xref: /linux/include/net/sock.h (revision 7203ca412fc8e8a0588e9adc0f777d3163f8dff3)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* This is the per-socket lock.  The spinlock provides a synchronization
80  * between user contexts and software interrupt processing, whereas the
81  * mini-semaphore synchronizes multiple users amongst themselves.
82  */
83 typedef struct {
84 	spinlock_t		slock;
85 	int			owned;
86 	wait_queue_head_t	wq;
87 	/*
88 	 * We express the mutex-alike socket_lock semantics
89 	 * to the lock validator by explicitly managing
90 	 * the slock as a lock variant (in addition to
91 	 * the slock itself):
92 	 */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 	struct lockdep_map dep_map;
95 #endif
96 } socket_lock_t;
97 
98 struct sock;
99 struct proto;
100 struct net;
101 
102 typedef __u32 __bitwise __portpair;
103 typedef __u64 __bitwise __addrpair;
104 
105 /**
106  *	struct sock_common - minimal network layer representation of sockets
107  *	@skc_daddr: Foreign IPv4 addr
108  *	@skc_rcv_saddr: Bound local IPv4 addr
109  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110  *	@skc_hash: hash value used with various protocol lookup tables
111  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
112  *	@skc_dport: placeholder for inet_dport/tw_dport
113  *	@skc_num: placeholder for inet_num/tw_num
114  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
115  *	@skc_family: network address family
116  *	@skc_state: Connection state
117  *	@skc_reuse: %SO_REUSEADDR setting
118  *	@skc_reuseport: %SO_REUSEPORT setting
119  *	@skc_ipv6only: socket is IPV6 only
120  *	@skc_net_refcnt: socket is using net ref counting
121  *	@skc_bypass_prot_mem: bypass the per-protocol memory accounting for skb
122  *	@skc_bound_dev_if: bound device index if != 0
123  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
124  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
125  *	@skc_prot: protocol handlers inside a network family
126  *	@skc_net: reference to the network namespace of this socket
127  *	@skc_v6_daddr: IPV6 destination address
128  *	@skc_v6_rcv_saddr: IPV6 source address
129  *	@skc_cookie: socket's cookie value
130  *	@skc_node: main hash linkage for various protocol lookup tables
131  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
132  *	@skc_tx_queue_mapping: tx queue number for this connection
133  *	@skc_rx_queue_mapping: rx queue number for this connection
134  *	@skc_flags: place holder for sk_flags
135  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
136  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
137  *	@skc_listener: connection request listener socket (aka rsk_listener)
138  *		[union with @skc_flags]
139  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
140  *		[union with @skc_flags]
141  *	@skc_incoming_cpu: record/match cpu processing incoming packets
142  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
143  *		[union with @skc_incoming_cpu]
144  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
145  *		[union with @skc_incoming_cpu]
146  *	@skc_refcnt: reference count
147  *
148  *	This is the minimal network layer representation of sockets, the header
149  *	for struct sock and struct inet_timewait_sock.
150  */
151 struct sock_common {
152 	union {
153 		__addrpair	skc_addrpair;
154 		struct {
155 			__be32	skc_daddr;
156 			__be32	skc_rcv_saddr;
157 		};
158 	};
159 	union  {
160 		unsigned int	skc_hash;
161 		__u16		skc_u16hashes[2];
162 	};
163 	/* skc_dport && skc_num must be grouped as well */
164 	union {
165 		__portpair	skc_portpair;
166 		struct {
167 			__be16	skc_dport;
168 			__u16	skc_num;
169 		};
170 	};
171 
172 	unsigned short		skc_family;
173 	volatile unsigned char	skc_state;
174 	unsigned char		skc_reuse:4;
175 	unsigned char		skc_reuseport:1;
176 	unsigned char		skc_ipv6only:1;
177 	unsigned char		skc_net_refcnt:1;
178 	unsigned char		skc_bypass_prot_mem:1;
179 	int			skc_bound_dev_if;
180 	union {
181 		struct hlist_node	skc_bind_node;
182 		struct hlist_node	skc_portaddr_node;
183 	};
184 	struct proto		*skc_prot;
185 	possible_net_t		skc_net;
186 
187 #if IS_ENABLED(CONFIG_IPV6)
188 	struct in6_addr		skc_v6_daddr;
189 	struct in6_addr		skc_v6_rcv_saddr;
190 #endif
191 
192 	atomic64_t		skc_cookie;
193 
194 	/* following fields are padding to force
195 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
196 	 * assuming IPV6 is enabled. We use this padding differently
197 	 * for different kind of 'sockets'
198 	 */
199 	union {
200 		unsigned long	skc_flags;
201 		struct sock	*skc_listener; /* request_sock */
202 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
203 	};
204 	/*
205 	 * fields between dontcopy_begin/dontcopy_end
206 	 * are not copied in sock_copy()
207 	 */
208 	/* private: */
209 	int			skc_dontcopy_begin[0];
210 	/* public: */
211 	union {
212 		struct hlist_node	skc_node;
213 		struct hlist_nulls_node skc_nulls_node;
214 	};
215 	unsigned short		skc_tx_queue_mapping;
216 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
217 	unsigned short		skc_rx_queue_mapping;
218 #endif
219 	union {
220 		int		skc_incoming_cpu;
221 		u32		skc_rcv_wnd;
222 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
223 	};
224 
225 	refcount_t		skc_refcnt;
226 	/* private: */
227 	int                     skc_dontcopy_end[0];
228 	union {
229 		u32		skc_rxhash;
230 		u32		skc_window_clamp;
231 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
232 	};
233 	/* public: */
234 };
235 
236 struct bpf_local_storage;
237 struct sk_filter;
238 
239 /**
240   *	struct sock - network layer representation of sockets
241   *	@__sk_common: shared layout with inet_timewait_sock
242   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
243   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
244   *	@sk_lock:	synchronizer
245   *	@sk_kern_sock: True if sock is using kernel lock classes
246   *	@sk_rcvbuf: size of receive buffer in bytes
247   *	@sk_wq: sock wait queue and async head
248   *	@sk_rx_dst: receive input route used by early demux
249   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
250   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
251   *	@sk_dst_cache: destination cache
252   *	@sk_dst_pending_confirm: need to confirm neighbour
253   *	@sk_policy: flow policy
254   *	@psp_assoc: PSP association, if socket is PSP-secured
255   *	@sk_receive_queue: incoming packets
256   *	@sk_wmem_alloc: transmit queue bytes committed
257   *	@sk_tsq_flags: TCP Small Queues flags
258   *	@sk_write_queue: Packet sending queue
259   *	@sk_omem_alloc: "o" is "option" or "other"
260   *	@sk_wmem_queued: persistent queue size
261   *	@sk_forward_alloc: space allocated forward
262   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
263   *	@sk_napi_id: id of the last napi context to receive data for sk
264   *	@sk_ll_usec: usecs to busypoll when there is no data
265   *	@sk_allocation: allocation mode
266   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
267   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
268   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
269   *	@sk_sndbuf: size of send buffer in bytes
270   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
271   *	@sk_no_check_rx: allow zero checksum in RX packets
272   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
273   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
274   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
275   *	@sk_gso_max_size: Maximum GSO segment size to build
276   *	@sk_gso_max_segs: Maximum number of GSO segments
277   *	@sk_pacing_shift: scaling factor for TCP Small Queues
278   *	@sk_lingertime: %SO_LINGER l_linger setting
279   *	@sk_backlog: always used with the per-socket spinlock held
280   *	@sk_callback_lock: used with the callbacks in the end of this struct
281   *	@sk_error_queue: rarely used
282   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
283   *			  IPV6_ADDRFORM for instance)
284   *	@sk_err: last error
285   *	@sk_err_soft: errors that don't cause failure but are the cause of a
286   *		      persistent failure not just 'timed out'
287   *	@sk_drops: raw/udp drops counter
288   *	@sk_drop_counters: optional pointer to numa_drop_counters
289   *	@sk_ack_backlog: current listen backlog
290   *	@sk_max_ack_backlog: listen backlog set in listen()
291   *	@sk_uid: user id of owner
292   *	@sk_ino: inode number (zero if orphaned)
293   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
294   *	@sk_busy_poll_budget: napi processing budget when busypolling
295   *	@sk_priority: %SO_PRIORITY setting
296   *	@sk_type: socket type (%SOCK_STREAM, etc)
297   *	@sk_protocol: which protocol this socket belongs in this network family
298   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
299   *	@sk_peer_pid: &struct pid for this socket's peer
300   *	@sk_peer_cred: %SO_PEERCRED setting
301   *	@sk_rcvlowat: %SO_RCVLOWAT setting
302   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
303   *	@sk_sndtimeo: %SO_SNDTIMEO setting
304   *	@sk_txhash: computed flow hash for use on transmit
305   *	@sk_txrehash: enable TX hash rethink
306   *	@sk_filter: socket filtering instructions
307   *	@sk_timer: sock cleanup timer
308   *	@tcp_retransmit_timer: tcp retransmit timer
309   *	@mptcp_retransmit_timer: mptcp retransmit timer
310   *	@sk_stamp: time stamp of last packet received
311   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
312   *	@sk_tsflags: SO_TIMESTAMPING flags
313   *	@sk_bpf_cb_flags: used in bpf_setsockopt()
314   *	@sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
315   *			   Sockets that can be used under memory reclaim should
316   *			   set this to false.
317   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
318   *	              for timestamping
319   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
320   *	@sk_tx_queue_mapping_jiffies: time in jiffies of last @sk_tx_queue_mapping refresh.
321   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
322   *	@sk_socket: Identd and reporting IO signals
323   *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
324   *	@sk_frag: cached page frag
325   *	@sk_peek_off: current peek_offset value
326   *	@sk_send_head: front of stuff to transmit
327   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
328   *	@sk_security: used by security modules
329   *	@sk_mark: generic packet mark
330   *	@sk_cgrp_data: cgroup data for this cgroup
331   *	@sk_memcg: this socket's memory cgroup association
332   *	@sk_write_pending: a write to stream socket waits to start
333   *	@sk_disconnects: number of disconnect operations performed on this sock
334   *	@sk_state_change: callback to indicate change in the state of the sock
335   *	@sk_data_ready: callback to indicate there is data to be processed
336   *	@sk_write_space: callback to indicate there is bf sending space available
337   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
338   *	@sk_backlog_rcv: callback to process the backlog
339   *	@sk_validate_xmit_skb: ptr to an optional validate function
340   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
341   *	@sk_reuseport_cb: reuseport group container
342   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
343   *	@sk_rcu: used during RCU grace period
344   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
345   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
346   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
347   *	@sk_txtime_unused: unused txtime flags
348   *	@sk_scm_recv_flags: all flags used by scm_recv()
349   *	@sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS
350   *	@sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY
351   *	@sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD
352   *	@sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS
353   *	@sk_scm_unused: unused flags for scm_recv()
354   *	@ns_tracker: tracker for netns reference
355   *	@sk_user_frags: xarray of pages the user is holding a reference on.
356   *	@sk_owner: reference to the real owner of the socket that calls
357   *		   sock_lock_init_class_and_name().
358   */
359 struct sock {
360 	/*
361 	 * Now struct inet_timewait_sock also uses sock_common, so please just
362 	 * don't add nothing before this first member (__sk_common) --acme
363 	 */
364 	struct sock_common	__sk_common;
365 #define sk_node			__sk_common.skc_node
366 #define sk_nulls_node		__sk_common.skc_nulls_node
367 #define sk_refcnt		__sk_common.skc_refcnt
368 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
369 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
370 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
371 #endif
372 
373 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
374 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
375 #define sk_hash			__sk_common.skc_hash
376 #define sk_portpair		__sk_common.skc_portpair
377 #define sk_num			__sk_common.skc_num
378 #define sk_dport		__sk_common.skc_dport
379 #define sk_addrpair		__sk_common.skc_addrpair
380 #define sk_daddr		__sk_common.skc_daddr
381 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
382 #define sk_family		__sk_common.skc_family
383 #define sk_state		__sk_common.skc_state
384 #define sk_reuse		__sk_common.skc_reuse
385 #define sk_reuseport		__sk_common.skc_reuseport
386 #define sk_ipv6only		__sk_common.skc_ipv6only
387 #define sk_net_refcnt		__sk_common.skc_net_refcnt
388 #define sk_bypass_prot_mem	__sk_common.skc_bypass_prot_mem
389 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
390 #define sk_bind_node		__sk_common.skc_bind_node
391 #define sk_prot			__sk_common.skc_prot
392 #define sk_net			__sk_common.skc_net
393 #define sk_v6_daddr		__sk_common.skc_v6_daddr
394 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
395 #define sk_cookie		__sk_common.skc_cookie
396 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
397 #define sk_flags		__sk_common.skc_flags
398 #define sk_rxhash		__sk_common.skc_rxhash
399 
400 	__cacheline_group_begin(sock_write_rx);
401 
402 	atomic_t		sk_drops;
403 	__s32			sk_peek_off;
404 	struct sk_buff_head	sk_error_queue;
405 	struct sk_buff_head	sk_receive_queue;
406 	/*
407 	 * The backlog queue is special, it is always used with
408 	 * the per-socket spinlock held and requires low latency
409 	 * access. Therefore we special case it's implementation.
410 	 * Note : rmem_alloc is in this structure to fill a hole
411 	 * on 64bit arches, not because its logically part of
412 	 * backlog.
413 	 */
414 	struct {
415 		atomic_t	rmem_alloc;
416 		int		len;
417 		struct sk_buff	*head;
418 		struct sk_buff	*tail;
419 	} sk_backlog;
420 #define sk_rmem_alloc sk_backlog.rmem_alloc
421 
422 	__cacheline_group_end(sock_write_rx);
423 
424 	__cacheline_group_begin(sock_read_rx);
425 	/* early demux fields */
426 	struct dst_entry __rcu	*sk_rx_dst;
427 	int			sk_rx_dst_ifindex;
428 	u32			sk_rx_dst_cookie;
429 
430 #ifdef CONFIG_NET_RX_BUSY_POLL
431 	unsigned int		sk_ll_usec;
432 	unsigned int		sk_napi_id;
433 	u16			sk_busy_poll_budget;
434 	u8			sk_prefer_busy_poll;
435 #endif
436 	u8			sk_userlocks;
437 	int			sk_rcvbuf;
438 
439 	struct sk_filter __rcu	*sk_filter;
440 	union {
441 		struct socket_wq __rcu	*sk_wq;
442 		/* private: */
443 		struct socket_wq	*sk_wq_raw;
444 		/* public: */
445 	};
446 
447 	void			(*sk_data_ready)(struct sock *sk);
448 	long			sk_rcvtimeo;
449 	int			sk_rcvlowat;
450 	__cacheline_group_end(sock_read_rx);
451 
452 	__cacheline_group_begin(sock_read_rxtx);
453 	int			sk_err;
454 	struct socket		*sk_socket;
455 #ifdef CONFIG_MEMCG
456 	struct mem_cgroup	*sk_memcg;
457 #endif
458 #ifdef CONFIG_XFRM
459 	struct xfrm_policy __rcu *sk_policy[2];
460 #endif
461 #if IS_ENABLED(CONFIG_INET_PSP)
462 	struct psp_assoc __rcu	*psp_assoc;
463 #endif
464 	__cacheline_group_end(sock_read_rxtx);
465 
466 	__cacheline_group_begin(sock_write_rxtx);
467 	socket_lock_t		sk_lock;
468 	u32			sk_reserved_mem;
469 	int			sk_forward_alloc;
470 	u32			sk_tsflags;
471 	__cacheline_group_end(sock_write_rxtx);
472 
473 	__cacheline_group_begin(sock_write_tx);
474 	int			sk_write_pending;
475 	atomic_t		sk_omem_alloc;
476 	int			sk_err_soft;
477 
478 	int			sk_wmem_queued;
479 	refcount_t		sk_wmem_alloc;
480 	unsigned long		sk_tsq_flags;
481 	union {
482 		struct sk_buff	*sk_send_head;
483 		struct rb_root	tcp_rtx_queue;
484 	};
485 	struct sk_buff_head	sk_write_queue;
486 	struct page_frag	sk_frag;
487 	union {
488 		struct timer_list	sk_timer;
489 		struct timer_list	tcp_retransmit_timer;
490 		struct timer_list	mptcp_retransmit_timer;
491 	};
492 	unsigned long		sk_pacing_rate; /* bytes per second */
493 	atomic_t		sk_zckey;
494 	atomic_t		sk_tskey;
495 	unsigned long		sk_tx_queue_mapping_jiffies;
496 	__cacheline_group_end(sock_write_tx);
497 
498 	__cacheline_group_begin(sock_read_tx);
499 	u32			sk_dst_pending_confirm;
500 	u32			sk_pacing_status; /* see enum sk_pacing */
501 	unsigned long		sk_max_pacing_rate;
502 	long			sk_sndtimeo;
503 	u32			sk_priority;
504 	u32			sk_mark;
505 	kuid_t			sk_uid;
506 	u16			sk_protocol;
507 	u16			sk_type;
508 	struct dst_entry __rcu	*sk_dst_cache;
509 	netdev_features_t	sk_route_caps;
510 #ifdef CONFIG_SOCK_VALIDATE_XMIT
511 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
512 							struct net_device *dev,
513 							struct sk_buff *skb);
514 #endif
515 	u16			sk_gso_type;
516 	u16			sk_gso_max_segs;
517 	unsigned int		sk_gso_max_size;
518 	gfp_t			sk_allocation;
519 	u32			sk_txhash;
520 	int			sk_sndbuf;
521 	u8			sk_pacing_shift;
522 	bool			sk_use_task_frag;
523 	__cacheline_group_end(sock_read_tx);
524 
525 	/*
526 	 * Because of non atomicity rules, all
527 	 * changes are protected by socket lock.
528 	 */
529 	u8			sk_gso_disabled : 1,
530 				sk_kern_sock : 1,
531 				sk_no_check_tx : 1,
532 				sk_no_check_rx : 1;
533 	u8			sk_shutdown;
534 	unsigned long	        sk_lingertime;
535 	struct proto		*sk_prot_creator;
536 	rwlock_t		sk_callback_lock;
537 	u32			sk_ack_backlog;
538 	u32			sk_max_ack_backlog;
539 	unsigned long		sk_ino;
540 	spinlock_t		sk_peer_lock;
541 	int			sk_bind_phc;
542 	struct pid		*sk_peer_pid;
543 	const struct cred	*sk_peer_cred;
544 
545 	ktime_t			sk_stamp;
546 #if BITS_PER_LONG==32
547 	seqlock_t		sk_stamp_seq;
548 #endif
549 	int			sk_disconnects;
550 
551 	union {
552 		u8		sk_txrehash;
553 		u8		sk_scm_recv_flags;
554 		struct {
555 			u8	sk_scm_credentials : 1,
556 				sk_scm_security : 1,
557 				sk_scm_pidfd : 1,
558 				sk_scm_rights : 1,
559 				sk_scm_unused : 4;
560 		};
561 	};
562 	u8			sk_clockid;
563 	u8			sk_txtime_deadline_mode : 1,
564 				sk_txtime_report_errors : 1,
565 				sk_txtime_unused : 6;
566 #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG))
567 	u8			sk_bpf_cb_flags;
568 
569 	void			*sk_user_data;
570 #ifdef CONFIG_SECURITY
571 	void			*sk_security;
572 #endif
573 	struct sock_cgroup_data	sk_cgrp_data;
574 	void			(*sk_state_change)(struct sock *sk);
575 	void			(*sk_write_space)(struct sock *sk);
576 	void			(*sk_error_report)(struct sock *sk);
577 	int			(*sk_backlog_rcv)(struct sock *sk,
578 						  struct sk_buff *skb);
579 	void                    (*sk_destruct)(struct sock *sk);
580 	struct sock_reuseport __rcu	*sk_reuseport_cb;
581 #ifdef CONFIG_BPF_SYSCALL
582 	struct bpf_local_storage __rcu	*sk_bpf_storage;
583 #endif
584 	struct numa_drop_counters *sk_drop_counters;
585 	struct rcu_head		sk_rcu;
586 	netns_tracker		ns_tracker;
587 	struct xarray		sk_user_frags;
588 
589 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
590 	struct module		*sk_owner;
591 #endif
592 };
593 
594 struct sock_bh_locked {
595 	struct sock *sock;
596 	local_lock_t bh_lock;
597 };
598 
599 enum sk_pacing {
600 	SK_PACING_NONE		= 0,
601 	SK_PACING_NEEDED	= 1,
602 	SK_PACING_FQ		= 2,
603 };
604 
605 /* flag bits in sk_user_data
606  *
607  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
608  *   not be suitable for copying when cloning the socket. For instance,
609  *   it can point to a reference counted object. sk_user_data bottom
610  *   bit is set if pointer must not be copied.
611  *
612  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
613  *   managed/owned by a BPF reuseport array. This bit should be set
614  *   when sk_user_data's sk is added to the bpf's reuseport_array.
615  *
616  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
617  *   sk_user_data points to psock type. This bit should be set
618  *   when sk_user_data is assigned to a psock object.
619  */
620 #define SK_USER_DATA_NOCOPY	1UL
621 #define SK_USER_DATA_BPF	2UL
622 #define SK_USER_DATA_PSOCK	4UL
623 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
624 				  SK_USER_DATA_PSOCK)
625 
626 /**
627  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
628  * @sk: socket
629  */
sk_user_data_is_nocopy(const struct sock * sk)630 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
631 {
632 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
633 }
634 
635 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
636 
637 /**
638  * __locked_read_sk_user_data_with_flags - return the pointer
639  * only if argument flags all has been set in sk_user_data. Otherwise
640  * return NULL
641  *
642  * @sk: socket
643  * @flags: flag bits
644  *
645  * The caller must be holding sk->sk_callback_lock.
646  */
647 static inline void *
__locked_read_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)648 __locked_read_sk_user_data_with_flags(const struct sock *sk,
649 				      uintptr_t flags)
650 {
651 	uintptr_t sk_user_data =
652 		(uintptr_t)rcu_dereference_check(__sk_user_data(sk),
653 						 lockdep_is_held(&sk->sk_callback_lock));
654 
655 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
656 
657 	if ((sk_user_data & flags) == flags)
658 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
659 	return NULL;
660 }
661 
662 /**
663  * __rcu_dereference_sk_user_data_with_flags - return the pointer
664  * only if argument flags all has been set in sk_user_data. Otherwise
665  * return NULL
666  *
667  * @sk: socket
668  * @flags: flag bits
669  */
670 static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)671 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
672 					  uintptr_t flags)
673 {
674 	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
675 
676 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
677 
678 	if ((sk_user_data & flags) == flags)
679 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
680 	return NULL;
681 }
682 
683 #define rcu_dereference_sk_user_data(sk)				\
684 	__rcu_dereference_sk_user_data_with_flags(sk, 0)
685 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
686 ({									\
687 	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
688 		  __tmp2 = (uintptr_t)(flags);				\
689 	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
690 	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
691 	rcu_assign_pointer(__sk_user_data((sk)),			\
692 			   __tmp1 | __tmp2);				\
693 })
694 #define rcu_assign_sk_user_data(sk, ptr)				\
695 	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
696 
697 static inline
sock_net(const struct sock * sk)698 struct net *sock_net(const struct sock *sk)
699 {
700 	return read_pnet(&sk->sk_net);
701 }
702 
703 static inline
sock_net_set(struct sock * sk,struct net * net)704 void sock_net_set(struct sock *sk, struct net *net)
705 {
706 	write_pnet(&sk->sk_net, net);
707 }
708 
709 /*
710  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
711  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
712  * on a socket means that the socket will reuse everybody else's port
713  * without looking at the other's sk_reuse value.
714  */
715 
716 #define SK_NO_REUSE	0
717 #define SK_CAN_REUSE	1
718 #define SK_FORCE_REUSE	2
719 
720 int sk_set_peek_off(struct sock *sk, int val);
721 
sk_peek_offset(const struct sock * sk,int flags)722 static inline int sk_peek_offset(const struct sock *sk, int flags)
723 {
724 	if (unlikely(flags & MSG_PEEK)) {
725 		return READ_ONCE(sk->sk_peek_off);
726 	}
727 
728 	return 0;
729 }
730 
sk_peek_offset_bwd(struct sock * sk,int val)731 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
732 {
733 	s32 off = READ_ONCE(sk->sk_peek_off);
734 
735 	if (unlikely(off >= 0)) {
736 		off = max_t(s32, off - val, 0);
737 		WRITE_ONCE(sk->sk_peek_off, off);
738 	}
739 }
740 
sk_peek_offset_fwd(struct sock * sk,int val)741 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
742 {
743 	sk_peek_offset_bwd(sk, -val);
744 }
745 
746 /*
747  * Hashed lists helper routines
748  */
sk_entry(const struct hlist_node * node)749 static inline struct sock *sk_entry(const struct hlist_node *node)
750 {
751 	return hlist_entry(node, struct sock, sk_node);
752 }
753 
__sk_head(const struct hlist_head * head)754 static inline struct sock *__sk_head(const struct hlist_head *head)
755 {
756 	return hlist_entry(head->first, struct sock, sk_node);
757 }
758 
sk_head(const struct hlist_head * head)759 static inline struct sock *sk_head(const struct hlist_head *head)
760 {
761 	return hlist_empty(head) ? NULL : __sk_head(head);
762 }
763 
__sk_nulls_head(const struct hlist_nulls_head * head)764 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
765 {
766 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
767 }
768 
sk_nulls_head(const struct hlist_nulls_head * head)769 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
770 {
771 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
772 }
773 
sk_next(const struct sock * sk)774 static inline struct sock *sk_next(const struct sock *sk)
775 {
776 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
777 }
778 
sk_nulls_next(const struct sock * sk)779 static inline struct sock *sk_nulls_next(const struct sock *sk)
780 {
781 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
782 		hlist_nulls_entry(sk->sk_nulls_node.next,
783 				  struct sock, sk_nulls_node) :
784 		NULL;
785 }
786 
sk_unhashed(const struct sock * sk)787 static inline bool sk_unhashed(const struct sock *sk)
788 {
789 	return hlist_unhashed(&sk->sk_node);
790 }
791 
sk_hashed(const struct sock * sk)792 static inline bool sk_hashed(const struct sock *sk)
793 {
794 	return !sk_unhashed(sk);
795 }
796 
sk_node_init(struct hlist_node * node)797 static inline void sk_node_init(struct hlist_node *node)
798 {
799 	node->pprev = NULL;
800 }
801 
__sk_del_node(struct sock * sk)802 static inline void __sk_del_node(struct sock *sk)
803 {
804 	__hlist_del(&sk->sk_node);
805 }
806 
807 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)808 static inline bool __sk_del_node_init(struct sock *sk)
809 {
810 	if (sk_hashed(sk)) {
811 		__sk_del_node(sk);
812 		sk_node_init(&sk->sk_node);
813 		return true;
814 	}
815 	return false;
816 }
817 
818 /* Grab socket reference count. This operation is valid only
819    when sk is ALREADY grabbed f.e. it is found in hash table
820    or a list and the lookup is made under lock preventing hash table
821    modifications.
822  */
823 
sock_hold(struct sock * sk)824 static __always_inline void sock_hold(struct sock *sk)
825 {
826 	refcount_inc(&sk->sk_refcnt);
827 }
828 
829 /* Ungrab socket in the context, which assumes that socket refcnt
830    cannot hit zero, f.e. it is true in context of any socketcall.
831  */
__sock_put(struct sock * sk)832 static __always_inline void __sock_put(struct sock *sk)
833 {
834 	refcount_dec(&sk->sk_refcnt);
835 }
836 
sk_del_node_init(struct sock * sk)837 static inline bool sk_del_node_init(struct sock *sk)
838 {
839 	bool rc = __sk_del_node_init(sk);
840 
841 	if (rc)
842 		__sock_put(sk);
843 
844 	return rc;
845 }
846 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
847 
__sk_nulls_del_node_init_rcu(struct sock * sk)848 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
849 {
850 	if (sk_hashed(sk)) {
851 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
852 		return true;
853 	}
854 	return false;
855 }
856 
sk_nulls_del_node_init_rcu(struct sock * sk)857 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
858 {
859 	bool rc = __sk_nulls_del_node_init_rcu(sk);
860 
861 	if (rc)
862 		__sock_put(sk);
863 
864 	return rc;
865 }
866 
sk_nulls_replace_node_init_rcu(struct sock * old,struct sock * new)867 static inline bool sk_nulls_replace_node_init_rcu(struct sock *old,
868 						  struct sock *new)
869 {
870 	if (sk_hashed(old)) {
871 		hlist_nulls_replace_init_rcu(&old->sk_nulls_node,
872 					     &new->sk_nulls_node);
873 		__sock_put(old);
874 		return true;
875 	}
876 
877 	return false;
878 }
879 
__sk_add_node(struct sock * sk,struct hlist_head * list)880 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
881 {
882 	hlist_add_head(&sk->sk_node, list);
883 }
884 
sk_add_node(struct sock * sk,struct hlist_head * list)885 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
886 {
887 	sock_hold(sk);
888 	__sk_add_node(sk, list);
889 }
890 
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)891 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
892 {
893 	sock_hold(sk);
894 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
895 	    sk->sk_family == AF_INET6)
896 		hlist_add_tail_rcu(&sk->sk_node, list);
897 	else
898 		hlist_add_head_rcu(&sk->sk_node, list);
899 }
900 
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)901 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
902 {
903 	sock_hold(sk);
904 	hlist_add_tail_rcu(&sk->sk_node, list);
905 }
906 
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)907 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
908 {
909 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
910 }
911 
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)912 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
913 {
914 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
915 }
916 
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)917 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
918 {
919 	sock_hold(sk);
920 	__sk_nulls_add_node_rcu(sk, list);
921 }
922 
__sk_del_bind_node(struct sock * sk)923 static inline void __sk_del_bind_node(struct sock *sk)
924 {
925 	__hlist_del(&sk->sk_bind_node);
926 }
927 
sk_add_bind_node(struct sock * sk,struct hlist_head * list)928 static inline void sk_add_bind_node(struct sock *sk,
929 					struct hlist_head *list)
930 {
931 	hlist_add_head(&sk->sk_bind_node, list);
932 }
933 
934 #define sk_for_each(__sk, list) \
935 	hlist_for_each_entry(__sk, list, sk_node)
936 #define sk_for_each_rcu(__sk, list) \
937 	hlist_for_each_entry_rcu(__sk, list, sk_node)
938 #define sk_nulls_for_each(__sk, node, list) \
939 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
940 #define sk_nulls_for_each_rcu(__sk, node, list) \
941 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
942 #define sk_for_each_from(__sk) \
943 	hlist_for_each_entry_from(__sk, sk_node)
944 #define sk_nulls_for_each_from(__sk, node) \
945 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
946 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
947 #define sk_for_each_safe(__sk, tmp, list) \
948 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
949 #define sk_for_each_bound(__sk, list) \
950 	hlist_for_each_entry(__sk, list, sk_bind_node)
951 #define sk_for_each_bound_safe(__sk, tmp, list) \
952 	hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node)
953 
954 /**
955  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
956  * @tpos:	the type * to use as a loop cursor.
957  * @pos:	the &struct hlist_node to use as a loop cursor.
958  * @head:	the head for your list.
959  * @offset:	offset of hlist_node within the struct.
960  *
961  */
962 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
963 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
964 	     pos != NULL &&						       \
965 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
966 	     pos = rcu_dereference(hlist_next_rcu(pos)))
967 
sk_user_ns(const struct sock * sk)968 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
969 {
970 	/* Careful only use this in a context where these parameters
971 	 * can not change and must all be valid, such as recvmsg from
972 	 * userspace.
973 	 */
974 	return sk->sk_socket->file->f_cred->user_ns;
975 }
976 
977 /* Sock flags */
978 enum sock_flags {
979 	SOCK_DEAD,
980 	SOCK_DONE,
981 	SOCK_URGINLINE,
982 	SOCK_KEEPOPEN,
983 	SOCK_LINGER,
984 	SOCK_DESTROY,
985 	SOCK_BROADCAST,
986 	SOCK_TIMESTAMP,
987 	SOCK_ZAPPED,
988 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
989 	SOCK_DBG, /* %SO_DEBUG setting */
990 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
991 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
992 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
993 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
994 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
995 	SOCK_FASYNC, /* fasync() active */
996 	SOCK_RXQ_OVFL,
997 	SOCK_ZEROCOPY, /* buffers from userspace */
998 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
999 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
1000 		     * Will use last 4 bytes of packet sent from
1001 		     * user-space instead.
1002 		     */
1003 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
1004 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
1005 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
1006 	SOCK_TXTIME,
1007 	SOCK_XDP, /* XDP is attached */
1008 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
1009 	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
1010 	SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */
1011 	SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */
1012 };
1013 
1014 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
1015 /*
1016  * The highest bit of sk_tsflags is reserved for kernel-internal
1017  * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that
1018  * SOF_TIMESTAMPING* values do not reach this reserved area
1019  */
1020 #define SOCKCM_FLAG_TS_OPT_ID	BIT(31)
1021 
sock_copy_flags(struct sock * nsk,const struct sock * osk)1022 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
1023 {
1024 	nsk->sk_flags = osk->sk_flags;
1025 }
1026 
sock_set_flag(struct sock * sk,enum sock_flags flag)1027 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
1028 {
1029 	__set_bit(flag, &sk->sk_flags);
1030 }
1031 
sock_reset_flag(struct sock * sk,enum sock_flags flag)1032 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
1033 {
1034 	__clear_bit(flag, &sk->sk_flags);
1035 }
1036 
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)1037 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
1038 				     int valbool)
1039 {
1040 	if (valbool)
1041 		sock_set_flag(sk, bit);
1042 	else
1043 		sock_reset_flag(sk, bit);
1044 }
1045 
sock_flag(const struct sock * sk,enum sock_flags flag)1046 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
1047 {
1048 	return test_bit(flag, &sk->sk_flags);
1049 }
1050 
1051 #ifdef CONFIG_NET
1052 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)1053 static inline int sk_memalloc_socks(void)
1054 {
1055 	return static_branch_unlikely(&memalloc_socks_key);
1056 }
1057 
1058 void __receive_sock(struct file *file);
1059 #else
1060 
sk_memalloc_socks(void)1061 static inline int sk_memalloc_socks(void)
1062 {
1063 	return 0;
1064 }
1065 
__receive_sock(struct file * file)1066 static inline void __receive_sock(struct file *file)
1067 { }
1068 #endif
1069 
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)1070 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1071 {
1072 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1073 }
1074 
sk_acceptq_removed(struct sock * sk)1075 static inline void sk_acceptq_removed(struct sock *sk)
1076 {
1077 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1078 }
1079 
sk_acceptq_added(struct sock * sk)1080 static inline void sk_acceptq_added(struct sock *sk)
1081 {
1082 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1083 }
1084 
1085 /* Note: If you think the test should be:
1086  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1087  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1088  */
sk_acceptq_is_full(const struct sock * sk)1089 static inline bool sk_acceptq_is_full(const struct sock *sk)
1090 {
1091 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1092 }
1093 
1094 /*
1095  * Compute minimal free write space needed to queue new packets.
1096  */
sk_stream_min_wspace(const struct sock * sk)1097 static inline int sk_stream_min_wspace(const struct sock *sk)
1098 {
1099 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1100 }
1101 
sk_stream_wspace(const struct sock * sk)1102 static inline int sk_stream_wspace(const struct sock *sk)
1103 {
1104 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1105 }
1106 
sk_wmem_queued_add(struct sock * sk,int val)1107 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1108 {
1109 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1110 }
1111 
sk_forward_alloc_add(struct sock * sk,int val)1112 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1113 {
1114 	/* Paired with lockless reads of sk->sk_forward_alloc */
1115 	WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1116 }
1117 
1118 void sk_stream_write_space(struct sock *sk);
1119 
1120 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)1121 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1122 {
1123 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1124 	skb_dst_force(skb);
1125 
1126 	if (!sk->sk_backlog.tail)
1127 		WRITE_ONCE(sk->sk_backlog.head, skb);
1128 	else
1129 		sk->sk_backlog.tail->next = skb;
1130 
1131 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1132 	skb->next = NULL;
1133 }
1134 
1135 /*
1136  * Take into account size of receive queue and backlog queue
1137  * Do not take into account this skb truesize,
1138  * to allow even a single big packet to come.
1139  */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1140 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1141 {
1142 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1143 
1144 	return qsize > limit;
1145 }
1146 
1147 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1148 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1149 					      unsigned int limit)
1150 {
1151 	if (sk_rcvqueues_full(sk, limit))
1152 		return -ENOBUFS;
1153 
1154 	/*
1155 	 * If the skb was allocated from pfmemalloc reserves, only
1156 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1157 	 * helping free memory
1158 	 */
1159 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1160 		return -ENOMEM;
1161 
1162 	__sk_add_backlog(sk, skb);
1163 	sk->sk_backlog.len += skb->truesize;
1164 	return 0;
1165 }
1166 
1167 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1168 
1169 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1170 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1171 
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1172 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1173 {
1174 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1175 		return __sk_backlog_rcv(sk, skb);
1176 
1177 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1178 				  tcp_v6_do_rcv,
1179 				  tcp_v4_do_rcv,
1180 				  sk, skb);
1181 }
1182 
sk_incoming_cpu_update(struct sock * sk)1183 static inline void sk_incoming_cpu_update(struct sock *sk)
1184 {
1185 	int cpu = raw_smp_processor_id();
1186 
1187 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1188 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1189 }
1190 
1191 
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1192 static inline void sock_rps_save_rxhash(struct sock *sk,
1193 					const struct sk_buff *skb)
1194 {
1195 #ifdef CONFIG_RPS
1196 	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1197 	 * here, and another one in sock_rps_record_flow().
1198 	 */
1199 	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1200 		WRITE_ONCE(sk->sk_rxhash, skb->hash);
1201 #endif
1202 }
1203 
sock_rps_reset_rxhash(struct sock * sk)1204 static inline void sock_rps_reset_rxhash(struct sock *sk)
1205 {
1206 #ifdef CONFIG_RPS
1207 	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1208 	WRITE_ONCE(sk->sk_rxhash, 0);
1209 #endif
1210 }
1211 
1212 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1213 	({	int __rc, __dis = __sk->sk_disconnects;			\
1214 		release_sock(__sk);					\
1215 		__rc = __condition;					\
1216 		if (!__rc) {						\
1217 			*(__timeo) = wait_woken(__wait,			\
1218 						TASK_INTERRUPTIBLE,	\
1219 						*(__timeo));		\
1220 		}							\
1221 		sched_annotate_sleep();					\
1222 		lock_sock(__sk);					\
1223 		__rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1224 		__rc;							\
1225 	})
1226 
1227 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1228 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1229 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1230 int sk_stream_error(struct sock *sk, int flags, int err);
1231 void sk_stream_kill_queues(struct sock *sk);
1232 void sk_set_memalloc(struct sock *sk);
1233 void sk_clear_memalloc(struct sock *sk);
1234 
1235 void __sk_flush_backlog(struct sock *sk);
1236 
sk_flush_backlog(struct sock * sk)1237 static inline bool sk_flush_backlog(struct sock *sk)
1238 {
1239 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1240 		__sk_flush_backlog(sk);
1241 		return true;
1242 	}
1243 	return false;
1244 }
1245 
1246 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1247 
1248 struct request_sock_ops;
1249 struct timewait_sock_ops;
1250 struct inet_hashinfo;
1251 struct raw_hashinfo;
1252 struct smc_hashinfo;
1253 struct module;
1254 struct sk_psock;
1255 
1256 /*
1257  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1258  * un-modified. Special care is taken when initializing object to zero.
1259  */
sk_prot_clear_nulls(struct sock * sk,int size)1260 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1261 {
1262 	if (offsetof(struct sock, sk_node.next) != 0)
1263 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1264 	memset(&sk->sk_node.pprev, 0,
1265 	       size - offsetof(struct sock, sk_node.pprev));
1266 }
1267 
1268 struct proto_accept_arg {
1269 	int flags;
1270 	int err;
1271 	int is_empty;
1272 	bool kern;
1273 };
1274 
1275 /* Networking protocol blocks we attach to sockets.
1276  * socket layer -> transport layer interface
1277  */
1278 struct proto {
1279 	void			(*close)(struct sock *sk,
1280 					long timeout);
1281 	int			(*pre_connect)(struct sock *sk,
1282 					struct sockaddr_unsized *uaddr,
1283 					int addr_len);
1284 	int			(*connect)(struct sock *sk,
1285 					struct sockaddr_unsized *uaddr,
1286 					int addr_len);
1287 	int			(*disconnect)(struct sock *sk, int flags);
1288 
1289 	struct sock *		(*accept)(struct sock *sk,
1290 					  struct proto_accept_arg *arg);
1291 
1292 	int			(*ioctl)(struct sock *sk, int cmd,
1293 					 int *karg);
1294 	int			(*init)(struct sock *sk);
1295 	void			(*destroy)(struct sock *sk);
1296 	void			(*shutdown)(struct sock *sk, int how);
1297 	int			(*setsockopt)(struct sock *sk, int level,
1298 					int optname, sockptr_t optval,
1299 					unsigned int optlen);
1300 	int			(*getsockopt)(struct sock *sk, int level,
1301 					int optname, char __user *optval,
1302 					int __user *option);
1303 	void			(*keepalive)(struct sock *sk, int valbool);
1304 #ifdef CONFIG_COMPAT
1305 	int			(*compat_ioctl)(struct sock *sk,
1306 					unsigned int cmd, unsigned long arg);
1307 #endif
1308 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1309 					   size_t len);
1310 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1311 					   size_t len, int flags, int *addr_len);
1312 	void			(*splice_eof)(struct socket *sock);
1313 	int			(*bind)(struct sock *sk,
1314 					struct sockaddr_unsized *addr, int addr_len);
1315 	int			(*bind_add)(struct sock *sk,
1316 					struct sockaddr_unsized *addr, int addr_len);
1317 
1318 	int			(*backlog_rcv) (struct sock *sk,
1319 						struct sk_buff *skb);
1320 	bool			(*bpf_bypass_getsockopt)(int level,
1321 							 int optname);
1322 
1323 	void		(*release_cb)(struct sock *sk);
1324 
1325 	/* Keeping track of sk's, looking them up, and port selection methods. */
1326 	int			(*hash)(struct sock *sk);
1327 	void			(*unhash)(struct sock *sk);
1328 	void			(*rehash)(struct sock *sk);
1329 	int			(*get_port)(struct sock *sk, unsigned short snum);
1330 	void			(*put_port)(struct sock *sk);
1331 #ifdef CONFIG_BPF_SYSCALL
1332 	int			(*psock_update_sk_prot)(struct sock *sk,
1333 							struct sk_psock *psock,
1334 							bool restore);
1335 #endif
1336 
1337 	/* Keeping track of sockets in use */
1338 #ifdef CONFIG_PROC_FS
1339 	unsigned int		inuse_idx;
1340 #endif
1341 
1342 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1343 	bool			(*sock_is_readable)(struct sock *sk);
1344 	/* Memory pressure */
1345 	void			(*enter_memory_pressure)(struct sock *sk);
1346 	void			(*leave_memory_pressure)(struct sock *sk);
1347 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1348 	int  __percpu		*per_cpu_fw_alloc;
1349 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1350 
1351 	/*
1352 	 * Pressure flag: try to collapse.
1353 	 * Technical note: it is used by multiple contexts non atomically.
1354 	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1355 	 * All the __sk_mem_schedule() is of this nature: accounting
1356 	 * is strict, actions are advisory and have some latency.
1357 	 */
1358 	unsigned long		*memory_pressure;
1359 	long			*sysctl_mem;
1360 
1361 	int			*sysctl_wmem;
1362 	int			*sysctl_rmem;
1363 	u32			sysctl_wmem_offset;
1364 	u32			sysctl_rmem_offset;
1365 
1366 	int			max_header;
1367 	bool			no_autobind;
1368 
1369 	struct kmem_cache	*slab;
1370 	unsigned int		obj_size;
1371 	unsigned int		ipv6_pinfo_offset;
1372 	slab_flags_t		slab_flags;
1373 	unsigned int		useroffset;	/* Usercopy region offset */
1374 	unsigned int		usersize;	/* Usercopy region size */
1375 
1376 	struct request_sock_ops	*rsk_prot;
1377 	struct timewait_sock_ops *twsk_prot;
1378 
1379 	union {
1380 		struct inet_hashinfo	*hashinfo;
1381 		struct udp_table	*udp_table;
1382 		struct raw_hashinfo	*raw_hash;
1383 		struct smc_hashinfo	*smc_hash;
1384 	} h;
1385 
1386 	struct module		*owner;
1387 
1388 	char			name[32];
1389 
1390 	struct list_head	node;
1391 	int			(*diag_destroy)(struct sock *sk, int err);
1392 } __randomize_layout;
1393 
1394 int proto_register(struct proto *prot, int alloc_slab);
1395 void proto_unregister(struct proto *prot);
1396 int sock_load_diag_module(int family, int protocol);
1397 
1398 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1399 
__sk_stream_memory_free(const struct sock * sk,int wake)1400 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1401 {
1402 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1403 		return false;
1404 
1405 	return sk->sk_prot->stream_memory_free ?
1406 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1407 				     tcp_stream_memory_free, sk, wake) : true;
1408 }
1409 
sk_stream_memory_free(const struct sock * sk)1410 static inline bool sk_stream_memory_free(const struct sock *sk)
1411 {
1412 	return __sk_stream_memory_free(sk, 0);
1413 }
1414 
__sk_stream_is_writeable(const struct sock * sk,int wake)1415 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1416 {
1417 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1418 	       __sk_stream_memory_free(sk, wake);
1419 }
1420 
sk_stream_is_writeable(const struct sock * sk)1421 static inline bool sk_stream_is_writeable(const struct sock *sk)
1422 {
1423 	return __sk_stream_is_writeable(sk, 0);
1424 }
1425 
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1426 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1427 					    struct cgroup *ancestor)
1428 {
1429 #ifdef CONFIG_SOCK_CGROUP_DATA
1430 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1431 				    ancestor);
1432 #else
1433 	return -ENOTSUPP;
1434 #endif
1435 }
1436 
1437 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1438 
sk_sockets_allocated_dec(struct sock * sk)1439 static inline void sk_sockets_allocated_dec(struct sock *sk)
1440 {
1441 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1442 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1443 }
1444 
sk_sockets_allocated_inc(struct sock * sk)1445 static inline void sk_sockets_allocated_inc(struct sock *sk)
1446 {
1447 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1448 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1449 }
1450 
1451 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1452 sk_sockets_allocated_read_positive(struct sock *sk)
1453 {
1454 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1455 }
1456 
1457 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1458 proto_sockets_allocated_sum_positive(struct proto *prot)
1459 {
1460 	return percpu_counter_sum_positive(prot->sockets_allocated);
1461 }
1462 
1463 #ifdef CONFIG_PROC_FS
1464 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1465 struct prot_inuse {
1466 	int all;
1467 	int val[PROTO_INUSE_NR];
1468 };
1469 
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1470 static inline void sock_prot_inuse_add(const struct net *net,
1471 				       const struct proto *prot, int val)
1472 {
1473 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1474 }
1475 
sock_inuse_add(const struct net * net,int val)1476 static inline void sock_inuse_add(const struct net *net, int val)
1477 {
1478 	this_cpu_add(net->core.prot_inuse->all, val);
1479 }
1480 
1481 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1482 int sock_inuse_get(struct net *net);
1483 #else
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1484 static inline void sock_prot_inuse_add(const struct net *net,
1485 				       const struct proto *prot, int val)
1486 {
1487 }
1488 
sock_inuse_add(const struct net * net,int val)1489 static inline void sock_inuse_add(const struct net *net, int val)
1490 {
1491 }
1492 #endif
1493 
1494 
1495 /* With per-bucket locks this operation is not-atomic, so that
1496  * this version is not worse.
1497  */
__sk_prot_rehash(struct sock * sk)1498 static inline int __sk_prot_rehash(struct sock *sk)
1499 {
1500 	sk->sk_prot->unhash(sk);
1501 	return sk->sk_prot->hash(sk);
1502 }
1503 
1504 /* About 10 seconds */
1505 #define SOCK_DESTROY_TIME (10*HZ)
1506 
1507 /* Sockets 0-1023 can't be bound to unless you are superuser */
1508 #define PROT_SOCK	1024
1509 
1510 #define SHUTDOWN_MASK	3
1511 #define RCV_SHUTDOWN	1
1512 #define SEND_SHUTDOWN	2
1513 
1514 #define SOCK_BINDADDR_LOCK	4
1515 #define SOCK_BINDPORT_LOCK	8
1516 /**
1517  * define SOCK_CONNECT_BIND - &sock->sk_userlocks flag for auto-bind at connect() time
1518  */
1519 #define SOCK_CONNECT_BIND	16
1520 
1521 struct socket_alloc {
1522 	struct socket socket;
1523 	struct inode vfs_inode;
1524 };
1525 
SOCKET_I(struct inode * inode)1526 static inline struct socket *SOCKET_I(struct inode *inode)
1527 {
1528 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1529 }
1530 
SOCK_INODE(struct socket * socket)1531 static inline struct inode *SOCK_INODE(struct socket *socket)
1532 {
1533 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1534 }
1535 
1536 /*
1537  * Functions for memory accounting
1538  */
1539 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1540 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1541 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1542 void __sk_mem_reclaim(struct sock *sk, int amount);
1543 
1544 #define SK_MEM_SEND	0
1545 #define SK_MEM_RECV	1
1546 
1547 /* sysctl_mem values are in pages */
sk_prot_mem_limits(const struct sock * sk,int index)1548 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1549 {
1550 	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1551 }
1552 
sk_mem_pages(int amt)1553 static inline int sk_mem_pages(int amt)
1554 {
1555 	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1556 }
1557 
sk_has_account(struct sock * sk)1558 static inline bool sk_has_account(struct sock *sk)
1559 {
1560 	/* return true if protocol supports memory accounting */
1561 	return !!sk->sk_prot->memory_allocated;
1562 }
1563 
sk_wmem_schedule(struct sock * sk,int size)1564 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1565 {
1566 	int delta;
1567 
1568 	if (!sk_has_account(sk))
1569 		return true;
1570 	delta = size - sk->sk_forward_alloc;
1571 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1572 }
1573 
1574 static inline bool
__sk_rmem_schedule(struct sock * sk,int size,bool pfmemalloc)1575 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc)
1576 {
1577 	int delta;
1578 
1579 	if (!sk_has_account(sk))
1580 		return true;
1581 	delta = size - sk->sk_forward_alloc;
1582 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1583 	       pfmemalloc;
1584 }
1585 
1586 static inline bool
sk_rmem_schedule(struct sock * sk,const struct sk_buff * skb,int size)1587 sk_rmem_schedule(struct sock *sk, const struct sk_buff *skb, int size)
1588 {
1589 	return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb));
1590 }
1591 
sk_unused_reserved_mem(const struct sock * sk)1592 static inline int sk_unused_reserved_mem(const struct sock *sk)
1593 {
1594 	int unused_mem;
1595 
1596 	if (likely(!sk->sk_reserved_mem))
1597 		return 0;
1598 
1599 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1600 			atomic_read(&sk->sk_rmem_alloc);
1601 
1602 	return unused_mem > 0 ? unused_mem : 0;
1603 }
1604 
sk_mem_reclaim(struct sock * sk)1605 static inline void sk_mem_reclaim(struct sock *sk)
1606 {
1607 	int reclaimable;
1608 
1609 	if (!sk_has_account(sk))
1610 		return;
1611 
1612 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1613 
1614 	if (reclaimable >= (int)PAGE_SIZE)
1615 		__sk_mem_reclaim(sk, reclaimable);
1616 }
1617 
sk_mem_reclaim_final(struct sock * sk)1618 static inline void sk_mem_reclaim_final(struct sock *sk)
1619 {
1620 	sk->sk_reserved_mem = 0;
1621 	sk_mem_reclaim(sk);
1622 }
1623 
sk_mem_charge(struct sock * sk,int size)1624 static inline void sk_mem_charge(struct sock *sk, int size)
1625 {
1626 	if (!sk_has_account(sk))
1627 		return;
1628 	sk_forward_alloc_add(sk, -size);
1629 }
1630 
sk_mem_uncharge(struct sock * sk,int size)1631 static inline void sk_mem_uncharge(struct sock *sk, int size)
1632 {
1633 	if (!sk_has_account(sk))
1634 		return;
1635 	sk_forward_alloc_add(sk, size);
1636 	sk_mem_reclaim(sk);
1637 }
1638 
1639 void __sk_charge(struct sock *sk, gfp_t gfp);
1640 
1641 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
sk_owner_set(struct sock * sk,struct module * owner)1642 static inline void sk_owner_set(struct sock *sk, struct module *owner)
1643 {
1644 	__module_get(owner);
1645 	sk->sk_owner = owner;
1646 }
1647 
sk_owner_clear(struct sock * sk)1648 static inline void sk_owner_clear(struct sock *sk)
1649 {
1650 	sk->sk_owner = NULL;
1651 }
1652 
sk_owner_put(struct sock * sk)1653 static inline void sk_owner_put(struct sock *sk)
1654 {
1655 	module_put(sk->sk_owner);
1656 }
1657 #else
sk_owner_set(struct sock * sk,struct module * owner)1658 static inline void sk_owner_set(struct sock *sk, struct module *owner)
1659 {
1660 }
1661 
sk_owner_clear(struct sock * sk)1662 static inline void sk_owner_clear(struct sock *sk)
1663 {
1664 }
1665 
sk_owner_put(struct sock * sk)1666 static inline void sk_owner_put(struct sock *sk)
1667 {
1668 }
1669 #endif
1670 /*
1671  * Macro so as to not evaluate some arguments when
1672  * lockdep is not enabled.
1673  *
1674  * Mark both the sk_lock and the sk_lock.slock as a
1675  * per-address-family lock class.
1676  */
1677 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1678 do {									\
1679 	sk_owner_set(sk, THIS_MODULE);					\
1680 	sk->sk_lock.owned = 0;						\
1681 	init_waitqueue_head(&sk->sk_lock.wq);				\
1682 	spin_lock_init(&(sk)->sk_lock.slock);				\
1683 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1684 				   sizeof((sk)->sk_lock));		\
1685 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1686 				   (skey), (sname));			\
1687 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1688 } while (0)
1689 
lockdep_sock_is_held(const struct sock * sk)1690 static inline bool lockdep_sock_is_held(const struct sock *sk)
1691 {
1692 	return lockdep_is_held(&sk->sk_lock) ||
1693 	       lockdep_is_held(&sk->sk_lock.slock);
1694 }
1695 
1696 void lock_sock_nested(struct sock *sk, int subclass);
1697 
lock_sock(struct sock * sk)1698 static inline void lock_sock(struct sock *sk)
1699 {
1700 	lock_sock_nested(sk, 0);
1701 }
1702 
1703 void __lock_sock(struct sock *sk);
1704 void __release_sock(struct sock *sk);
1705 void release_sock(struct sock *sk);
1706 
1707 /* BH context may only use the following locking interface. */
1708 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1709 #define bh_lock_sock_nested(__sk) \
1710 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1711 				SINGLE_DEPTH_NESTING)
1712 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1713 
1714 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1715 
1716 /**
1717  * lock_sock_fast - fast version of lock_sock
1718  * @sk: socket
1719  *
1720  * This version should be used for very small section, where process won't block
1721  * return false if fast path is taken:
1722  *
1723  *   sk_lock.slock locked, owned = 0, BH disabled
1724  *
1725  * return true if slow path is taken:
1726  *
1727  *   sk_lock.slock unlocked, owned = 1, BH enabled
1728  */
lock_sock_fast(struct sock * sk)1729 static inline bool lock_sock_fast(struct sock *sk)
1730 {
1731 	/* The sk_lock has mutex_lock() semantics here. */
1732 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1733 
1734 	return __lock_sock_fast(sk);
1735 }
1736 
1737 /* fast socket lock variant for caller already holding a [different] socket lock */
lock_sock_fast_nested(struct sock * sk)1738 static inline bool lock_sock_fast_nested(struct sock *sk)
1739 {
1740 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1741 
1742 	return __lock_sock_fast(sk);
1743 }
1744 
1745 /**
1746  * unlock_sock_fast - complement of lock_sock_fast
1747  * @sk: socket
1748  * @slow: slow mode
1749  *
1750  * fast unlock socket for user context.
1751  * If slow mode is on, we call regular release_sock()
1752  */
unlock_sock_fast(struct sock * sk,bool slow)1753 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1754 	__releases(&sk->sk_lock.slock)
1755 {
1756 	if (slow) {
1757 		release_sock(sk);
1758 		__release(&sk->sk_lock.slock);
1759 	} else {
1760 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1761 		spin_unlock_bh(&sk->sk_lock.slock);
1762 	}
1763 }
1764 
1765 void sockopt_lock_sock(struct sock *sk);
1766 void sockopt_release_sock(struct sock *sk);
1767 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1768 bool sockopt_capable(int cap);
1769 
1770 /* Used by processes to "lock" a socket state, so that
1771  * interrupts and bottom half handlers won't change it
1772  * from under us. It essentially blocks any incoming
1773  * packets, so that we won't get any new data or any
1774  * packets that change the state of the socket.
1775  *
1776  * While locked, BH processing will add new packets to
1777  * the backlog queue.  This queue is processed by the
1778  * owner of the socket lock right before it is released.
1779  *
1780  * Since ~2.3.5 it is also exclusive sleep lock serializing
1781  * accesses from user process context.
1782  */
1783 
sock_owned_by_me(const struct sock * sk)1784 static inline void sock_owned_by_me(const struct sock *sk)
1785 {
1786 #ifdef CONFIG_LOCKDEP
1787 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1788 #endif
1789 }
1790 
sock_not_owned_by_me(const struct sock * sk)1791 static inline void sock_not_owned_by_me(const struct sock *sk)
1792 {
1793 #ifdef CONFIG_LOCKDEP
1794 	WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1795 #endif
1796 }
1797 
sock_owned_by_user(const struct sock * sk)1798 static inline bool sock_owned_by_user(const struct sock *sk)
1799 {
1800 	sock_owned_by_me(sk);
1801 	return sk->sk_lock.owned;
1802 }
1803 
sock_owned_by_user_nocheck(const struct sock * sk)1804 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1805 {
1806 	return sk->sk_lock.owned;
1807 }
1808 
sock_release_ownership(struct sock * sk)1809 static inline void sock_release_ownership(struct sock *sk)
1810 {
1811 	DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1812 	sk->sk_lock.owned = 0;
1813 
1814 	/* The sk_lock has mutex_unlock() semantics: */
1815 	mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1816 }
1817 
1818 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1819 static inline bool sock_allow_reclassification(const struct sock *csk)
1820 {
1821 	struct sock *sk = (struct sock *)csk;
1822 
1823 	return !sock_owned_by_user_nocheck(sk) &&
1824 		!spin_is_locked(&sk->sk_lock.slock);
1825 }
1826 
1827 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1828 		      struct proto *prot, int kern);
1829 void sk_free(struct sock *sk);
1830 void sk_net_refcnt_upgrade(struct sock *sk);
1831 void sk_destruct(struct sock *sk);
1832 struct sock *sk_clone(const struct sock *sk, const gfp_t priority, bool lock);
1833 
sk_clone_lock(const struct sock * sk,const gfp_t priority)1834 static inline struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1835 {
1836 	return sk_clone(sk, priority, true);
1837 }
1838 
1839 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1840 			     gfp_t priority);
1841 void __sock_wfree(struct sk_buff *skb);
1842 void sock_wfree(struct sk_buff *skb);
1843 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1844 			     gfp_t priority);
1845 void skb_orphan_partial(struct sk_buff *skb);
1846 void sock_rfree(struct sk_buff *skb);
1847 void sock_efree(struct sk_buff *skb);
1848 #ifdef CONFIG_INET
1849 void sock_edemux(struct sk_buff *skb);
1850 void sock_pfree(struct sk_buff *skb);
1851 
skb_set_owner_edemux(struct sk_buff * skb,struct sock * sk)1852 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk)
1853 {
1854 	skb_orphan(skb);
1855 	if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1856 		skb->sk = sk;
1857 		skb->destructor = sock_edemux;
1858 	}
1859 }
1860 #else
1861 #define sock_edemux sock_efree
1862 #endif
1863 
1864 int sk_setsockopt(struct sock *sk, int level, int optname,
1865 		  sockptr_t optval, unsigned int optlen);
1866 int sock_setsockopt(struct socket *sock, int level, int op,
1867 		    sockptr_t optval, unsigned int optlen);
1868 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1869 		       int optname, sockptr_t optval, int optlen);
1870 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1871 		       int optname, sockptr_t optval, sockptr_t optlen);
1872 
1873 int sk_getsockopt(struct sock *sk, int level, int optname,
1874 		  sockptr_t optval, sockptr_t optlen);
1875 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1876 		   bool timeval, bool time32);
1877 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1878 				     unsigned long data_len, int noblock,
1879 				     int *errcode, int max_page_order);
1880 
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1881 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1882 						  unsigned long size,
1883 						  int noblock, int *errcode)
1884 {
1885 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1886 }
1887 
1888 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1889 void *sock_kmemdup(struct sock *sk, const void *src,
1890 		   int size, gfp_t priority);
1891 void sock_kfree_s(struct sock *sk, void *mem, int size);
1892 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1893 void sk_send_sigurg(struct sock *sk);
1894 
sock_replace_proto(struct sock * sk,struct proto * proto)1895 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1896 {
1897 	if (sk->sk_socket)
1898 		clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1899 	WRITE_ONCE(sk->sk_prot, proto);
1900 }
1901 
1902 struct sockcm_cookie {
1903 	u64 transmit_time;
1904 	u32 mark;
1905 	u32 tsflags;
1906 	u32 ts_opt_id;
1907 	u32 priority;
1908 	u32 dmabuf_id;
1909 };
1910 
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1911 static inline void sockcm_init(struct sockcm_cookie *sockc,
1912 			       const struct sock *sk)
1913 {
1914 	*sockc = (struct sockcm_cookie) {
1915 		.mark = READ_ONCE(sk->sk_mark),
1916 		.tsflags = READ_ONCE(sk->sk_tsflags),
1917 		.priority = READ_ONCE(sk->sk_priority),
1918 	};
1919 }
1920 
1921 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1922 		     struct sockcm_cookie *sockc);
1923 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1924 		   struct sockcm_cookie *sockc);
1925 
1926 /*
1927  * Functions to fill in entries in struct proto_ops when a protocol
1928  * does not implement a particular function.
1929  */
1930 int sock_no_bind(struct socket *sock, struct sockaddr_unsized *saddr, int len);
1931 int sock_no_connect(struct socket *sock, struct sockaddr_unsized *saddr, int len, int flags);
1932 int sock_no_socketpair(struct socket *, struct socket *);
1933 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
1934 int sock_no_getname(struct socket *, struct sockaddr *, int);
1935 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1936 int sock_no_listen(struct socket *, int);
1937 int sock_no_shutdown(struct socket *, int);
1938 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1939 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1940 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1941 int sock_no_mmap(struct file *file, struct socket *sock,
1942 		 struct vm_area_struct *vma);
1943 
1944 /*
1945  * Functions to fill in entries in struct proto_ops when a protocol
1946  * uses the inet style.
1947  */
1948 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1949 				  char __user *optval, int __user *optlen);
1950 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1951 			int flags);
1952 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1953 			   sockptr_t optval, unsigned int optlen);
1954 
1955 void sk_common_release(struct sock *sk);
1956 
1957 /*
1958  *	Default socket callbacks and setup code
1959  */
1960 
1961 /* Initialise core socket variables using an explicit uid. */
1962 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1963 
1964 /* Initialise core socket variables.
1965  * Assumes struct socket *sock is embedded in a struct socket_alloc.
1966  */
1967 void sock_init_data(struct socket *sock, struct sock *sk);
1968 
1969 /*
1970  * Socket reference counting postulates.
1971  *
1972  * * Each user of socket SHOULD hold a reference count.
1973  * * Each access point to socket (an hash table bucket, reference from a list,
1974  *   running timer, skb in flight MUST hold a reference count.
1975  * * When reference count hits 0, it means it will never increase back.
1976  * * When reference count hits 0, it means that no references from
1977  *   outside exist to this socket and current process on current CPU
1978  *   is last user and may/should destroy this socket.
1979  * * sk_free is called from any context: process, BH, IRQ. When
1980  *   it is called, socket has no references from outside -> sk_free
1981  *   may release descendant resources allocated by the socket, but
1982  *   to the time when it is called, socket is NOT referenced by any
1983  *   hash tables, lists etc.
1984  * * Packets, delivered from outside (from network or from another process)
1985  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1986  *   when they sit in queue. Otherwise, packets will leak to hole, when
1987  *   socket is looked up by one cpu and unhasing is made by another CPU.
1988  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1989  *   (leak to backlog). Packet socket does all the processing inside
1990  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1991  *   use separate SMP lock, so that they are prone too.
1992  */
1993 
1994 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1995 static inline void sock_put(struct sock *sk)
1996 {
1997 	if (refcount_dec_and_test(&sk->sk_refcnt))
1998 		sk_free(sk);
1999 }
2000 /* Generic version of sock_put(), dealing with all sockets
2001  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
2002  */
2003 void sock_gen_put(struct sock *sk);
2004 
2005 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
2006 		     unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)2007 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
2008 				 const int nested)
2009 {
2010 	return __sk_receive_skb(sk, skb, nested, 1, true);
2011 }
2012 
sk_tx_queue_set(struct sock * sk,int tx_queue)2013 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
2014 {
2015 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
2016 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
2017 		return;
2018 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
2019 	 * other WRITE_ONCE() because socket lock might be not held.
2020 	 */
2021 	if (READ_ONCE(sk->sk_tx_queue_mapping) != tx_queue) {
2022 		WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
2023 		WRITE_ONCE(sk->sk_tx_queue_mapping_jiffies, jiffies);
2024 		return;
2025 	}
2026 
2027 	/* Refresh sk_tx_queue_mapping_jiffies if too old. */
2028 	if (time_is_before_jiffies(READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + HZ))
2029 		WRITE_ONCE(sk->sk_tx_queue_mapping_jiffies, jiffies);
2030 }
2031 
2032 #define NO_QUEUE_MAPPING	USHRT_MAX
2033 
sk_tx_queue_clear(struct sock * sk)2034 static inline void sk_tx_queue_clear(struct sock *sk)
2035 {
2036 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
2037 	 * other WRITE_ONCE() because socket lock might be not held.
2038 	 */
2039 	WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
2040 }
2041 
2042 int sk_tx_queue_get(const struct sock *sk);
2043 
__sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb,bool force_set)2044 static inline void __sk_rx_queue_set(struct sock *sk,
2045 				     const struct sk_buff *skb,
2046 				     bool force_set)
2047 {
2048 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2049 	if (skb_rx_queue_recorded(skb)) {
2050 		u16 rx_queue = skb_get_rx_queue(skb);
2051 
2052 		if (force_set ||
2053 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2054 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2055 	}
2056 #endif
2057 }
2058 
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)2059 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2060 {
2061 	__sk_rx_queue_set(sk, skb, true);
2062 }
2063 
sk_rx_queue_update(struct sock * sk,const struct sk_buff * skb)2064 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2065 {
2066 	__sk_rx_queue_set(sk, skb, false);
2067 }
2068 
sk_rx_queue_clear(struct sock * sk)2069 static inline void sk_rx_queue_clear(struct sock *sk)
2070 {
2071 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2072 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2073 #endif
2074 }
2075 
sk_rx_queue_get(const struct sock * sk)2076 static inline int sk_rx_queue_get(const struct sock *sk)
2077 {
2078 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2079 	if (sk) {
2080 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2081 
2082 		if (res != NO_QUEUE_MAPPING)
2083 			return res;
2084 	}
2085 #endif
2086 
2087 	return -1;
2088 }
2089 
sk_set_socket(struct sock * sk,struct socket * sock)2090 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2091 {
2092 	sk->sk_socket = sock;
2093 	if (sock) {
2094 		WRITE_ONCE(sk->sk_uid, SOCK_INODE(sock)->i_uid);
2095 		WRITE_ONCE(sk->sk_ino, SOCK_INODE(sock)->i_ino);
2096 	} else {
2097 		/* Note: sk_uid is unchanged. */
2098 		WRITE_ONCE(sk->sk_ino, 0);
2099 	}
2100 }
2101 
sk_sleep(struct sock * sk)2102 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2103 {
2104 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2105 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2106 }
2107 /* Detach socket from process context.
2108  * Announce socket dead, detach it from wait queue and inode.
2109  * Note that parent inode held reference count on this struct sock,
2110  * we do not release it in this function, because protocol
2111  * probably wants some additional cleanups or even continuing
2112  * to work with this socket (TCP).
2113  */
sock_orphan(struct sock * sk)2114 static inline void sock_orphan(struct sock *sk)
2115 {
2116 	write_lock_bh(&sk->sk_callback_lock);
2117 	sock_set_flag(sk, SOCK_DEAD);
2118 	sk_set_socket(sk, NULL);
2119 	sk->sk_wq  = NULL;
2120 	write_unlock_bh(&sk->sk_callback_lock);
2121 }
2122 
sock_graft(struct sock * sk,struct socket * parent)2123 static inline void sock_graft(struct sock *sk, struct socket *parent)
2124 {
2125 	WARN_ON(parent->sk);
2126 	write_lock_bh(&sk->sk_callback_lock);
2127 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2128 	parent->sk = sk;
2129 	sk_set_socket(sk, parent);
2130 	security_sock_graft(sk, parent);
2131 	write_unlock_bh(&sk->sk_callback_lock);
2132 }
2133 
sock_i_ino(const struct sock * sk)2134 static inline unsigned long sock_i_ino(const struct sock *sk)
2135 {
2136 	/* Paired with WRITE_ONCE() in sock_graft() and sock_orphan() */
2137 	return READ_ONCE(sk->sk_ino);
2138 }
2139 
sk_uid(const struct sock * sk)2140 static inline kuid_t sk_uid(const struct sock *sk)
2141 {
2142 	/* Paired with WRITE_ONCE() in sockfs_setattr() */
2143 	return READ_ONCE(sk->sk_uid);
2144 }
2145 
sock_net_uid(const struct net * net,const struct sock * sk)2146 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2147 {
2148 	return sk ? sk_uid(sk) : make_kuid(net->user_ns, 0);
2149 }
2150 
net_tx_rndhash(void)2151 static inline u32 net_tx_rndhash(void)
2152 {
2153 	u32 v = get_random_u32();
2154 
2155 	return v ?: 1;
2156 }
2157 
sk_set_txhash(struct sock * sk)2158 static inline void sk_set_txhash(struct sock *sk)
2159 {
2160 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2161 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2162 }
2163 
sk_rethink_txhash(struct sock * sk)2164 static inline bool sk_rethink_txhash(struct sock *sk)
2165 {
2166 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2167 		sk_set_txhash(sk);
2168 		return true;
2169 	}
2170 	return false;
2171 }
2172 
2173 static inline struct dst_entry *
__sk_dst_get(const struct sock * sk)2174 __sk_dst_get(const struct sock *sk)
2175 {
2176 	return rcu_dereference_check(sk->sk_dst_cache,
2177 				     lockdep_sock_is_held(sk));
2178 }
2179 
2180 static inline struct dst_entry *
sk_dst_get(const struct sock * sk)2181 sk_dst_get(const struct sock *sk)
2182 {
2183 	struct dst_entry *dst;
2184 
2185 	rcu_read_lock();
2186 	dst = rcu_dereference(sk->sk_dst_cache);
2187 	if (dst && !rcuref_get(&dst->__rcuref))
2188 		dst = NULL;
2189 	rcu_read_unlock();
2190 	return dst;
2191 }
2192 
__dst_negative_advice(struct sock * sk)2193 static inline void __dst_negative_advice(struct sock *sk)
2194 {
2195 	struct dst_entry *dst = __sk_dst_get(sk);
2196 
2197 	if (dst && dst->ops->negative_advice)
2198 		dst->ops->negative_advice(sk, dst);
2199 }
2200 
dst_negative_advice(struct sock * sk)2201 static inline void dst_negative_advice(struct sock *sk)
2202 {
2203 	sk_rethink_txhash(sk);
2204 	__dst_negative_advice(sk);
2205 }
2206 
2207 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2208 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2209 {
2210 	struct dst_entry *old_dst;
2211 
2212 	sk_tx_queue_clear(sk);
2213 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2214 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2215 					    lockdep_sock_is_held(sk));
2216 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2217 	dst_release(old_dst);
2218 }
2219 
2220 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2221 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2222 {
2223 	struct dst_entry *old_dst;
2224 
2225 	sk_tx_queue_clear(sk);
2226 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2227 	old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst)));
2228 	dst_release(old_dst);
2229 }
2230 
2231 static inline void
__sk_dst_reset(struct sock * sk)2232 __sk_dst_reset(struct sock *sk)
2233 {
2234 	__sk_dst_set(sk, NULL);
2235 }
2236 
2237 static inline void
sk_dst_reset(struct sock * sk)2238 sk_dst_reset(struct sock *sk)
2239 {
2240 	sk_dst_set(sk, NULL);
2241 }
2242 
2243 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2244 
2245 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2246 
sk_dst_confirm(struct sock * sk)2247 static inline void sk_dst_confirm(struct sock *sk)
2248 {
2249 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2250 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2251 }
2252 
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2253 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2254 {
2255 	if (skb_get_dst_pending_confirm(skb)) {
2256 		struct sock *sk = skb->sk;
2257 
2258 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2259 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2260 		neigh_confirm(n);
2261 	}
2262 }
2263 
2264 bool sk_mc_loop(const struct sock *sk);
2265 
sk_can_gso(const struct sock * sk)2266 static inline bool sk_can_gso(const struct sock *sk)
2267 {
2268 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2269 }
2270 
2271 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2272 
sk_gso_disable(struct sock * sk)2273 static inline void sk_gso_disable(struct sock *sk)
2274 {
2275 	sk->sk_gso_disabled = 1;
2276 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2277 }
2278 
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2279 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2280 					   struct iov_iter *from, char *to,
2281 					   int copy, int offset)
2282 {
2283 	if (skb->ip_summed == CHECKSUM_NONE) {
2284 		__wsum csum = 0;
2285 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2286 			return -EFAULT;
2287 		skb->csum = csum_block_add(skb->csum, csum, offset);
2288 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2289 		if (!copy_from_iter_full_nocache(to, copy, from))
2290 			return -EFAULT;
2291 	} else if (!copy_from_iter_full(to, copy, from))
2292 		return -EFAULT;
2293 
2294 	return 0;
2295 }
2296 
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2297 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2298 				       struct iov_iter *from, int copy)
2299 {
2300 	int err, offset = skb->len;
2301 
2302 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2303 				       copy, offset);
2304 	if (err)
2305 		__skb_trim(skb, offset);
2306 
2307 	return err;
2308 }
2309 
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2310 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2311 					   struct sk_buff *skb,
2312 					   struct page *page,
2313 					   int off, int copy)
2314 {
2315 	int err;
2316 
2317 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2318 				       copy, skb->len);
2319 	if (err)
2320 		return err;
2321 
2322 	skb_len_add(skb, copy);
2323 	sk_wmem_queued_add(sk, copy);
2324 	sk_mem_charge(sk, copy);
2325 	return 0;
2326 }
2327 
2328 #define SK_WMEM_ALLOC_BIAS 1
2329 /**
2330  * sk_wmem_alloc_get - returns write allocations
2331  * @sk: socket
2332  *
2333  * Return: sk_wmem_alloc minus initial offset of one
2334  */
sk_wmem_alloc_get(const struct sock * sk)2335 static inline int sk_wmem_alloc_get(const struct sock *sk)
2336 {
2337 	return refcount_read(&sk->sk_wmem_alloc) - SK_WMEM_ALLOC_BIAS;
2338 }
2339 
2340 /**
2341  * sk_rmem_alloc_get - returns read allocations
2342  * @sk: socket
2343  *
2344  * Return: sk_rmem_alloc
2345  */
sk_rmem_alloc_get(const struct sock * sk)2346 static inline int sk_rmem_alloc_get(const struct sock *sk)
2347 {
2348 	return atomic_read(&sk->sk_rmem_alloc);
2349 }
2350 
2351 /**
2352  * sk_has_allocations - check if allocations are outstanding
2353  * @sk: socket
2354  *
2355  * Return: true if socket has write or read allocations
2356  */
sk_has_allocations(const struct sock * sk)2357 static inline bool sk_has_allocations(const struct sock *sk)
2358 {
2359 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2360 }
2361 
2362 /**
2363  * skwq_has_sleeper - check if there are any waiting processes
2364  * @wq: struct socket_wq
2365  *
2366  * Return: true if socket_wq has waiting processes
2367  *
2368  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2369  * barrier call. They were added due to the race found within the tcp code.
2370  *
2371  * Consider following tcp code paths::
2372  *
2373  *   CPU1                CPU2
2374  *   sys_select          receive packet
2375  *   ...                 ...
2376  *   __add_wait_queue    update tp->rcv_nxt
2377  *   ...                 ...
2378  *   tp->rcv_nxt check   sock_def_readable
2379  *   ...                 {
2380  *   schedule               rcu_read_lock();
2381  *                          wq = rcu_dereference(sk->sk_wq);
2382  *                          if (wq && waitqueue_active(&wq->wait))
2383  *                              wake_up_interruptible(&wq->wait)
2384  *                          ...
2385  *                       }
2386  *
2387  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2388  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2389  * could then endup calling schedule and sleep forever if there are no more
2390  * data on the socket.
2391  *
2392  */
skwq_has_sleeper(struct socket_wq * wq)2393 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2394 {
2395 	return wq && wq_has_sleeper(&wq->wait);
2396 }
2397 
2398 /**
2399  * sock_poll_wait - wrapper for the poll_wait call.
2400  * @filp:           file
2401  * @sock:           socket to wait on
2402  * @p:              poll_table
2403  *
2404  * See the comments in the wq_has_sleeper function.
2405  */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2406 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2407 				  poll_table *p)
2408 {
2409 	/* Provides a barrier we need to be sure we are in sync
2410 	 * with the socket flags modification.
2411 	 *
2412 	 * This memory barrier is paired in the wq_has_sleeper.
2413 	 */
2414 	poll_wait(filp, &sock->wq.wait, p);
2415 }
2416 
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2417 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2418 {
2419 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2420 	u32 txhash = READ_ONCE(sk->sk_txhash);
2421 
2422 	if (txhash) {
2423 		skb->l4_hash = 1;
2424 		skb->hash = txhash;
2425 	}
2426 }
2427 
2428 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2429 
2430 /*
2431  *	Queue a received datagram if it will fit. Stream and sequenced
2432  *	protocols can't normally use this as they need to fit buffers in
2433  *	and play with them.
2434  *
2435  *	Inlined as it's very short and called for pretty much every
2436  *	packet ever received.
2437  */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2438 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2439 {
2440 	skb_orphan(skb);
2441 	skb->sk = sk;
2442 	skb->destructor = sock_rfree;
2443 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2444 	sk_mem_charge(sk, skb->truesize);
2445 }
2446 
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2447 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2448 {
2449 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2450 		skb_orphan(skb);
2451 		skb->destructor = sock_efree;
2452 		skb->sk = sk;
2453 		return true;
2454 	}
2455 	return false;
2456 }
2457 
skb_clone_and_charge_r(struct sk_buff * skb,struct sock * sk)2458 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2459 {
2460 	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2461 	if (skb) {
2462 		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2463 			skb_set_owner_r(skb, sk);
2464 			return skb;
2465 		}
2466 		__kfree_skb(skb);
2467 	}
2468 	return NULL;
2469 }
2470 
skb_prepare_for_gro(struct sk_buff * skb)2471 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2472 {
2473 	if (skb->destructor != sock_wfree) {
2474 		skb_orphan(skb);
2475 		return;
2476 	}
2477 	skb->slow_gro = 1;
2478 }
2479 
2480 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2481 		    unsigned long expires);
2482 
2483 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2484 
2485 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2486 
2487 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2488 			struct sk_buff *skb, unsigned int flags,
2489 			void (*destructor)(struct sock *sk,
2490 					   struct sk_buff *skb));
2491 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2492 
2493 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2494 			      enum skb_drop_reason *reason);
2495 
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2496 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2497 {
2498 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2499 }
2500 
2501 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2502 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2503 
2504 /*
2505  *	Recover an error report and clear atomically
2506  */
2507 
sock_error(struct sock * sk)2508 static inline int sock_error(struct sock *sk)
2509 {
2510 	int err;
2511 
2512 	/* Avoid an atomic operation for the common case.
2513 	 * This is racy since another cpu/thread can change sk_err under us.
2514 	 */
2515 	if (likely(data_race(!sk->sk_err)))
2516 		return 0;
2517 
2518 	err = xchg(&sk->sk_err, 0);
2519 	return -err;
2520 }
2521 
2522 void sk_error_report(struct sock *sk);
2523 
sock_wspace(struct sock * sk)2524 static inline unsigned long sock_wspace(struct sock *sk)
2525 {
2526 	int amt = 0;
2527 
2528 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2529 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2530 		if (amt < 0)
2531 			amt = 0;
2532 	}
2533 	return amt;
2534 }
2535 
2536 /* Note:
2537  *  We use sk->sk_wq_raw, from contexts knowing this
2538  *  pointer is not NULL and cannot disappear/change.
2539  */
sk_set_bit(int nr,struct sock * sk)2540 static inline void sk_set_bit(int nr, struct sock *sk)
2541 {
2542 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2543 	    !sock_flag(sk, SOCK_FASYNC))
2544 		return;
2545 
2546 	set_bit(nr, &sk->sk_wq_raw->flags);
2547 }
2548 
sk_clear_bit(int nr,struct sock * sk)2549 static inline void sk_clear_bit(int nr, struct sock *sk)
2550 {
2551 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2552 	    !sock_flag(sk, SOCK_FASYNC))
2553 		return;
2554 
2555 	clear_bit(nr, &sk->sk_wq_raw->flags);
2556 }
2557 
sk_wake_async(const struct sock * sk,int how,int band)2558 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2559 {
2560 	if (sock_flag(sk, SOCK_FASYNC)) {
2561 		rcu_read_lock();
2562 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2563 		rcu_read_unlock();
2564 	}
2565 }
2566 
sk_wake_async_rcu(const struct sock * sk,int how,int band)2567 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
2568 {
2569 	if (unlikely(sock_flag(sk, SOCK_FASYNC)))
2570 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2571 }
2572 
2573 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2574  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2575  * Note: for send buffers, TCP works better if we can build two skbs at
2576  * minimum.
2577  */
2578 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2579 
2580 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2581 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2582 
sk_stream_moderate_sndbuf(struct sock * sk)2583 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2584 {
2585 	u32 val;
2586 
2587 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2588 		return;
2589 
2590 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2591 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2592 
2593 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2594 }
2595 
2596 /**
2597  * sk_page_frag - return an appropriate page_frag
2598  * @sk: socket
2599  *
2600  * Use the per task page_frag instead of the per socket one for
2601  * optimization when we know that we're in process context and own
2602  * everything that's associated with %current.
2603  *
2604  * Both direct reclaim and page faults can nest inside other
2605  * socket operations and end up recursing into sk_page_frag()
2606  * while it's already in use: explicitly avoid task page_frag
2607  * when users disable sk_use_task_frag.
2608  *
2609  * Return: a per task page_frag if context allows that,
2610  * otherwise a per socket one.
2611  */
sk_page_frag(struct sock * sk)2612 static inline struct page_frag *sk_page_frag(struct sock *sk)
2613 {
2614 	if (sk->sk_use_task_frag)
2615 		return &current->task_frag;
2616 
2617 	return &sk->sk_frag;
2618 }
2619 
2620 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2621 
__sock_writeable(const struct sock * sk,int wmem_alloc)2622 static inline bool __sock_writeable(const struct sock *sk, int wmem_alloc)
2623 {
2624 	return wmem_alloc < (READ_ONCE(sk->sk_sndbuf) >> 1);
2625 }
2626 /*
2627  *	Default write policy as shown to user space via poll/select/SIGIO
2628  */
sock_writeable(const struct sock * sk)2629 static inline bool sock_writeable(const struct sock *sk)
2630 {
2631 	return __sock_writeable(sk, refcount_read(&sk->sk_wmem_alloc));
2632 }
2633 
gfp_any(void)2634 static inline gfp_t gfp_any(void)
2635 {
2636 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2637 }
2638 
gfp_memcg_charge(void)2639 static inline gfp_t gfp_memcg_charge(void)
2640 {
2641 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2642 }
2643 
2644 #ifdef CONFIG_MEMCG
mem_cgroup_from_sk(const struct sock * sk)2645 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk)
2646 {
2647 	return sk->sk_memcg;
2648 }
2649 
mem_cgroup_sk_enabled(const struct sock * sk)2650 static inline bool mem_cgroup_sk_enabled(const struct sock *sk)
2651 {
2652 	return mem_cgroup_sockets_enabled && mem_cgroup_from_sk(sk);
2653 }
2654 
mem_cgroup_sk_under_memory_pressure(const struct sock * sk)2655 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk)
2656 {
2657 	struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
2658 
2659 #ifdef CONFIG_MEMCG_V1
2660 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2661 		return !!memcg->tcpmem_pressure;
2662 #endif /* CONFIG_MEMCG_V1 */
2663 
2664 	do {
2665 		if (time_before64(get_jiffies_64(),
2666 				  mem_cgroup_get_socket_pressure(memcg))) {
2667 			memcg_memory_event(mem_cgroup_from_sk(sk),
2668 					   MEMCG_SOCK_THROTTLED);
2669 			return true;
2670 		}
2671 	} while ((memcg = parent_mem_cgroup(memcg)));
2672 
2673 	return false;
2674 }
2675 #else
mem_cgroup_from_sk(const struct sock * sk)2676 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk)
2677 {
2678 	return NULL;
2679 }
2680 
mem_cgroup_sk_enabled(const struct sock * sk)2681 static inline bool mem_cgroup_sk_enabled(const struct sock *sk)
2682 {
2683 	return false;
2684 }
2685 
mem_cgroup_sk_under_memory_pressure(const struct sock * sk)2686 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk)
2687 {
2688 	return false;
2689 }
2690 #endif
2691 
sock_rcvtimeo(const struct sock * sk,bool noblock)2692 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2693 {
2694 	return noblock ? 0 : READ_ONCE(sk->sk_rcvtimeo);
2695 }
2696 
sock_sndtimeo(const struct sock * sk,bool noblock)2697 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2698 {
2699 	return noblock ? 0 : READ_ONCE(sk->sk_sndtimeo);
2700 }
2701 
sock_rcvlowat(const struct sock * sk,int waitall,int len)2702 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2703 {
2704 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2705 
2706 	return v ?: 1;
2707 }
2708 
2709 /* Alas, with timeout socket operations are not restartable.
2710  * Compare this to poll().
2711  */
sock_intr_errno(long timeo)2712 static inline int sock_intr_errno(long timeo)
2713 {
2714 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2715 }
2716 
2717 struct sock_skb_cb {
2718 	u32 dropcount;
2719 };
2720 
2721 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2722  * using skb->cb[] would keep using it directly and utilize its
2723  * alignment guarantee.
2724  */
2725 #define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \
2726 			    sizeof(struct sock_skb_cb))
2727 
2728 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2729 			    SOCK_SKB_CB_OFFSET))
2730 
2731 #define sock_skb_cb_check_size(size) \
2732 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2733 
sk_drops_add(struct sock * sk,int segs)2734 static inline void sk_drops_add(struct sock *sk, int segs)
2735 {
2736 	struct numa_drop_counters *ndc = sk->sk_drop_counters;
2737 
2738 	if (ndc)
2739 		numa_drop_add(ndc, segs);
2740 	else
2741 		atomic_add(segs, &sk->sk_drops);
2742 }
2743 
sk_drops_inc(struct sock * sk)2744 static inline void sk_drops_inc(struct sock *sk)
2745 {
2746 	sk_drops_add(sk, 1);
2747 }
2748 
sk_drops_read(const struct sock * sk)2749 static inline int sk_drops_read(const struct sock *sk)
2750 {
2751 	const struct numa_drop_counters *ndc = sk->sk_drop_counters;
2752 
2753 	if (ndc) {
2754 		DEBUG_NET_WARN_ON_ONCE(atomic_read(&sk->sk_drops));
2755 		return numa_drop_read(ndc);
2756 	}
2757 	return atomic_read(&sk->sk_drops);
2758 }
2759 
sk_drops_reset(struct sock * sk)2760 static inline void sk_drops_reset(struct sock *sk)
2761 {
2762 	struct numa_drop_counters *ndc = sk->sk_drop_counters;
2763 
2764 	if (ndc)
2765 		numa_drop_reset(ndc);
2766 	atomic_set(&sk->sk_drops, 0);
2767 }
2768 
2769 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2770 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2771 {
2772 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2773 						sk_drops_read(sk) : 0;
2774 }
2775 
sk_drops_skbadd(struct sock * sk,const struct sk_buff * skb)2776 static inline void sk_drops_skbadd(struct sock *sk, const struct sk_buff *skb)
2777 {
2778 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2779 
2780 	sk_drops_add(sk, segs);
2781 }
2782 
sock_read_timestamp(struct sock * sk)2783 static inline ktime_t sock_read_timestamp(struct sock *sk)
2784 {
2785 #if BITS_PER_LONG==32
2786 	unsigned int seq;
2787 	ktime_t kt;
2788 
2789 	do {
2790 		seq = read_seqbegin(&sk->sk_stamp_seq);
2791 		kt = sk->sk_stamp;
2792 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2793 
2794 	return kt;
2795 #else
2796 	return READ_ONCE(sk->sk_stamp);
2797 #endif
2798 }
2799 
sock_write_timestamp(struct sock * sk,ktime_t kt)2800 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2801 {
2802 #if BITS_PER_LONG==32
2803 	write_seqlock(&sk->sk_stamp_seq);
2804 	sk->sk_stamp = kt;
2805 	write_sequnlock(&sk->sk_stamp_seq);
2806 #else
2807 	WRITE_ONCE(sk->sk_stamp, kt);
2808 #endif
2809 }
2810 
2811 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2812 			   struct sk_buff *skb);
2813 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2814 			     struct sk_buff *skb);
2815 
2816 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk);
2817 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk,
2818 			 struct timespec64 *ts);
2819 
2820 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2821 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2822 {
2823 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2824 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2825 	ktime_t kt = skb->tstamp;
2826 	/*
2827 	 * generate control messages if
2828 	 * - receive time stamping in software requested
2829 	 * - software time stamp available and wanted
2830 	 * - hardware time stamps available and wanted
2831 	 */
2832 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2833 	    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2834 	    (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2835 	    (hwtstamps->hwtstamp &&
2836 	     (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2837 		__sock_recv_timestamp(msg, sk, skb);
2838 	else
2839 		sock_write_timestamp(sk, kt);
2840 
2841 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2842 		__sock_recv_wifi_status(msg, sk, skb);
2843 }
2844 
2845 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2846 		       struct sk_buff *skb);
2847 
2848 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2849 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2850 				   struct sk_buff *skb)
2851 {
2852 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2853 			   (1UL << SOCK_RCVTSTAMP)			| \
2854 			   (1UL << SOCK_RCVMARK)			| \
2855 			   (1UL << SOCK_RCVPRIORITY)			| \
2856 			   (1UL << SOCK_TIMESTAMPING_ANY))
2857 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2858 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2859 
2860 	if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS)
2861 		__sock_recv_cmsgs(msg, sk, skb);
2862 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2863 		sock_write_timestamp(sk, skb->tstamp);
2864 	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2865 		sock_write_timestamp(sk, 0);
2866 }
2867 
2868 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags);
2869 
2870 /**
2871  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2872  * @sk:		socket sending this packet
2873  * @sockc:	pointer to socket cmsg cookie to get timestamping info
2874  * @tx_flags:	completed with instructions for time stamping
2875  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2876  *
2877  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2878  */
_sock_tx_timestamp(struct sock * sk,const struct sockcm_cookie * sockc,__u8 * tx_flags,__u32 * tskey)2879 static inline void _sock_tx_timestamp(struct sock *sk,
2880 				      const struct sockcm_cookie *sockc,
2881 				      __u8 *tx_flags, __u32 *tskey)
2882 {
2883 	__u32 tsflags = sockc->tsflags;
2884 
2885 	if (unlikely(tsflags)) {
2886 		__sock_tx_timestamp(tsflags, tx_flags);
2887 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2888 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) {
2889 			if (tsflags & SOCKCM_FLAG_TS_OPT_ID)
2890 				*tskey = sockc->ts_opt_id;
2891 			else
2892 				*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2893 		}
2894 	}
2895 }
2896 
sock_tx_timestamp(struct sock * sk,const struct sockcm_cookie * sockc,__u8 * tx_flags)2897 static inline void sock_tx_timestamp(struct sock *sk,
2898 				     const struct sockcm_cookie *sockc,
2899 				     __u8 *tx_flags)
2900 {
2901 	_sock_tx_timestamp(sk, sockc, tx_flags, NULL);
2902 }
2903 
skb_setup_tx_timestamp(struct sk_buff * skb,const struct sockcm_cookie * sockc)2904 static inline void skb_setup_tx_timestamp(struct sk_buff *skb,
2905 					  const struct sockcm_cookie *sockc)
2906 {
2907 	_sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags,
2908 			   &skb_shinfo(skb)->tskey);
2909 }
2910 
sk_is_inet(const struct sock * sk)2911 static inline bool sk_is_inet(const struct sock *sk)
2912 {
2913 	int family = READ_ONCE(sk->sk_family);
2914 
2915 	return family == AF_INET || family == AF_INET6;
2916 }
2917 
sk_is_tcp(const struct sock * sk)2918 static inline bool sk_is_tcp(const struct sock *sk)
2919 {
2920 	return sk_is_inet(sk) &&
2921 	       sk->sk_type == SOCK_STREAM &&
2922 	       sk->sk_protocol == IPPROTO_TCP;
2923 }
2924 
sk_is_udp(const struct sock * sk)2925 static inline bool sk_is_udp(const struct sock *sk)
2926 {
2927 	return sk_is_inet(sk) &&
2928 	       sk->sk_type == SOCK_DGRAM &&
2929 	       sk->sk_protocol == IPPROTO_UDP;
2930 }
2931 
sk_is_unix(const struct sock * sk)2932 static inline bool sk_is_unix(const struct sock *sk)
2933 {
2934 	return sk->sk_family == AF_UNIX;
2935 }
2936 
sk_is_stream_unix(const struct sock * sk)2937 static inline bool sk_is_stream_unix(const struct sock *sk)
2938 {
2939 	return sk_is_unix(sk) && sk->sk_type == SOCK_STREAM;
2940 }
2941 
sk_is_vsock(const struct sock * sk)2942 static inline bool sk_is_vsock(const struct sock *sk)
2943 {
2944 	return sk->sk_family == AF_VSOCK;
2945 }
2946 
sk_may_scm_recv(const struct sock * sk)2947 static inline bool sk_may_scm_recv(const struct sock *sk)
2948 {
2949 	return (IS_ENABLED(CONFIG_UNIX) && sk->sk_family == AF_UNIX) ||
2950 		sk->sk_family == AF_NETLINK ||
2951 		(IS_ENABLED(CONFIG_BT) && sk->sk_family == AF_BLUETOOTH);
2952 }
2953 
2954 /**
2955  * sk_eat_skb - Release a skb if it is no longer needed
2956  * @sk: socket to eat this skb from
2957  * @skb: socket buffer to eat
2958  *
2959  * This routine must be called with interrupts disabled or with the socket
2960  * locked so that the sk_buff queue operation is ok.
2961 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2962 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2963 {
2964 	__skb_unlink(skb, &sk->sk_receive_queue);
2965 	__kfree_skb(skb);
2966 }
2967 
2968 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2969 skb_sk_is_prefetched(struct sk_buff *skb)
2970 {
2971 #ifdef CONFIG_INET
2972 	return skb->destructor == sock_pfree;
2973 #else
2974 	return false;
2975 #endif /* CONFIG_INET */
2976 }
2977 
2978 /* This helper checks if a socket is a full socket,
2979  * ie _not_ a timewait or request socket.
2980  */
sk_fullsock(const struct sock * sk)2981 static inline bool sk_fullsock(const struct sock *sk)
2982 {
2983 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2984 }
2985 
2986 static inline bool
sk_is_refcounted(struct sock * sk)2987 sk_is_refcounted(struct sock *sk)
2988 {
2989 	/* Only full sockets have sk->sk_flags. */
2990 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2991 }
2992 
2993 static inline bool
sk_requests_wifi_status(struct sock * sk)2994 sk_requests_wifi_status(struct sock *sk)
2995 {
2996 	return sk && sk_fullsock(sk) && sock_flag(sk, SOCK_WIFI_STATUS);
2997 }
2998 
2999 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
3000  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
3001  */
sk_listener(const struct sock * sk)3002 static inline bool sk_listener(const struct sock *sk)
3003 {
3004 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
3005 }
3006 
3007 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT
3008  * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE)
3009  * TCP RST and ACK can be attached to TIME_WAIT.
3010  */
sk_listener_or_tw(const struct sock * sk)3011 static inline bool sk_listener_or_tw(const struct sock *sk)
3012 {
3013 	return (1 << READ_ONCE(sk->sk_state)) &
3014 	       (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT);
3015 }
3016 
3017 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
3018 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
3019 		       int type);
3020 
3021 bool sk_ns_capable(const struct sock *sk,
3022 		   struct user_namespace *user_ns, int cap);
3023 bool sk_capable(const struct sock *sk, int cap);
3024 bool sk_net_capable(const struct sock *sk, int cap);
3025 
3026 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
3027 
3028 /* Take into consideration the size of the struct sk_buff overhead in the
3029  * determination of these values, since that is non-constant across
3030  * platforms.  This makes socket queueing behavior and performance
3031  * not depend upon such differences.
3032  */
3033 #define _SK_MEM_PACKETS		256
3034 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
3035 #define SK_WMEM_DEFAULT		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
3036 #define SK_RMEM_DEFAULT		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
3037 
3038 extern __u32 sysctl_wmem_max;
3039 extern __u32 sysctl_rmem_max;
3040 
3041 extern __u32 sysctl_wmem_default;
3042 extern __u32 sysctl_rmem_default;
3043 
3044 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
3045 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
3046 
sk_get_wmem0(const struct sock * sk,const struct proto * proto)3047 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
3048 {
3049 	/* Does this proto have per netns sysctl_wmem ? */
3050 	if (proto->sysctl_wmem_offset)
3051 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
3052 
3053 	return READ_ONCE(*proto->sysctl_wmem);
3054 }
3055 
sk_get_rmem0(const struct sock * sk,const struct proto * proto)3056 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
3057 {
3058 	/* Does this proto have per netns sysctl_rmem ? */
3059 	if (proto->sysctl_rmem_offset)
3060 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
3061 
3062 	return READ_ONCE(*proto->sysctl_rmem);
3063 }
3064 
3065 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
3066  * Some wifi drivers need to tweak it to get more chunks.
3067  * They can use this helper from their ndo_start_xmit()
3068  */
sk_pacing_shift_update(struct sock * sk,int val)3069 static inline void sk_pacing_shift_update(struct sock *sk, int val)
3070 {
3071 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
3072 		return;
3073 	WRITE_ONCE(sk->sk_pacing_shift, val);
3074 }
3075 
3076 /* if a socket is bound to a device, check that the given device
3077  * index is either the same or that the socket is bound to an L3
3078  * master device and the given device index is also enslaved to
3079  * that L3 master
3080  */
sk_dev_equal_l3scope(struct sock * sk,int dif)3081 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
3082 {
3083 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
3084 	int mdif;
3085 
3086 	if (!bound_dev_if || bound_dev_if == dif)
3087 		return true;
3088 
3089 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
3090 	if (mdif && mdif == bound_dev_if)
3091 		return true;
3092 
3093 	return false;
3094 }
3095 
3096 void sock_def_readable(struct sock *sk);
3097 
3098 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
3099 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
3100 int sock_set_timestamping(struct sock *sk, int optname,
3101 			  struct so_timestamping timestamping);
3102 
3103 #if defined(CONFIG_CGROUP_BPF)
3104 void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op);
3105 #else
bpf_skops_tx_timestamping(struct sock * sk,struct sk_buff * skb,int op)3106 static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op)
3107 {
3108 }
3109 #endif
3110 void sock_no_linger(struct sock *sk);
3111 void sock_set_keepalive(struct sock *sk);
3112 void sock_set_priority(struct sock *sk, u32 priority);
3113 void sock_set_rcvbuf(struct sock *sk, int val);
3114 void sock_set_mark(struct sock *sk, u32 val);
3115 void sock_set_reuseaddr(struct sock *sk);
3116 void sock_set_reuseport(struct sock *sk);
3117 void sock_set_sndtimeo(struct sock *sk, s64 secs);
3118 
3119 int sock_bind_add(struct sock *sk, struct sockaddr_unsized *addr, int addr_len);
3120 
3121 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
3122 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
3123 			   sockptr_t optval, int optlen, bool old_timeval);
3124 
3125 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
3126 		     void __user *arg, void *karg, size_t size);
3127 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
sk_is_readable(struct sock * sk)3128 static inline bool sk_is_readable(struct sock *sk)
3129 {
3130 	const struct proto *prot = READ_ONCE(sk->sk_prot);
3131 
3132 	if (prot->sock_is_readable)
3133 		return prot->sock_is_readable(sk);
3134 
3135 	return false;
3136 }
3137 #endif	/* _SOCK_H */
3138