1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c -- Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 // with code, comments and ideas from :-
12 // Richard Purdie <richard@openedhand.com>
13
14 #include <linux/cleanup.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/init.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29
30 /**
31 * snd_soc_info_enum_double - enumerated double mixer info callback
32 * @kcontrol: mixer control
33 * @uinfo: control element information
34 *
35 * Callback to provide information about a double enumerated
36 * mixer control.
37 *
38 * Returns 0 for success.
39 */
snd_soc_info_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 struct snd_ctl_elem_info *uinfo)
42 {
43 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44
45 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49
50 /**
51 * snd_soc_get_enum_double - enumerated double mixer get callback
52 * @kcontrol: mixer control
53 * @ucontrol: control element information
54 *
55 * Callback to get the value of a double enumerated mixer.
56 *
57 * Returns 0 for success.
58 */
snd_soc_get_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 struct snd_ctl_elem_value *ucontrol)
61 {
62 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 unsigned int val, item;
65 unsigned int reg_val;
66
67 reg_val = snd_soc_component_read(component, e->reg);
68 val = (reg_val >> e->shift_l) & e->mask;
69 item = snd_soc_enum_val_to_item(e, val);
70 ucontrol->value.enumerated.item[0] = item;
71 if (e->shift_l != e->shift_r) {
72 val = (reg_val >> e->shift_r) & e->mask;
73 item = snd_soc_enum_val_to_item(e, val);
74 ucontrol->value.enumerated.item[1] = item;
75 }
76
77 return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80
81 /**
82 * snd_soc_put_enum_double - enumerated double mixer put callback
83 * @kcontrol: mixer control
84 * @ucontrol: control element information
85 *
86 * Callback to set the value of a double enumerated mixer.
87 *
88 * Returns 0 for success.
89 */
snd_soc_put_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 struct snd_ctl_elem_value *ucontrol)
92 {
93 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 unsigned int *item = ucontrol->value.enumerated.item;
96 unsigned int val;
97 unsigned int mask;
98
99 if (item[0] >= e->items)
100 return -EINVAL;
101 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 mask = e->mask << e->shift_l;
103 if (e->shift_l != e->shift_r) {
104 if (item[1] >= e->items)
105 return -EINVAL;
106 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 mask |= e->mask << e->shift_r;
108 }
109
110 return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113
114 /**
115 * snd_soc_read_signed - Read a codec register and interpret as signed value
116 * @component: component
117 * @reg: Register to read
118 * @mask: Mask to use after shifting the register value
119 * @shift: Right shift of register value
120 * @sign_bit: Bit that describes if a number is negative or not.
121 * @signed_val: Pointer to where the read value should be stored
122 *
123 * This functions reads a codec register. The register value is shifted right
124 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125 * the given registervalue into a signed integer if sign_bit is non-zero.
126 *
127 * Returns 0 on sucess, otherwise an error value
128 */
snd_soc_read_signed(struct snd_soc_component * component,unsigned int reg,unsigned int mask,unsigned int shift,unsigned int sign_bit,int * signed_val)129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 unsigned int reg, unsigned int mask, unsigned int shift,
131 unsigned int sign_bit, int *signed_val)
132 {
133 int ret;
134 unsigned int val;
135
136 val = snd_soc_component_read(component, reg);
137 val = (val >> shift) & mask;
138
139 if (!sign_bit) {
140 *signed_val = val;
141 return 0;
142 }
143
144 /* non-negative number */
145 if (!(val & BIT(sign_bit))) {
146 *signed_val = val;
147 return 0;
148 }
149
150 ret = val;
151
152 /*
153 * The register most probably does not contain a full-sized int.
154 * Instead we have an arbitrary number of bits in a signed
155 * representation which has to be translated into a full-sized int.
156 * This is done by filling up all bits above the sign-bit.
157 */
158 ret |= ~((int)(BIT(sign_bit) - 1));
159
160 *signed_val = ret;
161
162 return 0;
163 }
164
165 /**
166 * snd_soc_info_volsw - single mixer info callback
167 * @kcontrol: mixer control
168 * @uinfo: control element information
169 *
170 * Callback to provide information about a single mixer control, or a double
171 * mixer control that spans 2 registers.
172 *
173 * Returns 0 for success.
174 */
snd_soc_info_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 struct snd_ctl_elem_info *uinfo)
177 {
178 struct soc_mixer_control *mc =
179 (struct soc_mixer_control *)kcontrol->private_value;
180 const char *vol_string = NULL;
181 int max;
182
183 max = uinfo->value.integer.max = mc->max - mc->min;
184 if (mc->platform_max && mc->platform_max < max)
185 max = mc->platform_max;
186
187 if (max == 1) {
188 /* Even two value controls ending in Volume should always be integer */
189 vol_string = strstr(kcontrol->id.name, " Volume");
190 if (vol_string && !strcmp(vol_string, " Volume"))
191 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
192 else
193 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
194 } else {
195 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
196 }
197
198 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
199 uinfo->value.integer.min = 0;
200 uinfo->value.integer.max = max;
201
202 return 0;
203 }
204 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
205
206 /**
207 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
208 * @kcontrol: mixer control
209 * @uinfo: control element information
210 *
211 * Callback to provide information about a single mixer control, or a double
212 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
213 * have a range that represents both positive and negative values either side
214 * of zero but without a sign bit. min is the minimum register value, max is
215 * the number of steps.
216 *
217 * Returns 0 for success.
218 */
snd_soc_info_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)219 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
220 struct snd_ctl_elem_info *uinfo)
221 {
222 struct soc_mixer_control *mc =
223 (struct soc_mixer_control *)kcontrol->private_value;
224 int max;
225
226 if (mc->platform_max)
227 max = mc->platform_max;
228 else
229 max = mc->max;
230
231 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
232 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
233 else
234 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
235
236 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
237 uinfo->value.integer.min = 0;
238 uinfo->value.integer.max = max;
239
240 return 0;
241 }
242 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
243
244 /**
245 * snd_soc_get_volsw - single mixer get callback
246 * @kcontrol: mixer control
247 * @ucontrol: control element information
248 *
249 * Callback to get the value of a single mixer control, or a double mixer
250 * control that spans 2 registers.
251 *
252 * Returns 0 for success.
253 */
snd_soc_get_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)254 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
255 struct snd_ctl_elem_value *ucontrol)
256 {
257 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
258 struct soc_mixer_control *mc =
259 (struct soc_mixer_control *)kcontrol->private_value;
260 unsigned int reg = mc->reg;
261 unsigned int reg2 = mc->rreg;
262 unsigned int shift = mc->shift;
263 unsigned int rshift = mc->rshift;
264 int max = mc->max;
265 int min = mc->min;
266 int sign_bit = mc->sign_bit;
267 unsigned int mask = (1ULL << fls(max)) - 1;
268 unsigned int invert = mc->invert;
269 int val;
270 int ret;
271
272 if (sign_bit)
273 mask = BIT(sign_bit + 1) - 1;
274
275 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
276 if (ret)
277 return ret;
278
279 ucontrol->value.integer.value[0] = val - min;
280 if (invert)
281 ucontrol->value.integer.value[0] =
282 max - ucontrol->value.integer.value[0];
283
284 if (snd_soc_volsw_is_stereo(mc)) {
285 if (reg == reg2)
286 ret = snd_soc_read_signed(component, reg, mask, rshift,
287 sign_bit, &val);
288 else
289 ret = snd_soc_read_signed(component, reg2, mask, shift,
290 sign_bit, &val);
291 if (ret)
292 return ret;
293
294 ucontrol->value.integer.value[1] = val - min;
295 if (invert)
296 ucontrol->value.integer.value[1] =
297 max - ucontrol->value.integer.value[1];
298 }
299
300 return 0;
301 }
302 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
303
304 /**
305 * snd_soc_put_volsw - single mixer put callback
306 * @kcontrol: mixer control
307 * @ucontrol: control element information
308 *
309 * Callback to set the value of a single mixer control, or a double mixer
310 * control that spans 2 registers.
311 *
312 * Returns 0 for success.
313 */
snd_soc_put_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)314 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
315 struct snd_ctl_elem_value *ucontrol)
316 {
317 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
318 struct soc_mixer_control *mc =
319 (struct soc_mixer_control *)kcontrol->private_value;
320 unsigned int reg = mc->reg;
321 unsigned int reg2 = mc->rreg;
322 unsigned int shift = mc->shift;
323 unsigned int rshift = mc->rshift;
324 int max = mc->max;
325 int min = mc->min;
326 unsigned int sign_bit = mc->sign_bit;
327 unsigned int mask = (1 << fls(max)) - 1;
328 unsigned int invert = mc->invert;
329 int err, ret;
330 bool type_2r = false;
331 unsigned int val2 = 0;
332 unsigned int val, val_mask;
333
334 if (sign_bit)
335 mask = BIT(sign_bit + 1) - 1;
336
337 if (ucontrol->value.integer.value[0] < 0)
338 return -EINVAL;
339 val = ucontrol->value.integer.value[0];
340 if (mc->platform_max && ((int)val + min) > mc->platform_max)
341 return -EINVAL;
342 if (val > max - min)
343 return -EINVAL;
344 val = (val + min) & mask;
345 if (invert)
346 val = max - val;
347 val_mask = mask << shift;
348 val = val << shift;
349 if (snd_soc_volsw_is_stereo(mc)) {
350 if (ucontrol->value.integer.value[1] < 0)
351 return -EINVAL;
352 val2 = ucontrol->value.integer.value[1];
353 if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
354 return -EINVAL;
355 if (val2 > max - min)
356 return -EINVAL;
357 val2 = (val2 + min) & mask;
358 if (invert)
359 val2 = max - val2;
360 if (reg == reg2) {
361 val_mask |= mask << rshift;
362 val |= val2 << rshift;
363 } else {
364 val2 = val2 << shift;
365 type_2r = true;
366 }
367 }
368 err = snd_soc_component_update_bits(component, reg, val_mask, val);
369 if (err < 0)
370 return err;
371 ret = err;
372
373 if (type_2r) {
374 err = snd_soc_component_update_bits(component, reg2, val_mask,
375 val2);
376 /* Don't discard any error code or drop change flag */
377 if (ret == 0 || err < 0) {
378 ret = err;
379 }
380 }
381
382 return ret;
383 }
384 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
385
386 /**
387 * snd_soc_get_volsw_sx - single mixer get callback
388 * @kcontrol: mixer control
389 * @ucontrol: control element information
390 *
391 * Callback to get the value of a single mixer control, or a double mixer
392 * control that spans 2 registers.
393 *
394 * Returns 0 for success.
395 */
snd_soc_get_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)396 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
397 struct snd_ctl_elem_value *ucontrol)
398 {
399 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
400 struct soc_mixer_control *mc =
401 (struct soc_mixer_control *)kcontrol->private_value;
402 unsigned int reg = mc->reg;
403 unsigned int reg2 = mc->rreg;
404 unsigned int shift = mc->shift;
405 unsigned int rshift = mc->rshift;
406 int max = mc->max;
407 int min = mc->min;
408 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
409 unsigned int val;
410
411 val = snd_soc_component_read(component, reg);
412 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
413
414 if (snd_soc_volsw_is_stereo(mc)) {
415 val = snd_soc_component_read(component, reg2);
416 val = ((val >> rshift) - min) & mask;
417 ucontrol->value.integer.value[1] = val;
418 }
419
420 return 0;
421 }
422 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
423
424 /**
425 * snd_soc_put_volsw_sx - double mixer set callback
426 * @kcontrol: mixer control
427 * @ucontrol: control element information
428 *
429 * Callback to set the value of a double mixer control that spans 2 registers.
430 *
431 * Returns 0 for success.
432 */
snd_soc_put_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)433 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
434 struct snd_ctl_elem_value *ucontrol)
435 {
436 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
437 struct soc_mixer_control *mc =
438 (struct soc_mixer_control *)kcontrol->private_value;
439
440 unsigned int reg = mc->reg;
441 unsigned int reg2 = mc->rreg;
442 unsigned int shift = mc->shift;
443 unsigned int rshift = mc->rshift;
444 int max = mc->max;
445 int min = mc->min;
446 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
447 int err = 0;
448 int ret;
449 unsigned int val, val_mask;
450
451 if (ucontrol->value.integer.value[0] < 0)
452 return -EINVAL;
453 val = ucontrol->value.integer.value[0];
454 if (mc->platform_max && val > mc->platform_max)
455 return -EINVAL;
456 if (val > max)
457 return -EINVAL;
458 val_mask = mask << shift;
459 val = (val + min) & mask;
460 val = val << shift;
461
462 err = snd_soc_component_update_bits(component, reg, val_mask, val);
463 if (err < 0)
464 return err;
465 ret = err;
466
467 if (snd_soc_volsw_is_stereo(mc)) {
468 unsigned int val2 = ucontrol->value.integer.value[1];
469
470 if (mc->platform_max && val2 > mc->platform_max)
471 return -EINVAL;
472 if (val2 > max)
473 return -EINVAL;
474
475 val_mask = mask << rshift;
476 val2 = (val2 + min) & mask;
477 val2 = val2 << rshift;
478
479 err = snd_soc_component_update_bits(component, reg2, val_mask,
480 val2);
481
482 /* Don't discard any error code or drop change flag */
483 if (ret == 0 || err < 0) {
484 ret = err;
485 }
486 }
487 return ret;
488 }
489 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
490
491 /**
492 * snd_soc_info_volsw_range - single mixer info callback with range.
493 * @kcontrol: mixer control
494 * @uinfo: control element information
495 *
496 * Callback to provide information, within a range, about a single
497 * mixer control.
498 *
499 * returns 0 for success.
500 */
snd_soc_info_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)501 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
502 struct snd_ctl_elem_info *uinfo)
503 {
504 struct soc_mixer_control *mc =
505 (struct soc_mixer_control *)kcontrol->private_value;
506 int platform_max;
507 int min = mc->min;
508
509 if (!mc->platform_max)
510 mc->platform_max = mc->max;
511 platform_max = mc->platform_max;
512
513 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
514 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
515 uinfo->value.integer.min = 0;
516 uinfo->value.integer.max = platform_max - min;
517
518 return 0;
519 }
520 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
521
522 /**
523 * snd_soc_put_volsw_range - single mixer put value callback with range.
524 * @kcontrol: mixer control
525 * @ucontrol: control element information
526 *
527 * Callback to set the value, within a range, for a single mixer control.
528 *
529 * Returns 0 for success.
530 */
snd_soc_put_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)531 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
532 struct snd_ctl_elem_value *ucontrol)
533 {
534 struct soc_mixer_control *mc =
535 (struct soc_mixer_control *)kcontrol->private_value;
536 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
537 unsigned int reg = mc->reg;
538 unsigned int rreg = mc->rreg;
539 unsigned int shift = mc->shift;
540 int min = mc->min;
541 int max = mc->max;
542 unsigned int mask = (1 << fls(max)) - 1;
543 unsigned int invert = mc->invert;
544 unsigned int val, val_mask;
545 int err, ret, tmp;
546
547 tmp = ucontrol->value.integer.value[0];
548 if (tmp < 0)
549 return -EINVAL;
550 if (mc->platform_max && tmp > mc->platform_max)
551 return -EINVAL;
552 if (tmp > mc->max - mc->min)
553 return -EINVAL;
554
555 if (invert)
556 val = (max - ucontrol->value.integer.value[0]) & mask;
557 else
558 val = ((ucontrol->value.integer.value[0] + min) & mask);
559 val_mask = mask << shift;
560 val = val << shift;
561
562 err = snd_soc_component_update_bits(component, reg, val_mask, val);
563 if (err < 0)
564 return err;
565 ret = err;
566
567 if (snd_soc_volsw_is_stereo(mc)) {
568 tmp = ucontrol->value.integer.value[1];
569 if (tmp < 0)
570 return -EINVAL;
571 if (mc->platform_max && tmp > mc->platform_max)
572 return -EINVAL;
573 if (tmp > mc->max - mc->min)
574 return -EINVAL;
575
576 if (invert)
577 val = (max - ucontrol->value.integer.value[1]) & mask;
578 else
579 val = ((ucontrol->value.integer.value[1] + min) & mask);
580 val_mask = mask << shift;
581 val = val << shift;
582
583 err = snd_soc_component_update_bits(component, rreg, val_mask,
584 val);
585 /* Don't discard any error code or drop change flag */
586 if (ret == 0 || err < 0) {
587 ret = err;
588 }
589 }
590
591 return ret;
592 }
593 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
594
595 /**
596 * snd_soc_get_volsw_range - single mixer get callback with range
597 * @kcontrol: mixer control
598 * @ucontrol: control element information
599 *
600 * Callback to get the value, within a range, of a single mixer control.
601 *
602 * Returns 0 for success.
603 */
snd_soc_get_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)604 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
605 struct snd_ctl_elem_value *ucontrol)
606 {
607 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
608 struct soc_mixer_control *mc =
609 (struct soc_mixer_control *)kcontrol->private_value;
610 unsigned int reg = mc->reg;
611 unsigned int rreg = mc->rreg;
612 unsigned int shift = mc->shift;
613 int min = mc->min;
614 int max = mc->max;
615 unsigned int mask = (1 << fls(max)) - 1;
616 unsigned int invert = mc->invert;
617 unsigned int val;
618
619 val = snd_soc_component_read(component, reg);
620 ucontrol->value.integer.value[0] = (val >> shift) & mask;
621 if (invert)
622 ucontrol->value.integer.value[0] =
623 max - ucontrol->value.integer.value[0];
624 else
625 ucontrol->value.integer.value[0] =
626 ucontrol->value.integer.value[0] - min;
627
628 if (snd_soc_volsw_is_stereo(mc)) {
629 val = snd_soc_component_read(component, rreg);
630 ucontrol->value.integer.value[1] = (val >> shift) & mask;
631 if (invert)
632 ucontrol->value.integer.value[1] =
633 max - ucontrol->value.integer.value[1];
634 else
635 ucontrol->value.integer.value[1] =
636 ucontrol->value.integer.value[1] - min;
637 }
638
639 return 0;
640 }
641 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
642
643 /**
644 * snd_soc_limit_volume - Set new limit to an existing volume control.
645 *
646 * @card: where to look for the control
647 * @name: Name of the control
648 * @max: new maximum limit
649 *
650 * Return 0 for success, else error.
651 */
snd_soc_limit_volume(struct snd_soc_card * card,const char * name,int max)652 int snd_soc_limit_volume(struct snd_soc_card *card,
653 const char *name, int max)
654 {
655 struct snd_kcontrol *kctl;
656 int ret = -EINVAL;
657
658 /* Sanity check for name and max */
659 if (unlikely(!name || max <= 0))
660 return -EINVAL;
661
662 kctl = snd_soc_card_get_kcontrol(card, name);
663 if (kctl) {
664 struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
665 if (max <= mc->max - mc->min) {
666 mc->platform_max = max;
667 ret = 0;
668 }
669 }
670 return ret;
671 }
672 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
673
snd_soc_bytes_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)674 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
675 struct snd_ctl_elem_info *uinfo)
676 {
677 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
678 struct soc_bytes *params = (void *)kcontrol->private_value;
679
680 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
681 uinfo->count = params->num_regs * component->val_bytes;
682
683 return 0;
684 }
685 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
686
snd_soc_bytes_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)687 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
688 struct snd_ctl_elem_value *ucontrol)
689 {
690 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
691 struct soc_bytes *params = (void *)kcontrol->private_value;
692 int ret;
693
694 if (component->regmap)
695 ret = regmap_raw_read(component->regmap, params->base,
696 ucontrol->value.bytes.data,
697 params->num_regs * component->val_bytes);
698 else
699 ret = -EINVAL;
700
701 /* Hide any masked bytes to ensure consistent data reporting */
702 if (ret == 0 && params->mask) {
703 switch (component->val_bytes) {
704 case 1:
705 ucontrol->value.bytes.data[0] &= ~params->mask;
706 break;
707 case 2:
708 ((u16 *)(&ucontrol->value.bytes.data))[0]
709 &= cpu_to_be16(~params->mask);
710 break;
711 case 4:
712 ((u32 *)(&ucontrol->value.bytes.data))[0]
713 &= cpu_to_be32(~params->mask);
714 break;
715 default:
716 return -EINVAL;
717 }
718 }
719
720 return ret;
721 }
722 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
723
snd_soc_bytes_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)724 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
725 struct snd_ctl_elem_value *ucontrol)
726 {
727 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
728 struct soc_bytes *params = (void *)kcontrol->private_value;
729 int ret, len;
730 unsigned int val, mask;
731
732 if (!component->regmap || !params->num_regs)
733 return -EINVAL;
734
735 len = params->num_regs * component->val_bytes;
736
737 void *data __free(kfree) = kmemdup(ucontrol->value.bytes.data, len,
738 GFP_KERNEL | GFP_DMA);
739 if (!data)
740 return -ENOMEM;
741
742 /*
743 * If we've got a mask then we need to preserve the register
744 * bits. We shouldn't modify the incoming data so take a
745 * copy.
746 */
747 if (params->mask) {
748 ret = regmap_read(component->regmap, params->base, &val);
749 if (ret != 0)
750 return ret;
751
752 val &= params->mask;
753
754 switch (component->val_bytes) {
755 case 1:
756 ((u8 *)data)[0] &= ~params->mask;
757 ((u8 *)data)[0] |= val;
758 break;
759 case 2:
760 mask = ~params->mask;
761 ret = regmap_parse_val(component->regmap,
762 &mask, &mask);
763 if (ret != 0)
764 return ret;
765
766 ((u16 *)data)[0] &= mask;
767
768 ret = regmap_parse_val(component->regmap,
769 &val, &val);
770 if (ret != 0)
771 return ret;
772
773 ((u16 *)data)[0] |= val;
774 break;
775 case 4:
776 mask = ~params->mask;
777 ret = regmap_parse_val(component->regmap,
778 &mask, &mask);
779 if (ret != 0)
780 return ret;
781
782 ((u32 *)data)[0] &= mask;
783
784 ret = regmap_parse_val(component->regmap,
785 &val, &val);
786 if (ret != 0)
787 return ret;
788
789 ((u32 *)data)[0] |= val;
790 break;
791 default:
792 return -EINVAL;
793 }
794 }
795
796 return regmap_raw_write(component->regmap, params->base, data, len);
797 }
798 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
799
snd_soc_bytes_info_ext(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * ucontrol)800 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
801 struct snd_ctl_elem_info *ucontrol)
802 {
803 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
804
805 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
806 ucontrol->count = params->max;
807
808 return 0;
809 }
810 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
811
snd_soc_bytes_tlv_callback(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)812 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
813 unsigned int size, unsigned int __user *tlv)
814 {
815 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
816 unsigned int count = size < params->max ? size : params->max;
817 int ret = -ENXIO;
818
819 switch (op_flag) {
820 case SNDRV_CTL_TLV_OP_READ:
821 if (params->get)
822 ret = params->get(kcontrol, tlv, count);
823 break;
824 case SNDRV_CTL_TLV_OP_WRITE:
825 if (params->put)
826 ret = params->put(kcontrol, tlv, count);
827 break;
828 }
829 return ret;
830 }
831 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
832
833 /**
834 * snd_soc_info_xr_sx - signed multi register info callback
835 * @kcontrol: mreg control
836 * @uinfo: control element information
837 *
838 * Callback to provide information of a control that can
839 * span multiple codec registers which together
840 * forms a single signed value in a MSB/LSB manner.
841 *
842 * Returns 0 for success.
843 */
snd_soc_info_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)844 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
845 struct snd_ctl_elem_info *uinfo)
846 {
847 struct soc_mreg_control *mc =
848 (struct soc_mreg_control *)kcontrol->private_value;
849 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
850 uinfo->count = 1;
851 uinfo->value.integer.min = mc->min;
852 uinfo->value.integer.max = mc->max;
853
854 return 0;
855 }
856 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
857
858 /**
859 * snd_soc_get_xr_sx - signed multi register get callback
860 * @kcontrol: mreg control
861 * @ucontrol: control element information
862 *
863 * Callback to get the value of a control that can span
864 * multiple codec registers which together forms a single
865 * signed value in a MSB/LSB manner. The control supports
866 * specifying total no of bits used to allow for bitfields
867 * across the multiple codec registers.
868 *
869 * Returns 0 for success.
870 */
snd_soc_get_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)871 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
872 struct snd_ctl_elem_value *ucontrol)
873 {
874 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
875 struct soc_mreg_control *mc =
876 (struct soc_mreg_control *)kcontrol->private_value;
877 unsigned int regbase = mc->regbase;
878 unsigned int regcount = mc->regcount;
879 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
880 unsigned int regwmask = (1UL<<regwshift)-1;
881 unsigned int invert = mc->invert;
882 unsigned long mask = (1UL<<mc->nbits)-1;
883 long min = mc->min;
884 long max = mc->max;
885 long val = 0;
886 unsigned int i;
887
888 for (i = 0; i < regcount; i++) {
889 unsigned int regval = snd_soc_component_read(component, regbase+i);
890 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
891 }
892 val &= mask;
893 if (min < 0 && val > max)
894 val |= ~mask;
895 if (invert)
896 val = max - val;
897 ucontrol->value.integer.value[0] = val;
898
899 return 0;
900 }
901 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
902
903 /**
904 * snd_soc_put_xr_sx - signed multi register get callback
905 * @kcontrol: mreg control
906 * @ucontrol: control element information
907 *
908 * Callback to set the value of a control that can span
909 * multiple codec registers which together forms a single
910 * signed value in a MSB/LSB manner. The control supports
911 * specifying total no of bits used to allow for bitfields
912 * across the multiple codec registers.
913 *
914 * Returns 0 for success.
915 */
snd_soc_put_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)916 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
917 struct snd_ctl_elem_value *ucontrol)
918 {
919 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
920 struct soc_mreg_control *mc =
921 (struct soc_mreg_control *)kcontrol->private_value;
922 unsigned int regbase = mc->regbase;
923 unsigned int regcount = mc->regcount;
924 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
925 unsigned int regwmask = (1UL<<regwshift)-1;
926 unsigned int invert = mc->invert;
927 unsigned long mask = (1UL<<mc->nbits)-1;
928 long max = mc->max;
929 long val = ucontrol->value.integer.value[0];
930 int ret = 0;
931 unsigned int i;
932
933 if (val < mc->min || val > mc->max)
934 return -EINVAL;
935 if (invert)
936 val = max - val;
937 val &= mask;
938 for (i = 0; i < regcount; i++) {
939 unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
940 unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
941 int err = snd_soc_component_update_bits(component, regbase+i,
942 regmask, regval);
943 if (err < 0)
944 return err;
945 if (err > 0)
946 ret = err;
947 }
948
949 return ret;
950 }
951 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
952
953 /**
954 * snd_soc_get_strobe - strobe get callback
955 * @kcontrol: mixer control
956 * @ucontrol: control element information
957 *
958 * Callback get the value of a strobe mixer control.
959 *
960 * Returns 0 for success.
961 */
snd_soc_get_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)962 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
963 struct snd_ctl_elem_value *ucontrol)
964 {
965 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
966 struct soc_mixer_control *mc =
967 (struct soc_mixer_control *)kcontrol->private_value;
968 unsigned int reg = mc->reg;
969 unsigned int shift = mc->shift;
970 unsigned int mask = 1 << shift;
971 unsigned int invert = mc->invert != 0;
972 unsigned int val;
973
974 val = snd_soc_component_read(component, reg);
975 val &= mask;
976
977 if (shift != 0 && val != 0)
978 val = val >> shift;
979 ucontrol->value.enumerated.item[0] = val ^ invert;
980
981 return 0;
982 }
983 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
984
985 /**
986 * snd_soc_put_strobe - strobe put callback
987 * @kcontrol: mixer control
988 * @ucontrol: control element information
989 *
990 * Callback strobe a register bit to high then low (or the inverse)
991 * in one pass of a single mixer enum control.
992 *
993 * Returns 1 for success.
994 */
snd_soc_put_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)995 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
996 struct snd_ctl_elem_value *ucontrol)
997 {
998 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
999 struct soc_mixer_control *mc =
1000 (struct soc_mixer_control *)kcontrol->private_value;
1001 unsigned int reg = mc->reg;
1002 unsigned int shift = mc->shift;
1003 unsigned int mask = 1 << shift;
1004 unsigned int invert = mc->invert != 0;
1005 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
1006 unsigned int val1 = (strobe ^ invert) ? mask : 0;
1007 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
1008 int err;
1009
1010 err = snd_soc_component_update_bits(component, reg, mask, val1);
1011 if (err < 0)
1012 return err;
1013
1014 return snd_soc_component_update_bits(component, reg, mask, val2);
1015 }
1016 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
1017