err_queue(const struct sk_buff * skb)778 static bool skb_is_err_queue(const struct sk_buff *skb)
779 {
780 /* pkt_type of skbs enqueued on the error queue are set to
781 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
782 * in recvmsg, since skbs received on a local socket will never
783 * have a pkt_type of PACKET_OUTGOING.
784 */
785 return skb->pkt_type == PACKET_OUTGOING;
786 }
787
788 /* On transmit, software and hardware timestamps are returned independently.
789 * As the two skb clones share the hardware timestamp, which may be updated
790 * before the software timestamp is received, a hardware TX timestamp may be
791 * returned only if there is no software TX timestamp. Ignore false software
792 * timestamps, which may be made in the __sock_recv_timestamp() call when the
793 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
794 * hardware timestamp.
795 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)796 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
797 {
798 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
799 }
800
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)801 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
802 {
803 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
804 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
805 struct net_device *orig_dev;
806 ktime_t hwtstamp;
807
808 rcu_read_lock();
809 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
810 if (orig_dev) {
811 *if_index = orig_dev->ifindex;
812 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
813 } else {
814 hwtstamp = shhwtstamps->hwtstamp;
815 }
816 rcu_read_unlock();
817
818 return hwtstamp;
819 }
820
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)821 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
822 int if_index)
823 {
824 struct scm_ts_pktinfo ts_pktinfo;
825 struct net_device *orig_dev;
826
827 if (!skb_mac_header_was_set(skb))
828 return;
829
830 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
831
832 if (!if_index) {
833 rcu_read_lock();
834 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
835 if (orig_dev)
836 if_index = orig_dev->ifindex;
837 rcu_read_unlock();
838 }
839 ts_pktinfo.if_index = if_index;
840
841 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
842 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
843 sizeof(ts_pktinfo), &ts_pktinfo);
844 }
845
846 /*
847 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
848 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)849 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
850 struct sk_buff *skb)
851 {
852 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
853 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
854 struct scm_timestamping_internal tss;
855 int empty = 1, false_tstamp = 0;
856 struct skb_shared_hwtstamps *shhwtstamps =
857 skb_hwtstamps(skb);
858 int if_index;
859 ktime_t hwtstamp;
860 u32 tsflags;
861
862 /* Race occurred between timestamp enabling and packet
863 receiving. Fill in the current time for now. */
864 if (need_software_tstamp && skb->tstamp == 0) {
865 __net_timestamp(skb);
866 false_tstamp = 1;
867 }
868
869 if (need_software_tstamp) {
870 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
871 if (new_tstamp) {
872 struct __kernel_sock_timeval tv;
873
874 skb_get_new_timestamp(skb, &tv);
875 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
876 sizeof(tv), &tv);
877 } else {
878 struct __kernel_old_timeval tv;
879
880 skb_get_timestamp(skb, &tv);
881 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
882 sizeof(tv), &tv);
883 }
884 } else {
885 if (new_tstamp) {
886 struct __kernel_timespec ts;
887
888 skb_get_new_timestampns(skb, &ts);
889 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
890 sizeof(ts), &ts);
891 } else {
892 struct __kernel_old_timespec ts;
893
894 skb_get_timestampns(skb, &ts);
895 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
896 sizeof(ts), &ts);
897 }
898 }
899 }
900
901 memset(&tss, 0, sizeof(tss));
902 tsflags = READ_ONCE(sk->sk_tsflags);
903 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
904 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
905 skb_is_err_queue(skb) ||
906 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
907 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
908 empty = 0;
909 if (shhwtstamps &&
910 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
911 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
912 skb_is_err_queue(skb) ||
913 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
914 !skb_is_swtx_tstamp(skb, false_tstamp)) {
915 if_index = 0;
916 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
917 hwtstamp = get_timestamp(sk, skb, &if_index);
918 else
919 hwtstamp = shhwtstamps->hwtstamp;
920
921 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
922 hwtstamp = ptp_convert_timestamp(&hwtstamp,
923 READ_ONCE(sk->sk_bind_phc));
924
925 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
926 empty = 0;
927
928 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
929 !skb_is_err_queue(skb))
930 put_ts_pktinfo(msg, skb, if_index);
931 }
932 }
933 if (!empty) {
934 if (sock_flag(sk, SOCK_TSTAMP_NEW))
935 put_cmsg_scm_timestamping64(msg, &tss);
936 else
937 put_cmsg_scm_timestamping(msg, &tss);
938
939 if (skb_is_err_queue(skb) && skb->len &&
940 SKB_EXT_ERR(skb)->opt_stats)
941 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
942 skb->len, skb->data);
943 }
944 }
945 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
946
947 #ifdef CONFIG_WIRELESS
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)948 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
949 struct sk_buff *skb)
950 {
951 int ack;
952
953 if (!sock_flag(sk, SOCK_WIFI_STATUS))
954 return;
955 if (!skb->wifi_acked_valid)
956 return;
957
958 ack = skb->wifi_acked;
959
960 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
961 }
962 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
963 #endif
964
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)965 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
966 struct sk_buff *skb)
967 {
968 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
969 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
970 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
971 }
972
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)973 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
974 struct sk_buff *skb)
975 {
976 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
977 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
978 __u32 mark = skb->mark;
979
980 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
981 }
982 }
983
sock_recv_priority(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)984 static void sock_recv_priority(struct msghdr *msg, struct sock *sk,
985 struct sk_buff *skb)
986 {
987 if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) {
988 __u32 priority = skb->priority;
989
990 put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority);
991 }
992 }
993
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)994 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
995 struct sk_buff *skb)
996 {
997 sock_recv_timestamp(msg, sk, skb);
998 sock_recv_drops(msg, sk, skb);
999 sock_recv_mark(msg, sk, skb);
1000 sock_recv_priority(msg, sk, skb);
1001 }
1002 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1003
1004 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1005 size_t, int));
1006 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1007 size_t, int));
1008
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1009 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1010 {
1011 trace_sock_recv_length(sk, ret, flags);
1012 }
1013
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1014 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1015 int flags)
1016 {
1017 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1018 inet6_recvmsg,
1019 inet_recvmsg, sock, msg,
1020 msg_data_left(msg), flags);
1021 if (trace_sock_recv_length_enabled())
1022 call_trace_sock_recv_length(sock->sk, ret, flags);
1023 return ret;
1024 }
1025
1026 /**
1027 * sock_recvmsg - receive a message from @sock
1028 * @sock: socket
1029 * @msg: message to receive
1030 * @flags: message flags
1031 *
1032 * Receives @msg from @sock, passing through LSM. Returns the total number
1033 * of bytes received, or an error.
1034 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1035 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1036 {
1037 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1038
1039 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1040 }
1041 EXPORT_SYMBOL(sock_recvmsg);
1042
1043 /**
1044 * kernel_recvmsg - Receive a message from a socket (kernel space)
1045 * @sock: The socket to receive the message from
1046 * @msg: Received message
1047 * @vec: Input s/g array for message data
1048 * @num: Size of input s/g array
1049 * @size: Number of bytes to read
1050 * @flags: Message flags (MSG_DONTWAIT, etc...)
1051 *
1052 * On return the msg structure contains the scatter/gather array passed in the
1053 * vec argument. The array is modified so that it consists of the unfilled
1054 * portion of the original array.
1055 *
1056 * The returned value is the total number of bytes received, or an error.
1057 */
1058
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1059 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1060 struct kvec *vec, size_t num, size_t size, int flags)
1061 {
1062 msg->msg_control_is_user = false;
1063 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1064 return sock_recvmsg(sock, msg, flags);
1065 }
1066 EXPORT_SYMBOL(kernel_recvmsg);
1067
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1068 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1069 struct pipe_inode_info *pipe, size_t len,
1070 unsigned int flags)
1071 {
1072 struct socket *sock = file->private_data;
1073 const struct proto_ops *ops;
1074
1075 ops = READ_ONCE(sock->ops);
1076 if (unlikely(!ops->splice_read))
1077 return copy_splice_read(file, ppos, pipe, len, flags);
1078
1079 return ops->splice_read(sock, ppos, pipe, len, flags);
1080 }
1081
sock_splice_eof(struct file * file)1082 static void sock_splice_eof(struct file *file)
1083 {
1084 struct socket *sock = file->private_data;
1085 const struct proto_ops *ops;
1086
1087 ops = READ_ONCE(sock->ops);
1088 if (ops->splice_eof)
1089 ops->splice_eof(sock);
1090 }
1091
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1092 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1093 {
1094 struct file *file = iocb->ki_filp;
1095 struct socket *sock = file->private_data;
1096 struct msghdr msg = {.msg_iter = *to,
1097 .msg_iocb = iocb};
1098 ssize_t res;
1099
1100 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1101 msg.msg_flags = MSG_DONTWAIT;
1102
1103 if (iocb->ki_pos != 0)
1104 return -ESPIPE;
1105
1106 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1107 return 0;
1108
1109 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1110 *to = msg.msg_iter;
1111 return res;
1112 }
1113
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1115 {
1116 struct file *file = iocb->ki_filp;
1117 struct socket *sock = file->private_data;
1118 struct msghdr msg = {.msg_iter = *from,
1119 .msg_iocb = iocb};
1120 ssize_t res;
1121
1122 if (iocb->ki_pos != 0)
1123 return -ESPIPE;
1124
1125 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1126 msg.msg_flags = MSG_DONTWAIT;
1127
1128 if (sock->type == SOCK_SEQPACKET)
1129 msg.msg_flags |= MSG_EOR;
1130
1131 res = __sock_sendmsg(sock, &msg);
1132 *from = msg.msg_iter;
1133 return res;
1134 }
1135
1136 /*
1137 * Atomic setting of ioctl hooks to avoid race
1138 * with module unload.
1139 */
1140
1141 static DEFINE_MUTEX(br_ioctl_mutex);
1142 static int (*br_ioctl_hook)(struct net *net, unsigned int cmd,
1143 void __user *uarg);
1144
brioctl_set(int (* hook)(struct net * net,unsigned int cmd,void __user * uarg))1145 void brioctl_set(int (*hook)(struct net *net, unsigned int cmd,
1146 void __user *uarg))
1147 {
1148 mutex_lock(&br_ioctl_mutex);
1149 br_ioctl_hook = hook;
1150 mutex_unlock(&br_ioctl_mutex);
1151 }
1152 EXPORT_SYMBOL(brioctl_set);
1153
br_ioctl_call(struct net * net,unsigned int cmd,void __user * uarg)1154 int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg)
1155 {
1156 int err = -ENOPKG;
1157
1158 if (!br_ioctl_hook)
1159 request_module("bridge");
1160
1161 mutex_lock(&br_ioctl_mutex);
1162 if (br_ioctl_hook)
1163 err = br_ioctl_hook(net, cmd, uarg);
1164 mutex_unlock(&br_ioctl_mutex);
1165
1166 return err;
1167 }
1168
1169 static DEFINE_MUTEX(vlan_ioctl_mutex);
1170 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1171
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1172 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1173 {
1174 mutex_lock(&vlan_ioctl_mutex);
1175 vlan_ioctl_hook = hook;
1176 mutex_unlock(&vlan_ioctl_mutex);
1177 }
1178 EXPORT_SYMBOL(vlan_ioctl_set);
1179
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1180 static long sock_do_ioctl(struct net *net, struct socket *sock,
1181 unsigned int cmd, unsigned long arg)
1182 {
1183 const struct proto_ops *ops = READ_ONCE(sock->ops);
1184 struct ifreq ifr;
1185 bool need_copyout;
1186 int err;
1187 void __user *argp = (void __user *)arg;
1188 void __user *data;
1189
1190 err = ops->ioctl(sock, cmd, arg);
1191
1192 /*
1193 * If this ioctl is unknown try to hand it down
1194 * to the NIC driver.
1195 */
1196 if (err != -ENOIOCTLCMD)
1197 return err;
1198
1199 if (!is_socket_ioctl_cmd(cmd))
1200 return -ENOTTY;
1201
1202 if (get_user_ifreq(&ifr, &data, argp))
1203 return -EFAULT;
1204 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1205 if (!err && need_copyout)
1206 if (put_user_ifreq(&ifr, argp))
1207 return -EFAULT;
1208
1209 return err;
1210 }
1211
1212 /*
1213 * With an ioctl, arg may well be a user mode pointer, but we don't know
1214 * what to do with it - that's up to the protocol still.
1215 */
1216
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1217 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1218 {
1219 const struct proto_ops *ops;
1220 struct socket *sock;
1221 struct sock *sk;
1222 void __user *argp = (void __user *)arg;
1223 int pid, err;
1224 struct net *net;
1225
1226 sock = file->private_data;
1227 ops = READ_ONCE(sock->ops);
1228 sk = sock->sk;
1229 net = sock_net(sk);
1230 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1231 struct ifreq ifr;
1232 void __user *data;
1233 bool need_copyout;
1234 if (get_user_ifreq(&ifr, &data, argp))
1235 return -EFAULT;
1236 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1237 if (!err && need_copyout)
1238 if (put_user_ifreq(&ifr, argp))
1239 return -EFAULT;
1240 } else
1241 #ifdef CONFIG_WEXT_CORE
1242 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1243 err = wext_handle_ioctl(net, cmd, argp);
1244 } else
1245 #endif
1246 switch (cmd) {
1247 case FIOSETOWN:
1248 case SIOCSPGRP:
1249 err = -EFAULT;
1250 if (get_user(pid, (int __user *)argp))
1251 break;
1252 err = f_setown(sock->file, pid, 1);
1253 break;
1254 case FIOGETOWN:
1255 case SIOCGPGRP:
1256 err = put_user(f_getown(sock->file),
1257 (int __user *)argp);
1258 break;
1259 case SIOCGIFBR:
1260 case SIOCSIFBR:
1261 case SIOCBRADDBR:
1262 case SIOCBRDELBR:
1263 case SIOCBRADDIF:
1264 case SIOCBRDELIF:
1265 err = br_ioctl_call(net, cmd, argp);
1266 break;
1267 case SIOCGIFVLAN:
1268 case SIOCSIFVLAN:
1269 err = -ENOPKG;
1270 if (!vlan_ioctl_hook)
1271 request_module("8021q");
1272
1273 mutex_lock(&vlan_ioctl_mutex);
1274 if (vlan_ioctl_hook)
1275 err = vlan_ioctl_hook(net, argp);
1276 mutex_unlock(&vlan_ioctl_mutex);
1277 break;
1278 case SIOCGSKNS:
1279 err = -EPERM;
1280 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1281 break;
1282
1283 err = open_related_ns(&net->ns, get_net_ns);
1284 break;
1285 case SIOCGSTAMP_OLD:
1286 case SIOCGSTAMPNS_OLD:
1287 if (!ops->gettstamp) {
1288 err = -ENOIOCTLCMD;
1289 break;
1290 }
1291 err = ops->gettstamp(sock, argp,
1292 cmd == SIOCGSTAMP_OLD,
1293 !IS_ENABLED(CONFIG_64BIT));
1294 break;
1295 case SIOCGSTAMP_NEW:
1296 case SIOCGSTAMPNS_NEW:
1297 if (!ops->gettstamp) {
1298 err = -ENOIOCTLCMD;
1299 break;
1300 }
1301 err = ops->gettstamp(sock, argp,
1302 cmd == SIOCGSTAMP_NEW,
1303 false);
1304 break;
1305
1306 case SIOCGIFCONF:
1307 err = dev_ifconf(net, argp);
1308 break;
1309
1310 default:
1311 err = sock_do_ioctl(net, sock, cmd, arg);
1312 break;
1313 }
1314 return err;
1315 }
1316
1317 /**
1318 * sock_create_lite - creates a socket
1319 * @family: protocol family (AF_INET, ...)
1320 * @type: communication type (SOCK_STREAM, ...)
1321 * @protocol: protocol (0, ...)
1322 * @res: new socket
1323 *
1324 * Creates a new socket and assigns it to @res, passing through LSM.
1325 * The new socket initialization is not complete, see kernel_accept().
1326 * Returns 0 or an error. On failure @res is set to %NULL.
1327 * This function internally uses GFP_KERNEL.
1328 */
1329
sock_create_lite(int family,int type,int protocol,struct socket ** res)1330 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1331 {
1332 int err;
1333 struct socket *sock = NULL;
1334
1335 err = security_socket_create(family, type, protocol, 1);
1336 if (err)
1337 goto out;
1338
1339 sock = sock_alloc();
1340 if (!sock) {
1341 err = -ENOMEM;
1342 goto out;
1343 }
1344
1345 sock->type = type;
1346 err = security_socket_post_create(sock, family, type, protocol, 1);
1347 if (err)
1348 goto out_release;
1349
1350 out:
1351 *res = sock;
1352 return err;
1353 out_release:
1354 sock_release(sock);
1355 sock = NULL;
1356 goto out;
1357 }
1358 EXPORT_SYMBOL(sock_create_lite);
1359
1360 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1361 static __poll_t sock_poll(struct file *file, poll_table *wait)
1362 {
1363 struct socket *sock = file->private_data;
1364 const struct proto_ops *ops = READ_ONCE(sock->ops);
1365 __poll_t events = poll_requested_events(wait), flag = 0;
1366
1367 if (!ops->poll)
1368 return 0;
1369
1370 if (sk_can_busy_loop(sock->sk)) {
1371 /* poll once if requested by the syscall */
1372 if (events & POLL_BUSY_LOOP)
1373 sk_busy_loop(sock->sk, 1);
1374
1375 /* if this socket can poll_ll, tell the system call */
1376 flag = POLL_BUSY_LOOP;
1377 }
1378
1379 return ops->poll(file, sock, wait) | flag;
1380 }
1381
sock_mmap(struct file * file,struct vm_area_struct * vma)1382 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1383 {
1384 struct socket *sock = file->private_data;
1385
1386 return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1387 }
1388
sock_close(struct inode * inode,struct file * filp)1389 static int sock_close(struct inode *inode, struct file *filp)
1390 {
1391 __sock_release(SOCKET_I(inode), inode);
1392 return 0;
1393 }
1394
1395 /*
1396 * Update the socket async list
1397 *
1398 * Fasync_list locking strategy.
1399 *
1400 * 1. fasync_list is modified only under process context socket lock
1401 * i.e. under semaphore.
1402 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1403 * or under socket lock
1404 */
1405
sock_fasync(int fd,struct file * filp,int on)1406 static int sock_fasync(int fd, struct file *filp, int on)
1407 {
1408 struct socket *sock = filp->private_data;
1409 struct sock *sk = sock->sk;
1410 struct socket_wq *wq = &sock->wq;
1411
1412 if (sk == NULL)
1413 return -EINVAL;
1414
1415 lock_sock(sk);
1416 fasync_helper(fd, filp, on, &wq->fasync_list);
1417
1418 if (!wq->fasync_list)
1419 sock_reset_flag(sk, SOCK_FASYNC);
1420 else
1421 sock_set_flag(sk, SOCK_FASYNC);
1422
1423 release_sock(sk);
1424 return 0;
1425 }
1426
1427 /* This function may be called only under rcu_lock */
1428
sock_wake_async(struct socket_wq * wq,int how,int band)1429 int sock_wake_async(struct socket_wq *wq, int how, int band)
1430 {
1431 if (!wq || !wq->fasync_list)
1432 return -1;
1433
1434 switch (how) {
1435 case SOCK_WAKE_WAITD:
1436 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1437 break;
1438 goto call_kill;
1439 case SOCK_WAKE_SPACE:
1440 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1441 break;
1442 fallthrough;
1443 case SOCK_WAKE_IO:
1444 call_kill:
1445 kill_fasync(&wq->fasync_list, SIGIO, band);
1446 break;
1447 case SOCK_WAKE_URG:
1448 kill_fasync(&wq->fasync_list, SIGURG, band);
1449 }
1450
1451 return 0;
1452 }
1453 EXPORT_SYMBOL(sock_wake_async);
1454
1455 /**
1456 * __sock_create - creates a socket
1457 * @net: net namespace
1458 * @family: protocol family (AF_INET, ...)
1459 * @type: communication type (SOCK_STREAM, ...)
1460 * @protocol: protocol (0, ...)
1461 * @res: new socket
1462 * @kern: boolean for kernel space sockets
1463 *
1464 * Creates a new socket and assigns it to @res, passing through LSM.
1465 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1466 * be set to true if the socket resides in kernel space.
1467 * This function internally uses GFP_KERNEL.
1468 */
1469
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1470 int __sock_create(struct net *net, int family, int type, int protocol,
1471 struct socket **res, int kern)
1472 {
1473 int err;
1474 struct socket *sock;
1475 const struct net_proto_family *pf;
1476
1477 /*
1478 * Check protocol is in range
1479 */
1480 if (family < 0 || family >= NPROTO)
1481 return -EAFNOSUPPORT;
1482 if (type < 0 || type >= SOCK_MAX)
1483 return -EINVAL;
1484
1485 /* Compatibility.
1486
1487 This uglymoron is moved from INET layer to here to avoid
1488 deadlock in module load.
1489 */
1490 if (family == PF_INET && type == SOCK_PACKET) {
1491 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1492 current->comm);
1493 family = PF_PACKET;
1494 }
1495
1496 err = security_socket_create(family, type, protocol, kern);
1497 if (err)
1498 return err;
1499
1500 /*
1501 * Allocate the socket and allow the family to set things up. if
1502 * the protocol is 0, the family is instructed to select an appropriate
1503 * default.
1504 */
1505 sock = sock_alloc();
1506 if (!sock) {
1507 net_warn_ratelimited("socket: no more sockets\n");
1508 return -ENFILE; /* Not exactly a match, but its the
1509 closest posix thing */
1510 }
1511
1512 sock->type = type;
1513
1514 #ifdef CONFIG_MODULES
1515 /* Attempt to load a protocol module if the find failed.
1516 *
1517 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1518 * requested real, full-featured networking support upon configuration.
1519 * Otherwise module support will break!
1520 */
1521 if (rcu_access_pointer(net_families[family]) == NULL)
1522 request_module("net-pf-%d", family);
1523 #endif
1524
1525 rcu_read_lock();
1526 pf = rcu_dereference(net_families[family]);
1527 err = -EAFNOSUPPORT;
1528 if (!pf)
1529 goto out_release;
1530
1531 /*
1532 * We will call the ->create function, that possibly is in a loadable
1533 * module, so we have to bump that loadable module refcnt first.
1534 */
1535 if (!try_module_get(pf->owner))
1536 goto out_release;
1537
1538 /* Now protected by module ref count */
1539 rcu_read_unlock();
1540
1541 err = pf->create(net, sock, protocol, kern);
1542 if (err < 0) {
1543 /* ->create should release the allocated sock->sk object on error
1544 * and make sure sock->sk is set to NULL to avoid use-after-free
1545 */
1546 DEBUG_NET_WARN_ONCE(sock->sk,
1547 "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1548 pf->create, family, type, protocol);
1549 goto out_module_put;
1550 }
1551
1552 /*
1553 * Now to bump the refcnt of the [loadable] module that owns this
1554 * socket at sock_release time we decrement its refcnt.
1555 */
1556 if (!try_module_get(sock->ops->owner))
1557 goto out_module_busy;
1558
1559 /*
1560 * Now that we're done with the ->create function, the [loadable]
1561 * module can have its refcnt decremented
1562 */
1563 module_put(pf->owner);
1564 err = security_socket_post_create(sock, family, type, protocol, kern);
1565 if (err)
1566 goto out_sock_release;
1567 *res = sock;
1568
1569 return 0;
1570
1571 out_module_busy:
1572 err = -EAFNOSUPPORT;
1573 out_module_put:
1574 sock->ops = NULL;
1575 module_put(pf->owner);
1576 out_sock_release:
1577 sock_release(sock);
1578 return err;
1579
1580 out_release:
1581 rcu_read_unlock();
1582 goto out_sock_release;
1583 }
1584 EXPORT_SYMBOL(__sock_create);
1585
1586 /**
1587 * sock_create - creates a socket
1588 * @family: protocol family (AF_INET, ...)
1589 * @type: communication type (SOCK_STREAM, ...)
1590 * @protocol: protocol (0, ...)
1591 * @res: new socket
1592 *
1593 * A wrapper around __sock_create().
1594 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1595 */
1596
sock_create(int family,int type,int protocol,struct socket ** res)1597 int sock_create(int family, int type, int protocol, struct socket **res)
1598 {
1599 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1600 }
1601 EXPORT_SYMBOL(sock_create);
1602
1603 /**
1604 * sock_create_kern - creates a socket (kernel space)
1605 * @net: net namespace
1606 * @family: protocol family (AF_INET, ...)
1607 * @type: communication type (SOCK_STREAM, ...)
1608 * @protocol: protocol (0, ...)
1609 * @res: new socket
1610 *
1611 * A wrapper around __sock_create().
1612 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1613 */
1614
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1615 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1616 {
1617 return __sock_create(net, family, type, protocol, res, 1);
1618 }
1619 EXPORT_SYMBOL(sock_create_kern);
1620
__sys_socket_create(int family,int type,int protocol)1621 static struct socket *__sys_socket_create(int family, int type, int protocol)
1622 {
1623 struct socket *sock;
1624 int retval;
1625
1626 /* Check the SOCK_* constants for consistency. */
1627 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1628 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1629 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1630 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1631
1632 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1633 return ERR_PTR(-EINVAL);
1634 type &= SOCK_TYPE_MASK;
1635
1636 retval = sock_create(family, type, protocol, &sock);
1637 if (retval < 0)
1638 return ERR_PTR(retval);
1639
1640 return sock;
1641 }
1642
__sys_socket_file(int family,int type,int protocol)1643 struct file *__sys_socket_file(int family, int type, int protocol)
1644 {
1645 struct socket *sock;
1646 int flags;
1647
1648 sock = __sys_socket_create(family, type, protocol);
1649 if (IS_ERR(sock))
1650 return ERR_CAST(sock);
1651
1652 flags = type & ~SOCK_TYPE_MASK;
1653 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1654 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1655
1656 return sock_alloc_file(sock, flags, NULL);
1657 }
1658
1659 /* A hook for bpf progs to attach to and update socket protocol.
1660 *
1661 * A static noinline declaration here could cause the compiler to
1662 * optimize away the function. A global noinline declaration will
1663 * keep the definition, but may optimize away the callsite.
1664 * Therefore, __weak is needed to ensure that the call is still
1665 * emitted, by telling the compiler that we don't know what the
1666 * function might eventually be.
1667 */
1668
1669 __bpf_hook_start();
1670
update_socket_protocol(int family,int type,int protocol)1671 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1672 {
1673 return protocol;
1674 }
1675
1676 __bpf_hook_end();
1677
__sys_socket(int family,int type,int protocol)1678 int __sys_socket(int family, int type, int protocol)
1679 {
1680 struct socket *sock;
1681 int flags;
1682
1683 sock = __sys_socket_create(family, type,
1684 update_socket_protocol(family, type, protocol));
1685 if (IS_ERR(sock))
1686 return PTR_ERR(sock);
1687
1688 flags = type & ~SOCK_TYPE_MASK;
1689 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1690 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1691
1692 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1693 }
1694
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1695 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1696 {
1697 return __sys_socket(family, type, protocol);
1698 }
1699
1700 /*
1701 * Create a pair of connected sockets.
1702 */
1703
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1704 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1705 {
1706 struct socket *sock1, *sock2;
1707 int fd1, fd2, err;
1708 struct file *newfile1, *newfile2;
1709 int flags;
1710
1711 flags = type & ~SOCK_TYPE_MASK;
1712 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1713 return -EINVAL;
1714 type &= SOCK_TYPE_MASK;
1715
1716 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1717 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1718
1719 /*
1720 * reserve descriptors and make sure we won't fail
1721 * to return them to userland.
1722 */
1723 fd1 = get_unused_fd_flags(flags);
1724 if (unlikely(fd1 < 0))
1725 return fd1;
1726
1727 fd2 = get_unused_fd_flags(flags);
1728 if (unlikely(fd2 < 0)) {
1729 put_unused_fd(fd1);
1730 return fd2;
1731 }
1732
1733 err = put_user(fd1, &usockvec[0]);
1734 if (err)
1735 goto out;
1736
1737 err = put_user(fd2, &usockvec[1]);
1738 if (err)
1739 goto out;
1740
1741 /*
1742 * Obtain the first socket and check if the underlying protocol
1743 * supports the socketpair call.
1744 */
1745
1746 err = sock_create(family, type, protocol, &sock1);
1747 if (unlikely(err < 0))
1748 goto out;
1749
1750 err = sock_create(family, type, protocol, &sock2);
1751 if (unlikely(err < 0)) {
1752 sock_release(sock1);
1753 goto out;
1754 }
1755
1756 err = security_socket_socketpair(sock1, sock2);
1757 if (unlikely(err)) {
1758 sock_release(sock2);
1759 sock_release(sock1);
1760 goto out;
1761 }
1762
1763 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1764 if (unlikely(err < 0)) {
1765 sock_release(sock2);
1766 sock_release(sock1);
1767 goto out;
1768 }
1769
1770 newfile1 = sock_alloc_file(sock1, flags, NULL);
1771 if (IS_ERR(newfile1)) {
1772 err = PTR_ERR(newfile1);
1773 sock_release(sock2);
1774 goto out;
1775 }
1776
1777 newfile2 = sock_alloc_file(sock2, flags, NULL);
1778 if (IS_ERR(newfile2)) {
1779 err = PTR_ERR(newfile2);
1780 fput(newfile1);
1781 goto out;
1782 }
1783
1784 audit_fd_pair(fd1, fd2);
1785
1786 fd_install(fd1, newfile1);
1787 fd_install(fd2, newfile2);
1788 return 0;
1789
1790 out:
1791 put_unused_fd(fd2);
1792 put_unused_fd(fd1);
1793 return err;
1794 }
1795
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1796 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1797 int __user *, usockvec)
1798 {
1799 return __sys_socketpair(family, type, protocol, usockvec);
1800 }
1801
__sys_bind_socket(struct socket * sock,struct sockaddr_storage * address,int addrlen)1802 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1803 int addrlen)
1804 {
1805 int err;
1806
1807 err = security_socket_bind(sock, (struct sockaddr *)address,
1808 addrlen);
1809 if (!err)
1810 err = READ_ONCE(sock->ops)->bind(sock,
1811 (struct sockaddr *)address,
1812 addrlen);
1813 return err;
1814 }
1815
1816 /*
1817 * Bind a name to a socket. Nothing much to do here since it's
1818 * the protocol's responsibility to handle the local address.
1819 *
1820 * We move the socket address to kernel space before we call
1821 * the protocol layer (having also checked the address is ok).
1822 */
1823
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1824 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1825 {
1826 struct socket *sock;
1827 struct sockaddr_storage address;
1828 CLASS(fd, f)(fd);
1829 int err;
1830
1831 if (fd_empty(f))
1832 return -EBADF;
1833 sock = sock_from_file(fd_file(f));
1834 if (unlikely(!sock))
1835 return -ENOTSOCK;
1836
1837 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1838 if (unlikely(err))
1839 return err;
1840
1841 return __sys_bind_socket(sock, &address, addrlen);
1842 }
1843
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1844 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1845 {
1846 return __sys_bind(fd, umyaddr, addrlen);
1847 }
1848
1849 /*
1850 * Perform a listen. Basically, we allow the protocol to do anything
1851 * necessary for a listen, and if that works, we mark the socket as
1852 * ready for listening.
1853 */
__sys_listen_socket(struct socket * sock,int backlog)1854 int __sys_listen_socket(struct socket *sock, int backlog)
1855 {
1856 int somaxconn, err;
1857
1858 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1859 if ((unsigned int)backlog > somaxconn)
1860 backlog = somaxconn;
1861
1862 err = security_socket_listen(sock, backlog);
1863 if (!err)
1864 err = READ_ONCE(sock->ops)->listen(sock, backlog);
1865 return err;
1866 }
1867
__sys_listen(int fd,int backlog)1868 int __sys_listen(int fd, int backlog)
1869 {
1870 CLASS(fd, f)(fd);
1871 struct socket *sock;
1872
1873 if (fd_empty(f))
1874 return -EBADF;
1875 sock = sock_from_file(fd_file(f));
1876 if (unlikely(!sock))
1877 return -ENOTSOCK;
1878
1879 return __sys_listen_socket(sock, backlog);
1880 }
1881
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1882 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1883 {
1884 return __sys_listen(fd, backlog);
1885 }
1886
do_accept(struct file * file,struct proto_accept_arg * arg,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1887 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1888 struct sockaddr __user *upeer_sockaddr,
1889 int __user *upeer_addrlen, int flags)
1890 {
1891 struct socket *sock, *newsock;
1892 struct file *newfile;
1893 int err, len;
1894 struct sockaddr_storage address;
1895 const struct proto_ops *ops;
1896
1897 sock = sock_from_file(file);
1898 if (!sock)
1899 return ERR_PTR(-ENOTSOCK);
1900
1901 newsock = sock_alloc();
1902 if (!newsock)
1903 return ERR_PTR(-ENFILE);
1904 ops = READ_ONCE(sock->ops);
1905
1906 newsock->type = sock->type;
1907 newsock->ops = ops;
1908
1909 /*
1910 * We don't need try_module_get here, as the listening socket (sock)
1911 * has the protocol module (sock->ops->owner) held.
1912 */
1913 __module_get(ops->owner);
1914
1915 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1916 if (IS_ERR(newfile))
1917 return newfile;
1918
1919 err = security_socket_accept(sock, newsock);
1920 if (err)
1921 goto out_fd;
1922
1923 arg->flags |= sock->file->f_flags;
1924 err = ops->accept(sock, newsock, arg);
1925 if (err < 0)
1926 goto out_fd;
1927
1928 if (upeer_sockaddr) {
1929 len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1930 if (len < 0) {
1931 err = -ECONNABORTED;
1932 goto out_fd;
1933 }
1934 err = move_addr_to_user(&address,
1935 len, upeer_sockaddr, upeer_addrlen);
1936 if (err < 0)
1937 goto out_fd;
1938 }
1939
1940 /* File flags are not inherited via accept() unlike another OSes. */
1941 return newfile;
1942 out_fd:
1943 fput(newfile);
1944 return ERR_PTR(err);
1945 }
1946
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1947 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1948 int __user *upeer_addrlen, int flags)
1949 {
1950 struct proto_accept_arg arg = { };
1951 struct file *newfile;
1952 int newfd;
1953
1954 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1955 return -EINVAL;
1956
1957 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1958 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1959
1960 newfd = get_unused_fd_flags(flags);
1961 if (unlikely(newfd < 0))
1962 return newfd;
1963
1964 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1965 flags);
1966 if (IS_ERR(newfile)) {
1967 put_unused_fd(newfd);
1968 return PTR_ERR(newfile);
1969 }
1970 fd_install(newfd, newfile);
1971 return newfd;
1972 }
1973
1974 /*
1975 * For accept, we attempt to create a new socket, set up the link
1976 * with the client, wake up the client, then return the new
1977 * connected fd. We collect the address of the connector in kernel
1978 * space and move it to user at the very end. This is unclean because
1979 * we open the socket then return an error.
1980 *
1981 * 1003.1g adds the ability to recvmsg() to query connection pending
1982 * status to recvmsg. We need to add that support in a way thats
1983 * clean when we restructure accept also.
1984 */
1985
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1986 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1987 int __user *upeer_addrlen, int flags)
1988 {
1989 CLASS(fd, f)(fd);
1990
1991 if (fd_empty(f))
1992 return -EBADF;
1993 return __sys_accept4_file(fd_file(f), upeer_sockaddr,
1994 upeer_addrlen, flags);
1995 }
1996
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1997 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1998 int __user *, upeer_addrlen, int, flags)
1999 {
2000 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2001 }
2002
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2003 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2004 int __user *, upeer_addrlen)
2005 {
2006 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2007 }
2008
2009 /*
2010 * Attempt to connect to a socket with the server address. The address
2011 * is in user space so we verify it is OK and move it to kernel space.
2012 *
2013 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2014 * break bindings
2015 *
2016 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2017 * other SEQPACKET protocols that take time to connect() as it doesn't
2018 * include the -EINPROGRESS status for such sockets.
2019 */
2020
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2021 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2022 int addrlen, int file_flags)
2023 {
2024 struct socket *sock;
2025 int err;
2026
2027 sock = sock_from_file(file);
2028 if (!sock) {
2029 err = -ENOTSOCK;
2030 goto out;
2031 }
2032
2033 err =
2034 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2035 if (err)
2036 goto out;
2037
2038 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2039 addrlen, sock->file->f_flags | file_flags);
2040 out:
2041 return err;
2042 }
2043
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2044 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2045 {
2046 struct sockaddr_storage address;
2047 CLASS(fd, f)(fd);
2048 int ret;
2049
2050 if (fd_empty(f))
2051 return -EBADF;
2052
2053 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2054 if (ret)
2055 return ret;
2056
2057 return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2058 }
2059
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2060 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2061 int, addrlen)
2062 {
2063 return __sys_connect(fd, uservaddr, addrlen);
2064 }
2065
2066 /*
2067 * Get the local address ('name') of a socket object. Move the obtained
2068 * name to user space.
2069 */
2070
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2071 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2072 int __user *usockaddr_len)
2073 {
2074 struct socket *sock;
2075 struct sockaddr_storage address;
2076 CLASS(fd, f)(fd);
2077 int err;
2078
2079 if (fd_empty(f))
2080 return -EBADF;
2081 sock = sock_from_file(fd_file(f));
2082 if (unlikely(!sock))
2083 return -ENOTSOCK;
2084
2085 err = security_socket_getsockname(sock);
2086 if (err)
2087 return err;
2088
2089 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2090 if (err < 0)
2091 return err;
2092
2093 /* "err" is actually length in this case */
2094 return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2095 }
2096
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2097 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2098 int __user *, usockaddr_len)
2099 {
2100 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2101 }
2102
2103 /*
2104 * Get the remote address ('name') of a socket object. Move the obtained
2105 * name to user space.
2106 */
2107
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2108 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2109 int __user *usockaddr_len)
2110 {
2111 struct socket *sock;
2112 struct sockaddr_storage address;
2113 CLASS(fd, f)(fd);
2114 int err;
2115
2116 if (fd_empty(f))
2117 return -EBADF;
2118 sock = sock_from_file(fd_file(f));
2119 if (unlikely(!sock))
2120 return -ENOTSOCK;
2121
2122 err = security_socket_getpeername(sock);
2123 if (err)
2124 return err;
2125
2126 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2127 if (err < 0)
2128 return err;
2129
2130 /* "err" is actually length in this case */
2131 return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2132 }
2133
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2134 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2135 int __user *, usockaddr_len)
2136 {
2137 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2138 }
2139
2140 /*
2141 * Send a datagram to a given address. We move the address into kernel
2142 * space and check the user space data area is readable before invoking
2143 * the protocol.
2144 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2145 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2146 struct sockaddr __user *addr, int addr_len)
2147 {
2148 struct socket *sock;
2149 struct sockaddr_storage address;
2150 int err;
2151 struct msghdr msg;
2152
2153 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2154 if (unlikely(err))
2155 return err;
2156
2157 CLASS(fd, f)(fd);
2158 if (fd_empty(f))
2159 return -EBADF;
2160 sock = sock_from_file(fd_file(f));
2161 if (unlikely(!sock))
2162 return -ENOTSOCK;
2163
2164 msg.msg_name = NULL;
2165 msg.msg_control = NULL;
2166 msg.msg_controllen = 0;
2167 msg.msg_namelen = 0;
2168 msg.msg_ubuf = NULL;
2169 if (addr) {
2170 err = move_addr_to_kernel(addr, addr_len, &address);
2171 if (err < 0)
2172 return err;
2173 msg.msg_name = (struct sockaddr *)&address;
2174 msg.msg_namelen = addr_len;
2175 }
2176 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2177 if (sock->file->f_flags & O_NONBLOCK)
2178 flags |= MSG_DONTWAIT;
2179 msg.msg_flags = flags;
2180 return __sock_sendmsg(sock, &msg);
2181 }
2182
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2183 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2184 unsigned int, flags, struct sockaddr __user *, addr,
2185 int, addr_len)
2186 {
2187 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2188 }
2189
2190 /*
2191 * Send a datagram down a socket.
2192 */
2193
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2194 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2195 unsigned int, flags)
2196 {
2197 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2198 }
2199
2200 /*
2201 * Receive a frame from the socket and optionally record the address of the
2202 * sender. We verify the buffers are writable and if needed move the
2203 * sender address from kernel to user space.
2204 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2205 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2206 struct sockaddr __user *addr, int __user *addr_len)
2207 {
2208 struct sockaddr_storage address;
2209 struct msghdr msg = {
2210 /* Save some cycles and don't copy the address if not needed */
2211 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2212 };
2213 struct socket *sock;
2214 int err, err2;
2215
2216 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2217 if (unlikely(err))
2218 return err;
2219
2220 CLASS(fd, f)(fd);
2221
2222 if (fd_empty(f))
2223 return -EBADF;
2224 sock = sock_from_file(fd_file(f));
2225 if (unlikely(!sock))
2226 return -ENOTSOCK;
2227
2228 if (sock->file->f_flags & O_NONBLOCK)
2229 flags |= MSG_DONTWAIT;
2230 err = sock_recvmsg(sock, &msg, flags);
2231
2232 if (err >= 0 && addr != NULL) {
2233 err2 = move_addr_to_user(&address,
2234 msg.msg_namelen, addr, addr_len);
2235 if (err2 < 0)
2236 err = err2;
2237 }
2238 return err;
2239 }
2240
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2241 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2242 unsigned int, flags, struct sockaddr __user *, addr,
2243 int __user *, addr_len)
2244 {
2245 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2246 }
2247
2248 /*
2249 * Receive a datagram from a socket.
2250 */
2251
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2252 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2253 unsigned int, flags)
2254 {
2255 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2256 }
2257
sock_use_custom_sol_socket(const struct socket * sock)2258 static bool sock_use_custom_sol_socket(const struct socket *sock)
2259 {
2260 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2261 }
2262
do_sock_setsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,int optlen)2263 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2264 int optname, sockptr_t optval, int optlen)
2265 {
2266 const struct proto_ops *ops;
2267 char *kernel_optval = NULL;
2268 int err;
2269
2270 if (optlen < 0)
2271 return -EINVAL;
2272
2273 err = security_socket_setsockopt(sock, level, optname);
2274 if (err)
2275 goto out_put;
2276
2277 if (!compat)
2278 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2279 optval, &optlen,
2280 &kernel_optval);
2281 if (err < 0)
2282 goto out_put;
2283 if (err > 0) {
2284 err = 0;
2285 goto out_put;
2286 }
2287
2288 if (kernel_optval)
2289 optval = KERNEL_SOCKPTR(kernel_optval);
2290 ops = READ_ONCE(sock->ops);
2291 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2292 err = sock_setsockopt(sock, level, optname, optval, optlen);
2293 else if (unlikely(!ops->setsockopt))
2294 err = -EOPNOTSUPP;
2295 else
2296 err = ops->setsockopt(sock, level, optname, optval,
2297 optlen);
2298 kfree(kernel_optval);
2299 out_put:
2300 return err;
2301 }
2302 EXPORT_SYMBOL(do_sock_setsockopt);
2303
2304 /* Set a socket option. Because we don't know the option lengths we have
2305 * to pass the user mode parameter for the protocols to sort out.
2306 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2307 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2308 int optlen)
2309 {
2310 sockptr_t optval = USER_SOCKPTR(user_optval);
2311 bool compat = in_compat_syscall();
2312 struct socket *sock;
2313 CLASS(fd, f)(fd);
2314
2315 if (fd_empty(f))
2316 return -EBADF;
2317 sock = sock_from_file(fd_file(f));
2318 if (unlikely(!sock))
2319 return -ENOTSOCK;
2320
2321 return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2322 }
2323
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2324 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2325 char __user *, optval, int, optlen)
2326 {
2327 return __sys_setsockopt(fd, level, optname, optval, optlen);
2328 }
2329
2330 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2331 int optname));
2332
do_sock_getsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,sockptr_t optlen)2333 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2334 int optname, sockptr_t optval, sockptr_t optlen)
2335 {
2336 int max_optlen __maybe_unused = 0;
2337 const struct proto_ops *ops;
2338 int err;
2339
2340 err = security_socket_getsockopt(sock, level, optname);
2341 if (err)
2342 return err;
2343
2344 if (!compat)
2345 copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2346
2347 ops = READ_ONCE(sock->ops);
2348 if (level == SOL_SOCKET) {
2349 err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2350 } else if (unlikely(!ops->getsockopt)) {
2351 err = -EOPNOTSUPP;
2352 } else {
2353 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2354 "Invalid argument type"))
2355 return -EOPNOTSUPP;
2356
2357 err = ops->getsockopt(sock, level, optname, optval.user,
2358 optlen.user);
2359 }
2360
2361 if (!compat)
2362 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2363 optval, optlen, max_optlen,
2364 err);
2365
2366 return err;
2367 }
2368 EXPORT_SYMBOL(do_sock_getsockopt);
2369
2370 /*
2371 * Get a socket option. Because we don't know the option lengths we have
2372 * to pass a user mode parameter for the protocols to sort out.
2373 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2374 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2375 int __user *optlen)
2376 {
2377 struct socket *sock;
2378 CLASS(fd, f)(fd);
2379
2380 if (fd_empty(f))
2381 return -EBADF;
2382 sock = sock_from_file(fd_file(f));
2383 if (unlikely(!sock))
2384 return -ENOTSOCK;
2385
2386 return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2387 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2388 }
2389
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2390 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2391 char __user *, optval, int __user *, optlen)
2392 {
2393 return __sys_getsockopt(fd, level, optname, optval, optlen);
2394 }
2395
2396 /*
2397 * Shutdown a socket.
2398 */
2399
__sys_shutdown_sock(struct socket * sock,int how)2400 int __sys_shutdown_sock(struct socket *sock, int how)
2401 {
2402 int err;
2403
2404 err = security_socket_shutdown(sock, how);
2405 if (!err)
2406 err = READ_ONCE(sock->ops)->shutdown(sock, how);
2407
2408 return err;
2409 }
2410
__sys_shutdown(int fd,int how)2411 int __sys_shutdown(int fd, int how)
2412 {
2413 struct socket *sock;
2414 CLASS(fd, f)(fd);
2415
2416 if (fd_empty(f))
2417 return -EBADF;
2418 sock = sock_from_file(fd_file(f));
2419 if (unlikely(!sock))
2420 return -ENOTSOCK;
2421
2422 return __sys_shutdown_sock(sock, how);
2423 }
2424
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2425 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2426 {
2427 return __sys_shutdown(fd, how);
2428 }
2429
2430 /* A couple of helpful macros for getting the address of the 32/64 bit
2431 * fields which are the same type (int / unsigned) on our platforms.
2432 */
2433 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2434 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2435 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2436
2437 struct used_address {
2438 struct sockaddr_storage name;
2439 unsigned int name_len;
2440 };
2441
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2442 int __copy_msghdr(struct msghdr *kmsg,
2443 struct user_msghdr *msg,
2444 struct sockaddr __user **save_addr)
2445 {
2446 ssize_t err;
2447
2448 kmsg->msg_control_is_user = true;
2449 kmsg->msg_get_inq = 0;
2450 kmsg->msg_control_user = msg->msg_control;
2451 kmsg->msg_controllen = msg->msg_controllen;
2452 kmsg->msg_flags = msg->msg_flags;
2453
2454 kmsg->msg_namelen = msg->msg_namelen;
2455 if (!msg->msg_name)
2456 kmsg->msg_namelen = 0;
2457
2458 if (kmsg->msg_namelen < 0)
2459 return -EINVAL;
2460
2461 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2462 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2463
2464 if (save_addr)
2465 *save_addr = msg->msg_name;
2466
2467 if (msg->msg_name && kmsg->msg_namelen) {
2468 if (!save_addr) {
2469 err = move_addr_to_kernel(msg->msg_name,
2470 kmsg->msg_namelen,
2471 kmsg->msg_name);
2472 if (err < 0)
2473 return err;
2474 }
2475 } else {
2476 kmsg->msg_name = NULL;
2477 kmsg->msg_namelen = 0;
2478 }
2479
2480 if (msg->msg_iovlen > UIO_MAXIOV)
2481 return -EMSGSIZE;
2482
2483 kmsg->msg_iocb = NULL;
2484 kmsg->msg_ubuf = NULL;
2485 return 0;
2486 }
2487
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2488 static int copy_msghdr_from_user(struct msghdr *kmsg,
2489 struct user_msghdr __user *umsg,
2490 struct sockaddr __user **save_addr,
2491 struct iovec **iov)
2492 {
2493 struct user_msghdr msg;
2494 ssize_t err;
2495
2496 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2497 return -EFAULT;
2498
2499 err = __copy_msghdr(kmsg, &msg, save_addr);
2500 if (err)
2501 return err;
2502
2503 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2504 msg.msg_iov, msg.msg_iovlen,
2505 UIO_FASTIOV, iov, &kmsg->msg_iter);
2506 return err < 0 ? err : 0;
2507 }
2508
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2509 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2510 unsigned int flags, struct used_address *used_address,
2511 unsigned int allowed_msghdr_flags)
2512 {
2513 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2514 __aligned(sizeof(__kernel_size_t));
2515 /* 20 is size of ipv6_pktinfo */
2516 unsigned char *ctl_buf = ctl;
2517 int ctl_len;
2518 ssize_t err;
2519
2520 err = -ENOBUFS;
2521
2522 if (msg_sys->msg_controllen > INT_MAX)
2523 goto out;
2524 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2525 ctl_len = msg_sys->msg_controllen;
2526 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2527 err =
2528 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2529 sizeof(ctl));
2530 if (err)
2531 goto out;
2532 ctl_buf = msg_sys->msg_control;
2533 ctl_len = msg_sys->msg_controllen;
2534 } else if (ctl_len) {
2535 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2536 CMSG_ALIGN(sizeof(struct cmsghdr)));
2537 if (ctl_len > sizeof(ctl)) {
2538 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2539 if (ctl_buf == NULL)
2540 goto out;
2541 }
2542 err = -EFAULT;
2543 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2544 goto out_freectl;
2545 msg_sys->msg_control = ctl_buf;
2546 msg_sys->msg_control_is_user = false;
2547 }
2548 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2549 msg_sys->msg_flags = flags;
2550
2551 if (sock->file->f_flags & O_NONBLOCK)
2552 msg_sys->msg_flags |= MSG_DONTWAIT;
2553 /*
2554 * If this is sendmmsg() and current destination address is same as
2555 * previously succeeded address, omit asking LSM's decision.
2556 * used_address->name_len is initialized to UINT_MAX so that the first
2557 * destination address never matches.
2558 */
2559 if (used_address && msg_sys->msg_name &&
2560 used_address->name_len == msg_sys->msg_namelen &&
2561 !memcmp(&used_address->name, msg_sys->msg_name,
2562 used_address->name_len)) {
2563 err = sock_sendmsg_nosec(sock, msg_sys);
2564 goto out_freectl;
2565 }
2566 err = __sock_sendmsg(sock, msg_sys);
2567 /*
2568 * If this is sendmmsg() and sending to current destination address was
2569 * successful, remember it.
2570 */
2571 if (used_address && err >= 0) {
2572 used_address->name_len = msg_sys->msg_namelen;
2573 if (msg_sys->msg_name)
2574 memcpy(&used_address->name, msg_sys->msg_name,
2575 used_address->name_len);
2576 }
2577
2578 out_freectl:
2579 if (ctl_buf != ctl)
2580 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2581 out:
2582 return err;
2583 }
2584
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2585 static int sendmsg_copy_msghdr(struct msghdr *msg,
2586 struct user_msghdr __user *umsg, unsigned flags,
2587 struct iovec **iov)
2588 {
2589 int err;
2590
2591 if (flags & MSG_CMSG_COMPAT) {
2592 struct compat_msghdr __user *msg_compat;
2593
2594 msg_compat = (struct compat_msghdr __user *) umsg;
2595 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2596 } else {
2597 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2598 }
2599 if (err < 0)
2600 return err;
2601
2602 return 0;
2603 }
2604
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2605 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2606 struct msghdr *msg_sys, unsigned int flags,
2607 struct used_address *used_address,
2608 unsigned int allowed_msghdr_flags)
2609 {
2610 struct sockaddr_storage address;
2611 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2612 ssize_t err;
2613
2614 msg_sys->msg_name = &address;
2615
2616 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2617 if (err < 0)
2618 return err;
2619
2620 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2621 allowed_msghdr_flags);
2622 kfree(iov);
2623 return err;
2624 }
2625
2626 /*
2627 * BSD sendmsg interface
2628 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2629 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2630 unsigned int flags)
2631 {
2632 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2633 }
2634
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2635 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2636 bool forbid_cmsg_compat)
2637 {
2638 struct msghdr msg_sys;
2639 struct socket *sock;
2640
2641 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2642 return -EINVAL;
2643
2644 CLASS(fd, f)(fd);
2645
2646 if (fd_empty(f))
2647 return -EBADF;
2648 sock = sock_from_file(fd_file(f));
2649 if (unlikely(!sock))
2650 return -ENOTSOCK;
2651
2652 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2653 }
2654
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2655 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2656 {
2657 return __sys_sendmsg(fd, msg, flags, true);
2658 }
2659
2660 /*
2661 * Linux sendmmsg interface
2662 */
2663
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2664 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2665 unsigned int flags, bool forbid_cmsg_compat)
2666 {
2667 int err, datagrams;
2668 struct socket *sock;
2669 struct mmsghdr __user *entry;
2670 struct compat_mmsghdr __user *compat_entry;
2671 struct msghdr msg_sys;
2672 struct used_address used_address;
2673 unsigned int oflags = flags;
2674
2675 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2676 return -EINVAL;
2677
2678 if (vlen > UIO_MAXIOV)
2679 vlen = UIO_MAXIOV;
2680
2681 datagrams = 0;
2682
2683 CLASS(fd, f)(fd);
2684
2685 if (fd_empty(f))
2686 return -EBADF;
2687 sock = sock_from_file(fd_file(f));
2688 if (unlikely(!sock))
2689 return -ENOTSOCK;
2690
2691 used_address.name_len = UINT_MAX;
2692 entry = mmsg;
2693 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2694 err = 0;
2695 flags |= MSG_BATCH;
2696
2697 while (datagrams < vlen) {
2698 if (datagrams == vlen - 1)
2699 flags = oflags;
2700
2701 if (MSG_CMSG_COMPAT & flags) {
2702 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2703 &msg_sys, flags, &used_address, MSG_EOR);
2704 if (err < 0)
2705 break;
2706 err = __put_user(err, &compat_entry->msg_len);
2707 ++compat_entry;
2708 } else {
2709 err = ___sys_sendmsg(sock,
2710 (struct user_msghdr __user *)entry,
2711 &msg_sys, flags, &used_address, MSG_EOR);
2712 if (err < 0)
2713 break;
2714 err = put_user(err, &entry->msg_len);
2715 ++entry;
2716 }
2717
2718 if (err)
2719 break;
2720 ++datagrams;
2721 if (msg_data_left(&msg_sys))
2722 break;
2723 cond_resched();
2724 }
2725
2726 /* We only return an error if no datagrams were able to be sent */
2727 if (datagrams != 0)
2728 return datagrams;
2729
2730 return err;
2731 }
2732
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2733 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2734 unsigned int, vlen, unsigned int, flags)
2735 {
2736 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2737 }
2738
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2739 static int recvmsg_copy_msghdr(struct msghdr *msg,
2740 struct user_msghdr __user *umsg, unsigned flags,
2741 struct sockaddr __user **uaddr,
2742 struct iovec **iov)
2743 {
2744 ssize_t err;
2745
2746 if (MSG_CMSG_COMPAT & flags) {
2747 struct compat_msghdr __user *msg_compat;
2748
2749 msg_compat = (struct compat_msghdr __user *) umsg;
2750 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2751 } else {
2752 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2753 }
2754 if (err < 0)
2755 return err;
2756
2757 return 0;
2758 }
2759
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2760 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2761 struct user_msghdr __user *msg,
2762 struct sockaddr __user *uaddr,
2763 unsigned int flags, int nosec)
2764 {
2765 struct compat_msghdr __user *msg_compat =
2766 (struct compat_msghdr __user *) msg;
2767 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2768 struct sockaddr_storage addr;
2769 unsigned long cmsg_ptr;
2770 int len;
2771 ssize_t err;
2772
2773 msg_sys->msg_name = &addr;
2774 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2775 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2776
2777 /* We assume all kernel code knows the size of sockaddr_storage */
2778 msg_sys->msg_namelen = 0;
2779
2780 if (sock->file->f_flags & O_NONBLOCK)
2781 flags |= MSG_DONTWAIT;
2782
2783 if (unlikely(nosec))
2784 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2785 else
2786 err = sock_recvmsg(sock, msg_sys, flags);
2787
2788 if (err < 0)
2789 goto out;
2790 len = err;
2791
2792 if (uaddr != NULL) {
2793 err = move_addr_to_user(&addr,
2794 msg_sys->msg_namelen, uaddr,
2795 uaddr_len);
2796 if (err < 0)
2797 goto out;
2798 }
2799 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2800 COMPAT_FLAGS(msg));
2801 if (err)
2802 goto out;
2803 if (MSG_CMSG_COMPAT & flags)
2804 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2805 &msg_compat->msg_controllen);
2806 else
2807 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2808 &msg->msg_controllen);
2809 if (err)
2810 goto out;
2811 err = len;
2812 out:
2813 return err;
2814 }
2815
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2816 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2817 struct msghdr *msg_sys, unsigned int flags, int nosec)
2818 {
2819 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2820 /* user mode address pointers */
2821 struct sockaddr __user *uaddr;
2822 ssize_t err;
2823
2824 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2825 if (err < 0)
2826 return err;
2827
2828 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2829 kfree(iov);
2830 return err;
2831 }
2832
2833 /*
2834 * BSD recvmsg interface
2835 */
2836
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2837 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2838 struct user_msghdr __user *umsg,
2839 struct sockaddr __user *uaddr, unsigned int flags)
2840 {
2841 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2842 }
2843
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2844 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2845 bool forbid_cmsg_compat)
2846 {
2847 struct msghdr msg_sys;
2848 struct socket *sock;
2849
2850 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2851 return -EINVAL;
2852
2853 CLASS(fd, f)(fd);
2854
2855 if (fd_empty(f))
2856 return -EBADF;
2857 sock = sock_from_file(fd_file(f));
2858 if (unlikely(!sock))
2859 return -ENOTSOCK;
2860
2861 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2862 }
2863
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2864 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2865 unsigned int, flags)
2866 {
2867 return __sys_recvmsg(fd, msg, flags, true);
2868 }
2869
2870 /*
2871 * Linux recvmmsg interface
2872 */
2873
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2874 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2875 unsigned int vlen, unsigned int flags,
2876 struct timespec64 *timeout)
2877 {
2878 int err = 0, datagrams;
2879 struct socket *sock;
2880 struct mmsghdr __user *entry;
2881 struct compat_mmsghdr __user *compat_entry;
2882 struct msghdr msg_sys;
2883 struct timespec64 end_time;
2884 struct timespec64 timeout64;
2885
2886 if (timeout &&
2887 poll_select_set_timeout(&end_time, timeout->tv_sec,
2888 timeout->tv_nsec))
2889 return -EINVAL;
2890
2891 datagrams = 0;
2892
2893 CLASS(fd, f)(fd);
2894
2895 if (fd_empty(f))
2896 return -EBADF;
2897 sock = sock_from_file(fd_file(f));
2898 if (unlikely(!sock))
2899 return -ENOTSOCK;
2900
2901 if (likely(!(flags & MSG_ERRQUEUE))) {
2902 err = sock_error(sock->sk);
2903 if (err)
2904 return err;
2905 }
2906
2907 entry = mmsg;
2908 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2909
2910 while (datagrams < vlen) {
2911 /*
2912 * No need to ask LSM for more than the first datagram.
2913 */
2914 if (MSG_CMSG_COMPAT & flags) {
2915 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2916 &msg_sys, flags & ~MSG_WAITFORONE,
2917 datagrams);
2918 if (err < 0)
2919 break;
2920 err = __put_user(err, &compat_entry->msg_len);
2921 ++compat_entry;
2922 } else {
2923 err = ___sys_recvmsg(sock,
2924 (struct user_msghdr __user *)entry,
2925 &msg_sys, flags & ~MSG_WAITFORONE,
2926 datagrams);
2927 if (err < 0)
2928 break;
2929 err = put_user(err, &entry->msg_len);
2930 ++entry;
2931 }
2932
2933 if (err)
2934 break;
2935 ++datagrams;
2936
2937 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2938 if (flags & MSG_WAITFORONE)
2939 flags |= MSG_DONTWAIT;
2940
2941 if (timeout) {
2942 ktime_get_ts64(&timeout64);
2943 *timeout = timespec64_sub(end_time, timeout64);
2944 if (timeout->tv_sec < 0) {
2945 timeout->tv_sec = timeout->tv_nsec = 0;
2946 break;
2947 }
2948
2949 /* Timeout, return less than vlen datagrams */
2950 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2951 break;
2952 }
2953
2954 /* Out of band data, return right away */
2955 if (msg_sys.msg_flags & MSG_OOB)
2956 break;
2957 cond_resched();
2958 }
2959
2960 if (err == 0)
2961 return datagrams;
2962
2963 if (datagrams == 0)
2964 return err;
2965
2966 /*
2967 * We may return less entries than requested (vlen) if the
2968 * sock is non block and there aren't enough datagrams...
2969 */
2970 if (err != -EAGAIN) {
2971 /*
2972 * ... or if recvmsg returns an error after we
2973 * received some datagrams, where we record the
2974 * error to return on the next call or if the
2975 * app asks about it using getsockopt(SO_ERROR).
2976 */
2977 WRITE_ONCE(sock->sk->sk_err, -err);
2978 }
2979 return datagrams;
2980 }
2981
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2982 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2983 unsigned int vlen, unsigned int flags,
2984 struct __kernel_timespec __user *timeout,
2985 struct old_timespec32 __user *timeout32)
2986 {
2987 int datagrams;
2988 struct timespec64 timeout_sys;
2989
2990 if (timeout && get_timespec64(&timeout_sys, timeout))
2991 return -EFAULT;
2992
2993 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2994 return -EFAULT;
2995
2996 if (!timeout && !timeout32)
2997 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2998
2999 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3000
3001 if (datagrams <= 0)
3002 return datagrams;
3003
3004 if (timeout && put_timespec64(&timeout_sys, timeout))
3005 datagrams = -EFAULT;
3006
3007 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3008 datagrams = -EFAULT;
3009
3010 return datagrams;
3011 }
3012
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3013 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3014 unsigned int, vlen, unsigned int, flags,
3015 struct __kernel_timespec __user *, timeout)
3016 {
3017 if (flags & MSG_CMSG_COMPAT)
3018 return -EINVAL;
3019
3020 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3021 }
3022
3023 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3024 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3025 unsigned int, vlen, unsigned int, flags,
3026 struct old_timespec32 __user *, timeout)
3027 {
3028 if (flags & MSG_CMSG_COMPAT)
3029 return -EINVAL;
3030
3031 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3032 }
3033 #endif
3034
3035 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3036 /* Argument list sizes for sys_socketcall */
3037 #define AL(x) ((x) * sizeof(unsigned long))
3038 static const unsigned char nargs[21] = {
3039 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3040 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3041 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3042 AL(4), AL(5), AL(4)
3043 };
3044
3045 #undef AL
3046
3047 /*
3048 * System call vectors.
3049 *
3050 * Argument checking cleaned up. Saved 20% in size.
3051 * This function doesn't need to set the kernel lock because
3052 * it is set by the callees.
3053 */
3054
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3055 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3056 {
3057 unsigned long a[AUDITSC_ARGS];
3058 unsigned long a0, a1;
3059 int err;
3060 unsigned int len;
3061
3062 if (call < 1 || call > SYS_SENDMMSG)
3063 return -EINVAL;
3064 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3065
3066 len = nargs[call];
3067 if (len > sizeof(a))
3068 return -EINVAL;
3069
3070 /* copy_from_user should be SMP safe. */
3071 if (copy_from_user(a, args, len))
3072 return -EFAULT;
3073
3074 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3075 if (err)
3076 return err;
3077
3078 a0 = a[0];
3079 a1 = a[1];
3080
3081 switch (call) {
3082 case SYS_SOCKET:
3083 err = __sys_socket(a0, a1, a[2]);
3084 break;
3085 case SYS_BIND:
3086 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3087 break;
3088 case SYS_CONNECT:
3089 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3090 break;
3091 case SYS_LISTEN:
3092 err = __sys_listen(a0, a1);
3093 break;
3094 case SYS_ACCEPT:
3095 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3096 (int __user *)a[2], 0);
3097 break;
3098 case SYS_GETSOCKNAME:
3099 err =
3100 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3101 (int __user *)a[2]);
3102 break;
3103 case SYS_GETPEERNAME:
3104 err =
3105 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3106 (int __user *)a[2]);
3107 break;
3108 case SYS_SOCKETPAIR:
3109 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3110 break;
3111 case SYS_SEND:
3112 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3113 NULL, 0);
3114 break;
3115 case SYS_SENDTO:
3116 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3117 (struct sockaddr __user *)a[4], a[5]);
3118 break;
3119 case SYS_RECV:
3120 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3121 NULL, NULL);
3122 break;
3123 case SYS_RECVFROM:
3124 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3125 (struct sockaddr __user *)a[4],
3126 (int __user *)a[5]);
3127 break;
3128 case SYS_SHUTDOWN:
3129 err = __sys_shutdown(a0, a1);
3130 break;
3131 case SYS_SETSOCKOPT:
3132 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3133 a[4]);
3134 break;
3135 case SYS_GETSOCKOPT:
3136 err =
3137 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3138 (int __user *)a[4]);
3139 break;
3140 case SYS_SENDMSG:
3141 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3142 a[2], true);
3143 break;
3144 case SYS_SENDMMSG:
3145 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3146 a[3], true);
3147 break;
3148 case SYS_RECVMSG:
3149 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3150 a[2], true);
3151 break;
3152 case SYS_RECVMMSG:
3153 if (IS_ENABLED(CONFIG_64BIT))
3154 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3155 a[2], a[3],
3156 (struct __kernel_timespec __user *)a[4],
3157 NULL);
3158 else
3159 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3160 a[2], a[3], NULL,
3161 (struct old_timespec32 __user *)a[4]);
3162 break;
3163 case SYS_ACCEPT4:
3164 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3165 (int __user *)a[2], a[3]);
3166 break;
3167 default:
3168 err = -EINVAL;
3169 break;
3170 }
3171 return err;
3172 }
3173
3174 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3175
3176 /**
3177 * sock_register - add a socket protocol handler
3178 * @ops: description of protocol
3179 *
3180 * This function is called by a protocol handler that wants to
3181 * advertise its address family, and have it linked into the
3182 * socket interface. The value ops->family corresponds to the
3183 * socket system call protocol family.
3184 */
sock_register(const struct net_proto_family * ops)3185 int sock_register(const struct net_proto_family *ops)
3186 {
3187 int err;
3188
3189 if (ops->family >= NPROTO) {
3190 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3191 return -ENOBUFS;
3192 }
3193
3194 spin_lock(&net_family_lock);
3195 if (rcu_dereference_protected(net_families[ops->family],
3196 lockdep_is_held(&net_family_lock)))
3197 err = -EEXIST;
3198 else {
3199 rcu_assign_pointer(net_families[ops->family], ops);
3200 err = 0;
3201 }
3202 spin_unlock(&net_family_lock);
3203
3204 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3205 return err;
3206 }
3207 EXPORT_SYMBOL(sock_register);
3208
3209 /**
3210 * sock_unregister - remove a protocol handler
3211 * @family: protocol family to remove
3212 *
3213 * This function is called by a protocol handler that wants to
3214 * remove its address family, and have it unlinked from the
3215 * new socket creation.
3216 *
3217 * If protocol handler is a module, then it can use module reference
3218 * counts to protect against new references. If protocol handler is not
3219 * a module then it needs to provide its own protection in
3220 * the ops->create routine.
3221 */
sock_unregister(int family)3222 void sock_unregister(int family)
3223 {
3224 BUG_ON(family < 0 || family >= NPROTO);
3225
3226 spin_lock(&net_family_lock);
3227 RCU_INIT_POINTER(net_families[family], NULL);
3228 spin_unlock(&net_family_lock);
3229
3230 synchronize_rcu();
3231
3232 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3233 }
3234 EXPORT_SYMBOL(sock_unregister);
3235
sock_is_registered(int family)3236 bool sock_is_registered(int family)
3237 {
3238 return family < NPROTO && rcu_access_pointer(net_families[family]);
3239 }
3240
sock_init(void)3241 static int __init sock_init(void)
3242 {
3243 int err;
3244 /*
3245 * Initialize the network sysctl infrastructure.
3246 */
3247 err = net_sysctl_init();
3248 if (err)
3249 goto out;
3250
3251 /*
3252 * Initialize skbuff SLAB cache
3253 */
3254 skb_init();
3255
3256 /*
3257 * Initialize the protocols module.
3258 */
3259
3260 init_inodecache();
3261
3262 err = register_filesystem(&sock_fs_type);
3263 if (err)
3264 goto out;
3265 sock_mnt = kern_mount(&sock_fs_type);
3266 if (IS_ERR(sock_mnt)) {
3267 err = PTR_ERR(sock_mnt);
3268 goto out_mount;
3269 }
3270
3271 /* The real protocol initialization is performed in later initcalls.
3272 */
3273
3274 #ifdef CONFIG_NETFILTER
3275 err = netfilter_init();
3276 if (err)
3277 goto out;
3278 #endif
3279
3280 ptp_classifier_init();
3281
3282 out:
3283 return err;
3284
3285 out_mount:
3286 unregister_filesystem(&sock_fs_type);
3287 goto out;
3288 }
3289
3290 core_initcall(sock_init); /* early initcall */
3291
3292 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3293 void socket_seq_show(struct seq_file *seq)
3294 {
3295 seq_printf(seq, "sockets: used %d\n",
3296 sock_inuse_get(seq->private));
3297 }
3298 #endif /* CONFIG_PROC_FS */
3299
3300 /* Handle the fact that while struct ifreq has the same *layout* on
3301 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3302 * which are handled elsewhere, it still has different *size* due to
3303 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3304 * resulting in struct ifreq being 32 and 40 bytes respectively).
3305 * As a result, if the struct happens to be at the end of a page and
3306 * the next page isn't readable/writable, we get a fault. To prevent
3307 * that, copy back and forth to the full size.
3308 */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3309 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3310 {
3311 if (in_compat_syscall()) {
3312 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3313
3314 memset(ifr, 0, sizeof(*ifr));
3315 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3316 return -EFAULT;
3317
3318 if (ifrdata)
3319 *ifrdata = compat_ptr(ifr32->ifr_data);
3320
3321 return 0;
3322 }
3323
3324 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3325 return -EFAULT;
3326
3327 if (ifrdata)
3328 *ifrdata = ifr->ifr_data;
3329
3330 return 0;
3331 }
3332 EXPORT_SYMBOL(get_user_ifreq);
3333
put_user_ifreq(struct ifreq * ifr,void __user * arg)3334 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3335 {
3336 size_t size = sizeof(*ifr);
3337
3338 if (in_compat_syscall())
3339 size = sizeof(struct compat_ifreq);
3340
3341 if (copy_to_user(arg, ifr, size))
3342 return -EFAULT;
3343
3344 return 0;
3345 }
3346 EXPORT_SYMBOL(put_user_ifreq);
3347
3348 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3349 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3350 {
3351 compat_uptr_t uptr32;
3352 struct ifreq ifr;
3353 void __user *saved;
3354 int err;
3355
3356 if (get_user_ifreq(&ifr, NULL, uifr32))
3357 return -EFAULT;
3358
3359 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3360 return -EFAULT;
3361
3362 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3363 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3364
3365 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3366 if (!err) {
3367 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3368 if (put_user_ifreq(&ifr, uifr32))
3369 err = -EFAULT;
3370 }
3371 return err;
3372 }
3373
3374 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3375 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3376 struct compat_ifreq __user *u_ifreq32)
3377 {
3378 struct ifreq ifreq;
3379 void __user *data;
3380
3381 if (!is_socket_ioctl_cmd(cmd))
3382 return -ENOTTY;
3383 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3384 return -EFAULT;
3385 ifreq.ifr_data = data;
3386
3387 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3388 }
3389
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3390 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3391 unsigned int cmd, unsigned long arg)
3392 {
3393 void __user *argp = compat_ptr(arg);
3394 struct sock *sk = sock->sk;
3395 struct net *net = sock_net(sk);
3396 const struct proto_ops *ops;
3397
3398 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3399 return sock_ioctl(file, cmd, (unsigned long)argp);
3400
3401 switch (cmd) {
3402 case SIOCWANDEV:
3403 return compat_siocwandev(net, argp);
3404 case SIOCGSTAMP_OLD:
3405 case SIOCGSTAMPNS_OLD:
3406 ops = READ_ONCE(sock->ops);
3407 if (!ops->gettstamp)
3408 return -ENOIOCTLCMD;
3409 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3410 !COMPAT_USE_64BIT_TIME);
3411
3412 case SIOCETHTOOL:
3413 case SIOCBONDSLAVEINFOQUERY:
3414 case SIOCBONDINFOQUERY:
3415 case SIOCSHWTSTAMP:
3416 case SIOCGHWTSTAMP:
3417 return compat_ifr_data_ioctl(net, cmd, argp);
3418
3419 case FIOSETOWN:
3420 case SIOCSPGRP:
3421 case FIOGETOWN:
3422 case SIOCGPGRP:
3423 case SIOCBRADDBR:
3424 case SIOCBRDELBR:
3425 case SIOCBRADDIF:
3426 case SIOCBRDELIF:
3427 case SIOCGIFVLAN:
3428 case SIOCSIFVLAN:
3429 case SIOCGSKNS:
3430 case SIOCGSTAMP_NEW:
3431 case SIOCGSTAMPNS_NEW:
3432 case SIOCGIFCONF:
3433 case SIOCSIFBR:
3434 case SIOCGIFBR:
3435 return sock_ioctl(file, cmd, arg);
3436
3437 case SIOCGIFFLAGS:
3438 case SIOCSIFFLAGS:
3439 case SIOCGIFMAP:
3440 case SIOCSIFMAP:
3441 case SIOCGIFMETRIC:
3442 case SIOCSIFMETRIC:
3443 case SIOCGIFMTU:
3444 case SIOCSIFMTU:
3445 case SIOCGIFMEM:
3446 case SIOCSIFMEM:
3447 case SIOCGIFHWADDR:
3448 case SIOCSIFHWADDR:
3449 case SIOCADDMULTI:
3450 case SIOCDELMULTI:
3451 case SIOCGIFINDEX:
3452 case SIOCGIFADDR:
3453 case SIOCSIFADDR:
3454 case SIOCSIFHWBROADCAST:
3455 case SIOCDIFADDR:
3456 case SIOCGIFBRDADDR:
3457 case SIOCSIFBRDADDR:
3458 case SIOCGIFDSTADDR:
3459 case SIOCSIFDSTADDR:
3460 case SIOCGIFNETMASK:
3461 case SIOCSIFNETMASK:
3462 case SIOCSIFPFLAGS:
3463 case SIOCGIFPFLAGS:
3464 case SIOCGIFTXQLEN:
3465 case SIOCSIFTXQLEN:
3466 case SIOCGIFNAME:
3467 case SIOCSIFNAME:
3468 case SIOCGMIIPHY:
3469 case SIOCGMIIREG:
3470 case SIOCSMIIREG:
3471 case SIOCBONDENSLAVE:
3472 case SIOCBONDRELEASE:
3473 case SIOCBONDSETHWADDR:
3474 case SIOCBONDCHANGEACTIVE:
3475 case SIOCSARP:
3476 case SIOCGARP:
3477 case SIOCDARP:
3478 case SIOCOUTQ:
3479 case SIOCOUTQNSD:
3480 case SIOCATMARK:
3481 return sock_do_ioctl(net, sock, cmd, arg);
3482 }
3483
3484 return -ENOIOCTLCMD;
3485 }
3486
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3487 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3488 unsigned long arg)
3489 {
3490 struct socket *sock = file->private_data;
3491 const struct proto_ops *ops = READ_ONCE(sock->ops);
3492 int ret = -ENOIOCTLCMD;
3493 struct sock *sk;
3494 struct net *net;
3495
3496 sk = sock->sk;
3497 net = sock_net(sk);
3498
3499 if (ops->compat_ioctl)
3500 ret = ops->compat_ioctl(sock, cmd, arg);
3501
3502 if (ret == -ENOIOCTLCMD &&
3503 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3504 ret = compat_wext_handle_ioctl(net, cmd, arg);
3505
3506 if (ret == -ENOIOCTLCMD)
3507 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3508
3509 return ret;
3510 }
3511 #endif
3512
3513 /**
3514 * kernel_bind - bind an address to a socket (kernel space)
3515 * @sock: socket
3516 * @addr: address
3517 * @addrlen: length of address
3518 *
3519 * Returns 0 or an error.
3520 */
3521
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3522 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3523 {
3524 struct sockaddr_storage address;
3525
3526 memcpy(&address, addr, addrlen);
3527
3528 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3529 addrlen);
3530 }
3531 EXPORT_SYMBOL(kernel_bind);
3532
3533 /**
3534 * kernel_listen - move socket to listening state (kernel space)
3535 * @sock: socket
3536 * @backlog: pending connections queue size
3537 *
3538 * Returns 0 or an error.
3539 */
3540
kernel_listen(struct socket * sock,int backlog)3541 int kernel_listen(struct socket *sock, int backlog)
3542 {
3543 return READ_ONCE(sock->ops)->listen(sock, backlog);
3544 }
3545 EXPORT_SYMBOL(kernel_listen);
3546
3547 /**
3548 * kernel_accept - accept a connection (kernel space)
3549 * @sock: listening socket
3550 * @newsock: new connected socket
3551 * @flags: flags
3552 *
3553 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3554 * If it fails, @newsock is guaranteed to be %NULL.
3555 * Returns 0 or an error.
3556 */
3557
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3558 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3559 {
3560 struct sock *sk = sock->sk;
3561 const struct proto_ops *ops = READ_ONCE(sock->ops);
3562 struct proto_accept_arg arg = {
3563 .flags = flags,
3564 .kern = true,
3565 };
3566 int err;
3567
3568 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3569 newsock);
3570 if (err < 0)
3571 goto done;
3572
3573 err = ops->accept(sock, *newsock, &arg);
3574 if (err < 0) {
3575 sock_release(*newsock);
3576 *newsock = NULL;
3577 goto done;
3578 }
3579
3580 (*newsock)->ops = ops;
3581 __module_get(ops->owner);
3582
3583 done:
3584 return err;
3585 }
3586 EXPORT_SYMBOL(kernel_accept);
3587
3588 /**
3589 * kernel_connect - connect a socket (kernel space)
3590 * @sock: socket
3591 * @addr: address
3592 * @addrlen: address length
3593 * @flags: flags (O_NONBLOCK, ...)
3594 *
3595 * For datagram sockets, @addr is the address to which datagrams are sent
3596 * by default, and the only address from which datagrams are received.
3597 * For stream sockets, attempts to connect to @addr.
3598 * Returns 0 or an error code.
3599 */
3600
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3601 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3602 int flags)
3603 {
3604 struct sockaddr_storage address;
3605
3606 memcpy(&address, addr, addrlen);
3607
3608 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3609 addrlen, flags);
3610 }
3611 EXPORT_SYMBOL(kernel_connect);
3612
3613 /**
3614 * kernel_getsockname - get the address which the socket is bound (kernel space)
3615 * @sock: socket
3616 * @addr: address holder
3617 *
3618 * Fills the @addr pointer with the address which the socket is bound.
3619 * Returns the length of the address in bytes or an error code.
3620 */
3621
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3622 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3623 {
3624 return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3625 }
3626 EXPORT_SYMBOL(kernel_getsockname);
3627
3628 /**
3629 * kernel_getpeername - get the address which the socket is connected (kernel space)
3630 * @sock: socket
3631 * @addr: address holder
3632 *
3633 * Fills the @addr pointer with the address which the socket is connected.
3634 * Returns the length of the address in bytes or an error code.
3635 */
3636
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3637 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3638 {
3639 return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3640 }
3641 EXPORT_SYMBOL(kernel_getpeername);
3642
3643 /**
3644 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3645 * @sock: socket
3646 * @how: connection part
3647 *
3648 * Returns 0 or an error.
3649 */
3650
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3651 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3652 {
3653 return READ_ONCE(sock->ops)->shutdown(sock, how);
3654 }
3655 EXPORT_SYMBOL(kernel_sock_shutdown);
3656
3657 /**
3658 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3659 * @sk: socket
3660 *
3661 * This routine returns the IP overhead imposed by a socket i.e.
3662 * the length of the underlying IP header, depending on whether
3663 * this is an IPv4 or IPv6 socket and the length from IP options turned
3664 * on at the socket. Assumes that the caller has a lock on the socket.
3665 */
3666
kernel_sock_ip_overhead(struct sock * sk)3667 u32 kernel_sock_ip_overhead(struct sock *sk)
3668 {
3669 struct inet_sock *inet;
3670 struct ip_options_rcu *opt;
3671 u32 overhead = 0;
3672 #if IS_ENABLED(CONFIG_IPV6)
3673 struct ipv6_pinfo *np;
3674 struct ipv6_txoptions *optv6 = NULL;
3675 #endif /* IS_ENABLED(CONFIG_IPV6) */
3676
3677 if (!sk)
3678 return overhead;
3679
3680 switch (sk->sk_family) {
3681 case AF_INET:
3682 inet = inet_sk(sk);
3683 overhead += sizeof(struct iphdr);
3684 opt = rcu_dereference_protected(inet->inet_opt,
3685 sock_owned_by_user(sk));
3686 if (opt)
3687 overhead += opt->opt.optlen;
3688 return overhead;
3689 #if IS_ENABLED(CONFIG_IPV6)
3690 case AF_INET6:
3691 np = inet6_sk(sk);
3692 overhead += sizeof(struct ipv6hdr);
3693 if (np)
3694 optv6 = rcu_dereference_protected(np->opt,
3695 sock_owned_by_user(sk));
3696 if (optv6)
3697 overhead += (optv6->opt_flen + optv6->opt_nflen);
3698 return overhead;
3699 #endif /* IS_ENABLED(CONFIG_IPV6) */
3700 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3701 return overhead;
3702 }
3703 }
3704 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3705