xref: /linux/net/socket.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #include "core/dev.h"
114 
115 #ifdef CONFIG_NET_RX_BUSY_POLL
116 unsigned int sysctl_net_busy_read __read_mostly;
117 unsigned int sysctl_net_busy_poll __read_mostly;
118 #endif
119 
120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
122 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123 
124 static int sock_close(struct inode *inode, struct file *file);
125 static __poll_t sock_poll(struct file *file,
126 			      struct poll_table_struct *wait);
127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
128 #ifdef CONFIG_COMPAT
129 static long compat_sock_ioctl(struct file *file,
130 			      unsigned int cmd, unsigned long arg);
131 #endif
132 static int sock_fasync(int fd, struct file *filp, int on);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 				struct pipe_inode_info *pipe, size_t len,
135 				unsigned int flags);
136 static void sock_splice_eof(struct file *file);
137 
138 #ifdef CONFIG_PROC_FS
139 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
140 {
141 	struct socket *sock = f->private_data;
142 	const struct proto_ops *ops = READ_ONCE(sock->ops);
143 
144 	if (ops->show_fdinfo)
145 		ops->show_fdinfo(m, sock);
146 }
147 #else
148 #define sock_show_fdinfo NULL
149 #endif
150 
151 /*
152  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
153  *	in the operation structures but are done directly via the socketcall() multiplexor.
154  */
155 
156 static const struct file_operations socket_file_ops = {
157 	.owner =	THIS_MODULE,
158 	.read_iter =	sock_read_iter,
159 	.write_iter =	sock_write_iter,
160 	.poll =		sock_poll,
161 	.unlocked_ioctl = sock_ioctl,
162 #ifdef CONFIG_COMPAT
163 	.compat_ioctl = compat_sock_ioctl,
164 #endif
165 	.uring_cmd =    io_uring_cmd_sock,
166 	.mmap =		sock_mmap,
167 	.release =	sock_close,
168 	.fasync =	sock_fasync,
169 	.splice_write = splice_to_socket,
170 	.splice_read =	sock_splice_read,
171 	.splice_eof =	sock_splice_eof,
172 	.show_fdinfo =	sock_show_fdinfo,
173 };
174 
175 static const char * const pf_family_names[] = {
176 	[PF_UNSPEC]	= "PF_UNSPEC",
177 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
178 	[PF_INET]	= "PF_INET",
179 	[PF_AX25]	= "PF_AX25",
180 	[PF_IPX]	= "PF_IPX",
181 	[PF_APPLETALK]	= "PF_APPLETALK",
182 	[PF_NETROM]	= "PF_NETROM",
183 	[PF_BRIDGE]	= "PF_BRIDGE",
184 	[PF_ATMPVC]	= "PF_ATMPVC",
185 	[PF_X25]	= "PF_X25",
186 	[PF_INET6]	= "PF_INET6",
187 	[PF_ROSE]	= "PF_ROSE",
188 	[PF_DECnet]	= "PF_DECnet",
189 	[PF_NETBEUI]	= "PF_NETBEUI",
190 	[PF_SECURITY]	= "PF_SECURITY",
191 	[PF_KEY]	= "PF_KEY",
192 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
193 	[PF_PACKET]	= "PF_PACKET",
194 	[PF_ASH]	= "PF_ASH",
195 	[PF_ECONET]	= "PF_ECONET",
196 	[PF_ATMSVC]	= "PF_ATMSVC",
197 	[PF_RDS]	= "PF_RDS",
198 	[PF_SNA]	= "PF_SNA",
199 	[PF_IRDA]	= "PF_IRDA",
200 	[PF_PPPOX]	= "PF_PPPOX",
201 	[PF_WANPIPE]	= "PF_WANPIPE",
202 	[PF_LLC]	= "PF_LLC",
203 	[PF_IB]		= "PF_IB",
204 	[PF_MPLS]	= "PF_MPLS",
205 	[PF_CAN]	= "PF_CAN",
206 	[PF_TIPC]	= "PF_TIPC",
207 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
208 	[PF_IUCV]	= "PF_IUCV",
209 	[PF_RXRPC]	= "PF_RXRPC",
210 	[PF_ISDN]	= "PF_ISDN",
211 	[PF_PHONET]	= "PF_PHONET",
212 	[PF_IEEE802154]	= "PF_IEEE802154",
213 	[PF_CAIF]	= "PF_CAIF",
214 	[PF_ALG]	= "PF_ALG",
215 	[PF_NFC]	= "PF_NFC",
216 	[PF_VSOCK]	= "PF_VSOCK",
217 	[PF_KCM]	= "PF_KCM",
218 	[PF_QIPCRTR]	= "PF_QIPCRTR",
219 	[PF_SMC]	= "PF_SMC",
220 	[PF_XDP]	= "PF_XDP",
221 	[PF_MCTP]	= "PF_MCTP",
222 };
223 
224 /*
225  *	The protocol list. Each protocol is registered in here.
226  */
227 
228 static DEFINE_SPINLOCK(net_family_lock);
229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230 
231 /*
232  * Support routines.
233  * Move socket addresses back and forth across the kernel/user
234  * divide and look after the messy bits.
235  */
236 
237 /**
238  *	move_addr_to_kernel	-	copy a socket address into kernel space
239  *	@uaddr: Address in user space
240  *	@kaddr: Address in kernel space
241  *	@ulen: Length in user space
242  *
243  *	The address is copied into kernel space. If the provided address is
244  *	too long an error code of -EINVAL is returned. If the copy gives
245  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
246  */
247 
248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
249 {
250 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251 		return -EINVAL;
252 	if (ulen == 0)
253 		return 0;
254 	if (copy_from_user(kaddr, uaddr, ulen))
255 		return -EFAULT;
256 	return audit_sockaddr(ulen, kaddr);
257 }
258 
259 /**
260  *	move_addr_to_user	-	copy an address to user space
261  *	@kaddr: kernel space address
262  *	@klen: length of address in kernel
263  *	@uaddr: user space address
264  *	@ulen: pointer to user length field
265  *
266  *	The value pointed to by ulen on entry is the buffer length available.
267  *	This is overwritten with the buffer space used. -EINVAL is returned
268  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
269  *	is returned if either the buffer or the length field are not
270  *	accessible.
271  *	After copying the data up to the limit the user specifies, the true
272  *	length of the data is written over the length limit the user
273  *	specified. Zero is returned for a success.
274  */
275 
276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
277 			     void __user *uaddr, int __user *ulen)
278 {
279 	int len;
280 
281 	BUG_ON(klen > sizeof(struct sockaddr_storage));
282 
283 	if (can_do_masked_user_access())
284 		ulen = masked_user_access_begin(ulen);
285 	else if (!user_access_begin(ulen, 4))
286 		return -EFAULT;
287 
288 	unsafe_get_user(len, ulen, efault_end);
289 
290 	if (len > klen)
291 		len = klen;
292 	/*
293 	 *      "fromlen shall refer to the value before truncation.."
294 	 *                      1003.1g
295 	 */
296 	if (len >= 0)
297 		unsafe_put_user(klen, ulen, efault_end);
298 
299 	user_access_end();
300 
301 	if (len) {
302 		if (len < 0)
303 			return -EINVAL;
304 		if (audit_sockaddr(klen, kaddr))
305 			return -ENOMEM;
306 		if (copy_to_user(uaddr, kaddr, len))
307 			return -EFAULT;
308 	}
309 	return 0;
310 
311 efault_end:
312 	user_access_end();
313 	return -EFAULT;
314 }
315 
316 static struct kmem_cache *sock_inode_cachep __ro_after_init;
317 
318 static struct inode *sock_alloc_inode(struct super_block *sb)
319 {
320 	struct socket_alloc *ei;
321 
322 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
323 	if (!ei)
324 		return NULL;
325 	init_waitqueue_head(&ei->socket.wq.wait);
326 	ei->socket.wq.fasync_list = NULL;
327 	ei->socket.wq.flags = 0;
328 
329 	ei->socket.state = SS_UNCONNECTED;
330 	ei->socket.flags = 0;
331 	ei->socket.ops = NULL;
332 	ei->socket.sk = NULL;
333 	ei->socket.file = NULL;
334 
335 	return &ei->vfs_inode;
336 }
337 
338 static void sock_free_inode(struct inode *inode)
339 {
340 	struct socket_alloc *ei;
341 
342 	ei = container_of(inode, struct socket_alloc, vfs_inode);
343 	kmem_cache_free(sock_inode_cachep, ei);
344 }
345 
346 static void init_once(void *foo)
347 {
348 	struct socket_alloc *ei = (struct socket_alloc *)foo;
349 
350 	inode_init_once(&ei->vfs_inode);
351 }
352 
353 static void init_inodecache(void)
354 {
355 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
356 					      sizeof(struct socket_alloc),
357 					      0,
358 					      (SLAB_HWCACHE_ALIGN |
359 					       SLAB_RECLAIM_ACCOUNT |
360 					       SLAB_ACCOUNT),
361 					      init_once);
362 	BUG_ON(sock_inode_cachep == NULL);
363 }
364 
365 static const struct super_operations sockfs_ops = {
366 	.alloc_inode	= sock_alloc_inode,
367 	.free_inode	= sock_free_inode,
368 	.statfs		= simple_statfs,
369 };
370 
371 /*
372  * sockfs_dname() is called from d_path().
373  */
374 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
375 {
376 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
377 				d_inode(dentry)->i_ino);
378 }
379 
380 static const struct dentry_operations sockfs_dentry_operations = {
381 	.d_dname  = sockfs_dname,
382 };
383 
384 static int sockfs_xattr_get(const struct xattr_handler *handler,
385 			    struct dentry *dentry, struct inode *inode,
386 			    const char *suffix, void *value, size_t size)
387 {
388 	if (value) {
389 		if (dentry->d_name.len + 1 > size)
390 			return -ERANGE;
391 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
392 	}
393 	return dentry->d_name.len + 1;
394 }
395 
396 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
397 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
398 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
399 
400 static const struct xattr_handler sockfs_xattr_handler = {
401 	.name = XATTR_NAME_SOCKPROTONAME,
402 	.get = sockfs_xattr_get,
403 };
404 
405 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
406 				     struct mnt_idmap *idmap,
407 				     struct dentry *dentry, struct inode *inode,
408 				     const char *suffix, const void *value,
409 				     size_t size, int flags)
410 {
411 	/* Handled by LSM. */
412 	return -EAGAIN;
413 }
414 
415 static const struct xattr_handler sockfs_security_xattr_handler = {
416 	.prefix = XATTR_SECURITY_PREFIX,
417 	.set = sockfs_security_xattr_set,
418 };
419 
420 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
421 	&sockfs_xattr_handler,
422 	&sockfs_security_xattr_handler,
423 	NULL
424 };
425 
426 static int sockfs_init_fs_context(struct fs_context *fc)
427 {
428 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
429 	if (!ctx)
430 		return -ENOMEM;
431 	ctx->ops = &sockfs_ops;
432 	ctx->dops = &sockfs_dentry_operations;
433 	ctx->xattr = sockfs_xattr_handlers;
434 	return 0;
435 }
436 
437 static struct vfsmount *sock_mnt __read_mostly;
438 
439 static struct file_system_type sock_fs_type = {
440 	.name =		"sockfs",
441 	.init_fs_context = sockfs_init_fs_context,
442 	.kill_sb =	kill_anon_super,
443 };
444 
445 /*
446  *	Obtains the first available file descriptor and sets it up for use.
447  *
448  *	These functions create file structures and maps them to fd space
449  *	of the current process. On success it returns file descriptor
450  *	and file struct implicitly stored in sock->file.
451  *	Note that another thread may close file descriptor before we return
452  *	from this function. We use the fact that now we do not refer
453  *	to socket after mapping. If one day we will need it, this
454  *	function will increment ref. count on file by 1.
455  *
456  *	In any case returned fd MAY BE not valid!
457  *	This race condition is unavoidable
458  *	with shared fd spaces, we cannot solve it inside kernel,
459  *	but we take care of internal coherence yet.
460  */
461 
462 /**
463  *	sock_alloc_file - Bind a &socket to a &file
464  *	@sock: socket
465  *	@flags: file status flags
466  *	@dname: protocol name
467  *
468  *	Returns the &file bound with @sock, implicitly storing it
469  *	in sock->file. If dname is %NULL, sets to "".
470  *
471  *	On failure @sock is released, and an ERR pointer is returned.
472  *
473  *	This function uses GFP_KERNEL internally.
474  */
475 
476 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
477 {
478 	struct file *file;
479 
480 	if (!dname)
481 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
482 
483 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
484 				O_RDWR | (flags & O_NONBLOCK),
485 				&socket_file_ops);
486 	if (IS_ERR(file)) {
487 		sock_release(sock);
488 		return file;
489 	}
490 
491 	file->f_mode |= FMODE_NOWAIT;
492 	sock->file = file;
493 	file->private_data = sock;
494 	stream_open(SOCK_INODE(sock), file);
495 	/*
496 	 * Disable permission and pre-content events, but enable legacy
497 	 * inotify events for legacy users.
498 	 */
499 	file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM);
500 	return file;
501 }
502 EXPORT_SYMBOL(sock_alloc_file);
503 
504 static int sock_map_fd(struct socket *sock, int flags)
505 {
506 	struct file *newfile;
507 	int fd = get_unused_fd_flags(flags);
508 	if (unlikely(fd < 0)) {
509 		sock_release(sock);
510 		return fd;
511 	}
512 
513 	newfile = sock_alloc_file(sock, flags, NULL);
514 	if (!IS_ERR(newfile)) {
515 		fd_install(fd, newfile);
516 		return fd;
517 	}
518 
519 	put_unused_fd(fd);
520 	return PTR_ERR(newfile);
521 }
522 
523 /**
524  *	sock_from_file - Return the &socket bounded to @file.
525  *	@file: file
526  *
527  *	On failure returns %NULL.
528  */
529 
530 struct socket *sock_from_file(struct file *file)
531 {
532 	if (likely(file->f_op == &socket_file_ops))
533 		return file->private_data;	/* set in sock_alloc_file */
534 
535 	return NULL;
536 }
537 EXPORT_SYMBOL(sock_from_file);
538 
539 /**
540  *	sockfd_lookup - Go from a file number to its socket slot
541  *	@fd: file handle
542  *	@err: pointer to an error code return
543  *
544  *	The file handle passed in is locked and the socket it is bound
545  *	to is returned. If an error occurs the err pointer is overwritten
546  *	with a negative errno code and NULL is returned. The function checks
547  *	for both invalid handles and passing a handle which is not a socket.
548  *
549  *	On a success the socket object pointer is returned.
550  */
551 
552 struct socket *sockfd_lookup(int fd, int *err)
553 {
554 	struct file *file;
555 	struct socket *sock;
556 
557 	file = fget(fd);
558 	if (!file) {
559 		*err = -EBADF;
560 		return NULL;
561 	}
562 
563 	sock = sock_from_file(file);
564 	if (!sock) {
565 		*err = -ENOTSOCK;
566 		fput(file);
567 	}
568 	return sock;
569 }
570 EXPORT_SYMBOL(sockfd_lookup);
571 
572 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
573 				size_t size)
574 {
575 	ssize_t len;
576 	ssize_t used = 0;
577 
578 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
579 	if (len < 0)
580 		return len;
581 	used += len;
582 	if (buffer) {
583 		if (size < used)
584 			return -ERANGE;
585 		buffer += len;
586 	}
587 
588 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
589 	used += len;
590 	if (buffer) {
591 		if (size < used)
592 			return -ERANGE;
593 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
594 		buffer += len;
595 	}
596 
597 	return used;
598 }
599 
600 static int sockfs_setattr(struct mnt_idmap *idmap,
601 			  struct dentry *dentry, struct iattr *iattr)
602 {
603 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
604 
605 	if (!err && (iattr->ia_valid & ATTR_UID)) {
606 		struct socket *sock = SOCKET_I(d_inode(dentry));
607 
608 		if (sock->sk) {
609 			/* Paired with READ_ONCE() in sk_uid() */
610 			WRITE_ONCE(sock->sk->sk_uid, iattr->ia_uid);
611 		} else {
612 			err = -ENOENT;
613 		}
614 	}
615 
616 	return err;
617 }
618 
619 static const struct inode_operations sockfs_inode_ops = {
620 	.listxattr = sockfs_listxattr,
621 	.setattr = sockfs_setattr,
622 };
623 
624 /**
625  *	sock_alloc - allocate a socket
626  *
627  *	Allocate a new inode and socket object. The two are bound together
628  *	and initialised. The socket is then returned. If we are out of inodes
629  *	NULL is returned. This functions uses GFP_KERNEL internally.
630  */
631 
632 struct socket *sock_alloc(void)
633 {
634 	struct inode *inode;
635 	struct socket *sock;
636 
637 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
638 	if (!inode)
639 		return NULL;
640 
641 	sock = SOCKET_I(inode);
642 
643 	inode->i_ino = get_next_ino();
644 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
645 	inode->i_uid = current_fsuid();
646 	inode->i_gid = current_fsgid();
647 	inode->i_op = &sockfs_inode_ops;
648 
649 	return sock;
650 }
651 EXPORT_SYMBOL(sock_alloc);
652 
653 static void __sock_release(struct socket *sock, struct inode *inode)
654 {
655 	const struct proto_ops *ops = READ_ONCE(sock->ops);
656 
657 	if (ops) {
658 		struct module *owner = ops->owner;
659 
660 		if (inode)
661 			inode_lock(inode);
662 		ops->release(sock);
663 		sock->sk = NULL;
664 		if (inode)
665 			inode_unlock(inode);
666 		sock->ops = NULL;
667 		module_put(owner);
668 	}
669 
670 	if (sock->wq.fasync_list)
671 		pr_err("%s: fasync list not empty!\n", __func__);
672 
673 	if (!sock->file) {
674 		iput(SOCK_INODE(sock));
675 		return;
676 	}
677 	sock->file = NULL;
678 }
679 
680 /**
681  *	sock_release - close a socket
682  *	@sock: socket to close
683  *
684  *	The socket is released from the protocol stack if it has a release
685  *	callback, and the inode is then released if the socket is bound to
686  *	an inode not a file.
687  */
688 void sock_release(struct socket *sock)
689 {
690 	__sock_release(sock, NULL);
691 }
692 EXPORT_SYMBOL(sock_release);
693 
694 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
695 {
696 	u8 flags = *tx_flags;
697 
698 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
699 		flags |= SKBTX_HW_TSTAMP_NOBPF;
700 
701 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
702 		flags |= SKBTX_SW_TSTAMP;
703 
704 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
705 		flags |= SKBTX_SCHED_TSTAMP;
706 
707 	if (tsflags & SOF_TIMESTAMPING_TX_COMPLETION)
708 		flags |= SKBTX_COMPLETION_TSTAMP;
709 
710 	*tx_flags = flags;
711 }
712 EXPORT_SYMBOL(__sock_tx_timestamp);
713 
714 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
715 					   size_t));
716 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
717 					    size_t));
718 
719 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
720 						 int flags)
721 {
722 	trace_sock_send_length(sk, ret, 0);
723 }
724 
725 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
726 {
727 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
728 				     inet_sendmsg, sock, msg,
729 				     msg_data_left(msg));
730 	BUG_ON(ret == -EIOCBQUEUED);
731 
732 	if (trace_sock_send_length_enabled())
733 		call_trace_sock_send_length(sock->sk, ret, 0);
734 	return ret;
735 }
736 
737 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
738 {
739 	int err = security_socket_sendmsg(sock, msg,
740 					  msg_data_left(msg));
741 
742 	return err ?: sock_sendmsg_nosec(sock, msg);
743 }
744 
745 /**
746  *	sock_sendmsg - send a message through @sock
747  *	@sock: socket
748  *	@msg: message to send
749  *
750  *	Sends @msg through @sock, passing through LSM.
751  *	Returns the number of bytes sent, or an error code.
752  */
753 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
754 {
755 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
756 	struct sockaddr_storage address;
757 	int save_len = msg->msg_namelen;
758 	int ret;
759 
760 	if (msg->msg_name) {
761 		memcpy(&address, msg->msg_name, msg->msg_namelen);
762 		msg->msg_name = &address;
763 	}
764 
765 	ret = __sock_sendmsg(sock, msg);
766 	msg->msg_name = save_addr;
767 	msg->msg_namelen = save_len;
768 
769 	return ret;
770 }
771 EXPORT_SYMBOL(sock_sendmsg);
772 
773 /**
774  *	kernel_sendmsg - send a message through @sock (kernel-space)
775  *	@sock: socket
776  *	@msg: message header
777  *	@vec: kernel vec
778  *	@num: vec array length
779  *	@size: total message data size
780  *
781  *	Builds the message data with @vec and sends it through @sock.
782  *	Returns the number of bytes sent, or an error code.
783  */
784 
785 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
786 		   struct kvec *vec, size_t num, size_t size)
787 {
788 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
789 	return sock_sendmsg(sock, msg);
790 }
791 EXPORT_SYMBOL(kernel_sendmsg);
792 
793 static bool skb_is_err_queue(const struct sk_buff *skb)
794 {
795 	/* pkt_type of skbs enqueued on the error queue are set to
796 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
797 	 * in recvmsg, since skbs received on a local socket will never
798 	 * have a pkt_type of PACKET_OUTGOING.
799 	 */
800 	return skb->pkt_type == PACKET_OUTGOING;
801 }
802 
803 /* On transmit, software and hardware timestamps are returned independently.
804  * As the two skb clones share the hardware timestamp, which may be updated
805  * before the software timestamp is received, a hardware TX timestamp may be
806  * returned only if there is no software TX timestamp. Ignore false software
807  * timestamps, which may be made in the __sock_recv_timestamp() call when the
808  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
809  * hardware timestamp.
810  */
811 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
812 {
813 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
814 }
815 
816 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
817 {
818 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
819 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
820 	struct net_device *orig_dev;
821 	ktime_t hwtstamp;
822 
823 	rcu_read_lock();
824 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
825 	if (orig_dev) {
826 		*if_index = orig_dev->ifindex;
827 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
828 	} else {
829 		hwtstamp = shhwtstamps->hwtstamp;
830 	}
831 	rcu_read_unlock();
832 
833 	return hwtstamp;
834 }
835 
836 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
837 			   int if_index)
838 {
839 	struct scm_ts_pktinfo ts_pktinfo;
840 	struct net_device *orig_dev;
841 
842 	if (!skb_mac_header_was_set(skb))
843 		return;
844 
845 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
846 
847 	if (!if_index) {
848 		rcu_read_lock();
849 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
850 		if (orig_dev)
851 			if_index = orig_dev->ifindex;
852 		rcu_read_unlock();
853 	}
854 	ts_pktinfo.if_index = if_index;
855 
856 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
857 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
858 		 sizeof(ts_pktinfo), &ts_pktinfo);
859 }
860 
861 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk)
862 {
863 	const struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
864 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
865 
866 	if (serr->ee.ee_errno != ENOMSG ||
867 	   serr->ee.ee_origin != SO_EE_ORIGIN_TIMESTAMPING)
868 		return false;
869 
870 	/* software time stamp available and wanted */
871 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && skb->tstamp)
872 		return true;
873 	/* hardware time stamps available and wanted */
874 	return (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
875 		skb_hwtstamps(skb)->hwtstamp;
876 }
877 
878 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk,
879 			  struct timespec64 *ts)
880 {
881 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
882 	ktime_t hwtstamp;
883 	int if_index = 0;
884 
885 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
886 	    ktime_to_timespec64_cond(skb->tstamp, ts))
887 		return SOF_TIMESTAMPING_TX_SOFTWARE;
888 
889 	if (!(tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) ||
890 	    skb_is_swtx_tstamp(skb, false))
891 		return -ENOENT;
892 
893 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
894 		hwtstamp = get_timestamp(sk, skb, &if_index);
895 	else
896 		hwtstamp = skb_hwtstamps(skb)->hwtstamp;
897 
898 	if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
899 		hwtstamp = ptp_convert_timestamp(&hwtstamp,
900 						READ_ONCE(sk->sk_bind_phc));
901 	if (!ktime_to_timespec64_cond(hwtstamp, ts))
902 		return -ENOENT;
903 
904 	return SOF_TIMESTAMPING_TX_HARDWARE;
905 }
906 
907 /*
908  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
909  */
910 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
911 	struct sk_buff *skb)
912 {
913 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
914 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
915 	struct scm_timestamping_internal tss;
916 	int empty = 1, false_tstamp = 0;
917 	struct skb_shared_hwtstamps *shhwtstamps =
918 		skb_hwtstamps(skb);
919 	int if_index;
920 	ktime_t hwtstamp;
921 	u32 tsflags;
922 
923 	/* Race occurred between timestamp enabling and packet
924 	   receiving.  Fill in the current time for now. */
925 	if (need_software_tstamp && skb->tstamp == 0) {
926 		__net_timestamp(skb);
927 		false_tstamp = 1;
928 	}
929 
930 	if (need_software_tstamp) {
931 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
932 			if (new_tstamp) {
933 				struct __kernel_sock_timeval tv;
934 
935 				skb_get_new_timestamp(skb, &tv);
936 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
937 					 sizeof(tv), &tv);
938 			} else {
939 				struct __kernel_old_timeval tv;
940 
941 				skb_get_timestamp(skb, &tv);
942 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
943 					 sizeof(tv), &tv);
944 			}
945 		} else {
946 			if (new_tstamp) {
947 				struct __kernel_timespec ts;
948 
949 				skb_get_new_timestampns(skb, &ts);
950 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
951 					 sizeof(ts), &ts);
952 			} else {
953 				struct __kernel_old_timespec ts;
954 
955 				skb_get_timestampns(skb, &ts);
956 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
957 					 sizeof(ts), &ts);
958 			}
959 		}
960 	}
961 
962 	memset(&tss, 0, sizeof(tss));
963 	tsflags = READ_ONCE(sk->sk_tsflags);
964 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
965 	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
966 	      skb_is_err_queue(skb) ||
967 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
968 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
969 		empty = 0;
970 	if (shhwtstamps &&
971 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
972 	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
973 	      skb_is_err_queue(skb) ||
974 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
975 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
976 		if_index = 0;
977 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
978 			hwtstamp = get_timestamp(sk, skb, &if_index);
979 		else
980 			hwtstamp = shhwtstamps->hwtstamp;
981 
982 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
983 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
984 							 READ_ONCE(sk->sk_bind_phc));
985 
986 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
987 			empty = 0;
988 
989 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
990 			    !skb_is_err_queue(skb))
991 				put_ts_pktinfo(msg, skb, if_index);
992 		}
993 	}
994 	if (!empty) {
995 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
996 			put_cmsg_scm_timestamping64(msg, &tss);
997 		else
998 			put_cmsg_scm_timestamping(msg, &tss);
999 
1000 		if (skb_is_err_queue(skb) && skb->len &&
1001 		    SKB_EXT_ERR(skb)->opt_stats)
1002 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
1003 				 skb->len, skb->data);
1004 	}
1005 }
1006 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
1007 
1008 #ifdef CONFIG_WIRELESS
1009 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
1010 	struct sk_buff *skb)
1011 {
1012 	int ack;
1013 
1014 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
1015 		return;
1016 	if (!skb->wifi_acked_valid)
1017 		return;
1018 
1019 	ack = skb->wifi_acked;
1020 
1021 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1022 }
1023 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1024 #endif
1025 
1026 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1027 				   struct sk_buff *skb)
1028 {
1029 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1030 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1031 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1032 }
1033 
1034 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1035 			   struct sk_buff *skb)
1036 {
1037 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1038 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1039 		__u32 mark = skb->mark;
1040 
1041 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1042 	}
1043 }
1044 
1045 static void sock_recv_priority(struct msghdr *msg, struct sock *sk,
1046 			       struct sk_buff *skb)
1047 {
1048 	if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) {
1049 		__u32 priority = skb->priority;
1050 
1051 		put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority);
1052 	}
1053 }
1054 
1055 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1056 		       struct sk_buff *skb)
1057 {
1058 	sock_recv_timestamp(msg, sk, skb);
1059 	sock_recv_drops(msg, sk, skb);
1060 	sock_recv_mark(msg, sk, skb);
1061 	sock_recv_priority(msg, sk, skb);
1062 }
1063 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1064 
1065 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1066 					   size_t, int));
1067 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1068 					    size_t, int));
1069 
1070 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1071 {
1072 	trace_sock_recv_length(sk, ret, flags);
1073 }
1074 
1075 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1076 				     int flags)
1077 {
1078 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1079 				     inet6_recvmsg,
1080 				     inet_recvmsg, sock, msg,
1081 				     msg_data_left(msg), flags);
1082 	if (trace_sock_recv_length_enabled())
1083 		call_trace_sock_recv_length(sock->sk, ret, flags);
1084 	return ret;
1085 }
1086 
1087 /**
1088  *	sock_recvmsg - receive a message from @sock
1089  *	@sock: socket
1090  *	@msg: message to receive
1091  *	@flags: message flags
1092  *
1093  *	Receives @msg from @sock, passing through LSM. Returns the total number
1094  *	of bytes received, or an error.
1095  */
1096 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1097 {
1098 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1099 
1100 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1101 }
1102 EXPORT_SYMBOL(sock_recvmsg);
1103 
1104 /**
1105  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1106  *	@sock: The socket to receive the message from
1107  *	@msg: Received message
1108  *	@vec: Input s/g array for message data
1109  *	@num: Size of input s/g array
1110  *	@size: Number of bytes to read
1111  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1112  *
1113  *	On return the msg structure contains the scatter/gather array passed in the
1114  *	vec argument. The array is modified so that it consists of the unfilled
1115  *	portion of the original array.
1116  *
1117  *	The returned value is the total number of bytes received, or an error.
1118  */
1119 
1120 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1121 		   struct kvec *vec, size_t num, size_t size, int flags)
1122 {
1123 	msg->msg_control_is_user = false;
1124 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1125 	return sock_recvmsg(sock, msg, flags);
1126 }
1127 EXPORT_SYMBOL(kernel_recvmsg);
1128 
1129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1130 				struct pipe_inode_info *pipe, size_t len,
1131 				unsigned int flags)
1132 {
1133 	struct socket *sock = file->private_data;
1134 	const struct proto_ops *ops;
1135 
1136 	ops = READ_ONCE(sock->ops);
1137 	if (unlikely(!ops->splice_read))
1138 		return copy_splice_read(file, ppos, pipe, len, flags);
1139 
1140 	return ops->splice_read(sock, ppos, pipe, len, flags);
1141 }
1142 
1143 static void sock_splice_eof(struct file *file)
1144 {
1145 	struct socket *sock = file->private_data;
1146 	const struct proto_ops *ops;
1147 
1148 	ops = READ_ONCE(sock->ops);
1149 	if (ops->splice_eof)
1150 		ops->splice_eof(sock);
1151 }
1152 
1153 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1154 {
1155 	struct file *file = iocb->ki_filp;
1156 	struct socket *sock = file->private_data;
1157 	struct msghdr msg = {.msg_iter = *to,
1158 			     .msg_iocb = iocb};
1159 	ssize_t res;
1160 
1161 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1162 		msg.msg_flags = MSG_DONTWAIT;
1163 
1164 	if (iocb->ki_pos != 0)
1165 		return -ESPIPE;
1166 
1167 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1168 		return 0;
1169 
1170 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1171 	*to = msg.msg_iter;
1172 	return res;
1173 }
1174 
1175 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1176 {
1177 	struct file *file = iocb->ki_filp;
1178 	struct socket *sock = file->private_data;
1179 	struct msghdr msg = {.msg_iter = *from,
1180 			     .msg_iocb = iocb};
1181 	ssize_t res;
1182 
1183 	if (iocb->ki_pos != 0)
1184 		return -ESPIPE;
1185 
1186 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1187 		msg.msg_flags = MSG_DONTWAIT;
1188 
1189 	if (sock->type == SOCK_SEQPACKET)
1190 		msg.msg_flags |= MSG_EOR;
1191 
1192 	if (iocb->ki_flags & IOCB_NOSIGNAL)
1193 		msg.msg_flags |= MSG_NOSIGNAL;
1194 
1195 	res = __sock_sendmsg(sock, &msg);
1196 	*from = msg.msg_iter;
1197 	return res;
1198 }
1199 
1200 /*
1201  * Atomic setting of ioctl hooks to avoid race
1202  * with module unload.
1203  */
1204 
1205 static DEFINE_MUTEX(br_ioctl_mutex);
1206 static int (*br_ioctl_hook)(struct net *net, unsigned int cmd,
1207 			    void __user *uarg);
1208 
1209 void brioctl_set(int (*hook)(struct net *net, unsigned int cmd,
1210 			     void __user *uarg))
1211 {
1212 	mutex_lock(&br_ioctl_mutex);
1213 	br_ioctl_hook = hook;
1214 	mutex_unlock(&br_ioctl_mutex);
1215 }
1216 EXPORT_SYMBOL(brioctl_set);
1217 
1218 int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg)
1219 {
1220 	int err = -ENOPKG;
1221 
1222 	if (!br_ioctl_hook)
1223 		request_module("bridge");
1224 
1225 	mutex_lock(&br_ioctl_mutex);
1226 	if (br_ioctl_hook)
1227 		err = br_ioctl_hook(net, cmd, uarg);
1228 	mutex_unlock(&br_ioctl_mutex);
1229 
1230 	return err;
1231 }
1232 
1233 static DEFINE_MUTEX(vlan_ioctl_mutex);
1234 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1235 
1236 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1237 {
1238 	mutex_lock(&vlan_ioctl_mutex);
1239 	vlan_ioctl_hook = hook;
1240 	mutex_unlock(&vlan_ioctl_mutex);
1241 }
1242 EXPORT_SYMBOL(vlan_ioctl_set);
1243 
1244 static long sock_do_ioctl(struct net *net, struct socket *sock,
1245 			  unsigned int cmd, unsigned long arg)
1246 {
1247 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1248 	struct ifreq ifr;
1249 	bool need_copyout;
1250 	int err;
1251 	void __user *argp = (void __user *)arg;
1252 	void __user *data;
1253 
1254 	err = ops->ioctl(sock, cmd, arg);
1255 
1256 	/*
1257 	 * If this ioctl is unknown try to hand it down
1258 	 * to the NIC driver.
1259 	 */
1260 	if (err != -ENOIOCTLCMD)
1261 		return err;
1262 
1263 	if (!is_socket_ioctl_cmd(cmd))
1264 		return -ENOTTY;
1265 
1266 	if (get_user_ifreq(&ifr, &data, argp))
1267 		return -EFAULT;
1268 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1269 	if (!err && need_copyout)
1270 		if (put_user_ifreq(&ifr, argp))
1271 			return -EFAULT;
1272 
1273 	return err;
1274 }
1275 
1276 /*
1277  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1278  *	what to do with it - that's up to the protocol still.
1279  */
1280 
1281 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1282 {
1283 	const struct proto_ops  *ops;
1284 	struct socket *sock;
1285 	struct sock *sk;
1286 	void __user *argp = (void __user *)arg;
1287 	int pid, err;
1288 	struct net *net;
1289 
1290 	sock = file->private_data;
1291 	ops = READ_ONCE(sock->ops);
1292 	sk = sock->sk;
1293 	net = sock_net(sk);
1294 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1295 		struct ifreq ifr;
1296 		void __user *data;
1297 		bool need_copyout;
1298 		if (get_user_ifreq(&ifr, &data, argp))
1299 			return -EFAULT;
1300 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1301 		if (!err && need_copyout)
1302 			if (put_user_ifreq(&ifr, argp))
1303 				return -EFAULT;
1304 	} else
1305 #ifdef CONFIG_WEXT_CORE
1306 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1307 		err = wext_handle_ioctl(net, cmd, argp);
1308 	} else
1309 #endif
1310 		switch (cmd) {
1311 		case FIOSETOWN:
1312 		case SIOCSPGRP:
1313 			err = -EFAULT;
1314 			if (get_user(pid, (int __user *)argp))
1315 				break;
1316 			err = f_setown(sock->file, pid, 1);
1317 			break;
1318 		case FIOGETOWN:
1319 		case SIOCGPGRP:
1320 			err = put_user(f_getown(sock->file),
1321 				       (int __user *)argp);
1322 			break;
1323 		case SIOCGIFBR:
1324 		case SIOCSIFBR:
1325 		case SIOCBRADDBR:
1326 		case SIOCBRDELBR:
1327 		case SIOCBRADDIF:
1328 		case SIOCBRDELIF:
1329 			err = br_ioctl_call(net, cmd, argp);
1330 			break;
1331 		case SIOCGIFVLAN:
1332 		case SIOCSIFVLAN:
1333 			err = -ENOPKG;
1334 			if (!vlan_ioctl_hook)
1335 				request_module("8021q");
1336 
1337 			mutex_lock(&vlan_ioctl_mutex);
1338 			if (vlan_ioctl_hook)
1339 				err = vlan_ioctl_hook(net, argp);
1340 			mutex_unlock(&vlan_ioctl_mutex);
1341 			break;
1342 		case SIOCGSKNS:
1343 			err = -EPERM;
1344 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1345 				break;
1346 
1347 			err = open_related_ns(&net->ns, get_net_ns);
1348 			break;
1349 		case SIOCGSTAMP_OLD:
1350 		case SIOCGSTAMPNS_OLD:
1351 			if (!ops->gettstamp) {
1352 				err = -ENOIOCTLCMD;
1353 				break;
1354 			}
1355 			err = ops->gettstamp(sock, argp,
1356 					     cmd == SIOCGSTAMP_OLD,
1357 					     !IS_ENABLED(CONFIG_64BIT));
1358 			break;
1359 		case SIOCGSTAMP_NEW:
1360 		case SIOCGSTAMPNS_NEW:
1361 			if (!ops->gettstamp) {
1362 				err = -ENOIOCTLCMD;
1363 				break;
1364 			}
1365 			err = ops->gettstamp(sock, argp,
1366 					     cmd == SIOCGSTAMP_NEW,
1367 					     false);
1368 			break;
1369 
1370 		case SIOCGIFCONF:
1371 			err = dev_ifconf(net, argp);
1372 			break;
1373 
1374 		default:
1375 			err = sock_do_ioctl(net, sock, cmd, arg);
1376 			break;
1377 		}
1378 	return err;
1379 }
1380 
1381 /**
1382  *	sock_create_lite - creates a socket
1383  *	@family: protocol family (AF_INET, ...)
1384  *	@type: communication type (SOCK_STREAM, ...)
1385  *	@protocol: protocol (0, ...)
1386  *	@res: new socket
1387  *
1388  *	Creates a new socket and assigns it to @res, passing through LSM.
1389  *	The new socket initialization is not complete, see kernel_accept().
1390  *	Returns 0 or an error. On failure @res is set to %NULL.
1391  *	This function internally uses GFP_KERNEL.
1392  */
1393 
1394 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1395 {
1396 	int err;
1397 	struct socket *sock = NULL;
1398 
1399 	err = security_socket_create(family, type, protocol, 1);
1400 	if (err)
1401 		goto out;
1402 
1403 	sock = sock_alloc();
1404 	if (!sock) {
1405 		err = -ENOMEM;
1406 		goto out;
1407 	}
1408 
1409 	sock->type = type;
1410 	err = security_socket_post_create(sock, family, type, protocol, 1);
1411 	if (err)
1412 		goto out_release;
1413 
1414 out:
1415 	*res = sock;
1416 	return err;
1417 out_release:
1418 	sock_release(sock);
1419 	sock = NULL;
1420 	goto out;
1421 }
1422 EXPORT_SYMBOL(sock_create_lite);
1423 
1424 /* No kernel lock held - perfect */
1425 static __poll_t sock_poll(struct file *file, poll_table *wait)
1426 {
1427 	struct socket *sock = file->private_data;
1428 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1429 	__poll_t events = poll_requested_events(wait), flag = 0;
1430 
1431 	if (!ops->poll)
1432 		return 0;
1433 
1434 	if (sk_can_busy_loop(sock->sk)) {
1435 		/* poll once if requested by the syscall */
1436 		if (events & POLL_BUSY_LOOP)
1437 			sk_busy_loop(sock->sk, 1);
1438 
1439 		/* if this socket can poll_ll, tell the system call */
1440 		flag = POLL_BUSY_LOOP;
1441 	}
1442 
1443 	return ops->poll(file, sock, wait) | flag;
1444 }
1445 
1446 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1447 {
1448 	struct socket *sock = file->private_data;
1449 
1450 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1451 }
1452 
1453 static int sock_close(struct inode *inode, struct file *filp)
1454 {
1455 	__sock_release(SOCKET_I(inode), inode);
1456 	return 0;
1457 }
1458 
1459 /*
1460  *	Update the socket async list
1461  *
1462  *	Fasync_list locking strategy.
1463  *
1464  *	1. fasync_list is modified only under process context socket lock
1465  *	   i.e. under semaphore.
1466  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1467  *	   or under socket lock
1468  */
1469 
1470 static int sock_fasync(int fd, struct file *filp, int on)
1471 {
1472 	struct socket *sock = filp->private_data;
1473 	struct sock *sk = sock->sk;
1474 	struct socket_wq *wq = &sock->wq;
1475 
1476 	if (sk == NULL)
1477 		return -EINVAL;
1478 
1479 	lock_sock(sk);
1480 	fasync_helper(fd, filp, on, &wq->fasync_list);
1481 
1482 	if (!wq->fasync_list)
1483 		sock_reset_flag(sk, SOCK_FASYNC);
1484 	else
1485 		sock_set_flag(sk, SOCK_FASYNC);
1486 
1487 	release_sock(sk);
1488 	return 0;
1489 }
1490 
1491 /* This function may be called only under rcu_lock */
1492 
1493 int sock_wake_async(struct socket_wq *wq, int how, int band)
1494 {
1495 	if (!wq || !wq->fasync_list)
1496 		return -1;
1497 
1498 	switch (how) {
1499 	case SOCK_WAKE_WAITD:
1500 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1501 			break;
1502 		goto call_kill;
1503 	case SOCK_WAKE_SPACE:
1504 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1505 			break;
1506 		fallthrough;
1507 	case SOCK_WAKE_IO:
1508 call_kill:
1509 		kill_fasync(&wq->fasync_list, SIGIO, band);
1510 		break;
1511 	case SOCK_WAKE_URG:
1512 		kill_fasync(&wq->fasync_list, SIGURG, band);
1513 	}
1514 
1515 	return 0;
1516 }
1517 EXPORT_SYMBOL(sock_wake_async);
1518 
1519 /**
1520  *	__sock_create - creates a socket
1521  *	@net: net namespace
1522  *	@family: protocol family (AF_INET, ...)
1523  *	@type: communication type (SOCK_STREAM, ...)
1524  *	@protocol: protocol (0, ...)
1525  *	@res: new socket
1526  *	@kern: boolean for kernel space sockets
1527  *
1528  *	Creates a new socket and assigns it to @res, passing through LSM.
1529  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1530  *	be set to true if the socket resides in kernel space.
1531  *	This function internally uses GFP_KERNEL.
1532  */
1533 
1534 int __sock_create(struct net *net, int family, int type, int protocol,
1535 			 struct socket **res, int kern)
1536 {
1537 	int err;
1538 	struct socket *sock;
1539 	const struct net_proto_family *pf;
1540 
1541 	/*
1542 	 *      Check protocol is in range
1543 	 */
1544 	if (family < 0 || family >= NPROTO)
1545 		return -EAFNOSUPPORT;
1546 	if (type < 0 || type >= SOCK_MAX)
1547 		return -EINVAL;
1548 
1549 	/* Compatibility.
1550 
1551 	   This uglymoron is moved from INET layer to here to avoid
1552 	   deadlock in module load.
1553 	 */
1554 	if (family == PF_INET && type == SOCK_PACKET) {
1555 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1556 			     current->comm);
1557 		family = PF_PACKET;
1558 	}
1559 
1560 	err = security_socket_create(family, type, protocol, kern);
1561 	if (err)
1562 		return err;
1563 
1564 	/*
1565 	 *	Allocate the socket and allow the family to set things up. if
1566 	 *	the protocol is 0, the family is instructed to select an appropriate
1567 	 *	default.
1568 	 */
1569 	sock = sock_alloc();
1570 	if (!sock) {
1571 		net_warn_ratelimited("socket: no more sockets\n");
1572 		return -ENFILE;	/* Not exactly a match, but its the
1573 				   closest posix thing */
1574 	}
1575 
1576 	sock->type = type;
1577 
1578 #ifdef CONFIG_MODULES
1579 	/* Attempt to load a protocol module if the find failed.
1580 	 *
1581 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1582 	 * requested real, full-featured networking support upon configuration.
1583 	 * Otherwise module support will break!
1584 	 */
1585 	if (rcu_access_pointer(net_families[family]) == NULL)
1586 		request_module("net-pf-%d", family);
1587 #endif
1588 
1589 	rcu_read_lock();
1590 	pf = rcu_dereference(net_families[family]);
1591 	err = -EAFNOSUPPORT;
1592 	if (!pf)
1593 		goto out_release;
1594 
1595 	/*
1596 	 * We will call the ->create function, that possibly is in a loadable
1597 	 * module, so we have to bump that loadable module refcnt first.
1598 	 */
1599 	if (!try_module_get(pf->owner))
1600 		goto out_release;
1601 
1602 	/* Now protected by module ref count */
1603 	rcu_read_unlock();
1604 
1605 	err = pf->create(net, sock, protocol, kern);
1606 	if (err < 0) {
1607 		/* ->create should release the allocated sock->sk object on error
1608 		 * and make sure sock->sk is set to NULL to avoid use-after-free
1609 		 */
1610 		DEBUG_NET_WARN_ONCE(sock->sk,
1611 				    "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1612 				    pf->create, family, type, protocol);
1613 		goto out_module_put;
1614 	}
1615 
1616 	/*
1617 	 * Now to bump the refcnt of the [loadable] module that owns this
1618 	 * socket at sock_release time we decrement its refcnt.
1619 	 */
1620 	if (!try_module_get(sock->ops->owner))
1621 		goto out_module_busy;
1622 
1623 	/*
1624 	 * Now that we're done with the ->create function, the [loadable]
1625 	 * module can have its refcnt decremented
1626 	 */
1627 	module_put(pf->owner);
1628 	err = security_socket_post_create(sock, family, type, protocol, kern);
1629 	if (err)
1630 		goto out_sock_release;
1631 	*res = sock;
1632 
1633 	return 0;
1634 
1635 out_module_busy:
1636 	err = -EAFNOSUPPORT;
1637 out_module_put:
1638 	sock->ops = NULL;
1639 	module_put(pf->owner);
1640 out_sock_release:
1641 	sock_release(sock);
1642 	return err;
1643 
1644 out_release:
1645 	rcu_read_unlock();
1646 	goto out_sock_release;
1647 }
1648 EXPORT_SYMBOL(__sock_create);
1649 
1650 /**
1651  *	sock_create - creates a socket
1652  *	@family: protocol family (AF_INET, ...)
1653  *	@type: communication type (SOCK_STREAM, ...)
1654  *	@protocol: protocol (0, ...)
1655  *	@res: new socket
1656  *
1657  *	A wrapper around __sock_create().
1658  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1659  */
1660 
1661 int sock_create(int family, int type, int protocol, struct socket **res)
1662 {
1663 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1664 }
1665 EXPORT_SYMBOL(sock_create);
1666 
1667 /**
1668  *	sock_create_kern - creates a socket (kernel space)
1669  *	@net: net namespace
1670  *	@family: protocol family (AF_INET, ...)
1671  *	@type: communication type (SOCK_STREAM, ...)
1672  *	@protocol: protocol (0, ...)
1673  *	@res: new socket
1674  *
1675  *	A wrapper around __sock_create().
1676  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1677  */
1678 
1679 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1680 {
1681 	return __sock_create(net, family, type, protocol, res, 1);
1682 }
1683 EXPORT_SYMBOL(sock_create_kern);
1684 
1685 static struct socket *__sys_socket_create(int family, int type, int protocol)
1686 {
1687 	struct socket *sock;
1688 	int retval;
1689 
1690 	/* Check the SOCK_* constants for consistency.  */
1691 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1692 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1693 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1694 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1695 
1696 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1697 		return ERR_PTR(-EINVAL);
1698 	type &= SOCK_TYPE_MASK;
1699 
1700 	retval = sock_create(family, type, protocol, &sock);
1701 	if (retval < 0)
1702 		return ERR_PTR(retval);
1703 
1704 	return sock;
1705 }
1706 
1707 struct file *__sys_socket_file(int family, int type, int protocol)
1708 {
1709 	struct socket *sock;
1710 	int flags;
1711 
1712 	sock = __sys_socket_create(family, type, protocol);
1713 	if (IS_ERR(sock))
1714 		return ERR_CAST(sock);
1715 
1716 	flags = type & ~SOCK_TYPE_MASK;
1717 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1718 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1719 
1720 	return sock_alloc_file(sock, flags, NULL);
1721 }
1722 
1723 /*	A hook for bpf progs to attach to and update socket protocol.
1724  *
1725  *	A static noinline declaration here could cause the compiler to
1726  *	optimize away the function. A global noinline declaration will
1727  *	keep the definition, but may optimize away the callsite.
1728  *	Therefore, __weak is needed to ensure that the call is still
1729  *	emitted, by telling the compiler that we don't know what the
1730  *	function might eventually be.
1731  */
1732 
1733 __bpf_hook_start();
1734 
1735 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1736 {
1737 	return protocol;
1738 }
1739 
1740 __bpf_hook_end();
1741 
1742 int __sys_socket(int family, int type, int protocol)
1743 {
1744 	struct socket *sock;
1745 	int flags;
1746 
1747 	sock = __sys_socket_create(family, type,
1748 				   update_socket_protocol(family, type, protocol));
1749 	if (IS_ERR(sock))
1750 		return PTR_ERR(sock);
1751 
1752 	flags = type & ~SOCK_TYPE_MASK;
1753 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1754 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1755 
1756 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1757 }
1758 
1759 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1760 {
1761 	return __sys_socket(family, type, protocol);
1762 }
1763 
1764 /*
1765  *	Create a pair of connected sockets.
1766  */
1767 
1768 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1769 {
1770 	struct socket *sock1, *sock2;
1771 	int fd1, fd2, err;
1772 	struct file *newfile1, *newfile2;
1773 	int flags;
1774 
1775 	flags = type & ~SOCK_TYPE_MASK;
1776 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1777 		return -EINVAL;
1778 	type &= SOCK_TYPE_MASK;
1779 
1780 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1781 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1782 
1783 	/*
1784 	 * reserve descriptors and make sure we won't fail
1785 	 * to return them to userland.
1786 	 */
1787 	fd1 = get_unused_fd_flags(flags);
1788 	if (unlikely(fd1 < 0))
1789 		return fd1;
1790 
1791 	fd2 = get_unused_fd_flags(flags);
1792 	if (unlikely(fd2 < 0)) {
1793 		put_unused_fd(fd1);
1794 		return fd2;
1795 	}
1796 
1797 	err = put_user(fd1, &usockvec[0]);
1798 	if (err)
1799 		goto out;
1800 
1801 	err = put_user(fd2, &usockvec[1]);
1802 	if (err)
1803 		goto out;
1804 
1805 	/*
1806 	 * Obtain the first socket and check if the underlying protocol
1807 	 * supports the socketpair call.
1808 	 */
1809 
1810 	err = sock_create(family, type, protocol, &sock1);
1811 	if (unlikely(err < 0))
1812 		goto out;
1813 
1814 	err = sock_create(family, type, protocol, &sock2);
1815 	if (unlikely(err < 0)) {
1816 		sock_release(sock1);
1817 		goto out;
1818 	}
1819 
1820 	err = security_socket_socketpair(sock1, sock2);
1821 	if (unlikely(err)) {
1822 		sock_release(sock2);
1823 		sock_release(sock1);
1824 		goto out;
1825 	}
1826 
1827 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1828 	if (unlikely(err < 0)) {
1829 		sock_release(sock2);
1830 		sock_release(sock1);
1831 		goto out;
1832 	}
1833 
1834 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1835 	if (IS_ERR(newfile1)) {
1836 		err = PTR_ERR(newfile1);
1837 		sock_release(sock2);
1838 		goto out;
1839 	}
1840 
1841 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1842 	if (IS_ERR(newfile2)) {
1843 		err = PTR_ERR(newfile2);
1844 		fput(newfile1);
1845 		goto out;
1846 	}
1847 
1848 	audit_fd_pair(fd1, fd2);
1849 
1850 	fd_install(fd1, newfile1);
1851 	fd_install(fd2, newfile2);
1852 	return 0;
1853 
1854 out:
1855 	put_unused_fd(fd2);
1856 	put_unused_fd(fd1);
1857 	return err;
1858 }
1859 
1860 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1861 		int __user *, usockvec)
1862 {
1863 	return __sys_socketpair(family, type, protocol, usockvec);
1864 }
1865 
1866 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1867 		      int addrlen)
1868 {
1869 	int err;
1870 
1871 	err = security_socket_bind(sock, (struct sockaddr *)address,
1872 				   addrlen);
1873 	if (!err)
1874 		err = READ_ONCE(sock->ops)->bind(sock,
1875 						 (struct sockaddr *)address,
1876 						 addrlen);
1877 	return err;
1878 }
1879 
1880 /*
1881  *	Bind a name to a socket. Nothing much to do here since it's
1882  *	the protocol's responsibility to handle the local address.
1883  *
1884  *	We move the socket address to kernel space before we call
1885  *	the protocol layer (having also checked the address is ok).
1886  */
1887 
1888 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1889 {
1890 	struct socket *sock;
1891 	struct sockaddr_storage address;
1892 	CLASS(fd, f)(fd);
1893 	int err;
1894 
1895 	if (fd_empty(f))
1896 		return -EBADF;
1897 	sock = sock_from_file(fd_file(f));
1898 	if (unlikely(!sock))
1899 		return -ENOTSOCK;
1900 
1901 	err = move_addr_to_kernel(umyaddr, addrlen, &address);
1902 	if (unlikely(err))
1903 		return err;
1904 
1905 	return __sys_bind_socket(sock, &address, addrlen);
1906 }
1907 
1908 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1909 {
1910 	return __sys_bind(fd, umyaddr, addrlen);
1911 }
1912 
1913 /*
1914  *	Perform a listen. Basically, we allow the protocol to do anything
1915  *	necessary for a listen, and if that works, we mark the socket as
1916  *	ready for listening.
1917  */
1918 int __sys_listen_socket(struct socket *sock, int backlog)
1919 {
1920 	int somaxconn, err;
1921 
1922 	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1923 	if ((unsigned int)backlog > somaxconn)
1924 		backlog = somaxconn;
1925 
1926 	err = security_socket_listen(sock, backlog);
1927 	if (!err)
1928 		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1929 	return err;
1930 }
1931 
1932 int __sys_listen(int fd, int backlog)
1933 {
1934 	CLASS(fd, f)(fd);
1935 	struct socket *sock;
1936 
1937 	if (fd_empty(f))
1938 		return -EBADF;
1939 	sock = sock_from_file(fd_file(f));
1940 	if (unlikely(!sock))
1941 		return -ENOTSOCK;
1942 
1943 	return __sys_listen_socket(sock, backlog);
1944 }
1945 
1946 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1947 {
1948 	return __sys_listen(fd, backlog);
1949 }
1950 
1951 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1952 		       struct sockaddr __user *upeer_sockaddr,
1953 		       int __user *upeer_addrlen, int flags)
1954 {
1955 	struct socket *sock, *newsock;
1956 	struct file *newfile;
1957 	int err, len;
1958 	struct sockaddr_storage address;
1959 	const struct proto_ops *ops;
1960 
1961 	sock = sock_from_file(file);
1962 	if (!sock)
1963 		return ERR_PTR(-ENOTSOCK);
1964 
1965 	newsock = sock_alloc();
1966 	if (!newsock)
1967 		return ERR_PTR(-ENFILE);
1968 	ops = READ_ONCE(sock->ops);
1969 
1970 	newsock->type = sock->type;
1971 	newsock->ops = ops;
1972 
1973 	/*
1974 	 * We don't need try_module_get here, as the listening socket (sock)
1975 	 * has the protocol module (sock->ops->owner) held.
1976 	 */
1977 	__module_get(ops->owner);
1978 
1979 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1980 	if (IS_ERR(newfile))
1981 		return newfile;
1982 
1983 	err = security_socket_accept(sock, newsock);
1984 	if (err)
1985 		goto out_fd;
1986 
1987 	arg->flags |= sock->file->f_flags;
1988 	err = ops->accept(sock, newsock, arg);
1989 	if (err < 0)
1990 		goto out_fd;
1991 
1992 	if (upeer_sockaddr) {
1993 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1994 		if (len < 0) {
1995 			err = -ECONNABORTED;
1996 			goto out_fd;
1997 		}
1998 		err = move_addr_to_user(&address,
1999 					len, upeer_sockaddr, upeer_addrlen);
2000 		if (err < 0)
2001 			goto out_fd;
2002 	}
2003 
2004 	/* File flags are not inherited via accept() unlike another OSes. */
2005 	return newfile;
2006 out_fd:
2007 	fput(newfile);
2008 	return ERR_PTR(err);
2009 }
2010 
2011 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
2012 			      int __user *upeer_addrlen, int flags)
2013 {
2014 	struct proto_accept_arg arg = { };
2015 	struct file *newfile;
2016 	int newfd;
2017 
2018 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
2019 		return -EINVAL;
2020 
2021 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
2022 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
2023 
2024 	newfd = get_unused_fd_flags(flags);
2025 	if (unlikely(newfd < 0))
2026 		return newfd;
2027 
2028 	newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
2029 			    flags);
2030 	if (IS_ERR(newfile)) {
2031 		put_unused_fd(newfd);
2032 		return PTR_ERR(newfile);
2033 	}
2034 	fd_install(newfd, newfile);
2035 	return newfd;
2036 }
2037 
2038 /*
2039  *	For accept, we attempt to create a new socket, set up the link
2040  *	with the client, wake up the client, then return the new
2041  *	connected fd. We collect the address of the connector in kernel
2042  *	space and move it to user at the very end. This is unclean because
2043  *	we open the socket then return an error.
2044  *
2045  *	1003.1g adds the ability to recvmsg() to query connection pending
2046  *	status to recvmsg. We need to add that support in a way thats
2047  *	clean when we restructure accept also.
2048  */
2049 
2050 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2051 		  int __user *upeer_addrlen, int flags)
2052 {
2053 	CLASS(fd, f)(fd);
2054 
2055 	if (fd_empty(f))
2056 		return -EBADF;
2057 	return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2058 					 upeer_addrlen, flags);
2059 }
2060 
2061 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2062 		int __user *, upeer_addrlen, int, flags)
2063 {
2064 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2065 }
2066 
2067 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2068 		int __user *, upeer_addrlen)
2069 {
2070 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2071 }
2072 
2073 /*
2074  *	Attempt to connect to a socket with the server address.  The address
2075  *	is in user space so we verify it is OK and move it to kernel space.
2076  *
2077  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2078  *	break bindings
2079  *
2080  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2081  *	other SEQPACKET protocols that take time to connect() as it doesn't
2082  *	include the -EINPROGRESS status for such sockets.
2083  */
2084 
2085 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2086 		       int addrlen, int file_flags)
2087 {
2088 	struct socket *sock;
2089 	int err;
2090 
2091 	sock = sock_from_file(file);
2092 	if (!sock) {
2093 		err = -ENOTSOCK;
2094 		goto out;
2095 	}
2096 
2097 	err =
2098 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2099 	if (err)
2100 		goto out;
2101 
2102 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2103 				addrlen, sock->file->f_flags | file_flags);
2104 out:
2105 	return err;
2106 }
2107 
2108 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2109 {
2110 	struct sockaddr_storage address;
2111 	CLASS(fd, f)(fd);
2112 	int ret;
2113 
2114 	if (fd_empty(f))
2115 		return -EBADF;
2116 
2117 	ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2118 	if (ret)
2119 		return ret;
2120 
2121 	return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2122 }
2123 
2124 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2125 		int, addrlen)
2126 {
2127 	return __sys_connect(fd, uservaddr, addrlen);
2128 }
2129 
2130 /*
2131  *	Get the local address ('name') of a socket object. Move the obtained
2132  *	name to user space.
2133  */
2134 
2135 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2136 		      int __user *usockaddr_len)
2137 {
2138 	struct socket *sock;
2139 	struct sockaddr_storage address;
2140 	CLASS(fd, f)(fd);
2141 	int err;
2142 
2143 	if (fd_empty(f))
2144 		return -EBADF;
2145 	sock = sock_from_file(fd_file(f));
2146 	if (unlikely(!sock))
2147 		return -ENOTSOCK;
2148 
2149 	err = security_socket_getsockname(sock);
2150 	if (err)
2151 		return err;
2152 
2153 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2154 	if (err < 0)
2155 		return err;
2156 
2157 	/* "err" is actually length in this case */
2158 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2159 }
2160 
2161 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2162 		int __user *, usockaddr_len)
2163 {
2164 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2165 }
2166 
2167 /*
2168  *	Get the remote address ('name') of a socket object. Move the obtained
2169  *	name to user space.
2170  */
2171 
2172 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2173 		      int __user *usockaddr_len)
2174 {
2175 	struct socket *sock;
2176 	struct sockaddr_storage address;
2177 	CLASS(fd, f)(fd);
2178 	int err;
2179 
2180 	if (fd_empty(f))
2181 		return -EBADF;
2182 	sock = sock_from_file(fd_file(f));
2183 	if (unlikely(!sock))
2184 		return -ENOTSOCK;
2185 
2186 	err = security_socket_getpeername(sock);
2187 	if (err)
2188 		return err;
2189 
2190 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2191 	if (err < 0)
2192 		return err;
2193 
2194 	/* "err" is actually length in this case */
2195 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2196 }
2197 
2198 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2199 		int __user *, usockaddr_len)
2200 {
2201 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2202 }
2203 
2204 /*
2205  *	Send a datagram to a given address. We move the address into kernel
2206  *	space and check the user space data area is readable before invoking
2207  *	the protocol.
2208  */
2209 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2210 		 struct sockaddr __user *addr,  int addr_len)
2211 {
2212 	struct socket *sock;
2213 	struct sockaddr_storage address;
2214 	int err;
2215 	struct msghdr msg;
2216 
2217 	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2218 	if (unlikely(err))
2219 		return err;
2220 
2221 	CLASS(fd, f)(fd);
2222 	if (fd_empty(f))
2223 		return -EBADF;
2224 	sock = sock_from_file(fd_file(f));
2225 	if (unlikely(!sock))
2226 		return -ENOTSOCK;
2227 
2228 	msg.msg_name = NULL;
2229 	msg.msg_control = NULL;
2230 	msg.msg_controllen = 0;
2231 	msg.msg_namelen = 0;
2232 	msg.msg_ubuf = NULL;
2233 	if (addr) {
2234 		err = move_addr_to_kernel(addr, addr_len, &address);
2235 		if (err < 0)
2236 			return err;
2237 		msg.msg_name = (struct sockaddr *)&address;
2238 		msg.msg_namelen = addr_len;
2239 	}
2240 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2241 	if (sock->file->f_flags & O_NONBLOCK)
2242 		flags |= MSG_DONTWAIT;
2243 	msg.msg_flags = flags;
2244 	return __sock_sendmsg(sock, &msg);
2245 }
2246 
2247 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2248 		unsigned int, flags, struct sockaddr __user *, addr,
2249 		int, addr_len)
2250 {
2251 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2252 }
2253 
2254 /*
2255  *	Send a datagram down a socket.
2256  */
2257 
2258 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2259 		unsigned int, flags)
2260 {
2261 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2262 }
2263 
2264 /*
2265  *	Receive a frame from the socket and optionally record the address of the
2266  *	sender. We verify the buffers are writable and if needed move the
2267  *	sender address from kernel to user space.
2268  */
2269 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2270 		   struct sockaddr __user *addr, int __user *addr_len)
2271 {
2272 	struct sockaddr_storage address;
2273 	struct msghdr msg = {
2274 		/* Save some cycles and don't copy the address if not needed */
2275 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2276 	};
2277 	struct socket *sock;
2278 	int err, err2;
2279 
2280 	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2281 	if (unlikely(err))
2282 		return err;
2283 
2284 	CLASS(fd, f)(fd);
2285 
2286 	if (fd_empty(f))
2287 		return -EBADF;
2288 	sock = sock_from_file(fd_file(f));
2289 	if (unlikely(!sock))
2290 		return -ENOTSOCK;
2291 
2292 	if (sock->file->f_flags & O_NONBLOCK)
2293 		flags |= MSG_DONTWAIT;
2294 	err = sock_recvmsg(sock, &msg, flags);
2295 
2296 	if (err >= 0 && addr != NULL) {
2297 		err2 = move_addr_to_user(&address,
2298 					 msg.msg_namelen, addr, addr_len);
2299 		if (err2 < 0)
2300 			err = err2;
2301 	}
2302 	return err;
2303 }
2304 
2305 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2306 		unsigned int, flags, struct sockaddr __user *, addr,
2307 		int __user *, addr_len)
2308 {
2309 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2310 }
2311 
2312 /*
2313  *	Receive a datagram from a socket.
2314  */
2315 
2316 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2317 		unsigned int, flags)
2318 {
2319 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2320 }
2321 
2322 static bool sock_use_custom_sol_socket(const struct socket *sock)
2323 {
2324 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2325 }
2326 
2327 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2328 		       int optname, sockptr_t optval, int optlen)
2329 {
2330 	const struct proto_ops *ops;
2331 	char *kernel_optval = NULL;
2332 	int err;
2333 
2334 	if (optlen < 0)
2335 		return -EINVAL;
2336 
2337 	err = security_socket_setsockopt(sock, level, optname);
2338 	if (err)
2339 		goto out_put;
2340 
2341 	if (!compat)
2342 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2343 						     optval, &optlen,
2344 						     &kernel_optval);
2345 	if (err < 0)
2346 		goto out_put;
2347 	if (err > 0) {
2348 		err = 0;
2349 		goto out_put;
2350 	}
2351 
2352 	if (kernel_optval)
2353 		optval = KERNEL_SOCKPTR(kernel_optval);
2354 	ops = READ_ONCE(sock->ops);
2355 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2356 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2357 	else if (unlikely(!ops->setsockopt))
2358 		err = -EOPNOTSUPP;
2359 	else
2360 		err = ops->setsockopt(sock, level, optname, optval,
2361 					    optlen);
2362 	kfree(kernel_optval);
2363 out_put:
2364 	return err;
2365 }
2366 EXPORT_SYMBOL(do_sock_setsockopt);
2367 
2368 /* Set a socket option. Because we don't know the option lengths we have
2369  * to pass the user mode parameter for the protocols to sort out.
2370  */
2371 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2372 		     int optlen)
2373 {
2374 	sockptr_t optval = USER_SOCKPTR(user_optval);
2375 	bool compat = in_compat_syscall();
2376 	struct socket *sock;
2377 	CLASS(fd, f)(fd);
2378 
2379 	if (fd_empty(f))
2380 		return -EBADF;
2381 	sock = sock_from_file(fd_file(f));
2382 	if (unlikely(!sock))
2383 		return -ENOTSOCK;
2384 
2385 	return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2386 }
2387 
2388 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2389 		char __user *, optval, int, optlen)
2390 {
2391 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2392 }
2393 
2394 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2395 							 int optname));
2396 
2397 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2398 		       int optname, sockptr_t optval, sockptr_t optlen)
2399 {
2400 	int max_optlen __maybe_unused = 0;
2401 	const struct proto_ops *ops;
2402 	int err;
2403 
2404 	err = security_socket_getsockopt(sock, level, optname);
2405 	if (err)
2406 		return err;
2407 
2408 	if (!compat)
2409 		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2410 
2411 	ops = READ_ONCE(sock->ops);
2412 	if (level == SOL_SOCKET) {
2413 		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2414 	} else if (unlikely(!ops->getsockopt)) {
2415 		err = -EOPNOTSUPP;
2416 	} else {
2417 		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2418 			      "Invalid argument type"))
2419 			return -EOPNOTSUPP;
2420 
2421 		err = ops->getsockopt(sock, level, optname, optval.user,
2422 				      optlen.user);
2423 	}
2424 
2425 	if (!compat)
2426 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2427 						     optval, optlen, max_optlen,
2428 						     err);
2429 
2430 	return err;
2431 }
2432 EXPORT_SYMBOL(do_sock_getsockopt);
2433 
2434 /*
2435  *	Get a socket option. Because we don't know the option lengths we have
2436  *	to pass a user mode parameter for the protocols to sort out.
2437  */
2438 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2439 		int __user *optlen)
2440 {
2441 	struct socket *sock;
2442 	CLASS(fd, f)(fd);
2443 
2444 	if (fd_empty(f))
2445 		return -EBADF;
2446 	sock = sock_from_file(fd_file(f));
2447 	if (unlikely(!sock))
2448 		return -ENOTSOCK;
2449 
2450 	return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2451 				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2452 }
2453 
2454 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2455 		char __user *, optval, int __user *, optlen)
2456 {
2457 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2458 }
2459 
2460 /*
2461  *	Shutdown a socket.
2462  */
2463 
2464 int __sys_shutdown_sock(struct socket *sock, int how)
2465 {
2466 	int err;
2467 
2468 	err = security_socket_shutdown(sock, how);
2469 	if (!err)
2470 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2471 
2472 	return err;
2473 }
2474 
2475 int __sys_shutdown(int fd, int how)
2476 {
2477 	struct socket *sock;
2478 	CLASS(fd, f)(fd);
2479 
2480 	if (fd_empty(f))
2481 		return -EBADF;
2482 	sock = sock_from_file(fd_file(f));
2483 	if (unlikely(!sock))
2484 		return -ENOTSOCK;
2485 
2486 	return __sys_shutdown_sock(sock, how);
2487 }
2488 
2489 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2490 {
2491 	return __sys_shutdown(fd, how);
2492 }
2493 
2494 /* A couple of helpful macros for getting the address of the 32/64 bit
2495  * fields which are the same type (int / unsigned) on our platforms.
2496  */
2497 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2498 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2499 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2500 
2501 struct used_address {
2502 	struct sockaddr_storage name;
2503 	unsigned int name_len;
2504 };
2505 
2506 int __copy_msghdr(struct msghdr *kmsg,
2507 		  struct user_msghdr *msg,
2508 		  struct sockaddr __user **save_addr)
2509 {
2510 	ssize_t err;
2511 
2512 	kmsg->msg_control_is_user = true;
2513 	kmsg->msg_get_inq = 0;
2514 	kmsg->msg_control_user = msg->msg_control;
2515 	kmsg->msg_controllen = msg->msg_controllen;
2516 	kmsg->msg_flags = msg->msg_flags;
2517 
2518 	kmsg->msg_namelen = msg->msg_namelen;
2519 	if (!msg->msg_name)
2520 		kmsg->msg_namelen = 0;
2521 
2522 	if (kmsg->msg_namelen < 0)
2523 		return -EINVAL;
2524 
2525 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2526 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2527 
2528 	if (save_addr)
2529 		*save_addr = msg->msg_name;
2530 
2531 	if (msg->msg_name && kmsg->msg_namelen) {
2532 		if (!save_addr) {
2533 			err = move_addr_to_kernel(msg->msg_name,
2534 						  kmsg->msg_namelen,
2535 						  kmsg->msg_name);
2536 			if (err < 0)
2537 				return err;
2538 		}
2539 	} else {
2540 		kmsg->msg_name = NULL;
2541 		kmsg->msg_namelen = 0;
2542 	}
2543 
2544 	if (msg->msg_iovlen > UIO_MAXIOV)
2545 		return -EMSGSIZE;
2546 
2547 	kmsg->msg_iocb = NULL;
2548 	kmsg->msg_ubuf = NULL;
2549 	return 0;
2550 }
2551 
2552 static int copy_msghdr_from_user(struct msghdr *kmsg,
2553 				 struct user_msghdr __user *umsg,
2554 				 struct sockaddr __user **save_addr,
2555 				 struct iovec **iov)
2556 {
2557 	struct user_msghdr msg;
2558 	ssize_t err;
2559 
2560 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2561 		return -EFAULT;
2562 
2563 	err = __copy_msghdr(kmsg, &msg, save_addr);
2564 	if (err)
2565 		return err;
2566 
2567 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2568 			    msg.msg_iov, msg.msg_iovlen,
2569 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2570 	return err < 0 ? err : 0;
2571 }
2572 
2573 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2574 			   unsigned int flags, struct used_address *used_address,
2575 			   unsigned int allowed_msghdr_flags)
2576 {
2577 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2578 				__aligned(sizeof(__kernel_size_t));
2579 	/* 20 is size of ipv6_pktinfo */
2580 	unsigned char *ctl_buf = ctl;
2581 	int ctl_len;
2582 	ssize_t err;
2583 
2584 	err = -ENOBUFS;
2585 
2586 	if (msg_sys->msg_controllen > INT_MAX)
2587 		goto out;
2588 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2589 	ctl_len = msg_sys->msg_controllen;
2590 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2591 		err =
2592 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2593 						     sizeof(ctl));
2594 		if (err)
2595 			goto out;
2596 		ctl_buf = msg_sys->msg_control;
2597 		ctl_len = msg_sys->msg_controllen;
2598 	} else if (ctl_len) {
2599 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2600 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2601 		if (ctl_len > sizeof(ctl)) {
2602 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2603 			if (ctl_buf == NULL)
2604 				goto out;
2605 		}
2606 		err = -EFAULT;
2607 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2608 			goto out_freectl;
2609 		msg_sys->msg_control = ctl_buf;
2610 		msg_sys->msg_control_is_user = false;
2611 	}
2612 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2613 	msg_sys->msg_flags = flags;
2614 
2615 	if (sock->file->f_flags & O_NONBLOCK)
2616 		msg_sys->msg_flags |= MSG_DONTWAIT;
2617 	/*
2618 	 * If this is sendmmsg() and current destination address is same as
2619 	 * previously succeeded address, omit asking LSM's decision.
2620 	 * used_address->name_len is initialized to UINT_MAX so that the first
2621 	 * destination address never matches.
2622 	 */
2623 	if (used_address && msg_sys->msg_name &&
2624 	    used_address->name_len == msg_sys->msg_namelen &&
2625 	    !memcmp(&used_address->name, msg_sys->msg_name,
2626 		    used_address->name_len)) {
2627 		err = sock_sendmsg_nosec(sock, msg_sys);
2628 		goto out_freectl;
2629 	}
2630 	err = __sock_sendmsg(sock, msg_sys);
2631 	/*
2632 	 * If this is sendmmsg() and sending to current destination address was
2633 	 * successful, remember it.
2634 	 */
2635 	if (used_address && err >= 0) {
2636 		used_address->name_len = msg_sys->msg_namelen;
2637 		if (msg_sys->msg_name)
2638 			memcpy(&used_address->name, msg_sys->msg_name,
2639 			       used_address->name_len);
2640 	}
2641 
2642 out_freectl:
2643 	if (ctl_buf != ctl)
2644 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2645 out:
2646 	return err;
2647 }
2648 
2649 static int sendmsg_copy_msghdr(struct msghdr *msg,
2650 			       struct user_msghdr __user *umsg, unsigned flags,
2651 			       struct iovec **iov)
2652 {
2653 	int err;
2654 
2655 	if (flags & MSG_CMSG_COMPAT) {
2656 		struct compat_msghdr __user *msg_compat;
2657 
2658 		msg_compat = (struct compat_msghdr __user *) umsg;
2659 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2660 	} else {
2661 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2662 	}
2663 	if (err < 0)
2664 		return err;
2665 
2666 	return 0;
2667 }
2668 
2669 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2670 			 struct msghdr *msg_sys, unsigned int flags,
2671 			 struct used_address *used_address,
2672 			 unsigned int allowed_msghdr_flags)
2673 {
2674 	struct sockaddr_storage address;
2675 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2676 	ssize_t err;
2677 
2678 	msg_sys->msg_name = &address;
2679 
2680 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2681 	if (err < 0)
2682 		return err;
2683 
2684 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2685 				allowed_msghdr_flags);
2686 	kfree(iov);
2687 	return err;
2688 }
2689 
2690 /*
2691  *	BSD sendmsg interface
2692  */
2693 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2694 			unsigned int flags)
2695 {
2696 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2697 }
2698 
2699 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2700 		   bool forbid_cmsg_compat)
2701 {
2702 	struct msghdr msg_sys;
2703 	struct socket *sock;
2704 
2705 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2706 		return -EINVAL;
2707 
2708 	CLASS(fd, f)(fd);
2709 
2710 	if (fd_empty(f))
2711 		return -EBADF;
2712 	sock = sock_from_file(fd_file(f));
2713 	if (unlikely(!sock))
2714 		return -ENOTSOCK;
2715 
2716 	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2717 }
2718 
2719 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2720 {
2721 	return __sys_sendmsg(fd, msg, flags, true);
2722 }
2723 
2724 /*
2725  *	Linux sendmmsg interface
2726  */
2727 
2728 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2729 		   unsigned int flags, bool forbid_cmsg_compat)
2730 {
2731 	int err, datagrams;
2732 	struct socket *sock;
2733 	struct mmsghdr __user *entry;
2734 	struct compat_mmsghdr __user *compat_entry;
2735 	struct msghdr msg_sys;
2736 	struct used_address used_address;
2737 	unsigned int oflags = flags;
2738 
2739 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2740 		return -EINVAL;
2741 
2742 	if (vlen > UIO_MAXIOV)
2743 		vlen = UIO_MAXIOV;
2744 
2745 	datagrams = 0;
2746 
2747 	CLASS(fd, f)(fd);
2748 
2749 	if (fd_empty(f))
2750 		return -EBADF;
2751 	sock = sock_from_file(fd_file(f));
2752 	if (unlikely(!sock))
2753 		return -ENOTSOCK;
2754 
2755 	used_address.name_len = UINT_MAX;
2756 	entry = mmsg;
2757 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2758 	err = 0;
2759 	flags |= MSG_BATCH;
2760 
2761 	while (datagrams < vlen) {
2762 		if (datagrams == vlen - 1)
2763 			flags = oflags;
2764 
2765 		if (MSG_CMSG_COMPAT & flags) {
2766 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2767 					     &msg_sys, flags, &used_address, MSG_EOR);
2768 			if (err < 0)
2769 				break;
2770 			err = __put_user(err, &compat_entry->msg_len);
2771 			++compat_entry;
2772 		} else {
2773 			err = ___sys_sendmsg(sock,
2774 					     (struct user_msghdr __user *)entry,
2775 					     &msg_sys, flags, &used_address, MSG_EOR);
2776 			if (err < 0)
2777 				break;
2778 			err = put_user(err, &entry->msg_len);
2779 			++entry;
2780 		}
2781 
2782 		if (err)
2783 			break;
2784 		++datagrams;
2785 		if (msg_data_left(&msg_sys))
2786 			break;
2787 		cond_resched();
2788 	}
2789 
2790 	/* We only return an error if no datagrams were able to be sent */
2791 	if (datagrams != 0)
2792 		return datagrams;
2793 
2794 	return err;
2795 }
2796 
2797 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2798 		unsigned int, vlen, unsigned int, flags)
2799 {
2800 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2801 }
2802 
2803 static int recvmsg_copy_msghdr(struct msghdr *msg,
2804 			       struct user_msghdr __user *umsg, unsigned flags,
2805 			       struct sockaddr __user **uaddr,
2806 			       struct iovec **iov)
2807 {
2808 	ssize_t err;
2809 
2810 	if (MSG_CMSG_COMPAT & flags) {
2811 		struct compat_msghdr __user *msg_compat;
2812 
2813 		msg_compat = (struct compat_msghdr __user *) umsg;
2814 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2815 	} else {
2816 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2817 	}
2818 	if (err < 0)
2819 		return err;
2820 
2821 	return 0;
2822 }
2823 
2824 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2825 			   struct user_msghdr __user *msg,
2826 			   struct sockaddr __user *uaddr,
2827 			   unsigned int flags, int nosec)
2828 {
2829 	struct compat_msghdr __user *msg_compat =
2830 					(struct compat_msghdr __user *) msg;
2831 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2832 	struct sockaddr_storage addr;
2833 	unsigned long cmsg_ptr;
2834 	int len;
2835 	ssize_t err;
2836 
2837 	msg_sys->msg_name = &addr;
2838 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2839 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2840 
2841 	/* We assume all kernel code knows the size of sockaddr_storage */
2842 	msg_sys->msg_namelen = 0;
2843 
2844 	if (sock->file->f_flags & O_NONBLOCK)
2845 		flags |= MSG_DONTWAIT;
2846 
2847 	if (unlikely(nosec))
2848 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2849 	else
2850 		err = sock_recvmsg(sock, msg_sys, flags);
2851 
2852 	if (err < 0)
2853 		goto out;
2854 	len = err;
2855 
2856 	if (uaddr != NULL) {
2857 		err = move_addr_to_user(&addr,
2858 					msg_sys->msg_namelen, uaddr,
2859 					uaddr_len);
2860 		if (err < 0)
2861 			goto out;
2862 	}
2863 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2864 			 COMPAT_FLAGS(msg));
2865 	if (err)
2866 		goto out;
2867 	if (MSG_CMSG_COMPAT & flags)
2868 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2869 				 &msg_compat->msg_controllen);
2870 	else
2871 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2872 				 &msg->msg_controllen);
2873 	if (err)
2874 		goto out;
2875 	err = len;
2876 out:
2877 	return err;
2878 }
2879 
2880 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2881 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2882 {
2883 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2884 	/* user mode address pointers */
2885 	struct sockaddr __user *uaddr;
2886 	ssize_t err;
2887 
2888 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2889 	if (err < 0)
2890 		return err;
2891 
2892 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2893 	kfree(iov);
2894 	return err;
2895 }
2896 
2897 /*
2898  *	BSD recvmsg interface
2899  */
2900 
2901 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2902 			struct user_msghdr __user *umsg,
2903 			struct sockaddr __user *uaddr, unsigned int flags)
2904 {
2905 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2906 }
2907 
2908 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2909 		   bool forbid_cmsg_compat)
2910 {
2911 	struct msghdr msg_sys;
2912 	struct socket *sock;
2913 
2914 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2915 		return -EINVAL;
2916 
2917 	CLASS(fd, f)(fd);
2918 
2919 	if (fd_empty(f))
2920 		return -EBADF;
2921 	sock = sock_from_file(fd_file(f));
2922 	if (unlikely(!sock))
2923 		return -ENOTSOCK;
2924 
2925 	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2926 }
2927 
2928 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2929 		unsigned int, flags)
2930 {
2931 	return __sys_recvmsg(fd, msg, flags, true);
2932 }
2933 
2934 /*
2935  *     Linux recvmmsg interface
2936  */
2937 
2938 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2939 			  unsigned int vlen, unsigned int flags,
2940 			  struct timespec64 *timeout)
2941 {
2942 	int err = 0, datagrams;
2943 	struct socket *sock;
2944 	struct mmsghdr __user *entry;
2945 	struct compat_mmsghdr __user *compat_entry;
2946 	struct msghdr msg_sys;
2947 	struct timespec64 end_time;
2948 	struct timespec64 timeout64;
2949 
2950 	if (timeout &&
2951 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2952 				    timeout->tv_nsec))
2953 		return -EINVAL;
2954 
2955 	datagrams = 0;
2956 
2957 	CLASS(fd, f)(fd);
2958 
2959 	if (fd_empty(f))
2960 		return -EBADF;
2961 	sock = sock_from_file(fd_file(f));
2962 	if (unlikely(!sock))
2963 		return -ENOTSOCK;
2964 
2965 	if (likely(!(flags & MSG_ERRQUEUE))) {
2966 		err = sock_error(sock->sk);
2967 		if (err)
2968 			return err;
2969 	}
2970 
2971 	entry = mmsg;
2972 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2973 
2974 	while (datagrams < vlen) {
2975 		/*
2976 		 * No need to ask LSM for more than the first datagram.
2977 		 */
2978 		if (MSG_CMSG_COMPAT & flags) {
2979 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2980 					     &msg_sys, flags & ~MSG_WAITFORONE,
2981 					     datagrams);
2982 			if (err < 0)
2983 				break;
2984 			err = __put_user(err, &compat_entry->msg_len);
2985 			++compat_entry;
2986 		} else {
2987 			err = ___sys_recvmsg(sock,
2988 					     (struct user_msghdr __user *)entry,
2989 					     &msg_sys, flags & ~MSG_WAITFORONE,
2990 					     datagrams);
2991 			if (err < 0)
2992 				break;
2993 			err = put_user(err, &entry->msg_len);
2994 			++entry;
2995 		}
2996 
2997 		if (err)
2998 			break;
2999 		++datagrams;
3000 
3001 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3002 		if (flags & MSG_WAITFORONE)
3003 			flags |= MSG_DONTWAIT;
3004 
3005 		if (timeout) {
3006 			ktime_get_ts64(&timeout64);
3007 			*timeout = timespec64_sub(end_time, timeout64);
3008 			if (timeout->tv_sec < 0) {
3009 				timeout->tv_sec = timeout->tv_nsec = 0;
3010 				break;
3011 			}
3012 
3013 			/* Timeout, return less than vlen datagrams */
3014 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
3015 				break;
3016 		}
3017 
3018 		/* Out of band data, return right away */
3019 		if (msg_sys.msg_flags & MSG_OOB)
3020 			break;
3021 		cond_resched();
3022 	}
3023 
3024 	if (err == 0)
3025 		return datagrams;
3026 
3027 	if (datagrams == 0)
3028 		return err;
3029 
3030 	/*
3031 	 * We may return less entries than requested (vlen) if the
3032 	 * sock is non block and there aren't enough datagrams...
3033 	 */
3034 	if (err != -EAGAIN) {
3035 		/*
3036 		 * ... or  if recvmsg returns an error after we
3037 		 * received some datagrams, where we record the
3038 		 * error to return on the next call or if the
3039 		 * app asks about it using getsockopt(SO_ERROR).
3040 		 */
3041 		WRITE_ONCE(sock->sk->sk_err, -err);
3042 	}
3043 	return datagrams;
3044 }
3045 
3046 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3047 		   unsigned int vlen, unsigned int flags,
3048 		   struct __kernel_timespec __user *timeout,
3049 		   struct old_timespec32 __user *timeout32)
3050 {
3051 	int datagrams;
3052 	struct timespec64 timeout_sys;
3053 
3054 	if (timeout && get_timespec64(&timeout_sys, timeout))
3055 		return -EFAULT;
3056 
3057 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3058 		return -EFAULT;
3059 
3060 	if (!timeout && !timeout32)
3061 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3062 
3063 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3064 
3065 	if (datagrams <= 0)
3066 		return datagrams;
3067 
3068 	if (timeout && put_timespec64(&timeout_sys, timeout))
3069 		datagrams = -EFAULT;
3070 
3071 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3072 		datagrams = -EFAULT;
3073 
3074 	return datagrams;
3075 }
3076 
3077 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3078 		unsigned int, vlen, unsigned int, flags,
3079 		struct __kernel_timespec __user *, timeout)
3080 {
3081 	if (flags & MSG_CMSG_COMPAT)
3082 		return -EINVAL;
3083 
3084 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3085 }
3086 
3087 #ifdef CONFIG_COMPAT_32BIT_TIME
3088 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3089 		unsigned int, vlen, unsigned int, flags,
3090 		struct old_timespec32 __user *, timeout)
3091 {
3092 	if (flags & MSG_CMSG_COMPAT)
3093 		return -EINVAL;
3094 
3095 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3096 }
3097 #endif
3098 
3099 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3100 /* Argument list sizes for sys_socketcall */
3101 #define AL(x) ((x) * sizeof(unsigned long))
3102 static const unsigned char nargs[21] = {
3103 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3104 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3105 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3106 	AL(4), AL(5), AL(4)
3107 };
3108 
3109 #undef AL
3110 
3111 /*
3112  *	System call vectors.
3113  *
3114  *	Argument checking cleaned up. Saved 20% in size.
3115  *  This function doesn't need to set the kernel lock because
3116  *  it is set by the callees.
3117  */
3118 
3119 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3120 {
3121 	unsigned long a[AUDITSC_ARGS];
3122 	unsigned long a0, a1;
3123 	int err;
3124 	unsigned int len;
3125 
3126 	if (call < 1 || call > SYS_SENDMMSG)
3127 		return -EINVAL;
3128 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3129 
3130 	len = nargs[call];
3131 	if (len > sizeof(a))
3132 		return -EINVAL;
3133 
3134 	/* copy_from_user should be SMP safe. */
3135 	if (copy_from_user(a, args, len))
3136 		return -EFAULT;
3137 
3138 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3139 	if (err)
3140 		return err;
3141 
3142 	a0 = a[0];
3143 	a1 = a[1];
3144 
3145 	switch (call) {
3146 	case SYS_SOCKET:
3147 		err = __sys_socket(a0, a1, a[2]);
3148 		break;
3149 	case SYS_BIND:
3150 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3151 		break;
3152 	case SYS_CONNECT:
3153 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3154 		break;
3155 	case SYS_LISTEN:
3156 		err = __sys_listen(a0, a1);
3157 		break;
3158 	case SYS_ACCEPT:
3159 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3160 				    (int __user *)a[2], 0);
3161 		break;
3162 	case SYS_GETSOCKNAME:
3163 		err =
3164 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3165 				      (int __user *)a[2]);
3166 		break;
3167 	case SYS_GETPEERNAME:
3168 		err =
3169 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3170 				      (int __user *)a[2]);
3171 		break;
3172 	case SYS_SOCKETPAIR:
3173 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3174 		break;
3175 	case SYS_SEND:
3176 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3177 				   NULL, 0);
3178 		break;
3179 	case SYS_SENDTO:
3180 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3181 				   (struct sockaddr __user *)a[4], a[5]);
3182 		break;
3183 	case SYS_RECV:
3184 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3185 				     NULL, NULL);
3186 		break;
3187 	case SYS_RECVFROM:
3188 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3189 				     (struct sockaddr __user *)a[4],
3190 				     (int __user *)a[5]);
3191 		break;
3192 	case SYS_SHUTDOWN:
3193 		err = __sys_shutdown(a0, a1);
3194 		break;
3195 	case SYS_SETSOCKOPT:
3196 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3197 				       a[4]);
3198 		break;
3199 	case SYS_GETSOCKOPT:
3200 		err =
3201 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3202 				     (int __user *)a[4]);
3203 		break;
3204 	case SYS_SENDMSG:
3205 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3206 				    a[2], true);
3207 		break;
3208 	case SYS_SENDMMSG:
3209 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3210 				     a[3], true);
3211 		break;
3212 	case SYS_RECVMSG:
3213 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3214 				    a[2], true);
3215 		break;
3216 	case SYS_RECVMMSG:
3217 		if (IS_ENABLED(CONFIG_64BIT))
3218 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3219 					     a[2], a[3],
3220 					     (struct __kernel_timespec __user *)a[4],
3221 					     NULL);
3222 		else
3223 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3224 					     a[2], a[3], NULL,
3225 					     (struct old_timespec32 __user *)a[4]);
3226 		break;
3227 	case SYS_ACCEPT4:
3228 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3229 				    (int __user *)a[2], a[3]);
3230 		break;
3231 	default:
3232 		err = -EINVAL;
3233 		break;
3234 	}
3235 	return err;
3236 }
3237 
3238 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3239 
3240 /**
3241  *	sock_register - add a socket protocol handler
3242  *	@ops: description of protocol
3243  *
3244  *	This function is called by a protocol handler that wants to
3245  *	advertise its address family, and have it linked into the
3246  *	socket interface. The value ops->family corresponds to the
3247  *	socket system call protocol family.
3248  */
3249 int sock_register(const struct net_proto_family *ops)
3250 {
3251 	int err;
3252 
3253 	if (ops->family >= NPROTO) {
3254 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3255 		return -ENOBUFS;
3256 	}
3257 
3258 	spin_lock(&net_family_lock);
3259 	if (rcu_dereference_protected(net_families[ops->family],
3260 				      lockdep_is_held(&net_family_lock)))
3261 		err = -EEXIST;
3262 	else {
3263 		rcu_assign_pointer(net_families[ops->family], ops);
3264 		err = 0;
3265 	}
3266 	spin_unlock(&net_family_lock);
3267 
3268 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3269 	return err;
3270 }
3271 EXPORT_SYMBOL(sock_register);
3272 
3273 /**
3274  *	sock_unregister - remove a protocol handler
3275  *	@family: protocol family to remove
3276  *
3277  *	This function is called by a protocol handler that wants to
3278  *	remove its address family, and have it unlinked from the
3279  *	new socket creation.
3280  *
3281  *	If protocol handler is a module, then it can use module reference
3282  *	counts to protect against new references. If protocol handler is not
3283  *	a module then it needs to provide its own protection in
3284  *	the ops->create routine.
3285  */
3286 void sock_unregister(int family)
3287 {
3288 	BUG_ON(family < 0 || family >= NPROTO);
3289 
3290 	spin_lock(&net_family_lock);
3291 	RCU_INIT_POINTER(net_families[family], NULL);
3292 	spin_unlock(&net_family_lock);
3293 
3294 	synchronize_rcu();
3295 
3296 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3297 }
3298 EXPORT_SYMBOL(sock_unregister);
3299 
3300 bool sock_is_registered(int family)
3301 {
3302 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3303 }
3304 
3305 static int __init sock_init(void)
3306 {
3307 	int err;
3308 	/*
3309 	 *      Initialize the network sysctl infrastructure.
3310 	 */
3311 	err = net_sysctl_init();
3312 	if (err)
3313 		goto out;
3314 
3315 	/*
3316 	 *      Initialize skbuff SLAB cache
3317 	 */
3318 	skb_init();
3319 
3320 	/*
3321 	 *      Initialize the protocols module.
3322 	 */
3323 
3324 	init_inodecache();
3325 
3326 	err = register_filesystem(&sock_fs_type);
3327 	if (err)
3328 		goto out;
3329 	sock_mnt = kern_mount(&sock_fs_type);
3330 	if (IS_ERR(sock_mnt)) {
3331 		err = PTR_ERR(sock_mnt);
3332 		goto out_mount;
3333 	}
3334 
3335 	/* The real protocol initialization is performed in later initcalls.
3336 	 */
3337 
3338 #ifdef CONFIG_NETFILTER
3339 	err = netfilter_init();
3340 	if (err)
3341 		goto out;
3342 #endif
3343 
3344 	ptp_classifier_init();
3345 
3346 out:
3347 	return err;
3348 
3349 out_mount:
3350 	unregister_filesystem(&sock_fs_type);
3351 	goto out;
3352 }
3353 
3354 core_initcall(sock_init);	/* early initcall */
3355 
3356 #ifdef CONFIG_PROC_FS
3357 void socket_seq_show(struct seq_file *seq)
3358 {
3359 	seq_printf(seq, "sockets: used %d\n",
3360 		   sock_inuse_get(seq->private));
3361 }
3362 #endif				/* CONFIG_PROC_FS */
3363 
3364 /* Handle the fact that while struct ifreq has the same *layout* on
3365  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3366  * which are handled elsewhere, it still has different *size* due to
3367  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3368  * resulting in struct ifreq being 32 and 40 bytes respectively).
3369  * As a result, if the struct happens to be at the end of a page and
3370  * the next page isn't readable/writable, we get a fault. To prevent
3371  * that, copy back and forth to the full size.
3372  */
3373 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3374 {
3375 	if (in_compat_syscall()) {
3376 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3377 
3378 		memset(ifr, 0, sizeof(*ifr));
3379 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3380 			return -EFAULT;
3381 
3382 		if (ifrdata)
3383 			*ifrdata = compat_ptr(ifr32->ifr_data);
3384 
3385 		return 0;
3386 	}
3387 
3388 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3389 		return -EFAULT;
3390 
3391 	if (ifrdata)
3392 		*ifrdata = ifr->ifr_data;
3393 
3394 	return 0;
3395 }
3396 EXPORT_SYMBOL(get_user_ifreq);
3397 
3398 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3399 {
3400 	size_t size = sizeof(*ifr);
3401 
3402 	if (in_compat_syscall())
3403 		size = sizeof(struct compat_ifreq);
3404 
3405 	if (copy_to_user(arg, ifr, size))
3406 		return -EFAULT;
3407 
3408 	return 0;
3409 }
3410 EXPORT_SYMBOL(put_user_ifreq);
3411 
3412 #ifdef CONFIG_COMPAT
3413 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3414 {
3415 	compat_uptr_t uptr32;
3416 	struct ifreq ifr;
3417 	void __user *saved;
3418 	int err;
3419 
3420 	if (get_user_ifreq(&ifr, NULL, uifr32))
3421 		return -EFAULT;
3422 
3423 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3424 		return -EFAULT;
3425 
3426 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3427 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3428 
3429 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3430 	if (!err) {
3431 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3432 		if (put_user_ifreq(&ifr, uifr32))
3433 			err = -EFAULT;
3434 	}
3435 	return err;
3436 }
3437 
3438 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3439 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3440 				 struct compat_ifreq __user *u_ifreq32)
3441 {
3442 	struct ifreq ifreq;
3443 	void __user *data;
3444 
3445 	if (!is_socket_ioctl_cmd(cmd))
3446 		return -ENOTTY;
3447 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3448 		return -EFAULT;
3449 	ifreq.ifr_data = data;
3450 
3451 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3452 }
3453 
3454 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3455 			 unsigned int cmd, unsigned long arg)
3456 {
3457 	void __user *argp = compat_ptr(arg);
3458 	struct sock *sk = sock->sk;
3459 	struct net *net = sock_net(sk);
3460 	const struct proto_ops *ops;
3461 
3462 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3463 		return sock_ioctl(file, cmd, (unsigned long)argp);
3464 
3465 	switch (cmd) {
3466 	case SIOCWANDEV:
3467 		return compat_siocwandev(net, argp);
3468 	case SIOCGSTAMP_OLD:
3469 	case SIOCGSTAMPNS_OLD:
3470 		ops = READ_ONCE(sock->ops);
3471 		if (!ops->gettstamp)
3472 			return -ENOIOCTLCMD;
3473 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3474 				      !COMPAT_USE_64BIT_TIME);
3475 
3476 	case SIOCETHTOOL:
3477 	case SIOCBONDSLAVEINFOQUERY:
3478 	case SIOCBONDINFOQUERY:
3479 	case SIOCSHWTSTAMP:
3480 	case SIOCGHWTSTAMP:
3481 		return compat_ifr_data_ioctl(net, cmd, argp);
3482 
3483 	case FIOSETOWN:
3484 	case SIOCSPGRP:
3485 	case FIOGETOWN:
3486 	case SIOCGPGRP:
3487 	case SIOCBRADDBR:
3488 	case SIOCBRDELBR:
3489 	case SIOCBRADDIF:
3490 	case SIOCBRDELIF:
3491 	case SIOCGIFVLAN:
3492 	case SIOCSIFVLAN:
3493 	case SIOCGSKNS:
3494 	case SIOCGSTAMP_NEW:
3495 	case SIOCGSTAMPNS_NEW:
3496 	case SIOCGIFCONF:
3497 	case SIOCSIFBR:
3498 	case SIOCGIFBR:
3499 		return sock_ioctl(file, cmd, arg);
3500 
3501 	case SIOCGIFFLAGS:
3502 	case SIOCSIFFLAGS:
3503 	case SIOCGIFMAP:
3504 	case SIOCSIFMAP:
3505 	case SIOCGIFMETRIC:
3506 	case SIOCSIFMETRIC:
3507 	case SIOCGIFMTU:
3508 	case SIOCSIFMTU:
3509 	case SIOCGIFMEM:
3510 	case SIOCSIFMEM:
3511 	case SIOCGIFHWADDR:
3512 	case SIOCSIFHWADDR:
3513 	case SIOCADDMULTI:
3514 	case SIOCDELMULTI:
3515 	case SIOCGIFINDEX:
3516 	case SIOCGIFADDR:
3517 	case SIOCSIFADDR:
3518 	case SIOCSIFHWBROADCAST:
3519 	case SIOCDIFADDR:
3520 	case SIOCGIFBRDADDR:
3521 	case SIOCSIFBRDADDR:
3522 	case SIOCGIFDSTADDR:
3523 	case SIOCSIFDSTADDR:
3524 	case SIOCGIFNETMASK:
3525 	case SIOCSIFNETMASK:
3526 	case SIOCSIFPFLAGS:
3527 	case SIOCGIFPFLAGS:
3528 	case SIOCGIFTXQLEN:
3529 	case SIOCSIFTXQLEN:
3530 	case SIOCGIFNAME:
3531 	case SIOCSIFNAME:
3532 	case SIOCGMIIPHY:
3533 	case SIOCGMIIREG:
3534 	case SIOCSMIIREG:
3535 	case SIOCBONDENSLAVE:
3536 	case SIOCBONDRELEASE:
3537 	case SIOCBONDSETHWADDR:
3538 	case SIOCBONDCHANGEACTIVE:
3539 	case SIOCSARP:
3540 	case SIOCGARP:
3541 	case SIOCDARP:
3542 	case SIOCOUTQ:
3543 	case SIOCOUTQNSD:
3544 	case SIOCATMARK:
3545 		return sock_do_ioctl(net, sock, cmd, arg);
3546 	}
3547 
3548 	return -ENOIOCTLCMD;
3549 }
3550 
3551 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3552 			      unsigned long arg)
3553 {
3554 	struct socket *sock = file->private_data;
3555 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3556 	int ret = -ENOIOCTLCMD;
3557 	struct sock *sk;
3558 	struct net *net;
3559 
3560 	sk = sock->sk;
3561 	net = sock_net(sk);
3562 
3563 	if (ops->compat_ioctl)
3564 		ret = ops->compat_ioctl(sock, cmd, arg);
3565 
3566 	if (ret == -ENOIOCTLCMD &&
3567 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3568 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3569 
3570 	if (ret == -ENOIOCTLCMD)
3571 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3572 
3573 	return ret;
3574 }
3575 #endif
3576 
3577 /**
3578  *	kernel_bind - bind an address to a socket (kernel space)
3579  *	@sock: socket
3580  *	@addr: address
3581  *	@addrlen: length of address
3582  *
3583  *	Returns 0 or an error.
3584  */
3585 
3586 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3587 {
3588 	struct sockaddr_storage address;
3589 
3590 	memcpy(&address, addr, addrlen);
3591 
3592 	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3593 					  addrlen);
3594 }
3595 EXPORT_SYMBOL(kernel_bind);
3596 
3597 /**
3598  *	kernel_listen - move socket to listening state (kernel space)
3599  *	@sock: socket
3600  *	@backlog: pending connections queue size
3601  *
3602  *	Returns 0 or an error.
3603  */
3604 
3605 int kernel_listen(struct socket *sock, int backlog)
3606 {
3607 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3608 }
3609 EXPORT_SYMBOL(kernel_listen);
3610 
3611 /**
3612  *	kernel_accept - accept a connection (kernel space)
3613  *	@sock: listening socket
3614  *	@newsock: new connected socket
3615  *	@flags: flags
3616  *
3617  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3618  *	If it fails, @newsock is guaranteed to be %NULL.
3619  *	Returns 0 or an error.
3620  */
3621 
3622 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3623 {
3624 	struct sock *sk = sock->sk;
3625 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3626 	struct proto_accept_arg arg = {
3627 		.flags = flags,
3628 		.kern = true,
3629 	};
3630 	int err;
3631 
3632 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3633 			       newsock);
3634 	if (err < 0)
3635 		goto done;
3636 
3637 	err = ops->accept(sock, *newsock, &arg);
3638 	if (err < 0) {
3639 		sock_release(*newsock);
3640 		*newsock = NULL;
3641 		goto done;
3642 	}
3643 
3644 	(*newsock)->ops = ops;
3645 	__module_get(ops->owner);
3646 
3647 done:
3648 	return err;
3649 }
3650 EXPORT_SYMBOL(kernel_accept);
3651 
3652 /**
3653  *	kernel_connect - connect a socket (kernel space)
3654  *	@sock: socket
3655  *	@addr: address
3656  *	@addrlen: address length
3657  *	@flags: flags (O_NONBLOCK, ...)
3658  *
3659  *	For datagram sockets, @addr is the address to which datagrams are sent
3660  *	by default, and the only address from which datagrams are received.
3661  *	For stream sockets, attempts to connect to @addr.
3662  *	Returns 0 or an error code.
3663  */
3664 
3665 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3666 		   int flags)
3667 {
3668 	struct sockaddr_storage address;
3669 
3670 	memcpy(&address, addr, addrlen);
3671 
3672 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3673 					     addrlen, flags);
3674 }
3675 EXPORT_SYMBOL(kernel_connect);
3676 
3677 /**
3678  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3679  *	@sock: socket
3680  *	@addr: address holder
3681  *
3682  * 	Fills the @addr pointer with the address which the socket is bound.
3683  *	Returns the length of the address in bytes or an error code.
3684  */
3685 
3686 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3687 {
3688 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3689 }
3690 EXPORT_SYMBOL(kernel_getsockname);
3691 
3692 /**
3693  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3694  *	@sock: socket
3695  *	@addr: address holder
3696  *
3697  * 	Fills the @addr pointer with the address which the socket is connected.
3698  *	Returns the length of the address in bytes or an error code.
3699  */
3700 
3701 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3702 {
3703 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3704 }
3705 EXPORT_SYMBOL(kernel_getpeername);
3706 
3707 /**
3708  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3709  *	@sock: socket
3710  *	@how: connection part
3711  *
3712  *	Returns 0 or an error.
3713  */
3714 
3715 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3716 {
3717 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3718 }
3719 EXPORT_SYMBOL(kernel_sock_shutdown);
3720 
3721 /**
3722  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3723  *	@sk: socket
3724  *
3725  *	This routine returns the IP overhead imposed by a socket i.e.
3726  *	the length of the underlying IP header, depending on whether
3727  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3728  *	on at the socket. Assumes that the caller has a lock on the socket.
3729  */
3730 
3731 u32 kernel_sock_ip_overhead(struct sock *sk)
3732 {
3733 	struct inet_sock *inet;
3734 	struct ip_options_rcu *opt;
3735 	u32 overhead = 0;
3736 #if IS_ENABLED(CONFIG_IPV6)
3737 	struct ipv6_pinfo *np;
3738 	struct ipv6_txoptions *optv6 = NULL;
3739 #endif /* IS_ENABLED(CONFIG_IPV6) */
3740 
3741 	if (!sk)
3742 		return overhead;
3743 
3744 	switch (sk->sk_family) {
3745 	case AF_INET:
3746 		inet = inet_sk(sk);
3747 		overhead += sizeof(struct iphdr);
3748 		opt = rcu_dereference_protected(inet->inet_opt,
3749 						sock_owned_by_user(sk));
3750 		if (opt)
3751 			overhead += opt->opt.optlen;
3752 		return overhead;
3753 #if IS_ENABLED(CONFIG_IPV6)
3754 	case AF_INET6:
3755 		np = inet6_sk(sk);
3756 		overhead += sizeof(struct ipv6hdr);
3757 		if (np)
3758 			optv6 = rcu_dereference_protected(np->opt,
3759 							  sock_owned_by_user(sk));
3760 		if (optv6)
3761 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3762 		return overhead;
3763 #endif /* IS_ENABLED(CONFIG_IPV6) */
3764 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3765 		return overhead;
3766 	}
3767 }
3768 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3769