1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * USB Audio Driver for ALSA 4 * 5 * Quirks and vendor-specific extensions for mixer interfaces 6 * 7 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de> 8 * 9 * Many codes borrowed from audio.c by 10 * Alan Cox (alan@lxorguk.ukuu.org.uk) 11 * Thomas Sailer (sailer@ife.ee.ethz.ch) 12 * 13 * Audio Advantage Micro II support added by: 14 * Przemek Rudy (prudy1@o2.pl) 15 */ 16 17 #include <linux/bitfield.h> 18 #include <linux/hid.h> 19 #include <linux/init.h> 20 #include <linux/input.h> 21 #include <linux/math64.h> 22 #include <linux/slab.h> 23 #include <linux/usb.h> 24 #include <linux/usb/audio.h> 25 26 #include <sound/asoundef.h> 27 #include <sound/core.h> 28 #include <sound/control.h> 29 #include <sound/hda_verbs.h> 30 #include <sound/hwdep.h> 31 #include <sound/info.h> 32 #include <sound/tlv.h> 33 34 #include "usbaudio.h" 35 #include "mixer.h" 36 #include "mixer_quirks.h" 37 #include "mixer_scarlett.h" 38 #include "mixer_scarlett2.h" 39 #include "mixer_us16x08.h" 40 #include "mixer_s1810c.h" 41 #include "helper.h" 42 #include "fcp.h" 43 44 struct std_mono_table { 45 unsigned int unitid, control, cmask; 46 int val_type; 47 const char *name; 48 snd_kcontrol_tlv_rw_t *tlv_callback; 49 }; 50 51 /* This function allows for the creation of standard UAC controls. 52 * See the quirks for M-Audio FTUs or Ebox-44. 53 * If you don't want to set a TLV callback pass NULL. 54 * 55 * Since there doesn't seem to be a devices that needs a multichannel 56 * version, we keep it mono for simplicity. 57 */ 58 static int snd_create_std_mono_ctl_offset(struct usb_mixer_interface *mixer, 59 unsigned int unitid, 60 unsigned int control, 61 unsigned int cmask, 62 int val_type, 63 unsigned int idx_off, 64 const char *name, 65 snd_kcontrol_tlv_rw_t *tlv_callback) 66 { 67 struct usb_mixer_elem_info *cval; 68 struct snd_kcontrol *kctl; 69 70 cval = kzalloc(sizeof(*cval), GFP_KERNEL); 71 if (!cval) 72 return -ENOMEM; 73 74 snd_usb_mixer_elem_init_std(&cval->head, mixer, unitid); 75 cval->val_type = val_type; 76 cval->channels = 1; 77 cval->control = control; 78 cval->cmask = cmask; 79 cval->idx_off = idx_off; 80 81 /* get_min_max() is called only for integer volumes later, 82 * so provide a short-cut for booleans 83 */ 84 cval->min = 0; 85 cval->max = 1; 86 cval->res = 0; 87 cval->dBmin = 0; 88 cval->dBmax = 0; 89 90 /* Create control */ 91 kctl = snd_ctl_new1(snd_usb_feature_unit_ctl, cval); 92 if (!kctl) { 93 kfree(cval); 94 return -ENOMEM; 95 } 96 97 /* Set name */ 98 snprintf(kctl->id.name, sizeof(kctl->id.name), name); 99 kctl->private_free = snd_usb_mixer_elem_free; 100 101 /* set TLV */ 102 if (tlv_callback) { 103 kctl->tlv.c = tlv_callback; 104 kctl->vd[0].access |= 105 SNDRV_CTL_ELEM_ACCESS_TLV_READ | 106 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK; 107 } 108 /* Add control to mixer */ 109 return snd_usb_mixer_add_control(&cval->head, kctl); 110 } 111 112 static int snd_create_std_mono_ctl(struct usb_mixer_interface *mixer, 113 unsigned int unitid, 114 unsigned int control, 115 unsigned int cmask, 116 int val_type, 117 const char *name, 118 snd_kcontrol_tlv_rw_t *tlv_callback) 119 { 120 return snd_create_std_mono_ctl_offset(mixer, unitid, control, cmask, 121 val_type, 0 /* Offset */, 122 name, tlv_callback); 123 } 124 125 /* 126 * Create a set of standard UAC controls from a table 127 */ 128 static int snd_create_std_mono_table(struct usb_mixer_interface *mixer, 129 const struct std_mono_table *t) 130 { 131 int err; 132 133 while (t->name) { 134 err = snd_create_std_mono_ctl(mixer, t->unitid, t->control, 135 t->cmask, t->val_type, t->name, 136 t->tlv_callback); 137 if (err < 0) 138 return err; 139 t++; 140 } 141 142 return 0; 143 } 144 145 static int add_single_ctl_with_resume(struct usb_mixer_interface *mixer, 146 int id, 147 usb_mixer_elem_resume_func_t resume, 148 const struct snd_kcontrol_new *knew, 149 struct usb_mixer_elem_list **listp) 150 { 151 struct usb_mixer_elem_list *list; 152 struct snd_kcontrol *kctl; 153 154 list = kzalloc(sizeof(*list), GFP_KERNEL); 155 if (!list) 156 return -ENOMEM; 157 if (listp) 158 *listp = list; 159 list->mixer = mixer; 160 list->id = id; 161 list->resume = resume; 162 kctl = snd_ctl_new1(knew, list); 163 if (!kctl) { 164 kfree(list); 165 return -ENOMEM; 166 } 167 kctl->private_free = snd_usb_mixer_elem_free; 168 /* don't use snd_usb_mixer_add_control() here, this is a special list element */ 169 return snd_usb_mixer_add_list(list, kctl, false); 170 } 171 172 /* 173 * Sound Blaster remote control configuration 174 * 175 * format of remote control data: 176 * Extigy: xx 00 177 * Audigy 2 NX: 06 80 xx 00 00 00 178 * Live! 24-bit: 06 80 xx yy 22 83 179 */ 180 static const struct rc_config { 181 u32 usb_id; 182 u8 offset; 183 u8 length; 184 u8 packet_length; 185 u8 min_packet_length; /* minimum accepted length of the URB result */ 186 u8 mute_mixer_id; 187 u32 mute_code; 188 } rc_configs[] = { 189 { USB_ID(0x041e, 0x3000), 0, 1, 2, 1, 18, 0x0013 }, /* Extigy */ 190 { USB_ID(0x041e, 0x3020), 2, 1, 6, 6, 18, 0x0013 }, /* Audigy 2 NX */ 191 { USB_ID(0x041e, 0x3040), 2, 2, 6, 6, 2, 0x6e91 }, /* Live! 24-bit */ 192 { USB_ID(0x041e, 0x3042), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 */ 193 { USB_ID(0x041e, 0x30df), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */ 194 { USB_ID(0x041e, 0x3237), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */ 195 { USB_ID(0x041e, 0x3263), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */ 196 { USB_ID(0x041e, 0x3048), 2, 2, 6, 6, 2, 0x6e91 }, /* Toshiba SB0500 */ 197 }; 198 199 static void snd_usb_soundblaster_remote_complete(struct urb *urb) 200 { 201 struct usb_mixer_interface *mixer = urb->context; 202 const struct rc_config *rc = mixer->rc_cfg; 203 u32 code; 204 205 if (urb->status < 0 || urb->actual_length < rc->min_packet_length) 206 return; 207 208 code = mixer->rc_buffer[rc->offset]; 209 if (rc->length == 2) 210 code |= mixer->rc_buffer[rc->offset + 1] << 8; 211 212 /* the Mute button actually changes the mixer control */ 213 if (code == rc->mute_code) 214 snd_usb_mixer_notify_id(mixer, rc->mute_mixer_id); 215 mixer->rc_code = code; 216 wake_up(&mixer->rc_waitq); 217 } 218 219 static long snd_usb_sbrc_hwdep_read(struct snd_hwdep *hw, char __user *buf, 220 long count, loff_t *offset) 221 { 222 struct usb_mixer_interface *mixer = hw->private_data; 223 int err; 224 u32 rc_code; 225 226 if (count != 1 && count != 4) 227 return -EINVAL; 228 err = wait_event_interruptible(mixer->rc_waitq, 229 (rc_code = xchg(&mixer->rc_code, 0)) != 0); 230 if (err == 0) { 231 if (count == 1) 232 err = put_user(rc_code, buf); 233 else 234 err = put_user(rc_code, (u32 __user *)buf); 235 } 236 return err < 0 ? err : count; 237 } 238 239 static __poll_t snd_usb_sbrc_hwdep_poll(struct snd_hwdep *hw, struct file *file, 240 poll_table *wait) 241 { 242 struct usb_mixer_interface *mixer = hw->private_data; 243 244 poll_wait(file, &mixer->rc_waitq, wait); 245 return mixer->rc_code ? EPOLLIN | EPOLLRDNORM : 0; 246 } 247 248 static int snd_usb_soundblaster_remote_init(struct usb_mixer_interface *mixer) 249 { 250 struct snd_hwdep *hwdep; 251 int err, len, i; 252 253 for (i = 0; i < ARRAY_SIZE(rc_configs); ++i) 254 if (rc_configs[i].usb_id == mixer->chip->usb_id) 255 break; 256 if (i >= ARRAY_SIZE(rc_configs)) 257 return 0; 258 mixer->rc_cfg = &rc_configs[i]; 259 260 len = mixer->rc_cfg->packet_length; 261 262 init_waitqueue_head(&mixer->rc_waitq); 263 err = snd_hwdep_new(mixer->chip->card, "SB remote control", 0, &hwdep); 264 if (err < 0) 265 return err; 266 snprintf(hwdep->name, sizeof(hwdep->name), 267 "%s remote control", mixer->chip->card->shortname); 268 hwdep->iface = SNDRV_HWDEP_IFACE_SB_RC; 269 hwdep->private_data = mixer; 270 hwdep->ops.read = snd_usb_sbrc_hwdep_read; 271 hwdep->ops.poll = snd_usb_sbrc_hwdep_poll; 272 hwdep->exclusive = 1; 273 274 mixer->rc_urb = usb_alloc_urb(0, GFP_KERNEL); 275 if (!mixer->rc_urb) 276 return -ENOMEM; 277 mixer->rc_setup_packet = kmalloc(sizeof(*mixer->rc_setup_packet), GFP_KERNEL); 278 if (!mixer->rc_setup_packet) { 279 usb_free_urb(mixer->rc_urb); 280 mixer->rc_urb = NULL; 281 return -ENOMEM; 282 } 283 mixer->rc_setup_packet->bRequestType = 284 USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE; 285 mixer->rc_setup_packet->bRequest = UAC_GET_MEM; 286 mixer->rc_setup_packet->wValue = cpu_to_le16(0); 287 mixer->rc_setup_packet->wIndex = cpu_to_le16(0); 288 mixer->rc_setup_packet->wLength = cpu_to_le16(len); 289 usb_fill_control_urb(mixer->rc_urb, mixer->chip->dev, 290 usb_rcvctrlpipe(mixer->chip->dev, 0), 291 (u8 *)mixer->rc_setup_packet, mixer->rc_buffer, len, 292 snd_usb_soundblaster_remote_complete, mixer); 293 return 0; 294 } 295 296 #define snd_audigy2nx_led_info snd_ctl_boolean_mono_info 297 298 static int snd_audigy2nx_led_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 299 { 300 ucontrol->value.integer.value[0] = kcontrol->private_value >> 8; 301 return 0; 302 } 303 304 static int snd_audigy2nx_led_update(struct usb_mixer_interface *mixer, 305 int value, int index) 306 { 307 struct snd_usb_audio *chip = mixer->chip; 308 int err; 309 310 CLASS(snd_usb_lock, pm)(chip); 311 if (pm.err < 0) 312 return pm.err; 313 314 if (chip->usb_id == USB_ID(0x041e, 0x3042)) 315 err = snd_usb_ctl_msg(chip->dev, 316 usb_sndctrlpipe(chip->dev, 0), 0x24, 317 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER, 318 !value, 0, NULL, 0); 319 /* USB X-Fi S51 Pro */ 320 if (chip->usb_id == USB_ID(0x041e, 0x30df)) 321 err = snd_usb_ctl_msg(chip->dev, 322 usb_sndctrlpipe(chip->dev, 0), 0x24, 323 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER, 324 !value, 0, NULL, 0); 325 else 326 err = snd_usb_ctl_msg(chip->dev, 327 usb_sndctrlpipe(chip->dev, 0), 0x24, 328 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER, 329 value, index + 2, NULL, 0); 330 return err; 331 } 332 333 static int snd_audigy2nx_led_put(struct snd_kcontrol *kcontrol, 334 struct snd_ctl_elem_value *ucontrol) 335 { 336 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); 337 struct usb_mixer_interface *mixer = list->mixer; 338 int index = kcontrol->private_value & 0xff; 339 unsigned int value = ucontrol->value.integer.value[0]; 340 int old_value = kcontrol->private_value >> 8; 341 int err; 342 343 if (value > 1) 344 return -EINVAL; 345 if (value == old_value) 346 return 0; 347 kcontrol->private_value = (value << 8) | index; 348 err = snd_audigy2nx_led_update(mixer, value, index); 349 return err < 0 ? err : 1; 350 } 351 352 static int snd_audigy2nx_led_resume(struct usb_mixer_elem_list *list) 353 { 354 int priv_value = list->kctl->private_value; 355 356 return snd_audigy2nx_led_update(list->mixer, priv_value >> 8, 357 priv_value & 0xff); 358 } 359 360 /* name and private_value are set dynamically */ 361 static const struct snd_kcontrol_new snd_audigy2nx_control = { 362 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 363 .info = snd_audigy2nx_led_info, 364 .get = snd_audigy2nx_led_get, 365 .put = snd_audigy2nx_led_put, 366 }; 367 368 static const char * const snd_audigy2nx_led_names[] = { 369 "CMSS LED Switch", 370 "Power LED Switch", 371 "Dolby Digital LED Switch", 372 }; 373 374 static int snd_audigy2nx_controls_create(struct usb_mixer_interface *mixer) 375 { 376 int i, err; 377 378 for (i = 0; i < ARRAY_SIZE(snd_audigy2nx_led_names); ++i) { 379 struct snd_kcontrol_new knew; 380 381 /* USB X-Fi S51 doesn't have a CMSS LED */ 382 if (mixer->chip->usb_id == USB_ID(0x041e, 0x3042) && i == 0) 383 continue; 384 /* USB X-Fi S51 Pro doesn't have one either */ 385 if (mixer->chip->usb_id == USB_ID(0x041e, 0x30df) && i == 0) 386 continue; 387 if (i > 1 && /* Live24ext has 2 LEDs only */ 388 (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) || 389 mixer->chip->usb_id == USB_ID(0x041e, 0x3042) || 390 mixer->chip->usb_id == USB_ID(0x041e, 0x30df) || 391 mixer->chip->usb_id == USB_ID(0x041e, 0x3048))) 392 break; 393 394 knew = snd_audigy2nx_control; 395 knew.name = snd_audigy2nx_led_names[i]; 396 knew.private_value = (1 << 8) | i; /* LED on as default */ 397 err = add_single_ctl_with_resume(mixer, 0, 398 snd_audigy2nx_led_resume, 399 &knew, NULL); 400 if (err < 0) 401 return err; 402 } 403 return 0; 404 } 405 406 static void snd_audigy2nx_proc_read(struct snd_info_entry *entry, 407 struct snd_info_buffer *buffer) 408 { 409 static const struct sb_jack { 410 int unitid; 411 const char *name; 412 } jacks_audigy2nx[] = { 413 {4, "dig in "}, 414 {7, "line in"}, 415 {19, "spk out"}, 416 {20, "hph out"}, 417 {-1, NULL} 418 }, jacks_live24ext[] = { 419 {4, "line in"}, /* &1=Line, &2=Mic*/ 420 {3, "hph out"}, /* headphones */ 421 {0, "RC "}, /* last command, 6 bytes see rc_config above */ 422 {-1, NULL} 423 }; 424 const struct sb_jack *jacks; 425 struct usb_mixer_interface *mixer = entry->private_data; 426 int i, err; 427 u8 buf[3]; 428 429 snd_iprintf(buffer, "%s jacks\n\n", mixer->chip->card->shortname); 430 if (mixer->chip->usb_id == USB_ID(0x041e, 0x3020)) 431 jacks = jacks_audigy2nx; 432 else if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) || 433 mixer->chip->usb_id == USB_ID(0x041e, 0x3048)) 434 jacks = jacks_live24ext; 435 else 436 return; 437 438 for (i = 0; jacks[i].name; ++i) { 439 snd_iprintf(buffer, "%s: ", jacks[i].name); 440 CLASS(snd_usb_lock, pm)(mixer->chip); 441 if (pm.err < 0) 442 return; 443 err = snd_usb_ctl_msg(mixer->chip->dev, 444 usb_rcvctrlpipe(mixer->chip->dev, 0), 445 UAC_GET_MEM, USB_DIR_IN | USB_TYPE_CLASS | 446 USB_RECIP_INTERFACE, 0, 447 jacks[i].unitid << 8, buf, 3); 448 if (err == 3 && (buf[0] == 3 || buf[0] == 6)) 449 snd_iprintf(buffer, "%02x %02x\n", buf[1], buf[2]); 450 else 451 snd_iprintf(buffer, "?\n"); 452 } 453 } 454 455 /* EMU0204 */ 456 static int snd_emu0204_ch_switch_info(struct snd_kcontrol *kcontrol, 457 struct snd_ctl_elem_info *uinfo) 458 { 459 static const char * const texts[2] = {"1/2", "3/4"}; 460 461 return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts); 462 } 463 464 static int snd_emu0204_ch_switch_get(struct snd_kcontrol *kcontrol, 465 struct snd_ctl_elem_value *ucontrol) 466 { 467 ucontrol->value.enumerated.item[0] = kcontrol->private_value; 468 return 0; 469 } 470 471 static int snd_emu0204_ch_switch_update(struct usb_mixer_interface *mixer, 472 int value) 473 { 474 struct snd_usb_audio *chip = mixer->chip; 475 unsigned char buf[2]; 476 477 CLASS(snd_usb_lock, pm)(chip); 478 if (pm.err < 0) 479 return pm.err; 480 481 buf[0] = 0x01; 482 buf[1] = value ? 0x02 : 0x01; 483 return snd_usb_ctl_msg(chip->dev, 484 usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR, 485 USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT, 486 0x0400, 0x0e00, buf, 2); 487 } 488 489 static int snd_emu0204_ch_switch_put(struct snd_kcontrol *kcontrol, 490 struct snd_ctl_elem_value *ucontrol) 491 { 492 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); 493 struct usb_mixer_interface *mixer = list->mixer; 494 unsigned int value = ucontrol->value.enumerated.item[0]; 495 int err; 496 497 if (value > 1) 498 return -EINVAL; 499 500 if (value == kcontrol->private_value) 501 return 0; 502 503 kcontrol->private_value = value; 504 err = snd_emu0204_ch_switch_update(mixer, value); 505 return err < 0 ? err : 1; 506 } 507 508 static int snd_emu0204_ch_switch_resume(struct usb_mixer_elem_list *list) 509 { 510 return snd_emu0204_ch_switch_update(list->mixer, 511 list->kctl->private_value); 512 } 513 514 static const struct snd_kcontrol_new snd_emu0204_control = { 515 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 516 .name = "Front Jack Channels", 517 .info = snd_emu0204_ch_switch_info, 518 .get = snd_emu0204_ch_switch_get, 519 .put = snd_emu0204_ch_switch_put, 520 .private_value = 0, 521 }; 522 523 static int snd_emu0204_controls_create(struct usb_mixer_interface *mixer) 524 { 525 return add_single_ctl_with_resume(mixer, 0, 526 snd_emu0204_ch_switch_resume, 527 &snd_emu0204_control, NULL); 528 } 529 530 #if IS_REACHABLE(CONFIG_INPUT) 531 /* 532 * Sony DualSense controller (PS5) jack detection 533 * 534 * Since this is an UAC 1 device, it doesn't support jack detection. 535 * However, the controller hid-playstation driver reports HP & MIC 536 * insert events through a dedicated input device. 537 */ 538 539 #define SND_DUALSENSE_JACK_OUT_TERM_ID 3 540 #define SND_DUALSENSE_JACK_IN_TERM_ID 4 541 542 struct dualsense_mixer_elem_info { 543 struct usb_mixer_elem_info info; 544 struct input_handler ih; 545 struct input_device_id id_table[2]; 546 bool connected; 547 }; 548 549 static void snd_dualsense_ih_event(struct input_handle *handle, 550 unsigned int type, unsigned int code, 551 int value) 552 { 553 struct dualsense_mixer_elem_info *mei; 554 struct usb_mixer_elem_list *me; 555 556 if (type != EV_SW) 557 return; 558 559 mei = container_of(handle->handler, struct dualsense_mixer_elem_info, ih); 560 me = &mei->info.head; 561 562 if ((me->id == SND_DUALSENSE_JACK_OUT_TERM_ID && code == SW_HEADPHONE_INSERT) || 563 (me->id == SND_DUALSENSE_JACK_IN_TERM_ID && code == SW_MICROPHONE_INSERT)) { 564 mei->connected = !!value; 565 snd_ctl_notify(me->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE, 566 &me->kctl->id); 567 } 568 } 569 570 static bool snd_dualsense_ih_match(struct input_handler *handler, 571 struct input_dev *dev) 572 { 573 struct dualsense_mixer_elem_info *mei; 574 struct usb_device *snd_dev; 575 char *input_dev_path, *usb_dev_path; 576 size_t usb_dev_path_len; 577 bool match = false; 578 579 mei = container_of(handler, struct dualsense_mixer_elem_info, ih); 580 snd_dev = mei->info.head.mixer->chip->dev; 581 582 input_dev_path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 583 if (!input_dev_path) { 584 dev_warn(&snd_dev->dev, "Failed to get input dev path\n"); 585 return false; 586 } 587 588 usb_dev_path = kobject_get_path(&snd_dev->dev.kobj, GFP_KERNEL); 589 if (!usb_dev_path) { 590 dev_warn(&snd_dev->dev, "Failed to get USB dev path\n"); 591 goto free_paths; 592 } 593 594 /* 595 * Ensure the VID:PID matched input device supposedly owned by the 596 * hid-playstation driver belongs to the actual hardware handled by 597 * the current USB audio device, which implies input_dev_path being 598 * a subpath of usb_dev_path. 599 * 600 * This verification is necessary when there is more than one identical 601 * controller attached to the host system. 602 */ 603 usb_dev_path_len = strlen(usb_dev_path); 604 if (usb_dev_path_len >= strlen(input_dev_path)) 605 goto free_paths; 606 607 usb_dev_path[usb_dev_path_len] = '/'; 608 match = !memcmp(input_dev_path, usb_dev_path, usb_dev_path_len + 1); 609 610 free_paths: 611 kfree(input_dev_path); 612 kfree(usb_dev_path); 613 614 return match; 615 } 616 617 static int snd_dualsense_ih_connect(struct input_handler *handler, 618 struct input_dev *dev, 619 const struct input_device_id *id) 620 { 621 struct input_handle *handle; 622 int err; 623 624 handle = kzalloc(sizeof(*handle), GFP_KERNEL); 625 if (!handle) 626 return -ENOMEM; 627 628 handle->dev = dev; 629 handle->handler = handler; 630 handle->name = handler->name; 631 632 err = input_register_handle(handle); 633 if (err) 634 goto err_free; 635 636 err = input_open_device(handle); 637 if (err) 638 goto err_unregister; 639 640 return 0; 641 642 err_unregister: 643 input_unregister_handle(handle); 644 err_free: 645 kfree(handle); 646 return err; 647 } 648 649 static void snd_dualsense_ih_disconnect(struct input_handle *handle) 650 { 651 input_close_device(handle); 652 input_unregister_handle(handle); 653 kfree(handle); 654 } 655 656 static void snd_dualsense_ih_start(struct input_handle *handle) 657 { 658 struct dualsense_mixer_elem_info *mei; 659 struct usb_mixer_elem_list *me; 660 int status = -1; 661 662 mei = container_of(handle->handler, struct dualsense_mixer_elem_info, ih); 663 me = &mei->info.head; 664 665 if (me->id == SND_DUALSENSE_JACK_OUT_TERM_ID && 666 test_bit(SW_HEADPHONE_INSERT, handle->dev->swbit)) 667 status = test_bit(SW_HEADPHONE_INSERT, handle->dev->sw); 668 else if (me->id == SND_DUALSENSE_JACK_IN_TERM_ID && 669 test_bit(SW_MICROPHONE_INSERT, handle->dev->swbit)) 670 status = test_bit(SW_MICROPHONE_INSERT, handle->dev->sw); 671 672 if (status >= 0) { 673 mei->connected = !!status; 674 snd_ctl_notify(me->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE, 675 &me->kctl->id); 676 } 677 } 678 679 static int snd_dualsense_jack_get(struct snd_kcontrol *kctl, 680 struct snd_ctl_elem_value *ucontrol) 681 { 682 struct dualsense_mixer_elem_info *mei = snd_kcontrol_chip(kctl); 683 684 ucontrol->value.integer.value[0] = mei->connected; 685 686 return 0; 687 } 688 689 static const struct snd_kcontrol_new snd_dualsense_jack_control = { 690 .iface = SNDRV_CTL_ELEM_IFACE_CARD, 691 .access = SNDRV_CTL_ELEM_ACCESS_READ, 692 .info = snd_ctl_boolean_mono_info, 693 .get = snd_dualsense_jack_get, 694 }; 695 696 static int snd_dualsense_resume_jack(struct usb_mixer_elem_list *list) 697 { 698 snd_ctl_notify(list->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE, 699 &list->kctl->id); 700 return 0; 701 } 702 703 static void snd_dualsense_mixer_elem_free(struct snd_kcontrol *kctl) 704 { 705 struct dualsense_mixer_elem_info *mei = snd_kcontrol_chip(kctl); 706 707 if (mei->ih.event) 708 input_unregister_handler(&mei->ih); 709 710 snd_usb_mixer_elem_free(kctl); 711 } 712 713 static int snd_dualsense_jack_create(struct usb_mixer_interface *mixer, 714 const char *name, bool is_output) 715 { 716 struct dualsense_mixer_elem_info *mei; 717 struct input_device_id *idev_id; 718 struct snd_kcontrol *kctl; 719 int err; 720 721 mei = kzalloc(sizeof(*mei), GFP_KERNEL); 722 if (!mei) 723 return -ENOMEM; 724 725 snd_usb_mixer_elem_init_std(&mei->info.head, mixer, 726 is_output ? SND_DUALSENSE_JACK_OUT_TERM_ID : 727 SND_DUALSENSE_JACK_IN_TERM_ID); 728 729 mei->info.head.resume = snd_dualsense_resume_jack; 730 mei->info.val_type = USB_MIXER_BOOLEAN; 731 mei->info.channels = 1; 732 mei->info.min = 0; 733 mei->info.max = 1; 734 735 kctl = snd_ctl_new1(&snd_dualsense_jack_control, mei); 736 if (!kctl) { 737 kfree(mei); 738 return -ENOMEM; 739 } 740 741 strscpy(kctl->id.name, name, sizeof(kctl->id.name)); 742 kctl->private_free = snd_dualsense_mixer_elem_free; 743 744 err = snd_usb_mixer_add_control(&mei->info.head, kctl); 745 if (err) 746 return err; 747 748 idev_id = &mei->id_table[0]; 749 idev_id->flags = INPUT_DEVICE_ID_MATCH_VENDOR | INPUT_DEVICE_ID_MATCH_PRODUCT | 750 INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_SWBIT; 751 idev_id->vendor = USB_ID_VENDOR(mixer->chip->usb_id); 752 idev_id->product = USB_ID_PRODUCT(mixer->chip->usb_id); 753 idev_id->evbit[BIT_WORD(EV_SW)] = BIT_MASK(EV_SW); 754 if (is_output) 755 idev_id->swbit[BIT_WORD(SW_HEADPHONE_INSERT)] = BIT_MASK(SW_HEADPHONE_INSERT); 756 else 757 idev_id->swbit[BIT_WORD(SW_MICROPHONE_INSERT)] = BIT_MASK(SW_MICROPHONE_INSERT); 758 759 mei->ih.event = snd_dualsense_ih_event; 760 mei->ih.match = snd_dualsense_ih_match; 761 mei->ih.connect = snd_dualsense_ih_connect; 762 mei->ih.disconnect = snd_dualsense_ih_disconnect; 763 mei->ih.start = snd_dualsense_ih_start; 764 mei->ih.name = name; 765 mei->ih.id_table = mei->id_table; 766 767 err = input_register_handler(&mei->ih); 768 if (err) { 769 dev_warn(&mixer->chip->dev->dev, 770 "Could not register input handler: %d\n", err); 771 mei->ih.event = NULL; 772 } 773 774 return 0; 775 } 776 777 static int snd_dualsense_controls_create(struct usb_mixer_interface *mixer) 778 { 779 int err; 780 781 err = snd_dualsense_jack_create(mixer, "Headphone Jack", true); 782 if (err < 0) 783 return err; 784 785 return snd_dualsense_jack_create(mixer, "Headset Mic Jack", false); 786 } 787 #endif /* IS_REACHABLE(CONFIG_INPUT) */ 788 789 /* ASUS Xonar U1 / U3 controls */ 790 791 static int snd_xonar_u1_switch_get(struct snd_kcontrol *kcontrol, 792 struct snd_ctl_elem_value *ucontrol) 793 { 794 ucontrol->value.integer.value[0] = !!(kcontrol->private_value & 0x02); 795 return 0; 796 } 797 798 static int snd_xonar_u1_switch_update(struct usb_mixer_interface *mixer, 799 unsigned char status) 800 { 801 struct snd_usb_audio *chip = mixer->chip; 802 803 CLASS(snd_usb_lock, pm)(chip); 804 if (pm.err < 0) 805 return pm.err; 806 return snd_usb_ctl_msg(chip->dev, 807 usb_sndctrlpipe(chip->dev, 0), 0x08, 808 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER, 809 50, 0, &status, 1); 810 } 811 812 static int snd_xonar_u1_switch_put(struct snd_kcontrol *kcontrol, 813 struct snd_ctl_elem_value *ucontrol) 814 { 815 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); 816 u8 old_status, new_status; 817 int err; 818 819 old_status = kcontrol->private_value; 820 if (ucontrol->value.integer.value[0]) 821 new_status = old_status | 0x02; 822 else 823 new_status = old_status & ~0x02; 824 if (new_status == old_status) 825 return 0; 826 827 kcontrol->private_value = new_status; 828 err = snd_xonar_u1_switch_update(list->mixer, new_status); 829 return err < 0 ? err : 1; 830 } 831 832 static int snd_xonar_u1_switch_resume(struct usb_mixer_elem_list *list) 833 { 834 return snd_xonar_u1_switch_update(list->mixer, 835 list->kctl->private_value); 836 } 837 838 static const struct snd_kcontrol_new snd_xonar_u1_output_switch = { 839 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 840 .name = "Digital Playback Switch", 841 .info = snd_ctl_boolean_mono_info, 842 .get = snd_xonar_u1_switch_get, 843 .put = snd_xonar_u1_switch_put, 844 .private_value = 0x05, 845 }; 846 847 static int snd_xonar_u1_controls_create(struct usb_mixer_interface *mixer) 848 { 849 return add_single_ctl_with_resume(mixer, 0, 850 snd_xonar_u1_switch_resume, 851 &snd_xonar_u1_output_switch, NULL); 852 } 853 854 /* Digidesign Mbox 1 helper functions */ 855 856 static int snd_mbox1_is_spdif_synced(struct snd_usb_audio *chip) 857 { 858 unsigned char buff[3]; 859 int err; 860 int is_spdif_synced; 861 862 /* Read clock source */ 863 err = snd_usb_ctl_msg(chip->dev, 864 usb_rcvctrlpipe(chip->dev, 0), 0x81, 865 USB_DIR_IN | 866 USB_TYPE_CLASS | 867 USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3); 868 if (err < 0) 869 return err; 870 871 /* spdif sync: buff is all zeroes */ 872 is_spdif_synced = !(buff[0] | buff[1] | buff[2]); 873 return is_spdif_synced; 874 } 875 876 static int snd_mbox1_set_clk_source(struct snd_usb_audio *chip, int rate_or_zero) 877 { 878 /* 2 possibilities: Internal -> expects sample rate 879 * S/PDIF sync -> expects rate = 0 880 */ 881 unsigned char buff[3]; 882 883 buff[0] = (rate_or_zero >> 0) & 0xff; 884 buff[1] = (rate_or_zero >> 8) & 0xff; 885 buff[2] = (rate_or_zero >> 16) & 0xff; 886 887 /* Set clock source */ 888 return snd_usb_ctl_msg(chip->dev, 889 usb_sndctrlpipe(chip->dev, 0), 0x1, 890 USB_TYPE_CLASS | 891 USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3); 892 } 893 894 static int snd_mbox1_is_spdif_input(struct snd_usb_audio *chip) 895 { 896 /* Hardware gives 2 possibilities: ANALOG Source -> 0x01 897 * S/PDIF Source -> 0x02 898 */ 899 int err; 900 unsigned char source[1]; 901 902 /* Read input source */ 903 err = snd_usb_ctl_msg(chip->dev, 904 usb_rcvctrlpipe(chip->dev, 0), 0x81, 905 USB_DIR_IN | 906 USB_TYPE_CLASS | 907 USB_RECIP_INTERFACE, 0x00, 0x500, source, 1); 908 if (err < 0) 909 return err; 910 911 return (source[0] == 2); 912 } 913 914 static int snd_mbox1_set_input_source(struct snd_usb_audio *chip, int is_spdif) 915 { 916 /* NB: Setting the input source to S/PDIF resets the clock source to S/PDIF 917 * Hardware expects 2 possibilities: ANALOG Source -> 0x01 918 * S/PDIF Source -> 0x02 919 */ 920 unsigned char buff[1]; 921 922 buff[0] = (is_spdif & 1) + 1; 923 924 /* Set input source */ 925 return snd_usb_ctl_msg(chip->dev, 926 usb_sndctrlpipe(chip->dev, 0), 0x1, 927 USB_TYPE_CLASS | 928 USB_RECIP_INTERFACE, 0x00, 0x500, buff, 1); 929 } 930 931 /* Digidesign Mbox 1 clock source switch (internal/spdif) */ 932 933 static int snd_mbox1_clk_switch_get(struct snd_kcontrol *kctl, 934 struct snd_ctl_elem_value *ucontrol) 935 { 936 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl); 937 struct snd_usb_audio *chip = list->mixer->chip; 938 int err; 939 940 CLASS(snd_usb_lock, pm)(chip); 941 if (pm.err < 0) 942 return pm.err; 943 944 err = snd_mbox1_is_spdif_synced(chip); 945 if (err < 0) 946 return err; 947 948 kctl->private_value = err; 949 ucontrol->value.enumerated.item[0] = kctl->private_value; 950 return 0; 951 } 952 953 static int snd_mbox1_clk_switch_update(struct usb_mixer_interface *mixer, int is_spdif_sync) 954 { 955 struct snd_usb_audio *chip = mixer->chip; 956 int err; 957 958 CLASS(snd_usb_lock, pm)(chip); 959 if (pm.err < 0) 960 return pm.err; 961 962 err = snd_mbox1_is_spdif_input(chip); 963 if (err < 0) 964 return err; 965 966 err = snd_mbox1_is_spdif_synced(chip); 967 if (err < 0) 968 return err; 969 970 /* FIXME: hardcoded sample rate */ 971 err = snd_mbox1_set_clk_source(chip, is_spdif_sync ? 0 : 48000); 972 if (err < 0) 973 return err; 974 975 return snd_mbox1_is_spdif_synced(chip); 976 } 977 978 static int snd_mbox1_clk_switch_put(struct snd_kcontrol *kctl, 979 struct snd_ctl_elem_value *ucontrol) 980 { 981 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl); 982 struct usb_mixer_interface *mixer = list->mixer; 983 int err; 984 bool cur_val, new_val; 985 986 cur_val = kctl->private_value; 987 new_val = ucontrol->value.enumerated.item[0]; 988 if (cur_val == new_val) 989 return 0; 990 991 kctl->private_value = new_val; 992 err = snd_mbox1_clk_switch_update(mixer, new_val); 993 return err < 0 ? err : 1; 994 } 995 996 static int snd_mbox1_clk_switch_info(struct snd_kcontrol *kcontrol, 997 struct snd_ctl_elem_info *uinfo) 998 { 999 static const char *const texts[2] = { 1000 "Internal", 1001 "S/PDIF" 1002 }; 1003 1004 return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts); 1005 } 1006 1007 static int snd_mbox1_clk_switch_resume(struct usb_mixer_elem_list *list) 1008 { 1009 return snd_mbox1_clk_switch_update(list->mixer, list->kctl->private_value); 1010 } 1011 1012 /* Digidesign Mbox 1 input source switch (analog/spdif) */ 1013 1014 static int snd_mbox1_src_switch_get(struct snd_kcontrol *kctl, 1015 struct snd_ctl_elem_value *ucontrol) 1016 { 1017 ucontrol->value.enumerated.item[0] = kctl->private_value; 1018 return 0; 1019 } 1020 1021 static int snd_mbox1_src_switch_update(struct usb_mixer_interface *mixer, int is_spdif_input) 1022 { 1023 struct snd_usb_audio *chip = mixer->chip; 1024 int err; 1025 1026 CLASS(snd_usb_lock, pm)(chip); 1027 if (pm.err < 0) 1028 return pm.err; 1029 1030 err = snd_mbox1_is_spdif_input(chip); 1031 if (err < 0) 1032 return err; 1033 1034 err = snd_mbox1_set_input_source(chip, is_spdif_input); 1035 if (err < 0) 1036 return err; 1037 1038 err = snd_mbox1_is_spdif_input(chip); 1039 if (err < 0) 1040 return err; 1041 1042 return snd_mbox1_is_spdif_synced(chip); 1043 } 1044 1045 static int snd_mbox1_src_switch_put(struct snd_kcontrol *kctl, 1046 struct snd_ctl_elem_value *ucontrol) 1047 { 1048 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl); 1049 struct usb_mixer_interface *mixer = list->mixer; 1050 int err; 1051 bool cur_val, new_val; 1052 1053 cur_val = kctl->private_value; 1054 new_val = ucontrol->value.enumerated.item[0]; 1055 if (cur_val == new_val) 1056 return 0; 1057 1058 kctl->private_value = new_val; 1059 err = snd_mbox1_src_switch_update(mixer, new_val); 1060 return err < 0 ? err : 1; 1061 } 1062 1063 static int snd_mbox1_src_switch_info(struct snd_kcontrol *kcontrol, 1064 struct snd_ctl_elem_info *uinfo) 1065 { 1066 static const char *const texts[2] = { 1067 "Analog", 1068 "S/PDIF" 1069 }; 1070 1071 return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts); 1072 } 1073 1074 static int snd_mbox1_src_switch_resume(struct usb_mixer_elem_list *list) 1075 { 1076 return snd_mbox1_src_switch_update(list->mixer, list->kctl->private_value); 1077 } 1078 1079 static const struct snd_kcontrol_new snd_mbox1_clk_switch = { 1080 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1081 .name = "Clock Source", 1082 .index = 0, 1083 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1084 .info = snd_mbox1_clk_switch_info, 1085 .get = snd_mbox1_clk_switch_get, 1086 .put = snd_mbox1_clk_switch_put, 1087 .private_value = 0 1088 }; 1089 1090 static const struct snd_kcontrol_new snd_mbox1_src_switch = { 1091 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1092 .name = "Input Source", 1093 .index = 1, 1094 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1095 .info = snd_mbox1_src_switch_info, 1096 .get = snd_mbox1_src_switch_get, 1097 .put = snd_mbox1_src_switch_put, 1098 .private_value = 0 1099 }; 1100 1101 static int snd_mbox1_controls_create(struct usb_mixer_interface *mixer) 1102 { 1103 int err; 1104 1105 err = add_single_ctl_with_resume(mixer, 0, 1106 snd_mbox1_clk_switch_resume, 1107 &snd_mbox1_clk_switch, NULL); 1108 if (err < 0) 1109 return err; 1110 1111 return add_single_ctl_with_resume(mixer, 1, 1112 snd_mbox1_src_switch_resume, 1113 &snd_mbox1_src_switch, NULL); 1114 } 1115 1116 /* Native Instruments device quirks */ 1117 1118 #define _MAKE_NI_CONTROL(bRequest, wIndex) ((bRequest) << 16 | (wIndex)) 1119 1120 static int snd_ni_control_init_val(struct usb_mixer_interface *mixer, 1121 struct snd_kcontrol *kctl) 1122 { 1123 struct usb_device *dev = mixer->chip->dev; 1124 unsigned int pval = kctl->private_value; 1125 u8 value; 1126 int err; 1127 1128 err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), 1129 (pval >> 16) & 0xff, 1130 USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN, 1131 0, pval & 0xffff, &value, 1); 1132 if (err < 0) { 1133 dev_err(&dev->dev, 1134 "unable to issue vendor read request (ret = %d)", err); 1135 return err; 1136 } 1137 1138 kctl->private_value |= ((unsigned int)value << 24); 1139 return 0; 1140 } 1141 1142 static int snd_nativeinstruments_control_get(struct snd_kcontrol *kcontrol, 1143 struct snd_ctl_elem_value *ucontrol) 1144 { 1145 ucontrol->value.integer.value[0] = kcontrol->private_value >> 24; 1146 return 0; 1147 } 1148 1149 static int snd_ni_update_cur_val(struct usb_mixer_elem_list *list) 1150 { 1151 struct snd_usb_audio *chip = list->mixer->chip; 1152 unsigned int pval = list->kctl->private_value; 1153 1154 CLASS(snd_usb_lock, pm)(chip); 1155 if (pm.err < 0) 1156 return pm.err; 1157 return usb_control_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), 1158 (pval >> 16) & 0xff, 1159 USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT, 1160 pval >> 24, pval & 0xffff, NULL, 0, 1000); 1161 } 1162 1163 static int snd_nativeinstruments_control_put(struct snd_kcontrol *kcontrol, 1164 struct snd_ctl_elem_value *ucontrol) 1165 { 1166 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); 1167 u8 oldval = (kcontrol->private_value >> 24) & 0xff; 1168 u8 newval = ucontrol->value.integer.value[0]; 1169 int err; 1170 1171 if (oldval == newval) 1172 return 0; 1173 1174 kcontrol->private_value &= ~(0xff << 24); 1175 kcontrol->private_value |= (unsigned int)newval << 24; 1176 err = snd_ni_update_cur_val(list); 1177 return err < 0 ? err : 1; 1178 } 1179 1180 static const struct snd_kcontrol_new snd_nativeinstruments_ta6_mixers[] = { 1181 { 1182 .name = "Direct Thru Channel A", 1183 .private_value = _MAKE_NI_CONTROL(0x01, 0x03), 1184 }, 1185 { 1186 .name = "Direct Thru Channel B", 1187 .private_value = _MAKE_NI_CONTROL(0x01, 0x05), 1188 }, 1189 { 1190 .name = "Phono Input Channel A", 1191 .private_value = _MAKE_NI_CONTROL(0x02, 0x03), 1192 }, 1193 { 1194 .name = "Phono Input Channel B", 1195 .private_value = _MAKE_NI_CONTROL(0x02, 0x05), 1196 }, 1197 }; 1198 1199 static const struct snd_kcontrol_new snd_nativeinstruments_ta10_mixers[] = { 1200 { 1201 .name = "Direct Thru Channel A", 1202 .private_value = _MAKE_NI_CONTROL(0x01, 0x03), 1203 }, 1204 { 1205 .name = "Direct Thru Channel B", 1206 .private_value = _MAKE_NI_CONTROL(0x01, 0x05), 1207 }, 1208 { 1209 .name = "Direct Thru Channel C", 1210 .private_value = _MAKE_NI_CONTROL(0x01, 0x07), 1211 }, 1212 { 1213 .name = "Direct Thru Channel D", 1214 .private_value = _MAKE_NI_CONTROL(0x01, 0x09), 1215 }, 1216 { 1217 .name = "Phono Input Channel A", 1218 .private_value = _MAKE_NI_CONTROL(0x02, 0x03), 1219 }, 1220 { 1221 .name = "Phono Input Channel B", 1222 .private_value = _MAKE_NI_CONTROL(0x02, 0x05), 1223 }, 1224 { 1225 .name = "Phono Input Channel C", 1226 .private_value = _MAKE_NI_CONTROL(0x02, 0x07), 1227 }, 1228 { 1229 .name = "Phono Input Channel D", 1230 .private_value = _MAKE_NI_CONTROL(0x02, 0x09), 1231 }, 1232 }; 1233 1234 static int snd_nativeinstruments_create_mixer(struct usb_mixer_interface *mixer, 1235 const struct snd_kcontrol_new *kc, 1236 unsigned int count) 1237 { 1238 int i, err = 0; 1239 struct snd_kcontrol_new template = { 1240 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1241 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1242 .get = snd_nativeinstruments_control_get, 1243 .put = snd_nativeinstruments_control_put, 1244 .info = snd_ctl_boolean_mono_info, 1245 }; 1246 1247 for (i = 0; i < count; i++) { 1248 struct usb_mixer_elem_list *list; 1249 1250 template.name = kc[i].name; 1251 template.private_value = kc[i].private_value; 1252 1253 err = add_single_ctl_with_resume(mixer, 0, 1254 snd_ni_update_cur_val, 1255 &template, &list); 1256 if (err < 0) 1257 break; 1258 snd_ni_control_init_val(mixer, list->kctl); 1259 } 1260 1261 return err; 1262 } 1263 1264 /* M-Audio FastTrack Ultra quirks */ 1265 /* FTU Effect switch (also used by C400/C600) */ 1266 static int snd_ftu_eff_switch_info(struct snd_kcontrol *kcontrol, 1267 struct snd_ctl_elem_info *uinfo) 1268 { 1269 static const char *const texts[8] = { 1270 "Room 1", "Room 2", "Room 3", "Hall 1", 1271 "Hall 2", "Plate", "Delay", "Echo" 1272 }; 1273 1274 return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts); 1275 } 1276 1277 static int snd_ftu_eff_switch_init(struct usb_mixer_interface *mixer, 1278 struct snd_kcontrol *kctl) 1279 { 1280 struct usb_device *dev = mixer->chip->dev; 1281 unsigned int pval = kctl->private_value; 1282 int err; 1283 unsigned char value[2]; 1284 1285 value[0] = 0x00; 1286 value[1] = 0x00; 1287 1288 err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), UAC_GET_CUR, 1289 USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, 1290 pval & 0xff00, 1291 snd_usb_ctrl_intf(mixer->hostif) | ((pval & 0xff) << 8), 1292 value, 2); 1293 if (err < 0) 1294 return err; 1295 1296 kctl->private_value |= (unsigned int)value[0] << 24; 1297 return 0; 1298 } 1299 1300 static int snd_ftu_eff_switch_get(struct snd_kcontrol *kctl, 1301 struct snd_ctl_elem_value *ucontrol) 1302 { 1303 ucontrol->value.enumerated.item[0] = kctl->private_value >> 24; 1304 return 0; 1305 } 1306 1307 static int snd_ftu_eff_switch_update(struct usb_mixer_elem_list *list) 1308 { 1309 struct snd_usb_audio *chip = list->mixer->chip; 1310 unsigned int pval = list->kctl->private_value; 1311 unsigned char value[2]; 1312 1313 value[0] = pval >> 24; 1314 value[1] = 0; 1315 1316 CLASS(snd_usb_lock, pm)(chip); 1317 if (pm.err < 0) 1318 return pm.err; 1319 return snd_usb_ctl_msg(chip->dev, 1320 usb_sndctrlpipe(chip->dev, 0), 1321 UAC_SET_CUR, 1322 USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT, 1323 pval & 0xff00, 1324 snd_usb_ctrl_intf(list->mixer->hostif) | ((pval & 0xff) << 8), 1325 value, 2); 1326 } 1327 1328 static int snd_ftu_eff_switch_put(struct snd_kcontrol *kctl, 1329 struct snd_ctl_elem_value *ucontrol) 1330 { 1331 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl); 1332 unsigned int pval = list->kctl->private_value; 1333 int cur_val, err, new_val; 1334 1335 cur_val = pval >> 24; 1336 new_val = ucontrol->value.enumerated.item[0]; 1337 if (cur_val == new_val) 1338 return 0; 1339 1340 kctl->private_value &= ~(0xff << 24); 1341 kctl->private_value |= new_val << 24; 1342 err = snd_ftu_eff_switch_update(list); 1343 return err < 0 ? err : 1; 1344 } 1345 1346 static int snd_ftu_create_effect_switch(struct usb_mixer_interface *mixer, 1347 int validx, int bUnitID) 1348 { 1349 static struct snd_kcontrol_new template = { 1350 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1351 .name = "Effect Program Switch", 1352 .index = 0, 1353 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1354 .info = snd_ftu_eff_switch_info, 1355 .get = snd_ftu_eff_switch_get, 1356 .put = snd_ftu_eff_switch_put 1357 }; 1358 struct usb_mixer_elem_list *list; 1359 int err; 1360 1361 err = add_single_ctl_with_resume(mixer, bUnitID, 1362 snd_ftu_eff_switch_update, 1363 &template, &list); 1364 if (err < 0) 1365 return err; 1366 list->kctl->private_value = (validx << 8) | bUnitID; 1367 snd_ftu_eff_switch_init(mixer, list->kctl); 1368 return 0; 1369 } 1370 1371 /* Create volume controls for FTU devices*/ 1372 static int snd_ftu_create_volume_ctls(struct usb_mixer_interface *mixer) 1373 { 1374 char name[64]; 1375 unsigned int control, cmask; 1376 int in, out, err; 1377 1378 const unsigned int id = 5; 1379 const int val_type = USB_MIXER_S16; 1380 1381 for (out = 0; out < 8; out++) { 1382 control = out + 1; 1383 for (in = 0; in < 8; in++) { 1384 cmask = BIT(in); 1385 snprintf(name, sizeof(name), 1386 "AIn%d - Out%d Capture Volume", 1387 in + 1, out + 1); 1388 err = snd_create_std_mono_ctl(mixer, id, control, 1389 cmask, val_type, name, 1390 &snd_usb_mixer_vol_tlv); 1391 if (err < 0) 1392 return err; 1393 } 1394 for (in = 8; in < 16; in++) { 1395 cmask = BIT(in); 1396 snprintf(name, sizeof(name), 1397 "DIn%d - Out%d Playback Volume", 1398 in - 7, out + 1); 1399 err = snd_create_std_mono_ctl(mixer, id, control, 1400 cmask, val_type, name, 1401 &snd_usb_mixer_vol_tlv); 1402 if (err < 0) 1403 return err; 1404 } 1405 } 1406 1407 return 0; 1408 } 1409 1410 /* This control needs a volume quirk, see mixer.c */ 1411 static int snd_ftu_create_effect_volume_ctl(struct usb_mixer_interface *mixer) 1412 { 1413 static const char name[] = "Effect Volume"; 1414 const unsigned int id = 6; 1415 const int val_type = USB_MIXER_U8; 1416 const unsigned int control = 2; 1417 const unsigned int cmask = 0; 1418 1419 return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, 1420 name, snd_usb_mixer_vol_tlv); 1421 } 1422 1423 /* This control needs a volume quirk, see mixer.c */ 1424 static int snd_ftu_create_effect_duration_ctl(struct usb_mixer_interface *mixer) 1425 { 1426 static const char name[] = "Effect Duration"; 1427 const unsigned int id = 6; 1428 const int val_type = USB_MIXER_S16; 1429 const unsigned int control = 3; 1430 const unsigned int cmask = 0; 1431 1432 return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, 1433 name, snd_usb_mixer_vol_tlv); 1434 } 1435 1436 /* This control needs a volume quirk, see mixer.c */ 1437 static int snd_ftu_create_effect_feedback_ctl(struct usb_mixer_interface *mixer) 1438 { 1439 static const char name[] = "Effect Feedback Volume"; 1440 const unsigned int id = 6; 1441 const int val_type = USB_MIXER_U8; 1442 const unsigned int control = 4; 1443 const unsigned int cmask = 0; 1444 1445 return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, 1446 name, NULL); 1447 } 1448 1449 static int snd_ftu_create_effect_return_ctls(struct usb_mixer_interface *mixer) 1450 { 1451 unsigned int cmask; 1452 int err, ch; 1453 char name[48]; 1454 1455 const unsigned int id = 7; 1456 const int val_type = USB_MIXER_S16; 1457 const unsigned int control = 7; 1458 1459 for (ch = 0; ch < 4; ++ch) { 1460 cmask = BIT(ch); 1461 snprintf(name, sizeof(name), 1462 "Effect Return %d Volume", ch + 1); 1463 err = snd_create_std_mono_ctl(mixer, id, control, 1464 cmask, val_type, name, 1465 snd_usb_mixer_vol_tlv); 1466 if (err < 0) 1467 return err; 1468 } 1469 1470 return 0; 1471 } 1472 1473 static int snd_ftu_create_effect_send_ctls(struct usb_mixer_interface *mixer) 1474 { 1475 unsigned int cmask; 1476 int err, ch; 1477 char name[48]; 1478 1479 const unsigned int id = 5; 1480 const int val_type = USB_MIXER_S16; 1481 const unsigned int control = 9; 1482 1483 for (ch = 0; ch < 8; ++ch) { 1484 cmask = BIT(ch); 1485 snprintf(name, sizeof(name), 1486 "Effect Send AIn%d Volume", ch + 1); 1487 err = snd_create_std_mono_ctl(mixer, id, control, cmask, 1488 val_type, name, 1489 snd_usb_mixer_vol_tlv); 1490 if (err < 0) 1491 return err; 1492 } 1493 for (ch = 8; ch < 16; ++ch) { 1494 cmask = BIT(ch); 1495 snprintf(name, sizeof(name), 1496 "Effect Send DIn%d Volume", ch - 7); 1497 err = snd_create_std_mono_ctl(mixer, id, control, cmask, 1498 val_type, name, 1499 snd_usb_mixer_vol_tlv); 1500 if (err < 0) 1501 return err; 1502 } 1503 return 0; 1504 } 1505 1506 static int snd_ftu_create_mixer(struct usb_mixer_interface *mixer) 1507 { 1508 int err; 1509 1510 err = snd_ftu_create_volume_ctls(mixer); 1511 if (err < 0) 1512 return err; 1513 1514 err = snd_ftu_create_effect_switch(mixer, 1, 6); 1515 if (err < 0) 1516 return err; 1517 1518 err = snd_ftu_create_effect_volume_ctl(mixer); 1519 if (err < 0) 1520 return err; 1521 1522 err = snd_ftu_create_effect_duration_ctl(mixer); 1523 if (err < 0) 1524 return err; 1525 1526 err = snd_ftu_create_effect_feedback_ctl(mixer); 1527 if (err < 0) 1528 return err; 1529 1530 err = snd_ftu_create_effect_return_ctls(mixer); 1531 if (err < 0) 1532 return err; 1533 1534 err = snd_ftu_create_effect_send_ctls(mixer); 1535 if (err < 0) 1536 return err; 1537 1538 return 0; 1539 } 1540 1541 void snd_emuusb_set_samplerate(struct snd_usb_audio *chip, 1542 unsigned char samplerate_id) 1543 { 1544 struct usb_mixer_interface *mixer; 1545 struct usb_mixer_elem_info *cval; 1546 int unitid = 12; /* SampleRate ExtensionUnit ID */ 1547 1548 list_for_each_entry(mixer, &chip->mixer_list, list) { 1549 if (mixer->id_elems[unitid]) { 1550 cval = mixer_elem_list_to_info(mixer->id_elems[unitid]); 1551 snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR, 1552 cval->control << 8, 1553 samplerate_id); 1554 snd_usb_mixer_notify_id(mixer, unitid); 1555 break; 1556 } 1557 } 1558 } 1559 1560 /* M-Audio Fast Track C400/C600 */ 1561 /* C400/C600 volume controls, this control needs a volume quirk, see mixer.c */ 1562 static int snd_c400_create_vol_ctls(struct usb_mixer_interface *mixer) 1563 { 1564 char name[64]; 1565 unsigned int cmask, offset; 1566 int out, chan, err; 1567 int num_outs = 0; 1568 int num_ins = 0; 1569 1570 const unsigned int id = 0x40; 1571 const int val_type = USB_MIXER_S16; 1572 const int control = 1; 1573 1574 switch (mixer->chip->usb_id) { 1575 case USB_ID(0x0763, 0x2030): 1576 num_outs = 6; 1577 num_ins = 4; 1578 break; 1579 case USB_ID(0x0763, 0x2031): 1580 num_outs = 8; 1581 num_ins = 6; 1582 break; 1583 } 1584 1585 for (chan = 0; chan < num_outs + num_ins; chan++) { 1586 for (out = 0; out < num_outs; out++) { 1587 if (chan < num_outs) { 1588 snprintf(name, sizeof(name), 1589 "PCM%d-Out%d Playback Volume", 1590 chan + 1, out + 1); 1591 } else { 1592 snprintf(name, sizeof(name), 1593 "In%d-Out%d Playback Volume", 1594 chan - num_outs + 1, out + 1); 1595 } 1596 1597 cmask = (out == 0) ? 0 : BIT(out - 1); 1598 offset = chan * num_outs; 1599 err = snd_create_std_mono_ctl_offset(mixer, id, control, 1600 cmask, val_type, offset, name, 1601 &snd_usb_mixer_vol_tlv); 1602 if (err < 0) 1603 return err; 1604 } 1605 } 1606 1607 return 0; 1608 } 1609 1610 /* This control needs a volume quirk, see mixer.c */ 1611 static int snd_c400_create_effect_volume_ctl(struct usb_mixer_interface *mixer) 1612 { 1613 static const char name[] = "Effect Volume"; 1614 const unsigned int id = 0x43; 1615 const int val_type = USB_MIXER_U8; 1616 const unsigned int control = 3; 1617 const unsigned int cmask = 0; 1618 1619 return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, 1620 name, snd_usb_mixer_vol_tlv); 1621 } 1622 1623 /* This control needs a volume quirk, see mixer.c */ 1624 static int snd_c400_create_effect_duration_ctl(struct usb_mixer_interface *mixer) 1625 { 1626 static const char name[] = "Effect Duration"; 1627 const unsigned int id = 0x43; 1628 const int val_type = USB_MIXER_S16; 1629 const unsigned int control = 4; 1630 const unsigned int cmask = 0; 1631 1632 return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, 1633 name, snd_usb_mixer_vol_tlv); 1634 } 1635 1636 /* This control needs a volume quirk, see mixer.c */ 1637 static int snd_c400_create_effect_feedback_ctl(struct usb_mixer_interface *mixer) 1638 { 1639 static const char name[] = "Effect Feedback Volume"; 1640 const unsigned int id = 0x43; 1641 const int val_type = USB_MIXER_U8; 1642 const unsigned int control = 5; 1643 const unsigned int cmask = 0; 1644 1645 return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, 1646 name, NULL); 1647 } 1648 1649 static int snd_c400_create_effect_vol_ctls(struct usb_mixer_interface *mixer) 1650 { 1651 char name[64]; 1652 unsigned int cmask; 1653 int chan, err; 1654 int num_outs = 0; 1655 int num_ins = 0; 1656 1657 const unsigned int id = 0x42; 1658 const int val_type = USB_MIXER_S16; 1659 const int control = 1; 1660 1661 switch (mixer->chip->usb_id) { 1662 case USB_ID(0x0763, 0x2030): 1663 num_outs = 6; 1664 num_ins = 4; 1665 break; 1666 case USB_ID(0x0763, 0x2031): 1667 num_outs = 8; 1668 num_ins = 6; 1669 break; 1670 } 1671 1672 for (chan = 0; chan < num_outs + num_ins; chan++) { 1673 if (chan < num_outs) { 1674 snprintf(name, sizeof(name), 1675 "Effect Send DOut%d", 1676 chan + 1); 1677 } else { 1678 snprintf(name, sizeof(name), 1679 "Effect Send AIn%d", 1680 chan - num_outs + 1); 1681 } 1682 1683 cmask = (chan == 0) ? 0 : BIT(chan - 1); 1684 err = snd_create_std_mono_ctl(mixer, id, control, 1685 cmask, val_type, name, 1686 &snd_usb_mixer_vol_tlv); 1687 if (err < 0) 1688 return err; 1689 } 1690 1691 return 0; 1692 } 1693 1694 static int snd_c400_create_effect_ret_vol_ctls(struct usb_mixer_interface *mixer) 1695 { 1696 char name[64]; 1697 unsigned int cmask; 1698 int chan, err; 1699 int num_outs = 0; 1700 int offset = 0; 1701 1702 const unsigned int id = 0x40; 1703 const int val_type = USB_MIXER_S16; 1704 const int control = 1; 1705 1706 switch (mixer->chip->usb_id) { 1707 case USB_ID(0x0763, 0x2030): 1708 num_outs = 6; 1709 offset = 0x3c; 1710 /* { 0x3c, 0x43, 0x3e, 0x45, 0x40, 0x47 } */ 1711 break; 1712 case USB_ID(0x0763, 0x2031): 1713 num_outs = 8; 1714 offset = 0x70; 1715 /* { 0x70, 0x79, 0x72, 0x7b, 0x74, 0x7d, 0x76, 0x7f } */ 1716 break; 1717 } 1718 1719 for (chan = 0; chan < num_outs; chan++) { 1720 snprintf(name, sizeof(name), 1721 "Effect Return %d", 1722 chan + 1); 1723 1724 cmask = (chan == 0) ? 0 : 1725 BIT(chan + (chan % 2) * num_outs - 1); 1726 err = snd_create_std_mono_ctl_offset(mixer, id, control, 1727 cmask, val_type, offset, name, 1728 &snd_usb_mixer_vol_tlv); 1729 if (err < 0) 1730 return err; 1731 } 1732 1733 return 0; 1734 } 1735 1736 static int snd_c400_create_mixer(struct usb_mixer_interface *mixer) 1737 { 1738 int err; 1739 1740 err = snd_c400_create_vol_ctls(mixer); 1741 if (err < 0) 1742 return err; 1743 1744 err = snd_c400_create_effect_vol_ctls(mixer); 1745 if (err < 0) 1746 return err; 1747 1748 err = snd_c400_create_effect_ret_vol_ctls(mixer); 1749 if (err < 0) 1750 return err; 1751 1752 err = snd_ftu_create_effect_switch(mixer, 2, 0x43); 1753 if (err < 0) 1754 return err; 1755 1756 err = snd_c400_create_effect_volume_ctl(mixer); 1757 if (err < 0) 1758 return err; 1759 1760 err = snd_c400_create_effect_duration_ctl(mixer); 1761 if (err < 0) 1762 return err; 1763 1764 err = snd_c400_create_effect_feedback_ctl(mixer); 1765 if (err < 0) 1766 return err; 1767 1768 return 0; 1769 } 1770 1771 /* 1772 * The mixer units for Ebox-44 are corrupt, and even where they 1773 * are valid they presents mono controls as L and R channels of 1774 * stereo. So we provide a good mixer here. 1775 */ 1776 static const struct std_mono_table ebox44_table[] = { 1777 { 1778 .unitid = 4, 1779 .control = 1, 1780 .cmask = 0x0, 1781 .val_type = USB_MIXER_INV_BOOLEAN, 1782 .name = "Headphone Playback Switch" 1783 }, 1784 { 1785 .unitid = 4, 1786 .control = 2, 1787 .cmask = 0x1, 1788 .val_type = USB_MIXER_S16, 1789 .name = "Headphone A Mix Playback Volume" 1790 }, 1791 { 1792 .unitid = 4, 1793 .control = 2, 1794 .cmask = 0x2, 1795 .val_type = USB_MIXER_S16, 1796 .name = "Headphone B Mix Playback Volume" 1797 }, 1798 1799 { 1800 .unitid = 7, 1801 .control = 1, 1802 .cmask = 0x0, 1803 .val_type = USB_MIXER_INV_BOOLEAN, 1804 .name = "Output Playback Switch" 1805 }, 1806 { 1807 .unitid = 7, 1808 .control = 2, 1809 .cmask = 0x1, 1810 .val_type = USB_MIXER_S16, 1811 .name = "Output A Playback Volume" 1812 }, 1813 { 1814 .unitid = 7, 1815 .control = 2, 1816 .cmask = 0x2, 1817 .val_type = USB_MIXER_S16, 1818 .name = "Output B Playback Volume" 1819 }, 1820 1821 { 1822 .unitid = 10, 1823 .control = 1, 1824 .cmask = 0x0, 1825 .val_type = USB_MIXER_INV_BOOLEAN, 1826 .name = "Input Capture Switch" 1827 }, 1828 { 1829 .unitid = 10, 1830 .control = 2, 1831 .cmask = 0x1, 1832 .val_type = USB_MIXER_S16, 1833 .name = "Input A Capture Volume" 1834 }, 1835 { 1836 .unitid = 10, 1837 .control = 2, 1838 .cmask = 0x2, 1839 .val_type = USB_MIXER_S16, 1840 .name = "Input B Capture Volume" 1841 }, 1842 1843 {} 1844 }; 1845 1846 /* Audio Advantage Micro II findings: 1847 * 1848 * Mapping spdif AES bits to vendor register.bit: 1849 * AES0: [0 0 0 0 2.3 2.2 2.1 2.0] - default 0x00 1850 * AES1: [3.3 3.2.3.1.3.0 2.7 2.6 2.5 2.4] - default: 0x01 1851 * AES2: [0 0 0 0 0 0 0 0] 1852 * AES3: [0 0 0 0 0 0 x 0] - 'x' bit is set basing on standard usb request 1853 * (UAC_EP_CS_ATTR_SAMPLE_RATE) for Audio Devices 1854 * 1855 * power on values: 1856 * r2: 0x10 1857 * r3: 0x20 (b7 is zeroed just before playback (except IEC61937) and set 1858 * just after it to 0xa0, presumably it disables/mutes some analog 1859 * parts when there is no audio.) 1860 * r9: 0x28 1861 * 1862 * Optical transmitter on/off: 1863 * vendor register.bit: 9.1 1864 * 0 - on (0x28 register value) 1865 * 1 - off (0x2a register value) 1866 * 1867 */ 1868 static int snd_microii_spdif_info(struct snd_kcontrol *kcontrol, 1869 struct snd_ctl_elem_info *uinfo) 1870 { 1871 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1872 uinfo->count = 1; 1873 return 0; 1874 } 1875 1876 static int snd_microii_spdif_default_get(struct snd_kcontrol *kcontrol, 1877 struct snd_ctl_elem_value *ucontrol) 1878 { 1879 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); 1880 struct snd_usb_audio *chip = list->mixer->chip; 1881 int err; 1882 struct usb_interface *iface; 1883 struct usb_host_interface *alts; 1884 unsigned int ep; 1885 unsigned char data[3]; 1886 int rate; 1887 1888 CLASS(snd_usb_lock, pm)(chip); 1889 if (pm.err < 0) 1890 return pm.err; 1891 1892 ucontrol->value.iec958.status[0] = kcontrol->private_value & 0xff; 1893 ucontrol->value.iec958.status[1] = (kcontrol->private_value >> 8) & 0xff; 1894 ucontrol->value.iec958.status[2] = 0x00; 1895 1896 /* use known values for that card: interface#1 altsetting#1 */ 1897 iface = usb_ifnum_to_if(chip->dev, 1); 1898 if (!iface || iface->num_altsetting < 2) 1899 return -EINVAL; 1900 alts = &iface->altsetting[1]; 1901 if (get_iface_desc(alts)->bNumEndpoints < 1) 1902 return -EINVAL; 1903 ep = get_endpoint(alts, 0)->bEndpointAddress; 1904 1905 err = snd_usb_ctl_msg(chip->dev, 1906 usb_rcvctrlpipe(chip->dev, 0), 1907 UAC_GET_CUR, 1908 USB_TYPE_CLASS | USB_RECIP_ENDPOINT | USB_DIR_IN, 1909 UAC_EP_CS_ATTR_SAMPLE_RATE << 8, 1910 ep, 1911 data, 1912 sizeof(data)); 1913 if (err < 0) 1914 return err; 1915 1916 rate = data[0] | (data[1] << 8) | (data[2] << 16); 1917 ucontrol->value.iec958.status[3] = (rate == 48000) ? 1918 IEC958_AES3_CON_FS_48000 : IEC958_AES3_CON_FS_44100; 1919 1920 return 0; 1921 } 1922 1923 static int snd_microii_spdif_default_update(struct usb_mixer_elem_list *list) 1924 { 1925 struct snd_usb_audio *chip = list->mixer->chip; 1926 unsigned int pval = list->kctl->private_value; 1927 u8 reg; 1928 int err; 1929 1930 CLASS(snd_usb_lock, pm)(chip); 1931 if (pm.err < 0) 1932 return pm.err; 1933 1934 reg = ((pval >> 4) & 0xf0) | (pval & 0x0f); 1935 err = snd_usb_ctl_msg(chip->dev, 1936 usb_sndctrlpipe(chip->dev, 0), 1937 UAC_SET_CUR, 1938 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER, 1939 reg, 1940 2, 1941 NULL, 1942 0); 1943 if (err < 0) 1944 return err; 1945 1946 reg = (pval & IEC958_AES0_NONAUDIO) ? 0xa0 : 0x20; 1947 reg |= (pval >> 12) & 0x0f; 1948 err = snd_usb_ctl_msg(chip->dev, 1949 usb_sndctrlpipe(chip->dev, 0), 1950 UAC_SET_CUR, 1951 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER, 1952 reg, 1953 3, 1954 NULL, 1955 0); 1956 return err; 1957 } 1958 1959 static int snd_microii_spdif_default_put(struct snd_kcontrol *kcontrol, 1960 struct snd_ctl_elem_value *ucontrol) 1961 { 1962 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); 1963 unsigned int pval, pval_old; 1964 int err; 1965 1966 pval = kcontrol->private_value; 1967 pval_old = pval; 1968 pval &= 0xfffff0f0; 1969 pval |= (ucontrol->value.iec958.status[1] & 0x0f) << 8; 1970 pval |= (ucontrol->value.iec958.status[0] & 0x0f); 1971 1972 pval &= 0xffff0fff; 1973 pval |= (ucontrol->value.iec958.status[1] & 0xf0) << 8; 1974 1975 /* The frequency bits in AES3 cannot be set via register access. */ 1976 1977 /* Silently ignore any bits from the request that cannot be set. */ 1978 1979 if (pval == pval_old) 1980 return 0; 1981 1982 kcontrol->private_value = pval; 1983 err = snd_microii_spdif_default_update(list); 1984 return err < 0 ? err : 1; 1985 } 1986 1987 static int snd_microii_spdif_mask_get(struct snd_kcontrol *kcontrol, 1988 struct snd_ctl_elem_value *ucontrol) 1989 { 1990 ucontrol->value.iec958.status[0] = 0x0f; 1991 ucontrol->value.iec958.status[1] = 0xff; 1992 ucontrol->value.iec958.status[2] = 0x00; 1993 ucontrol->value.iec958.status[3] = 0x00; 1994 1995 return 0; 1996 } 1997 1998 static int snd_microii_spdif_switch_get(struct snd_kcontrol *kcontrol, 1999 struct snd_ctl_elem_value *ucontrol) 2000 { 2001 ucontrol->value.integer.value[0] = !(kcontrol->private_value & 0x02); 2002 2003 return 0; 2004 } 2005 2006 static int snd_microii_spdif_switch_update(struct usb_mixer_elem_list *list) 2007 { 2008 struct snd_usb_audio *chip = list->mixer->chip; 2009 u8 reg = list->kctl->private_value; 2010 2011 CLASS(snd_usb_lock, pm)(chip); 2012 if (pm.err < 0) 2013 return pm.err; 2014 2015 return snd_usb_ctl_msg(chip->dev, 2016 usb_sndctrlpipe(chip->dev, 0), 2017 UAC_SET_CUR, 2018 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER, 2019 reg, 2020 9, 2021 NULL, 2022 0); 2023 } 2024 2025 static int snd_microii_spdif_switch_put(struct snd_kcontrol *kcontrol, 2026 struct snd_ctl_elem_value *ucontrol) 2027 { 2028 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); 2029 u8 reg; 2030 int err; 2031 2032 reg = ucontrol->value.integer.value[0] ? 0x28 : 0x2a; 2033 if (reg != list->kctl->private_value) 2034 return 0; 2035 2036 kcontrol->private_value = reg; 2037 err = snd_microii_spdif_switch_update(list); 2038 return err < 0 ? err : 1; 2039 } 2040 2041 static const struct snd_kcontrol_new snd_microii_mixer_spdif[] = { 2042 { 2043 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2044 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), 2045 .info = snd_microii_spdif_info, 2046 .get = snd_microii_spdif_default_get, 2047 .put = snd_microii_spdif_default_put, 2048 .private_value = 0x00000100UL,/* reset value */ 2049 }, 2050 { 2051 .access = SNDRV_CTL_ELEM_ACCESS_READ, 2052 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2053 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK), 2054 .info = snd_microii_spdif_info, 2055 .get = snd_microii_spdif_mask_get, 2056 }, 2057 { 2058 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2059 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH), 2060 .info = snd_ctl_boolean_mono_info, 2061 .get = snd_microii_spdif_switch_get, 2062 .put = snd_microii_spdif_switch_put, 2063 .private_value = 0x00000028UL,/* reset value */ 2064 } 2065 }; 2066 2067 static int snd_microii_controls_create(struct usb_mixer_interface *mixer) 2068 { 2069 int err, i; 2070 static const usb_mixer_elem_resume_func_t resume_funcs[] = { 2071 snd_microii_spdif_default_update, 2072 NULL, 2073 snd_microii_spdif_switch_update 2074 }; 2075 2076 for (i = 0; i < ARRAY_SIZE(snd_microii_mixer_spdif); ++i) { 2077 err = add_single_ctl_with_resume(mixer, 0, 2078 resume_funcs[i], 2079 &snd_microii_mixer_spdif[i], 2080 NULL); 2081 if (err < 0) 2082 return err; 2083 } 2084 2085 return 0; 2086 } 2087 2088 /* Creative Sound Blaster E1 */ 2089 2090 static int snd_soundblaster_e1_switch_get(struct snd_kcontrol *kcontrol, 2091 struct snd_ctl_elem_value *ucontrol) 2092 { 2093 ucontrol->value.integer.value[0] = kcontrol->private_value; 2094 return 0; 2095 } 2096 2097 static int snd_soundblaster_e1_switch_update(struct usb_mixer_interface *mixer, 2098 unsigned char state) 2099 { 2100 struct snd_usb_audio *chip = mixer->chip; 2101 unsigned char buff[2]; 2102 2103 buff[0] = 0x02; 2104 buff[1] = state ? 0x02 : 0x00; 2105 2106 CLASS(snd_usb_lock, pm)(chip); 2107 if (pm.err < 0) 2108 return pm.err; 2109 return snd_usb_ctl_msg(chip->dev, 2110 usb_sndctrlpipe(chip->dev, 0), HID_REQ_SET_REPORT, 2111 USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT, 2112 0x0202, 3, buff, 2); 2113 } 2114 2115 static int snd_soundblaster_e1_switch_put(struct snd_kcontrol *kcontrol, 2116 struct snd_ctl_elem_value *ucontrol) 2117 { 2118 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); 2119 unsigned char value = !!ucontrol->value.integer.value[0]; 2120 int err; 2121 2122 if (kcontrol->private_value == value) 2123 return 0; 2124 kcontrol->private_value = value; 2125 err = snd_soundblaster_e1_switch_update(list->mixer, value); 2126 return err < 0 ? err : 1; 2127 } 2128 2129 static int snd_soundblaster_e1_switch_resume(struct usb_mixer_elem_list *list) 2130 { 2131 return snd_soundblaster_e1_switch_update(list->mixer, 2132 list->kctl->private_value); 2133 } 2134 2135 static int snd_soundblaster_e1_switch_info(struct snd_kcontrol *kcontrol, 2136 struct snd_ctl_elem_info *uinfo) 2137 { 2138 static const char *const texts[2] = { 2139 "Mic", "Aux" 2140 }; 2141 2142 return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts); 2143 } 2144 2145 static const struct snd_kcontrol_new snd_soundblaster_e1_input_switch = { 2146 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2147 .name = "Input Source", 2148 .info = snd_soundblaster_e1_switch_info, 2149 .get = snd_soundblaster_e1_switch_get, 2150 .put = snd_soundblaster_e1_switch_put, 2151 .private_value = 0, 2152 }; 2153 2154 static int snd_soundblaster_e1_switch_create(struct usb_mixer_interface *mixer) 2155 { 2156 return add_single_ctl_with_resume(mixer, 0, 2157 snd_soundblaster_e1_switch_resume, 2158 &snd_soundblaster_e1_input_switch, 2159 NULL); 2160 } 2161 2162 /* 2163 * Dell WD15 dock jack detection 2164 * 2165 * The WD15 contains an ALC4020 USB audio controller and ALC3263 audio codec 2166 * from Realtek. It is a UAC 1 device, and UAC 1 does not support jack 2167 * detection. Instead, jack detection works by sending HD Audio commands over 2168 * vendor-type USB messages. 2169 */ 2170 2171 #define HDA_VERB_CMD(V, N, D) (((N) << 20) | ((V) << 8) | (D)) 2172 2173 #define REALTEK_HDA_VALUE 0x0038 2174 2175 #define REALTEK_HDA_SET 62 2176 #define REALTEK_MANUAL_MODE 72 2177 #define REALTEK_HDA_GET_OUT 88 2178 #define REALTEK_HDA_GET_IN 89 2179 2180 #define REALTEK_AUDIO_FUNCTION_GROUP 0x01 2181 #define REALTEK_LINE1 0x1a 2182 #define REALTEK_VENDOR_REGISTERS 0x20 2183 #define REALTEK_HP_OUT 0x21 2184 2185 #define REALTEK_CBJ_CTRL2 0x50 2186 2187 #define REALTEK_JACK_INTERRUPT_NODE 5 2188 2189 #define REALTEK_MIC_FLAG 0x100 2190 2191 static int realtek_hda_set(struct snd_usb_audio *chip, u32 cmd) 2192 { 2193 struct usb_device *dev = chip->dev; 2194 __be32 buf = cpu_to_be32(cmd); 2195 2196 return snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_HDA_SET, 2197 USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT, 2198 REALTEK_HDA_VALUE, 0, &buf, sizeof(buf)); 2199 } 2200 2201 static int realtek_hda_get(struct snd_usb_audio *chip, u32 cmd, u32 *value) 2202 { 2203 struct usb_device *dev = chip->dev; 2204 int err; 2205 __be32 buf = cpu_to_be32(cmd); 2206 2207 err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_HDA_GET_OUT, 2208 USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT, 2209 REALTEK_HDA_VALUE, 0, &buf, sizeof(buf)); 2210 if (err < 0) 2211 return err; 2212 err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), REALTEK_HDA_GET_IN, 2213 USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_IN, 2214 REALTEK_HDA_VALUE, 0, &buf, sizeof(buf)); 2215 if (err < 0) 2216 return err; 2217 2218 *value = be32_to_cpu(buf); 2219 return 0; 2220 } 2221 2222 static int realtek_ctl_connector_get(struct snd_kcontrol *kcontrol, 2223 struct snd_ctl_elem_value *ucontrol) 2224 { 2225 struct usb_mixer_elem_info *cval = snd_kcontrol_chip(kcontrol); 2226 struct snd_usb_audio *chip = cval->head.mixer->chip; 2227 u32 pv = kcontrol->private_value; 2228 u32 node_id = pv & 0xff; 2229 u32 sense; 2230 u32 cbj_ctrl2; 2231 bool presence; 2232 int err; 2233 2234 CLASS(snd_usb_lock, pm)(chip); 2235 if (pm.err < 0) 2236 return pm.err; 2237 err = realtek_hda_get(chip, 2238 HDA_VERB_CMD(AC_VERB_GET_PIN_SENSE, node_id, 0), 2239 &sense); 2240 if (err < 0) 2241 return err; 2242 if (pv & REALTEK_MIC_FLAG) { 2243 err = realtek_hda_set(chip, 2244 HDA_VERB_CMD(AC_VERB_SET_COEF_INDEX, 2245 REALTEK_VENDOR_REGISTERS, 2246 REALTEK_CBJ_CTRL2)); 2247 if (err < 0) 2248 return err; 2249 err = realtek_hda_get(chip, 2250 HDA_VERB_CMD(AC_VERB_GET_PROC_COEF, 2251 REALTEK_VENDOR_REGISTERS, 0), 2252 &cbj_ctrl2); 2253 if (err < 0) 2254 return err; 2255 } 2256 2257 presence = sense & AC_PINSENSE_PRESENCE; 2258 if (pv & REALTEK_MIC_FLAG) 2259 presence = presence && (cbj_ctrl2 & 0x0070) == 0x0070; 2260 ucontrol->value.integer.value[0] = presence; 2261 return 0; 2262 } 2263 2264 static const struct snd_kcontrol_new realtek_connector_ctl_ro = { 2265 .iface = SNDRV_CTL_ELEM_IFACE_CARD, 2266 .name = "", /* will be filled later manually */ 2267 .access = SNDRV_CTL_ELEM_ACCESS_READ, 2268 .info = snd_ctl_boolean_mono_info, 2269 .get = realtek_ctl_connector_get, 2270 }; 2271 2272 static int realtek_resume_jack(struct usb_mixer_elem_list *list) 2273 { 2274 snd_ctl_notify(list->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE, 2275 &list->kctl->id); 2276 return 0; 2277 } 2278 2279 static int realtek_add_jack(struct usb_mixer_interface *mixer, 2280 char *name, u32 val, int unitid, 2281 const struct snd_kcontrol_new *kctl_new) 2282 { 2283 struct usb_mixer_elem_info *cval; 2284 struct snd_kcontrol *kctl; 2285 2286 cval = kzalloc(sizeof(*cval), GFP_KERNEL); 2287 if (!cval) 2288 return -ENOMEM; 2289 snd_usb_mixer_elem_init_std(&cval->head, mixer, unitid); 2290 cval->head.resume = realtek_resume_jack; 2291 cval->val_type = USB_MIXER_BOOLEAN; 2292 cval->channels = 1; 2293 cval->min = 0; 2294 cval->max = 1; 2295 kctl = snd_ctl_new1(kctl_new, cval); 2296 if (!kctl) { 2297 kfree(cval); 2298 return -ENOMEM; 2299 } 2300 kctl->private_value = val; 2301 strscpy(kctl->id.name, name, sizeof(kctl->id.name)); 2302 kctl->private_free = snd_usb_mixer_elem_free; 2303 return snd_usb_mixer_add_control(&cval->head, kctl); 2304 } 2305 2306 static int dell_dock_mixer_create(struct usb_mixer_interface *mixer) 2307 { 2308 int err; 2309 struct usb_device *dev = mixer->chip->dev; 2310 2311 /* Power down the audio codec to avoid loud pops in the next step. */ 2312 realtek_hda_set(mixer->chip, 2313 HDA_VERB_CMD(AC_VERB_SET_POWER_STATE, 2314 REALTEK_AUDIO_FUNCTION_GROUP, 2315 AC_PWRST_D3)); 2316 2317 /* 2318 * Turn off 'manual mode' in case it was enabled. This removes the need 2319 * to power cycle the dock after it was attached to a Windows machine. 2320 */ 2321 snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_MANUAL_MODE, 2322 USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT, 2323 0, 0, NULL, 0); 2324 2325 err = realtek_add_jack(mixer, "Line Out Jack", REALTEK_LINE1, 2326 REALTEK_JACK_INTERRUPT_NODE, 2327 &realtek_connector_ctl_ro); 2328 if (err < 0) 2329 return err; 2330 err = realtek_add_jack(mixer, "Headphone Jack", REALTEK_HP_OUT, 2331 REALTEK_JACK_INTERRUPT_NODE, 2332 &realtek_connector_ctl_ro); 2333 if (err < 0) 2334 return err; 2335 err = realtek_add_jack(mixer, "Headset Mic Jack", 2336 REALTEK_HP_OUT | REALTEK_MIC_FLAG, 2337 REALTEK_JACK_INTERRUPT_NODE, 2338 &realtek_connector_ctl_ro); 2339 if (err < 0) 2340 return err; 2341 return 0; 2342 } 2343 2344 static void dell_dock_init_vol(struct usb_mixer_interface *mixer, int ch, int id) 2345 { 2346 struct snd_usb_audio *chip = mixer->chip; 2347 u16 buf = 0; 2348 2349 snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR, 2350 USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT, 2351 (UAC_FU_VOLUME << 8) | ch, 2352 snd_usb_ctrl_intf(mixer->hostif) | (id << 8), 2353 &buf, 2); 2354 } 2355 2356 static int dell_dock_mixer_init(struct usb_mixer_interface *mixer) 2357 { 2358 /* fix to 0dB playback volumes */ 2359 dell_dock_init_vol(mixer, 1, 16); 2360 dell_dock_init_vol(mixer, 2, 16); 2361 dell_dock_init_vol(mixer, 1, 19); 2362 dell_dock_init_vol(mixer, 2, 19); 2363 return 0; 2364 } 2365 2366 /* 2367 * HP Thunderbolt Dock G2 jack detection 2368 * 2369 * Similar to the Dell WD15/WD19, but with different commands. 2370 */ 2371 2372 #define HP_DOCK_JACK_INTERRUPT_NODE 7 2373 2374 #define HP_DOCK_GET 37 2375 2376 #define HP_DOCK_JACK_PRESENCE 0xffb8 2377 #define HP_DOCK_JACK_PRESENCE_BIT BIT(2) 2378 2379 #define HP_DOCK_MIC_SENSE 0xf753 2380 #define HP_DOCK_MIC_SENSE_COMPLETE_BIT BIT(4) 2381 2382 #define HP_DOCK_MIC_SENSE_MASK (BIT(2) | BIT(1) | BIT(0)) 2383 /* #define HP_DOCK_MIC_SENSE_PRESENT 0x2 */ 2384 #define HP_DOCK_MIC_SENSE_NOT_PRESENT 0x4 2385 2386 static int hp_dock_ctl_connector_get(struct snd_kcontrol *kcontrol, 2387 struct snd_ctl_elem_value *ucontrol) 2388 { 2389 struct usb_mixer_elem_info *cval = snd_kcontrol_chip(kcontrol); 2390 struct snd_usb_audio *chip = cval->head.mixer->chip; 2391 u32 pv = kcontrol->private_value; 2392 bool presence; 2393 int err; 2394 u8 buf; 2395 2396 CLASS(snd_usb_lock, pm)(chip); 2397 if (pm.err < 0) 2398 return pm.err; 2399 2400 err = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), 2401 HP_DOCK_GET, 2402 USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_IN, 2403 0, HP_DOCK_JACK_PRESENCE, &buf, sizeof(buf)); 2404 if (err < 0) 2405 return err; 2406 2407 presence = !(buf & HP_DOCK_JACK_PRESENCE_BIT); 2408 2409 if (pv && presence) { 2410 for (int i = 0; i < 20; i++) { 2411 err = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), 2412 HP_DOCK_GET, 2413 USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_IN, 2414 0, HP_DOCK_MIC_SENSE, &buf, sizeof(buf)); 2415 if (err < 0) 2416 return err; 2417 2418 /* Mic sense is complete, we have a result. */ 2419 if (buf & HP_DOCK_MIC_SENSE_COMPLETE_BIT) 2420 break; 2421 2422 msleep(100); 2423 } 2424 2425 /* 2426 * If we reach the retry limit without mic sense having 2427 * completed, buf will contain HP_DOCK_MIC_SENSE_PRESENT, 2428 * thus presence remains true even when detection fails. 2429 */ 2430 if ((buf & HP_DOCK_MIC_SENSE_MASK) == HP_DOCK_MIC_SENSE_NOT_PRESENT) 2431 presence = false; 2432 } 2433 ucontrol->value.integer.value[0] = presence; 2434 return 0; 2435 } 2436 2437 static const struct snd_kcontrol_new hp_dock_connector_ctl_ro = { 2438 .iface = SNDRV_CTL_ELEM_IFACE_CARD, 2439 .name = "", /* will be filled later manually */ 2440 .access = SNDRV_CTL_ELEM_ACCESS_READ, 2441 .info = snd_ctl_boolean_mono_info, 2442 .get = hp_dock_ctl_connector_get, 2443 }; 2444 2445 static int hp_dock_mixer_create(struct usb_mixer_interface *mixer) 2446 { 2447 int err; 2448 2449 err = realtek_add_jack(mixer, "Headsets Playback Jack", 0, 2450 HP_DOCK_JACK_INTERRUPT_NODE, 2451 &hp_dock_connector_ctl_ro); 2452 if (err < 0) 2453 return err; 2454 2455 err = realtek_add_jack(mixer, "Headset Capture Jack", 1, 2456 HP_DOCK_JACK_INTERRUPT_NODE, 2457 &hp_dock_connector_ctl_ro); 2458 if (err < 0) 2459 return err; 2460 2461 return 0; 2462 } 2463 2464 2465 /* RME Class Compliant device quirks */ 2466 2467 #define SND_RME_GET_STATUS1 23 2468 #define SND_RME_GET_CURRENT_FREQ 17 2469 #define SND_RME_CLK_SYSTEM_SHIFT 16 2470 #define SND_RME_CLK_SYSTEM_MASK 0x1f 2471 #define SND_RME_CLK_AES_SHIFT 8 2472 #define SND_RME_CLK_SPDIF_SHIFT 12 2473 #define SND_RME_CLK_AES_SPDIF_MASK 0xf 2474 #define SND_RME_CLK_SYNC_SHIFT 6 2475 #define SND_RME_CLK_SYNC_MASK 0x3 2476 #define SND_RME_CLK_FREQMUL_SHIFT 18 2477 #define SND_RME_CLK_FREQMUL_MASK 0x7 2478 #define SND_RME_CLK_SYSTEM(x) \ 2479 (((x) >> SND_RME_CLK_SYSTEM_SHIFT) & SND_RME_CLK_SYSTEM_MASK) 2480 #define SND_RME_CLK_AES(x) \ 2481 (((x) >> SND_RME_CLK_AES_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK) 2482 #define SND_RME_CLK_SPDIF(x) \ 2483 (((x) >> SND_RME_CLK_SPDIF_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK) 2484 #define SND_RME_CLK_SYNC(x) \ 2485 (((x) >> SND_RME_CLK_SYNC_SHIFT) & SND_RME_CLK_SYNC_MASK) 2486 #define SND_RME_CLK_FREQMUL(x) \ 2487 (((x) >> SND_RME_CLK_FREQMUL_SHIFT) & SND_RME_CLK_FREQMUL_MASK) 2488 #define SND_RME_CLK_AES_LOCK 0x1 2489 #define SND_RME_CLK_AES_SYNC 0x4 2490 #define SND_RME_CLK_SPDIF_LOCK 0x2 2491 #define SND_RME_CLK_SPDIF_SYNC 0x8 2492 #define SND_RME_SPDIF_IF_SHIFT 4 2493 #define SND_RME_SPDIF_FORMAT_SHIFT 5 2494 #define SND_RME_BINARY_MASK 0x1 2495 #define SND_RME_SPDIF_IF(x) \ 2496 (((x) >> SND_RME_SPDIF_IF_SHIFT) & SND_RME_BINARY_MASK) 2497 #define SND_RME_SPDIF_FORMAT(x) \ 2498 (((x) >> SND_RME_SPDIF_FORMAT_SHIFT) & SND_RME_BINARY_MASK) 2499 2500 static const u32 snd_rme_rate_table[] = { 2501 32000, 44100, 48000, 50000, 2502 64000, 88200, 96000, 100000, 2503 128000, 176400, 192000, 200000, 2504 256000, 352800, 384000, 400000, 2505 512000, 705600, 768000, 800000 2506 }; 2507 2508 /* maximum number of items for AES and S/PDIF rates for above table */ 2509 #define SND_RME_RATE_IDX_AES_SPDIF_NUM 12 2510 2511 enum snd_rme_domain { 2512 SND_RME_DOMAIN_SYSTEM, 2513 SND_RME_DOMAIN_AES, 2514 SND_RME_DOMAIN_SPDIF 2515 }; 2516 2517 enum snd_rme_clock_status { 2518 SND_RME_CLOCK_NOLOCK, 2519 SND_RME_CLOCK_LOCK, 2520 SND_RME_CLOCK_SYNC 2521 }; 2522 2523 static int snd_rme_read_value(struct snd_usb_audio *chip, 2524 unsigned int item, 2525 u32 *value) 2526 { 2527 struct usb_device *dev = chip->dev; 2528 int err; 2529 2530 err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), 2531 item, 2532 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 2533 0, 0, 2534 value, sizeof(*value)); 2535 if (err < 0) 2536 dev_err(&dev->dev, 2537 "unable to issue vendor read request %d (ret = %d)", 2538 item, err); 2539 return err; 2540 } 2541 2542 static int snd_rme_get_status1(struct snd_kcontrol *kcontrol, 2543 u32 *status1) 2544 { 2545 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); 2546 struct snd_usb_audio *chip = list->mixer->chip; 2547 2548 *status1 = 0; 2549 CLASS(snd_usb_lock, pm)(chip); 2550 if (pm.err < 0) 2551 return pm.err; 2552 return snd_rme_read_value(chip, SND_RME_GET_STATUS1, status1); 2553 } 2554 2555 static int snd_rme_rate_get(struct snd_kcontrol *kcontrol, 2556 struct snd_ctl_elem_value *ucontrol) 2557 { 2558 u32 status1; 2559 u32 rate = 0; 2560 int idx; 2561 int err; 2562 2563 err = snd_rme_get_status1(kcontrol, &status1); 2564 if (err < 0) 2565 return err; 2566 switch (kcontrol->private_value) { 2567 case SND_RME_DOMAIN_SYSTEM: 2568 idx = SND_RME_CLK_SYSTEM(status1); 2569 if (idx < ARRAY_SIZE(snd_rme_rate_table)) 2570 rate = snd_rme_rate_table[idx]; 2571 break; 2572 case SND_RME_DOMAIN_AES: 2573 idx = SND_RME_CLK_AES(status1); 2574 if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM) 2575 rate = snd_rme_rate_table[idx]; 2576 break; 2577 case SND_RME_DOMAIN_SPDIF: 2578 idx = SND_RME_CLK_SPDIF(status1); 2579 if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM) 2580 rate = snd_rme_rate_table[idx]; 2581 break; 2582 default: 2583 return -EINVAL; 2584 } 2585 ucontrol->value.integer.value[0] = rate; 2586 return 0; 2587 } 2588 2589 static int snd_rme_sync_state_get(struct snd_kcontrol *kcontrol, 2590 struct snd_ctl_elem_value *ucontrol) 2591 { 2592 u32 status1; 2593 int idx = SND_RME_CLOCK_NOLOCK; 2594 int err; 2595 2596 err = snd_rme_get_status1(kcontrol, &status1); 2597 if (err < 0) 2598 return err; 2599 switch (kcontrol->private_value) { 2600 case SND_RME_DOMAIN_AES: /* AES */ 2601 if (status1 & SND_RME_CLK_AES_SYNC) 2602 idx = SND_RME_CLOCK_SYNC; 2603 else if (status1 & SND_RME_CLK_AES_LOCK) 2604 idx = SND_RME_CLOCK_LOCK; 2605 break; 2606 case SND_RME_DOMAIN_SPDIF: /* SPDIF */ 2607 if (status1 & SND_RME_CLK_SPDIF_SYNC) 2608 idx = SND_RME_CLOCK_SYNC; 2609 else if (status1 & SND_RME_CLK_SPDIF_LOCK) 2610 idx = SND_RME_CLOCK_LOCK; 2611 break; 2612 default: 2613 return -EINVAL; 2614 } 2615 ucontrol->value.enumerated.item[0] = idx; 2616 return 0; 2617 } 2618 2619 static int snd_rme_spdif_if_get(struct snd_kcontrol *kcontrol, 2620 struct snd_ctl_elem_value *ucontrol) 2621 { 2622 u32 status1; 2623 int err; 2624 2625 err = snd_rme_get_status1(kcontrol, &status1); 2626 if (err < 0) 2627 return err; 2628 ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_IF(status1); 2629 return 0; 2630 } 2631 2632 static int snd_rme_spdif_format_get(struct snd_kcontrol *kcontrol, 2633 struct snd_ctl_elem_value *ucontrol) 2634 { 2635 u32 status1; 2636 int err; 2637 2638 err = snd_rme_get_status1(kcontrol, &status1); 2639 if (err < 0) 2640 return err; 2641 ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_FORMAT(status1); 2642 return 0; 2643 } 2644 2645 static int snd_rme_sync_source_get(struct snd_kcontrol *kcontrol, 2646 struct snd_ctl_elem_value *ucontrol) 2647 { 2648 u32 status1; 2649 int err; 2650 2651 err = snd_rme_get_status1(kcontrol, &status1); 2652 if (err < 0) 2653 return err; 2654 ucontrol->value.enumerated.item[0] = SND_RME_CLK_SYNC(status1); 2655 return 0; 2656 } 2657 2658 static int snd_rme_current_freq_get(struct snd_kcontrol *kcontrol, 2659 struct snd_ctl_elem_value *ucontrol) 2660 { 2661 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); 2662 struct snd_usb_audio *chip = list->mixer->chip; 2663 u32 status1; 2664 const u64 num = 104857600000000ULL; 2665 u32 den; 2666 unsigned int freq; 2667 int err; 2668 2669 CLASS(snd_usb_lock, pm)(chip); 2670 if (pm.err < 0) 2671 return pm.err; 2672 err = snd_rme_read_value(chip, SND_RME_GET_STATUS1, &status1); 2673 if (err < 0) 2674 return err; 2675 err = snd_rme_read_value(chip, SND_RME_GET_CURRENT_FREQ, &den); 2676 if (err < 0) 2677 return err; 2678 freq = (den == 0) ? 0 : div64_u64(num, den); 2679 freq <<= SND_RME_CLK_FREQMUL(status1); 2680 ucontrol->value.integer.value[0] = freq; 2681 return 0; 2682 } 2683 2684 static int snd_rme_rate_info(struct snd_kcontrol *kcontrol, 2685 struct snd_ctl_elem_info *uinfo) 2686 { 2687 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2688 uinfo->count = 1; 2689 switch (kcontrol->private_value) { 2690 case SND_RME_DOMAIN_SYSTEM: 2691 uinfo->value.integer.min = 32000; 2692 uinfo->value.integer.max = 800000; 2693 break; 2694 case SND_RME_DOMAIN_AES: 2695 case SND_RME_DOMAIN_SPDIF: 2696 default: 2697 uinfo->value.integer.min = 0; 2698 uinfo->value.integer.max = 200000; 2699 } 2700 uinfo->value.integer.step = 0; 2701 return 0; 2702 } 2703 2704 static int snd_rme_sync_state_info(struct snd_kcontrol *kcontrol, 2705 struct snd_ctl_elem_info *uinfo) 2706 { 2707 static const char *const sync_states[] = { 2708 "No Lock", "Lock", "Sync" 2709 }; 2710 2711 return snd_ctl_enum_info(uinfo, 1, 2712 ARRAY_SIZE(sync_states), sync_states); 2713 } 2714 2715 static int snd_rme_spdif_if_info(struct snd_kcontrol *kcontrol, 2716 struct snd_ctl_elem_info *uinfo) 2717 { 2718 static const char *const spdif_if[] = { 2719 "Coaxial", "Optical" 2720 }; 2721 2722 return snd_ctl_enum_info(uinfo, 1, 2723 ARRAY_SIZE(spdif_if), spdif_if); 2724 } 2725 2726 static int snd_rme_spdif_format_info(struct snd_kcontrol *kcontrol, 2727 struct snd_ctl_elem_info *uinfo) 2728 { 2729 static const char *const optical_type[] = { 2730 "Consumer", "Professional" 2731 }; 2732 2733 return snd_ctl_enum_info(uinfo, 1, 2734 ARRAY_SIZE(optical_type), optical_type); 2735 } 2736 2737 static int snd_rme_sync_source_info(struct snd_kcontrol *kcontrol, 2738 struct snd_ctl_elem_info *uinfo) 2739 { 2740 static const char *const sync_sources[] = { 2741 "Internal", "AES", "SPDIF", "Internal" 2742 }; 2743 2744 return snd_ctl_enum_info(uinfo, 1, 2745 ARRAY_SIZE(sync_sources), sync_sources); 2746 } 2747 2748 static const struct snd_kcontrol_new snd_rme_controls[] = { 2749 { 2750 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2751 .name = "AES Rate", 2752 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 2753 .info = snd_rme_rate_info, 2754 .get = snd_rme_rate_get, 2755 .private_value = SND_RME_DOMAIN_AES 2756 }, 2757 { 2758 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2759 .name = "AES Sync", 2760 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 2761 .info = snd_rme_sync_state_info, 2762 .get = snd_rme_sync_state_get, 2763 .private_value = SND_RME_DOMAIN_AES 2764 }, 2765 { 2766 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2767 .name = "SPDIF Rate", 2768 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 2769 .info = snd_rme_rate_info, 2770 .get = snd_rme_rate_get, 2771 .private_value = SND_RME_DOMAIN_SPDIF 2772 }, 2773 { 2774 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2775 .name = "SPDIF Sync", 2776 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 2777 .info = snd_rme_sync_state_info, 2778 .get = snd_rme_sync_state_get, 2779 .private_value = SND_RME_DOMAIN_SPDIF 2780 }, 2781 { 2782 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2783 .name = "SPDIF Interface", 2784 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 2785 .info = snd_rme_spdif_if_info, 2786 .get = snd_rme_spdif_if_get, 2787 }, 2788 { 2789 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2790 .name = "SPDIF Format", 2791 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 2792 .info = snd_rme_spdif_format_info, 2793 .get = snd_rme_spdif_format_get, 2794 }, 2795 { 2796 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2797 .name = "Sync Source", 2798 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 2799 .info = snd_rme_sync_source_info, 2800 .get = snd_rme_sync_source_get 2801 }, 2802 { 2803 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2804 .name = "System Rate", 2805 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 2806 .info = snd_rme_rate_info, 2807 .get = snd_rme_rate_get, 2808 .private_value = SND_RME_DOMAIN_SYSTEM 2809 }, 2810 { 2811 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2812 .name = "Current Frequency", 2813 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 2814 .info = snd_rme_rate_info, 2815 .get = snd_rme_current_freq_get 2816 } 2817 }; 2818 2819 static int snd_rme_controls_create(struct usb_mixer_interface *mixer) 2820 { 2821 int err, i; 2822 2823 for (i = 0; i < ARRAY_SIZE(snd_rme_controls); ++i) { 2824 err = add_single_ctl_with_resume(mixer, 0, 2825 NULL, 2826 &snd_rme_controls[i], 2827 NULL); 2828 if (err < 0) 2829 return err; 2830 } 2831 2832 return 0; 2833 } 2834 2835 /* 2836 * RME Babyface Pro (FS) 2837 * 2838 * These devices exposes a couple of DSP functions via request to EP0. 2839 * Switches are available via control registers, while routing is controlled 2840 * by controlling the volume on each possible crossing point. 2841 * Volume control is linear, from -inf (dec. 0) to +6dB (dec. 65536) with 2842 * 0dB being at dec. 32768. 2843 */ 2844 enum { 2845 SND_BBFPRO_CTL_REG1 = 0, 2846 SND_BBFPRO_CTL_REG2 2847 }; 2848 2849 #define SND_BBFPRO_CTL_REG_MASK 1 2850 #define SND_BBFPRO_CTL_IDX_MASK 0xff 2851 #define SND_BBFPRO_CTL_IDX_SHIFT 1 2852 #define SND_BBFPRO_CTL_VAL_MASK 1 2853 #define SND_BBFPRO_CTL_VAL_SHIFT 9 2854 #define SND_BBFPRO_CTL_REG1_CLK_MASTER 0 2855 #define SND_BBFPRO_CTL_REG1_CLK_OPTICAL 1 2856 #define SND_BBFPRO_CTL_REG1_SPDIF_PRO 7 2857 #define SND_BBFPRO_CTL_REG1_SPDIF_EMPH 8 2858 #define SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL 10 2859 #define SND_BBFPRO_CTL_REG2_48V_AN1 0 2860 #define SND_BBFPRO_CTL_REG2_48V_AN2 1 2861 #define SND_BBFPRO_CTL_REG2_SENS_IN3 2 2862 #define SND_BBFPRO_CTL_REG2_SENS_IN4 3 2863 #define SND_BBFPRO_CTL_REG2_PAD_AN1 4 2864 #define SND_BBFPRO_CTL_REG2_PAD_AN2 5 2865 2866 #define SND_BBFPRO_MIXER_MAIN_OUT_CH_OFFSET 992 2867 #define SND_BBFPRO_MIXER_IDX_MASK 0x3ff 2868 #define SND_BBFPRO_MIXER_VAL_MASK 0x3ffff 2869 #define SND_BBFPRO_MIXER_VAL_SHIFT 9 2870 #define SND_BBFPRO_MIXER_VAL_MIN 0 // -inf 2871 #define SND_BBFPRO_MIXER_VAL_MAX 65536 // +6dB 2872 2873 #define SND_BBFPRO_GAIN_CHANNEL_MASK 0x03 2874 #define SND_BBFPRO_GAIN_CHANNEL_SHIFT 7 2875 #define SND_BBFPRO_GAIN_VAL_MASK 0x7f 2876 #define SND_BBFPRO_GAIN_VAL_MIN 0 2877 #define SND_BBFPRO_GAIN_VAL_MIC_MAX 65 2878 #define SND_BBFPRO_GAIN_VAL_LINE_MAX 18 // 9db in 0.5db incraments 2879 2880 #define SND_BBFPRO_USBREQ_CTL_REG1 0x10 2881 #define SND_BBFPRO_USBREQ_CTL_REG2 0x17 2882 #define SND_BBFPRO_USBREQ_GAIN 0x1a 2883 #define SND_BBFPRO_USBREQ_MIXER 0x12 2884 2885 static int snd_bbfpro_ctl_update(struct usb_mixer_interface *mixer, u8 reg, 2886 u8 index, u8 value) 2887 { 2888 u16 usb_req, usb_idx, usb_val; 2889 struct snd_usb_audio *chip = mixer->chip; 2890 2891 CLASS(snd_usb_lock, pm)(chip); 2892 if (pm.err < 0) 2893 return pm.err; 2894 2895 if (reg == SND_BBFPRO_CTL_REG1) { 2896 usb_req = SND_BBFPRO_USBREQ_CTL_REG1; 2897 if (index == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) { 2898 usb_idx = 3; 2899 usb_val = value ? 3 : 0; 2900 } else { 2901 usb_idx = BIT(index); 2902 usb_val = value ? usb_idx : 0; 2903 } 2904 } else { 2905 usb_req = SND_BBFPRO_USBREQ_CTL_REG2; 2906 usb_idx = BIT(index); 2907 usb_val = value ? usb_idx : 0; 2908 } 2909 2910 return snd_usb_ctl_msg(chip->dev, 2911 usb_sndctrlpipe(chip->dev, 0), usb_req, 2912 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 2913 usb_val, usb_idx, NULL, 0); 2914 } 2915 2916 static int snd_bbfpro_ctl_get(struct snd_kcontrol *kcontrol, 2917 struct snd_ctl_elem_value *ucontrol) 2918 { 2919 u8 reg, idx, val; 2920 int pv; 2921 2922 pv = kcontrol->private_value; 2923 reg = pv & SND_BBFPRO_CTL_REG_MASK; 2924 idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK; 2925 val = kcontrol->private_value >> SND_BBFPRO_CTL_VAL_SHIFT; 2926 2927 if ((reg == SND_BBFPRO_CTL_REG1 && 2928 idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) || 2929 (reg == SND_BBFPRO_CTL_REG2 && 2930 (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 || 2931 idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) { 2932 ucontrol->value.enumerated.item[0] = val; 2933 } else { 2934 ucontrol->value.integer.value[0] = val; 2935 } 2936 return 0; 2937 } 2938 2939 static int snd_bbfpro_ctl_info(struct snd_kcontrol *kcontrol, 2940 struct snd_ctl_elem_info *uinfo) 2941 { 2942 u8 reg, idx; 2943 int pv; 2944 2945 pv = kcontrol->private_value; 2946 reg = pv & SND_BBFPRO_CTL_REG_MASK; 2947 idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK; 2948 2949 if (reg == SND_BBFPRO_CTL_REG1 && 2950 idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) { 2951 static const char * const texts[2] = { 2952 "AutoSync", 2953 "Internal" 2954 }; 2955 return snd_ctl_enum_info(uinfo, 1, 2, texts); 2956 } else if (reg == SND_BBFPRO_CTL_REG2 && 2957 (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 || 2958 idx == SND_BBFPRO_CTL_REG2_SENS_IN4)) { 2959 static const char * const texts[2] = { 2960 "-10dBV", 2961 "+4dBu" 2962 }; 2963 return snd_ctl_enum_info(uinfo, 1, 2, texts); 2964 } 2965 2966 uinfo->count = 1; 2967 uinfo->value.integer.min = 0; 2968 uinfo->value.integer.max = 1; 2969 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2970 return 0; 2971 } 2972 2973 static int snd_bbfpro_ctl_put(struct snd_kcontrol *kcontrol, 2974 struct snd_ctl_elem_value *ucontrol) 2975 { 2976 int err; 2977 u8 reg, idx; 2978 int old_value, pv, val; 2979 2980 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); 2981 struct usb_mixer_interface *mixer = list->mixer; 2982 2983 pv = kcontrol->private_value; 2984 reg = pv & SND_BBFPRO_CTL_REG_MASK; 2985 idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK; 2986 old_value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK; 2987 2988 if ((reg == SND_BBFPRO_CTL_REG1 && 2989 idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) || 2990 (reg == SND_BBFPRO_CTL_REG2 && 2991 (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 || 2992 idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) { 2993 val = ucontrol->value.enumerated.item[0]; 2994 } else { 2995 val = ucontrol->value.integer.value[0]; 2996 } 2997 2998 if (val > 1) 2999 return -EINVAL; 3000 3001 if (val == old_value) 3002 return 0; 3003 3004 kcontrol->private_value = reg 3005 | ((idx & SND_BBFPRO_CTL_IDX_MASK) << SND_BBFPRO_CTL_IDX_SHIFT) 3006 | ((val & SND_BBFPRO_CTL_VAL_MASK) << SND_BBFPRO_CTL_VAL_SHIFT); 3007 3008 err = snd_bbfpro_ctl_update(mixer, reg, idx, val); 3009 return err < 0 ? err : 1; 3010 } 3011 3012 static int snd_bbfpro_ctl_resume(struct usb_mixer_elem_list *list) 3013 { 3014 u8 reg, idx; 3015 int value, pv; 3016 3017 pv = list->kctl->private_value; 3018 reg = pv & SND_BBFPRO_CTL_REG_MASK; 3019 idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK; 3020 value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK; 3021 3022 return snd_bbfpro_ctl_update(list->mixer, reg, idx, value); 3023 } 3024 3025 static int snd_bbfpro_gain_update(struct usb_mixer_interface *mixer, 3026 u8 channel, u8 gain) 3027 { 3028 struct snd_usb_audio *chip = mixer->chip; 3029 3030 if (channel < 2) { 3031 // XLR preamp: 3-bit fine, 5-bit coarse; special case >60 3032 if (gain < 60) 3033 gain = ((gain % 3) << 5) | (gain / 3); 3034 else 3035 gain = ((gain % 6) << 5) | (60 / 3); 3036 } 3037 3038 CLASS(snd_usb_lock, pm)(chip); 3039 if (pm.err < 0) 3040 return pm.err; 3041 3042 return snd_usb_ctl_msg(chip->dev, 3043 usb_sndctrlpipe(chip->dev, 0), 3044 SND_BBFPRO_USBREQ_GAIN, 3045 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 3046 gain, channel, NULL, 0); 3047 } 3048 3049 static int snd_bbfpro_gain_get(struct snd_kcontrol *kcontrol, 3050 struct snd_ctl_elem_value *ucontrol) 3051 { 3052 int value = kcontrol->private_value & SND_BBFPRO_GAIN_VAL_MASK; 3053 3054 ucontrol->value.integer.value[0] = value; 3055 return 0; 3056 } 3057 3058 static int snd_bbfpro_gain_info(struct snd_kcontrol *kcontrol, 3059 struct snd_ctl_elem_info *uinfo) 3060 { 3061 int pv, channel; 3062 3063 pv = kcontrol->private_value; 3064 channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) & 3065 SND_BBFPRO_GAIN_CHANNEL_MASK; 3066 3067 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 3068 uinfo->count = 1; 3069 uinfo->value.integer.min = SND_BBFPRO_GAIN_VAL_MIN; 3070 3071 if (channel < 2) 3072 uinfo->value.integer.max = SND_BBFPRO_GAIN_VAL_MIC_MAX; 3073 else 3074 uinfo->value.integer.max = SND_BBFPRO_GAIN_VAL_LINE_MAX; 3075 3076 return 0; 3077 } 3078 3079 static int snd_bbfpro_gain_put(struct snd_kcontrol *kcontrol, 3080 struct snd_ctl_elem_value *ucontrol) 3081 { 3082 int pv, channel, old_value, value, err; 3083 3084 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); 3085 struct usb_mixer_interface *mixer = list->mixer; 3086 3087 pv = kcontrol->private_value; 3088 channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) & 3089 SND_BBFPRO_GAIN_CHANNEL_MASK; 3090 old_value = pv & SND_BBFPRO_GAIN_VAL_MASK; 3091 value = ucontrol->value.integer.value[0]; 3092 3093 if (value < SND_BBFPRO_GAIN_VAL_MIN) 3094 return -EINVAL; 3095 3096 if (channel < 2) { 3097 if (value > SND_BBFPRO_GAIN_VAL_MIC_MAX) 3098 return -EINVAL; 3099 } else { 3100 if (value > SND_BBFPRO_GAIN_VAL_LINE_MAX) 3101 return -EINVAL; 3102 } 3103 3104 if (value == old_value) 3105 return 0; 3106 3107 err = snd_bbfpro_gain_update(mixer, channel, value); 3108 if (err < 0) 3109 return err; 3110 3111 kcontrol->private_value = 3112 (channel << SND_BBFPRO_GAIN_CHANNEL_SHIFT) | value; 3113 return 1; 3114 } 3115 3116 static int snd_bbfpro_gain_resume(struct usb_mixer_elem_list *list) 3117 { 3118 int pv, channel, value; 3119 struct snd_kcontrol *kctl = list->kctl; 3120 3121 pv = kctl->private_value; 3122 channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) & 3123 SND_BBFPRO_GAIN_CHANNEL_MASK; 3124 value = pv & SND_BBFPRO_GAIN_VAL_MASK; 3125 3126 return snd_bbfpro_gain_update(list->mixer, channel, value); 3127 } 3128 3129 static int snd_bbfpro_vol_update(struct usb_mixer_interface *mixer, u16 index, 3130 u32 value) 3131 { 3132 struct snd_usb_audio *chip = mixer->chip; 3133 u16 idx; 3134 u16 usb_idx, usb_val; 3135 u32 v; 3136 3137 CLASS(snd_usb_lock, pm)(chip); 3138 if (pm.err < 0) 3139 return pm.err; 3140 3141 idx = index & SND_BBFPRO_MIXER_IDX_MASK; 3142 // 18 bit linear volume, split so 2 bits end up in index. 3143 v = value & SND_BBFPRO_MIXER_VAL_MASK; 3144 usb_idx = idx | (v & 0x3) << 14; 3145 usb_val = (v >> 2) & 0xffff; 3146 3147 return snd_usb_ctl_msg(chip->dev, 3148 usb_sndctrlpipe(chip->dev, 0), 3149 SND_BBFPRO_USBREQ_MIXER, 3150 USB_DIR_OUT | USB_TYPE_VENDOR | 3151 USB_RECIP_DEVICE, 3152 usb_val, usb_idx, NULL, 0); 3153 } 3154 3155 static int snd_bbfpro_vol_get(struct snd_kcontrol *kcontrol, 3156 struct snd_ctl_elem_value *ucontrol) 3157 { 3158 ucontrol->value.integer.value[0] = 3159 kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT; 3160 return 0; 3161 } 3162 3163 static int snd_bbfpro_vol_info(struct snd_kcontrol *kcontrol, 3164 struct snd_ctl_elem_info *uinfo) 3165 { 3166 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 3167 uinfo->count = 1; 3168 uinfo->value.integer.min = SND_BBFPRO_MIXER_VAL_MIN; 3169 uinfo->value.integer.max = SND_BBFPRO_MIXER_VAL_MAX; 3170 return 0; 3171 } 3172 3173 static int snd_bbfpro_vol_put(struct snd_kcontrol *kcontrol, 3174 struct snd_ctl_elem_value *ucontrol) 3175 { 3176 int err; 3177 u16 idx; 3178 u32 new_val, old_value, uvalue; 3179 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); 3180 struct usb_mixer_interface *mixer = list->mixer; 3181 3182 uvalue = ucontrol->value.integer.value[0]; 3183 idx = kcontrol->private_value & SND_BBFPRO_MIXER_IDX_MASK; 3184 old_value = kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT; 3185 3186 if (uvalue > SND_BBFPRO_MIXER_VAL_MAX) 3187 return -EINVAL; 3188 3189 if (uvalue == old_value) 3190 return 0; 3191 3192 new_val = uvalue & SND_BBFPRO_MIXER_VAL_MASK; 3193 3194 kcontrol->private_value = idx 3195 | (new_val << SND_BBFPRO_MIXER_VAL_SHIFT); 3196 3197 err = snd_bbfpro_vol_update(mixer, idx, new_val); 3198 return err < 0 ? err : 1; 3199 } 3200 3201 static int snd_bbfpro_vol_resume(struct usb_mixer_elem_list *list) 3202 { 3203 int pv = list->kctl->private_value; 3204 u16 idx = pv & SND_BBFPRO_MIXER_IDX_MASK; 3205 u32 val = (pv >> SND_BBFPRO_MIXER_VAL_SHIFT) 3206 & SND_BBFPRO_MIXER_VAL_MASK; 3207 return snd_bbfpro_vol_update(list->mixer, idx, val); 3208 } 3209 3210 // Predfine elements 3211 static const struct snd_kcontrol_new snd_bbfpro_ctl_control = { 3212 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3213 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 3214 .index = 0, 3215 .info = snd_bbfpro_ctl_info, 3216 .get = snd_bbfpro_ctl_get, 3217 .put = snd_bbfpro_ctl_put 3218 }; 3219 3220 static const struct snd_kcontrol_new snd_bbfpro_gain_control = { 3221 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3222 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 3223 .index = 0, 3224 .info = snd_bbfpro_gain_info, 3225 .get = snd_bbfpro_gain_get, 3226 .put = snd_bbfpro_gain_put 3227 }; 3228 3229 static const struct snd_kcontrol_new snd_bbfpro_vol_control = { 3230 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3231 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 3232 .index = 0, 3233 .info = snd_bbfpro_vol_info, 3234 .get = snd_bbfpro_vol_get, 3235 .put = snd_bbfpro_vol_put 3236 }; 3237 3238 static int snd_bbfpro_ctl_add(struct usb_mixer_interface *mixer, u8 reg, 3239 u8 index, char *name) 3240 { 3241 struct snd_kcontrol_new knew = snd_bbfpro_ctl_control; 3242 3243 knew.name = name; 3244 knew.private_value = (reg & SND_BBFPRO_CTL_REG_MASK) 3245 | ((index & SND_BBFPRO_CTL_IDX_MASK) 3246 << SND_BBFPRO_CTL_IDX_SHIFT); 3247 3248 return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_ctl_resume, 3249 &knew, NULL); 3250 } 3251 3252 static int snd_bbfpro_gain_add(struct usb_mixer_interface *mixer, u8 channel, 3253 char *name) 3254 { 3255 struct snd_kcontrol_new knew = snd_bbfpro_gain_control; 3256 3257 knew.name = name; 3258 knew.private_value = channel << SND_BBFPRO_GAIN_CHANNEL_SHIFT; 3259 3260 return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_gain_resume, 3261 &knew, NULL); 3262 } 3263 3264 static int snd_bbfpro_vol_add(struct usb_mixer_interface *mixer, u16 index, 3265 char *name) 3266 { 3267 struct snd_kcontrol_new knew = snd_bbfpro_vol_control; 3268 3269 knew.name = name; 3270 knew.private_value = index & SND_BBFPRO_MIXER_IDX_MASK; 3271 3272 return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_vol_resume, 3273 &knew, NULL); 3274 } 3275 3276 static int snd_bbfpro_controls_create(struct usb_mixer_interface *mixer) 3277 { 3278 int err, i, o; 3279 char name[48]; 3280 3281 static const char * const input[] = { 3282 "AN1", "AN2", "IN3", "IN4", "AS1", "AS2", "ADAT3", 3283 "ADAT4", "ADAT5", "ADAT6", "ADAT7", "ADAT8"}; 3284 3285 static const char * const output[] = { 3286 "AN1", "AN2", "PH3", "PH4", "AS1", "AS2", "ADAT3", "ADAT4", 3287 "ADAT5", "ADAT6", "ADAT7", "ADAT8"}; 3288 3289 for (o = 0 ; o < 12 ; ++o) { 3290 for (i = 0 ; i < 12 ; ++i) { 3291 // Line routing 3292 snprintf(name, sizeof(name), 3293 "%s-%s-%s Playback Volume", 3294 (i < 2 ? "Mic" : "Line"), 3295 input[i], output[o]); 3296 err = snd_bbfpro_vol_add(mixer, (26 * o + i), name); 3297 if (err < 0) 3298 return err; 3299 3300 // PCM routing... yes, it is output remapping 3301 snprintf(name, sizeof(name), 3302 "PCM-%s-%s Playback Volume", 3303 output[i], output[o]); 3304 err = snd_bbfpro_vol_add(mixer, (26 * o + 12 + i), 3305 name); 3306 if (err < 0) 3307 return err; 3308 } 3309 } 3310 3311 // Main out volume 3312 for (i = 0 ; i < 12 ; ++i) { 3313 snprintf(name, sizeof(name), "Main-Out %s", output[i]); 3314 // Main outs are offset to 992 3315 err = snd_bbfpro_vol_add(mixer, 3316 i + SND_BBFPRO_MIXER_MAIN_OUT_CH_OFFSET, 3317 name); 3318 if (err < 0) 3319 return err; 3320 } 3321 3322 // Input gain 3323 for (i = 0 ; i < 4 ; ++i) { 3324 if (i < 2) 3325 snprintf(name, sizeof(name), "Mic-%s Gain", input[i]); 3326 else 3327 snprintf(name, sizeof(name), "Line-%s Gain", input[i]); 3328 3329 err = snd_bbfpro_gain_add(mixer, i, name); 3330 if (err < 0) 3331 return err; 3332 } 3333 3334 // Control Reg 1 3335 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1, 3336 SND_BBFPRO_CTL_REG1_CLK_OPTICAL, 3337 "Sample Clock Source"); 3338 if (err < 0) 3339 return err; 3340 3341 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1, 3342 SND_BBFPRO_CTL_REG1_SPDIF_PRO, 3343 "IEC958 Pro Mask"); 3344 if (err < 0) 3345 return err; 3346 3347 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1, 3348 SND_BBFPRO_CTL_REG1_SPDIF_EMPH, 3349 "IEC958 Emphasis"); 3350 if (err < 0) 3351 return err; 3352 3353 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1, 3354 SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL, 3355 "IEC958 Switch"); 3356 if (err < 0) 3357 return err; 3358 3359 // Control Reg 2 3360 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2, 3361 SND_BBFPRO_CTL_REG2_48V_AN1, 3362 "Mic-AN1 48V"); 3363 if (err < 0) 3364 return err; 3365 3366 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2, 3367 SND_BBFPRO_CTL_REG2_48V_AN2, 3368 "Mic-AN2 48V"); 3369 if (err < 0) 3370 return err; 3371 3372 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2, 3373 SND_BBFPRO_CTL_REG2_SENS_IN3, 3374 "Line-IN3 Sens."); 3375 if (err < 0) 3376 return err; 3377 3378 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2, 3379 SND_BBFPRO_CTL_REG2_SENS_IN4, 3380 "Line-IN4 Sens."); 3381 if (err < 0) 3382 return err; 3383 3384 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2, 3385 SND_BBFPRO_CTL_REG2_PAD_AN1, 3386 "Mic-AN1 PAD"); 3387 if (err < 0) 3388 return err; 3389 3390 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2, 3391 SND_BBFPRO_CTL_REG2_PAD_AN2, 3392 "Mic-AN2 PAD"); 3393 if (err < 0) 3394 return err; 3395 3396 return 0; 3397 } 3398 3399 /* 3400 * RME Digiface USB 3401 */ 3402 3403 #define RME_DIGIFACE_READ_STATUS 17 3404 #define RME_DIGIFACE_STATUS_REG0L 0 3405 #define RME_DIGIFACE_STATUS_REG0H 1 3406 #define RME_DIGIFACE_STATUS_REG1L 2 3407 #define RME_DIGIFACE_STATUS_REG1H 3 3408 #define RME_DIGIFACE_STATUS_REG2L 4 3409 #define RME_DIGIFACE_STATUS_REG2H 5 3410 #define RME_DIGIFACE_STATUS_REG3L 6 3411 #define RME_DIGIFACE_STATUS_REG3H 7 3412 3413 #define RME_DIGIFACE_CTL_REG1 16 3414 #define RME_DIGIFACE_CTL_REG2 18 3415 3416 /* Reg is overloaded, 0-7 for status halfwords or 16 or 18 for control registers */ 3417 #define RME_DIGIFACE_REGISTER(reg, mask) (((reg) << 16) | (mask)) 3418 #define RME_DIGIFACE_INVERT BIT(31) 3419 3420 static int snd_rme_digiface_write_reg(struct snd_kcontrol *kcontrol, int item, u16 mask, u16 val) 3421 { 3422 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); 3423 struct snd_usb_audio *chip = list->mixer->chip; 3424 struct usb_device *dev = chip->dev; 3425 int err; 3426 3427 err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), 3428 item, 3429 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 3430 val, mask, NULL, 0); 3431 if (err < 0) 3432 dev_err(&dev->dev, 3433 "unable to issue control set request %d (ret = %d)", 3434 item, err); 3435 return err; 3436 } 3437 3438 static int snd_rme_digiface_read_status(struct snd_kcontrol *kcontrol, u32 status[4]) 3439 { 3440 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); 3441 struct snd_usb_audio *chip = list->mixer->chip; 3442 struct usb_device *dev = chip->dev; 3443 __le32 buf[4]; 3444 int err; 3445 3446 err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), 3447 RME_DIGIFACE_READ_STATUS, 3448 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 3449 0, 0, 3450 buf, sizeof(buf)); 3451 if (err < 0) { 3452 dev_err(&dev->dev, 3453 "unable to issue status read request (ret = %d)", 3454 err); 3455 } else { 3456 for (int i = 0; i < ARRAY_SIZE(buf); i++) 3457 status[i] = le32_to_cpu(buf[i]); 3458 } 3459 return err; 3460 } 3461 3462 static int snd_rme_digiface_get_status_val(struct snd_kcontrol *kcontrol) 3463 { 3464 int err; 3465 u32 status[4]; 3466 bool invert = kcontrol->private_value & RME_DIGIFACE_INVERT; 3467 u8 reg = (kcontrol->private_value >> 16) & 0xff; 3468 u16 mask = kcontrol->private_value & 0xffff; 3469 u16 val; 3470 3471 err = snd_rme_digiface_read_status(kcontrol, status); 3472 if (err < 0) 3473 return err; 3474 3475 switch (reg) { 3476 /* Status register halfwords */ 3477 case RME_DIGIFACE_STATUS_REG0L ... RME_DIGIFACE_STATUS_REG3H: 3478 break; 3479 case RME_DIGIFACE_CTL_REG1: /* Control register 1, present in halfword 3L */ 3480 reg = RME_DIGIFACE_STATUS_REG3L; 3481 break; 3482 case RME_DIGIFACE_CTL_REG2: /* Control register 2, present in halfword 3H */ 3483 reg = RME_DIGIFACE_STATUS_REG3H; 3484 break; 3485 default: 3486 return -EINVAL; 3487 } 3488 3489 if (reg & 1) 3490 val = status[reg >> 1] >> 16; 3491 else 3492 val = status[reg >> 1] & 0xffff; 3493 3494 if (invert) 3495 val ^= mask; 3496 3497 return field_get(mask, val); 3498 } 3499 3500 static int snd_rme_digiface_rate_get(struct snd_kcontrol *kcontrol, 3501 struct snd_ctl_elem_value *ucontrol) 3502 { 3503 int freq = snd_rme_digiface_get_status_val(kcontrol); 3504 3505 if (freq < 0) 3506 return freq; 3507 if (freq >= ARRAY_SIZE(snd_rme_rate_table)) 3508 return -EIO; 3509 3510 ucontrol->value.integer.value[0] = snd_rme_rate_table[freq]; 3511 return 0; 3512 } 3513 3514 static int snd_rme_digiface_enum_get(struct snd_kcontrol *kcontrol, 3515 struct snd_ctl_elem_value *ucontrol) 3516 { 3517 int val = snd_rme_digiface_get_status_val(kcontrol); 3518 3519 if (val < 0) 3520 return val; 3521 3522 ucontrol->value.enumerated.item[0] = val; 3523 return 0; 3524 } 3525 3526 static int snd_rme_digiface_enum_put(struct snd_kcontrol *kcontrol, 3527 struct snd_ctl_elem_value *ucontrol) 3528 { 3529 bool invert = kcontrol->private_value & RME_DIGIFACE_INVERT; 3530 u8 reg = (kcontrol->private_value >> 16) & 0xff; 3531 u16 mask = kcontrol->private_value & 0xffff; 3532 u16 val = field_prep(mask, ucontrol->value.enumerated.item[0]); 3533 3534 if (invert) 3535 val ^= mask; 3536 3537 return snd_rme_digiface_write_reg(kcontrol, reg, mask, val); 3538 } 3539 3540 static int snd_rme_digiface_current_sync_get(struct snd_kcontrol *kcontrol, 3541 struct snd_ctl_elem_value *ucontrol) 3542 { 3543 int ret = snd_rme_digiface_enum_get(kcontrol, ucontrol); 3544 3545 /* 7 means internal for current sync */ 3546 if (ucontrol->value.enumerated.item[0] == 7) 3547 ucontrol->value.enumerated.item[0] = 0; 3548 3549 return ret; 3550 } 3551 3552 static int snd_rme_digiface_sync_state_get(struct snd_kcontrol *kcontrol, 3553 struct snd_ctl_elem_value *ucontrol) 3554 { 3555 u32 status[4]; 3556 int err; 3557 bool valid, sync; 3558 3559 err = snd_rme_digiface_read_status(kcontrol, status); 3560 if (err < 0) 3561 return err; 3562 3563 valid = status[0] & BIT(kcontrol->private_value); 3564 sync = status[0] & BIT(5 + kcontrol->private_value); 3565 3566 if (!valid) 3567 ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_NOLOCK; 3568 else if (!sync) 3569 ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_LOCK; 3570 else 3571 ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_SYNC; 3572 return 0; 3573 } 3574 3575 static int snd_rme_digiface_format_info(struct snd_kcontrol *kcontrol, 3576 struct snd_ctl_elem_info *uinfo) 3577 { 3578 static const char *const format[] = { 3579 "ADAT", "S/PDIF" 3580 }; 3581 3582 return snd_ctl_enum_info(uinfo, 1, 3583 ARRAY_SIZE(format), format); 3584 } 3585 3586 static int snd_rme_digiface_sync_source_info(struct snd_kcontrol *kcontrol, 3587 struct snd_ctl_elem_info *uinfo) 3588 { 3589 static const char *const sync_sources[] = { 3590 "Internal", "Input 1", "Input 2", "Input 3", "Input 4" 3591 }; 3592 3593 return snd_ctl_enum_info(uinfo, 1, 3594 ARRAY_SIZE(sync_sources), sync_sources); 3595 } 3596 3597 static int snd_rme_digiface_rate_info(struct snd_kcontrol *kcontrol, 3598 struct snd_ctl_elem_info *uinfo) 3599 { 3600 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 3601 uinfo->count = 1; 3602 uinfo->value.integer.min = 0; 3603 uinfo->value.integer.max = 200000; 3604 uinfo->value.integer.step = 0; 3605 return 0; 3606 } 3607 3608 static const struct snd_kcontrol_new snd_rme_digiface_controls[] = { 3609 { 3610 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3611 .name = "Input 1 Sync", 3612 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 3613 .info = snd_rme_sync_state_info, 3614 .get = snd_rme_digiface_sync_state_get, 3615 .private_value = 0, 3616 }, 3617 { 3618 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3619 .name = "Input 1 Format", 3620 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 3621 .info = snd_rme_digiface_format_info, 3622 .get = snd_rme_digiface_enum_get, 3623 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0H, BIT(0)) | 3624 RME_DIGIFACE_INVERT, 3625 }, 3626 { 3627 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3628 .name = "Input 1 Rate", 3629 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 3630 .info = snd_rme_digiface_rate_info, 3631 .get = snd_rme_digiface_rate_get, 3632 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(3, 0)), 3633 }, 3634 { 3635 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3636 .name = "Input 2 Sync", 3637 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 3638 .info = snd_rme_sync_state_info, 3639 .get = snd_rme_digiface_sync_state_get, 3640 .private_value = 1, 3641 }, 3642 { 3643 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3644 .name = "Input 2 Format", 3645 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 3646 .info = snd_rme_digiface_format_info, 3647 .get = snd_rme_digiface_enum_get, 3648 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, BIT(13)) | 3649 RME_DIGIFACE_INVERT, 3650 }, 3651 { 3652 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3653 .name = "Input 2 Rate", 3654 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 3655 .info = snd_rme_digiface_rate_info, 3656 .get = snd_rme_digiface_rate_get, 3657 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(7, 4)), 3658 }, 3659 { 3660 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3661 .name = "Input 3 Sync", 3662 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 3663 .info = snd_rme_sync_state_info, 3664 .get = snd_rme_digiface_sync_state_get, 3665 .private_value = 2, 3666 }, 3667 { 3668 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3669 .name = "Input 3 Format", 3670 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 3671 .info = snd_rme_digiface_format_info, 3672 .get = snd_rme_digiface_enum_get, 3673 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, BIT(14)) | 3674 RME_DIGIFACE_INVERT, 3675 }, 3676 { 3677 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3678 .name = "Input 3 Rate", 3679 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 3680 .info = snd_rme_digiface_rate_info, 3681 .get = snd_rme_digiface_rate_get, 3682 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(11, 8)), 3683 }, 3684 { 3685 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3686 .name = "Input 4 Sync", 3687 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 3688 .info = snd_rme_sync_state_info, 3689 .get = snd_rme_digiface_sync_state_get, 3690 .private_value = 3, 3691 }, 3692 { 3693 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3694 .name = "Input 4 Format", 3695 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 3696 .info = snd_rme_digiface_format_info, 3697 .get = snd_rme_digiface_enum_get, 3698 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, GENMASK(15, 12)) | 3699 RME_DIGIFACE_INVERT, 3700 }, 3701 { 3702 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3703 .name = "Input 4 Rate", 3704 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 3705 .info = snd_rme_digiface_rate_info, 3706 .get = snd_rme_digiface_rate_get, 3707 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(3, 0)), 3708 }, 3709 { 3710 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3711 .name = "Output 1 Format", 3712 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 3713 .info = snd_rme_digiface_format_info, 3714 .get = snd_rme_digiface_enum_get, 3715 .put = snd_rme_digiface_enum_put, 3716 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(0)), 3717 }, 3718 { 3719 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3720 .name = "Output 2 Format", 3721 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 3722 .info = snd_rme_digiface_format_info, 3723 .get = snd_rme_digiface_enum_get, 3724 .put = snd_rme_digiface_enum_put, 3725 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(1)), 3726 }, 3727 { 3728 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3729 .name = "Output 3 Format", 3730 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 3731 .info = snd_rme_digiface_format_info, 3732 .get = snd_rme_digiface_enum_get, 3733 .put = snd_rme_digiface_enum_put, 3734 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(3)), 3735 }, 3736 { 3737 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3738 .name = "Output 4 Format", 3739 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 3740 .info = snd_rme_digiface_format_info, 3741 .get = snd_rme_digiface_enum_get, 3742 .put = snd_rme_digiface_enum_put, 3743 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(4)), 3744 }, 3745 { 3746 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3747 .name = "Sync Source", 3748 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 3749 .info = snd_rme_digiface_sync_source_info, 3750 .get = snd_rme_digiface_enum_get, 3751 .put = snd_rme_digiface_enum_put, 3752 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG1, GENMASK(2, 0)), 3753 }, 3754 { 3755 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3756 .name = "Current Sync Source", 3757 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 3758 .info = snd_rme_digiface_sync_source_info, 3759 .get = snd_rme_digiface_current_sync_get, 3760 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, GENMASK(12, 10)), 3761 }, 3762 { 3763 /* 3764 * This is writeable, but it is only set by the PCM rate. 3765 * Mixer apps currently need to drive the mixer using raw USB requests, 3766 * so they can also change this that way to configure the rate for 3767 * stand-alone operation when the PCM is closed. 3768 */ 3769 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3770 .name = "System Rate", 3771 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 3772 .info = snd_rme_rate_info, 3773 .get = snd_rme_digiface_rate_get, 3774 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG1, GENMASK(6, 3)), 3775 }, 3776 { 3777 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3778 .name = "Current Rate", 3779 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 3780 .info = snd_rme_rate_info, 3781 .get = snd_rme_digiface_rate_get, 3782 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1H, GENMASK(7, 4)), 3783 } 3784 }; 3785 3786 static int snd_rme_digiface_controls_create(struct usb_mixer_interface *mixer) 3787 { 3788 int err, i; 3789 3790 for (i = 0; i < ARRAY_SIZE(snd_rme_digiface_controls); ++i) { 3791 err = add_single_ctl_with_resume(mixer, 0, 3792 NULL, 3793 &snd_rme_digiface_controls[i], 3794 NULL); 3795 if (err < 0) 3796 return err; 3797 } 3798 3799 return 0; 3800 } 3801 3802 /* 3803 * Pioneer DJ / AlphaTheta DJM Mixers 3804 * 3805 * These devices generally have options for soft-switching the playback and 3806 * capture sources in addition to the recording level. Although different 3807 * devices have different configurations, there seems to be canonical values 3808 * for specific capture/playback types: See the definitions of these below. 3809 * 3810 * The wValue is masked with the stereo channel number. e.g. Setting Ch2 to 3811 * capture phono would be 0x0203. Capture, playback and capture level have 3812 * different wIndexes. 3813 */ 3814 3815 // Capture types 3816 #define SND_DJM_CAP_LINE 0x00 3817 #define SND_DJM_CAP_CDLINE 0x01 3818 #define SND_DJM_CAP_DIGITAL 0x02 3819 #define SND_DJM_CAP_PHONO 0x03 3820 #define SND_DJM_CAP_PREFADER 0x05 3821 #define SND_DJM_CAP_PFADER 0x06 3822 #define SND_DJM_CAP_XFADERA 0x07 3823 #define SND_DJM_CAP_XFADERB 0x08 3824 #define SND_DJM_CAP_MIC 0x09 3825 #define SND_DJM_CAP_AUX 0x0d 3826 #define SND_DJM_CAP_RECOUT 0x0a 3827 #define SND_DJM_CAP_RECOUT_NOMIC 0x0e 3828 #define SND_DJM_CAP_NONE 0x0f 3829 #define SND_DJM_CAP_FXSEND 0x10 3830 #define SND_DJM_CAP_CH1PFADER 0x11 3831 #define SND_DJM_CAP_CH2PFADER 0x12 3832 #define SND_DJM_CAP_CH3PFADER 0x13 3833 #define SND_DJM_CAP_CH4PFADER 0x14 3834 #define SND_DJM_CAP_EXT1SEND 0x21 3835 #define SND_DJM_CAP_EXT2SEND 0x22 3836 #define SND_DJM_CAP_CH1PREFADER 0x31 3837 #define SND_DJM_CAP_CH2PREFADER 0x32 3838 #define SND_DJM_CAP_CH3PREFADER 0x33 3839 #define SND_DJM_CAP_CH4PREFADER 0x34 3840 3841 // Playback types 3842 #define SND_DJM_PB_CH1 0x00 3843 #define SND_DJM_PB_CH2 0x01 3844 #define SND_DJM_PB_AUX 0x04 3845 3846 #define SND_DJM_WINDEX_CAP 0x8002 3847 #define SND_DJM_WINDEX_CAPLVL 0x8003 3848 #define SND_DJM_WINDEX_PB 0x8016 3849 3850 // kcontrol->private_value layout 3851 #define SND_DJM_VALUE_MASK 0x0000ffff 3852 #define SND_DJM_GROUP_MASK 0x00ff0000 3853 #define SND_DJM_DEVICE_MASK 0xff000000 3854 #define SND_DJM_GROUP_SHIFT 16 3855 #define SND_DJM_DEVICE_SHIFT 24 3856 3857 // device table index 3858 // used for the snd_djm_devices table, so please update accordingly 3859 #define SND_DJM_250MK2_IDX 0x0 3860 #define SND_DJM_750_IDX 0x1 3861 #define SND_DJM_850_IDX 0x2 3862 #define SND_DJM_900NXS2_IDX 0x3 3863 #define SND_DJM_750MK2_IDX 0x4 3864 #define SND_DJM_450_IDX 0x5 3865 #define SND_DJM_A9_IDX 0x6 3866 #define SND_DJM_V10_IDX 0x7 3867 3868 #define SND_DJM_CTL(_name, suffix, _default_value, _windex) { \ 3869 .name = _name, \ 3870 .options = snd_djm_opts_##suffix, \ 3871 .noptions = ARRAY_SIZE(snd_djm_opts_##suffix), \ 3872 .default_value = _default_value, \ 3873 .wIndex = _windex } 3874 3875 #define SND_DJM_DEVICE(suffix) { \ 3876 .controls = snd_djm_ctls_##suffix, \ 3877 .ncontrols = ARRAY_SIZE(snd_djm_ctls_##suffix) } 3878 3879 struct snd_djm_device { 3880 const char *name; 3881 const struct snd_djm_ctl *controls; 3882 size_t ncontrols; 3883 }; 3884 3885 struct snd_djm_ctl { 3886 const char *name; 3887 const u16 *options; 3888 size_t noptions; 3889 u16 default_value; 3890 u16 wIndex; 3891 }; 3892 3893 static const char *snd_djm_get_label_caplevel_common(u16 wvalue) 3894 { 3895 switch (wvalue) { 3896 case 0x0000: return "-19dB"; 3897 case 0x0100: return "-15dB"; 3898 case 0x0200: return "-10dB"; 3899 case 0x0300: return "-5dB"; 3900 default: return NULL; 3901 } 3902 }; 3903 3904 // Models like DJM-A9 or DJM-V10 have different capture levels than others 3905 static const char *snd_djm_get_label_caplevel_high(u16 wvalue) 3906 { 3907 switch (wvalue) { 3908 case 0x0000: return "+15dB"; 3909 case 0x0100: return "+12dB"; 3910 case 0x0200: return "+9dB"; 3911 case 0x0300: return "+6dB"; 3912 case 0x0400: return "+3dB"; 3913 case 0x0500: return "0dB"; 3914 default: return NULL; 3915 } 3916 }; 3917 3918 static const char *snd_djm_get_label_cap_common(u16 wvalue) 3919 { 3920 switch (wvalue & 0x00ff) { 3921 case SND_DJM_CAP_LINE: return "Control Tone LINE"; 3922 case SND_DJM_CAP_CDLINE: return "Control Tone CD/LINE"; 3923 case SND_DJM_CAP_DIGITAL: return "Control Tone DIGITAL"; 3924 case SND_DJM_CAP_PHONO: return "Control Tone PHONO"; 3925 case SND_DJM_CAP_PFADER: return "Post Fader"; 3926 case SND_DJM_CAP_XFADERA: return "Cross Fader A"; 3927 case SND_DJM_CAP_XFADERB: return "Cross Fader B"; 3928 case SND_DJM_CAP_MIC: return "Mic"; 3929 case SND_DJM_CAP_RECOUT: return "Rec Out"; 3930 case SND_DJM_CAP_RECOUT_NOMIC: return "Rec Out without Mic"; 3931 case SND_DJM_CAP_AUX: return "Aux"; 3932 case SND_DJM_CAP_NONE: return "None"; 3933 case SND_DJM_CAP_FXSEND: return "FX SEND"; 3934 case SND_DJM_CAP_CH1PREFADER: return "Pre Fader Ch1"; 3935 case SND_DJM_CAP_CH2PREFADER: return "Pre Fader Ch2"; 3936 case SND_DJM_CAP_CH3PREFADER: return "Pre Fader Ch3"; 3937 case SND_DJM_CAP_CH4PREFADER: return "Pre Fader Ch4"; 3938 case SND_DJM_CAP_CH1PFADER: return "Post Fader Ch1"; 3939 case SND_DJM_CAP_CH2PFADER: return "Post Fader Ch2"; 3940 case SND_DJM_CAP_CH3PFADER: return "Post Fader Ch3"; 3941 case SND_DJM_CAP_CH4PFADER: return "Post Fader Ch4"; 3942 case SND_DJM_CAP_EXT1SEND: return "EXT1 SEND"; 3943 case SND_DJM_CAP_EXT2SEND: return "EXT2 SEND"; 3944 default: return NULL; 3945 } 3946 }; 3947 3948 // The DJM-850 has different values for CD/LINE and LINE capture 3949 // control options than the other DJM declared in this file. 3950 static const char *snd_djm_get_label_cap_850(u16 wvalue) 3951 { 3952 switch (wvalue & 0x00ff) { 3953 case 0x00: return "Control Tone CD/LINE"; 3954 case 0x01: return "Control Tone LINE"; 3955 default: return snd_djm_get_label_cap_common(wvalue); 3956 } 3957 }; 3958 3959 static const char *snd_djm_get_label_caplevel(u8 device_idx, u16 wvalue) 3960 { 3961 switch (device_idx) { 3962 case SND_DJM_A9_IDX: return snd_djm_get_label_caplevel_high(wvalue); 3963 case SND_DJM_V10_IDX: return snd_djm_get_label_caplevel_high(wvalue); 3964 default: return snd_djm_get_label_caplevel_common(wvalue); 3965 } 3966 }; 3967 3968 static const char *snd_djm_get_label_cap(u8 device_idx, u16 wvalue) 3969 { 3970 switch (device_idx) { 3971 case SND_DJM_850_IDX: return snd_djm_get_label_cap_850(wvalue); 3972 default: return snd_djm_get_label_cap_common(wvalue); 3973 } 3974 }; 3975 3976 static const char *snd_djm_get_label_pb(u16 wvalue) 3977 { 3978 switch (wvalue & 0x00ff) { 3979 case SND_DJM_PB_CH1: return "Ch1"; 3980 case SND_DJM_PB_CH2: return "Ch2"; 3981 case SND_DJM_PB_AUX: return "Aux"; 3982 default: return NULL; 3983 } 3984 }; 3985 3986 static const char *snd_djm_get_label(u8 device_idx, u16 wvalue, u16 windex) 3987 { 3988 switch (windex) { 3989 case SND_DJM_WINDEX_CAPLVL: return snd_djm_get_label_caplevel(device_idx, wvalue); 3990 case SND_DJM_WINDEX_CAP: return snd_djm_get_label_cap(device_idx, wvalue); 3991 case SND_DJM_WINDEX_PB: return snd_djm_get_label_pb(wvalue); 3992 default: return NULL; 3993 } 3994 }; 3995 3996 // common DJM capture level option values 3997 static const u16 snd_djm_opts_cap_level[] = { 3998 0x0000, 0x0100, 0x0200, 0x0300 }; 3999 4000 // DJM-250MK2 4001 static const u16 snd_djm_opts_250mk2_cap1[] = { 4002 0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a }; 4003 4004 static const u16 snd_djm_opts_250mk2_cap2[] = { 4005 0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a }; 4006 4007 static const u16 snd_djm_opts_250mk2_cap3[] = { 4008 0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d }; 4009 4010 static const u16 snd_djm_opts_250mk2_pb1[] = { 0x0100, 0x0101, 0x0104 }; 4011 static const u16 snd_djm_opts_250mk2_pb2[] = { 0x0200, 0x0201, 0x0204 }; 4012 static const u16 snd_djm_opts_250mk2_pb3[] = { 0x0300, 0x0301, 0x0304 }; 4013 4014 static const struct snd_djm_ctl snd_djm_ctls_250mk2[] = { 4015 SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL), 4016 SND_DJM_CTL("Input 1 Capture Switch", 250mk2_cap1, 2, SND_DJM_WINDEX_CAP), 4017 SND_DJM_CTL("Input 2 Capture Switch", 250mk2_cap2, 2, SND_DJM_WINDEX_CAP), 4018 SND_DJM_CTL("Input 3 Capture Switch", 250mk2_cap3, 0, SND_DJM_WINDEX_CAP), 4019 SND_DJM_CTL("Output 1 Playback Switch", 250mk2_pb1, 0, SND_DJM_WINDEX_PB), 4020 SND_DJM_CTL("Output 2 Playback Switch", 250mk2_pb2, 1, SND_DJM_WINDEX_PB), 4021 SND_DJM_CTL("Output 3 Playback Switch", 250mk2_pb3, 2, SND_DJM_WINDEX_PB) 4022 }; 4023 4024 // DJM-450 4025 static const u16 snd_djm_opts_450_cap1[] = { 4026 0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a }; 4027 4028 static const u16 snd_djm_opts_450_cap2[] = { 4029 0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a }; 4030 4031 static const u16 snd_djm_opts_450_cap3[] = { 4032 0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d }; 4033 4034 static const u16 snd_djm_opts_450_pb1[] = { 0x0100, 0x0101, 0x0104 }; 4035 static const u16 snd_djm_opts_450_pb2[] = { 0x0200, 0x0201, 0x0204 }; 4036 static const u16 snd_djm_opts_450_pb3[] = { 0x0300, 0x0301, 0x0304 }; 4037 4038 static const struct snd_djm_ctl snd_djm_ctls_450[] = { 4039 SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL), 4040 SND_DJM_CTL("Input 1 Capture Switch", 450_cap1, 2, SND_DJM_WINDEX_CAP), 4041 SND_DJM_CTL("Input 2 Capture Switch", 450_cap2, 2, SND_DJM_WINDEX_CAP), 4042 SND_DJM_CTL("Input 3 Capture Switch", 450_cap3, 0, SND_DJM_WINDEX_CAP), 4043 SND_DJM_CTL("Output 1 Playback Switch", 450_pb1, 0, SND_DJM_WINDEX_PB), 4044 SND_DJM_CTL("Output 2 Playback Switch", 450_pb2, 1, SND_DJM_WINDEX_PB), 4045 SND_DJM_CTL("Output 3 Playback Switch", 450_pb3, 2, SND_DJM_WINDEX_PB) 4046 }; 4047 4048 // DJM-750 4049 static const u16 snd_djm_opts_750_cap1[] = { 4050 0x0101, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f }; 4051 static const u16 snd_djm_opts_750_cap2[] = { 4052 0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f }; 4053 static const u16 snd_djm_opts_750_cap3[] = { 4054 0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f }; 4055 static const u16 snd_djm_opts_750_cap4[] = { 4056 0x0401, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f }; 4057 4058 static const struct snd_djm_ctl snd_djm_ctls_750[] = { 4059 SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL), 4060 SND_DJM_CTL("Input 1 Capture Switch", 750_cap1, 2, SND_DJM_WINDEX_CAP), 4061 SND_DJM_CTL("Input 2 Capture Switch", 750_cap2, 2, SND_DJM_WINDEX_CAP), 4062 SND_DJM_CTL("Input 3 Capture Switch", 750_cap3, 0, SND_DJM_WINDEX_CAP), 4063 SND_DJM_CTL("Input 4 Capture Switch", 750_cap4, 0, SND_DJM_WINDEX_CAP) 4064 }; 4065 4066 // DJM-850 4067 static const u16 snd_djm_opts_850_cap1[] = { 4068 0x0100, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f }; 4069 static const u16 snd_djm_opts_850_cap2[] = { 4070 0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f }; 4071 static const u16 snd_djm_opts_850_cap3[] = { 4072 0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f }; 4073 static const u16 snd_djm_opts_850_cap4[] = { 4074 0x0400, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f }; 4075 4076 static const struct snd_djm_ctl snd_djm_ctls_850[] = { 4077 SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL), 4078 SND_DJM_CTL("Input 1 Capture Switch", 850_cap1, 1, SND_DJM_WINDEX_CAP), 4079 SND_DJM_CTL("Input 2 Capture Switch", 850_cap2, 0, SND_DJM_WINDEX_CAP), 4080 SND_DJM_CTL("Input 3 Capture Switch", 850_cap3, 0, SND_DJM_WINDEX_CAP), 4081 SND_DJM_CTL("Input 4 Capture Switch", 850_cap4, 1, SND_DJM_WINDEX_CAP) 4082 }; 4083 4084 // DJM-900NXS2 4085 static const u16 snd_djm_opts_900nxs2_cap1[] = { 4086 0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a }; 4087 static const u16 snd_djm_opts_900nxs2_cap2[] = { 4088 0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a }; 4089 static const u16 snd_djm_opts_900nxs2_cap3[] = { 4090 0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a }; 4091 static const u16 snd_djm_opts_900nxs2_cap4[] = { 4092 0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a }; 4093 static const u16 snd_djm_opts_900nxs2_cap5[] = { 4094 0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 }; 4095 4096 static const struct snd_djm_ctl snd_djm_ctls_900nxs2[] = { 4097 SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL), 4098 SND_DJM_CTL("Input 1 Capture Switch", 900nxs2_cap1, 2, SND_DJM_WINDEX_CAP), 4099 SND_DJM_CTL("Input 2 Capture Switch", 900nxs2_cap2, 2, SND_DJM_WINDEX_CAP), 4100 SND_DJM_CTL("Input 3 Capture Switch", 900nxs2_cap3, 2, SND_DJM_WINDEX_CAP), 4101 SND_DJM_CTL("Input 4 Capture Switch", 900nxs2_cap4, 2, SND_DJM_WINDEX_CAP), 4102 SND_DJM_CTL("Input 5 Capture Switch", 900nxs2_cap5, 3, SND_DJM_WINDEX_CAP) 4103 }; 4104 4105 // DJM-750MK2 4106 static const u16 snd_djm_opts_750mk2_cap1[] = { 4107 0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a }; 4108 static const u16 snd_djm_opts_750mk2_cap2[] = { 4109 0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a }; 4110 static const u16 snd_djm_opts_750mk2_cap3[] = { 4111 0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a }; 4112 static const u16 snd_djm_opts_750mk2_cap4[] = { 4113 0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a }; 4114 static const u16 snd_djm_opts_750mk2_cap5[] = { 4115 0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 }; 4116 4117 static const u16 snd_djm_opts_750mk2_pb1[] = { 0x0100, 0x0101, 0x0104 }; 4118 static const u16 snd_djm_opts_750mk2_pb2[] = { 0x0200, 0x0201, 0x0204 }; 4119 static const u16 snd_djm_opts_750mk2_pb3[] = { 0x0300, 0x0301, 0x0304 }; 4120 4121 static const struct snd_djm_ctl snd_djm_ctls_750mk2[] = { 4122 SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL), 4123 SND_DJM_CTL("Input 1 Capture Switch", 750mk2_cap1, 2, SND_DJM_WINDEX_CAP), 4124 SND_DJM_CTL("Input 2 Capture Switch", 750mk2_cap2, 2, SND_DJM_WINDEX_CAP), 4125 SND_DJM_CTL("Input 3 Capture Switch", 750mk2_cap3, 2, SND_DJM_WINDEX_CAP), 4126 SND_DJM_CTL("Input 4 Capture Switch", 750mk2_cap4, 2, SND_DJM_WINDEX_CAP), 4127 SND_DJM_CTL("Input 5 Capture Switch", 750mk2_cap5, 3, SND_DJM_WINDEX_CAP), 4128 SND_DJM_CTL("Output 1 Playback Switch", 750mk2_pb1, 0, SND_DJM_WINDEX_PB), 4129 SND_DJM_CTL("Output 2 Playback Switch", 750mk2_pb2, 1, SND_DJM_WINDEX_PB), 4130 SND_DJM_CTL("Output 3 Playback Switch", 750mk2_pb3, 2, SND_DJM_WINDEX_PB) 4131 }; 4132 4133 // DJM-A9 4134 static const u16 snd_djm_opts_a9_cap_level[] = { 4135 0x0000, 0x0100, 0x0200, 0x0300, 0x0400, 0x0500 }; 4136 static const u16 snd_djm_opts_a9_cap1[] = { 4137 0x0107, 0x0108, 0x0109, 0x010a, 0x010e, 4138 0x111, 0x112, 0x113, 0x114, 0x0131, 0x132, 0x133, 0x134 }; 4139 static const u16 snd_djm_opts_a9_cap2[] = { 4140 0x0201, 0x0202, 0x0203, 0x0205, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020e }; 4141 static const u16 snd_djm_opts_a9_cap3[] = { 4142 0x0301, 0x0302, 0x0303, 0x0305, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030e }; 4143 static const u16 snd_djm_opts_a9_cap4[] = { 4144 0x0401, 0x0402, 0x0403, 0x0405, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040e }; 4145 static const u16 snd_djm_opts_a9_cap5[] = { 4146 0x0501, 0x0502, 0x0503, 0x0505, 0x0506, 0x0507, 0x0508, 0x0509, 0x050a, 0x050e }; 4147 4148 static const struct snd_djm_ctl snd_djm_ctls_a9[] = { 4149 SND_DJM_CTL("Master Input Level Capture Switch", a9_cap_level, 0, SND_DJM_WINDEX_CAPLVL), 4150 SND_DJM_CTL("Master Input Capture Switch", a9_cap1, 3, SND_DJM_WINDEX_CAP), 4151 SND_DJM_CTL("Input 1 Capture Switch", a9_cap2, 2, SND_DJM_WINDEX_CAP), 4152 SND_DJM_CTL("Input 2 Capture Switch", a9_cap3, 2, SND_DJM_WINDEX_CAP), 4153 SND_DJM_CTL("Input 3 Capture Switch", a9_cap4, 2, SND_DJM_WINDEX_CAP), 4154 SND_DJM_CTL("Input 4 Capture Switch", a9_cap5, 2, SND_DJM_WINDEX_CAP) 4155 }; 4156 4157 // DJM-V10 4158 static const u16 snd_djm_opts_v10_cap_level[] = { 4159 0x0000, 0x0100, 0x0200, 0x0300, 0x0400, 0x0500 4160 }; 4161 4162 static const u16 snd_djm_opts_v10_cap1[] = { 4163 0x0103, 4164 0x0100, 0x0102, 0x0106, 0x0110, 0x0107, 4165 0x0108, 0x0109, 0x010a, 0x0121, 0x0122 4166 }; 4167 4168 static const u16 snd_djm_opts_v10_cap2[] = { 4169 0x0200, 0x0202, 0x0206, 0x0210, 0x0207, 4170 0x0208, 0x0209, 0x020a, 0x0221, 0x0222 4171 }; 4172 4173 static const u16 snd_djm_opts_v10_cap3[] = { 4174 0x0303, 4175 0x0300, 0x0302, 0x0306, 0x0310, 0x0307, 4176 0x0308, 0x0309, 0x030a, 0x0321, 0x0322 4177 }; 4178 4179 static const u16 snd_djm_opts_v10_cap4[] = { 4180 0x0403, 4181 0x0400, 0x0402, 0x0406, 0x0410, 0x0407, 4182 0x0408, 0x0409, 0x040a, 0x0421, 0x0422 4183 }; 4184 4185 static const u16 snd_djm_opts_v10_cap5[] = { 4186 0x0500, 0x0502, 0x0506, 0x0510, 0x0507, 4187 0x0508, 0x0509, 0x050a, 0x0521, 0x0522 4188 }; 4189 4190 static const u16 snd_djm_opts_v10_cap6[] = { 4191 0x0603, 4192 0x0600, 0x0602, 0x0606, 0x0610, 0x0607, 4193 0x0608, 0x0609, 0x060a, 0x0621, 0x0622 4194 }; 4195 4196 static const struct snd_djm_ctl snd_djm_ctls_v10[] = { 4197 SND_DJM_CTL("Master Input Level Capture Switch", v10_cap_level, 0, SND_DJM_WINDEX_CAPLVL), 4198 SND_DJM_CTL("Input 1 Capture Switch", v10_cap1, 2, SND_DJM_WINDEX_CAP), 4199 SND_DJM_CTL("Input 2 Capture Switch", v10_cap2, 2, SND_DJM_WINDEX_CAP), 4200 SND_DJM_CTL("Input 3 Capture Switch", v10_cap3, 0, SND_DJM_WINDEX_CAP), 4201 SND_DJM_CTL("Input 4 Capture Switch", v10_cap4, 0, SND_DJM_WINDEX_CAP), 4202 SND_DJM_CTL("Input 5 Capture Switch", v10_cap5, 0, SND_DJM_WINDEX_CAP), 4203 SND_DJM_CTL("Input 6 Capture Switch", v10_cap6, 0, SND_DJM_WINDEX_CAP) 4204 // playback channels are fixed and controlled by hardware knobs on the mixer 4205 }; 4206 4207 static const struct snd_djm_device snd_djm_devices[] = { 4208 [SND_DJM_250MK2_IDX] = SND_DJM_DEVICE(250mk2), 4209 [SND_DJM_750_IDX] = SND_DJM_DEVICE(750), 4210 [SND_DJM_850_IDX] = SND_DJM_DEVICE(850), 4211 [SND_DJM_900NXS2_IDX] = SND_DJM_DEVICE(900nxs2), 4212 [SND_DJM_750MK2_IDX] = SND_DJM_DEVICE(750mk2), 4213 [SND_DJM_450_IDX] = SND_DJM_DEVICE(450), 4214 [SND_DJM_A9_IDX] = SND_DJM_DEVICE(a9), 4215 [SND_DJM_V10_IDX] = SND_DJM_DEVICE(v10), 4216 }; 4217 4218 static int snd_djm_controls_info(struct snd_kcontrol *kctl, 4219 struct snd_ctl_elem_info *info) 4220 { 4221 unsigned long private_value = kctl->private_value; 4222 u8 device_idx = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT; 4223 u8 ctl_idx = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT; 4224 const struct snd_djm_device *device = &snd_djm_devices[device_idx]; 4225 const char *name; 4226 const struct snd_djm_ctl *ctl; 4227 size_t noptions; 4228 4229 if (ctl_idx >= device->ncontrols) 4230 return -EINVAL; 4231 4232 ctl = &device->controls[ctl_idx]; 4233 noptions = ctl->noptions; 4234 if (info->value.enumerated.item >= noptions) 4235 info->value.enumerated.item = noptions - 1; 4236 4237 name = snd_djm_get_label(device_idx, 4238 ctl->options[info->value.enumerated.item], 4239 ctl->wIndex); 4240 if (!name) 4241 return -EINVAL; 4242 4243 strscpy(info->value.enumerated.name, name, sizeof(info->value.enumerated.name)); 4244 info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 4245 info->count = 1; 4246 info->value.enumerated.items = noptions; 4247 return 0; 4248 } 4249 4250 static int snd_djm_controls_update(struct usb_mixer_interface *mixer, 4251 u8 device_idx, u8 group, u16 value) 4252 { 4253 const struct snd_djm_device *device = &snd_djm_devices[device_idx]; 4254 4255 if (group >= device->ncontrols || value >= device->controls[group].noptions) 4256 return -EINVAL; 4257 4258 CLASS(snd_usb_lock, pm)(mixer->chip); 4259 if (pm.err) 4260 return pm.err; 4261 4262 return snd_usb_ctl_msg(mixer->chip->dev, 4263 usb_sndctrlpipe(mixer->chip->dev, 0), 4264 USB_REQ_SET_FEATURE, 4265 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 4266 device->controls[group].options[value], 4267 device->controls[group].wIndex, 4268 NULL, 0); 4269 } 4270 4271 static int snd_djm_controls_get(struct snd_kcontrol *kctl, 4272 struct snd_ctl_elem_value *elem) 4273 { 4274 elem->value.enumerated.item[0] = kctl->private_value & SND_DJM_VALUE_MASK; 4275 return 0; 4276 } 4277 4278 static int snd_djm_controls_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *elem) 4279 { 4280 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl); 4281 struct usb_mixer_interface *mixer = list->mixer; 4282 unsigned long private_value = kctl->private_value; 4283 4284 u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT; 4285 u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT; 4286 u16 value = elem->value.enumerated.item[0]; 4287 4288 kctl->private_value = (((unsigned long)device << SND_DJM_DEVICE_SHIFT) | 4289 (group << SND_DJM_GROUP_SHIFT) | 4290 value); 4291 4292 return snd_djm_controls_update(mixer, device, group, value); 4293 } 4294 4295 static int snd_djm_controls_resume(struct usb_mixer_elem_list *list) 4296 { 4297 unsigned long private_value = list->kctl->private_value; 4298 u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT; 4299 u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT; 4300 u16 value = (private_value & SND_DJM_VALUE_MASK); 4301 4302 return snd_djm_controls_update(list->mixer, device, group, value); 4303 } 4304 4305 static int snd_djm_controls_create(struct usb_mixer_interface *mixer, 4306 const u8 device_idx) 4307 { 4308 int err, i; 4309 u16 value; 4310 4311 const struct snd_djm_device *device = &snd_djm_devices[device_idx]; 4312 4313 struct snd_kcontrol_new knew = { 4314 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 4315 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 4316 .index = 0, 4317 .info = snd_djm_controls_info, 4318 .get = snd_djm_controls_get, 4319 .put = snd_djm_controls_put 4320 }; 4321 4322 for (i = 0; i < device->ncontrols; i++) { 4323 value = device->controls[i].default_value; 4324 knew.name = device->controls[i].name; 4325 knew.private_value = 4326 ((unsigned long)device_idx << SND_DJM_DEVICE_SHIFT) | 4327 (i << SND_DJM_GROUP_SHIFT) | 4328 value; 4329 err = snd_djm_controls_update(mixer, device_idx, i, value); 4330 if (err) 4331 return err; 4332 err = add_single_ctl_with_resume(mixer, 0, snd_djm_controls_resume, 4333 &knew, NULL); 4334 if (err) 4335 return err; 4336 } 4337 return 0; 4338 } 4339 4340 int snd_usb_mixer_apply_create_quirk(struct usb_mixer_interface *mixer) 4341 { 4342 int err = 0; 4343 4344 err = snd_usb_soundblaster_remote_init(mixer); 4345 if (err < 0) 4346 return err; 4347 4348 switch (mixer->chip->usb_id) { 4349 /* Tascam US-16x08 */ 4350 case USB_ID(0x0644, 0x8047): 4351 err = snd_us16x08_controls_create(mixer); 4352 break; 4353 case USB_ID(0x041e, 0x3020): 4354 case USB_ID(0x041e, 0x3040): 4355 case USB_ID(0x041e, 0x3042): 4356 case USB_ID(0x041e, 0x30df): 4357 case USB_ID(0x041e, 0x3048): 4358 err = snd_audigy2nx_controls_create(mixer); 4359 if (err < 0) 4360 break; 4361 snd_card_ro_proc_new(mixer->chip->card, "audigy2nx", 4362 mixer, snd_audigy2nx_proc_read); 4363 break; 4364 4365 /* EMU0204 */ 4366 case USB_ID(0x041e, 0x3f19): 4367 err = snd_emu0204_controls_create(mixer); 4368 break; 4369 4370 #if IS_REACHABLE(CONFIG_INPUT) 4371 case USB_ID(0x054c, 0x0ce6): /* Sony DualSense controller (PS5) */ 4372 case USB_ID(0x054c, 0x0df2): /* Sony DualSense Edge controller (PS5) */ 4373 err = snd_dualsense_controls_create(mixer); 4374 break; 4375 #endif /* IS_REACHABLE(CONFIG_INPUT) */ 4376 4377 case USB_ID(0x0763, 0x2030): /* M-Audio Fast Track C400 */ 4378 case USB_ID(0x0763, 0x2031): /* M-Audio Fast Track C400 */ 4379 err = snd_c400_create_mixer(mixer); 4380 break; 4381 4382 case USB_ID(0x0763, 0x2080): /* M-Audio Fast Track Ultra */ 4383 case USB_ID(0x0763, 0x2081): /* M-Audio Fast Track Ultra 8R */ 4384 err = snd_ftu_create_mixer(mixer); 4385 break; 4386 4387 case USB_ID(0x0b05, 0x1739): /* ASUS Xonar U1 */ 4388 case USB_ID(0x0b05, 0x1743): /* ASUS Xonar U1 (2) */ 4389 case USB_ID(0x0b05, 0x17a0): /* ASUS Xonar U3 */ 4390 err = snd_xonar_u1_controls_create(mixer); 4391 break; 4392 4393 case USB_ID(0x0d8c, 0x0103): /* Audio Advantage Micro II */ 4394 err = snd_microii_controls_create(mixer); 4395 break; 4396 4397 case USB_ID(0x0dba, 0x1000): /* Digidesign Mbox 1 */ 4398 err = snd_mbox1_controls_create(mixer); 4399 break; 4400 4401 case USB_ID(0x17cc, 0x1011): /* Traktor Audio 6 */ 4402 err = snd_nativeinstruments_create_mixer(/* checkpatch hack */ 4403 mixer, 4404 snd_nativeinstruments_ta6_mixers, 4405 ARRAY_SIZE(snd_nativeinstruments_ta6_mixers)); 4406 break; 4407 4408 case USB_ID(0x17cc, 0x1021): /* Traktor Audio 10 */ 4409 err = snd_nativeinstruments_create_mixer(/* checkpatch hack */ 4410 mixer, 4411 snd_nativeinstruments_ta10_mixers, 4412 ARRAY_SIZE(snd_nativeinstruments_ta10_mixers)); 4413 break; 4414 4415 case USB_ID(0x200c, 0x1018): /* Electrix Ebox-44 */ 4416 /* detection is disabled in mixer_maps.c */ 4417 err = snd_create_std_mono_table(mixer, ebox44_table); 4418 break; 4419 4420 case USB_ID(0x1235, 0x8012): /* Focusrite Scarlett 6i6 */ 4421 case USB_ID(0x1235, 0x8002): /* Focusrite Scarlett 8i6 */ 4422 case USB_ID(0x1235, 0x8004): /* Focusrite Scarlett 18i6 */ 4423 case USB_ID(0x1235, 0x8014): /* Focusrite Scarlett 18i8 */ 4424 case USB_ID(0x1235, 0x800c): /* Focusrite Scarlett 18i20 */ 4425 err = snd_scarlett_controls_create(mixer); 4426 break; 4427 4428 case USB_ID(0x1235, 0x8203): /* Focusrite Scarlett 6i6 2nd Gen */ 4429 case USB_ID(0x1235, 0x8204): /* Focusrite Scarlett 18i8 2nd Gen */ 4430 case USB_ID(0x1235, 0x8201): /* Focusrite Scarlett 18i20 2nd Gen */ 4431 case USB_ID(0x1235, 0x8211): /* Focusrite Scarlett Solo 3rd Gen */ 4432 case USB_ID(0x1235, 0x8210): /* Focusrite Scarlett 2i2 3rd Gen */ 4433 case USB_ID(0x1235, 0x8212): /* Focusrite Scarlett 4i4 3rd Gen */ 4434 case USB_ID(0x1235, 0x8213): /* Focusrite Scarlett 8i6 3rd Gen */ 4435 case USB_ID(0x1235, 0x8214): /* Focusrite Scarlett 18i8 3rd Gen */ 4436 case USB_ID(0x1235, 0x8215): /* Focusrite Scarlett 18i20 3rd Gen */ 4437 case USB_ID(0x1235, 0x8216): /* Focusrite Vocaster One */ 4438 case USB_ID(0x1235, 0x8217): /* Focusrite Vocaster Two */ 4439 case USB_ID(0x1235, 0x8218): /* Focusrite Scarlett Solo 4th Gen */ 4440 case USB_ID(0x1235, 0x8219): /* Focusrite Scarlett 2i2 4th Gen */ 4441 case USB_ID(0x1235, 0x821a): /* Focusrite Scarlett 4i4 4th Gen */ 4442 case USB_ID(0x1235, 0x8206): /* Focusrite Clarett 2Pre USB */ 4443 case USB_ID(0x1235, 0x8207): /* Focusrite Clarett 4Pre USB */ 4444 case USB_ID(0x1235, 0x8208): /* Focusrite Clarett 8Pre USB */ 4445 case USB_ID(0x1235, 0x820a): /* Focusrite Clarett+ 2Pre */ 4446 case USB_ID(0x1235, 0x820b): /* Focusrite Clarett+ 4Pre */ 4447 case USB_ID(0x1235, 0x820c): /* Focusrite Clarett+ 8Pre */ 4448 err = snd_scarlett2_init(mixer); 4449 break; 4450 4451 case USB_ID(0x1235, 0x821b): /* Focusrite Scarlett 16i16 4th Gen */ 4452 case USB_ID(0x1235, 0x821c): /* Focusrite Scarlett 18i16 4th Gen */ 4453 case USB_ID(0x1235, 0x821d): /* Focusrite Scarlett 18i20 4th Gen */ 4454 err = snd_fcp_init(mixer); 4455 break; 4456 4457 case USB_ID(0x041e, 0x323b): /* Creative Sound Blaster E1 */ 4458 err = snd_soundblaster_e1_switch_create(mixer); 4459 break; 4460 case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */ 4461 err = dell_dock_mixer_create(mixer); 4462 if (err < 0) 4463 break; 4464 err = dell_dock_mixer_init(mixer); 4465 break; 4466 case USB_ID(0x0bda, 0x402e): /* Dell WD19 dock */ 4467 err = dell_dock_mixer_create(mixer); 4468 break; 4469 4470 case USB_ID(0x2a39, 0x3fd2): /* RME ADI-2 Pro */ 4471 case USB_ID(0x2a39, 0x3fd3): /* RME ADI-2 DAC */ 4472 case USB_ID(0x2a39, 0x3fd4): /* RME */ 4473 err = snd_rme_controls_create(mixer); 4474 break; 4475 4476 case USB_ID(0x194f, 0x010c): /* Presonus Studio 1810c */ 4477 err = snd_sc1810_init_mixer(mixer); 4478 break; 4479 case USB_ID(0x194f, 0x010d): /* Presonus Studio 1824c */ 4480 err = snd_sc1810_init_mixer(mixer); 4481 break; 4482 case USB_ID(0x2a39, 0x3fb0): /* RME Babyface Pro FS */ 4483 err = snd_bbfpro_controls_create(mixer); 4484 break; 4485 case USB_ID(0x2a39, 0x3f8c): /* RME Digiface USB */ 4486 case USB_ID(0x2a39, 0x3fa0): /* RME Digiface USB (alternate) */ 4487 err = snd_rme_digiface_controls_create(mixer); 4488 break; 4489 case USB_ID(0x2b73, 0x0017): /* Pioneer DJ DJM-250MK2 */ 4490 err = snd_djm_controls_create(mixer, SND_DJM_250MK2_IDX); 4491 break; 4492 case USB_ID(0x2b73, 0x0013): /* Pioneer DJ DJM-450 */ 4493 err = snd_djm_controls_create(mixer, SND_DJM_450_IDX); 4494 break; 4495 case USB_ID(0x08e4, 0x017f): /* Pioneer DJ DJM-750 */ 4496 err = snd_djm_controls_create(mixer, SND_DJM_750_IDX); 4497 break; 4498 case USB_ID(0x2b73, 0x001b): /* Pioneer DJ DJM-750MK2 */ 4499 err = snd_djm_controls_create(mixer, SND_DJM_750MK2_IDX); 4500 break; 4501 case USB_ID(0x08e4, 0x0163): /* Pioneer DJ DJM-850 */ 4502 err = snd_djm_controls_create(mixer, SND_DJM_850_IDX); 4503 break; 4504 case USB_ID(0x2b73, 0x000a): /* Pioneer DJ DJM-900NXS2 */ 4505 err = snd_djm_controls_create(mixer, SND_DJM_900NXS2_IDX); 4506 break; 4507 case USB_ID(0x2b73, 0x003c): /* Pioneer DJ / AlphaTheta DJM-A9 */ 4508 err = snd_djm_controls_create(mixer, SND_DJM_A9_IDX); 4509 break; 4510 case USB_ID(0x2b73, 0x0034): /* Pioneer DJ DJM-V10 */ 4511 err = snd_djm_controls_create(mixer, SND_DJM_V10_IDX); 4512 break; 4513 case USB_ID(0x03f0, 0x0269): /* HP TB Dock G2 */ 4514 err = hp_dock_mixer_create(mixer); 4515 break; 4516 } 4517 4518 return err; 4519 } 4520 4521 void snd_usb_mixer_resume_quirk(struct usb_mixer_interface *mixer) 4522 { 4523 switch (mixer->chip->usb_id) { 4524 case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */ 4525 dell_dock_mixer_init(mixer); 4526 break; 4527 } 4528 } 4529 4530 void snd_usb_mixer_rc_memory_change(struct usb_mixer_interface *mixer, 4531 int unitid) 4532 { 4533 if (!mixer->rc_cfg) 4534 return; 4535 /* unit ids specific to Extigy/Audigy 2 NX: */ 4536 switch (unitid) { 4537 case 0: /* remote control */ 4538 mixer->rc_urb->dev = mixer->chip->dev; 4539 usb_submit_urb(mixer->rc_urb, GFP_ATOMIC); 4540 break; 4541 case 4: /* digital in jack */ 4542 case 7: /* line in jacks */ 4543 case 19: /* speaker out jacks */ 4544 case 20: /* headphones out jack */ 4545 break; 4546 /* live24ext: 4 = line-in jack */ 4547 case 3: /* hp-out jack (may actuate Mute) */ 4548 if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) || 4549 mixer->chip->usb_id == USB_ID(0x041e, 0x3048)) 4550 snd_usb_mixer_notify_id(mixer, mixer->rc_cfg->mute_mixer_id); 4551 break; 4552 default: 4553 usb_audio_dbg(mixer->chip, "memory change in unknown unit %d\n", unitid); 4554 break; 4555 } 4556 } 4557 4558 static void snd_dragonfly_quirk_db_scale(struct usb_mixer_interface *mixer, 4559 struct usb_mixer_elem_info *cval, 4560 struct snd_kcontrol *kctl) 4561 { 4562 /* Approximation using 10 ranges based on output measurement on hw v1.2. 4563 * This seems close to the cubic mapping e.g. alsamixer uses. 4564 */ 4565 static const DECLARE_TLV_DB_RANGE(scale, 4566 0, 1, TLV_DB_MINMAX_ITEM(-5300, -4970), 4567 2, 5, TLV_DB_MINMAX_ITEM(-4710, -4160), 4568 6, 7, TLV_DB_MINMAX_ITEM(-3884, -3710), 4569 8, 14, TLV_DB_MINMAX_ITEM(-3443, -2560), 4570 15, 16, TLV_DB_MINMAX_ITEM(-2475, -2324), 4571 17, 19, TLV_DB_MINMAX_ITEM(-2228, -2031), 4572 20, 26, TLV_DB_MINMAX_ITEM(-1910, -1393), 4573 27, 31, TLV_DB_MINMAX_ITEM(-1322, -1032), 4574 32, 40, TLV_DB_MINMAX_ITEM(-968, -490), 4575 41, 50, TLV_DB_MINMAX_ITEM(-441, 0), 4576 ); 4577 4578 if (cval->min == 0 && cval->max == 50) { 4579 usb_audio_info(mixer->chip, "applying DragonFly dB scale quirk (0-50 variant)\n"); 4580 kctl->tlv.p = scale; 4581 kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ; 4582 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK; 4583 4584 } else if (cval->min == 0 && cval->max <= 1000) { 4585 /* Some other clearly broken DragonFly variant. 4586 * At least a 0..53 variant (hw v1.0) exists. 4587 */ 4588 usb_audio_info(mixer->chip, "ignoring too narrow dB range on a DragonFly device"); 4589 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK; 4590 } 4591 } 4592 4593 /* 4594 * Some Plantronics headsets have control names that don't meet ALSA naming 4595 * standards. This function fixes nonstandard source names. By the time 4596 * this function is called the control name should look like one of these: 4597 * "source names Playback Volume" 4598 * "source names Playback Switch" 4599 * "source names Capture Volume" 4600 * "source names Capture Switch" 4601 * If any of the trigger words are found in the name then the name will 4602 * be changed to: 4603 * "Headset Playback Volume" 4604 * "Headset Playback Switch" 4605 * "Headset Capture Volume" 4606 * "Headset Capture Switch" 4607 * depending on the current suffix. 4608 */ 4609 static void snd_fix_plt_name(struct snd_usb_audio *chip, 4610 struct snd_ctl_elem_id *id) 4611 { 4612 /* no variant of "Sidetone" should be added to this list */ 4613 static const char * const trigger[] = { 4614 "Earphone", "Microphone", "Receive", "Transmit" 4615 }; 4616 static const char * const suffix[] = { 4617 " Playback Volume", " Playback Switch", 4618 " Capture Volume", " Capture Switch" 4619 }; 4620 int i; 4621 4622 for (i = 0; i < ARRAY_SIZE(trigger); i++) 4623 if (strstr(id->name, trigger[i])) 4624 goto triggered; 4625 usb_audio_dbg(chip, "no change in %s\n", id->name); 4626 return; 4627 4628 triggered: 4629 for (i = 0; i < ARRAY_SIZE(suffix); i++) 4630 if (strstr(id->name, suffix[i])) { 4631 usb_audio_dbg(chip, "fixing kctl name %s\n", id->name); 4632 snprintf(id->name, sizeof(id->name), "Headset%s", 4633 suffix[i]); 4634 return; 4635 } 4636 usb_audio_dbg(chip, "something wrong in kctl name %s\n", id->name); 4637 } 4638 4639 void snd_usb_mixer_fu_apply_quirk(struct usb_mixer_interface *mixer, 4640 struct usb_mixer_elem_info *cval, int unitid, 4641 struct snd_kcontrol *kctl) 4642 { 4643 switch (mixer->chip->usb_id) { 4644 case USB_ID(0x21b4, 0x0081): /* AudioQuest DragonFly */ 4645 if (unitid == 7 && cval->control == UAC_FU_VOLUME) 4646 snd_dragonfly_quirk_db_scale(mixer, cval, kctl); 4647 break; 4648 } 4649 4650 /* lowest playback value is muted on some devices */ 4651 if (mixer->chip->quirk_flags & QUIRK_FLAG_MIXER_PLAYBACK_MIN_MUTE) 4652 if (strstr(kctl->id.name, "Playback")) { 4653 usb_audio_info(mixer->chip, 4654 "applying playback min mute quirk\n"); 4655 cval->min_mute = 1; 4656 } 4657 4658 /* lowest capture value is muted on some devices */ 4659 if (mixer->chip->quirk_flags & QUIRK_FLAG_MIXER_CAPTURE_MIN_MUTE) 4660 if (strstr(kctl->id.name, "Capture")) { 4661 usb_audio_info(mixer->chip, 4662 "applying capture min mute quirk\n"); 4663 cval->min_mute = 1; 4664 } 4665 /* ALSA-ify some Plantronics headset control names */ 4666 if (USB_ID_VENDOR(mixer->chip->usb_id) == 0x047f && 4667 (cval->control == UAC_FU_MUTE || cval->control == UAC_FU_VOLUME)) 4668 snd_fix_plt_name(mixer->chip, &kctl->id); 4669 } 4670