xref: /linux/sound/pci/ymfpci/ymfpci_main.c (revision 05a54fa773284d1a7923cdfdd8f0c8dabb98bd26)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *  Routines for control of YMF724/740/744/754 chips
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/firmware.h>
9 #include <linux/init.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/mutex.h>
15 #include <linux/module.h>
16 #include <linux/io.h>
17 
18 #include <sound/core.h>
19 #include <sound/control.h>
20 #include <sound/info.h>
21 #include <sound/tlv.h>
22 #include "ymfpci.h"
23 #include <sound/asoundef.h>
24 #include <sound/mpu401.h>
25 
26 #include <asm/byteorder.h>
27 
28 /*
29  *  common I/O routines
30  */
31 
32 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
33 
34 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
35 {
36 	writeb(val, chip->reg_area_virt + offset);
37 }
38 
39 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
40 {
41 	return readw(chip->reg_area_virt + offset);
42 }
43 
44 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
45 {
46 	writew(val, chip->reg_area_virt + offset);
47 }
48 
49 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
50 {
51 	return readl(chip->reg_area_virt + offset);
52 }
53 
54 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
55 {
56 	writel(val, chip->reg_area_virt + offset);
57 }
58 
59 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
60 {
61 	unsigned long end_time;
62 	u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
63 
64 	end_time = jiffies + msecs_to_jiffies(750);
65 	do {
66 		if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
67 			return 0;
68 		schedule_timeout_uninterruptible(1);
69 	} while (time_before(jiffies, end_time));
70 	dev_err(chip->card->dev,
71 		"codec_ready: codec %i is not ready [0x%x]\n",
72 		secondary, snd_ymfpci_readw(chip, reg));
73 	return -EBUSY;
74 }
75 
76 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
77 {
78 	struct snd_ymfpci *chip = ac97->private_data;
79 	u32 cmd;
80 
81 	snd_ymfpci_codec_ready(chip, 0);
82 	cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
83 	snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
84 }
85 
86 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
87 {
88 	struct snd_ymfpci *chip = ac97->private_data;
89 
90 	if (snd_ymfpci_codec_ready(chip, 0))
91 		return ~0;
92 	snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
93 	if (snd_ymfpci_codec_ready(chip, 0))
94 		return ~0;
95 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
96 		int i;
97 		for (i = 0; i < 600; i++)
98 			snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
99 	}
100 	return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
101 }
102 
103 /*
104  *  Misc routines
105  */
106 
107 static u32 snd_ymfpci_calc_delta(u32 rate)
108 {
109 	switch (rate) {
110 	case 8000:	return 0x02aaab00;
111 	case 11025:	return 0x03accd00;
112 	case 16000:	return 0x05555500;
113 	case 22050:	return 0x07599a00;
114 	case 32000:	return 0x0aaaab00;
115 	case 44100:	return 0x0eb33300;
116 	default:	return ((rate << 16) / 375) << 5;
117 	}
118 }
119 
120 static const u32 def_rate[8] = {
121 	100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
122 };
123 
124 static u32 snd_ymfpci_calc_lpfK(u32 rate)
125 {
126 	u32 i;
127 	static const u32 val[8] = {
128 		0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
129 		0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
130 	};
131 
132 	if (rate == 44100)
133 		return 0x40000000;	/* FIXME: What's the right value? */
134 	for (i = 0; i < 8; i++)
135 		if (rate <= def_rate[i])
136 			return val[i];
137 	return val[0];
138 }
139 
140 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
141 {
142 	u32 i;
143 	static const u32 val[8] = {
144 		0x35280000, 0x34A70000, 0x32020000, 0x31770000,
145 		0x31390000, 0x31C90000, 0x33D00000, 0x40000000
146 	};
147 
148 	if (rate == 44100)
149 		return 0x370A0000;
150 	for (i = 0; i < 8; i++)
151 		if (rate <= def_rate[i])
152 			return val[i];
153 	return val[0];
154 }
155 
156 /*
157  *  Hardware start management
158  */
159 
160 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
161 {
162 	guard(spinlock_irqsave)(&chip->reg_lock);
163 	if (chip->start_count++ > 0)
164 		return;
165 	snd_ymfpci_writel(chip, YDSXGR_MODE,
166 			  snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
167 	chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
168 }
169 
170 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
171 {
172 	long timeout = 1000;
173 
174 	guard(spinlock_irqsave)(&chip->reg_lock);
175 	if (--chip->start_count > 0)
176 		return;
177 	snd_ymfpci_writel(chip, YDSXGR_MODE,
178 			  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
179 	while (timeout-- > 0) {
180 		if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
181 			break;
182 	}
183 	if (atomic_read(&chip->interrupt_sleep_count)) {
184 		atomic_set(&chip->interrupt_sleep_count, 0);
185 		wake_up(&chip->interrupt_sleep);
186 	}
187 }
188 
189 /*
190  *  Playback voice management
191  */
192 
193 static int voice_alloc(struct snd_ymfpci *chip,
194 		       enum snd_ymfpci_voice_type type, int pair,
195 		       struct snd_ymfpci_voice **rvoice)
196 {
197 	struct snd_ymfpci_voice *voice, *voice2;
198 	int idx;
199 
200 	*rvoice = NULL;
201 	for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
202 		voice = &chip->voices[idx];
203 		voice2 = pair ? &chip->voices[idx+1] : NULL;
204 		if (voice->use || (voice2 && voice2->use))
205 			continue;
206 		voice->use = 1;
207 		if (voice2)
208 			voice2->use = 1;
209 		switch (type) {
210 		case YMFPCI_PCM:
211 			voice->pcm = 1;
212 			if (voice2)
213 				voice2->pcm = 1;
214 			break;
215 		case YMFPCI_SYNTH:
216 			voice->synth = 1;
217 			break;
218 		case YMFPCI_MIDI:
219 			voice->midi = 1;
220 			break;
221 		}
222 		snd_ymfpci_hw_start(chip);
223 		if (voice2)
224 			snd_ymfpci_hw_start(chip);
225 		*rvoice = voice;
226 		return 0;
227 	}
228 	return -ENOMEM;
229 }
230 
231 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
232 				  enum snd_ymfpci_voice_type type, int pair,
233 				  struct snd_ymfpci_voice **rvoice)
234 {
235 	int result;
236 
237 	if (snd_BUG_ON(!rvoice))
238 		return -EINVAL;
239 	if (snd_BUG_ON(pair && type != YMFPCI_PCM))
240 		return -EINVAL;
241 
242 	guard(spinlock_irqsave)(&chip->voice_lock);
243 	for (;;) {
244 		result = voice_alloc(chip, type, pair, rvoice);
245 		if (result == 0 || type != YMFPCI_PCM)
246 			break;
247 		/* TODO: synth/midi voice deallocation */
248 		break;
249 	}
250 	return result;
251 }
252 
253 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
254 {
255 	if (snd_BUG_ON(!pvoice))
256 		return -EINVAL;
257 	snd_ymfpci_hw_stop(chip);
258 	guard(spinlock_irqsave)(&chip->voice_lock);
259 	if (pvoice->number == chip->src441_used) {
260 		chip->src441_used = -1;
261 		pvoice->ypcm->use_441_slot = 0;
262 	}
263 	pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
264 	pvoice->ypcm = NULL;
265 	pvoice->interrupt = NULL;
266 	return 0;
267 }
268 
269 /*
270  *  PCM part
271  */
272 
273 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
274 {
275 	struct snd_ymfpci_pcm *ypcm;
276 	u32 pos, delta;
277 
278 	ypcm = voice->ypcm;
279 	if (!ypcm)
280 		return;
281 	if (ypcm->substream == NULL)
282 		return;
283 	guard(spinlock)(&chip->reg_lock);
284 	if (ypcm->running) {
285 		pos = le32_to_cpu(voice->bank[chip->active_bank].start);
286 		if (pos < ypcm->last_pos)
287 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
288 		else
289 			delta = pos - ypcm->last_pos;
290 		ypcm->period_pos += delta;
291 		ypcm->last_pos = pos;
292 		if (ypcm->period_pos >= ypcm->period_size) {
293 			/*
294 			dev_dbg(chip->card->dev,
295 			       "done - active_bank = 0x%x, start = 0x%x\n",
296 			       chip->active_bank,
297 			       voice->bank[chip->active_bank].start);
298 			*/
299 			ypcm->period_pos %= ypcm->period_size;
300 			spin_unlock(&chip->reg_lock);
301 			snd_pcm_period_elapsed(ypcm->substream);
302 			spin_lock(&chip->reg_lock);
303 		}
304 
305 		if (unlikely(ypcm->update_pcm_vol)) {
306 			unsigned int subs = ypcm->substream->number;
307 			unsigned int next_bank = 1 - chip->active_bank;
308 			struct snd_ymfpci_playback_bank *bank;
309 			__le32 volume;
310 
311 			bank = &voice->bank[next_bank];
312 			volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
313 			bank->left_gain_end = volume;
314 			if (ypcm->output_rear)
315 				bank->eff2_gain_end = volume;
316 			if (ypcm->voices[1])
317 				bank = &ypcm->voices[1]->bank[next_bank];
318 			volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
319 			bank->right_gain_end = volume;
320 			if (ypcm->output_rear)
321 				bank->eff3_gain_end = volume;
322 			ypcm->update_pcm_vol--;
323 		}
324 	}
325 }
326 
327 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
328 {
329 	struct snd_pcm_runtime *runtime = substream->runtime;
330 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
331 	struct snd_ymfpci *chip = ypcm->chip;
332 	u32 pos, delta;
333 
334 	guard(spinlock)(&chip->reg_lock);
335 	if (ypcm->running) {
336 		pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
337 		if (pos < ypcm->last_pos)
338 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
339 		else
340 			delta = pos - ypcm->last_pos;
341 		ypcm->period_pos += delta;
342 		ypcm->last_pos = pos;
343 		if (ypcm->period_pos >= ypcm->period_size) {
344 			ypcm->period_pos %= ypcm->period_size;
345 			/*
346 			dev_dbg(chip->card->dev,
347 			       "done - active_bank = 0x%x, start = 0x%x\n",
348 			       chip->active_bank,
349 			       voice->bank[chip->active_bank].start);
350 			*/
351 			spin_unlock(&chip->reg_lock);
352 			snd_pcm_period_elapsed(substream);
353 			spin_lock(&chip->reg_lock);
354 		}
355 	}
356 }
357 
358 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
359 				       int cmd)
360 {
361 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
362 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
363 	struct snd_kcontrol *kctl = NULL;
364 	int result = 0;
365 
366 	guard(spinlock)(&chip->reg_lock);
367 	if (ypcm->voices[0] == NULL)
368 		return -EINVAL;
369 	switch (cmd) {
370 	case SNDRV_PCM_TRIGGER_START:
371 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
372 	case SNDRV_PCM_TRIGGER_RESUME:
373 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
374 		if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
375 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
376 		ypcm->running = 1;
377 		break;
378 	case SNDRV_PCM_TRIGGER_STOP:
379 		if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
380 			kctl = chip->pcm_mixer[substream->number].ctl;
381 			kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
382 		}
383 		fallthrough;
384 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
385 	case SNDRV_PCM_TRIGGER_SUSPEND:
386 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
387 		if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
388 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
389 		ypcm->running = 0;
390 		break;
391 	default:
392 		return -EINVAL;
393 	}
394 	if (kctl)
395 		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
396 	return result;
397 }
398 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
399 				      int cmd)
400 {
401 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
402 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
403 	int result = 0;
404 	u32 tmp;
405 
406 	guard(spinlock)(&chip->reg_lock);
407 	switch (cmd) {
408 	case SNDRV_PCM_TRIGGER_START:
409 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
410 	case SNDRV_PCM_TRIGGER_RESUME:
411 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
412 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
413 		ypcm->running = 1;
414 		break;
415 	case SNDRV_PCM_TRIGGER_STOP:
416 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
417 	case SNDRV_PCM_TRIGGER_SUSPEND:
418 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
419 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
420 		ypcm->running = 0;
421 		break;
422 	default:
423 		result = -EINVAL;
424 		break;
425 	}
426 	return result;
427 }
428 
429 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
430 {
431 	int err;
432 
433 	if (ypcm->voices[1] != NULL && voices < 2) {
434 		snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
435 		ypcm->voices[1] = NULL;
436 	}
437 	if (voices == 1 && ypcm->voices[0] != NULL)
438 		return 0;		/* already allocated */
439 	if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
440 		return 0;		/* already allocated */
441 	if (voices > 1) {
442 		if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
443 			snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
444 			ypcm->voices[0] = NULL;
445 		}
446 	}
447 	err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
448 	if (err < 0)
449 		return err;
450 	ypcm->voices[0]->ypcm = ypcm;
451 	ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
452 	if (voices > 1) {
453 		ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
454 		ypcm->voices[1]->ypcm = ypcm;
455 	}
456 	return 0;
457 }
458 
459 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
460 				      struct snd_pcm_runtime *runtime,
461 				      int has_pcm_volume)
462 {
463 	struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
464 	u32 format;
465 	u32 delta = snd_ymfpci_calc_delta(runtime->rate);
466 	u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
467 	u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
468 	struct snd_ymfpci_playback_bank *bank;
469 	unsigned int nbank;
470 	__le32 vol_left, vol_right;
471 	u8 use_left, use_right;
472 
473 	if (snd_BUG_ON(!voice))
474 		return;
475 	if (runtime->channels == 1) {
476 		use_left = 1;
477 		use_right = 1;
478 	} else {
479 		use_left = (voiceidx & 1) == 0;
480 		use_right = !use_left;
481 	}
482 	if (has_pcm_volume) {
483 		vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
484 				       [ypcm->substream->number].left << 15);
485 		vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
486 					[ypcm->substream->number].right << 15);
487 	} else {
488 		vol_left = cpu_to_le32(0x40000000);
489 		vol_right = cpu_to_le32(0x40000000);
490 	}
491 	scoped_guard(spinlock_irqsave, &ypcm->chip->voice_lock) {
492 		format = runtime->channels == 2 ? 0x00010000 : 0;
493 		if (snd_pcm_format_width(runtime->format) == 8)
494 			format |= 0x80000000;
495 		else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
496 			 runtime->rate == 44100 && runtime->channels == 2 &&
497 			 voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
498 					   ypcm->chip->src441_used == voice->number)) {
499 			ypcm->chip->src441_used = voice->number;
500 			ypcm->use_441_slot = 1;
501 			format |= 0x10000000;
502 		}
503 		if (ypcm->chip->src441_used == voice->number &&
504 		    (format & 0x10000000) == 0) {
505 			ypcm->chip->src441_used = -1;
506 			ypcm->use_441_slot = 0;
507 		}
508 		if (runtime->channels == 2 && (voiceidx & 1) != 0)
509 			format |= 1;
510 	}
511 	for (nbank = 0; nbank < 2; nbank++) {
512 		bank = &voice->bank[nbank];
513 		memset(bank, 0, sizeof(*bank));
514 		bank->format = cpu_to_le32(format);
515 		bank->base = cpu_to_le32(runtime->dma_addr);
516 		bank->loop_end = cpu_to_le32(ypcm->buffer_size);
517 		bank->lpfQ = cpu_to_le32(lpfQ);
518 		bank->delta =
519 		bank->delta_end = cpu_to_le32(delta);
520 		bank->lpfK =
521 		bank->lpfK_end = cpu_to_le32(lpfK);
522 		bank->eg_gain =
523 		bank->eg_gain_end = cpu_to_le32(0x40000000);
524 
525 		if (ypcm->output_front) {
526 			if (use_left) {
527 				bank->left_gain =
528 				bank->left_gain_end = vol_left;
529 			}
530 			if (use_right) {
531 				bank->right_gain =
532 				bank->right_gain_end = vol_right;
533 			}
534 		}
535 		if (ypcm->output_rear) {
536 		        if (!ypcm->swap_rear) {
537         			if (use_left) {
538         				bank->eff2_gain =
539         				bank->eff2_gain_end = vol_left;
540         			}
541         			if (use_right) {
542         				bank->eff3_gain =
543         				bank->eff3_gain_end = vol_right;
544         			}
545 		        } else {
546         			/* The SPDIF out channels seem to be swapped, so we have
547         			 * to swap them here, too.  The rear analog out channels
548         			 * will be wrong, but otherwise AC3 would not work.
549         			 */
550         			if (use_left) {
551         				bank->eff3_gain =
552         				bank->eff3_gain_end = vol_left;
553         			}
554         			if (use_right) {
555         				bank->eff2_gain =
556         				bank->eff2_gain_end = vol_right;
557         			}
558         		}
559                 }
560 	}
561 }
562 
563 static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
564 {
565 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev,
566 				4096, &chip->ac3_tmp_base) < 0)
567 		return -ENOMEM;
568 
569 	chip->bank_effect[3][0]->base =
570 	chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
571 	chip->bank_effect[3][0]->loop_end =
572 	chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
573 	chip->bank_effect[4][0]->base =
574 	chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
575 	chip->bank_effect[4][0]->loop_end =
576 	chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
577 
578 	guard(spinlock_irq)(&chip->reg_lock);
579 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
580 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
581 	return 0;
582 }
583 
584 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
585 {
586 	scoped_guard(spinlock_irq, &chip->reg_lock) {
587 		snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
588 				  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
589 	}
590 	// snd_ymfpci_irq_wait(chip);
591 	if (chip->ac3_tmp_base.area) {
592 		snd_dma_free_pages(&chip->ac3_tmp_base);
593 		chip->ac3_tmp_base.area = NULL;
594 	}
595 	return 0;
596 }
597 
598 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
599 					 struct snd_pcm_hw_params *hw_params)
600 {
601 	struct snd_pcm_runtime *runtime = substream->runtime;
602 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
603 	int err;
604 
605 	err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params));
606 	if (err < 0)
607 		return err;
608 	return 0;
609 }
610 
611 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
612 {
613 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
614 	struct snd_pcm_runtime *runtime = substream->runtime;
615 	struct snd_ymfpci_pcm *ypcm;
616 
617 	if (runtime->private_data == NULL)
618 		return 0;
619 	ypcm = runtime->private_data;
620 
621 	/* wait, until the PCI operations are not finished */
622 	snd_ymfpci_irq_wait(chip);
623 	if (ypcm->voices[1]) {
624 		snd_ymfpci_voice_free(chip, ypcm->voices[1]);
625 		ypcm->voices[1] = NULL;
626 	}
627 	if (ypcm->voices[0]) {
628 		snd_ymfpci_voice_free(chip, ypcm->voices[0]);
629 		ypcm->voices[0] = NULL;
630 	}
631 	return 0;
632 }
633 
634 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
635 {
636 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
637 	struct snd_pcm_runtime *runtime = substream->runtime;
638 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
639 	struct snd_kcontrol *kctl;
640 	unsigned int nvoice;
641 
642 	ypcm->period_size = runtime->period_size;
643 	ypcm->buffer_size = runtime->buffer_size;
644 	ypcm->period_pos = 0;
645 	ypcm->last_pos = 0;
646 	for (nvoice = 0; nvoice < runtime->channels; nvoice++)
647 		snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
648 					  substream->pcm == chip->pcm);
649 
650 	if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
651 		kctl = chip->pcm_mixer[substream->number].ctl;
652 		kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
653 		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
654 	}
655 	return 0;
656 }
657 
658 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
659 {
660 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
661 
662 	/* wait, until the PCI operations are not finished */
663 	snd_ymfpci_irq_wait(chip);
664 	return 0;
665 }
666 
667 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
668 {
669 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
670 	struct snd_pcm_runtime *runtime = substream->runtime;
671 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
672 	struct snd_ymfpci_capture_bank * bank;
673 	int nbank;
674 	u32 rate, format;
675 
676 	ypcm->period_size = runtime->period_size;
677 	ypcm->buffer_size = runtime->buffer_size;
678 	ypcm->period_pos = 0;
679 	ypcm->last_pos = 0;
680 	ypcm->shift = 0;
681 	rate = ((48000 * 4096) / runtime->rate) - 1;
682 	format = 0;
683 	if (runtime->channels == 2) {
684 		format |= 2;
685 		ypcm->shift++;
686 	}
687 	if (snd_pcm_format_width(runtime->format) == 8)
688 		format |= 1;
689 	else
690 		ypcm->shift++;
691 	switch (ypcm->capture_bank_number) {
692 	case 0:
693 		snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
694 		snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
695 		break;
696 	case 1:
697 		snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
698 		snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
699 		break;
700 	}
701 	for (nbank = 0; nbank < 2; nbank++) {
702 		bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
703 		bank->base = cpu_to_le32(runtime->dma_addr);
704 		bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
705 		bank->start = 0;
706 		bank->num_of_loops = 0;
707 	}
708 	return 0;
709 }
710 
711 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
712 {
713 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
714 	struct snd_pcm_runtime *runtime = substream->runtime;
715 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
716 	struct snd_ymfpci_voice *voice = ypcm->voices[0];
717 
718 	if (!(ypcm->running && voice))
719 		return 0;
720 	return le32_to_cpu(voice->bank[chip->active_bank].start);
721 }
722 
723 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
724 {
725 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
726 	struct snd_pcm_runtime *runtime = substream->runtime;
727 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
728 
729 	if (!ypcm->running)
730 		return 0;
731 	return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
732 }
733 
734 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
735 {
736 	wait_queue_entry_t wait;
737 	int loops = 4;
738 
739 	while (loops-- > 0) {
740 		if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
741 		 	continue;
742 		init_waitqueue_entry(&wait, current);
743 		add_wait_queue(&chip->interrupt_sleep, &wait);
744 		atomic_inc(&chip->interrupt_sleep_count);
745 		schedule_timeout_uninterruptible(msecs_to_jiffies(50));
746 		remove_wait_queue(&chip->interrupt_sleep, &wait);
747 	}
748 }
749 
750 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
751 {
752 	struct snd_ymfpci *chip = dev_id;
753 	u32 status, nvoice, mode;
754 	struct snd_ymfpci_voice *voice;
755 
756 	status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
757 	if (status & 0x80000000) {
758 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
759 		scoped_guard(spinlock, &chip->voice_lock) {
760 			for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
761 				voice = &chip->voices[nvoice];
762 				if (voice->interrupt)
763 					voice->interrupt(chip, voice);
764 			}
765 			for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
766 				if (chip->capture_substream[nvoice])
767 					snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
768 			}
769 #if 0
770 			for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
771 				if (chip->effect_substream[nvoice])
772 					snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
773 			}
774 #endif
775 		}
776 		scoped_guard(spinlock, &chip->reg_lock) {
777 			snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
778 			mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
779 			snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
780 		}
781 
782 		if (atomic_read(&chip->interrupt_sleep_count)) {
783 			atomic_set(&chip->interrupt_sleep_count, 0);
784 			wake_up(&chip->interrupt_sleep);
785 		}
786 	}
787 
788 	status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
789 	if (status & 1) {
790 		if (chip->timer)
791 			snd_timer_interrupt(chip->timer, chip->timer_ticks);
792 	}
793 	snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
794 
795 	if (chip->rawmidi)
796 		snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
797 	return IRQ_HANDLED;
798 }
799 
800 static const struct snd_pcm_hardware snd_ymfpci_playback =
801 {
802 	.info =			(SNDRV_PCM_INFO_MMAP |
803 				 SNDRV_PCM_INFO_MMAP_VALID |
804 				 SNDRV_PCM_INFO_INTERLEAVED |
805 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
806 				 SNDRV_PCM_INFO_PAUSE |
807 				 SNDRV_PCM_INFO_RESUME),
808 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
809 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
810 	.rate_min =		8000,
811 	.rate_max =		48000,
812 	.channels_min =		1,
813 	.channels_max =		2,
814 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
815 	.period_bytes_min =	64,
816 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
817 	.periods_min =		3,
818 	.periods_max =		1024,
819 	.fifo_size =		0,
820 };
821 
822 static const struct snd_pcm_hardware snd_ymfpci_capture =
823 {
824 	.info =			(SNDRV_PCM_INFO_MMAP |
825 				 SNDRV_PCM_INFO_MMAP_VALID |
826 				 SNDRV_PCM_INFO_INTERLEAVED |
827 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
828 				 SNDRV_PCM_INFO_PAUSE |
829 				 SNDRV_PCM_INFO_RESUME),
830 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
831 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
832 	.rate_min =		8000,
833 	.rate_max =		48000,
834 	.channels_min =		1,
835 	.channels_max =		2,
836 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
837 	.period_bytes_min =	64,
838 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
839 	.periods_min =		3,
840 	.periods_max =		1024,
841 	.fifo_size =		0,
842 };
843 
844 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
845 {
846 	kfree(runtime->private_data);
847 }
848 
849 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
850 {
851 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
852 	struct snd_pcm_runtime *runtime = substream->runtime;
853 	struct snd_ymfpci_pcm *ypcm;
854 	int err;
855 
856 	runtime->hw = snd_ymfpci_playback;
857 	/* FIXME? True value is 256/48 = 5.33333 ms */
858 	err = snd_pcm_hw_constraint_minmax(runtime,
859 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
860 					   5334, UINT_MAX);
861 	if (err < 0)
862 		return err;
863 	err = snd_pcm_hw_rule_noresample(runtime, 48000);
864 	if (err < 0)
865 		return err;
866 
867 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
868 	if (ypcm == NULL)
869 		return -ENOMEM;
870 	ypcm->chip = chip;
871 	ypcm->type = PLAYBACK_VOICE;
872 	ypcm->substream = substream;
873 	runtime->private_data = ypcm;
874 	runtime->private_free = snd_ymfpci_pcm_free_substream;
875 	return 0;
876 }
877 
878 /* call with spinlock held */
879 static void ymfpci_open_extension(struct snd_ymfpci *chip)
880 {
881 	if (! chip->rear_opened) {
882 		if (! chip->spdif_opened) /* set AC3 */
883 			snd_ymfpci_writel(chip, YDSXGR_MODE,
884 					  snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
885 		/* enable second codec (4CHEN) */
886 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
887 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
888 	}
889 }
890 
891 /* call with spinlock held */
892 static void ymfpci_close_extension(struct snd_ymfpci *chip)
893 {
894 	if (! chip->rear_opened) {
895 		if (! chip->spdif_opened)
896 			snd_ymfpci_writel(chip, YDSXGR_MODE,
897 					  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
898 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
899 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
900 	}
901 }
902 
903 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
904 {
905 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
906 	struct snd_pcm_runtime *runtime = substream->runtime;
907 	struct snd_ymfpci_pcm *ypcm;
908 	int err;
909 
910 	err = snd_ymfpci_playback_open_1(substream);
911 	if (err < 0)
912 		return err;
913 	ypcm = runtime->private_data;
914 	ypcm->output_front = 1;
915 	ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
916 	ypcm->swap_rear = 0;
917 	guard(spinlock_irq)(&chip->reg_lock);
918 	if (ypcm->output_rear) {
919 		ymfpci_open_extension(chip);
920 		chip->rear_opened++;
921 	}
922 	return 0;
923 }
924 
925 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
926 {
927 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
928 	struct snd_pcm_runtime *runtime = substream->runtime;
929 	struct snd_ymfpci_pcm *ypcm;
930 	int err;
931 
932 	err = snd_ymfpci_playback_open_1(substream);
933 	if (err < 0)
934 		return err;
935 	ypcm = runtime->private_data;
936 	ypcm->output_front = 0;
937 	ypcm->output_rear = 1;
938 	ypcm->swap_rear = 1;
939 	scoped_guard(spinlock_irq, &chip->reg_lock) {
940 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
941 				  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
942 		ymfpci_open_extension(chip);
943 		chip->spdif_pcm_bits = chip->spdif_bits;
944 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
945 		chip->spdif_opened++;
946 	}
947 
948 	chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
949 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
950 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
951 	return 0;
952 }
953 
954 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
955 {
956 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
957 	struct snd_pcm_runtime *runtime = substream->runtime;
958 	struct snd_ymfpci_pcm *ypcm;
959 	int err;
960 
961 	err = snd_ymfpci_playback_open_1(substream);
962 	if (err < 0)
963 		return err;
964 	ypcm = runtime->private_data;
965 	ypcm->output_front = 0;
966 	ypcm->output_rear = 1;
967 	ypcm->swap_rear = 0;
968 	guard(spinlock_irq)(&chip->reg_lock);
969 	ymfpci_open_extension(chip);
970 	chip->rear_opened++;
971 	return 0;
972 }
973 
974 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
975 				   u32 capture_bank_number)
976 {
977 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
978 	struct snd_pcm_runtime *runtime = substream->runtime;
979 	struct snd_ymfpci_pcm *ypcm;
980 	int err;
981 
982 	runtime->hw = snd_ymfpci_capture;
983 	/* FIXME? True value is 256/48 = 5.33333 ms */
984 	err = snd_pcm_hw_constraint_minmax(runtime,
985 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
986 					   5334, UINT_MAX);
987 	if (err < 0)
988 		return err;
989 	err = snd_pcm_hw_rule_noresample(runtime, 48000);
990 	if (err < 0)
991 		return err;
992 
993 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
994 	if (ypcm == NULL)
995 		return -ENOMEM;
996 	ypcm->chip = chip;
997 	ypcm->type = capture_bank_number + CAPTURE_REC;
998 	ypcm->substream = substream;
999 	ypcm->capture_bank_number = capture_bank_number;
1000 	chip->capture_substream[capture_bank_number] = substream;
1001 	runtime->private_data = ypcm;
1002 	runtime->private_free = snd_ymfpci_pcm_free_substream;
1003 	snd_ymfpci_hw_start(chip);
1004 	return 0;
1005 }
1006 
1007 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1008 {
1009 	return snd_ymfpci_capture_open(substream, 0);
1010 }
1011 
1012 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1013 {
1014 	return snd_ymfpci_capture_open(substream, 1);
1015 }
1016 
1017 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1018 {
1019 	return 0;
1020 }
1021 
1022 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1023 {
1024 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1025 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1026 
1027 	scoped_guard(spinlock_irq, &chip->reg_lock) {
1028 		if (ypcm->output_rear && chip->rear_opened > 0) {
1029 			chip->rear_opened--;
1030 			ymfpci_close_extension(chip);
1031 		}
1032 	}
1033 	return snd_ymfpci_playback_close_1(substream);
1034 }
1035 
1036 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1037 {
1038 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1039 
1040 	scoped_guard(spinlock_irq, &chip->reg_lock) {
1041 		chip->spdif_opened = 0;
1042 		ymfpci_close_extension(chip);
1043 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1044 				  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1045 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1046 	}
1047 	chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1048 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1049 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1050 	return snd_ymfpci_playback_close_1(substream);
1051 }
1052 
1053 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1054 {
1055 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1056 
1057 	scoped_guard(spinlock_irq, &chip->reg_lock) {
1058 		if (chip->rear_opened > 0) {
1059 			chip->rear_opened--;
1060 			ymfpci_close_extension(chip);
1061 		}
1062 	}
1063 	return snd_ymfpci_playback_close_1(substream);
1064 }
1065 
1066 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1067 {
1068 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1069 	struct snd_pcm_runtime *runtime = substream->runtime;
1070 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1071 
1072 	if (ypcm != NULL) {
1073 		chip->capture_substream[ypcm->capture_bank_number] = NULL;
1074 		snd_ymfpci_hw_stop(chip);
1075 	}
1076 	return 0;
1077 }
1078 
1079 static const struct snd_pcm_ops snd_ymfpci_playback_ops = {
1080 	.open =			snd_ymfpci_playback_open,
1081 	.close =		snd_ymfpci_playback_close,
1082 	.hw_params =		snd_ymfpci_playback_hw_params,
1083 	.hw_free =		snd_ymfpci_playback_hw_free,
1084 	.prepare =		snd_ymfpci_playback_prepare,
1085 	.trigger =		snd_ymfpci_playback_trigger,
1086 	.pointer =		snd_ymfpci_playback_pointer,
1087 };
1088 
1089 static const struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1090 	.open =			snd_ymfpci_capture_rec_open,
1091 	.close =		snd_ymfpci_capture_close,
1092 	.hw_free =		snd_ymfpci_capture_hw_free,
1093 	.prepare =		snd_ymfpci_capture_prepare,
1094 	.trigger =		snd_ymfpci_capture_trigger,
1095 	.pointer =		snd_ymfpci_capture_pointer,
1096 };
1097 
1098 int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device)
1099 {
1100 	struct snd_pcm *pcm;
1101 	int err;
1102 
1103 	err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm);
1104 	if (err < 0)
1105 		return err;
1106 	pcm->private_data = chip;
1107 
1108 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1109 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1110 
1111 	/* global setup */
1112 	pcm->info_flags = 0;
1113 	strscpy(pcm->name, "YMFPCI");
1114 	chip->pcm = pcm;
1115 
1116 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1117 				       &chip->pci->dev, 64*1024, 256*1024);
1118 
1119 	return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1120 				     snd_pcm_std_chmaps, 2, 0, NULL);
1121 }
1122 
1123 static const struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1124 	.open =			snd_ymfpci_capture_ac97_open,
1125 	.close =		snd_ymfpci_capture_close,
1126 	.hw_free =		snd_ymfpci_capture_hw_free,
1127 	.prepare =		snd_ymfpci_capture_prepare,
1128 	.trigger =		snd_ymfpci_capture_trigger,
1129 	.pointer =		snd_ymfpci_capture_pointer,
1130 };
1131 
1132 int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device)
1133 {
1134 	struct snd_pcm *pcm;
1135 	int err;
1136 
1137 	err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm);
1138 	if (err < 0)
1139 		return err;
1140 	pcm->private_data = chip;
1141 
1142 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1143 
1144 	/* global setup */
1145 	pcm->info_flags = 0;
1146 	sprintf(pcm->name, "YMFPCI - %s",
1147 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1148 	chip->pcm2 = pcm;
1149 
1150 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1151 				       &chip->pci->dev, 64*1024, 256*1024);
1152 
1153 	return 0;
1154 }
1155 
1156 static const struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1157 	.open =			snd_ymfpci_playback_spdif_open,
1158 	.close =		snd_ymfpci_playback_spdif_close,
1159 	.hw_params =		snd_ymfpci_playback_hw_params,
1160 	.hw_free =		snd_ymfpci_playback_hw_free,
1161 	.prepare =		snd_ymfpci_playback_prepare,
1162 	.trigger =		snd_ymfpci_playback_trigger,
1163 	.pointer =		snd_ymfpci_playback_pointer,
1164 };
1165 
1166 int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device)
1167 {
1168 	struct snd_pcm *pcm;
1169 	int err;
1170 
1171 	err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm);
1172 	if (err < 0)
1173 		return err;
1174 	pcm->private_data = chip;
1175 
1176 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1177 
1178 	/* global setup */
1179 	pcm->info_flags = 0;
1180 	strscpy(pcm->name, "YMFPCI - IEC958");
1181 	chip->pcm_spdif = pcm;
1182 
1183 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1184 				       &chip->pci->dev, 64*1024, 256*1024);
1185 
1186 	return 0;
1187 }
1188 
1189 static const struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1190 	.open =			snd_ymfpci_playback_4ch_open,
1191 	.close =		snd_ymfpci_playback_4ch_close,
1192 	.hw_params =		snd_ymfpci_playback_hw_params,
1193 	.hw_free =		snd_ymfpci_playback_hw_free,
1194 	.prepare =		snd_ymfpci_playback_prepare,
1195 	.trigger =		snd_ymfpci_playback_trigger,
1196 	.pointer =		snd_ymfpci_playback_pointer,
1197 };
1198 
1199 static const struct snd_pcm_chmap_elem surround_map[] = {
1200 	{ .channels = 1,
1201 	  .map = { SNDRV_CHMAP_MONO } },
1202 	{ .channels = 2,
1203 	  .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
1204 	{ }
1205 };
1206 
1207 int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device)
1208 {
1209 	struct snd_pcm *pcm;
1210 	int err;
1211 
1212 	err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm);
1213 	if (err < 0)
1214 		return err;
1215 	pcm->private_data = chip;
1216 
1217 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1218 
1219 	/* global setup */
1220 	pcm->info_flags = 0;
1221 	strscpy(pcm->name, "YMFPCI - Rear PCM");
1222 	chip->pcm_4ch = pcm;
1223 
1224 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1225 				       &chip->pci->dev, 64*1024, 256*1024);
1226 
1227 	return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1228 				     surround_map, 2, 0, NULL);
1229 }
1230 
1231 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1232 {
1233 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1234 	uinfo->count = 1;
1235 	return 0;
1236 }
1237 
1238 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1239 					struct snd_ctl_elem_value *ucontrol)
1240 {
1241 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1242 
1243 	guard(spinlock_irq)(&chip->reg_lock);
1244 	ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1245 	ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1246 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1247 	return 0;
1248 }
1249 
1250 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1251 					 struct snd_ctl_elem_value *ucontrol)
1252 {
1253 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1254 	unsigned int val;
1255 	int change;
1256 
1257 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1258 	      (ucontrol->value.iec958.status[1] << 8);
1259 	guard(spinlock_irq)(&chip->reg_lock);
1260 	change = chip->spdif_bits != val;
1261 	chip->spdif_bits = val;
1262 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1263 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1264 	return change;
1265 }
1266 
1267 static const struct snd_kcontrol_new snd_ymfpci_spdif_default =
1268 {
1269 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1270 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1271 	.info =		snd_ymfpci_spdif_default_info,
1272 	.get =		snd_ymfpci_spdif_default_get,
1273 	.put =		snd_ymfpci_spdif_default_put
1274 };
1275 
1276 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1277 {
1278 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1279 	uinfo->count = 1;
1280 	return 0;
1281 }
1282 
1283 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1284 				      struct snd_ctl_elem_value *ucontrol)
1285 {
1286 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1287 
1288 	guard(spinlock_irq)(&chip->reg_lock);
1289 	ucontrol->value.iec958.status[0] = 0x3e;
1290 	ucontrol->value.iec958.status[1] = 0xff;
1291 	return 0;
1292 }
1293 
1294 static const struct snd_kcontrol_new snd_ymfpci_spdif_mask =
1295 {
1296 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1297 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1298 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1299 	.info =		snd_ymfpci_spdif_mask_info,
1300 	.get =		snd_ymfpci_spdif_mask_get,
1301 };
1302 
1303 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1304 {
1305 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1306 	uinfo->count = 1;
1307 	return 0;
1308 }
1309 
1310 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1311 					struct snd_ctl_elem_value *ucontrol)
1312 {
1313 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1314 
1315 	guard(spinlock_irq)(&chip->reg_lock);
1316 	ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1317 	ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1318 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1319 	return 0;
1320 }
1321 
1322 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1323 					struct snd_ctl_elem_value *ucontrol)
1324 {
1325 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1326 	unsigned int val;
1327 	int change;
1328 
1329 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1330 	      (ucontrol->value.iec958.status[1] << 8);
1331 	guard(spinlock_irq)(&chip->reg_lock);
1332 	change = chip->spdif_pcm_bits != val;
1333 	chip->spdif_pcm_bits = val;
1334 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1335 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1336 	return change;
1337 }
1338 
1339 static const struct snd_kcontrol_new snd_ymfpci_spdif_stream =
1340 {
1341 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1342 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1343 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1344 	.info =		snd_ymfpci_spdif_stream_info,
1345 	.get =		snd_ymfpci_spdif_stream_get,
1346 	.put =		snd_ymfpci_spdif_stream_put
1347 };
1348 
1349 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1350 {
1351 	static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"};
1352 
1353 	return snd_ctl_enum_info(info, 1, 3, texts);
1354 }
1355 
1356 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1357 {
1358 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1359 	u16 reg;
1360 
1361 	guard(spinlock_irq)(&chip->reg_lock);
1362 	reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1363 	if (!(reg & 0x100))
1364 		value->value.enumerated.item[0] = 0;
1365 	else
1366 		value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1367 	return 0;
1368 }
1369 
1370 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1371 {
1372 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1373 	u16 reg, old_reg;
1374 
1375 	guard(spinlock_irq)(&chip->reg_lock);
1376 	old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1377 	if (value->value.enumerated.item[0] == 0)
1378 		reg = old_reg & ~0x100;
1379 	else
1380 		reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1381 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1382 	return reg != old_reg;
1383 }
1384 
1385 static const struct snd_kcontrol_new snd_ymfpci_drec_source = {
1386 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE,
1387 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
1388 	.name =		"Direct Recording Source",
1389 	.info =		snd_ymfpci_drec_source_info,
1390 	.get =		snd_ymfpci_drec_source_get,
1391 	.put =		snd_ymfpci_drec_source_put
1392 };
1393 
1394 /*
1395  *  Mixer controls
1396  */
1397 
1398 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1399 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1400   .info = snd_ymfpci_info_single, \
1401   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1402   .private_value = ((reg) | ((shift) << 16)) }
1403 
1404 #define snd_ymfpci_info_single		snd_ctl_boolean_mono_info
1405 
1406 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1407 				 struct snd_ctl_elem_value *ucontrol)
1408 {
1409 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1410 	int reg = kcontrol->private_value & 0xffff;
1411 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1412 	unsigned int mask = 1;
1413 
1414 	switch (reg) {
1415 	case YDSXGR_SPDIFOUTCTRL: break;
1416 	case YDSXGR_SPDIFINCTRL: break;
1417 	default: return -EINVAL;
1418 	}
1419 	ucontrol->value.integer.value[0] =
1420 		(snd_ymfpci_readl(chip, reg) >> shift) & mask;
1421 	return 0;
1422 }
1423 
1424 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1425 				 struct snd_ctl_elem_value *ucontrol)
1426 {
1427 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1428 	int reg = kcontrol->private_value & 0xffff;
1429 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1430  	unsigned int mask = 1;
1431 	int change;
1432 	unsigned int val, oval;
1433 
1434 	switch (reg) {
1435 	case YDSXGR_SPDIFOUTCTRL: break;
1436 	case YDSXGR_SPDIFINCTRL: break;
1437 	default: return -EINVAL;
1438 	}
1439 	val = (ucontrol->value.integer.value[0] & mask);
1440 	val <<= shift;
1441 	guard(spinlock_irq)(&chip->reg_lock);
1442 	oval = snd_ymfpci_readl(chip, reg);
1443 	val = (oval & ~(mask << shift)) | val;
1444 	change = val != oval;
1445 	snd_ymfpci_writel(chip, reg, val);
1446 	return change;
1447 }
1448 
1449 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1450 
1451 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1452 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1453   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1454   .info = snd_ymfpci_info_double, \
1455   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1456   .private_value = reg, \
1457   .tlv = { .p = db_scale_native } }
1458 
1459 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1460 {
1461 	unsigned int reg = kcontrol->private_value;
1462 
1463 	if (reg < 0x80 || reg >= 0xc0)
1464 		return -EINVAL;
1465 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1466 	uinfo->count = 2;
1467 	uinfo->value.integer.min = 0;
1468 	uinfo->value.integer.max = 16383;
1469 	return 0;
1470 }
1471 
1472 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1473 {
1474 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1475 	unsigned int reg = kcontrol->private_value;
1476 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1477 	unsigned int val;
1478 
1479 	if (reg < 0x80 || reg >= 0xc0)
1480 		return -EINVAL;
1481 	guard(spinlock_irq)(&chip->reg_lock);
1482 	val = snd_ymfpci_readl(chip, reg);
1483 	ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1484 	ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1485 	return 0;
1486 }
1487 
1488 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1489 {
1490 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1491 	unsigned int reg = kcontrol->private_value;
1492 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1493 	int change;
1494 	unsigned int val1, val2, oval;
1495 
1496 	if (reg < 0x80 || reg >= 0xc0)
1497 		return -EINVAL;
1498 	val1 = ucontrol->value.integer.value[0] & mask;
1499 	val2 = ucontrol->value.integer.value[1] & mask;
1500 	val1 <<= shift_left;
1501 	val2 <<= shift_right;
1502 	guard(spinlock_irq)(&chip->reg_lock);
1503 	oval = snd_ymfpci_readl(chip, reg);
1504 	val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1505 	change = val1 != oval;
1506 	snd_ymfpci_writel(chip, reg, val1);
1507 	return change;
1508 }
1509 
1510 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1511 				       struct snd_ctl_elem_value *ucontrol)
1512 {
1513 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1514 	unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1515 	unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1516 	int change;
1517 	unsigned int value, oval;
1518 
1519 	value = ucontrol->value.integer.value[0] & 0x3fff;
1520 	value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1521 	guard(spinlock_irq)(&chip->reg_lock);
1522 	oval = snd_ymfpci_readl(chip, reg);
1523 	change = value != oval;
1524 	snd_ymfpci_writel(chip, reg, value);
1525 	snd_ymfpci_writel(chip, reg2, value);
1526 	return change;
1527 }
1528 
1529 /*
1530  * 4ch duplication
1531  */
1532 #define snd_ymfpci_info_dup4ch		snd_ctl_boolean_mono_info
1533 
1534 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1535 {
1536 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1537 	ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1538 	return 0;
1539 }
1540 
1541 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1542 {
1543 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1544 	int change;
1545 	change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1546 	if (change)
1547 		chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1548 	return change;
1549 }
1550 
1551 static const struct snd_kcontrol_new snd_ymfpci_dup4ch = {
1552 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1553 	.name = "4ch Duplication",
1554 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1555 	.info = snd_ymfpci_info_dup4ch,
1556 	.get = snd_ymfpci_get_dup4ch,
1557 	.put = snd_ymfpci_put_dup4ch,
1558 };
1559 
1560 static const struct snd_kcontrol_new snd_ymfpci_controls[] = {
1561 {
1562 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1563 	.name = "Wave Playback Volume",
1564 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1565 		  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1566 	.info = snd_ymfpci_info_double,
1567 	.get = snd_ymfpci_get_double,
1568 	.put = snd_ymfpci_put_nativedacvol,
1569 	.private_value = YDSXGR_NATIVEDACOUTVOL,
1570 	.tlv = { .p = db_scale_native },
1571 },
1572 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1573 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1574 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1575 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1576 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1577 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1578 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1579 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL),
1580 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1581 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1582 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1583 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1584 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1585 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1586 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1587 };
1588 
1589 
1590 /*
1591  * GPIO
1592  */
1593 
1594 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1595 {
1596 	u16 reg, mode;
1597 
1598 	guard(spinlock_irqsave)(&chip->reg_lock);
1599 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1600 	reg &= ~(1 << (pin + 8));
1601 	reg |= (1 << pin);
1602 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1603 	/* set the level mode for input line */
1604 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1605 	mode &= ~(3 << (pin * 2));
1606 	snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1607 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1608 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1609 	return (mode >> pin) & 1;
1610 }
1611 
1612 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1613 {
1614 	u16 reg;
1615 
1616 	guard(spinlock_irqsave)(&chip->reg_lock);
1617 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1618 	reg &= ~(1 << pin);
1619 	reg &= ~(1 << (pin + 8));
1620 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1621 	snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1622 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1623 
1624 	return 0;
1625 }
1626 
1627 #define snd_ymfpci_gpio_sw_info		snd_ctl_boolean_mono_info
1628 
1629 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1630 {
1631 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1632 	int pin = (int)kcontrol->private_value;
1633 	ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1634 	return 0;
1635 }
1636 
1637 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1638 {
1639 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1640 	int pin = (int)kcontrol->private_value;
1641 
1642 	if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1643 		snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1644 		ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1645 		return 1;
1646 	}
1647 	return 0;
1648 }
1649 
1650 static const struct snd_kcontrol_new snd_ymfpci_rear_shared = {
1651 	.name = "Shared Rear/Line-In Switch",
1652 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1653 	.info = snd_ymfpci_gpio_sw_info,
1654 	.get = snd_ymfpci_gpio_sw_get,
1655 	.put = snd_ymfpci_gpio_sw_put,
1656 	.private_value = 2,
1657 };
1658 
1659 /*
1660  * PCM voice volume
1661  */
1662 
1663 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1664 				   struct snd_ctl_elem_info *uinfo)
1665 {
1666 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1667 	uinfo->count = 2;
1668 	uinfo->value.integer.min = 0;
1669 	uinfo->value.integer.max = 0x8000;
1670 	return 0;
1671 }
1672 
1673 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1674 				  struct snd_ctl_elem_value *ucontrol)
1675 {
1676 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1677 	unsigned int subs = kcontrol->id.subdevice;
1678 
1679 	ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1680 	ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1681 	return 0;
1682 }
1683 
1684 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1685 				  struct snd_ctl_elem_value *ucontrol)
1686 {
1687 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1688 	unsigned int subs = kcontrol->id.subdevice;
1689 	struct snd_pcm_substream *substream;
1690 
1691 	if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1692 	    ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1693 		chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1694 		chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1695 		if (chip->pcm_mixer[subs].left > 0x8000)
1696 			chip->pcm_mixer[subs].left = 0x8000;
1697 		if (chip->pcm_mixer[subs].right > 0x8000)
1698 			chip->pcm_mixer[subs].right = 0x8000;
1699 
1700 		substream = (struct snd_pcm_substream *)kcontrol->private_value;
1701 		guard(spinlock_irqsave)(&chip->voice_lock);
1702 		if (substream->runtime && substream->runtime->private_data) {
1703 			struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1704 			if (!ypcm->use_441_slot)
1705 				ypcm->update_pcm_vol = 2;
1706 		}
1707 		return 1;
1708 	}
1709 	return 0;
1710 }
1711 
1712 static const struct snd_kcontrol_new snd_ymfpci_pcm_volume = {
1713 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1714 	.name = "PCM Playback Volume",
1715 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1716 		SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1717 	.info = snd_ymfpci_pcm_vol_info,
1718 	.get = snd_ymfpci_pcm_vol_get,
1719 	.put = snd_ymfpci_pcm_vol_put,
1720 };
1721 
1722 
1723 /*
1724  *  Mixer routines
1725  */
1726 
1727 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1728 {
1729 	struct snd_ymfpci *chip = bus->private_data;
1730 	chip->ac97_bus = NULL;
1731 }
1732 
1733 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1734 {
1735 	struct snd_ymfpci *chip = ac97->private_data;
1736 	chip->ac97 = NULL;
1737 }
1738 
1739 int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1740 {
1741 	struct snd_ac97_template ac97;
1742 	struct snd_kcontrol *kctl;
1743 	struct snd_pcm_substream *substream;
1744 	unsigned int idx;
1745 	int err;
1746 	static const struct snd_ac97_bus_ops ops = {
1747 		.write = snd_ymfpci_codec_write,
1748 		.read = snd_ymfpci_codec_read,
1749 	};
1750 
1751 	err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus);
1752 	if (err < 0)
1753 		return err;
1754 	chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1755 	chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1756 
1757 	memset(&ac97, 0, sizeof(ac97));
1758 	ac97.private_data = chip;
1759 	ac97.private_free = snd_ymfpci_mixer_free_ac97;
1760 	err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97);
1761 	if (err < 0)
1762 		return err;
1763 
1764 	/* to be sure */
1765 	snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1766 			     AC97_EA_VRA|AC97_EA_VRM, 0);
1767 
1768 	for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1769 		err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip));
1770 		if (err < 0)
1771 			return err;
1772 	}
1773 	if (chip->ac97->ext_id & AC97_EI_SDAC) {
1774 		kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip);
1775 		err = snd_ctl_add(chip->card, kctl);
1776 		if (err < 0)
1777 			return err;
1778 	}
1779 
1780 	/* add S/PDIF control */
1781 	if (snd_BUG_ON(!chip->pcm_spdif))
1782 		return -ENXIO;
1783 	kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip);
1784 	kctl->id.device = chip->pcm_spdif->device;
1785 	err = snd_ctl_add(chip->card, kctl);
1786 	if (err < 0)
1787 		return err;
1788 	kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip);
1789 	kctl->id.device = chip->pcm_spdif->device;
1790 	err = snd_ctl_add(chip->card, kctl);
1791 	if (err < 0)
1792 		return err;
1793 	kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip);
1794 	kctl->id.device = chip->pcm_spdif->device;
1795 	err = snd_ctl_add(chip->card, kctl);
1796 	if (err < 0)
1797 		return err;
1798 	chip->spdif_pcm_ctl = kctl;
1799 
1800 	/* direct recording source */
1801 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754) {
1802 		kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip);
1803 		err = snd_ctl_add(chip->card, kctl);
1804 		if (err < 0)
1805 			return err;
1806 	}
1807 
1808 	/*
1809 	 * shared rear/line-in
1810 	 */
1811 	if (rear_switch) {
1812 		err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip));
1813 		if (err < 0)
1814 			return err;
1815 	}
1816 
1817 	/* per-voice volume */
1818 	substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1819 	for (idx = 0; idx < 32; ++idx) {
1820 		kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1821 		if (!kctl)
1822 			return -ENOMEM;
1823 		kctl->id.device = chip->pcm->device;
1824 		kctl->id.subdevice = idx;
1825 		kctl->private_value = (unsigned long)substream;
1826 		err = snd_ctl_add(chip->card, kctl);
1827 		if (err < 0)
1828 			return err;
1829 		chip->pcm_mixer[idx].left = 0x8000;
1830 		chip->pcm_mixer[idx].right = 0x8000;
1831 		chip->pcm_mixer[idx].ctl = kctl;
1832 		substream = substream->next;
1833 	}
1834 
1835 	return 0;
1836 }
1837 
1838 
1839 /*
1840  * timer
1841  */
1842 
1843 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1844 {
1845 	struct snd_ymfpci *chip;
1846 	unsigned int count;
1847 
1848 	chip = snd_timer_chip(timer);
1849 	guard(spinlock_irqsave)(&chip->reg_lock);
1850 	if (timer->sticks > 1) {
1851 		chip->timer_ticks = timer->sticks;
1852 		count = timer->sticks - 1;
1853 	} else {
1854 		/*
1855 		 * Divisor 1 is not allowed; fake it by using divisor 2 and
1856 		 * counting two ticks for each interrupt.
1857 		 */
1858 		chip->timer_ticks = 2;
1859 		count = 2 - 1;
1860 	}
1861 	snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1862 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1863 	return 0;
1864 }
1865 
1866 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1867 {
1868 	struct snd_ymfpci *chip;
1869 
1870 	chip = snd_timer_chip(timer);
1871 	guard(spinlock_irqsave)(&chip->reg_lock);
1872 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1873 	return 0;
1874 }
1875 
1876 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1877 					       unsigned long *num, unsigned long *den)
1878 {
1879 	*num = 1;
1880 	*den = 96000;
1881 	return 0;
1882 }
1883 
1884 static const struct snd_timer_hardware snd_ymfpci_timer_hw = {
1885 	.flags = SNDRV_TIMER_HW_AUTO,
1886 	.resolution = 10417, /* 1 / 96 kHz = 10.41666...us */
1887 	.ticks = 0x10000,
1888 	.start = snd_ymfpci_timer_start,
1889 	.stop = snd_ymfpci_timer_stop,
1890 	.precise_resolution = snd_ymfpci_timer_precise_resolution,
1891 };
1892 
1893 int snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1894 {
1895 	struct snd_timer *timer = NULL;
1896 	struct snd_timer_id tid;
1897 	int err;
1898 
1899 	tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1900 	tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1901 	tid.card = chip->card->number;
1902 	tid.device = device;
1903 	tid.subdevice = 0;
1904 	err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer);
1905 	if (err >= 0) {
1906 		strscpy(timer->name, "YMFPCI timer");
1907 		timer->private_data = chip;
1908 		timer->hw = snd_ymfpci_timer_hw;
1909 	}
1910 	chip->timer = timer;
1911 	return err;
1912 }
1913 
1914 
1915 /*
1916  *  proc interface
1917  */
1918 
1919 static void snd_ymfpci_proc_read(struct snd_info_entry *entry,
1920 				 struct snd_info_buffer *buffer)
1921 {
1922 	struct snd_ymfpci *chip = entry->private_data;
1923 	int i;
1924 
1925 	snd_iprintf(buffer, "YMFPCI\n\n");
1926 	for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1927 		snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1928 }
1929 
1930 static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1931 {
1932 	return snd_card_ro_proc_new(card, "ymfpci", chip, snd_ymfpci_proc_read);
1933 }
1934 
1935 /*
1936  *  initialization routines
1937  */
1938 
1939 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1940 {
1941 	u8 cmd;
1942 
1943 	pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1944 #if 0 // force to reset
1945 	if (cmd & 0x03) {
1946 #endif
1947 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1948 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1949 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1950 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
1951 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
1952 #if 0
1953 	}
1954 #endif
1955 }
1956 
1957 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
1958 {
1959 	snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
1960 }
1961 
1962 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
1963 {
1964 	u32 val;
1965 	int timeout = 1000;
1966 
1967 	val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
1968 	if (val)
1969 		snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
1970 	while (timeout-- > 0) {
1971 		val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
1972 		if ((val & 0x00000002) == 0)
1973 			break;
1974 	}
1975 }
1976 
1977 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
1978 {
1979 	int err, is_1e;
1980 	const char *name;
1981 
1982 	err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
1983 			       &chip->pci->dev);
1984 	if (err >= 0) {
1985 		if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
1986 			dev_err(chip->card->dev,
1987 				"DSP microcode has wrong size\n");
1988 			err = -EINVAL;
1989 		}
1990 	}
1991 	if (err < 0)
1992 		return err;
1993 	is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
1994 		chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
1995 		chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
1996 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
1997 	name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
1998 	err = request_firmware(&chip->controller_microcode, name,
1999 			       &chip->pci->dev);
2000 	if (err >= 0) {
2001 		if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
2002 			dev_err(chip->card->dev,
2003 				"controller microcode has wrong size\n");
2004 			err = -EINVAL;
2005 		}
2006 	}
2007 	if (err < 0)
2008 		return err;
2009 	return 0;
2010 }
2011 
2012 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2013 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2014 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2015 
2016 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2017 {
2018 	int i;
2019 	u16 ctrl;
2020 	const __le32 *inst;
2021 
2022 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2023 	snd_ymfpci_disable_dsp(chip);
2024 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2025 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2026 	snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2027 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2028 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2029 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2030 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2031 	ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2032 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2033 
2034 	/* setup DSP instruction code */
2035 	inst = (const __le32 *)chip->dsp_microcode->data;
2036 	for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2037 		snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
2038 				  le32_to_cpu(inst[i]));
2039 
2040 	/* setup control instruction code */
2041 	inst = (const __le32 *)chip->controller_microcode->data;
2042 	for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2043 		snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
2044 				  le32_to_cpu(inst[i]));
2045 
2046 	snd_ymfpci_enable_dsp(chip);
2047 }
2048 
2049 static int snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2050 {
2051 	long size, playback_ctrl_size;
2052 	int voice, bank, reg;
2053 	u8 *ptr;
2054 	dma_addr_t ptr_addr;
2055 
2056 	playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2057 	chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2058 	chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2059 	chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2060 	chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2061 
2062 	size = ALIGN(playback_ctrl_size, 0x100) +
2063 	       ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2064 	       ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2065 	       ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2066 	       chip->work_size;
2067 	/* work_ptr must be aligned to 256 bytes, but it's already
2068 	   covered with the kernel page allocation mechanism */
2069 	chip->work_ptr = snd_devm_alloc_pages(&chip->pci->dev,
2070 					      SNDRV_DMA_TYPE_DEV, size);
2071 	if (!chip->work_ptr)
2072 		return -ENOMEM;
2073 	ptr = chip->work_ptr->area;
2074 	ptr_addr = chip->work_ptr->addr;
2075 	memset(ptr, 0, size);	/* for sure */
2076 
2077 	chip->bank_base_playback = ptr;
2078 	chip->bank_base_playback_addr = ptr_addr;
2079 	chip->ctrl_playback = (__le32 *)ptr;
2080 	chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2081 	ptr += ALIGN(playback_ctrl_size, 0x100);
2082 	ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2083 	for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2084 		chip->voices[voice].number = voice;
2085 		chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2086 		chip->voices[voice].bank_addr = ptr_addr;
2087 		for (bank = 0; bank < 2; bank++) {
2088 			chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2089 			ptr += chip->bank_size_playback;
2090 			ptr_addr += chip->bank_size_playback;
2091 		}
2092 	}
2093 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2094 	ptr_addr = ALIGN(ptr_addr, 0x100);
2095 	chip->bank_base_capture = ptr;
2096 	chip->bank_base_capture_addr = ptr_addr;
2097 	for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2098 		for (bank = 0; bank < 2; bank++) {
2099 			chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2100 			ptr += chip->bank_size_capture;
2101 			ptr_addr += chip->bank_size_capture;
2102 		}
2103 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2104 	ptr_addr = ALIGN(ptr_addr, 0x100);
2105 	chip->bank_base_effect = ptr;
2106 	chip->bank_base_effect_addr = ptr_addr;
2107 	for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2108 		for (bank = 0; bank < 2; bank++) {
2109 			chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2110 			ptr += chip->bank_size_effect;
2111 			ptr_addr += chip->bank_size_effect;
2112 		}
2113 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2114 	ptr_addr = ALIGN(ptr_addr, 0x100);
2115 	chip->work_base = ptr;
2116 	chip->work_base_addr = ptr_addr;
2117 
2118 	snd_BUG_ON(ptr + PAGE_ALIGN(chip->work_size) !=
2119 		   chip->work_ptr->area + chip->work_ptr->bytes);
2120 
2121 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2122 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2123 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2124 	snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2125 	snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2126 
2127 	/* S/PDIF output initialization */
2128 	chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2129 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2130 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2131 
2132 	/* S/PDIF input initialization */
2133 	snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2134 
2135 	/* digital mixer setup */
2136 	for (reg = 0x80; reg < 0xc0; reg += 4)
2137 		snd_ymfpci_writel(chip, reg, 0);
2138 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2139 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
2140 	snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2141 	snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2142 	snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2143 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2144 	snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2145 	snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2146 
2147 	return 0;
2148 }
2149 
2150 static void snd_ymfpci_free(struct snd_card *card)
2151 {
2152 	struct snd_ymfpci *chip = card->private_data;
2153 	u16 ctrl;
2154 
2155 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2156 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2157 	snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2158 	snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2159 	snd_ymfpci_disable_dsp(chip);
2160 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2161 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2162 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2163 	snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2164 	snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2165 	ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2166 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2167 
2168 	snd_ymfpci_ac3_done(chip);
2169 
2170 	snd_ymfpci_free_gameport(chip);
2171 
2172 	pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY, chip->old_legacy_ctrl);
2173 
2174 	release_firmware(chip->dsp_microcode);
2175 	release_firmware(chip->controller_microcode);
2176 }
2177 
2178 static int snd_ymfpci_suspend(struct device *dev)
2179 {
2180 	struct snd_card *card = dev_get_drvdata(dev);
2181 	struct snd_ymfpci *chip = card->private_data;
2182 	unsigned int i, legacy_reg_count = DSXG_PCI_NUM_SAVED_LEGACY_REGS;
2183 
2184 	if (chip->pci->device >= 0x0010) /* YMF 744/754 */
2185 		legacy_reg_count = DSXG_PCI_NUM_SAVED_REGS;
2186 
2187 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2188 	snd_ac97_suspend(chip->ac97);
2189 
2190 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2191 		chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2192 
2193 	chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2194 
2195 	for (i = 0; i < legacy_reg_count; i++)
2196 		pci_read_config_word(chip->pci, pci_saved_regs_index[i],
2197 				      chip->saved_dsxg_pci_regs + i);
2198 
2199 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2200 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2201 	snd_ymfpci_disable_dsp(chip);
2202 	return 0;
2203 }
2204 
2205 static int snd_ymfpci_resume(struct device *dev)
2206 {
2207 	struct pci_dev *pci = to_pci_dev(dev);
2208 	struct snd_card *card = dev_get_drvdata(dev);
2209 	struct snd_ymfpci *chip = card->private_data;
2210 	unsigned int i, legacy_reg_count = DSXG_PCI_NUM_SAVED_LEGACY_REGS;
2211 
2212 	if (chip->pci->device >= 0x0010) /* YMF 744/754 */
2213 		legacy_reg_count = DSXG_PCI_NUM_SAVED_REGS;
2214 
2215 	snd_ymfpci_aclink_reset(pci);
2216 	snd_ymfpci_codec_ready(chip, 0);
2217 	snd_ymfpci_download_image(chip);
2218 	udelay(100);
2219 
2220 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2221 		snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2222 
2223 	snd_ac97_resume(chip->ac97);
2224 
2225 	for (i = 0; i < legacy_reg_count; i++)
2226 		pci_write_config_word(chip->pci, pci_saved_regs_index[i],
2227 				      chip->saved_dsxg_pci_regs[i]);
2228 
2229 	/* start hw again */
2230 	if (chip->start_count > 0) {
2231 		guard(spinlock_irq)(&chip->reg_lock);
2232 		snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2233 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2234 	}
2235 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2236 	return 0;
2237 }
2238 
2239 DEFINE_SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume);
2240 
2241 int snd_ymfpci_create(struct snd_card *card,
2242 		      struct pci_dev *pci,
2243 		      u16 old_legacy_ctrl)
2244 {
2245 	struct snd_ymfpci *chip = card->private_data;
2246 	int err;
2247 
2248 	/* enable PCI device */
2249 	err = pcim_enable_device(pci);
2250 	if (err < 0)
2251 		return err;
2252 
2253 	chip->old_legacy_ctrl = old_legacy_ctrl;
2254 	spin_lock_init(&chip->reg_lock);
2255 	spin_lock_init(&chip->voice_lock);
2256 	init_waitqueue_head(&chip->interrupt_sleep);
2257 	atomic_set(&chip->interrupt_sleep_count, 0);
2258 	chip->card = card;
2259 	chip->pci = pci;
2260 	chip->irq = -1;
2261 	chip->device_id = pci->device;
2262 	chip->rev = pci->revision;
2263 
2264 	err = pcim_request_all_regions(pci, "YMFPCI");
2265 	if (err < 0)
2266 		return err;
2267 
2268 	chip->reg_area_phys = pci_resource_start(pci, 0);
2269 	chip->reg_area_virt = devm_ioremap(&pci->dev, chip->reg_area_phys, 0x8000);
2270 	if (!chip->reg_area_virt) {
2271 		dev_err(chip->card->dev,
2272 			"unable to grab memory region 0x%lx-0x%lx\n",
2273 			chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2274 		return -EBUSY;
2275 	}
2276 	pci_set_master(pci);
2277 	chip->src441_used = -1;
2278 
2279 	if (devm_request_irq(&pci->dev, pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2280 			KBUILD_MODNAME, chip)) {
2281 		dev_err(chip->card->dev, "unable to grab IRQ %d\n", pci->irq);
2282 		return -EBUSY;
2283 	}
2284 	chip->irq = pci->irq;
2285 	card->sync_irq = chip->irq;
2286 	card->private_free = snd_ymfpci_free;
2287 
2288 	snd_ymfpci_aclink_reset(pci);
2289 	if (snd_ymfpci_codec_ready(chip, 0) < 0)
2290 		return -EIO;
2291 
2292 	err = snd_ymfpci_request_firmware(chip);
2293 	if (err < 0) {
2294 		dev_err(chip->card->dev, "firmware request failed: %d\n", err);
2295 		return err;
2296 	}
2297 	snd_ymfpci_download_image(chip);
2298 
2299 	udelay(100); /* seems we need a delay after downloading image.. */
2300 
2301 	if (snd_ymfpci_memalloc(chip) < 0)
2302 		return -EIO;
2303 
2304 	err = snd_ymfpci_ac3_init(chip);
2305 	if (err < 0)
2306 		return err;
2307 
2308 	snd_ymfpci_proc_init(card, chip);
2309 
2310 	return 0;
2311 }
2312