xref: /linux/kernel/time/timekeeping.c (revision 6ab41fca2e8059803b27cef336d2abe7c936ba0b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/kobject.h>
10 #include <linux/percpu.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/nmi.h>
14 #include <linux/sched.h>
15 #include <linux/sched/loadavg.h>
16 #include <linux/sched/clock.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 #include <linux/audit.h>
27 #include <linux/random.h>
28 
29 #include <vdso/auxclock.h>
30 
31 #include "tick-internal.h"
32 #include "ntp_internal.h"
33 #include "timekeeping_internal.h"
34 
35 #define TK_CLEAR_NTP		(1 << 0)
36 #define TK_CLOCK_WAS_SET	(1 << 1)
37 
38 #define TK_UPDATE_ALL		(TK_CLEAR_NTP | TK_CLOCK_WAS_SET)
39 
40 enum timekeeping_adv_mode {
41 	/* Update timekeeper when a tick has passed */
42 	TK_ADV_TICK,
43 
44 	/* Update timekeeper on a direct frequency change */
45 	TK_ADV_FREQ
46 };
47 
48 /*
49  * The most important data for readout fits into a single 64 byte
50  * cache line.
51  */
52 struct tk_data {
53 	seqcount_raw_spinlock_t	seq;
54 	struct timekeeper	timekeeper;
55 	struct timekeeper	shadow_timekeeper;
56 	raw_spinlock_t		lock;
57 } ____cacheline_aligned;
58 
59 static struct tk_data timekeeper_data[TIMEKEEPERS_MAX];
60 
61 /* The core timekeeper */
62 #define tk_core		(timekeeper_data[TIMEKEEPER_CORE])
63 
64 #ifdef CONFIG_POSIX_AUX_CLOCKS
tk_get_aux_ts64(unsigned int tkid,struct timespec64 * ts)65 static inline bool tk_get_aux_ts64(unsigned int tkid, struct timespec64 *ts)
66 {
67 	return ktime_get_aux_ts64(CLOCK_AUX + tkid - TIMEKEEPER_AUX_FIRST, ts);
68 }
69 
tk_is_aux(const struct timekeeper * tk)70 static inline bool tk_is_aux(const struct timekeeper *tk)
71 {
72 	return tk->id >= TIMEKEEPER_AUX_FIRST && tk->id <= TIMEKEEPER_AUX_LAST;
73 }
74 #else
tk_get_aux_ts64(unsigned int tkid,struct timespec64 * ts)75 static inline bool tk_get_aux_ts64(unsigned int tkid, struct timespec64 *ts)
76 {
77 	return false;
78 }
79 
tk_is_aux(const struct timekeeper * tk)80 static inline bool tk_is_aux(const struct timekeeper *tk)
81 {
82 	return false;
83 }
84 #endif
85 
tk_update_aux_offs(struct timekeeper * tk,ktime_t offs)86 static inline void tk_update_aux_offs(struct timekeeper *tk, ktime_t offs)
87 {
88 	tk->offs_aux = offs;
89 	tk->monotonic_to_aux = ktime_to_timespec64(offs);
90 }
91 
92 /* flag for if timekeeping is suspended */
93 int __read_mostly timekeeping_suspended;
94 
95 /**
96  * struct tk_fast - NMI safe timekeeper
97  * @seq:	Sequence counter for protecting updates. The lowest bit
98  *		is the index for the tk_read_base array
99  * @base:	tk_read_base array. Access is indexed by the lowest bit of
100  *		@seq.
101  *
102  * See @update_fast_timekeeper() below.
103  */
104 struct tk_fast {
105 	seqcount_latch_t	seq;
106 	struct tk_read_base	base[2];
107 };
108 
109 /* Suspend-time cycles value for halted fast timekeeper. */
110 static u64 cycles_at_suspend;
111 
dummy_clock_read(struct clocksource * cs)112 static u64 dummy_clock_read(struct clocksource *cs)
113 {
114 	if (timekeeping_suspended)
115 		return cycles_at_suspend;
116 	return local_clock();
117 }
118 
119 static struct clocksource dummy_clock = {
120 	.read = dummy_clock_read,
121 };
122 
123 /*
124  * Boot time initialization which allows local_clock() to be utilized
125  * during early boot when clocksources are not available. local_clock()
126  * returns nanoseconds already so no conversion is required, hence mult=1
127  * and shift=0. When the first proper clocksource is installed then
128  * the fast time keepers are updated with the correct values.
129  */
130 #define FAST_TK_INIT						\
131 	{							\
132 		.clock		= &dummy_clock,			\
133 		.mask		= CLOCKSOURCE_MASK(64),		\
134 		.mult		= 1,				\
135 		.shift		= 0,				\
136 	}
137 
138 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
139 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
140 	.base[0] = FAST_TK_INIT,
141 	.base[1] = FAST_TK_INIT,
142 };
143 
144 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
145 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
146 	.base[0] = FAST_TK_INIT,
147 	.base[1] = FAST_TK_INIT,
148 };
149 
150 #ifdef CONFIG_POSIX_AUX_CLOCKS
151 static __init void tk_aux_setup(void);
152 static void tk_aux_update_clocksource(void);
153 static void tk_aux_advance(void);
154 #else
tk_aux_setup(void)155 static inline void tk_aux_setup(void) { }
tk_aux_update_clocksource(void)156 static inline void tk_aux_update_clocksource(void) { }
tk_aux_advance(void)157 static inline void tk_aux_advance(void) { }
158 #endif
159 
timekeeper_lock_irqsave(void)160 unsigned long timekeeper_lock_irqsave(void)
161 {
162 	unsigned long flags;
163 
164 	raw_spin_lock_irqsave(&tk_core.lock, flags);
165 	return flags;
166 }
167 
timekeeper_unlock_irqrestore(unsigned long flags)168 void timekeeper_unlock_irqrestore(unsigned long flags)
169 {
170 	raw_spin_unlock_irqrestore(&tk_core.lock, flags);
171 }
172 
173 /*
174  * Multigrain timestamps require tracking the latest fine-grained timestamp
175  * that has been issued, and never returning a coarse-grained timestamp that is
176  * earlier than that value.
177  *
178  * mg_floor represents the latest fine-grained time that has been handed out as
179  * a file timestamp on the system. This is tracked as a monotonic ktime_t, and
180  * converted to a realtime clock value on an as-needed basis.
181  *
182  * Maintaining mg_floor ensures the multigrain interfaces never issue a
183  * timestamp earlier than one that has been previously issued.
184  *
185  * The exception to this rule is when there is a backward realtime clock jump. If
186  * such an event occurs, a timestamp can appear to be earlier than a previous one.
187  */
188 static __cacheline_aligned_in_smp atomic64_t mg_floor;
189 
tk_normalize_xtime(struct timekeeper * tk)190 static inline void tk_normalize_xtime(struct timekeeper *tk)
191 {
192 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
193 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
194 		tk->xtime_sec++;
195 	}
196 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
197 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
198 		tk->raw_sec++;
199 	}
200 }
201 
tk_xtime(const struct timekeeper * tk)202 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
203 {
204 	struct timespec64 ts;
205 
206 	ts.tv_sec = tk->xtime_sec;
207 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
208 	return ts;
209 }
210 
tk_xtime_coarse(const struct timekeeper * tk)211 static inline struct timespec64 tk_xtime_coarse(const struct timekeeper *tk)
212 {
213 	struct timespec64 ts;
214 
215 	ts.tv_sec = tk->xtime_sec;
216 	ts.tv_nsec = tk->coarse_nsec;
217 	return ts;
218 }
219 
220 /*
221  * Update the nanoseconds part for the coarse time keepers. They can't rely
222  * on xtime_nsec because xtime_nsec could be adjusted by a small negative
223  * amount when the multiplication factor of the clock is adjusted, which
224  * could cause the coarse clocks to go slightly backwards. See
225  * timekeeping_apply_adjustment(). Thus we keep a separate copy for the coarse
226  * clockids which only is updated when the clock has been set or  we have
227  * accumulated time.
228  */
tk_update_coarse_nsecs(struct timekeeper * tk)229 static inline void tk_update_coarse_nsecs(struct timekeeper *tk)
230 {
231 	tk->coarse_nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
232 }
233 
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)234 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
235 {
236 	tk->xtime_sec = ts->tv_sec;
237 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
238 	tk_update_coarse_nsecs(tk);
239 }
240 
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)241 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
242 {
243 	tk->xtime_sec += ts->tv_sec;
244 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
245 	tk_normalize_xtime(tk);
246 	tk_update_coarse_nsecs(tk);
247 }
248 
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)249 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
250 {
251 	struct timespec64 tmp;
252 
253 	/*
254 	 * Verify consistency of: offset_real = -wall_to_monotonic
255 	 * before modifying anything
256 	 */
257 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
258 					-tk->wall_to_monotonic.tv_nsec);
259 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
260 	tk->wall_to_monotonic = wtm;
261 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
262 	/* Paired with READ_ONCE() in ktime_mono_to_any() */
263 	WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp));
264 	WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)));
265 }
266 
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)267 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
268 {
269 	/* Paired with READ_ONCE() in ktime_mono_to_any() */
270 	WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta));
271 	/*
272 	 * Timespec representation for VDSO update to avoid 64bit division
273 	 * on every update.
274 	 */
275 	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
276 }
277 
278 /*
279  * tk_clock_read - atomic clocksource read() helper
280  *
281  * This helper is necessary to use in the read paths because, while the
282  * seqcount ensures we don't return a bad value while structures are updated,
283  * it doesn't protect from potential crashes. There is the possibility that
284  * the tkr's clocksource may change between the read reference, and the
285  * clock reference passed to the read function.  This can cause crashes if
286  * the wrong clocksource is passed to the wrong read function.
287  * This isn't necessary to use when holding the tk_core.lock or doing
288  * a read of the fast-timekeeper tkrs (which is protected by its own locking
289  * and update logic).
290  */
tk_clock_read(const struct tk_read_base * tkr)291 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
292 {
293 	struct clocksource *clock = READ_ONCE(tkr->clock);
294 
295 	return clock->read(clock);
296 }
297 
298 /**
299  * tk_setup_internals - Set up internals to use clocksource clock.
300  *
301  * @tk:		The target timekeeper to setup.
302  * @clock:		Pointer to clocksource.
303  *
304  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
305  * pair and interval request.
306  *
307  * Unless you're the timekeeping code, you should not be using this!
308  */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)309 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
310 {
311 	u64 interval;
312 	u64 tmp, ntpinterval;
313 	struct clocksource *old_clock;
314 
315 	++tk->cs_was_changed_seq;
316 	old_clock = tk->tkr_mono.clock;
317 	tk->tkr_mono.clock = clock;
318 	tk->tkr_mono.mask = clock->mask;
319 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
320 
321 	tk->tkr_raw.clock = clock;
322 	tk->tkr_raw.mask = clock->mask;
323 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
324 
325 	/* Do the ns -> cycle conversion first, using original mult */
326 	tmp = NTP_INTERVAL_LENGTH;
327 	tmp <<= clock->shift;
328 	ntpinterval = tmp;
329 	tmp += clock->mult/2;
330 	do_div(tmp, clock->mult);
331 	if (tmp == 0)
332 		tmp = 1;
333 
334 	interval = (u64) tmp;
335 	tk->cycle_interval = interval;
336 
337 	/* Go back from cycles -> shifted ns */
338 	tk->xtime_interval = interval * clock->mult;
339 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
340 	tk->raw_interval = interval * clock->mult;
341 
342 	 /* if changing clocks, convert xtime_nsec shift units */
343 	if (old_clock) {
344 		int shift_change = clock->shift - old_clock->shift;
345 		if (shift_change < 0) {
346 			tk->tkr_mono.xtime_nsec >>= -shift_change;
347 			tk->tkr_raw.xtime_nsec >>= -shift_change;
348 		} else {
349 			tk->tkr_mono.xtime_nsec <<= shift_change;
350 			tk->tkr_raw.xtime_nsec <<= shift_change;
351 		}
352 	}
353 
354 	tk->tkr_mono.shift = clock->shift;
355 	tk->tkr_raw.shift = clock->shift;
356 
357 	tk->ntp_error = 0;
358 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
359 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
360 
361 	/*
362 	 * The timekeeper keeps its own mult values for the currently
363 	 * active clocksource. These value will be adjusted via NTP
364 	 * to counteract clock drifting.
365 	 */
366 	tk->tkr_mono.mult = clock->mult;
367 	tk->tkr_raw.mult = clock->mult;
368 	tk->ntp_err_mult = 0;
369 	tk->skip_second_overflow = 0;
370 }
371 
372 /* Timekeeper helper functions. */
delta_to_ns_safe(const struct tk_read_base * tkr,u64 delta)373 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta)
374 {
375 	return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift);
376 }
377 
timekeeping_cycles_to_ns(const struct tk_read_base * tkr,u64 cycles)378 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
379 {
380 	/* Calculate the delta since the last update_wall_time() */
381 	u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask;
382 
383 	/*
384 	 * This detects both negative motion and the case where the delta
385 	 * overflows the multiplication with tkr->mult.
386 	 */
387 	if (unlikely(delta > tkr->clock->max_cycles)) {
388 		/*
389 		 * Handle clocksource inconsistency between CPUs to prevent
390 		 * time from going backwards by checking for the MSB of the
391 		 * mask being set in the delta.
392 		 */
393 		if (delta & ~(mask >> 1))
394 			return tkr->xtime_nsec >> tkr->shift;
395 
396 		return delta_to_ns_safe(tkr, delta);
397 	}
398 
399 	return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift;
400 }
401 
timekeeping_get_ns(const struct tk_read_base * tkr)402 static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
403 {
404 	return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr));
405 }
406 
407 /**
408  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
409  * @tkr: Timekeeping readout base from which we take the update
410  * @tkf: Pointer to NMI safe timekeeper
411  *
412  * We want to use this from any context including NMI and tracing /
413  * instrumenting the timekeeping code itself.
414  *
415  * Employ the latch technique; see @write_seqcount_latch.
416  *
417  * So if a NMI hits the update of base[0] then it will use base[1]
418  * which is still consistent. In the worst case this can result is a
419  * slightly wrong timestamp (a few nanoseconds). See
420  * @ktime_get_mono_fast_ns.
421  */
update_fast_timekeeper(const struct tk_read_base * tkr,struct tk_fast * tkf)422 static void update_fast_timekeeper(const struct tk_read_base *tkr,
423 				   struct tk_fast *tkf)
424 {
425 	struct tk_read_base *base = tkf->base;
426 
427 	/* Force readers off to base[1] */
428 	write_seqcount_latch_begin(&tkf->seq);
429 
430 	/* Update base[0] */
431 	memcpy(base, tkr, sizeof(*base));
432 
433 	/* Force readers back to base[0] */
434 	write_seqcount_latch(&tkf->seq);
435 
436 	/* Update base[1] */
437 	memcpy(base + 1, base, sizeof(*base));
438 
439 	write_seqcount_latch_end(&tkf->seq);
440 }
441 
__ktime_get_fast_ns(struct tk_fast * tkf)442 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
443 {
444 	struct tk_read_base *tkr;
445 	unsigned int seq;
446 	u64 now;
447 
448 	do {
449 		seq = read_seqcount_latch(&tkf->seq);
450 		tkr = tkf->base + (seq & 0x01);
451 		now = ktime_to_ns(tkr->base);
452 		now += timekeeping_get_ns(tkr);
453 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
454 
455 	return now;
456 }
457 
458 /**
459  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
460  *
461  * This timestamp is not guaranteed to be monotonic across an update.
462  * The timestamp is calculated by:
463  *
464  *	now = base_mono + clock_delta * slope
465  *
466  * So if the update lowers the slope, readers who are forced to the
467  * not yet updated second array are still using the old steeper slope.
468  *
469  * tmono
470  * ^
471  * |    o  n
472  * |   o n
473  * |  u
474  * | o
475  * |o
476  * |12345678---> reader order
477  *
478  * o = old slope
479  * u = update
480  * n = new slope
481  *
482  * So reader 6 will observe time going backwards versus reader 5.
483  *
484  * While other CPUs are likely to be able to observe that, the only way
485  * for a CPU local observation is when an NMI hits in the middle of
486  * the update. Timestamps taken from that NMI context might be ahead
487  * of the following timestamps. Callers need to be aware of that and
488  * deal with it.
489  */
ktime_get_mono_fast_ns(void)490 u64 notrace ktime_get_mono_fast_ns(void)
491 {
492 	return __ktime_get_fast_ns(&tk_fast_mono);
493 }
494 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
495 
496 /**
497  * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
498  *
499  * Contrary to ktime_get_mono_fast_ns() this is always correct because the
500  * conversion factor is not affected by NTP/PTP correction.
501  */
ktime_get_raw_fast_ns(void)502 u64 notrace ktime_get_raw_fast_ns(void)
503 {
504 	return __ktime_get_fast_ns(&tk_fast_raw);
505 }
506 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
507 
508 /**
509  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
510  *
511  * To keep it NMI safe since we're accessing from tracing, we're not using a
512  * separate timekeeper with updates to monotonic clock and boot offset
513  * protected with seqcounts. This has the following minor side effects:
514  *
515  * (1) Its possible that a timestamp be taken after the boot offset is updated
516  * but before the timekeeper is updated. If this happens, the new boot offset
517  * is added to the old timekeeping making the clock appear to update slightly
518  * earlier:
519  *    CPU 0                                        CPU 1
520  *    timekeeping_inject_sleeptime64()
521  *    __timekeeping_inject_sleeptime(tk, delta);
522  *                                                 timestamp();
523  *    timekeeping_update_staged(tkd, TK_CLEAR_NTP...);
524  *
525  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
526  * partially updated.  Since the tk->offs_boot update is a rare event, this
527  * should be a rare occurrence which postprocessing should be able to handle.
528  *
529  * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
530  * apply as well.
531  */
ktime_get_boot_fast_ns(void)532 u64 notrace ktime_get_boot_fast_ns(void)
533 {
534 	struct timekeeper *tk = &tk_core.timekeeper;
535 
536 	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
537 }
538 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
539 
540 /**
541  * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
542  *
543  * The same limitations as described for ktime_get_boot_fast_ns() apply. The
544  * mono time and the TAI offset are not read atomically which may yield wrong
545  * readouts. However, an update of the TAI offset is an rare event e.g., caused
546  * by settime or adjtimex with an offset. The user of this function has to deal
547  * with the possibility of wrong timestamps in post processing.
548  */
ktime_get_tai_fast_ns(void)549 u64 notrace ktime_get_tai_fast_ns(void)
550 {
551 	struct timekeeper *tk = &tk_core.timekeeper;
552 
553 	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
554 }
555 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
556 
557 /**
558  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
559  *
560  * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
561  */
ktime_get_real_fast_ns(void)562 u64 ktime_get_real_fast_ns(void)
563 {
564 	struct tk_fast *tkf = &tk_fast_mono;
565 	struct tk_read_base *tkr;
566 	u64 baser, delta;
567 	unsigned int seq;
568 
569 	do {
570 		seq = raw_read_seqcount_latch(&tkf->seq);
571 		tkr = tkf->base + (seq & 0x01);
572 		baser = ktime_to_ns(tkr->base_real);
573 		delta = timekeeping_get_ns(tkr);
574 	} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
575 
576 	return baser + delta;
577 }
578 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
579 
580 /**
581  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
582  * @tk: Timekeeper to snapshot.
583  *
584  * It generally is unsafe to access the clocksource after timekeeping has been
585  * suspended, so take a snapshot of the readout base of @tk and use it as the
586  * fast timekeeper's readout base while suspended.  It will return the same
587  * number of cycles every time until timekeeping is resumed at which time the
588  * proper readout base for the fast timekeeper will be restored automatically.
589  */
halt_fast_timekeeper(const struct timekeeper * tk)590 static void halt_fast_timekeeper(const struct timekeeper *tk)
591 {
592 	static struct tk_read_base tkr_dummy;
593 	const struct tk_read_base *tkr = &tk->tkr_mono;
594 
595 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
596 	cycles_at_suspend = tk_clock_read(tkr);
597 	tkr_dummy.clock = &dummy_clock;
598 	tkr_dummy.base_real = tkr->base + tk->offs_real;
599 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
600 
601 	tkr = &tk->tkr_raw;
602 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
603 	tkr_dummy.clock = &dummy_clock;
604 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
605 }
606 
607 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
608 
update_pvclock_gtod(struct timekeeper * tk,bool was_set)609 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
610 {
611 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
612 }
613 
614 /**
615  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
616  * @nb: Pointer to the notifier block to register
617  */
pvclock_gtod_register_notifier(struct notifier_block * nb)618 int pvclock_gtod_register_notifier(struct notifier_block *nb)
619 {
620 	struct timekeeper *tk = &tk_core.timekeeper;
621 	int ret;
622 
623 	guard(raw_spinlock_irqsave)(&tk_core.lock);
624 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
625 	update_pvclock_gtod(tk, true);
626 
627 	return ret;
628 }
629 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
630 
631 /**
632  * pvclock_gtod_unregister_notifier - unregister a pvclock
633  * timedata update listener
634  * @nb: Pointer to the notifier block to unregister
635  */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)636 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
637 {
638 	guard(raw_spinlock_irqsave)(&tk_core.lock);
639 	return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
640 }
641 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
642 
643 /*
644  * tk_update_leap_state - helper to update the next_leap_ktime
645  */
tk_update_leap_state(struct timekeeper * tk)646 static inline void tk_update_leap_state(struct timekeeper *tk)
647 {
648 	tk->next_leap_ktime = ntp_get_next_leap(tk->id);
649 	if (tk->next_leap_ktime != KTIME_MAX)
650 		/* Convert to monotonic time */
651 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
652 }
653 
654 /*
655  * Leap state update for both shadow and the real timekeeper
656  * Separate to spare a full memcpy() of the timekeeper.
657  */
tk_update_leap_state_all(struct tk_data * tkd)658 static void tk_update_leap_state_all(struct tk_data *tkd)
659 {
660 	write_seqcount_begin(&tkd->seq);
661 	tk_update_leap_state(&tkd->shadow_timekeeper);
662 	tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime;
663 	write_seqcount_end(&tkd->seq);
664 }
665 
666 /*
667  * Update the ktime_t based scalar nsec members of the timekeeper
668  */
tk_update_ktime_data(struct timekeeper * tk)669 static inline void tk_update_ktime_data(struct timekeeper *tk)
670 {
671 	u64 seconds;
672 	u32 nsec;
673 
674 	/*
675 	 * The xtime based monotonic readout is:
676 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
677 	 * The ktime based monotonic readout is:
678 	 *	nsec = base_mono + now();
679 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
680 	 */
681 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
682 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
683 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
684 
685 	/*
686 	 * The sum of the nanoseconds portions of xtime and
687 	 * wall_to_monotonic can be greater/equal one second. Take
688 	 * this into account before updating tk->ktime_sec.
689 	 */
690 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
691 	if (nsec >= NSEC_PER_SEC)
692 		seconds++;
693 	tk->ktime_sec = seconds;
694 
695 	/* Update the monotonic raw base */
696 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
697 }
698 
699 /*
700  * Restore the shadow timekeeper from the real timekeeper.
701  */
timekeeping_restore_shadow(struct tk_data * tkd)702 static void timekeeping_restore_shadow(struct tk_data *tkd)
703 {
704 	lockdep_assert_held(&tkd->lock);
705 	memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper));
706 }
707 
timekeeping_update_from_shadow(struct tk_data * tkd,unsigned int action)708 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action)
709 {
710 	struct timekeeper *tk = &tkd->shadow_timekeeper;
711 
712 	lockdep_assert_held(&tkd->lock);
713 
714 	/*
715 	 * Block out readers before running the updates below because that
716 	 * updates VDSO and other time related infrastructure. Not blocking
717 	 * the readers might let a reader see time going backwards when
718 	 * reading from the VDSO after the VDSO update and then reading in
719 	 * the kernel from the timekeeper before that got updated.
720 	 */
721 	write_seqcount_begin(&tkd->seq);
722 
723 	if (action & TK_CLEAR_NTP) {
724 		tk->ntp_error = 0;
725 		ntp_clear(tk->id);
726 	}
727 
728 	tk_update_leap_state(tk);
729 	tk_update_ktime_data(tk);
730 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
731 
732 	if (tk->id == TIMEKEEPER_CORE) {
733 		update_vsyscall(tk);
734 		update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
735 
736 		update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
737 		update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
738 	} else if (tk_is_aux(tk)) {
739 		vdso_time_update_aux(tk);
740 	}
741 
742 	if (action & TK_CLOCK_WAS_SET)
743 		tk->clock_was_set_seq++;
744 
745 	/*
746 	 * Update the real timekeeper.
747 	 *
748 	 * We could avoid this memcpy() by switching pointers, but that has
749 	 * the downside that the reader side does not longer benefit from
750 	 * the cacheline optimized data layout of the timekeeper and requires
751 	 * another indirection.
752 	 */
753 	memcpy(&tkd->timekeeper, tk, sizeof(*tk));
754 	write_seqcount_end(&tkd->seq);
755 }
756 
757 /**
758  * timekeeping_forward_now - update clock to the current time
759  * @tk:		Pointer to the timekeeper to update
760  *
761  * Forward the current clock to update its state since the last call to
762  * update_wall_time(). This is useful before significant clock changes,
763  * as it avoids having to deal with this time offset explicitly.
764  */
timekeeping_forward_now(struct timekeeper * tk)765 static void timekeeping_forward_now(struct timekeeper *tk)
766 {
767 	u64 cycle_now, delta;
768 
769 	cycle_now = tk_clock_read(&tk->tkr_mono);
770 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask,
771 				  tk->tkr_mono.clock->max_raw_delta);
772 	tk->tkr_mono.cycle_last = cycle_now;
773 	tk->tkr_raw.cycle_last  = cycle_now;
774 
775 	while (delta > 0) {
776 		u64 max = tk->tkr_mono.clock->max_cycles;
777 		u64 incr = delta < max ? delta : max;
778 
779 		tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult;
780 		tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult;
781 		tk_normalize_xtime(tk);
782 		delta -= incr;
783 	}
784 	tk_update_coarse_nsecs(tk);
785 }
786 
787 /**
788  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
789  * @ts:		pointer to the timespec to be set
790  *
791  * Returns the time of day in a timespec64 (WARN if suspended).
792  */
ktime_get_real_ts64(struct timespec64 * ts)793 void ktime_get_real_ts64(struct timespec64 *ts)
794 {
795 	struct timekeeper *tk = &tk_core.timekeeper;
796 	unsigned int seq;
797 	u64 nsecs;
798 
799 	WARN_ON(timekeeping_suspended);
800 
801 	do {
802 		seq = read_seqcount_begin(&tk_core.seq);
803 
804 		ts->tv_sec = tk->xtime_sec;
805 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
806 
807 	} while (read_seqcount_retry(&tk_core.seq, seq));
808 
809 	ts->tv_nsec = 0;
810 	timespec64_add_ns(ts, nsecs);
811 }
812 EXPORT_SYMBOL(ktime_get_real_ts64);
813 
ktime_get(void)814 ktime_t ktime_get(void)
815 {
816 	struct timekeeper *tk = &tk_core.timekeeper;
817 	unsigned int seq;
818 	ktime_t base;
819 	u64 nsecs;
820 
821 	WARN_ON(timekeeping_suspended);
822 
823 	do {
824 		seq = read_seqcount_begin(&tk_core.seq);
825 		base = tk->tkr_mono.base;
826 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
827 
828 	} while (read_seqcount_retry(&tk_core.seq, seq));
829 
830 	return ktime_add_ns(base, nsecs);
831 }
832 EXPORT_SYMBOL_GPL(ktime_get);
833 
ktime_get_resolution_ns(void)834 u32 ktime_get_resolution_ns(void)
835 {
836 	struct timekeeper *tk = &tk_core.timekeeper;
837 	unsigned int seq;
838 	u32 nsecs;
839 
840 	WARN_ON(timekeeping_suspended);
841 
842 	do {
843 		seq = read_seqcount_begin(&tk_core.seq);
844 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
845 	} while (read_seqcount_retry(&tk_core.seq, seq));
846 
847 	return nsecs;
848 }
849 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
850 
851 static ktime_t *offsets[TK_OFFS_MAX] = {
852 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
853 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
854 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
855 };
856 
ktime_get_with_offset(enum tk_offsets offs)857 ktime_t ktime_get_with_offset(enum tk_offsets offs)
858 {
859 	struct timekeeper *tk = &tk_core.timekeeper;
860 	unsigned int seq;
861 	ktime_t base, *offset = offsets[offs];
862 	u64 nsecs;
863 
864 	WARN_ON(timekeeping_suspended);
865 
866 	do {
867 		seq = read_seqcount_begin(&tk_core.seq);
868 		base = ktime_add(tk->tkr_mono.base, *offset);
869 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
870 
871 	} while (read_seqcount_retry(&tk_core.seq, seq));
872 
873 	return ktime_add_ns(base, nsecs);
874 
875 }
876 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
877 
ktime_get_coarse_with_offset(enum tk_offsets offs)878 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
879 {
880 	struct timekeeper *tk = &tk_core.timekeeper;
881 	ktime_t base, *offset = offsets[offs];
882 	unsigned int seq;
883 	u64 nsecs;
884 
885 	WARN_ON(timekeeping_suspended);
886 
887 	do {
888 		seq = read_seqcount_begin(&tk_core.seq);
889 		base = ktime_add(tk->tkr_mono.base, *offset);
890 		nsecs = tk->coarse_nsec;
891 
892 	} while (read_seqcount_retry(&tk_core.seq, seq));
893 
894 	return ktime_add_ns(base, nsecs);
895 }
896 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
897 
898 /**
899  * ktime_mono_to_any() - convert monotonic time to any other time
900  * @tmono:	time to convert.
901  * @offs:	which offset to use
902  */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)903 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
904 {
905 	ktime_t *offset = offsets[offs];
906 	unsigned int seq;
907 	ktime_t tconv;
908 
909 	if (IS_ENABLED(CONFIG_64BIT)) {
910 		/*
911 		 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and
912 		 * tk_update_sleep_time().
913 		 */
914 		return ktime_add(tmono, READ_ONCE(*offset));
915 	}
916 
917 	do {
918 		seq = read_seqcount_begin(&tk_core.seq);
919 		tconv = ktime_add(tmono, *offset);
920 	} while (read_seqcount_retry(&tk_core.seq, seq));
921 
922 	return tconv;
923 }
924 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
925 
926 /**
927  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
928  */
ktime_get_raw(void)929 ktime_t ktime_get_raw(void)
930 {
931 	struct timekeeper *tk = &tk_core.timekeeper;
932 	unsigned int seq;
933 	ktime_t base;
934 	u64 nsecs;
935 
936 	do {
937 		seq = read_seqcount_begin(&tk_core.seq);
938 		base = tk->tkr_raw.base;
939 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
940 
941 	} while (read_seqcount_retry(&tk_core.seq, seq));
942 
943 	return ktime_add_ns(base, nsecs);
944 }
945 EXPORT_SYMBOL_GPL(ktime_get_raw);
946 
947 /**
948  * ktime_get_ts64 - get the monotonic clock in timespec64 format
949  * @ts:		pointer to timespec variable
950  *
951  * The function calculates the monotonic clock from the realtime
952  * clock and the wall_to_monotonic offset and stores the result
953  * in normalized timespec64 format in the variable pointed to by @ts.
954  */
ktime_get_ts64(struct timespec64 * ts)955 void ktime_get_ts64(struct timespec64 *ts)
956 {
957 	struct timekeeper *tk = &tk_core.timekeeper;
958 	struct timespec64 tomono;
959 	unsigned int seq;
960 	u64 nsec;
961 
962 	WARN_ON(timekeeping_suspended);
963 
964 	do {
965 		seq = read_seqcount_begin(&tk_core.seq);
966 		ts->tv_sec = tk->xtime_sec;
967 		nsec = timekeeping_get_ns(&tk->tkr_mono);
968 		tomono = tk->wall_to_monotonic;
969 
970 	} while (read_seqcount_retry(&tk_core.seq, seq));
971 
972 	ts->tv_sec += tomono.tv_sec;
973 	ts->tv_nsec = 0;
974 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
975 }
976 EXPORT_SYMBOL_GPL(ktime_get_ts64);
977 
978 /**
979  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
980  *
981  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
982  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
983  * works on both 32 and 64 bit systems. On 32 bit systems the readout
984  * covers ~136 years of uptime which should be enough to prevent
985  * premature wrap arounds.
986  */
ktime_get_seconds(void)987 time64_t ktime_get_seconds(void)
988 {
989 	struct timekeeper *tk = &tk_core.timekeeper;
990 
991 	WARN_ON(timekeeping_suspended);
992 	return tk->ktime_sec;
993 }
994 EXPORT_SYMBOL_GPL(ktime_get_seconds);
995 
996 /**
997  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
998  *
999  * Returns the wall clock seconds since 1970.
1000  *
1001  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1002  * 32bit systems the access must be protected with the sequence
1003  * counter to provide "atomic" access to the 64bit tk->xtime_sec
1004  * value.
1005  */
ktime_get_real_seconds(void)1006 time64_t ktime_get_real_seconds(void)
1007 {
1008 	struct timekeeper *tk = &tk_core.timekeeper;
1009 	time64_t seconds;
1010 	unsigned int seq;
1011 
1012 	if (IS_ENABLED(CONFIG_64BIT))
1013 		return tk->xtime_sec;
1014 
1015 	do {
1016 		seq = read_seqcount_begin(&tk_core.seq);
1017 		seconds = tk->xtime_sec;
1018 
1019 	} while (read_seqcount_retry(&tk_core.seq, seq));
1020 
1021 	return seconds;
1022 }
1023 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1024 
1025 /**
1026  * __ktime_get_real_seconds - Unprotected access to CLOCK_REALTIME seconds
1027  *
1028  * The same as ktime_get_real_seconds() but without the sequence counter
1029  * protection. This function is used in restricted contexts like the x86 MCE
1030  * handler and in KGDB. It's unprotected on 32-bit vs. concurrent half
1031  * completed modification and only to be used for such critical contexts.
1032  *
1033  * Returns: Racy snapshot of the CLOCK_REALTIME seconds value
1034  */
__ktime_get_real_seconds(void)1035 noinstr time64_t __ktime_get_real_seconds(void)
1036 {
1037 	struct timekeeper *tk = &tk_core.timekeeper;
1038 
1039 	return tk->xtime_sec;
1040 }
1041 
1042 /**
1043  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1044  * @systime_snapshot:	pointer to struct receiving the system time snapshot
1045  */
ktime_get_snapshot(struct system_time_snapshot * systime_snapshot)1046 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1047 {
1048 	struct timekeeper *tk = &tk_core.timekeeper;
1049 	unsigned int seq;
1050 	ktime_t base_raw;
1051 	ktime_t base_real;
1052 	ktime_t base_boot;
1053 	u64 nsec_raw;
1054 	u64 nsec_real;
1055 	u64 now;
1056 
1057 	WARN_ON_ONCE(timekeeping_suspended);
1058 
1059 	do {
1060 		seq = read_seqcount_begin(&tk_core.seq);
1061 		now = tk_clock_read(&tk->tkr_mono);
1062 		systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1063 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1064 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1065 		base_real = ktime_add(tk->tkr_mono.base,
1066 				      tk_core.timekeeper.offs_real);
1067 		base_boot = ktime_add(tk->tkr_mono.base,
1068 				      tk_core.timekeeper.offs_boot);
1069 		base_raw = tk->tkr_raw.base;
1070 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1071 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1072 	} while (read_seqcount_retry(&tk_core.seq, seq));
1073 
1074 	systime_snapshot->cycles = now;
1075 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1076 	systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real);
1077 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1078 }
1079 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1080 
1081 /* Scale base by mult/div checking for overflow */
scale64_check_overflow(u64 mult,u64 div,u64 * base)1082 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1083 {
1084 	u64 tmp, rem;
1085 
1086 	tmp = div64_u64_rem(*base, div, &rem);
1087 
1088 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1089 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1090 		return -EOVERFLOW;
1091 	tmp *= mult;
1092 
1093 	rem = div64_u64(rem * mult, div);
1094 	*base = tmp + rem;
1095 	return 0;
1096 }
1097 
1098 /**
1099  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1100  * @history:			Snapshot representing start of history
1101  * @partial_history_cycles:	Cycle offset into history (fractional part)
1102  * @total_history_cycles:	Total history length in cycles
1103  * @discontinuity:		True indicates clock was set on history period
1104  * @ts:				Cross timestamp that should be adjusted using
1105  *	partial/total ratio
1106  *
1107  * Helper function used by get_device_system_crosststamp() to correct the
1108  * crosstimestamp corresponding to the start of the current interval to the
1109  * system counter value (timestamp point) provided by the driver. The
1110  * total_history_* quantities are the total history starting at the provided
1111  * reference point and ending at the start of the current interval. The cycle
1112  * count between the driver timestamp point and the start of the current
1113  * interval is partial_history_cycles.
1114  */
adjust_historical_crosststamp(struct system_time_snapshot * history,u64 partial_history_cycles,u64 total_history_cycles,bool discontinuity,struct system_device_crosststamp * ts)1115 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1116 					 u64 partial_history_cycles,
1117 					 u64 total_history_cycles,
1118 					 bool discontinuity,
1119 					 struct system_device_crosststamp *ts)
1120 {
1121 	struct timekeeper *tk = &tk_core.timekeeper;
1122 	u64 corr_raw, corr_real;
1123 	bool interp_forward;
1124 	int ret;
1125 
1126 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1127 		return 0;
1128 
1129 	/* Interpolate shortest distance from beginning or end of history */
1130 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1131 	partial_history_cycles = interp_forward ?
1132 		total_history_cycles - partial_history_cycles :
1133 		partial_history_cycles;
1134 
1135 	/*
1136 	 * Scale the monotonic raw time delta by:
1137 	 *	partial_history_cycles / total_history_cycles
1138 	 */
1139 	corr_raw = (u64)ktime_to_ns(
1140 		ktime_sub(ts->sys_monoraw, history->raw));
1141 	ret = scale64_check_overflow(partial_history_cycles,
1142 				     total_history_cycles, &corr_raw);
1143 	if (ret)
1144 		return ret;
1145 
1146 	/*
1147 	 * If there is a discontinuity in the history, scale monotonic raw
1148 	 *	correction by:
1149 	 *	mult(real)/mult(raw) yielding the realtime correction
1150 	 * Otherwise, calculate the realtime correction similar to monotonic
1151 	 *	raw calculation
1152 	 */
1153 	if (discontinuity) {
1154 		corr_real = mul_u64_u32_div
1155 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1156 	} else {
1157 		corr_real = (u64)ktime_to_ns(
1158 			ktime_sub(ts->sys_realtime, history->real));
1159 		ret = scale64_check_overflow(partial_history_cycles,
1160 					     total_history_cycles, &corr_real);
1161 		if (ret)
1162 			return ret;
1163 	}
1164 
1165 	/* Fixup monotonic raw and real time time values */
1166 	if (interp_forward) {
1167 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1168 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1169 	} else {
1170 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1171 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1172 	}
1173 
1174 	return 0;
1175 }
1176 
1177 /*
1178  * timestamp_in_interval - true if ts is chronologically in [start, end]
1179  *
1180  * True if ts occurs chronologically at or after start, and before or at end.
1181  */
timestamp_in_interval(u64 start,u64 end,u64 ts)1182 static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
1183 {
1184 	if (ts >= start && ts <= end)
1185 		return true;
1186 	if (start > end && (ts >= start || ts <= end))
1187 		return true;
1188 	return false;
1189 }
1190 
convert_clock(u64 * val,u32 numerator,u32 denominator)1191 static bool convert_clock(u64 *val, u32 numerator, u32 denominator)
1192 {
1193 	u64 rem, res;
1194 
1195 	if (!numerator || !denominator)
1196 		return false;
1197 
1198 	res = div64_u64_rem(*val, denominator, &rem) * numerator;
1199 	*val = res + div_u64(rem * numerator, denominator);
1200 	return true;
1201 }
1202 
convert_base_to_cs(struct system_counterval_t * scv)1203 static bool convert_base_to_cs(struct system_counterval_t *scv)
1204 {
1205 	struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1206 	struct clocksource_base *base;
1207 	u32 num, den;
1208 
1209 	/* The timestamp was taken from the time keeper clock source */
1210 	if (cs->id == scv->cs_id)
1211 		return true;
1212 
1213 	/*
1214 	 * Check whether cs_id matches the base clock. Prevent the compiler from
1215 	 * re-evaluating @base as the clocksource might change concurrently.
1216 	 */
1217 	base = READ_ONCE(cs->base);
1218 	if (!base || base->id != scv->cs_id)
1219 		return false;
1220 
1221 	num = scv->use_nsecs ? cs->freq_khz : base->numerator;
1222 	den = scv->use_nsecs ? USEC_PER_SEC : base->denominator;
1223 
1224 	if (!convert_clock(&scv->cycles, num, den))
1225 		return false;
1226 
1227 	scv->cycles += base->offset;
1228 	return true;
1229 }
1230 
convert_cs_to_base(u64 * cycles,enum clocksource_ids base_id)1231 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id)
1232 {
1233 	struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1234 	struct clocksource_base *base;
1235 
1236 	/*
1237 	 * Check whether base_id matches the base clock. Prevent the compiler from
1238 	 * re-evaluating @base as the clocksource might change concurrently.
1239 	 */
1240 	base = READ_ONCE(cs->base);
1241 	if (!base || base->id != base_id)
1242 		return false;
1243 
1244 	*cycles -= base->offset;
1245 	if (!convert_clock(cycles, base->denominator, base->numerator))
1246 		return false;
1247 	return true;
1248 }
1249 
convert_ns_to_cs(u64 * delta)1250 static bool convert_ns_to_cs(u64 *delta)
1251 {
1252 	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
1253 
1254 	if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta))
1255 		return false;
1256 
1257 	*delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult);
1258 	return true;
1259 }
1260 
1261 /**
1262  * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp
1263  * @treal:	CLOCK_REALTIME timestamp to convert
1264  * @base_id:	base clocksource id
1265  * @cycles:	pointer to store the converted base clock timestamp
1266  *
1267  * Converts a supplied, future realtime clock value to the corresponding base clock value.
1268  *
1269  * Return:  true if the conversion is successful, false otherwise.
1270  */
ktime_real_to_base_clock(ktime_t treal,enum clocksource_ids base_id,u64 * cycles)1271 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles)
1272 {
1273 	struct timekeeper *tk = &tk_core.timekeeper;
1274 	unsigned int seq;
1275 	u64 delta;
1276 
1277 	do {
1278 		seq = read_seqcount_begin(&tk_core.seq);
1279 		if ((u64)treal < tk->tkr_mono.base_real)
1280 			return false;
1281 		delta = (u64)treal - tk->tkr_mono.base_real;
1282 		if (!convert_ns_to_cs(&delta))
1283 			return false;
1284 		*cycles = tk->tkr_mono.cycle_last + delta;
1285 		if (!convert_cs_to_base(cycles, base_id))
1286 			return false;
1287 	} while (read_seqcount_retry(&tk_core.seq, seq));
1288 
1289 	return true;
1290 }
1291 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock);
1292 
1293 /**
1294  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1295  * @get_time_fn:	Callback to get simultaneous device time and
1296  *	system counter from the device driver
1297  * @ctx:		Context passed to get_time_fn()
1298  * @history_begin:	Historical reference point used to interpolate system
1299  *	time when counter provided by the driver is before the current interval
1300  * @xtstamp:		Receives simultaneously captured system and device time
1301  *
1302  * Reads a timestamp from a device and correlates it to system time
1303  */
get_device_system_crosststamp(int (* get_time_fn)(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx),void * ctx,struct system_time_snapshot * history_begin,struct system_device_crosststamp * xtstamp)1304 int get_device_system_crosststamp(int (*get_time_fn)
1305 				  (ktime_t *device_time,
1306 				   struct system_counterval_t *sys_counterval,
1307 				   void *ctx),
1308 				  void *ctx,
1309 				  struct system_time_snapshot *history_begin,
1310 				  struct system_device_crosststamp *xtstamp)
1311 {
1312 	struct system_counterval_t system_counterval = {};
1313 	struct timekeeper *tk = &tk_core.timekeeper;
1314 	u64 cycles, now, interval_start;
1315 	unsigned int clock_was_set_seq = 0;
1316 	ktime_t base_real, base_raw;
1317 	u64 nsec_real, nsec_raw;
1318 	u8 cs_was_changed_seq;
1319 	unsigned int seq;
1320 	bool do_interp;
1321 	int ret;
1322 
1323 	do {
1324 		seq = read_seqcount_begin(&tk_core.seq);
1325 		/*
1326 		 * Try to synchronously capture device time and a system
1327 		 * counter value calling back into the device driver
1328 		 */
1329 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1330 		if (ret)
1331 			return ret;
1332 
1333 		/*
1334 		 * Verify that the clocksource ID associated with the captured
1335 		 * system counter value is the same as for the currently
1336 		 * installed timekeeper clocksource
1337 		 */
1338 		if (system_counterval.cs_id == CSID_GENERIC ||
1339 		    !convert_base_to_cs(&system_counterval))
1340 			return -ENODEV;
1341 		cycles = system_counterval.cycles;
1342 
1343 		/*
1344 		 * Check whether the system counter value provided by the
1345 		 * device driver is on the current timekeeping interval.
1346 		 */
1347 		now = tk_clock_read(&tk->tkr_mono);
1348 		interval_start = tk->tkr_mono.cycle_last;
1349 		if (!timestamp_in_interval(interval_start, now, cycles)) {
1350 			clock_was_set_seq = tk->clock_was_set_seq;
1351 			cs_was_changed_seq = tk->cs_was_changed_seq;
1352 			cycles = interval_start;
1353 			do_interp = true;
1354 		} else {
1355 			do_interp = false;
1356 		}
1357 
1358 		base_real = ktime_add(tk->tkr_mono.base,
1359 				      tk_core.timekeeper.offs_real);
1360 		base_raw = tk->tkr_raw.base;
1361 
1362 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
1363 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
1364 	} while (read_seqcount_retry(&tk_core.seq, seq));
1365 
1366 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1367 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1368 
1369 	/*
1370 	 * Interpolate if necessary, adjusting back from the start of the
1371 	 * current interval
1372 	 */
1373 	if (do_interp) {
1374 		u64 partial_history_cycles, total_history_cycles;
1375 		bool discontinuity;
1376 
1377 		/*
1378 		 * Check that the counter value is not before the provided
1379 		 * history reference and that the history doesn't cross a
1380 		 * clocksource change
1381 		 */
1382 		if (!history_begin ||
1383 		    !timestamp_in_interval(history_begin->cycles,
1384 					   cycles, system_counterval.cycles) ||
1385 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1386 			return -EINVAL;
1387 		partial_history_cycles = cycles - system_counterval.cycles;
1388 		total_history_cycles = cycles - history_begin->cycles;
1389 		discontinuity =
1390 			history_begin->clock_was_set_seq != clock_was_set_seq;
1391 
1392 		ret = adjust_historical_crosststamp(history_begin,
1393 						    partial_history_cycles,
1394 						    total_history_cycles,
1395 						    discontinuity, xtstamp);
1396 		if (ret)
1397 			return ret;
1398 	}
1399 
1400 	return 0;
1401 }
1402 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1403 
1404 /**
1405  * timekeeping_clocksource_has_base - Check whether the current clocksource
1406  *				      is based on given a base clock
1407  * @id:		base clocksource ID
1408  *
1409  * Note:	The return value is a snapshot which can become invalid right
1410  *		after the function returns.
1411  *
1412  * Return:	true if the timekeeper clocksource has a base clock with @id,
1413  *		false otherwise
1414  */
timekeeping_clocksource_has_base(enum clocksource_ids id)1415 bool timekeeping_clocksource_has_base(enum clocksource_ids id)
1416 {
1417 	/*
1418 	 * This is a snapshot, so no point in using the sequence
1419 	 * count. Just prevent the compiler from re-evaluating @base as the
1420 	 * clocksource might change concurrently.
1421 	 */
1422 	struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base);
1423 
1424 	return base ? base->id == id : false;
1425 }
1426 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base);
1427 
1428 /**
1429  * do_settimeofday64 - Sets the time of day.
1430  * @ts:     pointer to the timespec64 variable containing the new time
1431  *
1432  * Sets the time of day to the new time and update NTP and notify hrtimers
1433  */
do_settimeofday64(const struct timespec64 * ts)1434 int do_settimeofday64(const struct timespec64 *ts)
1435 {
1436 	struct timespec64 ts_delta, xt;
1437 
1438 	if (!timespec64_valid_settod(ts))
1439 		return -EINVAL;
1440 
1441 	scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1442 		struct timekeeper *tks = &tk_core.shadow_timekeeper;
1443 
1444 		timekeeping_forward_now(tks);
1445 
1446 		xt = tk_xtime(tks);
1447 		ts_delta = timespec64_sub(*ts, xt);
1448 
1449 		if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) {
1450 			timekeeping_restore_shadow(&tk_core);
1451 			return -EINVAL;
1452 		}
1453 
1454 		tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta));
1455 		tk_set_xtime(tks, ts);
1456 		timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1457 	}
1458 
1459 	/* Signal hrtimers about time change */
1460 	clock_was_set(CLOCK_SET_WALL);
1461 
1462 	audit_tk_injoffset(ts_delta);
1463 	add_device_randomness(ts, sizeof(*ts));
1464 	return 0;
1465 }
1466 EXPORT_SYMBOL(do_settimeofday64);
1467 
timekeeper_is_core_tk(struct timekeeper * tk)1468 static inline bool timekeeper_is_core_tk(struct timekeeper *tk)
1469 {
1470 	return !IS_ENABLED(CONFIG_POSIX_AUX_CLOCKS) || tk->id == TIMEKEEPER_CORE;
1471 }
1472 
1473 /**
1474  * __timekeeping_inject_offset - Adds or subtracts from the current time.
1475  * @tkd:	Pointer to the timekeeper to modify
1476  * @ts:		Pointer to the timespec variable containing the offset
1477  *
1478  * Adds or subtracts an offset value from the current time.
1479  */
__timekeeping_inject_offset(struct tk_data * tkd,const struct timespec64 * ts)1480 static int __timekeeping_inject_offset(struct tk_data *tkd, const struct timespec64 *ts)
1481 {
1482 	struct timekeeper *tks = &tkd->shadow_timekeeper;
1483 	struct timespec64 tmp;
1484 
1485 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1486 		return -EINVAL;
1487 
1488 	timekeeping_forward_now(tks);
1489 
1490 	if (timekeeper_is_core_tk(tks)) {
1491 		/* Make sure the proposed value is valid */
1492 		tmp = timespec64_add(tk_xtime(tks), *ts);
1493 		if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 ||
1494 		    !timespec64_valid_settod(&tmp)) {
1495 			timekeeping_restore_shadow(tkd);
1496 			return -EINVAL;
1497 		}
1498 
1499 		tk_xtime_add(tks, ts);
1500 		tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts));
1501 	} else {
1502 		struct tk_read_base *tkr_mono = &tks->tkr_mono;
1503 		ktime_t now, offs;
1504 
1505 		/* Get the current time */
1506 		now = ktime_add_ns(tkr_mono->base, timekeeping_get_ns(tkr_mono));
1507 		/* Add the relative offset change */
1508 		offs = ktime_add(tks->offs_aux, timespec64_to_ktime(*ts));
1509 
1510 		/* Prevent that the resulting time becomes negative */
1511 		if (ktime_add(now, offs) < 0) {
1512 			timekeeping_restore_shadow(tkd);
1513 			return -EINVAL;
1514 		}
1515 		tk_update_aux_offs(tks, offs);
1516 	}
1517 
1518 	timekeeping_update_from_shadow(tkd, TK_UPDATE_ALL);
1519 	return 0;
1520 }
1521 
timekeeping_inject_offset(const struct timespec64 * ts)1522 static int timekeeping_inject_offset(const struct timespec64 *ts)
1523 {
1524 	int ret;
1525 
1526 	scoped_guard (raw_spinlock_irqsave, &tk_core.lock)
1527 		ret = __timekeeping_inject_offset(&tk_core, ts);
1528 
1529 	/* Signal hrtimers about time change */
1530 	if (!ret)
1531 		clock_was_set(CLOCK_SET_WALL);
1532 	return ret;
1533 }
1534 
1535 /*
1536  * Indicates if there is an offset between the system clock and the hardware
1537  * clock/persistent clock/rtc.
1538  */
1539 int persistent_clock_is_local;
1540 
1541 /*
1542  * Adjust the time obtained from the CMOS to be UTC time instead of
1543  * local time.
1544  *
1545  * This is ugly, but preferable to the alternatives.  Otherwise we
1546  * would either need to write a program to do it in /etc/rc (and risk
1547  * confusion if the program gets run more than once; it would also be
1548  * hard to make the program warp the clock precisely n hours)  or
1549  * compile in the timezone information into the kernel.  Bad, bad....
1550  *
1551  *						- TYT, 1992-01-01
1552  *
1553  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1554  * as real UNIX machines always do it. This avoids all headaches about
1555  * daylight saving times and warping kernel clocks.
1556  */
timekeeping_warp_clock(void)1557 void timekeeping_warp_clock(void)
1558 {
1559 	if (sys_tz.tz_minuteswest != 0) {
1560 		struct timespec64 adjust;
1561 
1562 		persistent_clock_is_local = 1;
1563 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1564 		adjust.tv_nsec = 0;
1565 		timekeeping_inject_offset(&adjust);
1566 	}
1567 }
1568 
1569 /*
1570  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1571  */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1572 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1573 {
1574 	tk->tai_offset = tai_offset;
1575 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1576 }
1577 
1578 /*
1579  * change_clocksource - Swaps clocksources if a new one is available
1580  *
1581  * Accumulates current time interval and initializes new clocksource
1582  */
change_clocksource(void * data)1583 static int change_clocksource(void *data)
1584 {
1585 	struct clocksource *new = data, *old = NULL;
1586 
1587 	/*
1588 	 * If the clocksource is in a module, get a module reference.
1589 	 * Succeeds for built-in code (owner == NULL) as well. Abort if the
1590 	 * reference can't be acquired.
1591 	 */
1592 	if (!try_module_get(new->owner))
1593 		return 0;
1594 
1595 	/* Abort if the device can't be enabled */
1596 	if (new->enable && new->enable(new) != 0) {
1597 		module_put(new->owner);
1598 		return 0;
1599 	}
1600 
1601 	scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1602 		struct timekeeper *tks = &tk_core.shadow_timekeeper;
1603 
1604 		timekeeping_forward_now(tks);
1605 		old = tks->tkr_mono.clock;
1606 		tk_setup_internals(tks, new);
1607 		timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1608 	}
1609 
1610 	tk_aux_update_clocksource();
1611 
1612 	if (old) {
1613 		if (old->disable)
1614 			old->disable(old);
1615 		module_put(old->owner);
1616 	}
1617 
1618 	return 0;
1619 }
1620 
1621 /**
1622  * timekeeping_notify - Install a new clock source
1623  * @clock:		pointer to the clock source
1624  *
1625  * This function is called from clocksource.c after a new, better clock
1626  * source has been registered. The caller holds the clocksource_mutex.
1627  */
timekeeping_notify(struct clocksource * clock)1628 int timekeeping_notify(struct clocksource *clock)
1629 {
1630 	struct timekeeper *tk = &tk_core.timekeeper;
1631 
1632 	if (tk->tkr_mono.clock == clock)
1633 		return 0;
1634 	stop_machine(change_clocksource, clock, NULL);
1635 	tick_clock_notify();
1636 	return tk->tkr_mono.clock == clock ? 0 : -1;
1637 }
1638 
1639 /**
1640  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1641  * @ts:		pointer to the timespec64 to be set
1642  *
1643  * Returns the raw monotonic time (completely un-modified by ntp)
1644  */
ktime_get_raw_ts64(struct timespec64 * ts)1645 void ktime_get_raw_ts64(struct timespec64 *ts)
1646 {
1647 	struct timekeeper *tk = &tk_core.timekeeper;
1648 	unsigned int seq;
1649 	u64 nsecs;
1650 
1651 	do {
1652 		seq = read_seqcount_begin(&tk_core.seq);
1653 		ts->tv_sec = tk->raw_sec;
1654 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1655 
1656 	} while (read_seqcount_retry(&tk_core.seq, seq));
1657 
1658 	ts->tv_nsec = 0;
1659 	timespec64_add_ns(ts, nsecs);
1660 }
1661 EXPORT_SYMBOL(ktime_get_raw_ts64);
1662 
1663 /**
1664  * ktime_get_clock_ts64 - Returns time of a clock in a timespec
1665  * @id:		POSIX clock ID of the clock to read
1666  * @ts:		Pointer to the timespec64 to be set
1667  *
1668  * The timestamp is invalidated (@ts->sec is set to -1) if the
1669  * clock @id is not available.
1670  */
ktime_get_clock_ts64(clockid_t id,struct timespec64 * ts)1671 void ktime_get_clock_ts64(clockid_t id, struct timespec64 *ts)
1672 {
1673 	/* Invalidate time stamp */
1674 	ts->tv_sec = -1;
1675 	ts->tv_nsec = 0;
1676 
1677 	switch (id) {
1678 	case CLOCK_REALTIME:
1679 		ktime_get_real_ts64(ts);
1680 		return;
1681 	case CLOCK_MONOTONIC:
1682 		ktime_get_ts64(ts);
1683 		return;
1684 	case CLOCK_MONOTONIC_RAW:
1685 		ktime_get_raw_ts64(ts);
1686 		return;
1687 	case CLOCK_AUX ... CLOCK_AUX_LAST:
1688 		if (IS_ENABLED(CONFIG_POSIX_AUX_CLOCKS))
1689 			ktime_get_aux_ts64(id, ts);
1690 		return;
1691 	default:
1692 		WARN_ON_ONCE(1);
1693 	}
1694 }
1695 EXPORT_SYMBOL_GPL(ktime_get_clock_ts64);
1696 
1697 /**
1698  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1699  */
timekeeping_valid_for_hres(void)1700 int timekeeping_valid_for_hres(void)
1701 {
1702 	struct timekeeper *tk = &tk_core.timekeeper;
1703 	unsigned int seq;
1704 	int ret;
1705 
1706 	do {
1707 		seq = read_seqcount_begin(&tk_core.seq);
1708 
1709 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1710 
1711 	} while (read_seqcount_retry(&tk_core.seq, seq));
1712 
1713 	return ret;
1714 }
1715 
1716 /**
1717  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1718  */
timekeeping_max_deferment(void)1719 u64 timekeeping_max_deferment(void)
1720 {
1721 	struct timekeeper *tk = &tk_core.timekeeper;
1722 	unsigned int seq;
1723 	u64 ret;
1724 
1725 	do {
1726 		seq = read_seqcount_begin(&tk_core.seq);
1727 
1728 		ret = tk->tkr_mono.clock->max_idle_ns;
1729 
1730 	} while (read_seqcount_retry(&tk_core.seq, seq));
1731 
1732 	return ret;
1733 }
1734 
1735 /**
1736  * read_persistent_clock64 -  Return time from the persistent clock.
1737  * @ts: Pointer to the storage for the readout value
1738  *
1739  * Weak dummy function for arches that do not yet support it.
1740  * Reads the time from the battery backed persistent clock.
1741  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1742  *
1743  *  XXX - Do be sure to remove it once all arches implement it.
1744  */
read_persistent_clock64(struct timespec64 * ts)1745 void __weak read_persistent_clock64(struct timespec64 *ts)
1746 {
1747 	ts->tv_sec = 0;
1748 	ts->tv_nsec = 0;
1749 }
1750 
1751 /**
1752  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1753  *                                        from the boot.
1754  * @wall_time:	  current time as returned by persistent clock
1755  * @boot_offset:  offset that is defined as wall_time - boot_time
1756  *
1757  * Weak dummy function for arches that do not yet support it.
1758  *
1759  * The default function calculates offset based on the current value of
1760  * local_clock(). This way architectures that support sched_clock() but don't
1761  * support dedicated boot time clock will provide the best estimate of the
1762  * boot time.
1763  */
1764 void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)1765 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1766 				     struct timespec64 *boot_offset)
1767 {
1768 	read_persistent_clock64(wall_time);
1769 	*boot_offset = ns_to_timespec64(local_clock());
1770 }
1771 
tkd_basic_setup(struct tk_data * tkd,enum timekeeper_ids tk_id,bool valid)1772 static __init void tkd_basic_setup(struct tk_data *tkd, enum timekeeper_ids tk_id, bool valid)
1773 {
1774 	raw_spin_lock_init(&tkd->lock);
1775 	seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock);
1776 	tkd->timekeeper.id = tkd->shadow_timekeeper.id = tk_id;
1777 	tkd->timekeeper.clock_valid = tkd->shadow_timekeeper.clock_valid = valid;
1778 }
1779 
1780 /*
1781  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1782  *
1783  * The flag starts of false and is only set when a suspend reaches
1784  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1785  * timekeeper clocksource is not stopping across suspend and has been
1786  * used to update sleep time. If the timekeeper clocksource has stopped
1787  * then the flag stays true and is used by the RTC resume code to decide
1788  * whether sleeptime must be injected and if so the flag gets false then.
1789  *
1790  * If a suspend fails before reaching timekeeping_resume() then the flag
1791  * stays false and prevents erroneous sleeptime injection.
1792  */
1793 static bool suspend_timing_needed;
1794 
1795 /* Flag for if there is a persistent clock on this platform */
1796 static bool persistent_clock_exists;
1797 
1798 /*
1799  * timekeeping_init - Initializes the clocksource and common timekeeping values
1800  */
timekeeping_init(void)1801 void __init timekeeping_init(void)
1802 {
1803 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1804 	struct timekeeper *tks = &tk_core.shadow_timekeeper;
1805 	struct clocksource *clock;
1806 
1807 	tkd_basic_setup(&tk_core, TIMEKEEPER_CORE, true);
1808 	tk_aux_setup();
1809 
1810 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1811 	if (timespec64_valid_settod(&wall_time) &&
1812 	    timespec64_to_ns(&wall_time) > 0) {
1813 		persistent_clock_exists = true;
1814 	} else if (timespec64_to_ns(&wall_time) != 0) {
1815 		pr_warn("Persistent clock returned invalid value");
1816 		wall_time = (struct timespec64){0};
1817 	}
1818 
1819 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1820 		boot_offset = (struct timespec64){0};
1821 
1822 	/*
1823 	 * We want set wall_to_mono, so the following is true:
1824 	 * wall time + wall_to_mono = boot time
1825 	 */
1826 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1827 
1828 	guard(raw_spinlock_irqsave)(&tk_core.lock);
1829 
1830 	ntp_init();
1831 
1832 	clock = clocksource_default_clock();
1833 	if (clock->enable)
1834 		clock->enable(clock);
1835 	tk_setup_internals(tks, clock);
1836 
1837 	tk_set_xtime(tks, &wall_time);
1838 	tks->raw_sec = 0;
1839 
1840 	tk_set_wall_to_mono(tks, wall_to_mono);
1841 
1842 	timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
1843 }
1844 
1845 /* time in seconds when suspend began for persistent clock */
1846 static struct timespec64 timekeeping_suspend_time;
1847 
1848 /**
1849  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1850  * @tk:		Pointer to the timekeeper to be updated
1851  * @delta:	Pointer to the delta value in timespec64 format
1852  *
1853  * Takes a timespec offset measuring a suspend interval and properly
1854  * adds the sleep offset to the timekeeping variables.
1855  */
__timekeeping_inject_sleeptime(struct timekeeper * tk,const struct timespec64 * delta)1856 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1857 					   const struct timespec64 *delta)
1858 {
1859 	if (!timespec64_valid_strict(delta)) {
1860 		printk_deferred(KERN_WARNING
1861 				"__timekeeping_inject_sleeptime: Invalid "
1862 				"sleep delta value!\n");
1863 		return;
1864 	}
1865 	tk_xtime_add(tk, delta);
1866 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1867 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1868 	tk_debug_account_sleep_time(delta);
1869 }
1870 
1871 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1872 /*
1873  * We have three kinds of time sources to use for sleep time
1874  * injection, the preference order is:
1875  * 1) non-stop clocksource
1876  * 2) persistent clock (ie: RTC accessible when irqs are off)
1877  * 3) RTC
1878  *
1879  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1880  * If system has neither 1) nor 2), 3) will be used finally.
1881  *
1882  *
1883  * If timekeeping has injected sleeptime via either 1) or 2),
1884  * 3) becomes needless, so in this case we don't need to call
1885  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1886  * means.
1887  */
timekeeping_rtc_skipresume(void)1888 bool timekeeping_rtc_skipresume(void)
1889 {
1890 	return !suspend_timing_needed;
1891 }
1892 
1893 /*
1894  * 1) can be determined whether to use or not only when doing
1895  * timekeeping_resume() which is invoked after rtc_suspend(),
1896  * so we can't skip rtc_suspend() surely if system has 1).
1897  *
1898  * But if system has 2), 2) will definitely be used, so in this
1899  * case we don't need to call rtc_suspend(), and this is what
1900  * timekeeping_rtc_skipsuspend() means.
1901  */
timekeeping_rtc_skipsuspend(void)1902 bool timekeeping_rtc_skipsuspend(void)
1903 {
1904 	return persistent_clock_exists;
1905 }
1906 
1907 /**
1908  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1909  * @delta: pointer to a timespec64 delta value
1910  *
1911  * This hook is for architectures that cannot support read_persistent_clock64
1912  * because their RTC/persistent clock is only accessible when irqs are enabled.
1913  * and also don't have an effective nonstop clocksource.
1914  *
1915  * This function should only be called by rtc_resume(), and allows
1916  * a suspend offset to be injected into the timekeeping values.
1917  */
timekeeping_inject_sleeptime64(const struct timespec64 * delta)1918 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1919 {
1920 	scoped_guard(raw_spinlock_irqsave, &tk_core.lock) {
1921 		struct timekeeper *tks = &tk_core.shadow_timekeeper;
1922 
1923 		suspend_timing_needed = false;
1924 		timekeeping_forward_now(tks);
1925 		__timekeeping_inject_sleeptime(tks, delta);
1926 		timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1927 	}
1928 
1929 	/* Signal hrtimers about time change */
1930 	clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1931 }
1932 #endif
1933 
1934 /**
1935  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1936  */
timekeeping_resume(void)1937 void timekeeping_resume(void)
1938 {
1939 	struct timekeeper *tks = &tk_core.shadow_timekeeper;
1940 	struct clocksource *clock = tks->tkr_mono.clock;
1941 	struct timespec64 ts_new, ts_delta;
1942 	bool inject_sleeptime = false;
1943 	u64 cycle_now, nsec;
1944 	unsigned long flags;
1945 
1946 	read_persistent_clock64(&ts_new);
1947 
1948 	clockevents_resume();
1949 	clocksource_resume();
1950 
1951 	raw_spin_lock_irqsave(&tk_core.lock, flags);
1952 
1953 	/*
1954 	 * After system resumes, we need to calculate the suspended time and
1955 	 * compensate it for the OS time. There are 3 sources that could be
1956 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1957 	 * device.
1958 	 *
1959 	 * One specific platform may have 1 or 2 or all of them, and the
1960 	 * preference will be:
1961 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1962 	 * The less preferred source will only be tried if there is no better
1963 	 * usable source. The rtc part is handled separately in rtc core code.
1964 	 */
1965 	cycle_now = tk_clock_read(&tks->tkr_mono);
1966 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1967 	if (nsec > 0) {
1968 		ts_delta = ns_to_timespec64(nsec);
1969 		inject_sleeptime = true;
1970 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1971 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1972 		inject_sleeptime = true;
1973 	}
1974 
1975 	if (inject_sleeptime) {
1976 		suspend_timing_needed = false;
1977 		__timekeeping_inject_sleeptime(tks, &ts_delta);
1978 	}
1979 
1980 	/* Re-base the last cycle value */
1981 	tks->tkr_mono.cycle_last = cycle_now;
1982 	tks->tkr_raw.cycle_last  = cycle_now;
1983 
1984 	tks->ntp_error = 0;
1985 	timekeeping_suspended = 0;
1986 	timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
1987 	raw_spin_unlock_irqrestore(&tk_core.lock, flags);
1988 
1989 	touch_softlockup_watchdog();
1990 
1991 	/* Resume the clockevent device(s) and hrtimers */
1992 	tick_resume();
1993 	/* Notify timerfd as resume is equivalent to clock_was_set() */
1994 	timerfd_resume();
1995 }
1996 
timekeeping_suspend(void)1997 int timekeeping_suspend(void)
1998 {
1999 	struct timekeeper *tks = &tk_core.shadow_timekeeper;
2000 	struct timespec64 delta, delta_delta;
2001 	static struct timespec64 old_delta;
2002 	struct clocksource *curr_clock;
2003 	unsigned long flags;
2004 	u64 cycle_now;
2005 
2006 	read_persistent_clock64(&timekeeping_suspend_time);
2007 
2008 	/*
2009 	 * On some systems the persistent_clock can not be detected at
2010 	 * timekeeping_init by its return value, so if we see a valid
2011 	 * value returned, update the persistent_clock_exists flag.
2012 	 */
2013 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
2014 		persistent_clock_exists = true;
2015 
2016 	suspend_timing_needed = true;
2017 
2018 	raw_spin_lock_irqsave(&tk_core.lock, flags);
2019 	timekeeping_forward_now(tks);
2020 	timekeeping_suspended = 1;
2021 
2022 	/*
2023 	 * Since we've called forward_now, cycle_last stores the value
2024 	 * just read from the current clocksource. Save this to potentially
2025 	 * use in suspend timing.
2026 	 */
2027 	curr_clock = tks->tkr_mono.clock;
2028 	cycle_now = tks->tkr_mono.cycle_last;
2029 	clocksource_start_suspend_timing(curr_clock, cycle_now);
2030 
2031 	if (persistent_clock_exists) {
2032 		/*
2033 		 * To avoid drift caused by repeated suspend/resumes,
2034 		 * which each can add ~1 second drift error,
2035 		 * try to compensate so the difference in system time
2036 		 * and persistent_clock time stays close to constant.
2037 		 */
2038 		delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time);
2039 		delta_delta = timespec64_sub(delta, old_delta);
2040 		if (abs(delta_delta.tv_sec) >= 2) {
2041 			/*
2042 			 * if delta_delta is too large, assume time correction
2043 			 * has occurred and set old_delta to the current delta.
2044 			 */
2045 			old_delta = delta;
2046 		} else {
2047 			/* Otherwise try to adjust old_system to compensate */
2048 			timekeeping_suspend_time =
2049 				timespec64_add(timekeeping_suspend_time, delta_delta);
2050 		}
2051 	}
2052 
2053 	timekeeping_update_from_shadow(&tk_core, 0);
2054 	halt_fast_timekeeper(tks);
2055 	raw_spin_unlock_irqrestore(&tk_core.lock, flags);
2056 
2057 	tick_suspend();
2058 	clocksource_suspend();
2059 	clockevents_suspend();
2060 
2061 	return 0;
2062 }
2063 
2064 /* sysfs resume/suspend bits for timekeeping */
2065 static struct syscore_ops timekeeping_syscore_ops = {
2066 	.resume		= timekeeping_resume,
2067 	.suspend	= timekeeping_suspend,
2068 };
2069 
timekeeping_init_ops(void)2070 static int __init timekeeping_init_ops(void)
2071 {
2072 	register_syscore_ops(&timekeeping_syscore_ops);
2073 	return 0;
2074 }
2075 device_initcall(timekeeping_init_ops);
2076 
2077 /*
2078  * Apply a multiplier adjustment to the timekeeper
2079  */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,s32 mult_adj)2080 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
2081 							 s64 offset,
2082 							 s32 mult_adj)
2083 {
2084 	s64 interval = tk->cycle_interval;
2085 
2086 	if (mult_adj == 0) {
2087 		return;
2088 	} else if (mult_adj == -1) {
2089 		interval = -interval;
2090 		offset = -offset;
2091 	} else if (mult_adj != 1) {
2092 		interval *= mult_adj;
2093 		offset *= mult_adj;
2094 	}
2095 
2096 	/*
2097 	 * So the following can be confusing.
2098 	 *
2099 	 * To keep things simple, lets assume mult_adj == 1 for now.
2100 	 *
2101 	 * When mult_adj != 1, remember that the interval and offset values
2102 	 * have been appropriately scaled so the math is the same.
2103 	 *
2104 	 * The basic idea here is that we're increasing the multiplier
2105 	 * by one, this causes the xtime_interval to be incremented by
2106 	 * one cycle_interval. This is because:
2107 	 *	xtime_interval = cycle_interval * mult
2108 	 * So if mult is being incremented by one:
2109 	 *	xtime_interval = cycle_interval * (mult + 1)
2110 	 * Its the same as:
2111 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
2112 	 * Which can be shortened to:
2113 	 *	xtime_interval += cycle_interval
2114 	 *
2115 	 * So offset stores the non-accumulated cycles. Thus the current
2116 	 * time (in shifted nanoseconds) is:
2117 	 *	now = (offset * adj) + xtime_nsec
2118 	 * Now, even though we're adjusting the clock frequency, we have
2119 	 * to keep time consistent. In other words, we can't jump back
2120 	 * in time, and we also want to avoid jumping forward in time.
2121 	 *
2122 	 * So given the same offset value, we need the time to be the same
2123 	 * both before and after the freq adjustment.
2124 	 *	now = (offset * adj_1) + xtime_nsec_1
2125 	 *	now = (offset * adj_2) + xtime_nsec_2
2126 	 * So:
2127 	 *	(offset * adj_1) + xtime_nsec_1 =
2128 	 *		(offset * adj_2) + xtime_nsec_2
2129 	 * And we know:
2130 	 *	adj_2 = adj_1 + 1
2131 	 * So:
2132 	 *	(offset * adj_1) + xtime_nsec_1 =
2133 	 *		(offset * (adj_1+1)) + xtime_nsec_2
2134 	 *	(offset * adj_1) + xtime_nsec_1 =
2135 	 *		(offset * adj_1) + offset + xtime_nsec_2
2136 	 * Canceling the sides:
2137 	 *	xtime_nsec_1 = offset + xtime_nsec_2
2138 	 * Which gives us:
2139 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
2140 	 * Which simplifies to:
2141 	 *	xtime_nsec -= offset
2142 	 */
2143 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
2144 		/* NTP adjustment caused clocksource mult overflow */
2145 		WARN_ON_ONCE(1);
2146 		return;
2147 	}
2148 
2149 	tk->tkr_mono.mult += mult_adj;
2150 	tk->xtime_interval += interval;
2151 	tk->tkr_mono.xtime_nsec -= offset;
2152 }
2153 
2154 /*
2155  * Adjust the timekeeper's multiplier to the correct frequency
2156  * and also to reduce the accumulated error value.
2157  */
timekeeping_adjust(struct timekeeper * tk,s64 offset)2158 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2159 {
2160 	u64 ntp_tl = ntp_tick_length(tk->id);
2161 	u32 mult;
2162 
2163 	/*
2164 	 * Determine the multiplier from the current NTP tick length.
2165 	 * Avoid expensive division when the tick length doesn't change.
2166 	 */
2167 	if (likely(tk->ntp_tick == ntp_tl)) {
2168 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2169 	} else {
2170 		tk->ntp_tick = ntp_tl;
2171 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2172 				 tk->xtime_remainder, tk->cycle_interval);
2173 	}
2174 
2175 	/*
2176 	 * If the clock is behind the NTP time, increase the multiplier by 1
2177 	 * to catch up with it. If it's ahead and there was a remainder in the
2178 	 * tick division, the clock will slow down. Otherwise it will stay
2179 	 * ahead until the tick length changes to a non-divisible value.
2180 	 */
2181 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2182 	mult += tk->ntp_err_mult;
2183 
2184 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2185 
2186 	if (unlikely(tk->tkr_mono.clock->maxadj &&
2187 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2188 			> tk->tkr_mono.clock->maxadj))) {
2189 		printk_once(KERN_WARNING
2190 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2191 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2192 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2193 	}
2194 
2195 	/*
2196 	 * It may be possible that when we entered this function, xtime_nsec
2197 	 * was very small.  Further, if we're slightly speeding the clocksource
2198 	 * in the code above, its possible the required corrective factor to
2199 	 * xtime_nsec could cause it to underflow.
2200 	 *
2201 	 * Now, since we have already accumulated the second and the NTP
2202 	 * subsystem has been notified via second_overflow(), we need to skip
2203 	 * the next update.
2204 	 */
2205 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2206 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2207 							tk->tkr_mono.shift;
2208 		tk->xtime_sec--;
2209 		tk->skip_second_overflow = 1;
2210 	}
2211 }
2212 
2213 /*
2214  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2215  *
2216  * Helper function that accumulates the nsecs greater than a second
2217  * from the xtime_nsec field to the xtime_secs field.
2218  * It also calls into the NTP code to handle leapsecond processing.
2219  */
accumulate_nsecs_to_secs(struct timekeeper * tk)2220 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2221 {
2222 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2223 	unsigned int clock_set = 0;
2224 
2225 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2226 		int leap;
2227 
2228 		tk->tkr_mono.xtime_nsec -= nsecps;
2229 		tk->xtime_sec++;
2230 
2231 		/*
2232 		 * Skip NTP update if this second was accumulated before,
2233 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2234 		 */
2235 		if (unlikely(tk->skip_second_overflow)) {
2236 			tk->skip_second_overflow = 0;
2237 			continue;
2238 		}
2239 
2240 		/* Figure out if its a leap sec and apply if needed */
2241 		leap = second_overflow(tk->id, tk->xtime_sec);
2242 		if (unlikely(leap)) {
2243 			struct timespec64 ts;
2244 
2245 			tk->xtime_sec += leap;
2246 
2247 			ts.tv_sec = leap;
2248 			ts.tv_nsec = 0;
2249 			tk_set_wall_to_mono(tk,
2250 				timespec64_sub(tk->wall_to_monotonic, ts));
2251 
2252 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2253 
2254 			clock_set = TK_CLOCK_WAS_SET;
2255 		}
2256 	}
2257 	return clock_set;
2258 }
2259 
2260 /*
2261  * logarithmic_accumulation - shifted accumulation of cycles
2262  *
2263  * This functions accumulates a shifted interval of cycles into
2264  * a shifted interval nanoseconds. Allows for O(log) accumulation
2265  * loop.
2266  *
2267  * Returns the unconsumed cycles.
2268  */
logarithmic_accumulation(struct timekeeper * tk,u64 offset,u32 shift,unsigned int * clock_set)2269 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2270 				    u32 shift, unsigned int *clock_set)
2271 {
2272 	u64 interval = tk->cycle_interval << shift;
2273 	u64 snsec_per_sec;
2274 
2275 	/* If the offset is smaller than a shifted interval, do nothing */
2276 	if (offset < interval)
2277 		return offset;
2278 
2279 	/* Accumulate one shifted interval */
2280 	offset -= interval;
2281 	tk->tkr_mono.cycle_last += interval;
2282 	tk->tkr_raw.cycle_last  += interval;
2283 
2284 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2285 	*clock_set |= accumulate_nsecs_to_secs(tk);
2286 
2287 	/* Accumulate raw time */
2288 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2289 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2290 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2291 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2292 		tk->raw_sec++;
2293 	}
2294 
2295 	/* Accumulate error between NTP and clock interval */
2296 	tk->ntp_error += tk->ntp_tick << shift;
2297 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2298 						(tk->ntp_error_shift + shift);
2299 
2300 	return offset;
2301 }
2302 
2303 /*
2304  * timekeeping_advance - Updates the timekeeper to the current time and
2305  * current NTP tick length
2306  */
__timekeeping_advance(struct tk_data * tkd,enum timekeeping_adv_mode mode)2307 static bool __timekeeping_advance(struct tk_data *tkd, enum timekeeping_adv_mode mode)
2308 {
2309 	struct timekeeper *tk = &tkd->shadow_timekeeper;
2310 	struct timekeeper *real_tk = &tkd->timekeeper;
2311 	unsigned int clock_set = 0;
2312 	int shift = 0, maxshift;
2313 	u64 offset, orig_offset;
2314 
2315 	/* Make sure we're fully resumed: */
2316 	if (unlikely(timekeeping_suspended))
2317 		return false;
2318 
2319 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2320 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask,
2321 				   tk->tkr_mono.clock->max_raw_delta);
2322 	orig_offset = offset;
2323 	/* Check if there's really nothing to do */
2324 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2325 		return false;
2326 
2327 	/*
2328 	 * With NO_HZ we may have to accumulate many cycle_intervals
2329 	 * (think "ticks") worth of time at once. To do this efficiently,
2330 	 * we calculate the largest doubling multiple of cycle_intervals
2331 	 * that is smaller than the offset.  We then accumulate that
2332 	 * chunk in one go, and then try to consume the next smaller
2333 	 * doubled multiple.
2334 	 */
2335 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2336 	shift = max(0, shift);
2337 	/* Bound shift to one less than what overflows tick_length */
2338 	maxshift = (64 - (ilog2(ntp_tick_length(tk->id)) + 1)) - 1;
2339 	shift = min(shift, maxshift);
2340 	while (offset >= tk->cycle_interval) {
2341 		offset = logarithmic_accumulation(tk, offset, shift, &clock_set);
2342 		if (offset < tk->cycle_interval<<shift)
2343 			shift--;
2344 	}
2345 
2346 	/* Adjust the multiplier to correct NTP error */
2347 	timekeeping_adjust(tk, offset);
2348 
2349 	/*
2350 	 * Finally, make sure that after the rounding
2351 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2352 	 */
2353 	clock_set |= accumulate_nsecs_to_secs(tk);
2354 
2355 	/*
2356 	 * To avoid inconsistencies caused adjtimex TK_ADV_FREQ calls
2357 	 * making small negative adjustments to the base xtime_nsec
2358 	 * value, only update the coarse clocks if we accumulated time
2359 	 */
2360 	if (orig_offset != offset)
2361 		tk_update_coarse_nsecs(tk);
2362 
2363 	timekeeping_update_from_shadow(tkd, clock_set);
2364 
2365 	return !!clock_set;
2366 }
2367 
timekeeping_advance(enum timekeeping_adv_mode mode)2368 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2369 {
2370 	guard(raw_spinlock_irqsave)(&tk_core.lock);
2371 	return __timekeeping_advance(&tk_core, mode);
2372 }
2373 
2374 /**
2375  * update_wall_time - Uses the current clocksource to increment the wall time
2376  *
2377  * It also updates the enabled auxiliary clock timekeepers
2378  */
update_wall_time(void)2379 void update_wall_time(void)
2380 {
2381 	if (timekeeping_advance(TK_ADV_TICK))
2382 		clock_was_set_delayed();
2383 	tk_aux_advance();
2384 }
2385 
2386 /**
2387  * getboottime64 - Return the real time of system boot.
2388  * @ts:		pointer to the timespec64 to be set
2389  *
2390  * Returns the wall-time of boot in a timespec64.
2391  *
2392  * This is based on the wall_to_monotonic offset and the total suspend
2393  * time. Calls to settimeofday will affect the value returned (which
2394  * basically means that however wrong your real time clock is at boot time,
2395  * you get the right time here).
2396  */
getboottime64(struct timespec64 * ts)2397 void getboottime64(struct timespec64 *ts)
2398 {
2399 	struct timekeeper *tk = &tk_core.timekeeper;
2400 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2401 
2402 	*ts = ktime_to_timespec64(t);
2403 }
2404 EXPORT_SYMBOL_GPL(getboottime64);
2405 
ktime_get_coarse_real_ts64(struct timespec64 * ts)2406 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2407 {
2408 	struct timekeeper *tk = &tk_core.timekeeper;
2409 	unsigned int seq;
2410 
2411 	do {
2412 		seq = read_seqcount_begin(&tk_core.seq);
2413 
2414 		*ts = tk_xtime_coarse(tk);
2415 	} while (read_seqcount_retry(&tk_core.seq, seq));
2416 }
2417 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2418 
2419 /**
2420  * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor
2421  * @ts:		timespec64 to be filled
2422  *
2423  * Fetch the global mg_floor value, convert it to realtime and compare it
2424  * to the current coarse-grained time. Fill @ts with whichever is
2425  * latest. Note that this is a filesystem-specific interface and should be
2426  * avoided outside of that context.
2427  */
ktime_get_coarse_real_ts64_mg(struct timespec64 * ts)2428 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts)
2429 {
2430 	struct timekeeper *tk = &tk_core.timekeeper;
2431 	u64 floor = atomic64_read(&mg_floor);
2432 	ktime_t f_real, offset, coarse;
2433 	unsigned int seq;
2434 
2435 	do {
2436 		seq = read_seqcount_begin(&tk_core.seq);
2437 		*ts = tk_xtime_coarse(tk);
2438 		offset = tk_core.timekeeper.offs_real;
2439 	} while (read_seqcount_retry(&tk_core.seq, seq));
2440 
2441 	coarse = timespec64_to_ktime(*ts);
2442 	f_real = ktime_add(floor, offset);
2443 	if (ktime_after(f_real, coarse))
2444 		*ts = ktime_to_timespec64(f_real);
2445 }
2446 
2447 /**
2448  * ktime_get_real_ts64_mg - attempt to update floor value and return result
2449  * @ts:		pointer to the timespec to be set
2450  *
2451  * Get a monotonic fine-grained time value and attempt to swap it into
2452  * mg_floor. If that succeeds then accept the new floor value. If it fails
2453  * then another task raced in during the interim time and updated the
2454  * floor.  Since any update to the floor must be later than the previous
2455  * floor, either outcome is acceptable.
2456  *
2457  * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(),
2458  * and determining that the resulting coarse-grained timestamp did not effect
2459  * a change in ctime. Any more recent floor value would effect a change to
2460  * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure.
2461  *
2462  * @ts will be filled with the latest floor value, regardless of the outcome of
2463  * the cmpxchg. Note that this is a filesystem specific interface and should be
2464  * avoided outside of that context.
2465  */
ktime_get_real_ts64_mg(struct timespec64 * ts)2466 void ktime_get_real_ts64_mg(struct timespec64 *ts)
2467 {
2468 	struct timekeeper *tk = &tk_core.timekeeper;
2469 	ktime_t old = atomic64_read(&mg_floor);
2470 	ktime_t offset, mono;
2471 	unsigned int seq;
2472 	u64 nsecs;
2473 
2474 	do {
2475 		seq = read_seqcount_begin(&tk_core.seq);
2476 
2477 		ts->tv_sec = tk->xtime_sec;
2478 		mono = tk->tkr_mono.base;
2479 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2480 		offset = tk_core.timekeeper.offs_real;
2481 	} while (read_seqcount_retry(&tk_core.seq, seq));
2482 
2483 	mono = ktime_add_ns(mono, nsecs);
2484 
2485 	/*
2486 	 * Attempt to update the floor with the new time value. As any
2487 	 * update must be later then the existing floor, and would effect
2488 	 * a change to ctime from the perspective of the current task,
2489 	 * accept the resulting floor value regardless of the outcome of
2490 	 * the swap.
2491 	 */
2492 	if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) {
2493 		ts->tv_nsec = 0;
2494 		timespec64_add_ns(ts, nsecs);
2495 		timekeeping_inc_mg_floor_swaps();
2496 	} else {
2497 		/*
2498 		 * Another task changed mg_floor since "old" was fetched.
2499 		 * "old" has been updated with the latest value of "mg_floor".
2500 		 * That value is newer than the previous floor value, which
2501 		 * is enough to effect a change to ctime. Accept it.
2502 		 */
2503 		*ts = ktime_to_timespec64(ktime_add(old, offset));
2504 	}
2505 }
2506 
ktime_get_coarse_ts64(struct timespec64 * ts)2507 void ktime_get_coarse_ts64(struct timespec64 *ts)
2508 {
2509 	struct timekeeper *tk = &tk_core.timekeeper;
2510 	struct timespec64 now, mono;
2511 	unsigned int seq;
2512 
2513 	do {
2514 		seq = read_seqcount_begin(&tk_core.seq);
2515 
2516 		now = tk_xtime_coarse(tk);
2517 		mono = tk->wall_to_monotonic;
2518 	} while (read_seqcount_retry(&tk_core.seq, seq));
2519 
2520 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2521 				  now.tv_nsec + mono.tv_nsec);
2522 }
2523 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2524 
2525 /*
2526  * Must hold jiffies_lock
2527  */
do_timer(unsigned long ticks)2528 void do_timer(unsigned long ticks)
2529 {
2530 	jiffies_64 += ticks;
2531 	calc_global_load();
2532 }
2533 
2534 /**
2535  * ktime_get_update_offsets_now - hrtimer helper
2536  * @cwsseq:	pointer to check and store the clock was set sequence number
2537  * @offs_real:	pointer to storage for monotonic -> realtime offset
2538  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2539  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2540  *
2541  * Returns current monotonic time and updates the offsets if the
2542  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2543  * different.
2544  *
2545  * Called from hrtimer_interrupt() or retrigger_next_event()
2546  */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2547 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2548 				     ktime_t *offs_boot, ktime_t *offs_tai)
2549 {
2550 	struct timekeeper *tk = &tk_core.timekeeper;
2551 	unsigned int seq;
2552 	ktime_t base;
2553 	u64 nsecs;
2554 
2555 	do {
2556 		seq = read_seqcount_begin(&tk_core.seq);
2557 
2558 		base = tk->tkr_mono.base;
2559 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2560 		base = ktime_add_ns(base, nsecs);
2561 
2562 		if (*cwsseq != tk->clock_was_set_seq) {
2563 			*cwsseq = tk->clock_was_set_seq;
2564 			*offs_real = tk->offs_real;
2565 			*offs_boot = tk->offs_boot;
2566 			*offs_tai = tk->offs_tai;
2567 		}
2568 
2569 		/* Handle leapsecond insertion adjustments */
2570 		if (unlikely(base >= tk->next_leap_ktime))
2571 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2572 
2573 	} while (read_seqcount_retry(&tk_core.seq, seq));
2574 
2575 	return base;
2576 }
2577 
2578 /*
2579  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2580  */
timekeeping_validate_timex(const struct __kernel_timex * txc,bool aux_clock)2581 static int timekeeping_validate_timex(const struct __kernel_timex *txc, bool aux_clock)
2582 {
2583 	if (txc->modes & ADJ_ADJTIME) {
2584 		/* singleshot must not be used with any other mode bits */
2585 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2586 			return -EINVAL;
2587 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2588 		    !capable(CAP_SYS_TIME))
2589 			return -EPERM;
2590 	} else {
2591 		/* In order to modify anything, you gotta be super-user! */
2592 		if (txc->modes && !capable(CAP_SYS_TIME))
2593 			return -EPERM;
2594 		/*
2595 		 * if the quartz is off by more than 10% then
2596 		 * something is VERY wrong!
2597 		 */
2598 		if (txc->modes & ADJ_TICK &&
2599 		    (txc->tick <  900000/USER_HZ ||
2600 		     txc->tick > 1100000/USER_HZ))
2601 			return -EINVAL;
2602 	}
2603 
2604 	if (txc->modes & ADJ_SETOFFSET) {
2605 		/* In order to inject time, you gotta be super-user! */
2606 		if (!capable(CAP_SYS_TIME))
2607 			return -EPERM;
2608 
2609 		/*
2610 		 * Validate if a timespec/timeval used to inject a time
2611 		 * offset is valid.  Offsets can be positive or negative, so
2612 		 * we don't check tv_sec. The value of the timeval/timespec
2613 		 * is the sum of its fields,but *NOTE*:
2614 		 * The field tv_usec/tv_nsec must always be non-negative and
2615 		 * we can't have more nanoseconds/microseconds than a second.
2616 		 */
2617 		if (txc->time.tv_usec < 0)
2618 			return -EINVAL;
2619 
2620 		if (txc->modes & ADJ_NANO) {
2621 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2622 				return -EINVAL;
2623 		} else {
2624 			if (txc->time.tv_usec >= USEC_PER_SEC)
2625 				return -EINVAL;
2626 		}
2627 	}
2628 
2629 	/*
2630 	 * Check for potential multiplication overflows that can
2631 	 * only happen on 64-bit systems:
2632 	 */
2633 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2634 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2635 			return -EINVAL;
2636 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2637 			return -EINVAL;
2638 	}
2639 
2640 	if (aux_clock) {
2641 		/* Auxiliary clocks are similar to TAI and do not have leap seconds */
2642 		if (txc->status & (STA_INS | STA_DEL))
2643 			return -EINVAL;
2644 
2645 		/* No TAI offset setting */
2646 		if (txc->modes & ADJ_TAI)
2647 			return -EINVAL;
2648 
2649 		/* No PPS support either */
2650 		if (txc->status & (STA_PPSFREQ | STA_PPSTIME))
2651 			return -EINVAL;
2652 	}
2653 
2654 	return 0;
2655 }
2656 
2657 /**
2658  * random_get_entropy_fallback - Returns the raw clock source value,
2659  * used by random.c for platforms with no valid random_get_entropy().
2660  */
random_get_entropy_fallback(void)2661 unsigned long random_get_entropy_fallback(void)
2662 {
2663 	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2664 	struct clocksource *clock = READ_ONCE(tkr->clock);
2665 
2666 	if (unlikely(timekeeping_suspended || !clock))
2667 		return 0;
2668 	return clock->read(clock);
2669 }
2670 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2671 
2672 struct adjtimex_result {
2673 	struct audit_ntp_data	ad;
2674 	struct timespec64	delta;
2675 	bool			clock_set;
2676 };
2677 
__do_adjtimex(struct tk_data * tkd,struct __kernel_timex * txc,struct adjtimex_result * result)2678 static int __do_adjtimex(struct tk_data *tkd, struct __kernel_timex *txc,
2679 			 struct adjtimex_result *result)
2680 {
2681 	struct timekeeper *tks = &tkd->shadow_timekeeper;
2682 	bool aux_clock = !timekeeper_is_core_tk(tks);
2683 	struct timespec64 ts;
2684 	s32 orig_tai, tai;
2685 	int ret;
2686 
2687 	/* Validate the data before disabling interrupts */
2688 	ret = timekeeping_validate_timex(txc, aux_clock);
2689 	if (ret)
2690 		return ret;
2691 	add_device_randomness(txc, sizeof(*txc));
2692 
2693 	if (!aux_clock)
2694 		ktime_get_real_ts64(&ts);
2695 	else
2696 		tk_get_aux_ts64(tkd->timekeeper.id, &ts);
2697 
2698 	add_device_randomness(&ts, sizeof(ts));
2699 
2700 	guard(raw_spinlock_irqsave)(&tkd->lock);
2701 
2702 	if (!tks->clock_valid)
2703 		return -ENODEV;
2704 
2705 	if (txc->modes & ADJ_SETOFFSET) {
2706 		result->delta.tv_sec  = txc->time.tv_sec;
2707 		result->delta.tv_nsec = txc->time.tv_usec;
2708 		if (!(txc->modes & ADJ_NANO))
2709 			result->delta.tv_nsec *= 1000;
2710 		ret = __timekeeping_inject_offset(tkd, &result->delta);
2711 		if (ret)
2712 			return ret;
2713 		result->clock_set = true;
2714 	}
2715 
2716 	orig_tai = tai = tks->tai_offset;
2717 	ret = ntp_adjtimex(tks->id, txc, &ts, &tai, &result->ad);
2718 
2719 	if (tai != orig_tai) {
2720 		__timekeeping_set_tai_offset(tks, tai);
2721 		timekeeping_update_from_shadow(tkd, TK_CLOCK_WAS_SET);
2722 		result->clock_set = true;
2723 	} else {
2724 		tk_update_leap_state_all(&tk_core);
2725 	}
2726 
2727 	/* Update the multiplier immediately if frequency was set directly */
2728 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2729 		result->clock_set |= __timekeeping_advance(tkd, TK_ADV_FREQ);
2730 
2731 	return ret;
2732 }
2733 
2734 /**
2735  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2736  * @txc:	Pointer to kernel_timex structure containing NTP parameters
2737  */
do_adjtimex(struct __kernel_timex * txc)2738 int do_adjtimex(struct __kernel_timex *txc)
2739 {
2740 	struct adjtimex_result result = { };
2741 	int ret;
2742 
2743 	ret = __do_adjtimex(&tk_core, txc, &result);
2744 	if (ret < 0)
2745 		return ret;
2746 
2747 	if (txc->modes & ADJ_SETOFFSET)
2748 		audit_tk_injoffset(result.delta);
2749 
2750 	audit_ntp_log(&result.ad);
2751 
2752 	if (result.clock_set)
2753 		clock_was_set(CLOCK_SET_WALL);
2754 
2755 	ntp_notify_cmos_timer(result.delta.tv_sec != 0);
2756 
2757 	return ret;
2758 }
2759 
2760 /*
2761  * Invoked from NTP with the time keeper lock held, so lockless access is
2762  * fine.
2763  */
ktime_get_ntp_seconds(unsigned int id)2764 long ktime_get_ntp_seconds(unsigned int id)
2765 {
2766 	return timekeeper_data[id].timekeeper.xtime_sec;
2767 }
2768 
2769 #ifdef CONFIG_NTP_PPS
2770 /**
2771  * hardpps() - Accessor function to NTP __hardpps function
2772  * @phase_ts:	Pointer to timespec64 structure representing phase timestamp
2773  * @raw_ts:	Pointer to timespec64 structure representing raw timestamp
2774  */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2775 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2776 {
2777 	guard(raw_spinlock_irqsave)(&tk_core.lock);
2778 	__hardpps(phase_ts, raw_ts);
2779 }
2780 EXPORT_SYMBOL(hardpps);
2781 #endif /* CONFIG_NTP_PPS */
2782 
2783 #ifdef CONFIG_POSIX_AUX_CLOCKS
2784 #include "posix-timers.h"
2785 
2786 /*
2787  * Bitmap for the activated auxiliary timekeepers to allow lockless quick
2788  * checks in the hot paths without touching extra cache lines. If set, then
2789  * the state of the corresponding timekeeper has to be re-checked under
2790  * timekeeper::lock.
2791  */
2792 static unsigned long aux_timekeepers;
2793 
clockid_to_tkid(unsigned int id)2794 static inline unsigned int clockid_to_tkid(unsigned int id)
2795 {
2796 	return TIMEKEEPER_AUX_FIRST + id - CLOCK_AUX;
2797 }
2798 
aux_get_tk_data(clockid_t id)2799 static inline struct tk_data *aux_get_tk_data(clockid_t id)
2800 {
2801 	if (!clockid_aux_valid(id))
2802 		return NULL;
2803 	return &timekeeper_data[clockid_to_tkid(id)];
2804 }
2805 
2806 /* Invoked from timekeeping after a clocksource change */
tk_aux_update_clocksource(void)2807 static void tk_aux_update_clocksource(void)
2808 {
2809 	unsigned long active = READ_ONCE(aux_timekeepers);
2810 	unsigned int id;
2811 
2812 	for_each_set_bit(id, &active, BITS_PER_LONG) {
2813 		struct tk_data *tkd = &timekeeper_data[id + TIMEKEEPER_AUX_FIRST];
2814 		struct timekeeper *tks = &tkd->shadow_timekeeper;
2815 
2816 		guard(raw_spinlock_irqsave)(&tkd->lock);
2817 		if (!tks->clock_valid)
2818 			continue;
2819 
2820 		timekeeping_forward_now(tks);
2821 		tk_setup_internals(tks, tk_core.timekeeper.tkr_mono.clock);
2822 		timekeeping_update_from_shadow(tkd, TK_UPDATE_ALL);
2823 	}
2824 }
2825 
tk_aux_advance(void)2826 static void tk_aux_advance(void)
2827 {
2828 	unsigned long active = READ_ONCE(aux_timekeepers);
2829 	unsigned int id;
2830 
2831 	/* Lockless quick check to avoid extra cache lines */
2832 	for_each_set_bit(id, &active, BITS_PER_LONG) {
2833 		struct tk_data *aux_tkd = &timekeeper_data[id + TIMEKEEPER_AUX_FIRST];
2834 
2835 		guard(raw_spinlock)(&aux_tkd->lock);
2836 		if (aux_tkd->shadow_timekeeper.clock_valid)
2837 			__timekeeping_advance(aux_tkd, TK_ADV_TICK);
2838 	}
2839 }
2840 
2841 /**
2842  * ktime_get_aux - Get time for a AUX clock
2843  * @id:	ID of the clock to read (CLOCK_AUX...)
2844  * @kt:	Pointer to ktime_t to store the time stamp
2845  *
2846  * Returns: True if the timestamp is valid, false otherwise
2847  */
ktime_get_aux(clockid_t id,ktime_t * kt)2848 bool ktime_get_aux(clockid_t id, ktime_t *kt)
2849 {
2850 	struct tk_data *aux_tkd = aux_get_tk_data(id);
2851 	struct timekeeper *aux_tk;
2852 	unsigned int seq;
2853 	ktime_t base;
2854 	u64 nsecs;
2855 
2856 	WARN_ON(timekeeping_suspended);
2857 
2858 	if (!aux_tkd)
2859 		return false;
2860 
2861 	aux_tk = &aux_tkd->timekeeper;
2862 	do {
2863 		seq = read_seqcount_begin(&aux_tkd->seq);
2864 		if (!aux_tk->clock_valid)
2865 			return false;
2866 
2867 		base = ktime_add(aux_tk->tkr_mono.base, aux_tk->offs_aux);
2868 		nsecs = timekeeping_get_ns(&aux_tk->tkr_mono);
2869 	} while (read_seqcount_retry(&aux_tkd->seq, seq));
2870 
2871 	*kt = ktime_add_ns(base, nsecs);
2872 	return true;
2873 }
2874 EXPORT_SYMBOL_GPL(ktime_get_aux);
2875 
2876 /**
2877  * ktime_get_aux_ts64 - Get time for a AUX clock
2878  * @id:	ID of the clock to read (CLOCK_AUX...)
2879  * @ts:	Pointer to timespec64 to store the time stamp
2880  *
2881  * Returns: True if the timestamp is valid, false otherwise
2882  */
ktime_get_aux_ts64(clockid_t id,struct timespec64 * ts)2883 bool ktime_get_aux_ts64(clockid_t id, struct timespec64 *ts)
2884 {
2885 	ktime_t now;
2886 
2887 	if (!ktime_get_aux(id, &now))
2888 		return false;
2889 	*ts = ktime_to_timespec64(now);
2890 	return true;
2891 }
2892 EXPORT_SYMBOL_GPL(ktime_get_aux_ts64);
2893 
aux_get_res(clockid_t id,struct timespec64 * tp)2894 static int aux_get_res(clockid_t id, struct timespec64 *tp)
2895 {
2896 	if (!clockid_aux_valid(id))
2897 		return -ENODEV;
2898 
2899 	tp->tv_sec = aux_clock_resolution_ns() / NSEC_PER_SEC;
2900 	tp->tv_nsec = aux_clock_resolution_ns() % NSEC_PER_SEC;
2901 	return 0;
2902 }
2903 
aux_get_timespec(clockid_t id,struct timespec64 * tp)2904 static int aux_get_timespec(clockid_t id, struct timespec64 *tp)
2905 {
2906 	return ktime_get_aux_ts64(id, tp) ? 0 : -ENODEV;
2907 }
2908 
aux_clock_set(const clockid_t id,const struct timespec64 * tnew)2909 static int aux_clock_set(const clockid_t id, const struct timespec64 *tnew)
2910 {
2911 	struct tk_data *aux_tkd = aux_get_tk_data(id);
2912 	struct timekeeper *aux_tks;
2913 	ktime_t tnow, nsecs;
2914 
2915 	if (!timespec64_valid_settod(tnew))
2916 		return -EINVAL;
2917 	if (!aux_tkd)
2918 		return -ENODEV;
2919 
2920 	aux_tks = &aux_tkd->shadow_timekeeper;
2921 
2922 	guard(raw_spinlock_irq)(&aux_tkd->lock);
2923 	if (!aux_tks->clock_valid)
2924 		return -ENODEV;
2925 
2926 	/* Forward the timekeeper base time */
2927 	timekeeping_forward_now(aux_tks);
2928 	/*
2929 	 * Get the updated base time. tkr_mono.base has not been
2930 	 * updated yet, so do that first. That makes the update
2931 	 * in timekeeping_update_from_shadow() redundant, but
2932 	 * that's harmless. After that @tnow can be calculated
2933 	 * by using tkr_mono::cycle_last, which has been set
2934 	 * by timekeeping_forward_now().
2935 	 */
2936 	tk_update_ktime_data(aux_tks);
2937 	nsecs = timekeeping_cycles_to_ns(&aux_tks->tkr_mono, aux_tks->tkr_mono.cycle_last);
2938 	tnow = ktime_add(aux_tks->tkr_mono.base, nsecs);
2939 
2940 	/*
2941 	 * Calculate the new AUX offset as delta to @tnow ("monotonic").
2942 	 * That avoids all the tk::xtime back and forth conversions as
2943 	 * xtime ("realtime") is not applicable for auxiliary clocks and
2944 	 * kept in sync with "monotonic".
2945 	 */
2946 	tk_update_aux_offs(aux_tks, ktime_sub(timespec64_to_ktime(*tnew), tnow));
2947 
2948 	timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL);
2949 	return 0;
2950 }
2951 
aux_clock_adj(const clockid_t id,struct __kernel_timex * txc)2952 static int aux_clock_adj(const clockid_t id, struct __kernel_timex *txc)
2953 {
2954 	struct tk_data *aux_tkd = aux_get_tk_data(id);
2955 	struct adjtimex_result result = { };
2956 
2957 	if (!aux_tkd)
2958 		return -ENODEV;
2959 
2960 	/*
2961 	 * @result is ignored for now as there are neither hrtimers nor a
2962 	 * RTC related to auxiliary clocks for now.
2963 	 */
2964 	return __do_adjtimex(aux_tkd, txc, &result);
2965 }
2966 
2967 const struct k_clock clock_aux = {
2968 	.clock_getres		= aux_get_res,
2969 	.clock_get_timespec	= aux_get_timespec,
2970 	.clock_set		= aux_clock_set,
2971 	.clock_adj		= aux_clock_adj,
2972 };
2973 
aux_clock_enable(clockid_t id)2974 static void aux_clock_enable(clockid_t id)
2975 {
2976 	struct tk_read_base *tkr_raw = &tk_core.timekeeper.tkr_raw;
2977 	struct tk_data *aux_tkd = aux_get_tk_data(id);
2978 	struct timekeeper *aux_tks = &aux_tkd->shadow_timekeeper;
2979 
2980 	/* Prevent the core timekeeper from changing. */
2981 	guard(raw_spinlock_irq)(&tk_core.lock);
2982 
2983 	/*
2984 	 * Setup the auxiliary clock assuming that the raw core timekeeper
2985 	 * clock frequency conversion is close enough. Userspace has to
2986 	 * adjust for the deviation via clock_adjtime(2).
2987 	 */
2988 	guard(raw_spinlock_nested)(&aux_tkd->lock);
2989 
2990 	/* Remove leftovers of a previous registration */
2991 	memset(aux_tks, 0, sizeof(*aux_tks));
2992 	/* Restore the timekeeper id */
2993 	aux_tks->id = aux_tkd->timekeeper.id;
2994 	/* Setup the timekeeper based on the current system clocksource */
2995 	tk_setup_internals(aux_tks, tkr_raw->clock);
2996 
2997 	/* Mark it valid and set it live */
2998 	aux_tks->clock_valid = true;
2999 	timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL);
3000 }
3001 
aux_clock_disable(clockid_t id)3002 static void aux_clock_disable(clockid_t id)
3003 {
3004 	struct tk_data *aux_tkd = aux_get_tk_data(id);
3005 
3006 	guard(raw_spinlock_irq)(&aux_tkd->lock);
3007 	aux_tkd->shadow_timekeeper.clock_valid = false;
3008 	timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL);
3009 }
3010 
3011 static DEFINE_MUTEX(aux_clock_mutex);
3012 
aux_clock_enable_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3013 static ssize_t aux_clock_enable_store(struct kobject *kobj, struct kobj_attribute *attr,
3014 				      const char *buf, size_t count)
3015 {
3016 	/* Lazy atoi() as name is "0..7" */
3017 	int id = kobj->name[0] & 0x7;
3018 	bool enable;
3019 
3020 	if (!capable(CAP_SYS_TIME))
3021 		return -EPERM;
3022 
3023 	if (kstrtobool(buf, &enable) < 0)
3024 		return -EINVAL;
3025 
3026 	guard(mutex)(&aux_clock_mutex);
3027 	if (enable == test_bit(id, &aux_timekeepers))
3028 		return count;
3029 
3030 	if (enable) {
3031 		aux_clock_enable(CLOCK_AUX + id);
3032 		set_bit(id, &aux_timekeepers);
3033 	} else {
3034 		aux_clock_disable(CLOCK_AUX + id);
3035 		clear_bit(id, &aux_timekeepers);
3036 	}
3037 	return count;
3038 }
3039 
aux_clock_enable_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3040 static ssize_t aux_clock_enable_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
3041 {
3042 	unsigned long active = READ_ONCE(aux_timekeepers);
3043 	/* Lazy atoi() as name is "0..7" */
3044 	int id = kobj->name[0] & 0x7;
3045 
3046 	return sysfs_emit(buf, "%d\n", test_bit(id, &active));
3047 }
3048 
3049 static struct kobj_attribute aux_clock_enable_attr = __ATTR_RW(aux_clock_enable);
3050 
3051 static struct attribute *aux_clock_enable_attrs[] = {
3052 	&aux_clock_enable_attr.attr,
3053 	NULL
3054 };
3055 
3056 static const struct attribute_group aux_clock_enable_attr_group = {
3057 	.attrs = aux_clock_enable_attrs,
3058 };
3059 
tk_aux_sysfs_init(void)3060 static int __init tk_aux_sysfs_init(void)
3061 {
3062 	struct kobject *auxo, *tko = kobject_create_and_add("time", kernel_kobj);
3063 
3064 	if (!tko)
3065 		return -ENOMEM;
3066 
3067 	auxo = kobject_create_and_add("aux_clocks", tko);
3068 	if (!auxo) {
3069 		kobject_put(tko);
3070 		return -ENOMEM;
3071 	}
3072 
3073 	for (int i = 0; i <= MAX_AUX_CLOCKS; i++) {
3074 		char id[2] = { [0] = '0' + i, };
3075 		struct kobject *clk = kobject_create_and_add(id, auxo);
3076 
3077 		if (!clk)
3078 			return -ENOMEM;
3079 
3080 		int ret = sysfs_create_group(clk, &aux_clock_enable_attr_group);
3081 
3082 		if (ret)
3083 			return ret;
3084 	}
3085 	return 0;
3086 }
3087 late_initcall(tk_aux_sysfs_init);
3088 
tk_aux_setup(void)3089 static __init void tk_aux_setup(void)
3090 {
3091 	for (int i = TIMEKEEPER_AUX_FIRST; i <= TIMEKEEPER_AUX_LAST; i++)
3092 		tkd_basic_setup(&timekeeper_data[i], i, false);
3093 }
3094 #endif /* CONFIG_POSIX_AUX_CLOCKS */
3095