1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
5 */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/kobject.h>
10 #include <linux/percpu.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/nmi.h>
14 #include <linux/sched.h>
15 #include <linux/sched/loadavg.h>
16 #include <linux/sched/clock.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 #include <linux/audit.h>
27 #include <linux/random.h>
28
29 #include <vdso/auxclock.h>
30
31 #include "tick-internal.h"
32 #include "ntp_internal.h"
33 #include "timekeeping_internal.h"
34
35 #define TK_CLEAR_NTP (1 << 0)
36 #define TK_CLOCK_WAS_SET (1 << 1)
37
38 #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET)
39
40 enum timekeeping_adv_mode {
41 /* Update timekeeper when a tick has passed */
42 TK_ADV_TICK,
43
44 /* Update timekeeper on a direct frequency change */
45 TK_ADV_FREQ
46 };
47
48 /*
49 * The most important data for readout fits into a single 64 byte
50 * cache line.
51 */
52 struct tk_data {
53 seqcount_raw_spinlock_t seq;
54 struct timekeeper timekeeper;
55 struct timekeeper shadow_timekeeper;
56 raw_spinlock_t lock;
57 } ____cacheline_aligned;
58
59 static struct tk_data timekeeper_data[TIMEKEEPERS_MAX];
60
61 /* The core timekeeper */
62 #define tk_core (timekeeper_data[TIMEKEEPER_CORE])
63
64 #ifdef CONFIG_POSIX_AUX_CLOCKS
tk_get_aux_ts64(unsigned int tkid,struct timespec64 * ts)65 static inline bool tk_get_aux_ts64(unsigned int tkid, struct timespec64 *ts)
66 {
67 return ktime_get_aux_ts64(CLOCK_AUX + tkid - TIMEKEEPER_AUX_FIRST, ts);
68 }
69
tk_is_aux(const struct timekeeper * tk)70 static inline bool tk_is_aux(const struct timekeeper *tk)
71 {
72 return tk->id >= TIMEKEEPER_AUX_FIRST && tk->id <= TIMEKEEPER_AUX_LAST;
73 }
74 #else
tk_get_aux_ts64(unsigned int tkid,struct timespec64 * ts)75 static inline bool tk_get_aux_ts64(unsigned int tkid, struct timespec64 *ts)
76 {
77 return false;
78 }
79
tk_is_aux(const struct timekeeper * tk)80 static inline bool tk_is_aux(const struct timekeeper *tk)
81 {
82 return false;
83 }
84 #endif
85
tk_update_aux_offs(struct timekeeper * tk,ktime_t offs)86 static inline void tk_update_aux_offs(struct timekeeper *tk, ktime_t offs)
87 {
88 tk->offs_aux = offs;
89 tk->monotonic_to_aux = ktime_to_timespec64(offs);
90 }
91
92 /* flag for if timekeeping is suspended */
93 int __read_mostly timekeeping_suspended;
94
95 /**
96 * struct tk_fast - NMI safe timekeeper
97 * @seq: Sequence counter for protecting updates. The lowest bit
98 * is the index for the tk_read_base array
99 * @base: tk_read_base array. Access is indexed by the lowest bit of
100 * @seq.
101 *
102 * See @update_fast_timekeeper() below.
103 */
104 struct tk_fast {
105 seqcount_latch_t seq;
106 struct tk_read_base base[2];
107 };
108
109 /* Suspend-time cycles value for halted fast timekeeper. */
110 static u64 cycles_at_suspend;
111
dummy_clock_read(struct clocksource * cs)112 static u64 dummy_clock_read(struct clocksource *cs)
113 {
114 if (timekeeping_suspended)
115 return cycles_at_suspend;
116 return local_clock();
117 }
118
119 static struct clocksource dummy_clock = {
120 .read = dummy_clock_read,
121 };
122
123 /*
124 * Boot time initialization which allows local_clock() to be utilized
125 * during early boot when clocksources are not available. local_clock()
126 * returns nanoseconds already so no conversion is required, hence mult=1
127 * and shift=0. When the first proper clocksource is installed then
128 * the fast time keepers are updated with the correct values.
129 */
130 #define FAST_TK_INIT \
131 { \
132 .clock = &dummy_clock, \
133 .mask = CLOCKSOURCE_MASK(64), \
134 .mult = 1, \
135 .shift = 0, \
136 }
137
138 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
139 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
140 .base[0] = FAST_TK_INIT,
141 .base[1] = FAST_TK_INIT,
142 };
143
144 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
145 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
146 .base[0] = FAST_TK_INIT,
147 .base[1] = FAST_TK_INIT,
148 };
149
150 #ifdef CONFIG_POSIX_AUX_CLOCKS
151 static __init void tk_aux_setup(void);
152 static void tk_aux_update_clocksource(void);
153 static void tk_aux_advance(void);
154 #else
tk_aux_setup(void)155 static inline void tk_aux_setup(void) { }
tk_aux_update_clocksource(void)156 static inline void tk_aux_update_clocksource(void) { }
tk_aux_advance(void)157 static inline void tk_aux_advance(void) { }
158 #endif
159
timekeeper_lock_irqsave(void)160 unsigned long timekeeper_lock_irqsave(void)
161 {
162 unsigned long flags;
163
164 raw_spin_lock_irqsave(&tk_core.lock, flags);
165 return flags;
166 }
167
timekeeper_unlock_irqrestore(unsigned long flags)168 void timekeeper_unlock_irqrestore(unsigned long flags)
169 {
170 raw_spin_unlock_irqrestore(&tk_core.lock, flags);
171 }
172
173 /*
174 * Multigrain timestamps require tracking the latest fine-grained timestamp
175 * that has been issued, and never returning a coarse-grained timestamp that is
176 * earlier than that value.
177 *
178 * mg_floor represents the latest fine-grained time that has been handed out as
179 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and
180 * converted to a realtime clock value on an as-needed basis.
181 *
182 * Maintaining mg_floor ensures the multigrain interfaces never issue a
183 * timestamp earlier than one that has been previously issued.
184 *
185 * The exception to this rule is when there is a backward realtime clock jump. If
186 * such an event occurs, a timestamp can appear to be earlier than a previous one.
187 */
188 static __cacheline_aligned_in_smp atomic64_t mg_floor;
189
tk_normalize_xtime(struct timekeeper * tk)190 static inline void tk_normalize_xtime(struct timekeeper *tk)
191 {
192 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
193 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
194 tk->xtime_sec++;
195 }
196 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
197 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
198 tk->raw_sec++;
199 }
200 }
201
tk_xtime(const struct timekeeper * tk)202 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
203 {
204 struct timespec64 ts;
205
206 ts.tv_sec = tk->xtime_sec;
207 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
208 return ts;
209 }
210
tk_xtime_coarse(const struct timekeeper * tk)211 static inline struct timespec64 tk_xtime_coarse(const struct timekeeper *tk)
212 {
213 struct timespec64 ts;
214
215 ts.tv_sec = tk->xtime_sec;
216 ts.tv_nsec = tk->coarse_nsec;
217 return ts;
218 }
219
220 /*
221 * Update the nanoseconds part for the coarse time keepers. They can't rely
222 * on xtime_nsec because xtime_nsec could be adjusted by a small negative
223 * amount when the multiplication factor of the clock is adjusted, which
224 * could cause the coarse clocks to go slightly backwards. See
225 * timekeeping_apply_adjustment(). Thus we keep a separate copy for the coarse
226 * clockids which only is updated when the clock has been set or we have
227 * accumulated time.
228 */
tk_update_coarse_nsecs(struct timekeeper * tk)229 static inline void tk_update_coarse_nsecs(struct timekeeper *tk)
230 {
231 tk->coarse_nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
232 }
233
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)234 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
235 {
236 tk->xtime_sec = ts->tv_sec;
237 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
238 tk_update_coarse_nsecs(tk);
239 }
240
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)241 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
242 {
243 tk->xtime_sec += ts->tv_sec;
244 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
245 tk_normalize_xtime(tk);
246 tk_update_coarse_nsecs(tk);
247 }
248
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)249 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
250 {
251 struct timespec64 tmp;
252
253 /*
254 * Verify consistency of: offset_real = -wall_to_monotonic
255 * before modifying anything
256 */
257 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
258 -tk->wall_to_monotonic.tv_nsec);
259 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
260 tk->wall_to_monotonic = wtm;
261 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
262 /* Paired with READ_ONCE() in ktime_mono_to_any() */
263 WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp));
264 WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)));
265 }
266
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)267 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
268 {
269 /* Paired with READ_ONCE() in ktime_mono_to_any() */
270 WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta));
271 /*
272 * Timespec representation for VDSO update to avoid 64bit division
273 * on every update.
274 */
275 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
276 }
277
278 /*
279 * tk_clock_read - atomic clocksource read() helper
280 *
281 * This helper is necessary to use in the read paths because, while the
282 * seqcount ensures we don't return a bad value while structures are updated,
283 * it doesn't protect from potential crashes. There is the possibility that
284 * the tkr's clocksource may change between the read reference, and the
285 * clock reference passed to the read function. This can cause crashes if
286 * the wrong clocksource is passed to the wrong read function.
287 * This isn't necessary to use when holding the tk_core.lock or doing
288 * a read of the fast-timekeeper tkrs (which is protected by its own locking
289 * and update logic).
290 */
tk_clock_read(const struct tk_read_base * tkr)291 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
292 {
293 struct clocksource *clock = READ_ONCE(tkr->clock);
294
295 return clock->read(clock);
296 }
297
298 /**
299 * tk_setup_internals - Set up internals to use clocksource clock.
300 *
301 * @tk: The target timekeeper to setup.
302 * @clock: Pointer to clocksource.
303 *
304 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
305 * pair and interval request.
306 *
307 * Unless you're the timekeeping code, you should not be using this!
308 */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)309 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
310 {
311 u64 interval;
312 u64 tmp, ntpinterval;
313 struct clocksource *old_clock;
314
315 ++tk->cs_was_changed_seq;
316 old_clock = tk->tkr_mono.clock;
317 tk->tkr_mono.clock = clock;
318 tk->tkr_mono.mask = clock->mask;
319 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
320
321 tk->tkr_raw.clock = clock;
322 tk->tkr_raw.mask = clock->mask;
323 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
324
325 /* Do the ns -> cycle conversion first, using original mult */
326 tmp = NTP_INTERVAL_LENGTH;
327 tmp <<= clock->shift;
328 ntpinterval = tmp;
329 tmp += clock->mult/2;
330 do_div(tmp, clock->mult);
331 if (tmp == 0)
332 tmp = 1;
333
334 interval = (u64) tmp;
335 tk->cycle_interval = interval;
336
337 /* Go back from cycles -> shifted ns */
338 tk->xtime_interval = interval * clock->mult;
339 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
340 tk->raw_interval = interval * clock->mult;
341
342 /* if changing clocks, convert xtime_nsec shift units */
343 if (old_clock) {
344 int shift_change = clock->shift - old_clock->shift;
345 if (shift_change < 0) {
346 tk->tkr_mono.xtime_nsec >>= -shift_change;
347 tk->tkr_raw.xtime_nsec >>= -shift_change;
348 } else {
349 tk->tkr_mono.xtime_nsec <<= shift_change;
350 tk->tkr_raw.xtime_nsec <<= shift_change;
351 }
352 }
353
354 tk->tkr_mono.shift = clock->shift;
355 tk->tkr_raw.shift = clock->shift;
356
357 tk->ntp_error = 0;
358 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
359 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
360
361 /*
362 * The timekeeper keeps its own mult values for the currently
363 * active clocksource. These value will be adjusted via NTP
364 * to counteract clock drifting.
365 */
366 tk->tkr_mono.mult = clock->mult;
367 tk->tkr_raw.mult = clock->mult;
368 tk->ntp_err_mult = 0;
369 tk->skip_second_overflow = 0;
370 }
371
372 /* Timekeeper helper functions. */
delta_to_ns_safe(const struct tk_read_base * tkr,u64 delta)373 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta)
374 {
375 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift);
376 }
377
timekeeping_cycles_to_ns(const struct tk_read_base * tkr,u64 cycles)378 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
379 {
380 /* Calculate the delta since the last update_wall_time() */
381 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask;
382
383 /*
384 * This detects both negative motion and the case where the delta
385 * overflows the multiplication with tkr->mult.
386 */
387 if (unlikely(delta > tkr->clock->max_cycles)) {
388 /*
389 * Handle clocksource inconsistency between CPUs to prevent
390 * time from going backwards by checking for the MSB of the
391 * mask being set in the delta.
392 */
393 if (delta & ~(mask >> 1))
394 return tkr->xtime_nsec >> tkr->shift;
395
396 return delta_to_ns_safe(tkr, delta);
397 }
398
399 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift;
400 }
401
timekeeping_get_ns(const struct tk_read_base * tkr)402 static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
403 {
404 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr));
405 }
406
407 /**
408 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
409 * @tkr: Timekeeping readout base from which we take the update
410 * @tkf: Pointer to NMI safe timekeeper
411 *
412 * We want to use this from any context including NMI and tracing /
413 * instrumenting the timekeeping code itself.
414 *
415 * Employ the latch technique; see @write_seqcount_latch.
416 *
417 * So if a NMI hits the update of base[0] then it will use base[1]
418 * which is still consistent. In the worst case this can result is a
419 * slightly wrong timestamp (a few nanoseconds). See
420 * @ktime_get_mono_fast_ns.
421 */
update_fast_timekeeper(const struct tk_read_base * tkr,struct tk_fast * tkf)422 static void update_fast_timekeeper(const struct tk_read_base *tkr,
423 struct tk_fast *tkf)
424 {
425 struct tk_read_base *base = tkf->base;
426
427 /* Force readers off to base[1] */
428 write_seqcount_latch_begin(&tkf->seq);
429
430 /* Update base[0] */
431 memcpy(base, tkr, sizeof(*base));
432
433 /* Force readers back to base[0] */
434 write_seqcount_latch(&tkf->seq);
435
436 /* Update base[1] */
437 memcpy(base + 1, base, sizeof(*base));
438
439 write_seqcount_latch_end(&tkf->seq);
440 }
441
__ktime_get_fast_ns(struct tk_fast * tkf)442 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
443 {
444 struct tk_read_base *tkr;
445 unsigned int seq;
446 u64 now;
447
448 do {
449 seq = read_seqcount_latch(&tkf->seq);
450 tkr = tkf->base + (seq & 0x01);
451 now = ktime_to_ns(tkr->base);
452 now += timekeeping_get_ns(tkr);
453 } while (read_seqcount_latch_retry(&tkf->seq, seq));
454
455 return now;
456 }
457
458 /**
459 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
460 *
461 * This timestamp is not guaranteed to be monotonic across an update.
462 * The timestamp is calculated by:
463 *
464 * now = base_mono + clock_delta * slope
465 *
466 * So if the update lowers the slope, readers who are forced to the
467 * not yet updated second array are still using the old steeper slope.
468 *
469 * tmono
470 * ^
471 * | o n
472 * | o n
473 * | u
474 * | o
475 * |o
476 * |12345678---> reader order
477 *
478 * o = old slope
479 * u = update
480 * n = new slope
481 *
482 * So reader 6 will observe time going backwards versus reader 5.
483 *
484 * While other CPUs are likely to be able to observe that, the only way
485 * for a CPU local observation is when an NMI hits in the middle of
486 * the update. Timestamps taken from that NMI context might be ahead
487 * of the following timestamps. Callers need to be aware of that and
488 * deal with it.
489 */
ktime_get_mono_fast_ns(void)490 u64 notrace ktime_get_mono_fast_ns(void)
491 {
492 return __ktime_get_fast_ns(&tk_fast_mono);
493 }
494 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
495
496 /**
497 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
498 *
499 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
500 * conversion factor is not affected by NTP/PTP correction.
501 */
ktime_get_raw_fast_ns(void)502 u64 notrace ktime_get_raw_fast_ns(void)
503 {
504 return __ktime_get_fast_ns(&tk_fast_raw);
505 }
506 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
507
508 /**
509 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
510 *
511 * To keep it NMI safe since we're accessing from tracing, we're not using a
512 * separate timekeeper with updates to monotonic clock and boot offset
513 * protected with seqcounts. This has the following minor side effects:
514 *
515 * (1) Its possible that a timestamp be taken after the boot offset is updated
516 * but before the timekeeper is updated. If this happens, the new boot offset
517 * is added to the old timekeeping making the clock appear to update slightly
518 * earlier:
519 * CPU 0 CPU 1
520 * timekeeping_inject_sleeptime64()
521 * __timekeeping_inject_sleeptime(tk, delta);
522 * timestamp();
523 * timekeeping_update_staged(tkd, TK_CLEAR_NTP...);
524 *
525 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
526 * partially updated. Since the tk->offs_boot update is a rare event, this
527 * should be a rare occurrence which postprocessing should be able to handle.
528 *
529 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
530 * apply as well.
531 */
ktime_get_boot_fast_ns(void)532 u64 notrace ktime_get_boot_fast_ns(void)
533 {
534 struct timekeeper *tk = &tk_core.timekeeper;
535
536 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
537 }
538 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
539
540 /**
541 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
542 *
543 * The same limitations as described for ktime_get_boot_fast_ns() apply. The
544 * mono time and the TAI offset are not read atomically which may yield wrong
545 * readouts. However, an update of the TAI offset is an rare event e.g., caused
546 * by settime or adjtimex with an offset. The user of this function has to deal
547 * with the possibility of wrong timestamps in post processing.
548 */
ktime_get_tai_fast_ns(void)549 u64 notrace ktime_get_tai_fast_ns(void)
550 {
551 struct timekeeper *tk = &tk_core.timekeeper;
552
553 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
554 }
555 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
556
557 /**
558 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
559 *
560 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
561 */
ktime_get_real_fast_ns(void)562 u64 ktime_get_real_fast_ns(void)
563 {
564 struct tk_fast *tkf = &tk_fast_mono;
565 struct tk_read_base *tkr;
566 u64 baser, delta;
567 unsigned int seq;
568
569 do {
570 seq = raw_read_seqcount_latch(&tkf->seq);
571 tkr = tkf->base + (seq & 0x01);
572 baser = ktime_to_ns(tkr->base_real);
573 delta = timekeeping_get_ns(tkr);
574 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
575
576 return baser + delta;
577 }
578 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
579
580 /**
581 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
582 * @tk: Timekeeper to snapshot.
583 *
584 * It generally is unsafe to access the clocksource after timekeeping has been
585 * suspended, so take a snapshot of the readout base of @tk and use it as the
586 * fast timekeeper's readout base while suspended. It will return the same
587 * number of cycles every time until timekeeping is resumed at which time the
588 * proper readout base for the fast timekeeper will be restored automatically.
589 */
halt_fast_timekeeper(const struct timekeeper * tk)590 static void halt_fast_timekeeper(const struct timekeeper *tk)
591 {
592 static struct tk_read_base tkr_dummy;
593 const struct tk_read_base *tkr = &tk->tkr_mono;
594
595 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
596 cycles_at_suspend = tk_clock_read(tkr);
597 tkr_dummy.clock = &dummy_clock;
598 tkr_dummy.base_real = tkr->base + tk->offs_real;
599 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
600
601 tkr = &tk->tkr_raw;
602 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
603 tkr_dummy.clock = &dummy_clock;
604 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
605 }
606
607 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
608
update_pvclock_gtod(struct timekeeper * tk,bool was_set)609 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
610 {
611 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
612 }
613
614 /**
615 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
616 * @nb: Pointer to the notifier block to register
617 */
pvclock_gtod_register_notifier(struct notifier_block * nb)618 int pvclock_gtod_register_notifier(struct notifier_block *nb)
619 {
620 struct timekeeper *tk = &tk_core.timekeeper;
621 int ret;
622
623 guard(raw_spinlock_irqsave)(&tk_core.lock);
624 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
625 update_pvclock_gtod(tk, true);
626
627 return ret;
628 }
629 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
630
631 /**
632 * pvclock_gtod_unregister_notifier - unregister a pvclock
633 * timedata update listener
634 * @nb: Pointer to the notifier block to unregister
635 */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)636 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
637 {
638 guard(raw_spinlock_irqsave)(&tk_core.lock);
639 return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
640 }
641 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
642
643 /*
644 * tk_update_leap_state - helper to update the next_leap_ktime
645 */
tk_update_leap_state(struct timekeeper * tk)646 static inline void tk_update_leap_state(struct timekeeper *tk)
647 {
648 tk->next_leap_ktime = ntp_get_next_leap(tk->id);
649 if (tk->next_leap_ktime != KTIME_MAX)
650 /* Convert to monotonic time */
651 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
652 }
653
654 /*
655 * Leap state update for both shadow and the real timekeeper
656 * Separate to spare a full memcpy() of the timekeeper.
657 */
tk_update_leap_state_all(struct tk_data * tkd)658 static void tk_update_leap_state_all(struct tk_data *tkd)
659 {
660 write_seqcount_begin(&tkd->seq);
661 tk_update_leap_state(&tkd->shadow_timekeeper);
662 tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime;
663 write_seqcount_end(&tkd->seq);
664 }
665
666 /*
667 * Update the ktime_t based scalar nsec members of the timekeeper
668 */
tk_update_ktime_data(struct timekeeper * tk)669 static inline void tk_update_ktime_data(struct timekeeper *tk)
670 {
671 u64 seconds;
672 u32 nsec;
673
674 /*
675 * The xtime based monotonic readout is:
676 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
677 * The ktime based monotonic readout is:
678 * nsec = base_mono + now();
679 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
680 */
681 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
682 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
683 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
684
685 /*
686 * The sum of the nanoseconds portions of xtime and
687 * wall_to_monotonic can be greater/equal one second. Take
688 * this into account before updating tk->ktime_sec.
689 */
690 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
691 if (nsec >= NSEC_PER_SEC)
692 seconds++;
693 tk->ktime_sec = seconds;
694
695 /* Update the monotonic raw base */
696 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
697 }
698
699 /*
700 * Restore the shadow timekeeper from the real timekeeper.
701 */
timekeeping_restore_shadow(struct tk_data * tkd)702 static void timekeeping_restore_shadow(struct tk_data *tkd)
703 {
704 lockdep_assert_held(&tkd->lock);
705 memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper));
706 }
707
timekeeping_update_from_shadow(struct tk_data * tkd,unsigned int action)708 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action)
709 {
710 struct timekeeper *tk = &tkd->shadow_timekeeper;
711
712 lockdep_assert_held(&tkd->lock);
713
714 /*
715 * Block out readers before running the updates below because that
716 * updates VDSO and other time related infrastructure. Not blocking
717 * the readers might let a reader see time going backwards when
718 * reading from the VDSO after the VDSO update and then reading in
719 * the kernel from the timekeeper before that got updated.
720 */
721 write_seqcount_begin(&tkd->seq);
722
723 if (action & TK_CLEAR_NTP) {
724 tk->ntp_error = 0;
725 ntp_clear(tk->id);
726 }
727
728 tk_update_leap_state(tk);
729 tk_update_ktime_data(tk);
730 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
731
732 if (tk->id == TIMEKEEPER_CORE) {
733 update_vsyscall(tk);
734 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
735
736 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
737 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
738 } else if (tk_is_aux(tk)) {
739 vdso_time_update_aux(tk);
740 }
741
742 if (action & TK_CLOCK_WAS_SET)
743 tk->clock_was_set_seq++;
744
745 /*
746 * Update the real timekeeper.
747 *
748 * We could avoid this memcpy() by switching pointers, but that has
749 * the downside that the reader side does not longer benefit from
750 * the cacheline optimized data layout of the timekeeper and requires
751 * another indirection.
752 */
753 memcpy(&tkd->timekeeper, tk, sizeof(*tk));
754 write_seqcount_end(&tkd->seq);
755 }
756
757 /**
758 * timekeeping_forward_now - update clock to the current time
759 * @tk: Pointer to the timekeeper to update
760 *
761 * Forward the current clock to update its state since the last call to
762 * update_wall_time(). This is useful before significant clock changes,
763 * as it avoids having to deal with this time offset explicitly.
764 */
timekeeping_forward_now(struct timekeeper * tk)765 static void timekeeping_forward_now(struct timekeeper *tk)
766 {
767 u64 cycle_now, delta;
768
769 cycle_now = tk_clock_read(&tk->tkr_mono);
770 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask,
771 tk->tkr_mono.clock->max_raw_delta);
772 tk->tkr_mono.cycle_last = cycle_now;
773 tk->tkr_raw.cycle_last = cycle_now;
774
775 while (delta > 0) {
776 u64 max = tk->tkr_mono.clock->max_cycles;
777 u64 incr = delta < max ? delta : max;
778
779 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult;
780 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult;
781 tk_normalize_xtime(tk);
782 delta -= incr;
783 }
784 tk_update_coarse_nsecs(tk);
785 }
786
787 /**
788 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
789 * @ts: pointer to the timespec to be set
790 *
791 * Returns the time of day in a timespec64 (WARN if suspended).
792 */
ktime_get_real_ts64(struct timespec64 * ts)793 void ktime_get_real_ts64(struct timespec64 *ts)
794 {
795 struct timekeeper *tk = &tk_core.timekeeper;
796 unsigned int seq;
797 u64 nsecs;
798
799 WARN_ON(timekeeping_suspended);
800
801 do {
802 seq = read_seqcount_begin(&tk_core.seq);
803
804 ts->tv_sec = tk->xtime_sec;
805 nsecs = timekeeping_get_ns(&tk->tkr_mono);
806
807 } while (read_seqcount_retry(&tk_core.seq, seq));
808
809 ts->tv_nsec = 0;
810 timespec64_add_ns(ts, nsecs);
811 }
812 EXPORT_SYMBOL(ktime_get_real_ts64);
813
ktime_get(void)814 ktime_t ktime_get(void)
815 {
816 struct timekeeper *tk = &tk_core.timekeeper;
817 unsigned int seq;
818 ktime_t base;
819 u64 nsecs;
820
821 WARN_ON(timekeeping_suspended);
822
823 do {
824 seq = read_seqcount_begin(&tk_core.seq);
825 base = tk->tkr_mono.base;
826 nsecs = timekeeping_get_ns(&tk->tkr_mono);
827
828 } while (read_seqcount_retry(&tk_core.seq, seq));
829
830 return ktime_add_ns(base, nsecs);
831 }
832 EXPORT_SYMBOL_GPL(ktime_get);
833
ktime_get_resolution_ns(void)834 u32 ktime_get_resolution_ns(void)
835 {
836 struct timekeeper *tk = &tk_core.timekeeper;
837 unsigned int seq;
838 u32 nsecs;
839
840 WARN_ON(timekeeping_suspended);
841
842 do {
843 seq = read_seqcount_begin(&tk_core.seq);
844 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
845 } while (read_seqcount_retry(&tk_core.seq, seq));
846
847 return nsecs;
848 }
849 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
850
851 static ktime_t *offsets[TK_OFFS_MAX] = {
852 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
853 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
854 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
855 };
856
ktime_get_with_offset(enum tk_offsets offs)857 ktime_t ktime_get_with_offset(enum tk_offsets offs)
858 {
859 struct timekeeper *tk = &tk_core.timekeeper;
860 unsigned int seq;
861 ktime_t base, *offset = offsets[offs];
862 u64 nsecs;
863
864 WARN_ON(timekeeping_suspended);
865
866 do {
867 seq = read_seqcount_begin(&tk_core.seq);
868 base = ktime_add(tk->tkr_mono.base, *offset);
869 nsecs = timekeeping_get_ns(&tk->tkr_mono);
870
871 } while (read_seqcount_retry(&tk_core.seq, seq));
872
873 return ktime_add_ns(base, nsecs);
874
875 }
876 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
877
ktime_get_coarse_with_offset(enum tk_offsets offs)878 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
879 {
880 struct timekeeper *tk = &tk_core.timekeeper;
881 ktime_t base, *offset = offsets[offs];
882 unsigned int seq;
883 u64 nsecs;
884
885 WARN_ON(timekeeping_suspended);
886
887 do {
888 seq = read_seqcount_begin(&tk_core.seq);
889 base = ktime_add(tk->tkr_mono.base, *offset);
890 nsecs = tk->coarse_nsec;
891
892 } while (read_seqcount_retry(&tk_core.seq, seq));
893
894 return ktime_add_ns(base, nsecs);
895 }
896 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
897
898 /**
899 * ktime_mono_to_any() - convert monotonic time to any other time
900 * @tmono: time to convert.
901 * @offs: which offset to use
902 */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)903 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
904 {
905 ktime_t *offset = offsets[offs];
906 unsigned int seq;
907 ktime_t tconv;
908
909 if (IS_ENABLED(CONFIG_64BIT)) {
910 /*
911 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and
912 * tk_update_sleep_time().
913 */
914 return ktime_add(tmono, READ_ONCE(*offset));
915 }
916
917 do {
918 seq = read_seqcount_begin(&tk_core.seq);
919 tconv = ktime_add(tmono, *offset);
920 } while (read_seqcount_retry(&tk_core.seq, seq));
921
922 return tconv;
923 }
924 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
925
926 /**
927 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
928 */
ktime_get_raw(void)929 ktime_t ktime_get_raw(void)
930 {
931 struct timekeeper *tk = &tk_core.timekeeper;
932 unsigned int seq;
933 ktime_t base;
934 u64 nsecs;
935
936 do {
937 seq = read_seqcount_begin(&tk_core.seq);
938 base = tk->tkr_raw.base;
939 nsecs = timekeeping_get_ns(&tk->tkr_raw);
940
941 } while (read_seqcount_retry(&tk_core.seq, seq));
942
943 return ktime_add_ns(base, nsecs);
944 }
945 EXPORT_SYMBOL_GPL(ktime_get_raw);
946
947 /**
948 * ktime_get_ts64 - get the monotonic clock in timespec64 format
949 * @ts: pointer to timespec variable
950 *
951 * The function calculates the monotonic clock from the realtime
952 * clock and the wall_to_monotonic offset and stores the result
953 * in normalized timespec64 format in the variable pointed to by @ts.
954 */
ktime_get_ts64(struct timespec64 * ts)955 void ktime_get_ts64(struct timespec64 *ts)
956 {
957 struct timekeeper *tk = &tk_core.timekeeper;
958 struct timespec64 tomono;
959 unsigned int seq;
960 u64 nsec;
961
962 WARN_ON(timekeeping_suspended);
963
964 do {
965 seq = read_seqcount_begin(&tk_core.seq);
966 ts->tv_sec = tk->xtime_sec;
967 nsec = timekeeping_get_ns(&tk->tkr_mono);
968 tomono = tk->wall_to_monotonic;
969
970 } while (read_seqcount_retry(&tk_core.seq, seq));
971
972 ts->tv_sec += tomono.tv_sec;
973 ts->tv_nsec = 0;
974 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
975 }
976 EXPORT_SYMBOL_GPL(ktime_get_ts64);
977
978 /**
979 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
980 *
981 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
982 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
983 * works on both 32 and 64 bit systems. On 32 bit systems the readout
984 * covers ~136 years of uptime which should be enough to prevent
985 * premature wrap arounds.
986 */
ktime_get_seconds(void)987 time64_t ktime_get_seconds(void)
988 {
989 struct timekeeper *tk = &tk_core.timekeeper;
990
991 WARN_ON(timekeeping_suspended);
992 return tk->ktime_sec;
993 }
994 EXPORT_SYMBOL_GPL(ktime_get_seconds);
995
996 /**
997 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
998 *
999 * Returns the wall clock seconds since 1970.
1000 *
1001 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1002 * 32bit systems the access must be protected with the sequence
1003 * counter to provide "atomic" access to the 64bit tk->xtime_sec
1004 * value.
1005 */
ktime_get_real_seconds(void)1006 time64_t ktime_get_real_seconds(void)
1007 {
1008 struct timekeeper *tk = &tk_core.timekeeper;
1009 time64_t seconds;
1010 unsigned int seq;
1011
1012 if (IS_ENABLED(CONFIG_64BIT))
1013 return tk->xtime_sec;
1014
1015 do {
1016 seq = read_seqcount_begin(&tk_core.seq);
1017 seconds = tk->xtime_sec;
1018
1019 } while (read_seqcount_retry(&tk_core.seq, seq));
1020
1021 return seconds;
1022 }
1023 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1024
1025 /**
1026 * __ktime_get_real_seconds - Unprotected access to CLOCK_REALTIME seconds
1027 *
1028 * The same as ktime_get_real_seconds() but without the sequence counter
1029 * protection. This function is used in restricted contexts like the x86 MCE
1030 * handler and in KGDB. It's unprotected on 32-bit vs. concurrent half
1031 * completed modification and only to be used for such critical contexts.
1032 *
1033 * Returns: Racy snapshot of the CLOCK_REALTIME seconds value
1034 */
__ktime_get_real_seconds(void)1035 noinstr time64_t __ktime_get_real_seconds(void)
1036 {
1037 struct timekeeper *tk = &tk_core.timekeeper;
1038
1039 return tk->xtime_sec;
1040 }
1041
1042 /**
1043 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1044 * @systime_snapshot: pointer to struct receiving the system time snapshot
1045 */
ktime_get_snapshot(struct system_time_snapshot * systime_snapshot)1046 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1047 {
1048 struct timekeeper *tk = &tk_core.timekeeper;
1049 unsigned int seq;
1050 ktime_t base_raw;
1051 ktime_t base_real;
1052 ktime_t base_boot;
1053 u64 nsec_raw;
1054 u64 nsec_real;
1055 u64 now;
1056
1057 WARN_ON_ONCE(timekeeping_suspended);
1058
1059 do {
1060 seq = read_seqcount_begin(&tk_core.seq);
1061 now = tk_clock_read(&tk->tkr_mono);
1062 systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1063 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1064 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1065 base_real = ktime_add(tk->tkr_mono.base,
1066 tk_core.timekeeper.offs_real);
1067 base_boot = ktime_add(tk->tkr_mono.base,
1068 tk_core.timekeeper.offs_boot);
1069 base_raw = tk->tkr_raw.base;
1070 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1071 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1072 } while (read_seqcount_retry(&tk_core.seq, seq));
1073
1074 systime_snapshot->cycles = now;
1075 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1076 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real);
1077 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1078 }
1079 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1080
1081 /* Scale base by mult/div checking for overflow */
scale64_check_overflow(u64 mult,u64 div,u64 * base)1082 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1083 {
1084 u64 tmp, rem;
1085
1086 tmp = div64_u64_rem(*base, div, &rem);
1087
1088 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1089 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1090 return -EOVERFLOW;
1091 tmp *= mult;
1092
1093 rem = div64_u64(rem * mult, div);
1094 *base = tmp + rem;
1095 return 0;
1096 }
1097
1098 /**
1099 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1100 * @history: Snapshot representing start of history
1101 * @partial_history_cycles: Cycle offset into history (fractional part)
1102 * @total_history_cycles: Total history length in cycles
1103 * @discontinuity: True indicates clock was set on history period
1104 * @ts: Cross timestamp that should be adjusted using
1105 * partial/total ratio
1106 *
1107 * Helper function used by get_device_system_crosststamp() to correct the
1108 * crosstimestamp corresponding to the start of the current interval to the
1109 * system counter value (timestamp point) provided by the driver. The
1110 * total_history_* quantities are the total history starting at the provided
1111 * reference point and ending at the start of the current interval. The cycle
1112 * count between the driver timestamp point and the start of the current
1113 * interval is partial_history_cycles.
1114 */
adjust_historical_crosststamp(struct system_time_snapshot * history,u64 partial_history_cycles,u64 total_history_cycles,bool discontinuity,struct system_device_crosststamp * ts)1115 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1116 u64 partial_history_cycles,
1117 u64 total_history_cycles,
1118 bool discontinuity,
1119 struct system_device_crosststamp *ts)
1120 {
1121 struct timekeeper *tk = &tk_core.timekeeper;
1122 u64 corr_raw, corr_real;
1123 bool interp_forward;
1124 int ret;
1125
1126 if (total_history_cycles == 0 || partial_history_cycles == 0)
1127 return 0;
1128
1129 /* Interpolate shortest distance from beginning or end of history */
1130 interp_forward = partial_history_cycles > total_history_cycles / 2;
1131 partial_history_cycles = interp_forward ?
1132 total_history_cycles - partial_history_cycles :
1133 partial_history_cycles;
1134
1135 /*
1136 * Scale the monotonic raw time delta by:
1137 * partial_history_cycles / total_history_cycles
1138 */
1139 corr_raw = (u64)ktime_to_ns(
1140 ktime_sub(ts->sys_monoraw, history->raw));
1141 ret = scale64_check_overflow(partial_history_cycles,
1142 total_history_cycles, &corr_raw);
1143 if (ret)
1144 return ret;
1145
1146 /*
1147 * If there is a discontinuity in the history, scale monotonic raw
1148 * correction by:
1149 * mult(real)/mult(raw) yielding the realtime correction
1150 * Otherwise, calculate the realtime correction similar to monotonic
1151 * raw calculation
1152 */
1153 if (discontinuity) {
1154 corr_real = mul_u64_u32_div
1155 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1156 } else {
1157 corr_real = (u64)ktime_to_ns(
1158 ktime_sub(ts->sys_realtime, history->real));
1159 ret = scale64_check_overflow(partial_history_cycles,
1160 total_history_cycles, &corr_real);
1161 if (ret)
1162 return ret;
1163 }
1164
1165 /* Fixup monotonic raw and real time time values */
1166 if (interp_forward) {
1167 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1168 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1169 } else {
1170 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1171 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1172 }
1173
1174 return 0;
1175 }
1176
1177 /*
1178 * timestamp_in_interval - true if ts is chronologically in [start, end]
1179 *
1180 * True if ts occurs chronologically at or after start, and before or at end.
1181 */
timestamp_in_interval(u64 start,u64 end,u64 ts)1182 static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
1183 {
1184 if (ts >= start && ts <= end)
1185 return true;
1186 if (start > end && (ts >= start || ts <= end))
1187 return true;
1188 return false;
1189 }
1190
convert_clock(u64 * val,u32 numerator,u32 denominator)1191 static bool convert_clock(u64 *val, u32 numerator, u32 denominator)
1192 {
1193 u64 rem, res;
1194
1195 if (!numerator || !denominator)
1196 return false;
1197
1198 res = div64_u64_rem(*val, denominator, &rem) * numerator;
1199 *val = res + div_u64(rem * numerator, denominator);
1200 return true;
1201 }
1202
convert_base_to_cs(struct system_counterval_t * scv)1203 static bool convert_base_to_cs(struct system_counterval_t *scv)
1204 {
1205 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1206 struct clocksource_base *base;
1207 u32 num, den;
1208
1209 /* The timestamp was taken from the time keeper clock source */
1210 if (cs->id == scv->cs_id)
1211 return true;
1212
1213 /*
1214 * Check whether cs_id matches the base clock. Prevent the compiler from
1215 * re-evaluating @base as the clocksource might change concurrently.
1216 */
1217 base = READ_ONCE(cs->base);
1218 if (!base || base->id != scv->cs_id)
1219 return false;
1220
1221 num = scv->use_nsecs ? cs->freq_khz : base->numerator;
1222 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator;
1223
1224 if (!convert_clock(&scv->cycles, num, den))
1225 return false;
1226
1227 scv->cycles += base->offset;
1228 return true;
1229 }
1230
convert_cs_to_base(u64 * cycles,enum clocksource_ids base_id)1231 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id)
1232 {
1233 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1234 struct clocksource_base *base;
1235
1236 /*
1237 * Check whether base_id matches the base clock. Prevent the compiler from
1238 * re-evaluating @base as the clocksource might change concurrently.
1239 */
1240 base = READ_ONCE(cs->base);
1241 if (!base || base->id != base_id)
1242 return false;
1243
1244 *cycles -= base->offset;
1245 if (!convert_clock(cycles, base->denominator, base->numerator))
1246 return false;
1247 return true;
1248 }
1249
convert_ns_to_cs(u64 * delta)1250 static bool convert_ns_to_cs(u64 *delta)
1251 {
1252 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
1253
1254 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta))
1255 return false;
1256
1257 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult);
1258 return true;
1259 }
1260
1261 /**
1262 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp
1263 * @treal: CLOCK_REALTIME timestamp to convert
1264 * @base_id: base clocksource id
1265 * @cycles: pointer to store the converted base clock timestamp
1266 *
1267 * Converts a supplied, future realtime clock value to the corresponding base clock value.
1268 *
1269 * Return: true if the conversion is successful, false otherwise.
1270 */
ktime_real_to_base_clock(ktime_t treal,enum clocksource_ids base_id,u64 * cycles)1271 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles)
1272 {
1273 struct timekeeper *tk = &tk_core.timekeeper;
1274 unsigned int seq;
1275 u64 delta;
1276
1277 do {
1278 seq = read_seqcount_begin(&tk_core.seq);
1279 if ((u64)treal < tk->tkr_mono.base_real)
1280 return false;
1281 delta = (u64)treal - tk->tkr_mono.base_real;
1282 if (!convert_ns_to_cs(&delta))
1283 return false;
1284 *cycles = tk->tkr_mono.cycle_last + delta;
1285 if (!convert_cs_to_base(cycles, base_id))
1286 return false;
1287 } while (read_seqcount_retry(&tk_core.seq, seq));
1288
1289 return true;
1290 }
1291 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock);
1292
1293 /**
1294 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1295 * @get_time_fn: Callback to get simultaneous device time and
1296 * system counter from the device driver
1297 * @ctx: Context passed to get_time_fn()
1298 * @history_begin: Historical reference point used to interpolate system
1299 * time when counter provided by the driver is before the current interval
1300 * @xtstamp: Receives simultaneously captured system and device time
1301 *
1302 * Reads a timestamp from a device and correlates it to system time
1303 */
get_device_system_crosststamp(int (* get_time_fn)(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx),void * ctx,struct system_time_snapshot * history_begin,struct system_device_crosststamp * xtstamp)1304 int get_device_system_crosststamp(int (*get_time_fn)
1305 (ktime_t *device_time,
1306 struct system_counterval_t *sys_counterval,
1307 void *ctx),
1308 void *ctx,
1309 struct system_time_snapshot *history_begin,
1310 struct system_device_crosststamp *xtstamp)
1311 {
1312 struct system_counterval_t system_counterval = {};
1313 struct timekeeper *tk = &tk_core.timekeeper;
1314 u64 cycles, now, interval_start;
1315 unsigned int clock_was_set_seq = 0;
1316 ktime_t base_real, base_raw;
1317 u64 nsec_real, nsec_raw;
1318 u8 cs_was_changed_seq;
1319 unsigned int seq;
1320 bool do_interp;
1321 int ret;
1322
1323 do {
1324 seq = read_seqcount_begin(&tk_core.seq);
1325 /*
1326 * Try to synchronously capture device time and a system
1327 * counter value calling back into the device driver
1328 */
1329 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1330 if (ret)
1331 return ret;
1332
1333 /*
1334 * Verify that the clocksource ID associated with the captured
1335 * system counter value is the same as for the currently
1336 * installed timekeeper clocksource
1337 */
1338 if (system_counterval.cs_id == CSID_GENERIC ||
1339 !convert_base_to_cs(&system_counterval))
1340 return -ENODEV;
1341 cycles = system_counterval.cycles;
1342
1343 /*
1344 * Check whether the system counter value provided by the
1345 * device driver is on the current timekeeping interval.
1346 */
1347 now = tk_clock_read(&tk->tkr_mono);
1348 interval_start = tk->tkr_mono.cycle_last;
1349 if (!timestamp_in_interval(interval_start, now, cycles)) {
1350 clock_was_set_seq = tk->clock_was_set_seq;
1351 cs_was_changed_seq = tk->cs_was_changed_seq;
1352 cycles = interval_start;
1353 do_interp = true;
1354 } else {
1355 do_interp = false;
1356 }
1357
1358 base_real = ktime_add(tk->tkr_mono.base,
1359 tk_core.timekeeper.offs_real);
1360 base_raw = tk->tkr_raw.base;
1361
1362 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
1363 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
1364 } while (read_seqcount_retry(&tk_core.seq, seq));
1365
1366 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1367 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1368
1369 /*
1370 * Interpolate if necessary, adjusting back from the start of the
1371 * current interval
1372 */
1373 if (do_interp) {
1374 u64 partial_history_cycles, total_history_cycles;
1375 bool discontinuity;
1376
1377 /*
1378 * Check that the counter value is not before the provided
1379 * history reference and that the history doesn't cross a
1380 * clocksource change
1381 */
1382 if (!history_begin ||
1383 !timestamp_in_interval(history_begin->cycles,
1384 cycles, system_counterval.cycles) ||
1385 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1386 return -EINVAL;
1387 partial_history_cycles = cycles - system_counterval.cycles;
1388 total_history_cycles = cycles - history_begin->cycles;
1389 discontinuity =
1390 history_begin->clock_was_set_seq != clock_was_set_seq;
1391
1392 ret = adjust_historical_crosststamp(history_begin,
1393 partial_history_cycles,
1394 total_history_cycles,
1395 discontinuity, xtstamp);
1396 if (ret)
1397 return ret;
1398 }
1399
1400 return 0;
1401 }
1402 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1403
1404 /**
1405 * timekeeping_clocksource_has_base - Check whether the current clocksource
1406 * is based on given a base clock
1407 * @id: base clocksource ID
1408 *
1409 * Note: The return value is a snapshot which can become invalid right
1410 * after the function returns.
1411 *
1412 * Return: true if the timekeeper clocksource has a base clock with @id,
1413 * false otherwise
1414 */
timekeeping_clocksource_has_base(enum clocksource_ids id)1415 bool timekeeping_clocksource_has_base(enum clocksource_ids id)
1416 {
1417 /*
1418 * This is a snapshot, so no point in using the sequence
1419 * count. Just prevent the compiler from re-evaluating @base as the
1420 * clocksource might change concurrently.
1421 */
1422 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base);
1423
1424 return base ? base->id == id : false;
1425 }
1426 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base);
1427
1428 /**
1429 * do_settimeofday64 - Sets the time of day.
1430 * @ts: pointer to the timespec64 variable containing the new time
1431 *
1432 * Sets the time of day to the new time and update NTP and notify hrtimers
1433 */
do_settimeofday64(const struct timespec64 * ts)1434 int do_settimeofday64(const struct timespec64 *ts)
1435 {
1436 struct timespec64 ts_delta, xt;
1437
1438 if (!timespec64_valid_settod(ts))
1439 return -EINVAL;
1440
1441 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1442 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1443
1444 timekeeping_forward_now(tks);
1445
1446 xt = tk_xtime(tks);
1447 ts_delta = timespec64_sub(*ts, xt);
1448
1449 if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) {
1450 timekeeping_restore_shadow(&tk_core);
1451 return -EINVAL;
1452 }
1453
1454 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta));
1455 tk_set_xtime(tks, ts);
1456 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1457 }
1458
1459 /* Signal hrtimers about time change */
1460 clock_was_set(CLOCK_SET_WALL);
1461
1462 audit_tk_injoffset(ts_delta);
1463 add_device_randomness(ts, sizeof(*ts));
1464 return 0;
1465 }
1466 EXPORT_SYMBOL(do_settimeofday64);
1467
timekeeper_is_core_tk(struct timekeeper * tk)1468 static inline bool timekeeper_is_core_tk(struct timekeeper *tk)
1469 {
1470 return !IS_ENABLED(CONFIG_POSIX_AUX_CLOCKS) || tk->id == TIMEKEEPER_CORE;
1471 }
1472
1473 /**
1474 * __timekeeping_inject_offset - Adds or subtracts from the current time.
1475 * @tkd: Pointer to the timekeeper to modify
1476 * @ts: Pointer to the timespec variable containing the offset
1477 *
1478 * Adds or subtracts an offset value from the current time.
1479 */
__timekeeping_inject_offset(struct tk_data * tkd,const struct timespec64 * ts)1480 static int __timekeeping_inject_offset(struct tk_data *tkd, const struct timespec64 *ts)
1481 {
1482 struct timekeeper *tks = &tkd->shadow_timekeeper;
1483 struct timespec64 tmp;
1484
1485 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1486 return -EINVAL;
1487
1488 timekeeping_forward_now(tks);
1489
1490 if (timekeeper_is_core_tk(tks)) {
1491 /* Make sure the proposed value is valid */
1492 tmp = timespec64_add(tk_xtime(tks), *ts);
1493 if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 ||
1494 !timespec64_valid_settod(&tmp)) {
1495 timekeeping_restore_shadow(tkd);
1496 return -EINVAL;
1497 }
1498
1499 tk_xtime_add(tks, ts);
1500 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts));
1501 } else {
1502 struct tk_read_base *tkr_mono = &tks->tkr_mono;
1503 ktime_t now, offs;
1504
1505 /* Get the current time */
1506 now = ktime_add_ns(tkr_mono->base, timekeeping_get_ns(tkr_mono));
1507 /* Add the relative offset change */
1508 offs = ktime_add(tks->offs_aux, timespec64_to_ktime(*ts));
1509
1510 /* Prevent that the resulting time becomes negative */
1511 if (ktime_add(now, offs) < 0) {
1512 timekeeping_restore_shadow(tkd);
1513 return -EINVAL;
1514 }
1515 tk_update_aux_offs(tks, offs);
1516 }
1517
1518 timekeeping_update_from_shadow(tkd, TK_UPDATE_ALL);
1519 return 0;
1520 }
1521
timekeeping_inject_offset(const struct timespec64 * ts)1522 static int timekeeping_inject_offset(const struct timespec64 *ts)
1523 {
1524 int ret;
1525
1526 scoped_guard (raw_spinlock_irqsave, &tk_core.lock)
1527 ret = __timekeeping_inject_offset(&tk_core, ts);
1528
1529 /* Signal hrtimers about time change */
1530 if (!ret)
1531 clock_was_set(CLOCK_SET_WALL);
1532 return ret;
1533 }
1534
1535 /*
1536 * Indicates if there is an offset between the system clock and the hardware
1537 * clock/persistent clock/rtc.
1538 */
1539 int persistent_clock_is_local;
1540
1541 /*
1542 * Adjust the time obtained from the CMOS to be UTC time instead of
1543 * local time.
1544 *
1545 * This is ugly, but preferable to the alternatives. Otherwise we
1546 * would either need to write a program to do it in /etc/rc (and risk
1547 * confusion if the program gets run more than once; it would also be
1548 * hard to make the program warp the clock precisely n hours) or
1549 * compile in the timezone information into the kernel. Bad, bad....
1550 *
1551 * - TYT, 1992-01-01
1552 *
1553 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1554 * as real UNIX machines always do it. This avoids all headaches about
1555 * daylight saving times and warping kernel clocks.
1556 */
timekeeping_warp_clock(void)1557 void timekeeping_warp_clock(void)
1558 {
1559 if (sys_tz.tz_minuteswest != 0) {
1560 struct timespec64 adjust;
1561
1562 persistent_clock_is_local = 1;
1563 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1564 adjust.tv_nsec = 0;
1565 timekeeping_inject_offset(&adjust);
1566 }
1567 }
1568
1569 /*
1570 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1571 */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1572 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1573 {
1574 tk->tai_offset = tai_offset;
1575 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1576 }
1577
1578 /*
1579 * change_clocksource - Swaps clocksources if a new one is available
1580 *
1581 * Accumulates current time interval and initializes new clocksource
1582 */
change_clocksource(void * data)1583 static int change_clocksource(void *data)
1584 {
1585 struct clocksource *new = data, *old = NULL;
1586
1587 /*
1588 * If the clocksource is in a module, get a module reference.
1589 * Succeeds for built-in code (owner == NULL) as well. Abort if the
1590 * reference can't be acquired.
1591 */
1592 if (!try_module_get(new->owner))
1593 return 0;
1594
1595 /* Abort if the device can't be enabled */
1596 if (new->enable && new->enable(new) != 0) {
1597 module_put(new->owner);
1598 return 0;
1599 }
1600
1601 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1602 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1603
1604 timekeeping_forward_now(tks);
1605 old = tks->tkr_mono.clock;
1606 tk_setup_internals(tks, new);
1607 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1608 }
1609
1610 tk_aux_update_clocksource();
1611
1612 if (old) {
1613 if (old->disable)
1614 old->disable(old);
1615 module_put(old->owner);
1616 }
1617
1618 return 0;
1619 }
1620
1621 /**
1622 * timekeeping_notify - Install a new clock source
1623 * @clock: pointer to the clock source
1624 *
1625 * This function is called from clocksource.c after a new, better clock
1626 * source has been registered. The caller holds the clocksource_mutex.
1627 */
timekeeping_notify(struct clocksource * clock)1628 int timekeeping_notify(struct clocksource *clock)
1629 {
1630 struct timekeeper *tk = &tk_core.timekeeper;
1631
1632 if (tk->tkr_mono.clock == clock)
1633 return 0;
1634 stop_machine(change_clocksource, clock, NULL);
1635 tick_clock_notify();
1636 return tk->tkr_mono.clock == clock ? 0 : -1;
1637 }
1638
1639 /**
1640 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1641 * @ts: pointer to the timespec64 to be set
1642 *
1643 * Returns the raw monotonic time (completely un-modified by ntp)
1644 */
ktime_get_raw_ts64(struct timespec64 * ts)1645 void ktime_get_raw_ts64(struct timespec64 *ts)
1646 {
1647 struct timekeeper *tk = &tk_core.timekeeper;
1648 unsigned int seq;
1649 u64 nsecs;
1650
1651 do {
1652 seq = read_seqcount_begin(&tk_core.seq);
1653 ts->tv_sec = tk->raw_sec;
1654 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1655
1656 } while (read_seqcount_retry(&tk_core.seq, seq));
1657
1658 ts->tv_nsec = 0;
1659 timespec64_add_ns(ts, nsecs);
1660 }
1661 EXPORT_SYMBOL(ktime_get_raw_ts64);
1662
1663 /**
1664 * ktime_get_clock_ts64 - Returns time of a clock in a timespec
1665 * @id: POSIX clock ID of the clock to read
1666 * @ts: Pointer to the timespec64 to be set
1667 *
1668 * The timestamp is invalidated (@ts->sec is set to -1) if the
1669 * clock @id is not available.
1670 */
ktime_get_clock_ts64(clockid_t id,struct timespec64 * ts)1671 void ktime_get_clock_ts64(clockid_t id, struct timespec64 *ts)
1672 {
1673 /* Invalidate time stamp */
1674 ts->tv_sec = -1;
1675 ts->tv_nsec = 0;
1676
1677 switch (id) {
1678 case CLOCK_REALTIME:
1679 ktime_get_real_ts64(ts);
1680 return;
1681 case CLOCK_MONOTONIC:
1682 ktime_get_ts64(ts);
1683 return;
1684 case CLOCK_MONOTONIC_RAW:
1685 ktime_get_raw_ts64(ts);
1686 return;
1687 case CLOCK_AUX ... CLOCK_AUX_LAST:
1688 if (IS_ENABLED(CONFIG_POSIX_AUX_CLOCKS))
1689 ktime_get_aux_ts64(id, ts);
1690 return;
1691 default:
1692 WARN_ON_ONCE(1);
1693 }
1694 }
1695 EXPORT_SYMBOL_GPL(ktime_get_clock_ts64);
1696
1697 /**
1698 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1699 */
timekeeping_valid_for_hres(void)1700 int timekeeping_valid_for_hres(void)
1701 {
1702 struct timekeeper *tk = &tk_core.timekeeper;
1703 unsigned int seq;
1704 int ret;
1705
1706 do {
1707 seq = read_seqcount_begin(&tk_core.seq);
1708
1709 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1710
1711 } while (read_seqcount_retry(&tk_core.seq, seq));
1712
1713 return ret;
1714 }
1715
1716 /**
1717 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1718 */
timekeeping_max_deferment(void)1719 u64 timekeeping_max_deferment(void)
1720 {
1721 struct timekeeper *tk = &tk_core.timekeeper;
1722 unsigned int seq;
1723 u64 ret;
1724
1725 do {
1726 seq = read_seqcount_begin(&tk_core.seq);
1727
1728 ret = tk->tkr_mono.clock->max_idle_ns;
1729
1730 } while (read_seqcount_retry(&tk_core.seq, seq));
1731
1732 return ret;
1733 }
1734
1735 /**
1736 * read_persistent_clock64 - Return time from the persistent clock.
1737 * @ts: Pointer to the storage for the readout value
1738 *
1739 * Weak dummy function for arches that do not yet support it.
1740 * Reads the time from the battery backed persistent clock.
1741 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1742 *
1743 * XXX - Do be sure to remove it once all arches implement it.
1744 */
read_persistent_clock64(struct timespec64 * ts)1745 void __weak read_persistent_clock64(struct timespec64 *ts)
1746 {
1747 ts->tv_sec = 0;
1748 ts->tv_nsec = 0;
1749 }
1750
1751 /**
1752 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1753 * from the boot.
1754 * @wall_time: current time as returned by persistent clock
1755 * @boot_offset: offset that is defined as wall_time - boot_time
1756 *
1757 * Weak dummy function for arches that do not yet support it.
1758 *
1759 * The default function calculates offset based on the current value of
1760 * local_clock(). This way architectures that support sched_clock() but don't
1761 * support dedicated boot time clock will provide the best estimate of the
1762 * boot time.
1763 */
1764 void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)1765 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1766 struct timespec64 *boot_offset)
1767 {
1768 read_persistent_clock64(wall_time);
1769 *boot_offset = ns_to_timespec64(local_clock());
1770 }
1771
tkd_basic_setup(struct tk_data * tkd,enum timekeeper_ids tk_id,bool valid)1772 static __init void tkd_basic_setup(struct tk_data *tkd, enum timekeeper_ids tk_id, bool valid)
1773 {
1774 raw_spin_lock_init(&tkd->lock);
1775 seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock);
1776 tkd->timekeeper.id = tkd->shadow_timekeeper.id = tk_id;
1777 tkd->timekeeper.clock_valid = tkd->shadow_timekeeper.clock_valid = valid;
1778 }
1779
1780 /*
1781 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1782 *
1783 * The flag starts of false and is only set when a suspend reaches
1784 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1785 * timekeeper clocksource is not stopping across suspend and has been
1786 * used to update sleep time. If the timekeeper clocksource has stopped
1787 * then the flag stays true and is used by the RTC resume code to decide
1788 * whether sleeptime must be injected and if so the flag gets false then.
1789 *
1790 * If a suspend fails before reaching timekeeping_resume() then the flag
1791 * stays false and prevents erroneous sleeptime injection.
1792 */
1793 static bool suspend_timing_needed;
1794
1795 /* Flag for if there is a persistent clock on this platform */
1796 static bool persistent_clock_exists;
1797
1798 /*
1799 * timekeeping_init - Initializes the clocksource and common timekeeping values
1800 */
timekeeping_init(void)1801 void __init timekeeping_init(void)
1802 {
1803 struct timespec64 wall_time, boot_offset, wall_to_mono;
1804 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1805 struct clocksource *clock;
1806
1807 tkd_basic_setup(&tk_core, TIMEKEEPER_CORE, true);
1808 tk_aux_setup();
1809
1810 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1811 if (timespec64_valid_settod(&wall_time) &&
1812 timespec64_to_ns(&wall_time) > 0) {
1813 persistent_clock_exists = true;
1814 } else if (timespec64_to_ns(&wall_time) != 0) {
1815 pr_warn("Persistent clock returned invalid value");
1816 wall_time = (struct timespec64){0};
1817 }
1818
1819 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1820 boot_offset = (struct timespec64){0};
1821
1822 /*
1823 * We want set wall_to_mono, so the following is true:
1824 * wall time + wall_to_mono = boot time
1825 */
1826 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1827
1828 guard(raw_spinlock_irqsave)(&tk_core.lock);
1829
1830 ntp_init();
1831
1832 clock = clocksource_default_clock();
1833 if (clock->enable)
1834 clock->enable(clock);
1835 tk_setup_internals(tks, clock);
1836
1837 tk_set_xtime(tks, &wall_time);
1838 tks->raw_sec = 0;
1839
1840 tk_set_wall_to_mono(tks, wall_to_mono);
1841
1842 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
1843 }
1844
1845 /* time in seconds when suspend began for persistent clock */
1846 static struct timespec64 timekeeping_suspend_time;
1847
1848 /**
1849 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1850 * @tk: Pointer to the timekeeper to be updated
1851 * @delta: Pointer to the delta value in timespec64 format
1852 *
1853 * Takes a timespec offset measuring a suspend interval and properly
1854 * adds the sleep offset to the timekeeping variables.
1855 */
__timekeeping_inject_sleeptime(struct timekeeper * tk,const struct timespec64 * delta)1856 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1857 const struct timespec64 *delta)
1858 {
1859 if (!timespec64_valid_strict(delta)) {
1860 printk_deferred(KERN_WARNING
1861 "__timekeeping_inject_sleeptime: Invalid "
1862 "sleep delta value!\n");
1863 return;
1864 }
1865 tk_xtime_add(tk, delta);
1866 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1867 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1868 tk_debug_account_sleep_time(delta);
1869 }
1870
1871 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1872 /*
1873 * We have three kinds of time sources to use for sleep time
1874 * injection, the preference order is:
1875 * 1) non-stop clocksource
1876 * 2) persistent clock (ie: RTC accessible when irqs are off)
1877 * 3) RTC
1878 *
1879 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1880 * If system has neither 1) nor 2), 3) will be used finally.
1881 *
1882 *
1883 * If timekeeping has injected sleeptime via either 1) or 2),
1884 * 3) becomes needless, so in this case we don't need to call
1885 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1886 * means.
1887 */
timekeeping_rtc_skipresume(void)1888 bool timekeeping_rtc_skipresume(void)
1889 {
1890 return !suspend_timing_needed;
1891 }
1892
1893 /*
1894 * 1) can be determined whether to use or not only when doing
1895 * timekeeping_resume() which is invoked after rtc_suspend(),
1896 * so we can't skip rtc_suspend() surely if system has 1).
1897 *
1898 * But if system has 2), 2) will definitely be used, so in this
1899 * case we don't need to call rtc_suspend(), and this is what
1900 * timekeeping_rtc_skipsuspend() means.
1901 */
timekeeping_rtc_skipsuspend(void)1902 bool timekeeping_rtc_skipsuspend(void)
1903 {
1904 return persistent_clock_exists;
1905 }
1906
1907 /**
1908 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1909 * @delta: pointer to a timespec64 delta value
1910 *
1911 * This hook is for architectures that cannot support read_persistent_clock64
1912 * because their RTC/persistent clock is only accessible when irqs are enabled.
1913 * and also don't have an effective nonstop clocksource.
1914 *
1915 * This function should only be called by rtc_resume(), and allows
1916 * a suspend offset to be injected into the timekeeping values.
1917 */
timekeeping_inject_sleeptime64(const struct timespec64 * delta)1918 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1919 {
1920 scoped_guard(raw_spinlock_irqsave, &tk_core.lock) {
1921 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1922
1923 suspend_timing_needed = false;
1924 timekeeping_forward_now(tks);
1925 __timekeeping_inject_sleeptime(tks, delta);
1926 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1927 }
1928
1929 /* Signal hrtimers about time change */
1930 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1931 }
1932 #endif
1933
1934 /**
1935 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1936 */
timekeeping_resume(void)1937 void timekeeping_resume(void)
1938 {
1939 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1940 struct clocksource *clock = tks->tkr_mono.clock;
1941 struct timespec64 ts_new, ts_delta;
1942 bool inject_sleeptime = false;
1943 u64 cycle_now, nsec;
1944 unsigned long flags;
1945
1946 read_persistent_clock64(&ts_new);
1947
1948 clockevents_resume();
1949 clocksource_resume();
1950
1951 raw_spin_lock_irqsave(&tk_core.lock, flags);
1952
1953 /*
1954 * After system resumes, we need to calculate the suspended time and
1955 * compensate it for the OS time. There are 3 sources that could be
1956 * used: Nonstop clocksource during suspend, persistent clock and rtc
1957 * device.
1958 *
1959 * One specific platform may have 1 or 2 or all of them, and the
1960 * preference will be:
1961 * suspend-nonstop clocksource -> persistent clock -> rtc
1962 * The less preferred source will only be tried if there is no better
1963 * usable source. The rtc part is handled separately in rtc core code.
1964 */
1965 cycle_now = tk_clock_read(&tks->tkr_mono);
1966 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1967 if (nsec > 0) {
1968 ts_delta = ns_to_timespec64(nsec);
1969 inject_sleeptime = true;
1970 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1971 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1972 inject_sleeptime = true;
1973 }
1974
1975 if (inject_sleeptime) {
1976 suspend_timing_needed = false;
1977 __timekeeping_inject_sleeptime(tks, &ts_delta);
1978 }
1979
1980 /* Re-base the last cycle value */
1981 tks->tkr_mono.cycle_last = cycle_now;
1982 tks->tkr_raw.cycle_last = cycle_now;
1983
1984 tks->ntp_error = 0;
1985 timekeeping_suspended = 0;
1986 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
1987 raw_spin_unlock_irqrestore(&tk_core.lock, flags);
1988
1989 touch_softlockup_watchdog();
1990
1991 /* Resume the clockevent device(s) and hrtimers */
1992 tick_resume();
1993 /* Notify timerfd as resume is equivalent to clock_was_set() */
1994 timerfd_resume();
1995 }
1996
timekeeping_suspend(void)1997 int timekeeping_suspend(void)
1998 {
1999 struct timekeeper *tks = &tk_core.shadow_timekeeper;
2000 struct timespec64 delta, delta_delta;
2001 static struct timespec64 old_delta;
2002 struct clocksource *curr_clock;
2003 unsigned long flags;
2004 u64 cycle_now;
2005
2006 read_persistent_clock64(&timekeeping_suspend_time);
2007
2008 /*
2009 * On some systems the persistent_clock can not be detected at
2010 * timekeeping_init by its return value, so if we see a valid
2011 * value returned, update the persistent_clock_exists flag.
2012 */
2013 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
2014 persistent_clock_exists = true;
2015
2016 suspend_timing_needed = true;
2017
2018 raw_spin_lock_irqsave(&tk_core.lock, flags);
2019 timekeeping_forward_now(tks);
2020 timekeeping_suspended = 1;
2021
2022 /*
2023 * Since we've called forward_now, cycle_last stores the value
2024 * just read from the current clocksource. Save this to potentially
2025 * use in suspend timing.
2026 */
2027 curr_clock = tks->tkr_mono.clock;
2028 cycle_now = tks->tkr_mono.cycle_last;
2029 clocksource_start_suspend_timing(curr_clock, cycle_now);
2030
2031 if (persistent_clock_exists) {
2032 /*
2033 * To avoid drift caused by repeated suspend/resumes,
2034 * which each can add ~1 second drift error,
2035 * try to compensate so the difference in system time
2036 * and persistent_clock time stays close to constant.
2037 */
2038 delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time);
2039 delta_delta = timespec64_sub(delta, old_delta);
2040 if (abs(delta_delta.tv_sec) >= 2) {
2041 /*
2042 * if delta_delta is too large, assume time correction
2043 * has occurred and set old_delta to the current delta.
2044 */
2045 old_delta = delta;
2046 } else {
2047 /* Otherwise try to adjust old_system to compensate */
2048 timekeeping_suspend_time =
2049 timespec64_add(timekeeping_suspend_time, delta_delta);
2050 }
2051 }
2052
2053 timekeeping_update_from_shadow(&tk_core, 0);
2054 halt_fast_timekeeper(tks);
2055 raw_spin_unlock_irqrestore(&tk_core.lock, flags);
2056
2057 tick_suspend();
2058 clocksource_suspend();
2059 clockevents_suspend();
2060
2061 return 0;
2062 }
2063
2064 /* sysfs resume/suspend bits for timekeeping */
2065 static struct syscore_ops timekeeping_syscore_ops = {
2066 .resume = timekeeping_resume,
2067 .suspend = timekeeping_suspend,
2068 };
2069
timekeeping_init_ops(void)2070 static int __init timekeeping_init_ops(void)
2071 {
2072 register_syscore_ops(&timekeeping_syscore_ops);
2073 return 0;
2074 }
2075 device_initcall(timekeeping_init_ops);
2076
2077 /*
2078 * Apply a multiplier adjustment to the timekeeper
2079 */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,s32 mult_adj)2080 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
2081 s64 offset,
2082 s32 mult_adj)
2083 {
2084 s64 interval = tk->cycle_interval;
2085
2086 if (mult_adj == 0) {
2087 return;
2088 } else if (mult_adj == -1) {
2089 interval = -interval;
2090 offset = -offset;
2091 } else if (mult_adj != 1) {
2092 interval *= mult_adj;
2093 offset *= mult_adj;
2094 }
2095
2096 /*
2097 * So the following can be confusing.
2098 *
2099 * To keep things simple, lets assume mult_adj == 1 for now.
2100 *
2101 * When mult_adj != 1, remember that the interval and offset values
2102 * have been appropriately scaled so the math is the same.
2103 *
2104 * The basic idea here is that we're increasing the multiplier
2105 * by one, this causes the xtime_interval to be incremented by
2106 * one cycle_interval. This is because:
2107 * xtime_interval = cycle_interval * mult
2108 * So if mult is being incremented by one:
2109 * xtime_interval = cycle_interval * (mult + 1)
2110 * Its the same as:
2111 * xtime_interval = (cycle_interval * mult) + cycle_interval
2112 * Which can be shortened to:
2113 * xtime_interval += cycle_interval
2114 *
2115 * So offset stores the non-accumulated cycles. Thus the current
2116 * time (in shifted nanoseconds) is:
2117 * now = (offset * adj) + xtime_nsec
2118 * Now, even though we're adjusting the clock frequency, we have
2119 * to keep time consistent. In other words, we can't jump back
2120 * in time, and we also want to avoid jumping forward in time.
2121 *
2122 * So given the same offset value, we need the time to be the same
2123 * both before and after the freq adjustment.
2124 * now = (offset * adj_1) + xtime_nsec_1
2125 * now = (offset * adj_2) + xtime_nsec_2
2126 * So:
2127 * (offset * adj_1) + xtime_nsec_1 =
2128 * (offset * adj_2) + xtime_nsec_2
2129 * And we know:
2130 * adj_2 = adj_1 + 1
2131 * So:
2132 * (offset * adj_1) + xtime_nsec_1 =
2133 * (offset * (adj_1+1)) + xtime_nsec_2
2134 * (offset * adj_1) + xtime_nsec_1 =
2135 * (offset * adj_1) + offset + xtime_nsec_2
2136 * Canceling the sides:
2137 * xtime_nsec_1 = offset + xtime_nsec_2
2138 * Which gives us:
2139 * xtime_nsec_2 = xtime_nsec_1 - offset
2140 * Which simplifies to:
2141 * xtime_nsec -= offset
2142 */
2143 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
2144 /* NTP adjustment caused clocksource mult overflow */
2145 WARN_ON_ONCE(1);
2146 return;
2147 }
2148
2149 tk->tkr_mono.mult += mult_adj;
2150 tk->xtime_interval += interval;
2151 tk->tkr_mono.xtime_nsec -= offset;
2152 }
2153
2154 /*
2155 * Adjust the timekeeper's multiplier to the correct frequency
2156 * and also to reduce the accumulated error value.
2157 */
timekeeping_adjust(struct timekeeper * tk,s64 offset)2158 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2159 {
2160 u64 ntp_tl = ntp_tick_length(tk->id);
2161 u32 mult;
2162
2163 /*
2164 * Determine the multiplier from the current NTP tick length.
2165 * Avoid expensive division when the tick length doesn't change.
2166 */
2167 if (likely(tk->ntp_tick == ntp_tl)) {
2168 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2169 } else {
2170 tk->ntp_tick = ntp_tl;
2171 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2172 tk->xtime_remainder, tk->cycle_interval);
2173 }
2174
2175 /*
2176 * If the clock is behind the NTP time, increase the multiplier by 1
2177 * to catch up with it. If it's ahead and there was a remainder in the
2178 * tick division, the clock will slow down. Otherwise it will stay
2179 * ahead until the tick length changes to a non-divisible value.
2180 */
2181 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2182 mult += tk->ntp_err_mult;
2183
2184 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2185
2186 if (unlikely(tk->tkr_mono.clock->maxadj &&
2187 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2188 > tk->tkr_mono.clock->maxadj))) {
2189 printk_once(KERN_WARNING
2190 "Adjusting %s more than 11%% (%ld vs %ld)\n",
2191 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2192 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2193 }
2194
2195 /*
2196 * It may be possible that when we entered this function, xtime_nsec
2197 * was very small. Further, if we're slightly speeding the clocksource
2198 * in the code above, its possible the required corrective factor to
2199 * xtime_nsec could cause it to underflow.
2200 *
2201 * Now, since we have already accumulated the second and the NTP
2202 * subsystem has been notified via second_overflow(), we need to skip
2203 * the next update.
2204 */
2205 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2206 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2207 tk->tkr_mono.shift;
2208 tk->xtime_sec--;
2209 tk->skip_second_overflow = 1;
2210 }
2211 }
2212
2213 /*
2214 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2215 *
2216 * Helper function that accumulates the nsecs greater than a second
2217 * from the xtime_nsec field to the xtime_secs field.
2218 * It also calls into the NTP code to handle leapsecond processing.
2219 */
accumulate_nsecs_to_secs(struct timekeeper * tk)2220 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2221 {
2222 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2223 unsigned int clock_set = 0;
2224
2225 while (tk->tkr_mono.xtime_nsec >= nsecps) {
2226 int leap;
2227
2228 tk->tkr_mono.xtime_nsec -= nsecps;
2229 tk->xtime_sec++;
2230
2231 /*
2232 * Skip NTP update if this second was accumulated before,
2233 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2234 */
2235 if (unlikely(tk->skip_second_overflow)) {
2236 tk->skip_second_overflow = 0;
2237 continue;
2238 }
2239
2240 /* Figure out if its a leap sec and apply if needed */
2241 leap = second_overflow(tk->id, tk->xtime_sec);
2242 if (unlikely(leap)) {
2243 struct timespec64 ts;
2244
2245 tk->xtime_sec += leap;
2246
2247 ts.tv_sec = leap;
2248 ts.tv_nsec = 0;
2249 tk_set_wall_to_mono(tk,
2250 timespec64_sub(tk->wall_to_monotonic, ts));
2251
2252 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2253
2254 clock_set = TK_CLOCK_WAS_SET;
2255 }
2256 }
2257 return clock_set;
2258 }
2259
2260 /*
2261 * logarithmic_accumulation - shifted accumulation of cycles
2262 *
2263 * This functions accumulates a shifted interval of cycles into
2264 * a shifted interval nanoseconds. Allows for O(log) accumulation
2265 * loop.
2266 *
2267 * Returns the unconsumed cycles.
2268 */
logarithmic_accumulation(struct timekeeper * tk,u64 offset,u32 shift,unsigned int * clock_set)2269 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2270 u32 shift, unsigned int *clock_set)
2271 {
2272 u64 interval = tk->cycle_interval << shift;
2273 u64 snsec_per_sec;
2274
2275 /* If the offset is smaller than a shifted interval, do nothing */
2276 if (offset < interval)
2277 return offset;
2278
2279 /* Accumulate one shifted interval */
2280 offset -= interval;
2281 tk->tkr_mono.cycle_last += interval;
2282 tk->tkr_raw.cycle_last += interval;
2283
2284 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2285 *clock_set |= accumulate_nsecs_to_secs(tk);
2286
2287 /* Accumulate raw time */
2288 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2289 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2290 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2291 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2292 tk->raw_sec++;
2293 }
2294
2295 /* Accumulate error between NTP and clock interval */
2296 tk->ntp_error += tk->ntp_tick << shift;
2297 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2298 (tk->ntp_error_shift + shift);
2299
2300 return offset;
2301 }
2302
2303 /*
2304 * timekeeping_advance - Updates the timekeeper to the current time and
2305 * current NTP tick length
2306 */
__timekeeping_advance(struct tk_data * tkd,enum timekeeping_adv_mode mode)2307 static bool __timekeeping_advance(struct tk_data *tkd, enum timekeeping_adv_mode mode)
2308 {
2309 struct timekeeper *tk = &tkd->shadow_timekeeper;
2310 struct timekeeper *real_tk = &tkd->timekeeper;
2311 unsigned int clock_set = 0;
2312 int shift = 0, maxshift;
2313 u64 offset, orig_offset;
2314
2315 /* Make sure we're fully resumed: */
2316 if (unlikely(timekeeping_suspended))
2317 return false;
2318
2319 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2320 tk->tkr_mono.cycle_last, tk->tkr_mono.mask,
2321 tk->tkr_mono.clock->max_raw_delta);
2322 orig_offset = offset;
2323 /* Check if there's really nothing to do */
2324 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2325 return false;
2326
2327 /*
2328 * With NO_HZ we may have to accumulate many cycle_intervals
2329 * (think "ticks") worth of time at once. To do this efficiently,
2330 * we calculate the largest doubling multiple of cycle_intervals
2331 * that is smaller than the offset. We then accumulate that
2332 * chunk in one go, and then try to consume the next smaller
2333 * doubled multiple.
2334 */
2335 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2336 shift = max(0, shift);
2337 /* Bound shift to one less than what overflows tick_length */
2338 maxshift = (64 - (ilog2(ntp_tick_length(tk->id)) + 1)) - 1;
2339 shift = min(shift, maxshift);
2340 while (offset >= tk->cycle_interval) {
2341 offset = logarithmic_accumulation(tk, offset, shift, &clock_set);
2342 if (offset < tk->cycle_interval<<shift)
2343 shift--;
2344 }
2345
2346 /* Adjust the multiplier to correct NTP error */
2347 timekeeping_adjust(tk, offset);
2348
2349 /*
2350 * Finally, make sure that after the rounding
2351 * xtime_nsec isn't larger than NSEC_PER_SEC
2352 */
2353 clock_set |= accumulate_nsecs_to_secs(tk);
2354
2355 /*
2356 * To avoid inconsistencies caused adjtimex TK_ADV_FREQ calls
2357 * making small negative adjustments to the base xtime_nsec
2358 * value, only update the coarse clocks if we accumulated time
2359 */
2360 if (orig_offset != offset)
2361 tk_update_coarse_nsecs(tk);
2362
2363 timekeeping_update_from_shadow(tkd, clock_set);
2364
2365 return !!clock_set;
2366 }
2367
timekeeping_advance(enum timekeeping_adv_mode mode)2368 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2369 {
2370 guard(raw_spinlock_irqsave)(&tk_core.lock);
2371 return __timekeeping_advance(&tk_core, mode);
2372 }
2373
2374 /**
2375 * update_wall_time - Uses the current clocksource to increment the wall time
2376 *
2377 * It also updates the enabled auxiliary clock timekeepers
2378 */
update_wall_time(void)2379 void update_wall_time(void)
2380 {
2381 if (timekeeping_advance(TK_ADV_TICK))
2382 clock_was_set_delayed();
2383 tk_aux_advance();
2384 }
2385
2386 /**
2387 * getboottime64 - Return the real time of system boot.
2388 * @ts: pointer to the timespec64 to be set
2389 *
2390 * Returns the wall-time of boot in a timespec64.
2391 *
2392 * This is based on the wall_to_monotonic offset and the total suspend
2393 * time. Calls to settimeofday will affect the value returned (which
2394 * basically means that however wrong your real time clock is at boot time,
2395 * you get the right time here).
2396 */
getboottime64(struct timespec64 * ts)2397 void getboottime64(struct timespec64 *ts)
2398 {
2399 struct timekeeper *tk = &tk_core.timekeeper;
2400 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2401
2402 *ts = ktime_to_timespec64(t);
2403 }
2404 EXPORT_SYMBOL_GPL(getboottime64);
2405
ktime_get_coarse_real_ts64(struct timespec64 * ts)2406 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2407 {
2408 struct timekeeper *tk = &tk_core.timekeeper;
2409 unsigned int seq;
2410
2411 do {
2412 seq = read_seqcount_begin(&tk_core.seq);
2413
2414 *ts = tk_xtime_coarse(tk);
2415 } while (read_seqcount_retry(&tk_core.seq, seq));
2416 }
2417 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2418
2419 /**
2420 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor
2421 * @ts: timespec64 to be filled
2422 *
2423 * Fetch the global mg_floor value, convert it to realtime and compare it
2424 * to the current coarse-grained time. Fill @ts with whichever is
2425 * latest. Note that this is a filesystem-specific interface and should be
2426 * avoided outside of that context.
2427 */
ktime_get_coarse_real_ts64_mg(struct timespec64 * ts)2428 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts)
2429 {
2430 struct timekeeper *tk = &tk_core.timekeeper;
2431 u64 floor = atomic64_read(&mg_floor);
2432 ktime_t f_real, offset, coarse;
2433 unsigned int seq;
2434
2435 do {
2436 seq = read_seqcount_begin(&tk_core.seq);
2437 *ts = tk_xtime_coarse(tk);
2438 offset = tk_core.timekeeper.offs_real;
2439 } while (read_seqcount_retry(&tk_core.seq, seq));
2440
2441 coarse = timespec64_to_ktime(*ts);
2442 f_real = ktime_add(floor, offset);
2443 if (ktime_after(f_real, coarse))
2444 *ts = ktime_to_timespec64(f_real);
2445 }
2446
2447 /**
2448 * ktime_get_real_ts64_mg - attempt to update floor value and return result
2449 * @ts: pointer to the timespec to be set
2450 *
2451 * Get a monotonic fine-grained time value and attempt to swap it into
2452 * mg_floor. If that succeeds then accept the new floor value. If it fails
2453 * then another task raced in during the interim time and updated the
2454 * floor. Since any update to the floor must be later than the previous
2455 * floor, either outcome is acceptable.
2456 *
2457 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(),
2458 * and determining that the resulting coarse-grained timestamp did not effect
2459 * a change in ctime. Any more recent floor value would effect a change to
2460 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure.
2461 *
2462 * @ts will be filled with the latest floor value, regardless of the outcome of
2463 * the cmpxchg. Note that this is a filesystem specific interface and should be
2464 * avoided outside of that context.
2465 */
ktime_get_real_ts64_mg(struct timespec64 * ts)2466 void ktime_get_real_ts64_mg(struct timespec64 *ts)
2467 {
2468 struct timekeeper *tk = &tk_core.timekeeper;
2469 ktime_t old = atomic64_read(&mg_floor);
2470 ktime_t offset, mono;
2471 unsigned int seq;
2472 u64 nsecs;
2473
2474 do {
2475 seq = read_seqcount_begin(&tk_core.seq);
2476
2477 ts->tv_sec = tk->xtime_sec;
2478 mono = tk->tkr_mono.base;
2479 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2480 offset = tk_core.timekeeper.offs_real;
2481 } while (read_seqcount_retry(&tk_core.seq, seq));
2482
2483 mono = ktime_add_ns(mono, nsecs);
2484
2485 /*
2486 * Attempt to update the floor with the new time value. As any
2487 * update must be later then the existing floor, and would effect
2488 * a change to ctime from the perspective of the current task,
2489 * accept the resulting floor value regardless of the outcome of
2490 * the swap.
2491 */
2492 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) {
2493 ts->tv_nsec = 0;
2494 timespec64_add_ns(ts, nsecs);
2495 timekeeping_inc_mg_floor_swaps();
2496 } else {
2497 /*
2498 * Another task changed mg_floor since "old" was fetched.
2499 * "old" has been updated with the latest value of "mg_floor".
2500 * That value is newer than the previous floor value, which
2501 * is enough to effect a change to ctime. Accept it.
2502 */
2503 *ts = ktime_to_timespec64(ktime_add(old, offset));
2504 }
2505 }
2506
ktime_get_coarse_ts64(struct timespec64 * ts)2507 void ktime_get_coarse_ts64(struct timespec64 *ts)
2508 {
2509 struct timekeeper *tk = &tk_core.timekeeper;
2510 struct timespec64 now, mono;
2511 unsigned int seq;
2512
2513 do {
2514 seq = read_seqcount_begin(&tk_core.seq);
2515
2516 now = tk_xtime_coarse(tk);
2517 mono = tk->wall_to_monotonic;
2518 } while (read_seqcount_retry(&tk_core.seq, seq));
2519
2520 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2521 now.tv_nsec + mono.tv_nsec);
2522 }
2523 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2524
2525 /*
2526 * Must hold jiffies_lock
2527 */
do_timer(unsigned long ticks)2528 void do_timer(unsigned long ticks)
2529 {
2530 jiffies_64 += ticks;
2531 calc_global_load();
2532 }
2533
2534 /**
2535 * ktime_get_update_offsets_now - hrtimer helper
2536 * @cwsseq: pointer to check and store the clock was set sequence number
2537 * @offs_real: pointer to storage for monotonic -> realtime offset
2538 * @offs_boot: pointer to storage for monotonic -> boottime offset
2539 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2540 *
2541 * Returns current monotonic time and updates the offsets if the
2542 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2543 * different.
2544 *
2545 * Called from hrtimer_interrupt() or retrigger_next_event()
2546 */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2547 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2548 ktime_t *offs_boot, ktime_t *offs_tai)
2549 {
2550 struct timekeeper *tk = &tk_core.timekeeper;
2551 unsigned int seq;
2552 ktime_t base;
2553 u64 nsecs;
2554
2555 do {
2556 seq = read_seqcount_begin(&tk_core.seq);
2557
2558 base = tk->tkr_mono.base;
2559 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2560 base = ktime_add_ns(base, nsecs);
2561
2562 if (*cwsseq != tk->clock_was_set_seq) {
2563 *cwsseq = tk->clock_was_set_seq;
2564 *offs_real = tk->offs_real;
2565 *offs_boot = tk->offs_boot;
2566 *offs_tai = tk->offs_tai;
2567 }
2568
2569 /* Handle leapsecond insertion adjustments */
2570 if (unlikely(base >= tk->next_leap_ktime))
2571 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2572
2573 } while (read_seqcount_retry(&tk_core.seq, seq));
2574
2575 return base;
2576 }
2577
2578 /*
2579 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2580 */
timekeeping_validate_timex(const struct __kernel_timex * txc,bool aux_clock)2581 static int timekeeping_validate_timex(const struct __kernel_timex *txc, bool aux_clock)
2582 {
2583 if (txc->modes & ADJ_ADJTIME) {
2584 /* singleshot must not be used with any other mode bits */
2585 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2586 return -EINVAL;
2587 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2588 !capable(CAP_SYS_TIME))
2589 return -EPERM;
2590 } else {
2591 /* In order to modify anything, you gotta be super-user! */
2592 if (txc->modes && !capable(CAP_SYS_TIME))
2593 return -EPERM;
2594 /*
2595 * if the quartz is off by more than 10% then
2596 * something is VERY wrong!
2597 */
2598 if (txc->modes & ADJ_TICK &&
2599 (txc->tick < 900000/USER_HZ ||
2600 txc->tick > 1100000/USER_HZ))
2601 return -EINVAL;
2602 }
2603
2604 if (txc->modes & ADJ_SETOFFSET) {
2605 /* In order to inject time, you gotta be super-user! */
2606 if (!capable(CAP_SYS_TIME))
2607 return -EPERM;
2608
2609 /*
2610 * Validate if a timespec/timeval used to inject a time
2611 * offset is valid. Offsets can be positive or negative, so
2612 * we don't check tv_sec. The value of the timeval/timespec
2613 * is the sum of its fields,but *NOTE*:
2614 * The field tv_usec/tv_nsec must always be non-negative and
2615 * we can't have more nanoseconds/microseconds than a second.
2616 */
2617 if (txc->time.tv_usec < 0)
2618 return -EINVAL;
2619
2620 if (txc->modes & ADJ_NANO) {
2621 if (txc->time.tv_usec >= NSEC_PER_SEC)
2622 return -EINVAL;
2623 } else {
2624 if (txc->time.tv_usec >= USEC_PER_SEC)
2625 return -EINVAL;
2626 }
2627 }
2628
2629 /*
2630 * Check for potential multiplication overflows that can
2631 * only happen on 64-bit systems:
2632 */
2633 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2634 if (LLONG_MIN / PPM_SCALE > txc->freq)
2635 return -EINVAL;
2636 if (LLONG_MAX / PPM_SCALE < txc->freq)
2637 return -EINVAL;
2638 }
2639
2640 if (aux_clock) {
2641 /* Auxiliary clocks are similar to TAI and do not have leap seconds */
2642 if (txc->status & (STA_INS | STA_DEL))
2643 return -EINVAL;
2644
2645 /* No TAI offset setting */
2646 if (txc->modes & ADJ_TAI)
2647 return -EINVAL;
2648
2649 /* No PPS support either */
2650 if (txc->status & (STA_PPSFREQ | STA_PPSTIME))
2651 return -EINVAL;
2652 }
2653
2654 return 0;
2655 }
2656
2657 /**
2658 * random_get_entropy_fallback - Returns the raw clock source value,
2659 * used by random.c for platforms with no valid random_get_entropy().
2660 */
random_get_entropy_fallback(void)2661 unsigned long random_get_entropy_fallback(void)
2662 {
2663 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2664 struct clocksource *clock = READ_ONCE(tkr->clock);
2665
2666 if (unlikely(timekeeping_suspended || !clock))
2667 return 0;
2668 return clock->read(clock);
2669 }
2670 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2671
2672 struct adjtimex_result {
2673 struct audit_ntp_data ad;
2674 struct timespec64 delta;
2675 bool clock_set;
2676 };
2677
__do_adjtimex(struct tk_data * tkd,struct __kernel_timex * txc,struct adjtimex_result * result)2678 static int __do_adjtimex(struct tk_data *tkd, struct __kernel_timex *txc,
2679 struct adjtimex_result *result)
2680 {
2681 struct timekeeper *tks = &tkd->shadow_timekeeper;
2682 bool aux_clock = !timekeeper_is_core_tk(tks);
2683 struct timespec64 ts;
2684 s32 orig_tai, tai;
2685 int ret;
2686
2687 /* Validate the data before disabling interrupts */
2688 ret = timekeeping_validate_timex(txc, aux_clock);
2689 if (ret)
2690 return ret;
2691 add_device_randomness(txc, sizeof(*txc));
2692
2693 if (!aux_clock)
2694 ktime_get_real_ts64(&ts);
2695 else
2696 tk_get_aux_ts64(tkd->timekeeper.id, &ts);
2697
2698 add_device_randomness(&ts, sizeof(ts));
2699
2700 guard(raw_spinlock_irqsave)(&tkd->lock);
2701
2702 if (!tks->clock_valid)
2703 return -ENODEV;
2704
2705 if (txc->modes & ADJ_SETOFFSET) {
2706 result->delta.tv_sec = txc->time.tv_sec;
2707 result->delta.tv_nsec = txc->time.tv_usec;
2708 if (!(txc->modes & ADJ_NANO))
2709 result->delta.tv_nsec *= 1000;
2710 ret = __timekeeping_inject_offset(tkd, &result->delta);
2711 if (ret)
2712 return ret;
2713 result->clock_set = true;
2714 }
2715
2716 orig_tai = tai = tks->tai_offset;
2717 ret = ntp_adjtimex(tks->id, txc, &ts, &tai, &result->ad);
2718
2719 if (tai != orig_tai) {
2720 __timekeeping_set_tai_offset(tks, tai);
2721 timekeeping_update_from_shadow(tkd, TK_CLOCK_WAS_SET);
2722 result->clock_set = true;
2723 } else {
2724 tk_update_leap_state_all(&tk_core);
2725 }
2726
2727 /* Update the multiplier immediately if frequency was set directly */
2728 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2729 result->clock_set |= __timekeeping_advance(tkd, TK_ADV_FREQ);
2730
2731 return ret;
2732 }
2733
2734 /**
2735 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2736 * @txc: Pointer to kernel_timex structure containing NTP parameters
2737 */
do_adjtimex(struct __kernel_timex * txc)2738 int do_adjtimex(struct __kernel_timex *txc)
2739 {
2740 struct adjtimex_result result = { };
2741 int ret;
2742
2743 ret = __do_adjtimex(&tk_core, txc, &result);
2744 if (ret < 0)
2745 return ret;
2746
2747 if (txc->modes & ADJ_SETOFFSET)
2748 audit_tk_injoffset(result.delta);
2749
2750 audit_ntp_log(&result.ad);
2751
2752 if (result.clock_set)
2753 clock_was_set(CLOCK_SET_WALL);
2754
2755 ntp_notify_cmos_timer(result.delta.tv_sec != 0);
2756
2757 return ret;
2758 }
2759
2760 /*
2761 * Invoked from NTP with the time keeper lock held, so lockless access is
2762 * fine.
2763 */
ktime_get_ntp_seconds(unsigned int id)2764 long ktime_get_ntp_seconds(unsigned int id)
2765 {
2766 return timekeeper_data[id].timekeeper.xtime_sec;
2767 }
2768
2769 #ifdef CONFIG_NTP_PPS
2770 /**
2771 * hardpps() - Accessor function to NTP __hardpps function
2772 * @phase_ts: Pointer to timespec64 structure representing phase timestamp
2773 * @raw_ts: Pointer to timespec64 structure representing raw timestamp
2774 */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2775 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2776 {
2777 guard(raw_spinlock_irqsave)(&tk_core.lock);
2778 __hardpps(phase_ts, raw_ts);
2779 }
2780 EXPORT_SYMBOL(hardpps);
2781 #endif /* CONFIG_NTP_PPS */
2782
2783 #ifdef CONFIG_POSIX_AUX_CLOCKS
2784 #include "posix-timers.h"
2785
2786 /*
2787 * Bitmap for the activated auxiliary timekeepers to allow lockless quick
2788 * checks in the hot paths without touching extra cache lines. If set, then
2789 * the state of the corresponding timekeeper has to be re-checked under
2790 * timekeeper::lock.
2791 */
2792 static unsigned long aux_timekeepers;
2793
clockid_to_tkid(unsigned int id)2794 static inline unsigned int clockid_to_tkid(unsigned int id)
2795 {
2796 return TIMEKEEPER_AUX_FIRST + id - CLOCK_AUX;
2797 }
2798
aux_get_tk_data(clockid_t id)2799 static inline struct tk_data *aux_get_tk_data(clockid_t id)
2800 {
2801 if (!clockid_aux_valid(id))
2802 return NULL;
2803 return &timekeeper_data[clockid_to_tkid(id)];
2804 }
2805
2806 /* Invoked from timekeeping after a clocksource change */
tk_aux_update_clocksource(void)2807 static void tk_aux_update_clocksource(void)
2808 {
2809 unsigned long active = READ_ONCE(aux_timekeepers);
2810 unsigned int id;
2811
2812 for_each_set_bit(id, &active, BITS_PER_LONG) {
2813 struct tk_data *tkd = &timekeeper_data[id + TIMEKEEPER_AUX_FIRST];
2814 struct timekeeper *tks = &tkd->shadow_timekeeper;
2815
2816 guard(raw_spinlock_irqsave)(&tkd->lock);
2817 if (!tks->clock_valid)
2818 continue;
2819
2820 timekeeping_forward_now(tks);
2821 tk_setup_internals(tks, tk_core.timekeeper.tkr_mono.clock);
2822 timekeeping_update_from_shadow(tkd, TK_UPDATE_ALL);
2823 }
2824 }
2825
tk_aux_advance(void)2826 static void tk_aux_advance(void)
2827 {
2828 unsigned long active = READ_ONCE(aux_timekeepers);
2829 unsigned int id;
2830
2831 /* Lockless quick check to avoid extra cache lines */
2832 for_each_set_bit(id, &active, BITS_PER_LONG) {
2833 struct tk_data *aux_tkd = &timekeeper_data[id + TIMEKEEPER_AUX_FIRST];
2834
2835 guard(raw_spinlock)(&aux_tkd->lock);
2836 if (aux_tkd->shadow_timekeeper.clock_valid)
2837 __timekeeping_advance(aux_tkd, TK_ADV_TICK);
2838 }
2839 }
2840
2841 /**
2842 * ktime_get_aux - Get time for a AUX clock
2843 * @id: ID of the clock to read (CLOCK_AUX...)
2844 * @kt: Pointer to ktime_t to store the time stamp
2845 *
2846 * Returns: True if the timestamp is valid, false otherwise
2847 */
ktime_get_aux(clockid_t id,ktime_t * kt)2848 bool ktime_get_aux(clockid_t id, ktime_t *kt)
2849 {
2850 struct tk_data *aux_tkd = aux_get_tk_data(id);
2851 struct timekeeper *aux_tk;
2852 unsigned int seq;
2853 ktime_t base;
2854 u64 nsecs;
2855
2856 WARN_ON(timekeeping_suspended);
2857
2858 if (!aux_tkd)
2859 return false;
2860
2861 aux_tk = &aux_tkd->timekeeper;
2862 do {
2863 seq = read_seqcount_begin(&aux_tkd->seq);
2864 if (!aux_tk->clock_valid)
2865 return false;
2866
2867 base = ktime_add(aux_tk->tkr_mono.base, aux_tk->offs_aux);
2868 nsecs = timekeeping_get_ns(&aux_tk->tkr_mono);
2869 } while (read_seqcount_retry(&aux_tkd->seq, seq));
2870
2871 *kt = ktime_add_ns(base, nsecs);
2872 return true;
2873 }
2874 EXPORT_SYMBOL_GPL(ktime_get_aux);
2875
2876 /**
2877 * ktime_get_aux_ts64 - Get time for a AUX clock
2878 * @id: ID of the clock to read (CLOCK_AUX...)
2879 * @ts: Pointer to timespec64 to store the time stamp
2880 *
2881 * Returns: True if the timestamp is valid, false otherwise
2882 */
ktime_get_aux_ts64(clockid_t id,struct timespec64 * ts)2883 bool ktime_get_aux_ts64(clockid_t id, struct timespec64 *ts)
2884 {
2885 ktime_t now;
2886
2887 if (!ktime_get_aux(id, &now))
2888 return false;
2889 *ts = ktime_to_timespec64(now);
2890 return true;
2891 }
2892 EXPORT_SYMBOL_GPL(ktime_get_aux_ts64);
2893
aux_get_res(clockid_t id,struct timespec64 * tp)2894 static int aux_get_res(clockid_t id, struct timespec64 *tp)
2895 {
2896 if (!clockid_aux_valid(id))
2897 return -ENODEV;
2898
2899 tp->tv_sec = aux_clock_resolution_ns() / NSEC_PER_SEC;
2900 tp->tv_nsec = aux_clock_resolution_ns() % NSEC_PER_SEC;
2901 return 0;
2902 }
2903
aux_get_timespec(clockid_t id,struct timespec64 * tp)2904 static int aux_get_timespec(clockid_t id, struct timespec64 *tp)
2905 {
2906 return ktime_get_aux_ts64(id, tp) ? 0 : -ENODEV;
2907 }
2908
aux_clock_set(const clockid_t id,const struct timespec64 * tnew)2909 static int aux_clock_set(const clockid_t id, const struct timespec64 *tnew)
2910 {
2911 struct tk_data *aux_tkd = aux_get_tk_data(id);
2912 struct timekeeper *aux_tks;
2913 ktime_t tnow, nsecs;
2914
2915 if (!timespec64_valid_settod(tnew))
2916 return -EINVAL;
2917 if (!aux_tkd)
2918 return -ENODEV;
2919
2920 aux_tks = &aux_tkd->shadow_timekeeper;
2921
2922 guard(raw_spinlock_irq)(&aux_tkd->lock);
2923 if (!aux_tks->clock_valid)
2924 return -ENODEV;
2925
2926 /* Forward the timekeeper base time */
2927 timekeeping_forward_now(aux_tks);
2928 /*
2929 * Get the updated base time. tkr_mono.base has not been
2930 * updated yet, so do that first. That makes the update
2931 * in timekeeping_update_from_shadow() redundant, but
2932 * that's harmless. After that @tnow can be calculated
2933 * by using tkr_mono::cycle_last, which has been set
2934 * by timekeeping_forward_now().
2935 */
2936 tk_update_ktime_data(aux_tks);
2937 nsecs = timekeeping_cycles_to_ns(&aux_tks->tkr_mono, aux_tks->tkr_mono.cycle_last);
2938 tnow = ktime_add(aux_tks->tkr_mono.base, nsecs);
2939
2940 /*
2941 * Calculate the new AUX offset as delta to @tnow ("monotonic").
2942 * That avoids all the tk::xtime back and forth conversions as
2943 * xtime ("realtime") is not applicable for auxiliary clocks and
2944 * kept in sync with "monotonic".
2945 */
2946 tk_update_aux_offs(aux_tks, ktime_sub(timespec64_to_ktime(*tnew), tnow));
2947
2948 timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL);
2949 return 0;
2950 }
2951
aux_clock_adj(const clockid_t id,struct __kernel_timex * txc)2952 static int aux_clock_adj(const clockid_t id, struct __kernel_timex *txc)
2953 {
2954 struct tk_data *aux_tkd = aux_get_tk_data(id);
2955 struct adjtimex_result result = { };
2956
2957 if (!aux_tkd)
2958 return -ENODEV;
2959
2960 /*
2961 * @result is ignored for now as there are neither hrtimers nor a
2962 * RTC related to auxiliary clocks for now.
2963 */
2964 return __do_adjtimex(aux_tkd, txc, &result);
2965 }
2966
2967 const struct k_clock clock_aux = {
2968 .clock_getres = aux_get_res,
2969 .clock_get_timespec = aux_get_timespec,
2970 .clock_set = aux_clock_set,
2971 .clock_adj = aux_clock_adj,
2972 };
2973
aux_clock_enable(clockid_t id)2974 static void aux_clock_enable(clockid_t id)
2975 {
2976 struct tk_read_base *tkr_raw = &tk_core.timekeeper.tkr_raw;
2977 struct tk_data *aux_tkd = aux_get_tk_data(id);
2978 struct timekeeper *aux_tks = &aux_tkd->shadow_timekeeper;
2979
2980 /* Prevent the core timekeeper from changing. */
2981 guard(raw_spinlock_irq)(&tk_core.lock);
2982
2983 /*
2984 * Setup the auxiliary clock assuming that the raw core timekeeper
2985 * clock frequency conversion is close enough. Userspace has to
2986 * adjust for the deviation via clock_adjtime(2).
2987 */
2988 guard(raw_spinlock_nested)(&aux_tkd->lock);
2989
2990 /* Remove leftovers of a previous registration */
2991 memset(aux_tks, 0, sizeof(*aux_tks));
2992 /* Restore the timekeeper id */
2993 aux_tks->id = aux_tkd->timekeeper.id;
2994 /* Setup the timekeeper based on the current system clocksource */
2995 tk_setup_internals(aux_tks, tkr_raw->clock);
2996
2997 /* Mark it valid and set it live */
2998 aux_tks->clock_valid = true;
2999 timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL);
3000 }
3001
aux_clock_disable(clockid_t id)3002 static void aux_clock_disable(clockid_t id)
3003 {
3004 struct tk_data *aux_tkd = aux_get_tk_data(id);
3005
3006 guard(raw_spinlock_irq)(&aux_tkd->lock);
3007 aux_tkd->shadow_timekeeper.clock_valid = false;
3008 timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL);
3009 }
3010
3011 static DEFINE_MUTEX(aux_clock_mutex);
3012
aux_clock_enable_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3013 static ssize_t aux_clock_enable_store(struct kobject *kobj, struct kobj_attribute *attr,
3014 const char *buf, size_t count)
3015 {
3016 /* Lazy atoi() as name is "0..7" */
3017 int id = kobj->name[0] & 0x7;
3018 bool enable;
3019
3020 if (!capable(CAP_SYS_TIME))
3021 return -EPERM;
3022
3023 if (kstrtobool(buf, &enable) < 0)
3024 return -EINVAL;
3025
3026 guard(mutex)(&aux_clock_mutex);
3027 if (enable == test_bit(id, &aux_timekeepers))
3028 return count;
3029
3030 if (enable) {
3031 aux_clock_enable(CLOCK_AUX + id);
3032 set_bit(id, &aux_timekeepers);
3033 } else {
3034 aux_clock_disable(CLOCK_AUX + id);
3035 clear_bit(id, &aux_timekeepers);
3036 }
3037 return count;
3038 }
3039
aux_clock_enable_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3040 static ssize_t aux_clock_enable_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
3041 {
3042 unsigned long active = READ_ONCE(aux_timekeepers);
3043 /* Lazy atoi() as name is "0..7" */
3044 int id = kobj->name[0] & 0x7;
3045
3046 return sysfs_emit(buf, "%d\n", test_bit(id, &active));
3047 }
3048
3049 static struct kobj_attribute aux_clock_enable_attr = __ATTR_RW(aux_clock_enable);
3050
3051 static struct attribute *aux_clock_enable_attrs[] = {
3052 &aux_clock_enable_attr.attr,
3053 NULL
3054 };
3055
3056 static const struct attribute_group aux_clock_enable_attr_group = {
3057 .attrs = aux_clock_enable_attrs,
3058 };
3059
tk_aux_sysfs_init(void)3060 static int __init tk_aux_sysfs_init(void)
3061 {
3062 struct kobject *auxo, *tko = kobject_create_and_add("time", kernel_kobj);
3063
3064 if (!tko)
3065 return -ENOMEM;
3066
3067 auxo = kobject_create_and_add("aux_clocks", tko);
3068 if (!auxo) {
3069 kobject_put(tko);
3070 return -ENOMEM;
3071 }
3072
3073 for (int i = 0; i <= MAX_AUX_CLOCKS; i++) {
3074 char id[2] = { [0] = '0' + i, };
3075 struct kobject *clk = kobject_create_and_add(id, auxo);
3076
3077 if (!clk)
3078 return -ENOMEM;
3079
3080 int ret = sysfs_create_group(clk, &aux_clock_enable_attr_group);
3081
3082 if (ret)
3083 return ret;
3084 }
3085 return 0;
3086 }
3087 late_initcall(tk_aux_sysfs_init);
3088
tk_aux_setup(void)3089 static __init void tk_aux_setup(void)
3090 {
3091 for (int i = TIMEKEEPER_AUX_FIRST; i <= TIMEKEEPER_AUX_LAST; i++)
3092 tkd_basic_setup(&timekeeper_data[i], i, false);
3093 }
3094 #endif /* CONFIG_POSIX_AUX_CLOCKS */
3095