xref: /linux/net/socket.c (revision 8c67da5bc11a79833d9fd464e82b1b271c67fc87)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * NET		An implementation of the SOCKET network access protocol.
4   *
5   * Version:	@(#)socket.c	1.1.93	18/02/95
6   *
7   * Authors:	Orest Zborowski, <obz@Kodak.COM>
8   *		Ross Biro
9   *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10   *
11   * Fixes:
12   *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13   *					shutdown()
14   *		Alan Cox	:	verify_area() fixes
15   *		Alan Cox	:	Removed DDI
16   *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17   *		Alan Cox	:	Moved a load of checks to the very
18   *					top level.
19   *		Alan Cox	:	Move address structures to/from user
20   *					mode above the protocol layers.
21   *		Rob Janssen	:	Allow 0 length sends.
22   *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23   *					tty drivers).
24   *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25   *		Jeff Uphoff	:	Made max number of sockets command-line
26   *					configurable.
27   *		Matti Aarnio	:	Made the number of sockets dynamic,
28   *					to be allocated when needed, and mr.
29   *					Uphoff's max is used as max to be
30   *					allowed to allocate.
31   *		Linus		:	Argh. removed all the socket allocation
32   *					altogether: it's in the inode now.
33   *		Alan Cox	:	Made sock_alloc()/sock_release() public
34   *					for NetROM and future kernel nfsd type
35   *					stuff.
36   *		Alan Cox	:	sendmsg/recvmsg basics.
37   *		Tom Dyas	:	Export net symbols.
38   *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39   *		Alan Cox	:	Added thread locking to sys_* calls
40   *					for sockets. May have errors at the
41   *					moment.
42   *		Kevin Buhr	:	Fixed the dumb errors in the above.
43   *		Andi Kleen	:	Some small cleanups, optimizations,
44   *					and fixed a copy_from_user() bug.
45   *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46   *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47   *					protocol-independent
48   *
49   *	This module is effectively the top level interface to the BSD socket
50   *	paradigm.
51   *
52   *	Based upon Swansea University Computer Society NET3.039
53   */
54  
55  #include <linux/bpf-cgroup.h>
56  #include <linux/ethtool.h>
57  #include <linux/mm.h>
58  #include <linux/socket.h>
59  #include <linux/file.h>
60  #include <linux/splice.h>
61  #include <linux/net.h>
62  #include <linux/interrupt.h>
63  #include <linux/thread_info.h>
64  #include <linux/rcupdate.h>
65  #include <linux/netdevice.h>
66  #include <linux/proc_fs.h>
67  #include <linux/seq_file.h>
68  #include <linux/mutex.h>
69  #include <linux/if_bridge.h>
70  #include <linux/if_vlan.h>
71  #include <linux/ptp_classify.h>
72  #include <linux/init.h>
73  #include <linux/poll.h>
74  #include <linux/cache.h>
75  #include <linux/module.h>
76  #include <linux/highmem.h>
77  #include <linux/mount.h>
78  #include <linux/pseudo_fs.h>
79  #include <linux/security.h>
80  #include <linux/syscalls.h>
81  #include <linux/compat.h>
82  #include <linux/kmod.h>
83  #include <linux/audit.h>
84  #include <linux/wireless.h>
85  #include <linux/nsproxy.h>
86  #include <linux/magic.h>
87  #include <linux/slab.h>
88  #include <linux/xattr.h>
89  #include <linux/nospec.h>
90  #include <linux/indirect_call_wrapper.h>
91  #include <linux/io_uring/net.h>
92  
93  #include <linux/uaccess.h>
94  #include <asm/unistd.h>
95  
96  #include <net/compat.h>
97  #include <net/wext.h>
98  #include <net/cls_cgroup.h>
99  
100  #include <net/sock.h>
101  #include <linux/netfilter.h>
102  
103  #include <linux/if_tun.h>
104  #include <linux/ipv6_route.h>
105  #include <linux/route.h>
106  #include <linux/termios.h>
107  #include <linux/sockios.h>
108  #include <net/busy_poll.h>
109  #include <linux/errqueue.h>
110  #include <linux/ptp_clock_kernel.h>
111  #include <trace/events/sock.h>
112  
113  #include "core/dev.h"
114  
115  #ifdef CONFIG_NET_RX_BUSY_POLL
116  unsigned int sysctl_net_busy_read __read_mostly;
117  unsigned int sysctl_net_busy_poll __read_mostly;
118  #endif
119  
120  static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
121  static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
122  static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123  
124  static int sock_close(struct inode *inode, struct file *file);
125  static __poll_t sock_poll(struct file *file,
126  			      struct poll_table_struct *wait);
127  static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
128  #ifdef CONFIG_COMPAT
129  static long compat_sock_ioctl(struct file *file,
130  			      unsigned int cmd, unsigned long arg);
131  #endif
132  static int sock_fasync(int fd, struct file *filp, int on);
133  static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134  				struct pipe_inode_info *pipe, size_t len,
135  				unsigned int flags);
136  static void sock_splice_eof(struct file *file);
137  
138  #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)139  static void sock_show_fdinfo(struct seq_file *m, struct file *f)
140  {
141  	struct socket *sock = f->private_data;
142  	const struct proto_ops *ops = READ_ONCE(sock->ops);
143  
144  	if (ops->show_fdinfo)
145  		ops->show_fdinfo(m, sock);
146  }
147  #else
148  #define sock_show_fdinfo NULL
149  #endif
150  
151  /*
152   *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
153   *	in the operation structures but are done directly via the socketcall() multiplexor.
154   */
155  
156  static const struct file_operations socket_file_ops = {
157  	.owner =	THIS_MODULE,
158  	.read_iter =	sock_read_iter,
159  	.write_iter =	sock_write_iter,
160  	.poll =		sock_poll,
161  	.unlocked_ioctl = sock_ioctl,
162  #ifdef CONFIG_COMPAT
163  	.compat_ioctl = compat_sock_ioctl,
164  #endif
165  	.uring_cmd =    io_uring_cmd_sock,
166  	.mmap =		sock_mmap,
167  	.release =	sock_close,
168  	.fasync =	sock_fasync,
169  	.splice_write = splice_to_socket,
170  	.splice_read =	sock_splice_read,
171  	.splice_eof =	sock_splice_eof,
172  	.show_fdinfo =	sock_show_fdinfo,
173  };
174  
175  static const char * const pf_family_names[] = {
176  	[PF_UNSPEC]	= "PF_UNSPEC",
177  	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
178  	[PF_INET]	= "PF_INET",
179  	[PF_AX25]	= "PF_AX25",
180  	[PF_IPX]	= "PF_IPX",
181  	[PF_APPLETALK]	= "PF_APPLETALK",
182  	[PF_NETROM]	= "PF_NETROM",
183  	[PF_BRIDGE]	= "PF_BRIDGE",
184  	[PF_ATMPVC]	= "PF_ATMPVC",
185  	[PF_X25]	= "PF_X25",
186  	[PF_INET6]	= "PF_INET6",
187  	[PF_ROSE]	= "PF_ROSE",
188  	[PF_DECnet]	= "PF_DECnet",
189  	[PF_NETBEUI]	= "PF_NETBEUI",
190  	[PF_SECURITY]	= "PF_SECURITY",
191  	[PF_KEY]	= "PF_KEY",
192  	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
193  	[PF_PACKET]	= "PF_PACKET",
194  	[PF_ASH]	= "PF_ASH",
195  	[PF_ECONET]	= "PF_ECONET",
196  	[PF_ATMSVC]	= "PF_ATMSVC",
197  	[PF_RDS]	= "PF_RDS",
198  	[PF_SNA]	= "PF_SNA",
199  	[PF_IRDA]	= "PF_IRDA",
200  	[PF_PPPOX]	= "PF_PPPOX",
201  	[PF_WANPIPE]	= "PF_WANPIPE",
202  	[PF_LLC]	= "PF_LLC",
203  	[PF_IB]		= "PF_IB",
204  	[PF_MPLS]	= "PF_MPLS",
205  	[PF_CAN]	= "PF_CAN",
206  	[PF_TIPC]	= "PF_TIPC",
207  	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
208  	[PF_IUCV]	= "PF_IUCV",
209  	[PF_RXRPC]	= "PF_RXRPC",
210  	[PF_ISDN]	= "PF_ISDN",
211  	[PF_PHONET]	= "PF_PHONET",
212  	[PF_IEEE802154]	= "PF_IEEE802154",
213  	[PF_CAIF]	= "PF_CAIF",
214  	[PF_ALG]	= "PF_ALG",
215  	[PF_NFC]	= "PF_NFC",
216  	[PF_VSOCK]	= "PF_VSOCK",
217  	[PF_KCM]	= "PF_KCM",
218  	[PF_QIPCRTR]	= "PF_QIPCRTR",
219  	[PF_SMC]	= "PF_SMC",
220  	[PF_XDP]	= "PF_XDP",
221  	[PF_MCTP]	= "PF_MCTP",
222  };
223  
224  /*
225   *	The protocol list. Each protocol is registered in here.
226   */
227  
228  static DEFINE_SPINLOCK(net_family_lock);
229  static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230  
231  /*
232   * Support routines.
233   * Move socket addresses back and forth across the kernel/user
234   * divide and look after the messy bits.
235   */
236  
237  /**
238   *	move_addr_to_kernel	-	copy a socket address into kernel space
239   *	@uaddr: Address in user space
240   *	@kaddr: Address in kernel space
241   *	@ulen: Length in user space
242   *
243   *	The address is copied into kernel space. If the provided address is
244   *	too long an error code of -EINVAL is returned. If the copy gives
245   *	invalid addresses -EFAULT is returned. On a success 0 is returned.
246   */
247  
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)248  int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
249  {
250  	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251  		return -EINVAL;
252  	if (ulen == 0)
253  		return 0;
254  	if (copy_from_user(kaddr, uaddr, ulen))
255  		return -EFAULT;
256  	return audit_sockaddr(ulen, kaddr);
257  }
258  
259  /**
260   *	move_addr_to_user	-	copy an address to user space
261   *	@kaddr: kernel space address
262   *	@klen: length of address in kernel
263   *	@uaddr: user space address
264   *	@ulen: pointer to user length field
265   *
266   *	The value pointed to by ulen on entry is the buffer length available.
267   *	This is overwritten with the buffer space used. -EINVAL is returned
268   *	if an overlong buffer is specified or a negative buffer size. -EFAULT
269   *	is returned if either the buffer or the length field are not
270   *	accessible.
271   *	After copying the data up to the limit the user specifies, the true
272   *	length of the data is written over the length limit the user
273   *	specified. Zero is returned for a success.
274   */
275  
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)276  static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
277  			     void __user *uaddr, int __user *ulen)
278  {
279  	int err;
280  	int len;
281  
282  	BUG_ON(klen > sizeof(struct sockaddr_storage));
283  	err = get_user(len, ulen);
284  	if (err)
285  		return err;
286  	if (len > klen)
287  		len = klen;
288  	if (len < 0)
289  		return -EINVAL;
290  	if (len) {
291  		if (audit_sockaddr(klen, kaddr))
292  			return -ENOMEM;
293  		if (copy_to_user(uaddr, kaddr, len))
294  			return -EFAULT;
295  	}
296  	/*
297  	 *      "fromlen shall refer to the value before truncation.."
298  	 *                      1003.1g
299  	 */
300  	return __put_user(klen, ulen);
301  }
302  
303  static struct kmem_cache *sock_inode_cachep __ro_after_init;
304  
sock_alloc_inode(struct super_block * sb)305  static struct inode *sock_alloc_inode(struct super_block *sb)
306  {
307  	struct socket_alloc *ei;
308  
309  	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
310  	if (!ei)
311  		return NULL;
312  	init_waitqueue_head(&ei->socket.wq.wait);
313  	ei->socket.wq.fasync_list = NULL;
314  	ei->socket.wq.flags = 0;
315  
316  	ei->socket.state = SS_UNCONNECTED;
317  	ei->socket.flags = 0;
318  	ei->socket.ops = NULL;
319  	ei->socket.sk = NULL;
320  	ei->socket.file = NULL;
321  
322  	return &ei->vfs_inode;
323  }
324  
sock_free_inode(struct inode * inode)325  static void sock_free_inode(struct inode *inode)
326  {
327  	struct socket_alloc *ei;
328  
329  	ei = container_of(inode, struct socket_alloc, vfs_inode);
330  	kmem_cache_free(sock_inode_cachep, ei);
331  }
332  
init_once(void * foo)333  static void init_once(void *foo)
334  {
335  	struct socket_alloc *ei = (struct socket_alloc *)foo;
336  
337  	inode_init_once(&ei->vfs_inode);
338  }
339  
init_inodecache(void)340  static void init_inodecache(void)
341  {
342  	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
343  					      sizeof(struct socket_alloc),
344  					      0,
345  					      (SLAB_HWCACHE_ALIGN |
346  					       SLAB_RECLAIM_ACCOUNT |
347  					       SLAB_ACCOUNT),
348  					      init_once);
349  	BUG_ON(sock_inode_cachep == NULL);
350  }
351  
352  static const struct super_operations sockfs_ops = {
353  	.alloc_inode	= sock_alloc_inode,
354  	.free_inode	= sock_free_inode,
355  	.statfs		= simple_statfs,
356  };
357  
358  /*
359   * sockfs_dname() is called from d_path().
360   */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)361  static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
362  {
363  	return dynamic_dname(buffer, buflen, "socket:[%lu]",
364  				d_inode(dentry)->i_ino);
365  }
366  
367  static const struct dentry_operations sockfs_dentry_operations = {
368  	.d_dname  = sockfs_dname,
369  };
370  
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)371  static int sockfs_xattr_get(const struct xattr_handler *handler,
372  			    struct dentry *dentry, struct inode *inode,
373  			    const char *suffix, void *value, size_t size)
374  {
375  	if (value) {
376  		if (dentry->d_name.len + 1 > size)
377  			return -ERANGE;
378  		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
379  	}
380  	return dentry->d_name.len + 1;
381  }
382  
383  #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
384  #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
385  #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
386  
387  static const struct xattr_handler sockfs_xattr_handler = {
388  	.name = XATTR_NAME_SOCKPROTONAME,
389  	.get = sockfs_xattr_get,
390  };
391  
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)392  static int sockfs_security_xattr_set(const struct xattr_handler *handler,
393  				     struct mnt_idmap *idmap,
394  				     struct dentry *dentry, struct inode *inode,
395  				     const char *suffix, const void *value,
396  				     size_t size, int flags)
397  {
398  	/* Handled by LSM. */
399  	return -EAGAIN;
400  }
401  
402  static const struct xattr_handler sockfs_security_xattr_handler = {
403  	.prefix = XATTR_SECURITY_PREFIX,
404  	.set = sockfs_security_xattr_set,
405  };
406  
407  static const struct xattr_handler * const sockfs_xattr_handlers[] = {
408  	&sockfs_xattr_handler,
409  	&sockfs_security_xattr_handler,
410  	NULL
411  };
412  
sockfs_init_fs_context(struct fs_context * fc)413  static int sockfs_init_fs_context(struct fs_context *fc)
414  {
415  	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
416  	if (!ctx)
417  		return -ENOMEM;
418  	ctx->ops = &sockfs_ops;
419  	ctx->dops = &sockfs_dentry_operations;
420  	ctx->xattr = sockfs_xattr_handlers;
421  	return 0;
422  }
423  
424  static struct vfsmount *sock_mnt __read_mostly;
425  
426  static struct file_system_type sock_fs_type = {
427  	.name =		"sockfs",
428  	.init_fs_context = sockfs_init_fs_context,
429  	.kill_sb =	kill_anon_super,
430  };
431  
432  /*
433   *	Obtains the first available file descriptor and sets it up for use.
434   *
435   *	These functions create file structures and maps them to fd space
436   *	of the current process. On success it returns file descriptor
437   *	and file struct implicitly stored in sock->file.
438   *	Note that another thread may close file descriptor before we return
439   *	from this function. We use the fact that now we do not refer
440   *	to socket after mapping. If one day we will need it, this
441   *	function will increment ref. count on file by 1.
442   *
443   *	In any case returned fd MAY BE not valid!
444   *	This race condition is unavoidable
445   *	with shared fd spaces, we cannot solve it inside kernel,
446   *	but we take care of internal coherence yet.
447   */
448  
449  /**
450   *	sock_alloc_file - Bind a &socket to a &file
451   *	@sock: socket
452   *	@flags: file status flags
453   *	@dname: protocol name
454   *
455   *	Returns the &file bound with @sock, implicitly storing it
456   *	in sock->file. If dname is %NULL, sets to "".
457   *
458   *	On failure @sock is released, and an ERR pointer is returned.
459   *
460   *	This function uses GFP_KERNEL internally.
461   */
462  
sock_alloc_file(struct socket * sock,int flags,const char * dname)463  struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
464  {
465  	struct file *file;
466  
467  	if (!dname)
468  		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
469  
470  	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
471  				O_RDWR | (flags & O_NONBLOCK),
472  				&socket_file_ops);
473  	if (IS_ERR(file)) {
474  		sock_release(sock);
475  		return file;
476  	}
477  
478  	file->f_mode |= FMODE_NOWAIT;
479  	sock->file = file;
480  	file->private_data = sock;
481  	stream_open(SOCK_INODE(sock), file);
482  	/*
483  	 * Disable permission and pre-content events, but enable legacy
484  	 * inotify events for legacy users.
485  	 */
486  	file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM);
487  	return file;
488  }
489  EXPORT_SYMBOL(sock_alloc_file);
490  
sock_map_fd(struct socket * sock,int flags)491  static int sock_map_fd(struct socket *sock, int flags)
492  {
493  	struct file *newfile;
494  	int fd = get_unused_fd_flags(flags);
495  	if (unlikely(fd < 0)) {
496  		sock_release(sock);
497  		return fd;
498  	}
499  
500  	newfile = sock_alloc_file(sock, flags, NULL);
501  	if (!IS_ERR(newfile)) {
502  		fd_install(fd, newfile);
503  		return fd;
504  	}
505  
506  	put_unused_fd(fd);
507  	return PTR_ERR(newfile);
508  }
509  
510  /**
511   *	sock_from_file - Return the &socket bounded to @file.
512   *	@file: file
513   *
514   *	On failure returns %NULL.
515   */
516  
sock_from_file(struct file * file)517  struct socket *sock_from_file(struct file *file)
518  {
519  	if (likely(file->f_op == &socket_file_ops))
520  		return file->private_data;	/* set in sock_alloc_file */
521  
522  	return NULL;
523  }
524  EXPORT_SYMBOL(sock_from_file);
525  
526  /**
527   *	sockfd_lookup - Go from a file number to its socket slot
528   *	@fd: file handle
529   *	@err: pointer to an error code return
530   *
531   *	The file handle passed in is locked and the socket it is bound
532   *	to is returned. If an error occurs the err pointer is overwritten
533   *	with a negative errno code and NULL is returned. The function checks
534   *	for both invalid handles and passing a handle which is not a socket.
535   *
536   *	On a success the socket object pointer is returned.
537   */
538  
sockfd_lookup(int fd,int * err)539  struct socket *sockfd_lookup(int fd, int *err)
540  {
541  	struct file *file;
542  	struct socket *sock;
543  
544  	file = fget(fd);
545  	if (!file) {
546  		*err = -EBADF;
547  		return NULL;
548  	}
549  
550  	sock = sock_from_file(file);
551  	if (!sock) {
552  		*err = -ENOTSOCK;
553  		fput(file);
554  	}
555  	return sock;
556  }
557  EXPORT_SYMBOL(sockfd_lookup);
558  
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)559  static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
560  				size_t size)
561  {
562  	ssize_t len;
563  	ssize_t used = 0;
564  
565  	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
566  	if (len < 0)
567  		return len;
568  	used += len;
569  	if (buffer) {
570  		if (size < used)
571  			return -ERANGE;
572  		buffer += len;
573  	}
574  
575  	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
576  	used += len;
577  	if (buffer) {
578  		if (size < used)
579  			return -ERANGE;
580  		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
581  		buffer += len;
582  	}
583  
584  	return used;
585  }
586  
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)587  static int sockfs_setattr(struct mnt_idmap *idmap,
588  			  struct dentry *dentry, struct iattr *iattr)
589  {
590  	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
591  
592  	if (!err && (iattr->ia_valid & ATTR_UID)) {
593  		struct socket *sock = SOCKET_I(d_inode(dentry));
594  
595  		if (sock->sk)
596  			sock->sk->sk_uid = iattr->ia_uid;
597  		else
598  			err = -ENOENT;
599  	}
600  
601  	return err;
602  }
603  
604  static const struct inode_operations sockfs_inode_ops = {
605  	.listxattr = sockfs_listxattr,
606  	.setattr = sockfs_setattr,
607  };
608  
609  /**
610   *	sock_alloc - allocate a socket
611   *
612   *	Allocate a new inode and socket object. The two are bound together
613   *	and initialised. The socket is then returned. If we are out of inodes
614   *	NULL is returned. This functions uses GFP_KERNEL internally.
615   */
616  
sock_alloc(void)617  struct socket *sock_alloc(void)
618  {
619  	struct inode *inode;
620  	struct socket *sock;
621  
622  	inode = new_inode_pseudo(sock_mnt->mnt_sb);
623  	if (!inode)
624  		return NULL;
625  
626  	sock = SOCKET_I(inode);
627  
628  	inode->i_ino = get_next_ino();
629  	inode->i_mode = S_IFSOCK | S_IRWXUGO;
630  	inode->i_uid = current_fsuid();
631  	inode->i_gid = current_fsgid();
632  	inode->i_op = &sockfs_inode_ops;
633  
634  	return sock;
635  }
636  EXPORT_SYMBOL(sock_alloc);
637  
__sock_release(struct socket * sock,struct inode * inode)638  static void __sock_release(struct socket *sock, struct inode *inode)
639  {
640  	const struct proto_ops *ops = READ_ONCE(sock->ops);
641  
642  	if (ops) {
643  		struct module *owner = ops->owner;
644  
645  		if (inode)
646  			inode_lock(inode);
647  		ops->release(sock);
648  		sock->sk = NULL;
649  		if (inode)
650  			inode_unlock(inode);
651  		sock->ops = NULL;
652  		module_put(owner);
653  	}
654  
655  	if (sock->wq.fasync_list)
656  		pr_err("%s: fasync list not empty!\n", __func__);
657  
658  	if (!sock->file) {
659  		iput(SOCK_INODE(sock));
660  		return;
661  	}
662  	sock->file = NULL;
663  }
664  
665  /**
666   *	sock_release - close a socket
667   *	@sock: socket to close
668   *
669   *	The socket is released from the protocol stack if it has a release
670   *	callback, and the inode is then released if the socket is bound to
671   *	an inode not a file.
672   */
sock_release(struct socket * sock)673  void sock_release(struct socket *sock)
674  {
675  	__sock_release(sock, NULL);
676  }
677  EXPORT_SYMBOL(sock_release);
678  
__sock_tx_timestamp(__u32 tsflags,__u8 * tx_flags)679  void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
680  {
681  	u8 flags = *tx_flags;
682  
683  	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
684  		flags |= SKBTX_HW_TSTAMP;
685  
686  		/* PTP hardware clocks can provide a free running cycle counter
687  		 * as a time base for virtual clocks. Tell driver to use the
688  		 * free running cycle counter for timestamp if socket is bound
689  		 * to virtual clock.
690  		 */
691  		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
692  			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
693  	}
694  
695  	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
696  		flags |= SKBTX_SW_TSTAMP;
697  
698  	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
699  		flags |= SKBTX_SCHED_TSTAMP;
700  
701  	*tx_flags = flags;
702  }
703  EXPORT_SYMBOL(__sock_tx_timestamp);
704  
705  INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
706  					   size_t));
707  INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
708  					    size_t));
709  
call_trace_sock_send_length(struct sock * sk,int ret,int flags)710  static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
711  						 int flags)
712  {
713  	trace_sock_send_length(sk, ret, 0);
714  }
715  
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)716  static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
717  {
718  	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
719  				     inet_sendmsg, sock, msg,
720  				     msg_data_left(msg));
721  	BUG_ON(ret == -EIOCBQUEUED);
722  
723  	if (trace_sock_send_length_enabled())
724  		call_trace_sock_send_length(sock->sk, ret, 0);
725  	return ret;
726  }
727  
__sock_sendmsg(struct socket * sock,struct msghdr * msg)728  static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
729  {
730  	int err = security_socket_sendmsg(sock, msg,
731  					  msg_data_left(msg));
732  
733  	return err ?: sock_sendmsg_nosec(sock, msg);
734  }
735  
736  /**
737   *	sock_sendmsg - send a message through @sock
738   *	@sock: socket
739   *	@msg: message to send
740   *
741   *	Sends @msg through @sock, passing through LSM.
742   *	Returns the number of bytes sent, or an error code.
743   */
sock_sendmsg(struct socket * sock,struct msghdr * msg)744  int sock_sendmsg(struct socket *sock, struct msghdr *msg)
745  {
746  	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
747  	struct sockaddr_storage address;
748  	int save_len = msg->msg_namelen;
749  	int ret;
750  
751  	if (msg->msg_name) {
752  		memcpy(&address, msg->msg_name, msg->msg_namelen);
753  		msg->msg_name = &address;
754  	}
755  
756  	ret = __sock_sendmsg(sock, msg);
757  	msg->msg_name = save_addr;
758  	msg->msg_namelen = save_len;
759  
760  	return ret;
761  }
762  EXPORT_SYMBOL(sock_sendmsg);
763  
764  /**
765   *	kernel_sendmsg - send a message through @sock (kernel-space)
766   *	@sock: socket
767   *	@msg: message header
768   *	@vec: kernel vec
769   *	@num: vec array length
770   *	@size: total message data size
771   *
772   *	Builds the message data with @vec and sends it through @sock.
773   *	Returns the number of bytes sent, or an error code.
774   */
775  
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)776  int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
777  		   struct kvec *vec, size_t num, size_t size)
778  {
779  	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
780  	return sock_sendmsg(sock, msg);
781  }
782  EXPORT_SYMBOL(kernel_sendmsg);
783  
skb_is_err_queue(const struct sk_buff * skb)784  static bool skb_is_err_queue(const struct sk_buff *skb)
785  {
786  	/* pkt_type of skbs enqueued on the error queue are set to
787  	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
788  	 * in recvmsg, since skbs received on a local socket will never
789  	 * have a pkt_type of PACKET_OUTGOING.
790  	 */
791  	return skb->pkt_type == PACKET_OUTGOING;
792  }
793  
794  /* On transmit, software and hardware timestamps are returned independently.
795   * As the two skb clones share the hardware timestamp, which may be updated
796   * before the software timestamp is received, a hardware TX timestamp may be
797   * returned only if there is no software TX timestamp. Ignore false software
798   * timestamps, which may be made in the __sock_recv_timestamp() call when the
799   * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
800   * hardware timestamp.
801   */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)802  static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
803  {
804  	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
805  }
806  
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)807  static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
808  {
809  	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
810  	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
811  	struct net_device *orig_dev;
812  	ktime_t hwtstamp;
813  
814  	rcu_read_lock();
815  	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
816  	if (orig_dev) {
817  		*if_index = orig_dev->ifindex;
818  		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
819  	} else {
820  		hwtstamp = shhwtstamps->hwtstamp;
821  	}
822  	rcu_read_unlock();
823  
824  	return hwtstamp;
825  }
826  
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)827  static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
828  			   int if_index)
829  {
830  	struct scm_ts_pktinfo ts_pktinfo;
831  	struct net_device *orig_dev;
832  
833  	if (!skb_mac_header_was_set(skb))
834  		return;
835  
836  	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
837  
838  	if (!if_index) {
839  		rcu_read_lock();
840  		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
841  		if (orig_dev)
842  			if_index = orig_dev->ifindex;
843  		rcu_read_unlock();
844  	}
845  	ts_pktinfo.if_index = if_index;
846  
847  	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
848  	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
849  		 sizeof(ts_pktinfo), &ts_pktinfo);
850  }
851  
852  /*
853   * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
854   */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)855  void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
856  	struct sk_buff *skb)
857  {
858  	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
859  	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
860  	struct scm_timestamping_internal tss;
861  	int empty = 1, false_tstamp = 0;
862  	struct skb_shared_hwtstamps *shhwtstamps =
863  		skb_hwtstamps(skb);
864  	int if_index;
865  	ktime_t hwtstamp;
866  	u32 tsflags;
867  
868  	/* Race occurred between timestamp enabling and packet
869  	   receiving.  Fill in the current time for now. */
870  	if (need_software_tstamp && skb->tstamp == 0) {
871  		__net_timestamp(skb);
872  		false_tstamp = 1;
873  	}
874  
875  	if (need_software_tstamp) {
876  		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
877  			if (new_tstamp) {
878  				struct __kernel_sock_timeval tv;
879  
880  				skb_get_new_timestamp(skb, &tv);
881  				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
882  					 sizeof(tv), &tv);
883  			} else {
884  				struct __kernel_old_timeval tv;
885  
886  				skb_get_timestamp(skb, &tv);
887  				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
888  					 sizeof(tv), &tv);
889  			}
890  		} else {
891  			if (new_tstamp) {
892  				struct __kernel_timespec ts;
893  
894  				skb_get_new_timestampns(skb, &ts);
895  				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
896  					 sizeof(ts), &ts);
897  			} else {
898  				struct __kernel_old_timespec ts;
899  
900  				skb_get_timestampns(skb, &ts);
901  				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
902  					 sizeof(ts), &ts);
903  			}
904  		}
905  	}
906  
907  	memset(&tss, 0, sizeof(tss));
908  	tsflags = READ_ONCE(sk->sk_tsflags);
909  	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
910  	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
911  	      skb_is_err_queue(skb) ||
912  	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
913  	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
914  		empty = 0;
915  	if (shhwtstamps &&
916  	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
917  	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
918  	      skb_is_err_queue(skb) ||
919  	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
920  	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
921  		if_index = 0;
922  		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
923  			hwtstamp = get_timestamp(sk, skb, &if_index);
924  		else
925  			hwtstamp = shhwtstamps->hwtstamp;
926  
927  		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
928  			hwtstamp = ptp_convert_timestamp(&hwtstamp,
929  							 READ_ONCE(sk->sk_bind_phc));
930  
931  		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
932  			empty = 0;
933  
934  			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
935  			    !skb_is_err_queue(skb))
936  				put_ts_pktinfo(msg, skb, if_index);
937  		}
938  	}
939  	if (!empty) {
940  		if (sock_flag(sk, SOCK_TSTAMP_NEW))
941  			put_cmsg_scm_timestamping64(msg, &tss);
942  		else
943  			put_cmsg_scm_timestamping(msg, &tss);
944  
945  		if (skb_is_err_queue(skb) && skb->len &&
946  		    SKB_EXT_ERR(skb)->opt_stats)
947  			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
948  				 skb->len, skb->data);
949  	}
950  }
951  EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
952  
953  #ifdef CONFIG_WIRELESS
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)954  void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
955  	struct sk_buff *skb)
956  {
957  	int ack;
958  
959  	if (!sock_flag(sk, SOCK_WIFI_STATUS))
960  		return;
961  	if (!skb->wifi_acked_valid)
962  		return;
963  
964  	ack = skb->wifi_acked;
965  
966  	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
967  }
968  EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
969  #endif
970  
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)971  static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
972  				   struct sk_buff *skb)
973  {
974  	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
975  		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
976  			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
977  }
978  
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)979  static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
980  			   struct sk_buff *skb)
981  {
982  	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
983  		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
984  		__u32 mark = skb->mark;
985  
986  		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
987  	}
988  }
989  
sock_recv_priority(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)990  static void sock_recv_priority(struct msghdr *msg, struct sock *sk,
991  			       struct sk_buff *skb)
992  {
993  	if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) {
994  		__u32 priority = skb->priority;
995  
996  		put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority);
997  	}
998  }
999  
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1000  void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1001  		       struct sk_buff *skb)
1002  {
1003  	sock_recv_timestamp(msg, sk, skb);
1004  	sock_recv_drops(msg, sk, skb);
1005  	sock_recv_mark(msg, sk, skb);
1006  	sock_recv_priority(msg, sk, skb);
1007  }
1008  EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1009  
1010  INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1011  					   size_t, int));
1012  INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1013  					    size_t, int));
1014  
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1015  static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1016  {
1017  	trace_sock_recv_length(sk, ret, flags);
1018  }
1019  
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1020  static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1021  				     int flags)
1022  {
1023  	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1024  				     inet6_recvmsg,
1025  				     inet_recvmsg, sock, msg,
1026  				     msg_data_left(msg), flags);
1027  	if (trace_sock_recv_length_enabled())
1028  		call_trace_sock_recv_length(sock->sk, ret, flags);
1029  	return ret;
1030  }
1031  
1032  /**
1033   *	sock_recvmsg - receive a message from @sock
1034   *	@sock: socket
1035   *	@msg: message to receive
1036   *	@flags: message flags
1037   *
1038   *	Receives @msg from @sock, passing through LSM. Returns the total number
1039   *	of bytes received, or an error.
1040   */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1041  int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1042  {
1043  	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1044  
1045  	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1046  }
1047  EXPORT_SYMBOL(sock_recvmsg);
1048  
1049  /**
1050   *	kernel_recvmsg - Receive a message from a socket (kernel space)
1051   *	@sock: The socket to receive the message from
1052   *	@msg: Received message
1053   *	@vec: Input s/g array for message data
1054   *	@num: Size of input s/g array
1055   *	@size: Number of bytes to read
1056   *	@flags: Message flags (MSG_DONTWAIT, etc...)
1057   *
1058   *	On return the msg structure contains the scatter/gather array passed in the
1059   *	vec argument. The array is modified so that it consists of the unfilled
1060   *	portion of the original array.
1061   *
1062   *	The returned value is the total number of bytes received, or an error.
1063   */
1064  
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1065  int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1066  		   struct kvec *vec, size_t num, size_t size, int flags)
1067  {
1068  	msg->msg_control_is_user = false;
1069  	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1070  	return sock_recvmsg(sock, msg, flags);
1071  }
1072  EXPORT_SYMBOL(kernel_recvmsg);
1073  
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1074  static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1075  				struct pipe_inode_info *pipe, size_t len,
1076  				unsigned int flags)
1077  {
1078  	struct socket *sock = file->private_data;
1079  	const struct proto_ops *ops;
1080  
1081  	ops = READ_ONCE(sock->ops);
1082  	if (unlikely(!ops->splice_read))
1083  		return copy_splice_read(file, ppos, pipe, len, flags);
1084  
1085  	return ops->splice_read(sock, ppos, pipe, len, flags);
1086  }
1087  
sock_splice_eof(struct file * file)1088  static void sock_splice_eof(struct file *file)
1089  {
1090  	struct socket *sock = file->private_data;
1091  	const struct proto_ops *ops;
1092  
1093  	ops = READ_ONCE(sock->ops);
1094  	if (ops->splice_eof)
1095  		ops->splice_eof(sock);
1096  }
1097  
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1098  static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1099  {
1100  	struct file *file = iocb->ki_filp;
1101  	struct socket *sock = file->private_data;
1102  	struct msghdr msg = {.msg_iter = *to,
1103  			     .msg_iocb = iocb};
1104  	ssize_t res;
1105  
1106  	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1107  		msg.msg_flags = MSG_DONTWAIT;
1108  
1109  	if (iocb->ki_pos != 0)
1110  		return -ESPIPE;
1111  
1112  	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1113  		return 0;
1114  
1115  	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1116  	*to = msg.msg_iter;
1117  	return res;
1118  }
1119  
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1120  static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1121  {
1122  	struct file *file = iocb->ki_filp;
1123  	struct socket *sock = file->private_data;
1124  	struct msghdr msg = {.msg_iter = *from,
1125  			     .msg_iocb = iocb};
1126  	ssize_t res;
1127  
1128  	if (iocb->ki_pos != 0)
1129  		return -ESPIPE;
1130  
1131  	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1132  		msg.msg_flags = MSG_DONTWAIT;
1133  
1134  	if (sock->type == SOCK_SEQPACKET)
1135  		msg.msg_flags |= MSG_EOR;
1136  
1137  	res = __sock_sendmsg(sock, &msg);
1138  	*from = msg.msg_iter;
1139  	return res;
1140  }
1141  
1142  /*
1143   * Atomic setting of ioctl hooks to avoid race
1144   * with module unload.
1145   */
1146  
1147  static DEFINE_MUTEX(br_ioctl_mutex);
1148  static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1149  			    unsigned int cmd, struct ifreq *ifr,
1150  			    void __user *uarg);
1151  
brioctl_set(int (* hook)(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg))1152  void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1153  			     unsigned int cmd, struct ifreq *ifr,
1154  			     void __user *uarg))
1155  {
1156  	mutex_lock(&br_ioctl_mutex);
1157  	br_ioctl_hook = hook;
1158  	mutex_unlock(&br_ioctl_mutex);
1159  }
1160  EXPORT_SYMBOL(brioctl_set);
1161  
br_ioctl_call(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg)1162  int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1163  		  struct ifreq *ifr, void __user *uarg)
1164  {
1165  	int err = -ENOPKG;
1166  
1167  	if (!br_ioctl_hook)
1168  		request_module("bridge");
1169  
1170  	mutex_lock(&br_ioctl_mutex);
1171  	if (br_ioctl_hook)
1172  		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1173  	mutex_unlock(&br_ioctl_mutex);
1174  
1175  	return err;
1176  }
1177  
1178  static DEFINE_MUTEX(vlan_ioctl_mutex);
1179  static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1180  
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1181  void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1182  {
1183  	mutex_lock(&vlan_ioctl_mutex);
1184  	vlan_ioctl_hook = hook;
1185  	mutex_unlock(&vlan_ioctl_mutex);
1186  }
1187  EXPORT_SYMBOL(vlan_ioctl_set);
1188  
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1189  static long sock_do_ioctl(struct net *net, struct socket *sock,
1190  			  unsigned int cmd, unsigned long arg)
1191  {
1192  	const struct proto_ops *ops = READ_ONCE(sock->ops);
1193  	struct ifreq ifr;
1194  	bool need_copyout;
1195  	int err;
1196  	void __user *argp = (void __user *)arg;
1197  	void __user *data;
1198  
1199  	err = ops->ioctl(sock, cmd, arg);
1200  
1201  	/*
1202  	 * If this ioctl is unknown try to hand it down
1203  	 * to the NIC driver.
1204  	 */
1205  	if (err != -ENOIOCTLCMD)
1206  		return err;
1207  
1208  	if (!is_socket_ioctl_cmd(cmd))
1209  		return -ENOTTY;
1210  
1211  	if (get_user_ifreq(&ifr, &data, argp))
1212  		return -EFAULT;
1213  	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1214  	if (!err && need_copyout)
1215  		if (put_user_ifreq(&ifr, argp))
1216  			return -EFAULT;
1217  
1218  	return err;
1219  }
1220  
1221  /*
1222   *	With an ioctl, arg may well be a user mode pointer, but we don't know
1223   *	what to do with it - that's up to the protocol still.
1224   */
1225  
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1226  static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1227  {
1228  	const struct proto_ops  *ops;
1229  	struct socket *sock;
1230  	struct sock *sk;
1231  	void __user *argp = (void __user *)arg;
1232  	int pid, err;
1233  	struct net *net;
1234  
1235  	sock = file->private_data;
1236  	ops = READ_ONCE(sock->ops);
1237  	sk = sock->sk;
1238  	net = sock_net(sk);
1239  	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1240  		struct ifreq ifr;
1241  		void __user *data;
1242  		bool need_copyout;
1243  		if (get_user_ifreq(&ifr, &data, argp))
1244  			return -EFAULT;
1245  		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1246  		if (!err && need_copyout)
1247  			if (put_user_ifreq(&ifr, argp))
1248  				return -EFAULT;
1249  	} else
1250  #ifdef CONFIG_WEXT_CORE
1251  	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1252  		err = wext_handle_ioctl(net, cmd, argp);
1253  	} else
1254  #endif
1255  		switch (cmd) {
1256  		case FIOSETOWN:
1257  		case SIOCSPGRP:
1258  			err = -EFAULT;
1259  			if (get_user(pid, (int __user *)argp))
1260  				break;
1261  			err = f_setown(sock->file, pid, 1);
1262  			break;
1263  		case FIOGETOWN:
1264  		case SIOCGPGRP:
1265  			err = put_user(f_getown(sock->file),
1266  				       (int __user *)argp);
1267  			break;
1268  		case SIOCGIFBR:
1269  		case SIOCSIFBR:
1270  		case SIOCBRADDBR:
1271  		case SIOCBRDELBR:
1272  			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1273  			break;
1274  		case SIOCGIFVLAN:
1275  		case SIOCSIFVLAN:
1276  			err = -ENOPKG;
1277  			if (!vlan_ioctl_hook)
1278  				request_module("8021q");
1279  
1280  			mutex_lock(&vlan_ioctl_mutex);
1281  			if (vlan_ioctl_hook)
1282  				err = vlan_ioctl_hook(net, argp);
1283  			mutex_unlock(&vlan_ioctl_mutex);
1284  			break;
1285  		case SIOCGSKNS:
1286  			err = -EPERM;
1287  			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1288  				break;
1289  
1290  			err = open_related_ns(&net->ns, get_net_ns);
1291  			break;
1292  		case SIOCGSTAMP_OLD:
1293  		case SIOCGSTAMPNS_OLD:
1294  			if (!ops->gettstamp) {
1295  				err = -ENOIOCTLCMD;
1296  				break;
1297  			}
1298  			err = ops->gettstamp(sock, argp,
1299  					     cmd == SIOCGSTAMP_OLD,
1300  					     !IS_ENABLED(CONFIG_64BIT));
1301  			break;
1302  		case SIOCGSTAMP_NEW:
1303  		case SIOCGSTAMPNS_NEW:
1304  			if (!ops->gettstamp) {
1305  				err = -ENOIOCTLCMD;
1306  				break;
1307  			}
1308  			err = ops->gettstamp(sock, argp,
1309  					     cmd == SIOCGSTAMP_NEW,
1310  					     false);
1311  			break;
1312  
1313  		case SIOCGIFCONF:
1314  			err = dev_ifconf(net, argp);
1315  			break;
1316  
1317  		default:
1318  			err = sock_do_ioctl(net, sock, cmd, arg);
1319  			break;
1320  		}
1321  	return err;
1322  }
1323  
1324  /**
1325   *	sock_create_lite - creates a socket
1326   *	@family: protocol family (AF_INET, ...)
1327   *	@type: communication type (SOCK_STREAM, ...)
1328   *	@protocol: protocol (0, ...)
1329   *	@res: new socket
1330   *
1331   *	Creates a new socket and assigns it to @res, passing through LSM.
1332   *	The new socket initialization is not complete, see kernel_accept().
1333   *	Returns 0 or an error. On failure @res is set to %NULL.
1334   *	This function internally uses GFP_KERNEL.
1335   */
1336  
sock_create_lite(int family,int type,int protocol,struct socket ** res)1337  int sock_create_lite(int family, int type, int protocol, struct socket **res)
1338  {
1339  	int err;
1340  	struct socket *sock = NULL;
1341  
1342  	err = security_socket_create(family, type, protocol, 1);
1343  	if (err)
1344  		goto out;
1345  
1346  	sock = sock_alloc();
1347  	if (!sock) {
1348  		err = -ENOMEM;
1349  		goto out;
1350  	}
1351  
1352  	sock->type = type;
1353  	err = security_socket_post_create(sock, family, type, protocol, 1);
1354  	if (err)
1355  		goto out_release;
1356  
1357  out:
1358  	*res = sock;
1359  	return err;
1360  out_release:
1361  	sock_release(sock);
1362  	sock = NULL;
1363  	goto out;
1364  }
1365  EXPORT_SYMBOL(sock_create_lite);
1366  
1367  /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1368  static __poll_t sock_poll(struct file *file, poll_table *wait)
1369  {
1370  	struct socket *sock = file->private_data;
1371  	const struct proto_ops *ops = READ_ONCE(sock->ops);
1372  	__poll_t events = poll_requested_events(wait), flag = 0;
1373  
1374  	if (!ops->poll)
1375  		return 0;
1376  
1377  	if (sk_can_busy_loop(sock->sk)) {
1378  		/* poll once if requested by the syscall */
1379  		if (events & POLL_BUSY_LOOP)
1380  			sk_busy_loop(sock->sk, 1);
1381  
1382  		/* if this socket can poll_ll, tell the system call */
1383  		flag = POLL_BUSY_LOOP;
1384  	}
1385  
1386  	return ops->poll(file, sock, wait) | flag;
1387  }
1388  
sock_mmap(struct file * file,struct vm_area_struct * vma)1389  static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1390  {
1391  	struct socket *sock = file->private_data;
1392  
1393  	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1394  }
1395  
sock_close(struct inode * inode,struct file * filp)1396  static int sock_close(struct inode *inode, struct file *filp)
1397  {
1398  	__sock_release(SOCKET_I(inode), inode);
1399  	return 0;
1400  }
1401  
1402  /*
1403   *	Update the socket async list
1404   *
1405   *	Fasync_list locking strategy.
1406   *
1407   *	1. fasync_list is modified only under process context socket lock
1408   *	   i.e. under semaphore.
1409   *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1410   *	   or under socket lock
1411   */
1412  
sock_fasync(int fd,struct file * filp,int on)1413  static int sock_fasync(int fd, struct file *filp, int on)
1414  {
1415  	struct socket *sock = filp->private_data;
1416  	struct sock *sk = sock->sk;
1417  	struct socket_wq *wq = &sock->wq;
1418  
1419  	if (sk == NULL)
1420  		return -EINVAL;
1421  
1422  	lock_sock(sk);
1423  	fasync_helper(fd, filp, on, &wq->fasync_list);
1424  
1425  	if (!wq->fasync_list)
1426  		sock_reset_flag(sk, SOCK_FASYNC);
1427  	else
1428  		sock_set_flag(sk, SOCK_FASYNC);
1429  
1430  	release_sock(sk);
1431  	return 0;
1432  }
1433  
1434  /* This function may be called only under rcu_lock */
1435  
sock_wake_async(struct socket_wq * wq,int how,int band)1436  int sock_wake_async(struct socket_wq *wq, int how, int band)
1437  {
1438  	if (!wq || !wq->fasync_list)
1439  		return -1;
1440  
1441  	switch (how) {
1442  	case SOCK_WAKE_WAITD:
1443  		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1444  			break;
1445  		goto call_kill;
1446  	case SOCK_WAKE_SPACE:
1447  		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1448  			break;
1449  		fallthrough;
1450  	case SOCK_WAKE_IO:
1451  call_kill:
1452  		kill_fasync(&wq->fasync_list, SIGIO, band);
1453  		break;
1454  	case SOCK_WAKE_URG:
1455  		kill_fasync(&wq->fasync_list, SIGURG, band);
1456  	}
1457  
1458  	return 0;
1459  }
1460  EXPORT_SYMBOL(sock_wake_async);
1461  
1462  /**
1463   *	__sock_create - creates a socket
1464   *	@net: net namespace
1465   *	@family: protocol family (AF_INET, ...)
1466   *	@type: communication type (SOCK_STREAM, ...)
1467   *	@protocol: protocol (0, ...)
1468   *	@res: new socket
1469   *	@kern: boolean for kernel space sockets
1470   *
1471   *	Creates a new socket and assigns it to @res, passing through LSM.
1472   *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1473   *	be set to true if the socket resides in kernel space.
1474   *	This function internally uses GFP_KERNEL.
1475   */
1476  
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1477  int __sock_create(struct net *net, int family, int type, int protocol,
1478  			 struct socket **res, int kern)
1479  {
1480  	int err;
1481  	struct socket *sock;
1482  	const struct net_proto_family *pf;
1483  
1484  	/*
1485  	 *      Check protocol is in range
1486  	 */
1487  	if (family < 0 || family >= NPROTO)
1488  		return -EAFNOSUPPORT;
1489  	if (type < 0 || type >= SOCK_MAX)
1490  		return -EINVAL;
1491  
1492  	/* Compatibility.
1493  
1494  	   This uglymoron is moved from INET layer to here to avoid
1495  	   deadlock in module load.
1496  	 */
1497  	if (family == PF_INET && type == SOCK_PACKET) {
1498  		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1499  			     current->comm);
1500  		family = PF_PACKET;
1501  	}
1502  
1503  	err = security_socket_create(family, type, protocol, kern);
1504  	if (err)
1505  		return err;
1506  
1507  	/*
1508  	 *	Allocate the socket and allow the family to set things up. if
1509  	 *	the protocol is 0, the family is instructed to select an appropriate
1510  	 *	default.
1511  	 */
1512  	sock = sock_alloc();
1513  	if (!sock) {
1514  		net_warn_ratelimited("socket: no more sockets\n");
1515  		return -ENFILE;	/* Not exactly a match, but its the
1516  				   closest posix thing */
1517  	}
1518  
1519  	sock->type = type;
1520  
1521  #ifdef CONFIG_MODULES
1522  	/* Attempt to load a protocol module if the find failed.
1523  	 *
1524  	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1525  	 * requested real, full-featured networking support upon configuration.
1526  	 * Otherwise module support will break!
1527  	 */
1528  	if (rcu_access_pointer(net_families[family]) == NULL)
1529  		request_module("net-pf-%d", family);
1530  #endif
1531  
1532  	rcu_read_lock();
1533  	pf = rcu_dereference(net_families[family]);
1534  	err = -EAFNOSUPPORT;
1535  	if (!pf)
1536  		goto out_release;
1537  
1538  	/*
1539  	 * We will call the ->create function, that possibly is in a loadable
1540  	 * module, so we have to bump that loadable module refcnt first.
1541  	 */
1542  	if (!try_module_get(pf->owner))
1543  		goto out_release;
1544  
1545  	/* Now protected by module ref count */
1546  	rcu_read_unlock();
1547  
1548  	err = pf->create(net, sock, protocol, kern);
1549  	if (err < 0) {
1550  		/* ->create should release the allocated sock->sk object on error
1551  		 * and make sure sock->sk is set to NULL to avoid use-after-free
1552  		 */
1553  		DEBUG_NET_WARN_ONCE(sock->sk,
1554  				    "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1555  				    pf->create, family, type, protocol);
1556  		goto out_module_put;
1557  	}
1558  
1559  	/*
1560  	 * Now to bump the refcnt of the [loadable] module that owns this
1561  	 * socket at sock_release time we decrement its refcnt.
1562  	 */
1563  	if (!try_module_get(sock->ops->owner))
1564  		goto out_module_busy;
1565  
1566  	/*
1567  	 * Now that we're done with the ->create function, the [loadable]
1568  	 * module can have its refcnt decremented
1569  	 */
1570  	module_put(pf->owner);
1571  	err = security_socket_post_create(sock, family, type, protocol, kern);
1572  	if (err)
1573  		goto out_sock_release;
1574  	*res = sock;
1575  
1576  	return 0;
1577  
1578  out_module_busy:
1579  	err = -EAFNOSUPPORT;
1580  out_module_put:
1581  	sock->ops = NULL;
1582  	module_put(pf->owner);
1583  out_sock_release:
1584  	sock_release(sock);
1585  	return err;
1586  
1587  out_release:
1588  	rcu_read_unlock();
1589  	goto out_sock_release;
1590  }
1591  EXPORT_SYMBOL(__sock_create);
1592  
1593  /**
1594   *	sock_create - creates a socket
1595   *	@family: protocol family (AF_INET, ...)
1596   *	@type: communication type (SOCK_STREAM, ...)
1597   *	@protocol: protocol (0, ...)
1598   *	@res: new socket
1599   *
1600   *	A wrapper around __sock_create().
1601   *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1602   */
1603  
sock_create(int family,int type,int protocol,struct socket ** res)1604  int sock_create(int family, int type, int protocol, struct socket **res)
1605  {
1606  	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1607  }
1608  EXPORT_SYMBOL(sock_create);
1609  
1610  /**
1611   *	sock_create_kern - creates a socket (kernel space)
1612   *	@net: net namespace
1613   *	@family: protocol family (AF_INET, ...)
1614   *	@type: communication type (SOCK_STREAM, ...)
1615   *	@protocol: protocol (0, ...)
1616   *	@res: new socket
1617   *
1618   *	A wrapper around __sock_create().
1619   *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1620   */
1621  
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1622  int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1623  {
1624  	return __sock_create(net, family, type, protocol, res, 1);
1625  }
1626  EXPORT_SYMBOL(sock_create_kern);
1627  
__sys_socket_create(int family,int type,int protocol)1628  static struct socket *__sys_socket_create(int family, int type, int protocol)
1629  {
1630  	struct socket *sock;
1631  	int retval;
1632  
1633  	/* Check the SOCK_* constants for consistency.  */
1634  	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1635  	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1636  	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1637  	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1638  
1639  	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1640  		return ERR_PTR(-EINVAL);
1641  	type &= SOCK_TYPE_MASK;
1642  
1643  	retval = sock_create(family, type, protocol, &sock);
1644  	if (retval < 0)
1645  		return ERR_PTR(retval);
1646  
1647  	return sock;
1648  }
1649  
__sys_socket_file(int family,int type,int protocol)1650  struct file *__sys_socket_file(int family, int type, int protocol)
1651  {
1652  	struct socket *sock;
1653  	int flags;
1654  
1655  	sock = __sys_socket_create(family, type, protocol);
1656  	if (IS_ERR(sock))
1657  		return ERR_CAST(sock);
1658  
1659  	flags = type & ~SOCK_TYPE_MASK;
1660  	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1661  		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1662  
1663  	return sock_alloc_file(sock, flags, NULL);
1664  }
1665  
1666  /*	A hook for bpf progs to attach to and update socket protocol.
1667   *
1668   *	A static noinline declaration here could cause the compiler to
1669   *	optimize away the function. A global noinline declaration will
1670   *	keep the definition, but may optimize away the callsite.
1671   *	Therefore, __weak is needed to ensure that the call is still
1672   *	emitted, by telling the compiler that we don't know what the
1673   *	function might eventually be.
1674   */
1675  
1676  __bpf_hook_start();
1677  
update_socket_protocol(int family,int type,int protocol)1678  __weak noinline int update_socket_protocol(int family, int type, int protocol)
1679  {
1680  	return protocol;
1681  }
1682  
1683  __bpf_hook_end();
1684  
__sys_socket(int family,int type,int protocol)1685  int __sys_socket(int family, int type, int protocol)
1686  {
1687  	struct socket *sock;
1688  	int flags;
1689  
1690  	sock = __sys_socket_create(family, type,
1691  				   update_socket_protocol(family, type, protocol));
1692  	if (IS_ERR(sock))
1693  		return PTR_ERR(sock);
1694  
1695  	flags = type & ~SOCK_TYPE_MASK;
1696  	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1697  		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1698  
1699  	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1700  }
1701  
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1702  SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1703  {
1704  	return __sys_socket(family, type, protocol);
1705  }
1706  
1707  /*
1708   *	Create a pair of connected sockets.
1709   */
1710  
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1711  int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1712  {
1713  	struct socket *sock1, *sock2;
1714  	int fd1, fd2, err;
1715  	struct file *newfile1, *newfile2;
1716  	int flags;
1717  
1718  	flags = type & ~SOCK_TYPE_MASK;
1719  	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1720  		return -EINVAL;
1721  	type &= SOCK_TYPE_MASK;
1722  
1723  	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1724  		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1725  
1726  	/*
1727  	 * reserve descriptors and make sure we won't fail
1728  	 * to return them to userland.
1729  	 */
1730  	fd1 = get_unused_fd_flags(flags);
1731  	if (unlikely(fd1 < 0))
1732  		return fd1;
1733  
1734  	fd2 = get_unused_fd_flags(flags);
1735  	if (unlikely(fd2 < 0)) {
1736  		put_unused_fd(fd1);
1737  		return fd2;
1738  	}
1739  
1740  	err = put_user(fd1, &usockvec[0]);
1741  	if (err)
1742  		goto out;
1743  
1744  	err = put_user(fd2, &usockvec[1]);
1745  	if (err)
1746  		goto out;
1747  
1748  	/*
1749  	 * Obtain the first socket and check if the underlying protocol
1750  	 * supports the socketpair call.
1751  	 */
1752  
1753  	err = sock_create(family, type, protocol, &sock1);
1754  	if (unlikely(err < 0))
1755  		goto out;
1756  
1757  	err = sock_create(family, type, protocol, &sock2);
1758  	if (unlikely(err < 0)) {
1759  		sock_release(sock1);
1760  		goto out;
1761  	}
1762  
1763  	err = security_socket_socketpair(sock1, sock2);
1764  	if (unlikely(err)) {
1765  		sock_release(sock2);
1766  		sock_release(sock1);
1767  		goto out;
1768  	}
1769  
1770  	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1771  	if (unlikely(err < 0)) {
1772  		sock_release(sock2);
1773  		sock_release(sock1);
1774  		goto out;
1775  	}
1776  
1777  	newfile1 = sock_alloc_file(sock1, flags, NULL);
1778  	if (IS_ERR(newfile1)) {
1779  		err = PTR_ERR(newfile1);
1780  		sock_release(sock2);
1781  		goto out;
1782  	}
1783  
1784  	newfile2 = sock_alloc_file(sock2, flags, NULL);
1785  	if (IS_ERR(newfile2)) {
1786  		err = PTR_ERR(newfile2);
1787  		fput(newfile1);
1788  		goto out;
1789  	}
1790  
1791  	audit_fd_pair(fd1, fd2);
1792  
1793  	fd_install(fd1, newfile1);
1794  	fd_install(fd2, newfile2);
1795  	return 0;
1796  
1797  out:
1798  	put_unused_fd(fd2);
1799  	put_unused_fd(fd1);
1800  	return err;
1801  }
1802  
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1803  SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1804  		int __user *, usockvec)
1805  {
1806  	return __sys_socketpair(family, type, protocol, usockvec);
1807  }
1808  
__sys_bind_socket(struct socket * sock,struct sockaddr_storage * address,int addrlen)1809  int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1810  		      int addrlen)
1811  {
1812  	int err;
1813  
1814  	err = security_socket_bind(sock, (struct sockaddr *)address,
1815  				   addrlen);
1816  	if (!err)
1817  		err = READ_ONCE(sock->ops)->bind(sock,
1818  						 (struct sockaddr *)address,
1819  						 addrlen);
1820  	return err;
1821  }
1822  
1823  /*
1824   *	Bind a name to a socket. Nothing much to do here since it's
1825   *	the protocol's responsibility to handle the local address.
1826   *
1827   *	We move the socket address to kernel space before we call
1828   *	the protocol layer (having also checked the address is ok).
1829   */
1830  
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1831  int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1832  {
1833  	struct socket *sock;
1834  	struct sockaddr_storage address;
1835  	CLASS(fd, f)(fd);
1836  	int err;
1837  
1838  	if (fd_empty(f))
1839  		return -EBADF;
1840  	sock = sock_from_file(fd_file(f));
1841  	if (unlikely(!sock))
1842  		return -ENOTSOCK;
1843  
1844  	err = move_addr_to_kernel(umyaddr, addrlen, &address);
1845  	if (unlikely(err))
1846  		return err;
1847  
1848  	return __sys_bind_socket(sock, &address, addrlen);
1849  }
1850  
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1851  SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1852  {
1853  	return __sys_bind(fd, umyaddr, addrlen);
1854  }
1855  
1856  /*
1857   *	Perform a listen. Basically, we allow the protocol to do anything
1858   *	necessary for a listen, and if that works, we mark the socket as
1859   *	ready for listening.
1860   */
__sys_listen_socket(struct socket * sock,int backlog)1861  int __sys_listen_socket(struct socket *sock, int backlog)
1862  {
1863  	int somaxconn, err;
1864  
1865  	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1866  	if ((unsigned int)backlog > somaxconn)
1867  		backlog = somaxconn;
1868  
1869  	err = security_socket_listen(sock, backlog);
1870  	if (!err)
1871  		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1872  	return err;
1873  }
1874  
__sys_listen(int fd,int backlog)1875  int __sys_listen(int fd, int backlog)
1876  {
1877  	CLASS(fd, f)(fd);
1878  	struct socket *sock;
1879  
1880  	if (fd_empty(f))
1881  		return -EBADF;
1882  	sock = sock_from_file(fd_file(f));
1883  	if (unlikely(!sock))
1884  		return -ENOTSOCK;
1885  
1886  	return __sys_listen_socket(sock, backlog);
1887  }
1888  
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1889  SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1890  {
1891  	return __sys_listen(fd, backlog);
1892  }
1893  
do_accept(struct file * file,struct proto_accept_arg * arg,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1894  struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1895  		       struct sockaddr __user *upeer_sockaddr,
1896  		       int __user *upeer_addrlen, int flags)
1897  {
1898  	struct socket *sock, *newsock;
1899  	struct file *newfile;
1900  	int err, len;
1901  	struct sockaddr_storage address;
1902  	const struct proto_ops *ops;
1903  
1904  	sock = sock_from_file(file);
1905  	if (!sock)
1906  		return ERR_PTR(-ENOTSOCK);
1907  
1908  	newsock = sock_alloc();
1909  	if (!newsock)
1910  		return ERR_PTR(-ENFILE);
1911  	ops = READ_ONCE(sock->ops);
1912  
1913  	newsock->type = sock->type;
1914  	newsock->ops = ops;
1915  
1916  	/*
1917  	 * We don't need try_module_get here, as the listening socket (sock)
1918  	 * has the protocol module (sock->ops->owner) held.
1919  	 */
1920  	__module_get(ops->owner);
1921  
1922  	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1923  	if (IS_ERR(newfile))
1924  		return newfile;
1925  
1926  	err = security_socket_accept(sock, newsock);
1927  	if (err)
1928  		goto out_fd;
1929  
1930  	arg->flags |= sock->file->f_flags;
1931  	err = ops->accept(sock, newsock, arg);
1932  	if (err < 0)
1933  		goto out_fd;
1934  
1935  	if (upeer_sockaddr) {
1936  		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1937  		if (len < 0) {
1938  			err = -ECONNABORTED;
1939  			goto out_fd;
1940  		}
1941  		err = move_addr_to_user(&address,
1942  					len, upeer_sockaddr, upeer_addrlen);
1943  		if (err < 0)
1944  			goto out_fd;
1945  	}
1946  
1947  	/* File flags are not inherited via accept() unlike another OSes. */
1948  	return newfile;
1949  out_fd:
1950  	fput(newfile);
1951  	return ERR_PTR(err);
1952  }
1953  
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1954  static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1955  			      int __user *upeer_addrlen, int flags)
1956  {
1957  	struct proto_accept_arg arg = { };
1958  	struct file *newfile;
1959  	int newfd;
1960  
1961  	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1962  		return -EINVAL;
1963  
1964  	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1965  		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1966  
1967  	newfd = get_unused_fd_flags(flags);
1968  	if (unlikely(newfd < 0))
1969  		return newfd;
1970  
1971  	newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1972  			    flags);
1973  	if (IS_ERR(newfile)) {
1974  		put_unused_fd(newfd);
1975  		return PTR_ERR(newfile);
1976  	}
1977  	fd_install(newfd, newfile);
1978  	return newfd;
1979  }
1980  
1981  /*
1982   *	For accept, we attempt to create a new socket, set up the link
1983   *	with the client, wake up the client, then return the new
1984   *	connected fd. We collect the address of the connector in kernel
1985   *	space and move it to user at the very end. This is unclean because
1986   *	we open the socket then return an error.
1987   *
1988   *	1003.1g adds the ability to recvmsg() to query connection pending
1989   *	status to recvmsg. We need to add that support in a way thats
1990   *	clean when we restructure accept also.
1991   */
1992  
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1993  int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1994  		  int __user *upeer_addrlen, int flags)
1995  {
1996  	CLASS(fd, f)(fd);
1997  
1998  	if (fd_empty(f))
1999  		return -EBADF;
2000  	return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2001  					 upeer_addrlen, flags);
2002  }
2003  
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)2004  SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2005  		int __user *, upeer_addrlen, int, flags)
2006  {
2007  	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2008  }
2009  
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2010  SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2011  		int __user *, upeer_addrlen)
2012  {
2013  	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2014  }
2015  
2016  /*
2017   *	Attempt to connect to a socket with the server address.  The address
2018   *	is in user space so we verify it is OK and move it to kernel space.
2019   *
2020   *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2021   *	break bindings
2022   *
2023   *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2024   *	other SEQPACKET protocols that take time to connect() as it doesn't
2025   *	include the -EINPROGRESS status for such sockets.
2026   */
2027  
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2028  int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2029  		       int addrlen, int file_flags)
2030  {
2031  	struct socket *sock;
2032  	int err;
2033  
2034  	sock = sock_from_file(file);
2035  	if (!sock) {
2036  		err = -ENOTSOCK;
2037  		goto out;
2038  	}
2039  
2040  	err =
2041  	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2042  	if (err)
2043  		goto out;
2044  
2045  	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2046  				addrlen, sock->file->f_flags | file_flags);
2047  out:
2048  	return err;
2049  }
2050  
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2051  int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2052  {
2053  	struct sockaddr_storage address;
2054  	CLASS(fd, f)(fd);
2055  	int ret;
2056  
2057  	if (fd_empty(f))
2058  		return -EBADF;
2059  
2060  	ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2061  	if (ret)
2062  		return ret;
2063  
2064  	return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2065  }
2066  
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2067  SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2068  		int, addrlen)
2069  {
2070  	return __sys_connect(fd, uservaddr, addrlen);
2071  }
2072  
2073  /*
2074   *	Get the local address ('name') of a socket object. Move the obtained
2075   *	name to user space.
2076   */
2077  
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2078  int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2079  		      int __user *usockaddr_len)
2080  {
2081  	struct socket *sock;
2082  	struct sockaddr_storage address;
2083  	CLASS(fd, f)(fd);
2084  	int err;
2085  
2086  	if (fd_empty(f))
2087  		return -EBADF;
2088  	sock = sock_from_file(fd_file(f));
2089  	if (unlikely(!sock))
2090  		return -ENOTSOCK;
2091  
2092  	err = security_socket_getsockname(sock);
2093  	if (err)
2094  		return err;
2095  
2096  	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2097  	if (err < 0)
2098  		return err;
2099  
2100  	/* "err" is actually length in this case */
2101  	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2102  }
2103  
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2104  SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2105  		int __user *, usockaddr_len)
2106  {
2107  	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2108  }
2109  
2110  /*
2111   *	Get the remote address ('name') of a socket object. Move the obtained
2112   *	name to user space.
2113   */
2114  
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2115  int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2116  		      int __user *usockaddr_len)
2117  {
2118  	struct socket *sock;
2119  	struct sockaddr_storage address;
2120  	CLASS(fd, f)(fd);
2121  	int err;
2122  
2123  	if (fd_empty(f))
2124  		return -EBADF;
2125  	sock = sock_from_file(fd_file(f));
2126  	if (unlikely(!sock))
2127  		return -ENOTSOCK;
2128  
2129  	err = security_socket_getpeername(sock);
2130  	if (err)
2131  		return err;
2132  
2133  	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2134  	if (err < 0)
2135  		return err;
2136  
2137  	/* "err" is actually length in this case */
2138  	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2139  }
2140  
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2141  SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2142  		int __user *, usockaddr_len)
2143  {
2144  	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2145  }
2146  
2147  /*
2148   *	Send a datagram to a given address. We move the address into kernel
2149   *	space and check the user space data area is readable before invoking
2150   *	the protocol.
2151   */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2152  int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2153  		 struct sockaddr __user *addr,  int addr_len)
2154  {
2155  	struct socket *sock;
2156  	struct sockaddr_storage address;
2157  	int err;
2158  	struct msghdr msg;
2159  
2160  	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2161  	if (unlikely(err))
2162  		return err;
2163  
2164  	CLASS(fd, f)(fd);
2165  	if (fd_empty(f))
2166  		return -EBADF;
2167  	sock = sock_from_file(fd_file(f));
2168  	if (unlikely(!sock))
2169  		return -ENOTSOCK;
2170  
2171  	msg.msg_name = NULL;
2172  	msg.msg_control = NULL;
2173  	msg.msg_controllen = 0;
2174  	msg.msg_namelen = 0;
2175  	msg.msg_ubuf = NULL;
2176  	if (addr) {
2177  		err = move_addr_to_kernel(addr, addr_len, &address);
2178  		if (err < 0)
2179  			return err;
2180  		msg.msg_name = (struct sockaddr *)&address;
2181  		msg.msg_namelen = addr_len;
2182  	}
2183  	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2184  	if (sock->file->f_flags & O_NONBLOCK)
2185  		flags |= MSG_DONTWAIT;
2186  	msg.msg_flags = flags;
2187  	return __sock_sendmsg(sock, &msg);
2188  }
2189  
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2190  SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2191  		unsigned int, flags, struct sockaddr __user *, addr,
2192  		int, addr_len)
2193  {
2194  	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2195  }
2196  
2197  /*
2198   *	Send a datagram down a socket.
2199   */
2200  
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2201  SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2202  		unsigned int, flags)
2203  {
2204  	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2205  }
2206  
2207  /*
2208   *	Receive a frame from the socket and optionally record the address of the
2209   *	sender. We verify the buffers are writable and if needed move the
2210   *	sender address from kernel to user space.
2211   */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2212  int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2213  		   struct sockaddr __user *addr, int __user *addr_len)
2214  {
2215  	struct sockaddr_storage address;
2216  	struct msghdr msg = {
2217  		/* Save some cycles and don't copy the address if not needed */
2218  		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2219  	};
2220  	struct socket *sock;
2221  	int err, err2;
2222  
2223  	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2224  	if (unlikely(err))
2225  		return err;
2226  
2227  	CLASS(fd, f)(fd);
2228  
2229  	if (fd_empty(f))
2230  		return -EBADF;
2231  	sock = sock_from_file(fd_file(f));
2232  	if (unlikely(!sock))
2233  		return -ENOTSOCK;
2234  
2235  	if (sock->file->f_flags & O_NONBLOCK)
2236  		flags |= MSG_DONTWAIT;
2237  	err = sock_recvmsg(sock, &msg, flags);
2238  
2239  	if (err >= 0 && addr != NULL) {
2240  		err2 = move_addr_to_user(&address,
2241  					 msg.msg_namelen, addr, addr_len);
2242  		if (err2 < 0)
2243  			err = err2;
2244  	}
2245  	return err;
2246  }
2247  
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2248  SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2249  		unsigned int, flags, struct sockaddr __user *, addr,
2250  		int __user *, addr_len)
2251  {
2252  	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2253  }
2254  
2255  /*
2256   *	Receive a datagram from a socket.
2257   */
2258  
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2259  SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2260  		unsigned int, flags)
2261  {
2262  	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2263  }
2264  
sock_use_custom_sol_socket(const struct socket * sock)2265  static bool sock_use_custom_sol_socket(const struct socket *sock)
2266  {
2267  	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2268  }
2269  
do_sock_setsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,int optlen)2270  int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2271  		       int optname, sockptr_t optval, int optlen)
2272  {
2273  	const struct proto_ops *ops;
2274  	char *kernel_optval = NULL;
2275  	int err;
2276  
2277  	if (optlen < 0)
2278  		return -EINVAL;
2279  
2280  	err = security_socket_setsockopt(sock, level, optname);
2281  	if (err)
2282  		goto out_put;
2283  
2284  	if (!compat)
2285  		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2286  						     optval, &optlen,
2287  						     &kernel_optval);
2288  	if (err < 0)
2289  		goto out_put;
2290  	if (err > 0) {
2291  		err = 0;
2292  		goto out_put;
2293  	}
2294  
2295  	if (kernel_optval)
2296  		optval = KERNEL_SOCKPTR(kernel_optval);
2297  	ops = READ_ONCE(sock->ops);
2298  	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2299  		err = sock_setsockopt(sock, level, optname, optval, optlen);
2300  	else if (unlikely(!ops->setsockopt))
2301  		err = -EOPNOTSUPP;
2302  	else
2303  		err = ops->setsockopt(sock, level, optname, optval,
2304  					    optlen);
2305  	kfree(kernel_optval);
2306  out_put:
2307  	return err;
2308  }
2309  EXPORT_SYMBOL(do_sock_setsockopt);
2310  
2311  /* Set a socket option. Because we don't know the option lengths we have
2312   * to pass the user mode parameter for the protocols to sort out.
2313   */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2314  int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2315  		     int optlen)
2316  {
2317  	sockptr_t optval = USER_SOCKPTR(user_optval);
2318  	bool compat = in_compat_syscall();
2319  	struct socket *sock;
2320  	CLASS(fd, f)(fd);
2321  
2322  	if (fd_empty(f))
2323  		return -EBADF;
2324  	sock = sock_from_file(fd_file(f));
2325  	if (unlikely(!sock))
2326  		return -ENOTSOCK;
2327  
2328  	return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2329  }
2330  
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2331  SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2332  		char __user *, optval, int, optlen)
2333  {
2334  	return __sys_setsockopt(fd, level, optname, optval, optlen);
2335  }
2336  
2337  INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2338  							 int optname));
2339  
do_sock_getsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,sockptr_t optlen)2340  int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2341  		       int optname, sockptr_t optval, sockptr_t optlen)
2342  {
2343  	int max_optlen __maybe_unused = 0;
2344  	const struct proto_ops *ops;
2345  	int err;
2346  
2347  	err = security_socket_getsockopt(sock, level, optname);
2348  	if (err)
2349  		return err;
2350  
2351  	if (!compat)
2352  		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2353  
2354  	ops = READ_ONCE(sock->ops);
2355  	if (level == SOL_SOCKET) {
2356  		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2357  	} else if (unlikely(!ops->getsockopt)) {
2358  		err = -EOPNOTSUPP;
2359  	} else {
2360  		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2361  			      "Invalid argument type"))
2362  			return -EOPNOTSUPP;
2363  
2364  		err = ops->getsockopt(sock, level, optname, optval.user,
2365  				      optlen.user);
2366  	}
2367  
2368  	if (!compat)
2369  		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2370  						     optval, optlen, max_optlen,
2371  						     err);
2372  
2373  	return err;
2374  }
2375  EXPORT_SYMBOL(do_sock_getsockopt);
2376  
2377  /*
2378   *	Get a socket option. Because we don't know the option lengths we have
2379   *	to pass a user mode parameter for the protocols to sort out.
2380   */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2381  int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2382  		int __user *optlen)
2383  {
2384  	struct socket *sock;
2385  	CLASS(fd, f)(fd);
2386  
2387  	if (fd_empty(f))
2388  		return -EBADF;
2389  	sock = sock_from_file(fd_file(f));
2390  	if (unlikely(!sock))
2391  		return -ENOTSOCK;
2392  
2393  	return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2394  				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2395  }
2396  
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2397  SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2398  		char __user *, optval, int __user *, optlen)
2399  {
2400  	return __sys_getsockopt(fd, level, optname, optval, optlen);
2401  }
2402  
2403  /*
2404   *	Shutdown a socket.
2405   */
2406  
__sys_shutdown_sock(struct socket * sock,int how)2407  int __sys_shutdown_sock(struct socket *sock, int how)
2408  {
2409  	int err;
2410  
2411  	err = security_socket_shutdown(sock, how);
2412  	if (!err)
2413  		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2414  
2415  	return err;
2416  }
2417  
__sys_shutdown(int fd,int how)2418  int __sys_shutdown(int fd, int how)
2419  {
2420  	struct socket *sock;
2421  	CLASS(fd, f)(fd);
2422  
2423  	if (fd_empty(f))
2424  		return -EBADF;
2425  	sock = sock_from_file(fd_file(f));
2426  	if (unlikely(!sock))
2427  		return -ENOTSOCK;
2428  
2429  	return __sys_shutdown_sock(sock, how);
2430  }
2431  
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2432  SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2433  {
2434  	return __sys_shutdown(fd, how);
2435  }
2436  
2437  /* A couple of helpful macros for getting the address of the 32/64 bit
2438   * fields which are the same type (int / unsigned) on our platforms.
2439   */
2440  #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2441  #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2442  #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2443  
2444  struct used_address {
2445  	struct sockaddr_storage name;
2446  	unsigned int name_len;
2447  };
2448  
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2449  int __copy_msghdr(struct msghdr *kmsg,
2450  		  struct user_msghdr *msg,
2451  		  struct sockaddr __user **save_addr)
2452  {
2453  	ssize_t err;
2454  
2455  	kmsg->msg_control_is_user = true;
2456  	kmsg->msg_get_inq = 0;
2457  	kmsg->msg_control_user = msg->msg_control;
2458  	kmsg->msg_controllen = msg->msg_controllen;
2459  	kmsg->msg_flags = msg->msg_flags;
2460  
2461  	kmsg->msg_namelen = msg->msg_namelen;
2462  	if (!msg->msg_name)
2463  		kmsg->msg_namelen = 0;
2464  
2465  	if (kmsg->msg_namelen < 0)
2466  		return -EINVAL;
2467  
2468  	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2469  		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2470  
2471  	if (save_addr)
2472  		*save_addr = msg->msg_name;
2473  
2474  	if (msg->msg_name && kmsg->msg_namelen) {
2475  		if (!save_addr) {
2476  			err = move_addr_to_kernel(msg->msg_name,
2477  						  kmsg->msg_namelen,
2478  						  kmsg->msg_name);
2479  			if (err < 0)
2480  				return err;
2481  		}
2482  	} else {
2483  		kmsg->msg_name = NULL;
2484  		kmsg->msg_namelen = 0;
2485  	}
2486  
2487  	if (msg->msg_iovlen > UIO_MAXIOV)
2488  		return -EMSGSIZE;
2489  
2490  	kmsg->msg_iocb = NULL;
2491  	kmsg->msg_ubuf = NULL;
2492  	return 0;
2493  }
2494  
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2495  static int copy_msghdr_from_user(struct msghdr *kmsg,
2496  				 struct user_msghdr __user *umsg,
2497  				 struct sockaddr __user **save_addr,
2498  				 struct iovec **iov)
2499  {
2500  	struct user_msghdr msg;
2501  	ssize_t err;
2502  
2503  	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2504  		return -EFAULT;
2505  
2506  	err = __copy_msghdr(kmsg, &msg, save_addr);
2507  	if (err)
2508  		return err;
2509  
2510  	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2511  			    msg.msg_iov, msg.msg_iovlen,
2512  			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2513  	return err < 0 ? err : 0;
2514  }
2515  
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2516  static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2517  			   unsigned int flags, struct used_address *used_address,
2518  			   unsigned int allowed_msghdr_flags)
2519  {
2520  	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2521  				__aligned(sizeof(__kernel_size_t));
2522  	/* 20 is size of ipv6_pktinfo */
2523  	unsigned char *ctl_buf = ctl;
2524  	int ctl_len;
2525  	ssize_t err;
2526  
2527  	err = -ENOBUFS;
2528  
2529  	if (msg_sys->msg_controllen > INT_MAX)
2530  		goto out;
2531  	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2532  	ctl_len = msg_sys->msg_controllen;
2533  	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2534  		err =
2535  		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2536  						     sizeof(ctl));
2537  		if (err)
2538  			goto out;
2539  		ctl_buf = msg_sys->msg_control;
2540  		ctl_len = msg_sys->msg_controllen;
2541  	} else if (ctl_len) {
2542  		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2543  			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2544  		if (ctl_len > sizeof(ctl)) {
2545  			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2546  			if (ctl_buf == NULL)
2547  				goto out;
2548  		}
2549  		err = -EFAULT;
2550  		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2551  			goto out_freectl;
2552  		msg_sys->msg_control = ctl_buf;
2553  		msg_sys->msg_control_is_user = false;
2554  	}
2555  	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2556  	msg_sys->msg_flags = flags;
2557  
2558  	if (sock->file->f_flags & O_NONBLOCK)
2559  		msg_sys->msg_flags |= MSG_DONTWAIT;
2560  	/*
2561  	 * If this is sendmmsg() and current destination address is same as
2562  	 * previously succeeded address, omit asking LSM's decision.
2563  	 * used_address->name_len is initialized to UINT_MAX so that the first
2564  	 * destination address never matches.
2565  	 */
2566  	if (used_address && msg_sys->msg_name &&
2567  	    used_address->name_len == msg_sys->msg_namelen &&
2568  	    !memcmp(&used_address->name, msg_sys->msg_name,
2569  		    used_address->name_len)) {
2570  		err = sock_sendmsg_nosec(sock, msg_sys);
2571  		goto out_freectl;
2572  	}
2573  	err = __sock_sendmsg(sock, msg_sys);
2574  	/*
2575  	 * If this is sendmmsg() and sending to current destination address was
2576  	 * successful, remember it.
2577  	 */
2578  	if (used_address && err >= 0) {
2579  		used_address->name_len = msg_sys->msg_namelen;
2580  		if (msg_sys->msg_name)
2581  			memcpy(&used_address->name, msg_sys->msg_name,
2582  			       used_address->name_len);
2583  	}
2584  
2585  out_freectl:
2586  	if (ctl_buf != ctl)
2587  		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2588  out:
2589  	return err;
2590  }
2591  
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2592  static int sendmsg_copy_msghdr(struct msghdr *msg,
2593  			       struct user_msghdr __user *umsg, unsigned flags,
2594  			       struct iovec **iov)
2595  {
2596  	int err;
2597  
2598  	if (flags & MSG_CMSG_COMPAT) {
2599  		struct compat_msghdr __user *msg_compat;
2600  
2601  		msg_compat = (struct compat_msghdr __user *) umsg;
2602  		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2603  	} else {
2604  		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2605  	}
2606  	if (err < 0)
2607  		return err;
2608  
2609  	return 0;
2610  }
2611  
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2612  static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2613  			 struct msghdr *msg_sys, unsigned int flags,
2614  			 struct used_address *used_address,
2615  			 unsigned int allowed_msghdr_flags)
2616  {
2617  	struct sockaddr_storage address;
2618  	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2619  	ssize_t err;
2620  
2621  	msg_sys->msg_name = &address;
2622  
2623  	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2624  	if (err < 0)
2625  		return err;
2626  
2627  	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2628  				allowed_msghdr_flags);
2629  	kfree(iov);
2630  	return err;
2631  }
2632  
2633  /*
2634   *	BSD sendmsg interface
2635   */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2636  long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2637  			unsigned int flags)
2638  {
2639  	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2640  }
2641  
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2642  long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2643  		   bool forbid_cmsg_compat)
2644  {
2645  	struct msghdr msg_sys;
2646  	struct socket *sock;
2647  
2648  	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2649  		return -EINVAL;
2650  
2651  	CLASS(fd, f)(fd);
2652  
2653  	if (fd_empty(f))
2654  		return -EBADF;
2655  	sock = sock_from_file(fd_file(f));
2656  	if (unlikely(!sock))
2657  		return -ENOTSOCK;
2658  
2659  	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2660  }
2661  
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2662  SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2663  {
2664  	return __sys_sendmsg(fd, msg, flags, true);
2665  }
2666  
2667  /*
2668   *	Linux sendmmsg interface
2669   */
2670  
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2671  int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2672  		   unsigned int flags, bool forbid_cmsg_compat)
2673  {
2674  	int err, datagrams;
2675  	struct socket *sock;
2676  	struct mmsghdr __user *entry;
2677  	struct compat_mmsghdr __user *compat_entry;
2678  	struct msghdr msg_sys;
2679  	struct used_address used_address;
2680  	unsigned int oflags = flags;
2681  
2682  	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2683  		return -EINVAL;
2684  
2685  	if (vlen > UIO_MAXIOV)
2686  		vlen = UIO_MAXIOV;
2687  
2688  	datagrams = 0;
2689  
2690  	CLASS(fd, f)(fd);
2691  
2692  	if (fd_empty(f))
2693  		return -EBADF;
2694  	sock = sock_from_file(fd_file(f));
2695  	if (unlikely(!sock))
2696  		return -ENOTSOCK;
2697  
2698  	used_address.name_len = UINT_MAX;
2699  	entry = mmsg;
2700  	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2701  	err = 0;
2702  	flags |= MSG_BATCH;
2703  
2704  	while (datagrams < vlen) {
2705  		if (datagrams == vlen - 1)
2706  			flags = oflags;
2707  
2708  		if (MSG_CMSG_COMPAT & flags) {
2709  			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2710  					     &msg_sys, flags, &used_address, MSG_EOR);
2711  			if (err < 0)
2712  				break;
2713  			err = __put_user(err, &compat_entry->msg_len);
2714  			++compat_entry;
2715  		} else {
2716  			err = ___sys_sendmsg(sock,
2717  					     (struct user_msghdr __user *)entry,
2718  					     &msg_sys, flags, &used_address, MSG_EOR);
2719  			if (err < 0)
2720  				break;
2721  			err = put_user(err, &entry->msg_len);
2722  			++entry;
2723  		}
2724  
2725  		if (err)
2726  			break;
2727  		++datagrams;
2728  		if (msg_data_left(&msg_sys))
2729  			break;
2730  		cond_resched();
2731  	}
2732  
2733  	/* We only return an error if no datagrams were able to be sent */
2734  	if (datagrams != 0)
2735  		return datagrams;
2736  
2737  	return err;
2738  }
2739  
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2740  SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2741  		unsigned int, vlen, unsigned int, flags)
2742  {
2743  	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2744  }
2745  
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2746  static int recvmsg_copy_msghdr(struct msghdr *msg,
2747  			       struct user_msghdr __user *umsg, unsigned flags,
2748  			       struct sockaddr __user **uaddr,
2749  			       struct iovec **iov)
2750  {
2751  	ssize_t err;
2752  
2753  	if (MSG_CMSG_COMPAT & flags) {
2754  		struct compat_msghdr __user *msg_compat;
2755  
2756  		msg_compat = (struct compat_msghdr __user *) umsg;
2757  		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2758  	} else {
2759  		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2760  	}
2761  	if (err < 0)
2762  		return err;
2763  
2764  	return 0;
2765  }
2766  
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2767  static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2768  			   struct user_msghdr __user *msg,
2769  			   struct sockaddr __user *uaddr,
2770  			   unsigned int flags, int nosec)
2771  {
2772  	struct compat_msghdr __user *msg_compat =
2773  					(struct compat_msghdr __user *) msg;
2774  	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2775  	struct sockaddr_storage addr;
2776  	unsigned long cmsg_ptr;
2777  	int len;
2778  	ssize_t err;
2779  
2780  	msg_sys->msg_name = &addr;
2781  	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2782  	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2783  
2784  	/* We assume all kernel code knows the size of sockaddr_storage */
2785  	msg_sys->msg_namelen = 0;
2786  
2787  	if (sock->file->f_flags & O_NONBLOCK)
2788  		flags |= MSG_DONTWAIT;
2789  
2790  	if (unlikely(nosec))
2791  		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2792  	else
2793  		err = sock_recvmsg(sock, msg_sys, flags);
2794  
2795  	if (err < 0)
2796  		goto out;
2797  	len = err;
2798  
2799  	if (uaddr != NULL) {
2800  		err = move_addr_to_user(&addr,
2801  					msg_sys->msg_namelen, uaddr,
2802  					uaddr_len);
2803  		if (err < 0)
2804  			goto out;
2805  	}
2806  	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2807  			 COMPAT_FLAGS(msg));
2808  	if (err)
2809  		goto out;
2810  	if (MSG_CMSG_COMPAT & flags)
2811  		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2812  				 &msg_compat->msg_controllen);
2813  	else
2814  		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2815  				 &msg->msg_controllen);
2816  	if (err)
2817  		goto out;
2818  	err = len;
2819  out:
2820  	return err;
2821  }
2822  
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2823  static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2824  			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2825  {
2826  	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2827  	/* user mode address pointers */
2828  	struct sockaddr __user *uaddr;
2829  	ssize_t err;
2830  
2831  	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2832  	if (err < 0)
2833  		return err;
2834  
2835  	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2836  	kfree(iov);
2837  	return err;
2838  }
2839  
2840  /*
2841   *	BSD recvmsg interface
2842   */
2843  
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2844  long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2845  			struct user_msghdr __user *umsg,
2846  			struct sockaddr __user *uaddr, unsigned int flags)
2847  {
2848  	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2849  }
2850  
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2851  long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2852  		   bool forbid_cmsg_compat)
2853  {
2854  	struct msghdr msg_sys;
2855  	struct socket *sock;
2856  
2857  	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2858  		return -EINVAL;
2859  
2860  	CLASS(fd, f)(fd);
2861  
2862  	if (fd_empty(f))
2863  		return -EBADF;
2864  	sock = sock_from_file(fd_file(f));
2865  	if (unlikely(!sock))
2866  		return -ENOTSOCK;
2867  
2868  	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2869  }
2870  
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2871  SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2872  		unsigned int, flags)
2873  {
2874  	return __sys_recvmsg(fd, msg, flags, true);
2875  }
2876  
2877  /*
2878   *     Linux recvmmsg interface
2879   */
2880  
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2881  static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2882  			  unsigned int vlen, unsigned int flags,
2883  			  struct timespec64 *timeout)
2884  {
2885  	int err = 0, datagrams;
2886  	struct socket *sock;
2887  	struct mmsghdr __user *entry;
2888  	struct compat_mmsghdr __user *compat_entry;
2889  	struct msghdr msg_sys;
2890  	struct timespec64 end_time;
2891  	struct timespec64 timeout64;
2892  
2893  	if (timeout &&
2894  	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2895  				    timeout->tv_nsec))
2896  		return -EINVAL;
2897  
2898  	datagrams = 0;
2899  
2900  	CLASS(fd, f)(fd);
2901  
2902  	if (fd_empty(f))
2903  		return -EBADF;
2904  	sock = sock_from_file(fd_file(f));
2905  	if (unlikely(!sock))
2906  		return -ENOTSOCK;
2907  
2908  	if (likely(!(flags & MSG_ERRQUEUE))) {
2909  		err = sock_error(sock->sk);
2910  		if (err)
2911  			return err;
2912  	}
2913  
2914  	entry = mmsg;
2915  	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2916  
2917  	while (datagrams < vlen) {
2918  		/*
2919  		 * No need to ask LSM for more than the first datagram.
2920  		 */
2921  		if (MSG_CMSG_COMPAT & flags) {
2922  			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2923  					     &msg_sys, flags & ~MSG_WAITFORONE,
2924  					     datagrams);
2925  			if (err < 0)
2926  				break;
2927  			err = __put_user(err, &compat_entry->msg_len);
2928  			++compat_entry;
2929  		} else {
2930  			err = ___sys_recvmsg(sock,
2931  					     (struct user_msghdr __user *)entry,
2932  					     &msg_sys, flags & ~MSG_WAITFORONE,
2933  					     datagrams);
2934  			if (err < 0)
2935  				break;
2936  			err = put_user(err, &entry->msg_len);
2937  			++entry;
2938  		}
2939  
2940  		if (err)
2941  			break;
2942  		++datagrams;
2943  
2944  		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2945  		if (flags & MSG_WAITFORONE)
2946  			flags |= MSG_DONTWAIT;
2947  
2948  		if (timeout) {
2949  			ktime_get_ts64(&timeout64);
2950  			*timeout = timespec64_sub(end_time, timeout64);
2951  			if (timeout->tv_sec < 0) {
2952  				timeout->tv_sec = timeout->tv_nsec = 0;
2953  				break;
2954  			}
2955  
2956  			/* Timeout, return less than vlen datagrams */
2957  			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2958  				break;
2959  		}
2960  
2961  		/* Out of band data, return right away */
2962  		if (msg_sys.msg_flags & MSG_OOB)
2963  			break;
2964  		cond_resched();
2965  	}
2966  
2967  	if (err == 0)
2968  		return datagrams;
2969  
2970  	if (datagrams == 0)
2971  		return err;
2972  
2973  	/*
2974  	 * We may return less entries than requested (vlen) if the
2975  	 * sock is non block and there aren't enough datagrams...
2976  	 */
2977  	if (err != -EAGAIN) {
2978  		/*
2979  		 * ... or  if recvmsg returns an error after we
2980  		 * received some datagrams, where we record the
2981  		 * error to return on the next call or if the
2982  		 * app asks about it using getsockopt(SO_ERROR).
2983  		 */
2984  		WRITE_ONCE(sock->sk->sk_err, -err);
2985  	}
2986  	return datagrams;
2987  }
2988  
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2989  int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2990  		   unsigned int vlen, unsigned int flags,
2991  		   struct __kernel_timespec __user *timeout,
2992  		   struct old_timespec32 __user *timeout32)
2993  {
2994  	int datagrams;
2995  	struct timespec64 timeout_sys;
2996  
2997  	if (timeout && get_timespec64(&timeout_sys, timeout))
2998  		return -EFAULT;
2999  
3000  	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3001  		return -EFAULT;
3002  
3003  	if (!timeout && !timeout32)
3004  		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3005  
3006  	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3007  
3008  	if (datagrams <= 0)
3009  		return datagrams;
3010  
3011  	if (timeout && put_timespec64(&timeout_sys, timeout))
3012  		datagrams = -EFAULT;
3013  
3014  	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3015  		datagrams = -EFAULT;
3016  
3017  	return datagrams;
3018  }
3019  
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3020  SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3021  		unsigned int, vlen, unsigned int, flags,
3022  		struct __kernel_timespec __user *, timeout)
3023  {
3024  	if (flags & MSG_CMSG_COMPAT)
3025  		return -EINVAL;
3026  
3027  	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3028  }
3029  
3030  #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3031  SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3032  		unsigned int, vlen, unsigned int, flags,
3033  		struct old_timespec32 __user *, timeout)
3034  {
3035  	if (flags & MSG_CMSG_COMPAT)
3036  		return -EINVAL;
3037  
3038  	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3039  }
3040  #endif
3041  
3042  #ifdef __ARCH_WANT_SYS_SOCKETCALL
3043  /* Argument list sizes for sys_socketcall */
3044  #define AL(x) ((x) * sizeof(unsigned long))
3045  static const unsigned char nargs[21] = {
3046  	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3047  	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3048  	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3049  	AL(4), AL(5), AL(4)
3050  };
3051  
3052  #undef AL
3053  
3054  /*
3055   *	System call vectors.
3056   *
3057   *	Argument checking cleaned up. Saved 20% in size.
3058   *  This function doesn't need to set the kernel lock because
3059   *  it is set by the callees.
3060   */
3061  
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3062  SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3063  {
3064  	unsigned long a[AUDITSC_ARGS];
3065  	unsigned long a0, a1;
3066  	int err;
3067  	unsigned int len;
3068  
3069  	if (call < 1 || call > SYS_SENDMMSG)
3070  		return -EINVAL;
3071  	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3072  
3073  	len = nargs[call];
3074  	if (len > sizeof(a))
3075  		return -EINVAL;
3076  
3077  	/* copy_from_user should be SMP safe. */
3078  	if (copy_from_user(a, args, len))
3079  		return -EFAULT;
3080  
3081  	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3082  	if (err)
3083  		return err;
3084  
3085  	a0 = a[0];
3086  	a1 = a[1];
3087  
3088  	switch (call) {
3089  	case SYS_SOCKET:
3090  		err = __sys_socket(a0, a1, a[2]);
3091  		break;
3092  	case SYS_BIND:
3093  		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3094  		break;
3095  	case SYS_CONNECT:
3096  		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3097  		break;
3098  	case SYS_LISTEN:
3099  		err = __sys_listen(a0, a1);
3100  		break;
3101  	case SYS_ACCEPT:
3102  		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3103  				    (int __user *)a[2], 0);
3104  		break;
3105  	case SYS_GETSOCKNAME:
3106  		err =
3107  		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3108  				      (int __user *)a[2]);
3109  		break;
3110  	case SYS_GETPEERNAME:
3111  		err =
3112  		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3113  				      (int __user *)a[2]);
3114  		break;
3115  	case SYS_SOCKETPAIR:
3116  		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3117  		break;
3118  	case SYS_SEND:
3119  		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3120  				   NULL, 0);
3121  		break;
3122  	case SYS_SENDTO:
3123  		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3124  				   (struct sockaddr __user *)a[4], a[5]);
3125  		break;
3126  	case SYS_RECV:
3127  		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3128  				     NULL, NULL);
3129  		break;
3130  	case SYS_RECVFROM:
3131  		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3132  				     (struct sockaddr __user *)a[4],
3133  				     (int __user *)a[5]);
3134  		break;
3135  	case SYS_SHUTDOWN:
3136  		err = __sys_shutdown(a0, a1);
3137  		break;
3138  	case SYS_SETSOCKOPT:
3139  		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3140  				       a[4]);
3141  		break;
3142  	case SYS_GETSOCKOPT:
3143  		err =
3144  		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3145  				     (int __user *)a[4]);
3146  		break;
3147  	case SYS_SENDMSG:
3148  		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3149  				    a[2], true);
3150  		break;
3151  	case SYS_SENDMMSG:
3152  		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3153  				     a[3], true);
3154  		break;
3155  	case SYS_RECVMSG:
3156  		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3157  				    a[2], true);
3158  		break;
3159  	case SYS_RECVMMSG:
3160  		if (IS_ENABLED(CONFIG_64BIT))
3161  			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3162  					     a[2], a[3],
3163  					     (struct __kernel_timespec __user *)a[4],
3164  					     NULL);
3165  		else
3166  			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3167  					     a[2], a[3], NULL,
3168  					     (struct old_timespec32 __user *)a[4]);
3169  		break;
3170  	case SYS_ACCEPT4:
3171  		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3172  				    (int __user *)a[2], a[3]);
3173  		break;
3174  	default:
3175  		err = -EINVAL;
3176  		break;
3177  	}
3178  	return err;
3179  }
3180  
3181  #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3182  
3183  /**
3184   *	sock_register - add a socket protocol handler
3185   *	@ops: description of protocol
3186   *
3187   *	This function is called by a protocol handler that wants to
3188   *	advertise its address family, and have it linked into the
3189   *	socket interface. The value ops->family corresponds to the
3190   *	socket system call protocol family.
3191   */
sock_register(const struct net_proto_family * ops)3192  int sock_register(const struct net_proto_family *ops)
3193  {
3194  	int err;
3195  
3196  	if (ops->family >= NPROTO) {
3197  		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3198  		return -ENOBUFS;
3199  	}
3200  
3201  	spin_lock(&net_family_lock);
3202  	if (rcu_dereference_protected(net_families[ops->family],
3203  				      lockdep_is_held(&net_family_lock)))
3204  		err = -EEXIST;
3205  	else {
3206  		rcu_assign_pointer(net_families[ops->family], ops);
3207  		err = 0;
3208  	}
3209  	spin_unlock(&net_family_lock);
3210  
3211  	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3212  	return err;
3213  }
3214  EXPORT_SYMBOL(sock_register);
3215  
3216  /**
3217   *	sock_unregister - remove a protocol handler
3218   *	@family: protocol family to remove
3219   *
3220   *	This function is called by a protocol handler that wants to
3221   *	remove its address family, and have it unlinked from the
3222   *	new socket creation.
3223   *
3224   *	If protocol handler is a module, then it can use module reference
3225   *	counts to protect against new references. If protocol handler is not
3226   *	a module then it needs to provide its own protection in
3227   *	the ops->create routine.
3228   */
sock_unregister(int family)3229  void sock_unregister(int family)
3230  {
3231  	BUG_ON(family < 0 || family >= NPROTO);
3232  
3233  	spin_lock(&net_family_lock);
3234  	RCU_INIT_POINTER(net_families[family], NULL);
3235  	spin_unlock(&net_family_lock);
3236  
3237  	synchronize_rcu();
3238  
3239  	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3240  }
3241  EXPORT_SYMBOL(sock_unregister);
3242  
sock_is_registered(int family)3243  bool sock_is_registered(int family)
3244  {
3245  	return family < NPROTO && rcu_access_pointer(net_families[family]);
3246  }
3247  
sock_init(void)3248  static int __init sock_init(void)
3249  {
3250  	int err;
3251  	/*
3252  	 *      Initialize the network sysctl infrastructure.
3253  	 */
3254  	err = net_sysctl_init();
3255  	if (err)
3256  		goto out;
3257  
3258  	/*
3259  	 *      Initialize skbuff SLAB cache
3260  	 */
3261  	skb_init();
3262  
3263  	/*
3264  	 *      Initialize the protocols module.
3265  	 */
3266  
3267  	init_inodecache();
3268  
3269  	err = register_filesystem(&sock_fs_type);
3270  	if (err)
3271  		goto out;
3272  	sock_mnt = kern_mount(&sock_fs_type);
3273  	if (IS_ERR(sock_mnt)) {
3274  		err = PTR_ERR(sock_mnt);
3275  		goto out_mount;
3276  	}
3277  
3278  	/* The real protocol initialization is performed in later initcalls.
3279  	 */
3280  
3281  #ifdef CONFIG_NETFILTER
3282  	err = netfilter_init();
3283  	if (err)
3284  		goto out;
3285  #endif
3286  
3287  	ptp_classifier_init();
3288  
3289  out:
3290  	return err;
3291  
3292  out_mount:
3293  	unregister_filesystem(&sock_fs_type);
3294  	goto out;
3295  }
3296  
3297  core_initcall(sock_init);	/* early initcall */
3298  
3299  #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3300  void socket_seq_show(struct seq_file *seq)
3301  {
3302  	seq_printf(seq, "sockets: used %d\n",
3303  		   sock_inuse_get(seq->private));
3304  }
3305  #endif				/* CONFIG_PROC_FS */
3306  
3307  /* Handle the fact that while struct ifreq has the same *layout* on
3308   * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3309   * which are handled elsewhere, it still has different *size* due to
3310   * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3311   * resulting in struct ifreq being 32 and 40 bytes respectively).
3312   * As a result, if the struct happens to be at the end of a page and
3313   * the next page isn't readable/writable, we get a fault. To prevent
3314   * that, copy back and forth to the full size.
3315   */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3316  int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3317  {
3318  	if (in_compat_syscall()) {
3319  		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3320  
3321  		memset(ifr, 0, sizeof(*ifr));
3322  		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3323  			return -EFAULT;
3324  
3325  		if (ifrdata)
3326  			*ifrdata = compat_ptr(ifr32->ifr_data);
3327  
3328  		return 0;
3329  	}
3330  
3331  	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3332  		return -EFAULT;
3333  
3334  	if (ifrdata)
3335  		*ifrdata = ifr->ifr_data;
3336  
3337  	return 0;
3338  }
3339  EXPORT_SYMBOL(get_user_ifreq);
3340  
put_user_ifreq(struct ifreq * ifr,void __user * arg)3341  int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3342  {
3343  	size_t size = sizeof(*ifr);
3344  
3345  	if (in_compat_syscall())
3346  		size = sizeof(struct compat_ifreq);
3347  
3348  	if (copy_to_user(arg, ifr, size))
3349  		return -EFAULT;
3350  
3351  	return 0;
3352  }
3353  EXPORT_SYMBOL(put_user_ifreq);
3354  
3355  #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3356  static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3357  {
3358  	compat_uptr_t uptr32;
3359  	struct ifreq ifr;
3360  	void __user *saved;
3361  	int err;
3362  
3363  	if (get_user_ifreq(&ifr, NULL, uifr32))
3364  		return -EFAULT;
3365  
3366  	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3367  		return -EFAULT;
3368  
3369  	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3370  	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3371  
3372  	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3373  	if (!err) {
3374  		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3375  		if (put_user_ifreq(&ifr, uifr32))
3376  			err = -EFAULT;
3377  	}
3378  	return err;
3379  }
3380  
3381  /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3382  static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3383  				 struct compat_ifreq __user *u_ifreq32)
3384  {
3385  	struct ifreq ifreq;
3386  	void __user *data;
3387  
3388  	if (!is_socket_ioctl_cmd(cmd))
3389  		return -ENOTTY;
3390  	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3391  		return -EFAULT;
3392  	ifreq.ifr_data = data;
3393  
3394  	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3395  }
3396  
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3397  static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3398  			 unsigned int cmd, unsigned long arg)
3399  {
3400  	void __user *argp = compat_ptr(arg);
3401  	struct sock *sk = sock->sk;
3402  	struct net *net = sock_net(sk);
3403  	const struct proto_ops *ops;
3404  
3405  	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3406  		return sock_ioctl(file, cmd, (unsigned long)argp);
3407  
3408  	switch (cmd) {
3409  	case SIOCWANDEV:
3410  		return compat_siocwandev(net, argp);
3411  	case SIOCGSTAMP_OLD:
3412  	case SIOCGSTAMPNS_OLD:
3413  		ops = READ_ONCE(sock->ops);
3414  		if (!ops->gettstamp)
3415  			return -ENOIOCTLCMD;
3416  		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3417  				      !COMPAT_USE_64BIT_TIME);
3418  
3419  	case SIOCETHTOOL:
3420  	case SIOCBONDSLAVEINFOQUERY:
3421  	case SIOCBONDINFOQUERY:
3422  	case SIOCSHWTSTAMP:
3423  	case SIOCGHWTSTAMP:
3424  		return compat_ifr_data_ioctl(net, cmd, argp);
3425  
3426  	case FIOSETOWN:
3427  	case SIOCSPGRP:
3428  	case FIOGETOWN:
3429  	case SIOCGPGRP:
3430  	case SIOCBRADDBR:
3431  	case SIOCBRDELBR:
3432  	case SIOCGIFVLAN:
3433  	case SIOCSIFVLAN:
3434  	case SIOCGSKNS:
3435  	case SIOCGSTAMP_NEW:
3436  	case SIOCGSTAMPNS_NEW:
3437  	case SIOCGIFCONF:
3438  	case SIOCSIFBR:
3439  	case SIOCGIFBR:
3440  		return sock_ioctl(file, cmd, arg);
3441  
3442  	case SIOCGIFFLAGS:
3443  	case SIOCSIFFLAGS:
3444  	case SIOCGIFMAP:
3445  	case SIOCSIFMAP:
3446  	case SIOCGIFMETRIC:
3447  	case SIOCSIFMETRIC:
3448  	case SIOCGIFMTU:
3449  	case SIOCSIFMTU:
3450  	case SIOCGIFMEM:
3451  	case SIOCSIFMEM:
3452  	case SIOCGIFHWADDR:
3453  	case SIOCSIFHWADDR:
3454  	case SIOCADDMULTI:
3455  	case SIOCDELMULTI:
3456  	case SIOCGIFINDEX:
3457  	case SIOCGIFADDR:
3458  	case SIOCSIFADDR:
3459  	case SIOCSIFHWBROADCAST:
3460  	case SIOCDIFADDR:
3461  	case SIOCGIFBRDADDR:
3462  	case SIOCSIFBRDADDR:
3463  	case SIOCGIFDSTADDR:
3464  	case SIOCSIFDSTADDR:
3465  	case SIOCGIFNETMASK:
3466  	case SIOCSIFNETMASK:
3467  	case SIOCSIFPFLAGS:
3468  	case SIOCGIFPFLAGS:
3469  	case SIOCGIFTXQLEN:
3470  	case SIOCSIFTXQLEN:
3471  	case SIOCBRADDIF:
3472  	case SIOCBRDELIF:
3473  	case SIOCGIFNAME:
3474  	case SIOCSIFNAME:
3475  	case SIOCGMIIPHY:
3476  	case SIOCGMIIREG:
3477  	case SIOCSMIIREG:
3478  	case SIOCBONDENSLAVE:
3479  	case SIOCBONDRELEASE:
3480  	case SIOCBONDSETHWADDR:
3481  	case SIOCBONDCHANGEACTIVE:
3482  	case SIOCSARP:
3483  	case SIOCGARP:
3484  	case SIOCDARP:
3485  	case SIOCOUTQ:
3486  	case SIOCOUTQNSD:
3487  	case SIOCATMARK:
3488  		return sock_do_ioctl(net, sock, cmd, arg);
3489  	}
3490  
3491  	return -ENOIOCTLCMD;
3492  }
3493  
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3494  static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3495  			      unsigned long arg)
3496  {
3497  	struct socket *sock = file->private_data;
3498  	const struct proto_ops *ops = READ_ONCE(sock->ops);
3499  	int ret = -ENOIOCTLCMD;
3500  	struct sock *sk;
3501  	struct net *net;
3502  
3503  	sk = sock->sk;
3504  	net = sock_net(sk);
3505  
3506  	if (ops->compat_ioctl)
3507  		ret = ops->compat_ioctl(sock, cmd, arg);
3508  
3509  	if (ret == -ENOIOCTLCMD &&
3510  	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3511  		ret = compat_wext_handle_ioctl(net, cmd, arg);
3512  
3513  	if (ret == -ENOIOCTLCMD)
3514  		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3515  
3516  	return ret;
3517  }
3518  #endif
3519  
3520  /**
3521   *	kernel_bind - bind an address to a socket (kernel space)
3522   *	@sock: socket
3523   *	@addr: address
3524   *	@addrlen: length of address
3525   *
3526   *	Returns 0 or an error.
3527   */
3528  
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3529  int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3530  {
3531  	struct sockaddr_storage address;
3532  
3533  	memcpy(&address, addr, addrlen);
3534  
3535  	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3536  					  addrlen);
3537  }
3538  EXPORT_SYMBOL(kernel_bind);
3539  
3540  /**
3541   *	kernel_listen - move socket to listening state (kernel space)
3542   *	@sock: socket
3543   *	@backlog: pending connections queue size
3544   *
3545   *	Returns 0 or an error.
3546   */
3547  
kernel_listen(struct socket * sock,int backlog)3548  int kernel_listen(struct socket *sock, int backlog)
3549  {
3550  	return READ_ONCE(sock->ops)->listen(sock, backlog);
3551  }
3552  EXPORT_SYMBOL(kernel_listen);
3553  
3554  /**
3555   *	kernel_accept - accept a connection (kernel space)
3556   *	@sock: listening socket
3557   *	@newsock: new connected socket
3558   *	@flags: flags
3559   *
3560   *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3561   *	If it fails, @newsock is guaranteed to be %NULL.
3562   *	Returns 0 or an error.
3563   */
3564  
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3565  int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3566  {
3567  	struct sock *sk = sock->sk;
3568  	const struct proto_ops *ops = READ_ONCE(sock->ops);
3569  	struct proto_accept_arg arg = {
3570  		.flags = flags,
3571  		.kern = true,
3572  	};
3573  	int err;
3574  
3575  	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3576  			       newsock);
3577  	if (err < 0)
3578  		goto done;
3579  
3580  	err = ops->accept(sock, *newsock, &arg);
3581  	if (err < 0) {
3582  		sock_release(*newsock);
3583  		*newsock = NULL;
3584  		goto done;
3585  	}
3586  
3587  	(*newsock)->ops = ops;
3588  	__module_get(ops->owner);
3589  
3590  done:
3591  	return err;
3592  }
3593  EXPORT_SYMBOL(kernel_accept);
3594  
3595  /**
3596   *	kernel_connect - connect a socket (kernel space)
3597   *	@sock: socket
3598   *	@addr: address
3599   *	@addrlen: address length
3600   *	@flags: flags (O_NONBLOCK, ...)
3601   *
3602   *	For datagram sockets, @addr is the address to which datagrams are sent
3603   *	by default, and the only address from which datagrams are received.
3604   *	For stream sockets, attempts to connect to @addr.
3605   *	Returns 0 or an error code.
3606   */
3607  
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3608  int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3609  		   int flags)
3610  {
3611  	struct sockaddr_storage address;
3612  
3613  	memcpy(&address, addr, addrlen);
3614  
3615  	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3616  					     addrlen, flags);
3617  }
3618  EXPORT_SYMBOL(kernel_connect);
3619  
3620  /**
3621   *	kernel_getsockname - get the address which the socket is bound (kernel space)
3622   *	@sock: socket
3623   *	@addr: address holder
3624   *
3625   * 	Fills the @addr pointer with the address which the socket is bound.
3626   *	Returns the length of the address in bytes or an error code.
3627   */
3628  
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3629  int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3630  {
3631  	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3632  }
3633  EXPORT_SYMBOL(kernel_getsockname);
3634  
3635  /**
3636   *	kernel_getpeername - get the address which the socket is connected (kernel space)
3637   *	@sock: socket
3638   *	@addr: address holder
3639   *
3640   * 	Fills the @addr pointer with the address which the socket is connected.
3641   *	Returns the length of the address in bytes or an error code.
3642   */
3643  
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3644  int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3645  {
3646  	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3647  }
3648  EXPORT_SYMBOL(kernel_getpeername);
3649  
3650  /**
3651   *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3652   *	@sock: socket
3653   *	@how: connection part
3654   *
3655   *	Returns 0 or an error.
3656   */
3657  
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3658  int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3659  {
3660  	return READ_ONCE(sock->ops)->shutdown(sock, how);
3661  }
3662  EXPORT_SYMBOL(kernel_sock_shutdown);
3663  
3664  /**
3665   *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3666   *	@sk: socket
3667   *
3668   *	This routine returns the IP overhead imposed by a socket i.e.
3669   *	the length of the underlying IP header, depending on whether
3670   *	this is an IPv4 or IPv6 socket and the length from IP options turned
3671   *	on at the socket. Assumes that the caller has a lock on the socket.
3672   */
3673  
kernel_sock_ip_overhead(struct sock * sk)3674  u32 kernel_sock_ip_overhead(struct sock *sk)
3675  {
3676  	struct inet_sock *inet;
3677  	struct ip_options_rcu *opt;
3678  	u32 overhead = 0;
3679  #if IS_ENABLED(CONFIG_IPV6)
3680  	struct ipv6_pinfo *np;
3681  	struct ipv6_txoptions *optv6 = NULL;
3682  #endif /* IS_ENABLED(CONFIG_IPV6) */
3683  
3684  	if (!sk)
3685  		return overhead;
3686  
3687  	switch (sk->sk_family) {
3688  	case AF_INET:
3689  		inet = inet_sk(sk);
3690  		overhead += sizeof(struct iphdr);
3691  		opt = rcu_dereference_protected(inet->inet_opt,
3692  						sock_owned_by_user(sk));
3693  		if (opt)
3694  			overhead += opt->opt.optlen;
3695  		return overhead;
3696  #if IS_ENABLED(CONFIG_IPV6)
3697  	case AF_INET6:
3698  		np = inet6_sk(sk);
3699  		overhead += sizeof(struct ipv6hdr);
3700  		if (np)
3701  			optv6 = rcu_dereference_protected(np->opt,
3702  							  sock_owned_by_user(sk));
3703  		if (optv6)
3704  			overhead += (optv6->opt_flen + optv6->opt_nflen);
3705  		return overhead;
3706  #endif /* IS_ENABLED(CONFIG_IPV6) */
3707  	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3708  		return overhead;
3709  	}
3710  }
3711  EXPORT_SYMBOL(kernel_sock_ip_overhead);
3712