1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include "pp_debug.h"
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 #include <asm/div64.h>
29 #if IS_ENABLED(CONFIG_X86_64)
30 #include <asm/intel-family.h>
31 #endif
32 #include <drm/amdgpu_drm.h>
33 #include "ppatomctrl.h"
34 #include "atombios.h"
35 #include "pptable_v1_0.h"
36 #include "pppcielanes.h"
37 #include "amd_pcie_helpers.h"
38 #include "hardwaremanager.h"
39 #include "process_pptables_v1_0.h"
40 #include "cgs_common.h"
41
42 #include "smu7_common.h"
43
44 #include "hwmgr.h"
45 #include "smu7_hwmgr.h"
46 #include "smu_ucode_xfer_vi.h"
47 #include "smu7_powertune.h"
48 #include "smu7_dyn_defaults.h"
49 #include "smu7_thermal.h"
50 #include "smu7_clockpowergating.h"
51 #include "processpptables.h"
52 #include "pp_thermal.h"
53 #include "smu7_baco.h"
54 #include "smu7_smumgr.h"
55 #include "polaris10_smumgr.h"
56
57 #include "ivsrcid/ivsrcid_vislands30.h"
58
59 #define MC_CG_ARB_FREQ_F0 0x0a
60 #define MC_CG_ARB_FREQ_F1 0x0b
61 #define MC_CG_ARB_FREQ_F2 0x0c
62 #define MC_CG_ARB_FREQ_F3 0x0d
63
64 #define MC_CG_SEQ_DRAMCONF_S0 0x05
65 #define MC_CG_SEQ_DRAMCONF_S1 0x06
66 #define MC_CG_SEQ_YCLK_SUSPEND 0x04
67 #define MC_CG_SEQ_YCLK_RESUME 0x0a
68
69 #define SMC_CG_IND_START 0xc0030000
70 #define SMC_CG_IND_END 0xc0040000
71
72 #define MEM_FREQ_LOW_LATENCY 25000
73 #define MEM_FREQ_HIGH_LATENCY 80000
74
75 #define MEM_LATENCY_HIGH 45
76 #define MEM_LATENCY_LOW 35
77 #define MEM_LATENCY_ERR 0xFFFF
78
79 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
80 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
81 #define MC_SEQ_MISC0_GDDR5_VALUE 5
82
83 #define PCIE_BUS_CLK 10000
84 #define TCLK (PCIE_BUS_CLK / 10)
85
86 static struct profile_mode_setting smu7_profiling[7] = {
87 {0, 0, 0, 0, 0, 0, 0, 0},
88 {1, 0, 100, 30, 1, 0, 100, 10},
89 {1, 10, 0, 30, 0, 0, 0, 0},
90 {0, 0, 0, 0, 1, 10, 16, 31},
91 {1, 0, 11, 50, 1, 0, 100, 10},
92 {1, 0, 5, 30, 0, 0, 0, 0},
93 {0, 0, 0, 0, 0, 0, 0, 0},
94 };
95
96 #define PPSMC_MSG_SetVBITimeout_VEGAM ((uint16_t) 0x310)
97
98 #define ixPWR_SVI2_PLANE1_LOAD 0xC0200280
99 #define PWR_SVI2_PLANE1_LOAD__PSI1_MASK 0x00000020L
100 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN_MASK 0x00000040L
101 #define PWR_SVI2_PLANE1_LOAD__PSI1__SHIFT 0x00000005
102 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN__SHIFT 0x00000006
103
104 #define STRAP_EVV_REVISION_MSB 2211
105 #define STRAP_EVV_REVISION_LSB 2208
106
107 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
108 enum DPM_EVENT_SRC {
109 DPM_EVENT_SRC_ANALOG = 0,
110 DPM_EVENT_SRC_EXTERNAL = 1,
111 DPM_EVENT_SRC_DIGITAL = 2,
112 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
113 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
114 };
115
116 #define ixDIDT_SQ_EDC_CTRL 0x0013
117 #define ixDIDT_SQ_EDC_THRESHOLD 0x0014
118 #define ixDIDT_SQ_EDC_STALL_PATTERN_1_2 0x0015
119 #define ixDIDT_SQ_EDC_STALL_PATTERN_3_4 0x0016
120 #define ixDIDT_SQ_EDC_STALL_PATTERN_5_6 0x0017
121 #define ixDIDT_SQ_EDC_STALL_PATTERN_7 0x0018
122
123 #define ixDIDT_TD_EDC_CTRL 0x0053
124 #define ixDIDT_TD_EDC_THRESHOLD 0x0054
125 #define ixDIDT_TD_EDC_STALL_PATTERN_1_2 0x0055
126 #define ixDIDT_TD_EDC_STALL_PATTERN_3_4 0x0056
127 #define ixDIDT_TD_EDC_STALL_PATTERN_5_6 0x0057
128 #define ixDIDT_TD_EDC_STALL_PATTERN_7 0x0058
129
130 #define ixDIDT_TCP_EDC_CTRL 0x0073
131 #define ixDIDT_TCP_EDC_THRESHOLD 0x0074
132 #define ixDIDT_TCP_EDC_STALL_PATTERN_1_2 0x0075
133 #define ixDIDT_TCP_EDC_STALL_PATTERN_3_4 0x0076
134 #define ixDIDT_TCP_EDC_STALL_PATTERN_5_6 0x0077
135 #define ixDIDT_TCP_EDC_STALL_PATTERN_7 0x0078
136
137 #define ixDIDT_DB_EDC_CTRL 0x0033
138 #define ixDIDT_DB_EDC_THRESHOLD 0x0034
139 #define ixDIDT_DB_EDC_STALL_PATTERN_1_2 0x0035
140 #define ixDIDT_DB_EDC_STALL_PATTERN_3_4 0x0036
141 #define ixDIDT_DB_EDC_STALL_PATTERN_5_6 0x0037
142 #define ixDIDT_DB_EDC_STALL_PATTERN_7 0x0038
143
144 uint32_t DIDTEDCConfig_P12[] = {
145 ixDIDT_SQ_EDC_STALL_PATTERN_1_2,
146 ixDIDT_SQ_EDC_STALL_PATTERN_3_4,
147 ixDIDT_SQ_EDC_STALL_PATTERN_5_6,
148 ixDIDT_SQ_EDC_STALL_PATTERN_7,
149 ixDIDT_SQ_EDC_THRESHOLD,
150 ixDIDT_SQ_EDC_CTRL,
151 ixDIDT_TD_EDC_STALL_PATTERN_1_2,
152 ixDIDT_TD_EDC_STALL_PATTERN_3_4,
153 ixDIDT_TD_EDC_STALL_PATTERN_5_6,
154 ixDIDT_TD_EDC_STALL_PATTERN_7,
155 ixDIDT_TD_EDC_THRESHOLD,
156 ixDIDT_TD_EDC_CTRL,
157 ixDIDT_TCP_EDC_STALL_PATTERN_1_2,
158 ixDIDT_TCP_EDC_STALL_PATTERN_3_4,
159 ixDIDT_TCP_EDC_STALL_PATTERN_5_6,
160 ixDIDT_TCP_EDC_STALL_PATTERN_7,
161 ixDIDT_TCP_EDC_THRESHOLD,
162 ixDIDT_TCP_EDC_CTRL,
163 ixDIDT_DB_EDC_STALL_PATTERN_1_2,
164 ixDIDT_DB_EDC_STALL_PATTERN_3_4,
165 ixDIDT_DB_EDC_STALL_PATTERN_5_6,
166 ixDIDT_DB_EDC_STALL_PATTERN_7,
167 ixDIDT_DB_EDC_THRESHOLD,
168 ixDIDT_DB_EDC_CTRL,
169 0xFFFFFFFF // End of list
170 };
171
172 static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic);
173 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
174 enum pp_clock_type type, uint32_t mask);
175 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr);
176
cast_phw_smu7_power_state(struct pp_hw_power_state * hw_ps)177 static struct smu7_power_state *cast_phw_smu7_power_state(
178 struct pp_hw_power_state *hw_ps)
179 {
180 PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
181 "Invalid Powerstate Type!",
182 return NULL);
183
184 return (struct smu7_power_state *)hw_ps;
185 }
186
cast_const_phw_smu7_power_state(const struct pp_hw_power_state * hw_ps)187 static const struct smu7_power_state *cast_const_phw_smu7_power_state(
188 const struct pp_hw_power_state *hw_ps)
189 {
190 PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
191 "Invalid Powerstate Type!",
192 return NULL);
193
194 return (const struct smu7_power_state *)hw_ps;
195 }
196
197 /**
198 * smu7_get_mc_microcode_version - Find the MC microcode version and store it in the HwMgr struct
199 *
200 * @hwmgr: the address of the powerplay hardware manager.
201 * Return: always 0
202 */
smu7_get_mc_microcode_version(struct pp_hwmgr * hwmgr)203 static int smu7_get_mc_microcode_version(struct pp_hwmgr *hwmgr)
204 {
205 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
206
207 hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
208
209 return 0;
210 }
211
smu7_get_current_pcie_speed(struct pp_hwmgr * hwmgr)212 static uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
213 {
214 uint32_t speedCntl = 0;
215
216 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
217 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
218 ixPCIE_LC_SPEED_CNTL);
219 return((uint16_t)PHM_GET_FIELD(speedCntl,
220 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
221 }
222
smu7_get_current_pcie_lane_number(struct pp_hwmgr * hwmgr)223 static int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
224 {
225 uint32_t link_width;
226
227 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
228 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
229 PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
230
231 PP_ASSERT_WITH_CODE((7 >= link_width),
232 "Invalid PCIe lane width!", return 0);
233
234 return decode_pcie_lane_width(link_width);
235 }
236
237 /**
238 * smu7_enable_smc_voltage_controller - Enable voltage control
239 *
240 * @hwmgr: the address of the powerplay hardware manager.
241 * Return: always PP_Result_OK
242 */
smu7_enable_smc_voltage_controller(struct pp_hwmgr * hwmgr)243 static int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
244 {
245 if (hwmgr->chip_id >= CHIP_POLARIS10 &&
246 hwmgr->chip_id <= CHIP_VEGAM) {
247 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
248 CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI1, 0);
249 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
250 CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI0_EN, 0);
251 }
252
253 if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK)
254 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Enable, NULL);
255
256 return 0;
257 }
258
259 /**
260 * smu7_voltage_control - Checks if we want to support voltage control
261 *
262 * @hwmgr: the address of the powerplay hardware manager.
263 */
smu7_voltage_control(const struct pp_hwmgr * hwmgr)264 static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr)
265 {
266 const struct smu7_hwmgr *data =
267 (const struct smu7_hwmgr *)(hwmgr->backend);
268
269 return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control);
270 }
271
272 /**
273 * smu7_enable_voltage_control - Enable voltage control
274 *
275 * @hwmgr: the address of the powerplay hardware manager.
276 * Return: always 0
277 */
smu7_enable_voltage_control(struct pp_hwmgr * hwmgr)278 static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr)
279 {
280 /* enable voltage control */
281 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
282 GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
283
284 return 0;
285 }
286
phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table * voltage_table,struct phm_clock_voltage_dependency_table * voltage_dependency_table)287 static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table,
288 struct phm_clock_voltage_dependency_table *voltage_dependency_table
289 )
290 {
291 uint32_t i;
292
293 PP_ASSERT_WITH_CODE((NULL != voltage_table),
294 "Voltage Dependency Table empty.", return -EINVAL;);
295
296 voltage_table->mask_low = 0;
297 voltage_table->phase_delay = 0;
298 voltage_table->count = voltage_dependency_table->count;
299
300 for (i = 0; i < voltage_dependency_table->count; i++) {
301 voltage_table->entries[i].value =
302 voltage_dependency_table->entries[i].v;
303 voltage_table->entries[i].smio_low = 0;
304 }
305
306 return 0;
307 }
308
309
310 /**
311 * smu7_construct_voltage_tables - Create Voltage Tables.
312 *
313 * @hwmgr: the address of the powerplay hardware manager.
314 * Return: always 0
315 */
smu7_construct_voltage_tables(struct pp_hwmgr * hwmgr)316 static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr)
317 {
318 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
319 struct phm_ppt_v1_information *table_info =
320 (struct phm_ppt_v1_information *)hwmgr->pptable;
321 int result = 0;
322 uint32_t tmp;
323
324 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
325 result = atomctrl_get_voltage_table_v3(hwmgr,
326 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
327 &(data->mvdd_voltage_table));
328 PP_ASSERT_WITH_CODE((0 == result),
329 "Failed to retrieve MVDD table.",
330 return result);
331 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
332 if (hwmgr->pp_table_version == PP_TABLE_V1)
333 result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
334 table_info->vdd_dep_on_mclk);
335 else if (hwmgr->pp_table_version == PP_TABLE_V0)
336 result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table),
337 hwmgr->dyn_state.mvdd_dependency_on_mclk);
338
339 PP_ASSERT_WITH_CODE((0 == result),
340 "Failed to retrieve SVI2 MVDD table from dependency table.",
341 return result;);
342 }
343
344 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
345 result = atomctrl_get_voltage_table_v3(hwmgr,
346 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
347 &(data->vddci_voltage_table));
348 PP_ASSERT_WITH_CODE((0 == result),
349 "Failed to retrieve VDDCI table.",
350 return result);
351 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
352 if (hwmgr->pp_table_version == PP_TABLE_V1)
353 result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
354 table_info->vdd_dep_on_mclk);
355 else if (hwmgr->pp_table_version == PP_TABLE_V0)
356 result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table),
357 hwmgr->dyn_state.vddci_dependency_on_mclk);
358 PP_ASSERT_WITH_CODE((0 == result),
359 "Failed to retrieve SVI2 VDDCI table from dependency table.",
360 return result);
361 }
362
363 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
364 /* VDDGFX has only SVI2 voltage control */
365 result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table),
366 table_info->vddgfx_lookup_table);
367 PP_ASSERT_WITH_CODE((0 == result),
368 "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
369 }
370
371
372 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
373 result = atomctrl_get_voltage_table_v3(hwmgr,
374 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT,
375 &data->vddc_voltage_table);
376 PP_ASSERT_WITH_CODE((0 == result),
377 "Failed to retrieve VDDC table.", return result;);
378 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
379
380 if (hwmgr->pp_table_version == PP_TABLE_V0)
381 result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table,
382 hwmgr->dyn_state.vddc_dependency_on_mclk);
383 else if (hwmgr->pp_table_version == PP_TABLE_V1)
384 result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
385 table_info->vddc_lookup_table);
386
387 PP_ASSERT_WITH_CODE((0 == result),
388 "Failed to retrieve SVI2 VDDC table from dependency table.", return result;);
389 }
390
391 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDC);
392 PP_ASSERT_WITH_CODE(
393 (data->vddc_voltage_table.count <= tmp),
394 "Too many voltage values for VDDC. Trimming to fit state table.",
395 phm_trim_voltage_table_to_fit_state_table(tmp,
396 &(data->vddc_voltage_table)));
397
398 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
399 PP_ASSERT_WITH_CODE(
400 (data->vddgfx_voltage_table.count <= tmp),
401 "Too many voltage values for VDDC. Trimming to fit state table.",
402 phm_trim_voltage_table_to_fit_state_table(tmp,
403 &(data->vddgfx_voltage_table)));
404
405 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDCI);
406 PP_ASSERT_WITH_CODE(
407 (data->vddci_voltage_table.count <= tmp),
408 "Too many voltage values for VDDCI. Trimming to fit state table.",
409 phm_trim_voltage_table_to_fit_state_table(tmp,
410 &(data->vddci_voltage_table)));
411
412 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MVDD);
413 PP_ASSERT_WITH_CODE(
414 (data->mvdd_voltage_table.count <= tmp),
415 "Too many voltage values for MVDD. Trimming to fit state table.",
416 phm_trim_voltage_table_to_fit_state_table(tmp,
417 &(data->mvdd_voltage_table)));
418
419 return 0;
420 }
421
422 /**
423 * smu7_program_static_screen_threshold_parameters - Programs static screed detection parameters
424 *
425 * @hwmgr: the address of the powerplay hardware manager.
426 * Return: always 0
427 */
smu7_program_static_screen_threshold_parameters(struct pp_hwmgr * hwmgr)428 static int smu7_program_static_screen_threshold_parameters(
429 struct pp_hwmgr *hwmgr)
430 {
431 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
432
433 /* Set static screen threshold unit */
434 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
435 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
436 data->static_screen_threshold_unit);
437 /* Set static screen threshold */
438 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
439 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
440 data->static_screen_threshold);
441
442 return 0;
443 }
444
445 /**
446 * smu7_enable_display_gap - Setup display gap for glitch free memory clock switching.
447 *
448 * @hwmgr: the address of the powerplay hardware manager.
449 * Return: always 0
450 */
smu7_enable_display_gap(struct pp_hwmgr * hwmgr)451 static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr)
452 {
453 uint32_t display_gap =
454 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
455 ixCG_DISPLAY_GAP_CNTL);
456
457 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
458 DISP_GAP, DISPLAY_GAP_IGNORE);
459
460 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
461 DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
462
463 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
464 ixCG_DISPLAY_GAP_CNTL, display_gap);
465
466 return 0;
467 }
468
469 /**
470 * smu7_program_voting_clients - Programs activity state transition voting clients
471 *
472 * @hwmgr: the address of the powerplay hardware manager.
473 * Return: always 0
474 */
smu7_program_voting_clients(struct pp_hwmgr * hwmgr)475 static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr)
476 {
477 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
478 int i;
479
480 /* Clear reset for voting clients before enabling DPM */
481 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
482 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
483 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
484 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
485
486 for (i = 0; i < 8; i++)
487 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
488 ixCG_FREQ_TRAN_VOTING_0 + i * 4,
489 data->voting_rights_clients[i]);
490 return 0;
491 }
492
smu7_clear_voting_clients(struct pp_hwmgr * hwmgr)493 static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr)
494 {
495 int i;
496
497 /* Reset voting clients before disabling DPM */
498 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
499 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1);
500 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
501 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1);
502
503 for (i = 0; i < 8; i++)
504 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
505 ixCG_FREQ_TRAN_VOTING_0 + i * 4, 0);
506
507 return 0;
508 }
509
510 /* Copy one arb setting to another and then switch the active set.
511 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
512 */
smu7_copy_and_switch_arb_sets(struct pp_hwmgr * hwmgr,uint32_t arb_src,uint32_t arb_dest)513 static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
514 uint32_t arb_src, uint32_t arb_dest)
515 {
516 uint32_t mc_arb_dram_timing;
517 uint32_t mc_arb_dram_timing2;
518 uint32_t burst_time;
519 uint32_t mc_cg_config;
520
521 switch (arb_src) {
522 case MC_CG_ARB_FREQ_F0:
523 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
524 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
525 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
526 break;
527 case MC_CG_ARB_FREQ_F1:
528 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
529 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
530 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
531 break;
532 default:
533 return -EINVAL;
534 }
535
536 switch (arb_dest) {
537 case MC_CG_ARB_FREQ_F0:
538 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
539 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
540 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
541 break;
542 case MC_CG_ARB_FREQ_F1:
543 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
544 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
545 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
546 break;
547 default:
548 return -EINVAL;
549 }
550
551 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
552 mc_cg_config |= 0x0000000F;
553 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
554 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
555
556 return 0;
557 }
558
smu7_reset_to_default(struct pp_hwmgr * hwmgr)559 static int smu7_reset_to_default(struct pp_hwmgr *hwmgr)
560 {
561 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ResetToDefaults, NULL);
562 }
563
564 /**
565 * smu7_initial_switch_from_arbf0_to_f1 - Initial switch from ARB F0->F1
566 *
567 * @hwmgr: the address of the powerplay hardware manager.
568 * Return: always 0
569 * This function is to be called from the SetPowerState table.
570 */
smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr * hwmgr)571 static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
572 {
573 return smu7_copy_and_switch_arb_sets(hwmgr,
574 MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
575 }
576
smu7_force_switch_to_arbf0(struct pp_hwmgr * hwmgr)577 static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr)
578 {
579 uint32_t tmp;
580
581 tmp = (cgs_read_ind_register(hwmgr->device,
582 CGS_IND_REG__SMC, ixSMC_SCRATCH9) &
583 0x0000ff00) >> 8;
584
585 if (tmp == MC_CG_ARB_FREQ_F0)
586 return 0;
587
588 return smu7_copy_and_switch_arb_sets(hwmgr,
589 tmp, MC_CG_ARB_FREQ_F0);
590 }
591
smu7_override_pcie_speed(struct pp_hwmgr * hwmgr)592 static uint16_t smu7_override_pcie_speed(struct pp_hwmgr *hwmgr)
593 {
594 struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
595 uint16_t pcie_gen = 0;
596
597 if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4 &&
598 adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN4)
599 pcie_gen = 3;
600 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3 &&
601 adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3)
602 pcie_gen = 2;
603 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 &&
604 adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2)
605 pcie_gen = 1;
606 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 &&
607 adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1)
608 pcie_gen = 0;
609
610 return pcie_gen;
611 }
612
smu7_override_pcie_width(struct pp_hwmgr * hwmgr)613 static uint16_t smu7_override_pcie_width(struct pp_hwmgr *hwmgr)
614 {
615 struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
616 uint16_t pcie_width = 0;
617
618 if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
619 pcie_width = 16;
620 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
621 pcie_width = 12;
622 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
623 pcie_width = 8;
624 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
625 pcie_width = 4;
626 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
627 pcie_width = 2;
628 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
629 pcie_width = 1;
630
631 return pcie_width;
632 }
633
smu7_setup_default_pcie_table(struct pp_hwmgr * hwmgr)634 static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
635 {
636 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
637
638 struct phm_ppt_v1_information *table_info =
639 (struct phm_ppt_v1_information *)(hwmgr->pptable);
640 struct phm_ppt_v1_pcie_table *pcie_table = NULL;
641
642 uint32_t i, max_entry;
643 uint32_t tmp;
644
645 PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
646 data->use_pcie_power_saving_levels), "No pcie performance levels!",
647 return -EINVAL);
648
649 if (table_info != NULL)
650 pcie_table = table_info->pcie_table;
651
652 if (data->use_pcie_performance_levels &&
653 !data->use_pcie_power_saving_levels) {
654 data->pcie_gen_power_saving = data->pcie_gen_performance;
655 data->pcie_lane_power_saving = data->pcie_lane_performance;
656 } else if (!data->use_pcie_performance_levels &&
657 data->use_pcie_power_saving_levels) {
658 data->pcie_gen_performance = data->pcie_gen_power_saving;
659 data->pcie_lane_performance = data->pcie_lane_power_saving;
660 }
661 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_LINK);
662 phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
663 tmp,
664 MAX_REGULAR_DPM_NUMBER);
665
666 if (pcie_table != NULL) {
667 /* max_entry is used to make sure we reserve one PCIE level
668 * for boot level (fix for A+A PSPP issue).
669 * If PCIE table from PPTable have ULV entry + 8 entries,
670 * then ignore the last entry.*/
671 max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count;
672 for (i = 1; i < max_entry; i++) {
673 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
674 get_pcie_gen_support(data->pcie_gen_cap,
675 pcie_table->entries[i].gen_speed),
676 get_pcie_lane_support(data->pcie_lane_cap,
677 pcie_table->entries[i].lane_width));
678 }
679 data->dpm_table.pcie_speed_table.count = max_entry - 1;
680 smum_update_smc_table(hwmgr, SMU_BIF_TABLE);
681 } else {
682 /* Hardcode Pcie Table */
683 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
684 get_pcie_gen_support(data->pcie_gen_cap,
685 PP_Min_PCIEGen),
686 get_pcie_lane_support(data->pcie_lane_cap,
687 PP_Max_PCIELane));
688 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
689 get_pcie_gen_support(data->pcie_gen_cap,
690 PP_Min_PCIEGen),
691 get_pcie_lane_support(data->pcie_lane_cap,
692 PP_Max_PCIELane));
693 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
694 get_pcie_gen_support(data->pcie_gen_cap,
695 PP_Max_PCIEGen),
696 get_pcie_lane_support(data->pcie_lane_cap,
697 PP_Max_PCIELane));
698 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
699 get_pcie_gen_support(data->pcie_gen_cap,
700 PP_Max_PCIEGen),
701 get_pcie_lane_support(data->pcie_lane_cap,
702 PP_Max_PCIELane));
703 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
704 get_pcie_gen_support(data->pcie_gen_cap,
705 PP_Max_PCIEGen),
706 get_pcie_lane_support(data->pcie_lane_cap,
707 PP_Max_PCIELane));
708 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
709 get_pcie_gen_support(data->pcie_gen_cap,
710 PP_Max_PCIEGen),
711 get_pcie_lane_support(data->pcie_lane_cap,
712 PP_Max_PCIELane));
713
714 data->dpm_table.pcie_speed_table.count = 6;
715 }
716 /* Populate last level for boot PCIE level, but do not increment count. */
717 if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
718 for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++)
719 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i,
720 get_pcie_gen_support(data->pcie_gen_cap,
721 PP_Max_PCIEGen),
722 data->vbios_boot_state.pcie_lane_bootup_value);
723 } else {
724 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
725 data->dpm_table.pcie_speed_table.count,
726 get_pcie_gen_support(data->pcie_gen_cap,
727 PP_Min_PCIEGen),
728 get_pcie_lane_support(data->pcie_lane_cap,
729 PP_Max_PCIELane));
730
731 if (data->pcie_dpm_key_disabled)
732 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
733 data->dpm_table.pcie_speed_table.count,
734 smu7_override_pcie_speed(hwmgr), smu7_override_pcie_width(hwmgr));
735 }
736 return 0;
737 }
738
smu7_reset_dpm_tables(struct pp_hwmgr * hwmgr)739 static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr)
740 {
741 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
742
743 memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
744
745 phm_reset_single_dpm_table(
746 &data->dpm_table.sclk_table,
747 smum_get_mac_definition(hwmgr,
748 SMU_MAX_LEVELS_GRAPHICS),
749 MAX_REGULAR_DPM_NUMBER);
750 phm_reset_single_dpm_table(
751 &data->dpm_table.mclk_table,
752 smum_get_mac_definition(hwmgr,
753 SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER);
754
755 phm_reset_single_dpm_table(
756 &data->dpm_table.vddc_table,
757 smum_get_mac_definition(hwmgr,
758 SMU_MAX_LEVELS_VDDC),
759 MAX_REGULAR_DPM_NUMBER);
760 phm_reset_single_dpm_table(
761 &data->dpm_table.vddci_table,
762 smum_get_mac_definition(hwmgr,
763 SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER);
764
765 phm_reset_single_dpm_table(
766 &data->dpm_table.mvdd_table,
767 smum_get_mac_definition(hwmgr,
768 SMU_MAX_LEVELS_MVDD),
769 MAX_REGULAR_DPM_NUMBER);
770 return 0;
771 }
772 /*
773 * This function is to initialize all DPM state tables
774 * for SMU7 based on the dependency table.
775 * Dynamic state patching function will then trim these
776 * state tables to the allowed range based
777 * on the power policy or external client requests,
778 * such as UVD request, etc.
779 */
780
smu7_setup_dpm_tables_v0(struct pp_hwmgr * hwmgr)781 static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr)
782 {
783 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
784 struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table =
785 hwmgr->dyn_state.vddc_dependency_on_sclk;
786 struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table =
787 hwmgr->dyn_state.vddc_dependency_on_mclk;
788 struct phm_cac_leakage_table *std_voltage_table =
789 hwmgr->dyn_state.cac_leakage_table;
790 uint32_t i;
791
792 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
793 "SCLK dependency table is missing. This table is mandatory", return -EINVAL);
794 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
795 "SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
796
797 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
798 "MCLK dependency table is missing. This table is mandatory", return -EINVAL);
799 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
800 "VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
801
802
803 /* Initialize Sclk DPM table based on allow Sclk values*/
804 data->dpm_table.sclk_table.count = 0;
805
806 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
807 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
808 allowed_vdd_sclk_table->entries[i].clk) {
809 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
810 allowed_vdd_sclk_table->entries[i].clk;
811 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = (i == 0) ? 1 : 0;
812 data->dpm_table.sclk_table.count++;
813 }
814 }
815
816 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
817 "MCLK dependency table is missing. This table is mandatory", return -EINVAL);
818 /* Initialize Mclk DPM table based on allow Mclk values */
819 data->dpm_table.mclk_table.count = 0;
820 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
821 if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
822 allowed_vdd_mclk_table->entries[i].clk) {
823 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
824 allowed_vdd_mclk_table->entries[i].clk;
825 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = (i == 0) ? 1 : 0;
826 data->dpm_table.mclk_table.count++;
827 }
828 }
829
830 /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */
831 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
832 data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
833 data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage;
834 /* param1 is for corresponding std voltage */
835 data->dpm_table.vddc_table.dpm_levels[i].enabled = true;
836 }
837
838 data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
839 allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
840
841 if (NULL != allowed_vdd_mclk_table) {
842 /* Initialize Vddci DPM table based on allow Mclk values */
843 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
844 data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
845 data->dpm_table.vddci_table.dpm_levels[i].enabled = true;
846 }
847 data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count;
848 }
849
850 allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk;
851
852 if (NULL != allowed_vdd_mclk_table) {
853 /*
854 * Initialize MVDD DPM table based on allow Mclk
855 * values
856 */
857 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
858 data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
859 data->dpm_table.mvdd_table.dpm_levels[i].enabled = true;
860 }
861 data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
862 }
863
864 return 0;
865 }
866
smu7_setup_dpm_tables_v1(struct pp_hwmgr * hwmgr)867 static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr)
868 {
869 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
870 struct phm_ppt_v1_information *table_info =
871 (struct phm_ppt_v1_information *)(hwmgr->pptable);
872 uint32_t i;
873
874 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
875 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
876
877 if (table_info == NULL)
878 return -EINVAL;
879
880 dep_sclk_table = table_info->vdd_dep_on_sclk;
881 dep_mclk_table = table_info->vdd_dep_on_mclk;
882
883 PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
884 "SCLK dependency table is missing.",
885 return -EINVAL);
886 PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
887 "SCLK dependency table count is 0.",
888 return -EINVAL);
889
890 PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
891 "MCLK dependency table is missing.",
892 return -EINVAL);
893 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
894 "MCLK dependency table count is 0",
895 return -EINVAL);
896
897 /* Initialize Sclk DPM table based on allow Sclk values */
898 data->dpm_table.sclk_table.count = 0;
899 for (i = 0; i < dep_sclk_table->count; i++) {
900 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
901 dep_sclk_table->entries[i].clk) {
902
903 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
904 dep_sclk_table->entries[i].clk;
905
906 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
907 i == 0;
908 data->dpm_table.sclk_table.count++;
909 }
910 }
911 if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
912 hwmgr->platform_descriptor.overdriveLimit.engineClock = dep_sclk_table->entries[i-1].clk;
913 /* Initialize Mclk DPM table based on allow Mclk values */
914 data->dpm_table.mclk_table.count = 0;
915 for (i = 0; i < dep_mclk_table->count; i++) {
916 if (i == 0 || data->dpm_table.mclk_table.dpm_levels
917 [data->dpm_table.mclk_table.count - 1].value !=
918 dep_mclk_table->entries[i].clk) {
919 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
920 dep_mclk_table->entries[i].clk;
921 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
922 i == 0;
923 data->dpm_table.mclk_table.count++;
924 }
925 }
926
927 if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
928 hwmgr->platform_descriptor.overdriveLimit.memoryClock = dep_mclk_table->entries[i-1].clk;
929 return 0;
930 }
931
smu7_odn_initial_default_setting(struct pp_hwmgr * hwmgr)932 static int smu7_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
933 {
934 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
935 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
936 struct phm_ppt_v1_information *table_info =
937 (struct phm_ppt_v1_information *)(hwmgr->pptable);
938 uint32_t i;
939
940 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
941 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
942 struct phm_odn_performance_level *entries;
943
944 if (table_info == NULL)
945 return -EINVAL;
946
947 dep_sclk_table = table_info->vdd_dep_on_sclk;
948 dep_mclk_table = table_info->vdd_dep_on_mclk;
949
950 odn_table->odn_core_clock_dpm_levels.num_of_pl =
951 data->golden_dpm_table.sclk_table.count;
952 entries = odn_table->odn_core_clock_dpm_levels.entries;
953 for (i = 0; i < data->golden_dpm_table.sclk_table.count; i++) {
954 entries[i].clock = data->golden_dpm_table.sclk_table.dpm_levels[i].value;
955 entries[i].enabled = true;
956 entries[i].vddc = dep_sclk_table->entries[i].vddc;
957 }
958
959 smu_get_voltage_dependency_table_ppt_v1(dep_sclk_table,
960 (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk));
961
962 odn_table->odn_memory_clock_dpm_levels.num_of_pl =
963 data->golden_dpm_table.mclk_table.count;
964 entries = odn_table->odn_memory_clock_dpm_levels.entries;
965 for (i = 0; i < data->golden_dpm_table.mclk_table.count; i++) {
966 entries[i].clock = data->golden_dpm_table.mclk_table.dpm_levels[i].value;
967 entries[i].enabled = true;
968 entries[i].vddc = dep_mclk_table->entries[i].vddc;
969 }
970
971 smu_get_voltage_dependency_table_ppt_v1(dep_mclk_table,
972 (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk));
973
974 return 0;
975 }
976
smu7_setup_voltage_range_from_vbios(struct pp_hwmgr * hwmgr)977 static void smu7_setup_voltage_range_from_vbios(struct pp_hwmgr *hwmgr)
978 {
979 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
980 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
981 struct phm_ppt_v1_information *table_info =
982 (struct phm_ppt_v1_information *)(hwmgr->pptable);
983 uint32_t min_vddc = 0;
984 uint32_t max_vddc = 0;
985
986 if (!table_info)
987 return;
988
989 dep_sclk_table = table_info->vdd_dep_on_sclk;
990
991 atomctrl_get_voltage_range(hwmgr, &max_vddc, &min_vddc);
992
993 if (min_vddc == 0 || min_vddc > 2000
994 || min_vddc > dep_sclk_table->entries[0].vddc)
995 min_vddc = dep_sclk_table->entries[0].vddc;
996
997 if (max_vddc == 0 || max_vddc > 2000
998 || max_vddc < dep_sclk_table->entries[dep_sclk_table->count-1].vddc)
999 max_vddc = dep_sclk_table->entries[dep_sclk_table->count-1].vddc;
1000
1001 data->odn_dpm_table.min_vddc = min_vddc;
1002 data->odn_dpm_table.max_vddc = max_vddc;
1003 }
1004
smu7_check_dpm_table_updated(struct pp_hwmgr * hwmgr)1005 static void smu7_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
1006 {
1007 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1008 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
1009 struct phm_ppt_v1_information *table_info =
1010 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1011 uint32_t i;
1012
1013 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
1014 struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
1015
1016 if (table_info == NULL)
1017 return;
1018
1019 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1020 if (odn_table->odn_core_clock_dpm_levels.entries[i].clock !=
1021 data->dpm_table.sclk_table.dpm_levels[i].value) {
1022 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
1023 break;
1024 }
1025 }
1026
1027 for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1028 if (odn_table->odn_memory_clock_dpm_levels.entries[i].clock !=
1029 data->dpm_table.mclk_table.dpm_levels[i].value) {
1030 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
1031 break;
1032 }
1033 }
1034
1035 dep_table = table_info->vdd_dep_on_mclk;
1036 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk);
1037
1038 for (i = 0; i < dep_table->count; i++) {
1039 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
1040 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
1041 return;
1042 }
1043 }
1044
1045 dep_table = table_info->vdd_dep_on_sclk;
1046 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk);
1047 for (i = 0; i < dep_table->count; i++) {
1048 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
1049 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
1050 return;
1051 }
1052 }
1053 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
1054 data->need_update_smu7_dpm_table &= ~DPMTABLE_OD_UPDATE_VDDC;
1055 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
1056 }
1057 }
1058
smu7_setup_default_dpm_tables(struct pp_hwmgr * hwmgr)1059 static int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1060 {
1061 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1062
1063 smu7_reset_dpm_tables(hwmgr);
1064
1065 if (hwmgr->pp_table_version == PP_TABLE_V1)
1066 smu7_setup_dpm_tables_v1(hwmgr);
1067 else if (hwmgr->pp_table_version == PP_TABLE_V0)
1068 smu7_setup_dpm_tables_v0(hwmgr);
1069
1070 smu7_setup_default_pcie_table(hwmgr);
1071
1072 /* save a copy of the default DPM table */
1073 memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1074 sizeof(struct smu7_dpm_table));
1075
1076 /* initialize ODN table */
1077 if (hwmgr->od_enabled) {
1078 if (data->odn_dpm_table.max_vddc) {
1079 smu7_check_dpm_table_updated(hwmgr);
1080 } else {
1081 smu7_setup_voltage_range_from_vbios(hwmgr);
1082 smu7_odn_initial_default_setting(hwmgr);
1083 }
1084 }
1085 return 0;
1086 }
1087
smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr * hwmgr)1088 static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
1089 {
1090
1091 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1092 PHM_PlatformCaps_RegulatorHot))
1093 return smum_send_msg_to_smc(hwmgr,
1094 PPSMC_MSG_EnableVRHotGPIOInterrupt,
1095 NULL);
1096
1097 return 0;
1098 }
1099
smu7_enable_sclk_control(struct pp_hwmgr * hwmgr)1100 static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr)
1101 {
1102 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1103 SCLK_PWRMGT_OFF, 0);
1104 return 0;
1105 }
1106
smu7_enable_ulv(struct pp_hwmgr * hwmgr)1107 static int smu7_enable_ulv(struct pp_hwmgr *hwmgr)
1108 {
1109 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1110
1111 if (data->ulv_supported)
1112 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableULV, NULL);
1113
1114 return 0;
1115 }
1116
smu7_disable_ulv(struct pp_hwmgr * hwmgr)1117 static int smu7_disable_ulv(struct pp_hwmgr *hwmgr)
1118 {
1119 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1120
1121 if (data->ulv_supported)
1122 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableULV, NULL);
1123
1124 return 0;
1125 }
1126
smu7_enable_deep_sleep_master_switch(struct pp_hwmgr * hwmgr)1127 static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
1128 {
1129 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1130 PHM_PlatformCaps_SclkDeepSleep)) {
1131 if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_ON, NULL))
1132 PP_ASSERT_WITH_CODE(false,
1133 "Attempt to enable Master Deep Sleep switch failed!",
1134 return -EINVAL);
1135 } else {
1136 if (smum_send_msg_to_smc(hwmgr,
1137 PPSMC_MSG_MASTER_DeepSleep_OFF,
1138 NULL)) {
1139 PP_ASSERT_WITH_CODE(false,
1140 "Attempt to disable Master Deep Sleep switch failed!",
1141 return -EINVAL);
1142 }
1143 }
1144
1145 return 0;
1146 }
1147
smu7_disable_deep_sleep_master_switch(struct pp_hwmgr * hwmgr)1148 static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
1149 {
1150 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1151 PHM_PlatformCaps_SclkDeepSleep)) {
1152 if (smum_send_msg_to_smc(hwmgr,
1153 PPSMC_MSG_MASTER_DeepSleep_OFF,
1154 NULL)) {
1155 PP_ASSERT_WITH_CODE(false,
1156 "Attempt to disable Master Deep Sleep switch failed!",
1157 return -EINVAL);
1158 }
1159 }
1160
1161 return 0;
1162 }
1163
smu7_disable_sclk_vce_handshake(struct pp_hwmgr * hwmgr)1164 static int smu7_disable_sclk_vce_handshake(struct pp_hwmgr *hwmgr)
1165 {
1166 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1167 uint32_t soft_register_value = 0;
1168 uint32_t handshake_disables_offset = data->soft_regs_start
1169 + smum_get_offsetof(hwmgr,
1170 SMU_SoftRegisters, HandshakeDisables);
1171
1172 soft_register_value = cgs_read_ind_register(hwmgr->device,
1173 CGS_IND_REG__SMC, handshake_disables_offset);
1174 soft_register_value |= SMU7_VCE_SCLK_HANDSHAKE_DISABLE;
1175 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1176 handshake_disables_offset, soft_register_value);
1177 return 0;
1178 }
1179
smu7_disable_handshake_uvd(struct pp_hwmgr * hwmgr)1180 static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr)
1181 {
1182 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1183 uint32_t soft_register_value = 0;
1184 uint32_t handshake_disables_offset = data->soft_regs_start
1185 + smum_get_offsetof(hwmgr,
1186 SMU_SoftRegisters, HandshakeDisables);
1187
1188 soft_register_value = cgs_read_ind_register(hwmgr->device,
1189 CGS_IND_REG__SMC, handshake_disables_offset);
1190 soft_register_value |= smum_get_mac_definition(hwmgr,
1191 SMU_UVD_MCLK_HANDSHAKE_DISABLE);
1192 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1193 handshake_disables_offset, soft_register_value);
1194 return 0;
1195 }
1196
smu7_enable_sclk_mclk_dpm(struct pp_hwmgr * hwmgr)1197 static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1198 {
1199 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1200
1201 /* enable SCLK dpm */
1202 if (!data->sclk_dpm_key_disabled) {
1203 if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1204 hwmgr->chip_id <= CHIP_VEGAM)
1205 smu7_disable_sclk_vce_handshake(hwmgr);
1206
1207 PP_ASSERT_WITH_CODE(
1208 (0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Enable, NULL)),
1209 "Failed to enable SCLK DPM during DPM Start Function!",
1210 return -EINVAL);
1211 }
1212
1213 /* enable MCLK dpm */
1214 if (0 == data->mclk_dpm_key_disabled) {
1215 if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK))
1216 smu7_disable_handshake_uvd(hwmgr);
1217
1218 PP_ASSERT_WITH_CODE(
1219 (0 == smum_send_msg_to_smc(hwmgr,
1220 PPSMC_MSG_MCLKDPM_Enable,
1221 NULL)),
1222 "Failed to enable MCLK DPM during DPM Start Function!",
1223 return -EINVAL);
1224
1225 if ((hwmgr->chip_family == AMDGPU_FAMILY_CI) ||
1226 (hwmgr->chip_id == CHIP_POLARIS10) ||
1227 (hwmgr->chip_id == CHIP_POLARIS11) ||
1228 (hwmgr->chip_id == CHIP_POLARIS12) ||
1229 (hwmgr->chip_id == CHIP_TONGA) ||
1230 (hwmgr->chip_id == CHIP_TOPAZ))
1231 PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
1232
1233
1234 if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
1235 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x5);
1236 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x5);
1237 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x100005);
1238 udelay(10);
1239 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x400005);
1240 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x400005);
1241 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x500005);
1242 } else {
1243 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
1244 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
1245 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
1246 udelay(10);
1247 if (hwmgr->chip_id == CHIP_VEGAM) {
1248 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400009);
1249 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400009);
1250 } else {
1251 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
1252 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
1253 }
1254 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
1255 }
1256 }
1257
1258 return 0;
1259 }
1260
smu7_start_dpm(struct pp_hwmgr * hwmgr)1261 static int smu7_start_dpm(struct pp_hwmgr *hwmgr)
1262 {
1263 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1264
1265 /*enable general power management */
1266
1267 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1268 GLOBAL_PWRMGT_EN, 1);
1269
1270 /* enable sclk deep sleep */
1271
1272 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1273 DYNAMIC_PM_EN, 1);
1274
1275 /* prepare for PCIE DPM */
1276
1277 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1278 data->soft_regs_start +
1279 smum_get_offsetof(hwmgr, SMU_SoftRegisters,
1280 VoltageChangeTimeout), 0x1000);
1281 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
1282 SWRST_COMMAND_1, RESETLC, 0x0);
1283
1284 if (hwmgr->chip_family == AMDGPU_FAMILY_CI)
1285 cgs_write_register(hwmgr->device, 0x1488,
1286 (cgs_read_register(hwmgr->device, 0x1488) & ~0x1));
1287
1288 if (smu7_enable_sclk_mclk_dpm(hwmgr)) {
1289 pr_err("Failed to enable Sclk DPM and Mclk DPM!");
1290 return -EINVAL;
1291 }
1292
1293 /* enable PCIE dpm */
1294 if (0 == data->pcie_dpm_key_disabled) {
1295 PP_ASSERT_WITH_CODE(
1296 (0 == smum_send_msg_to_smc(hwmgr,
1297 PPSMC_MSG_PCIeDPM_Enable,
1298 NULL)),
1299 "Failed to enable pcie DPM during DPM Start Function!",
1300 return -EINVAL);
1301 } else {
1302 PP_ASSERT_WITH_CODE(
1303 (0 == smum_send_msg_to_smc(hwmgr,
1304 PPSMC_MSG_PCIeDPM_Disable,
1305 NULL)),
1306 "Failed to disable pcie DPM during DPM Start Function!",
1307 return -EINVAL);
1308 }
1309
1310 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1311 PHM_PlatformCaps_Falcon_QuickTransition)) {
1312 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr,
1313 PPSMC_MSG_EnableACDCGPIOInterrupt,
1314 NULL)),
1315 "Failed to enable AC DC GPIO Interrupt!",
1316 );
1317 }
1318
1319 return 0;
1320 }
1321
smu7_disable_sclk_mclk_dpm(struct pp_hwmgr * hwmgr)1322 static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1323 {
1324 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1325
1326 /* disable SCLK dpm */
1327 if (!data->sclk_dpm_key_disabled) {
1328 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1329 "Trying to disable SCLK DPM when DPM is disabled",
1330 return 0);
1331 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Disable, NULL);
1332 }
1333
1334 /* disable MCLK dpm */
1335 if (!data->mclk_dpm_key_disabled) {
1336 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1337 "Trying to disable MCLK DPM when DPM is disabled",
1338 return 0);
1339 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_Disable, NULL);
1340 }
1341
1342 return 0;
1343 }
1344
smu7_stop_dpm(struct pp_hwmgr * hwmgr)1345 static int smu7_stop_dpm(struct pp_hwmgr *hwmgr)
1346 {
1347 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1348
1349 /* disable general power management */
1350 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1351 GLOBAL_PWRMGT_EN, 0);
1352 /* disable sclk deep sleep */
1353 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1354 DYNAMIC_PM_EN, 0);
1355
1356 /* disable PCIE dpm */
1357 if (!data->pcie_dpm_key_disabled) {
1358 PP_ASSERT_WITH_CODE(
1359 (smum_send_msg_to_smc(hwmgr,
1360 PPSMC_MSG_PCIeDPM_Disable,
1361 NULL) == 0),
1362 "Failed to disable pcie DPM during DPM Stop Function!",
1363 return -EINVAL);
1364 }
1365
1366 smu7_disable_sclk_mclk_dpm(hwmgr);
1367
1368 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1369 "Trying to disable voltage DPM when DPM is disabled",
1370 return 0);
1371
1372 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Disable, NULL);
1373
1374 return 0;
1375 }
1376
smu7_set_dpm_event_sources(struct pp_hwmgr * hwmgr,uint32_t sources)1377 static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
1378 {
1379 bool protection;
1380 enum DPM_EVENT_SRC src;
1381
1382 switch (sources) {
1383 default:
1384 pr_err("Unknown throttling event sources.");
1385 fallthrough;
1386 case 0:
1387 protection = false;
1388 /* src is unused */
1389 break;
1390 case (1 << PHM_AutoThrottleSource_Thermal):
1391 protection = true;
1392 src = DPM_EVENT_SRC_DIGITAL;
1393 break;
1394 case (1 << PHM_AutoThrottleSource_External):
1395 protection = true;
1396 src = DPM_EVENT_SRC_EXTERNAL;
1397 break;
1398 case (1 << PHM_AutoThrottleSource_External) |
1399 (1 << PHM_AutoThrottleSource_Thermal):
1400 protection = true;
1401 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
1402 break;
1403 }
1404 /* Order matters - don't enable thermal protection for the wrong source. */
1405 if (protection) {
1406 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
1407 DPM_EVENT_SRC, src);
1408 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1409 THERMAL_PROTECTION_DIS,
1410 !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1411 PHM_PlatformCaps_ThermalController));
1412 } else
1413 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1414 THERMAL_PROTECTION_DIS, 1);
1415 }
1416
smu7_enable_auto_throttle_source(struct pp_hwmgr * hwmgr,PHM_AutoThrottleSource source)1417 static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1418 PHM_AutoThrottleSource source)
1419 {
1420 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1421
1422 if (!(data->active_auto_throttle_sources & (1 << source))) {
1423 data->active_auto_throttle_sources |= 1 << source;
1424 smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1425 }
1426 return 0;
1427 }
1428
smu7_enable_thermal_auto_throttle(struct pp_hwmgr * hwmgr)1429 static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1430 {
1431 return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1432 }
1433
smu7_disable_auto_throttle_source(struct pp_hwmgr * hwmgr,PHM_AutoThrottleSource source)1434 static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1435 PHM_AutoThrottleSource source)
1436 {
1437 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1438
1439 if (data->active_auto_throttle_sources & (1 << source)) {
1440 data->active_auto_throttle_sources &= ~(1 << source);
1441 smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1442 }
1443 return 0;
1444 }
1445
smu7_disable_thermal_auto_throttle(struct pp_hwmgr * hwmgr)1446 static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1447 {
1448 return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1449 }
1450
smu7_pcie_performance_request(struct pp_hwmgr * hwmgr)1451 static int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr)
1452 {
1453 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1454 data->pcie_performance_request = true;
1455
1456 return 0;
1457 }
1458
smu7_program_edc_didt_registers(struct pp_hwmgr * hwmgr,uint32_t * cac_config_regs,AtomCtrl_EDCLeakgeTable * edc_leakage_table)1459 static int smu7_program_edc_didt_registers(struct pp_hwmgr *hwmgr,
1460 uint32_t *cac_config_regs,
1461 AtomCtrl_EDCLeakgeTable *edc_leakage_table)
1462 {
1463 uint32_t data, i = 0;
1464
1465 while (cac_config_regs[i] != 0xFFFFFFFF) {
1466 data = edc_leakage_table->DIDT_REG[i];
1467 cgs_write_ind_register(hwmgr->device,
1468 CGS_IND_REG__DIDT,
1469 cac_config_regs[i],
1470 data);
1471 i++;
1472 }
1473
1474 return 0;
1475 }
1476
smu7_populate_edc_leakage_registers(struct pp_hwmgr * hwmgr)1477 static int smu7_populate_edc_leakage_registers(struct pp_hwmgr *hwmgr)
1478 {
1479 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1480 int ret = 0;
1481
1482 if (!data->disable_edc_leakage_controller &&
1483 data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset &&
1484 data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) {
1485 ret = smu7_program_edc_didt_registers(hwmgr,
1486 DIDTEDCConfig_P12,
1487 &data->edc_leakage_table);
1488 if (ret)
1489 return ret;
1490
1491 ret = smum_send_msg_to_smc(hwmgr,
1492 (PPSMC_Msg)PPSMC_MSG_EnableEDCController,
1493 NULL);
1494 } else {
1495 ret = smum_send_msg_to_smc(hwmgr,
1496 (PPSMC_Msg)PPSMC_MSG_DisableEDCController,
1497 NULL);
1498 }
1499
1500 return ret;
1501 }
1502
smu7_populate_umdpstate_clocks(struct pp_hwmgr * hwmgr)1503 static void smu7_populate_umdpstate_clocks(struct pp_hwmgr *hwmgr)
1504 {
1505 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1506 struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
1507 int32_t tmp_sclk, count, percentage;
1508
1509 if (golden_dpm_table->mclk_table.count == 1) {
1510 percentage = 70;
1511 hwmgr->pstate_mclk = golden_dpm_table->mclk_table.dpm_levels[0].value;
1512 } else {
1513 percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value /
1514 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
1515 hwmgr->pstate_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value;
1516 }
1517
1518 tmp_sclk = hwmgr->pstate_mclk * percentage / 100;
1519
1520 if (hwmgr->pp_table_version == PP_TABLE_V0) {
1521 struct phm_clock_voltage_dependency_table *vddc_dependency_on_sclk =
1522 hwmgr->dyn_state.vddc_dependency_on_sclk;
1523
1524 for (count = vddc_dependency_on_sclk->count - 1; count >= 0; count--) {
1525 if (tmp_sclk >= vddc_dependency_on_sclk->entries[count].clk) {
1526 hwmgr->pstate_sclk = vddc_dependency_on_sclk->entries[count].clk;
1527 break;
1528 }
1529 }
1530 if (count < 0)
1531 hwmgr->pstate_sclk = vddc_dependency_on_sclk->entries[0].clk;
1532
1533 hwmgr->pstate_sclk_peak =
1534 vddc_dependency_on_sclk->entries[vddc_dependency_on_sclk->count - 1].clk;
1535 } else if (hwmgr->pp_table_version == PP_TABLE_V1) {
1536 struct phm_ppt_v1_information *table_info =
1537 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1538 struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_sclk =
1539 table_info->vdd_dep_on_sclk;
1540
1541 for (count = vdd_dep_on_sclk->count - 1; count >= 0; count--) {
1542 if (tmp_sclk >= vdd_dep_on_sclk->entries[count].clk) {
1543 hwmgr->pstate_sclk = vdd_dep_on_sclk->entries[count].clk;
1544 break;
1545 }
1546 }
1547 if (count < 0)
1548 hwmgr->pstate_sclk = vdd_dep_on_sclk->entries[0].clk;
1549
1550 hwmgr->pstate_sclk_peak =
1551 vdd_dep_on_sclk->entries[vdd_dep_on_sclk->count - 1].clk;
1552 }
1553
1554 hwmgr->pstate_mclk_peak =
1555 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
1556
1557 /* make sure the output is in Mhz */
1558 hwmgr->pstate_sclk /= 100;
1559 hwmgr->pstate_mclk /= 100;
1560 hwmgr->pstate_sclk_peak /= 100;
1561 hwmgr->pstate_mclk_peak /= 100;
1562 }
1563
smu7_enable_dpm_tasks(struct pp_hwmgr * hwmgr)1564 static int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
1565 {
1566 int tmp_result = 0;
1567 int result = 0;
1568
1569 if (smu7_voltage_control(hwmgr)) {
1570 tmp_result = smu7_enable_voltage_control(hwmgr);
1571 PP_ASSERT_WITH_CODE(tmp_result == 0,
1572 "Failed to enable voltage control!",
1573 result = tmp_result);
1574
1575 tmp_result = smu7_construct_voltage_tables(hwmgr);
1576 PP_ASSERT_WITH_CODE((0 == tmp_result),
1577 "Failed to construct voltage tables!",
1578 result = tmp_result);
1579 }
1580 smum_initialize_mc_reg_table(hwmgr);
1581
1582 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1583 PHM_PlatformCaps_EngineSpreadSpectrumSupport))
1584 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1585 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
1586
1587 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1588 PHM_PlatformCaps_ThermalController))
1589 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1590 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
1591
1592 tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr);
1593 PP_ASSERT_WITH_CODE((0 == tmp_result),
1594 "Failed to program static screen threshold parameters!",
1595 result = tmp_result);
1596
1597 tmp_result = smu7_enable_display_gap(hwmgr);
1598 PP_ASSERT_WITH_CODE((0 == tmp_result),
1599 "Failed to enable display gap!", result = tmp_result);
1600
1601 tmp_result = smu7_program_voting_clients(hwmgr);
1602 PP_ASSERT_WITH_CODE((0 == tmp_result),
1603 "Failed to program voting clients!", result = tmp_result);
1604
1605 tmp_result = smum_process_firmware_header(hwmgr);
1606 PP_ASSERT_WITH_CODE((0 == tmp_result),
1607 "Failed to process firmware header!", result = tmp_result);
1608
1609 if (hwmgr->chip_id != CHIP_VEGAM) {
1610 tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr);
1611 PP_ASSERT_WITH_CODE((0 == tmp_result),
1612 "Failed to initialize switch from ArbF0 to F1!",
1613 result = tmp_result);
1614 }
1615
1616 result = smu7_setup_default_dpm_tables(hwmgr);
1617 PP_ASSERT_WITH_CODE(0 == result,
1618 "Failed to setup default DPM tables!", return result);
1619
1620 tmp_result = smum_init_smc_table(hwmgr);
1621 PP_ASSERT_WITH_CODE((0 == tmp_result),
1622 "Failed to initialize SMC table!", result = tmp_result);
1623
1624 tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr);
1625 PP_ASSERT_WITH_CODE((0 == tmp_result),
1626 "Failed to enable VR hot GPIO interrupt!", result = tmp_result);
1627
1628 if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1629 hwmgr->chip_id <= CHIP_VEGAM) {
1630 tmp_result = smu7_notify_has_display(hwmgr);
1631 PP_ASSERT_WITH_CODE((0 == tmp_result),
1632 "Failed to enable display setting!", result = tmp_result);
1633 } else {
1634 smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL);
1635 }
1636
1637 if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1638 hwmgr->chip_id <= CHIP_VEGAM) {
1639 tmp_result = smu7_populate_edc_leakage_registers(hwmgr);
1640 PP_ASSERT_WITH_CODE((0 == tmp_result),
1641 "Failed to populate edc leakage registers!", result = tmp_result);
1642 }
1643
1644 tmp_result = smu7_enable_sclk_control(hwmgr);
1645 PP_ASSERT_WITH_CODE((0 == tmp_result),
1646 "Failed to enable SCLK control!", result = tmp_result);
1647
1648 tmp_result = smu7_enable_smc_voltage_controller(hwmgr);
1649 PP_ASSERT_WITH_CODE((0 == tmp_result),
1650 "Failed to enable voltage control!", result = tmp_result);
1651
1652 tmp_result = smu7_enable_ulv(hwmgr);
1653 PP_ASSERT_WITH_CODE((0 == tmp_result),
1654 "Failed to enable ULV!", result = tmp_result);
1655
1656 tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr);
1657 PP_ASSERT_WITH_CODE((0 == tmp_result),
1658 "Failed to enable deep sleep master switch!", result = tmp_result);
1659
1660 tmp_result = smu7_enable_didt_config(hwmgr);
1661 PP_ASSERT_WITH_CODE((tmp_result == 0),
1662 "Failed to enable deep sleep master switch!", result = tmp_result);
1663
1664 tmp_result = smu7_start_dpm(hwmgr);
1665 PP_ASSERT_WITH_CODE((0 == tmp_result),
1666 "Failed to start DPM!", result = tmp_result);
1667
1668 tmp_result = smu7_enable_smc_cac(hwmgr);
1669 PP_ASSERT_WITH_CODE((0 == tmp_result),
1670 "Failed to enable SMC CAC!", result = tmp_result);
1671
1672 tmp_result = smu7_enable_power_containment(hwmgr);
1673 PP_ASSERT_WITH_CODE((0 == tmp_result),
1674 "Failed to enable power containment!", result = tmp_result);
1675
1676 tmp_result = smu7_power_control_set_level(hwmgr);
1677 PP_ASSERT_WITH_CODE((0 == tmp_result),
1678 "Failed to power control set level!", result = tmp_result);
1679
1680 tmp_result = smu7_enable_thermal_auto_throttle(hwmgr);
1681 PP_ASSERT_WITH_CODE((0 == tmp_result),
1682 "Failed to enable thermal auto throttle!", result = tmp_result);
1683
1684 tmp_result = smu7_pcie_performance_request(hwmgr);
1685 PP_ASSERT_WITH_CODE((0 == tmp_result),
1686 "pcie performance request failed!", result = tmp_result);
1687
1688 smu7_populate_umdpstate_clocks(hwmgr);
1689
1690 return 0;
1691 }
1692
smu7_avfs_control(struct pp_hwmgr * hwmgr,bool enable)1693 static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable)
1694 {
1695 if (!hwmgr->avfs_supported)
1696 return 0;
1697
1698 if (enable) {
1699 if (!PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
1700 CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
1701 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
1702 hwmgr, PPSMC_MSG_EnableAvfs, NULL),
1703 "Failed to enable AVFS!",
1704 return -EINVAL);
1705 }
1706 } else if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
1707 CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
1708 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
1709 hwmgr, PPSMC_MSG_DisableAvfs, NULL),
1710 "Failed to disable AVFS!",
1711 return -EINVAL);
1712 }
1713
1714 return 0;
1715 }
1716
smu7_update_avfs(struct pp_hwmgr * hwmgr)1717 static int smu7_update_avfs(struct pp_hwmgr *hwmgr)
1718 {
1719 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1720
1721 if (!hwmgr->avfs_supported)
1722 return 0;
1723
1724 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
1725 smu7_avfs_control(hwmgr, false);
1726 } else if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
1727 smu7_avfs_control(hwmgr, false);
1728 smu7_avfs_control(hwmgr, true);
1729 } else {
1730 smu7_avfs_control(hwmgr, true);
1731 }
1732
1733 return 0;
1734 }
1735
smu7_disable_dpm_tasks(struct pp_hwmgr * hwmgr)1736 static int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
1737 {
1738 int tmp_result, result = 0;
1739
1740 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1741 PHM_PlatformCaps_ThermalController))
1742 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1743 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1);
1744
1745 tmp_result = smu7_disable_power_containment(hwmgr);
1746 PP_ASSERT_WITH_CODE((tmp_result == 0),
1747 "Failed to disable power containment!", result = tmp_result);
1748
1749 tmp_result = smu7_disable_smc_cac(hwmgr);
1750 PP_ASSERT_WITH_CODE((tmp_result == 0),
1751 "Failed to disable SMC CAC!", result = tmp_result);
1752
1753 tmp_result = smu7_disable_didt_config(hwmgr);
1754 PP_ASSERT_WITH_CODE((tmp_result == 0),
1755 "Failed to disable DIDT!", result = tmp_result);
1756
1757 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1758 CG_SPLL_SPREAD_SPECTRUM, SSEN, 0);
1759 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1760 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0);
1761
1762 tmp_result = smu7_disable_thermal_auto_throttle(hwmgr);
1763 PP_ASSERT_WITH_CODE((tmp_result == 0),
1764 "Failed to disable thermal auto throttle!", result = tmp_result);
1765
1766 tmp_result = smu7_avfs_control(hwmgr, false);
1767 PP_ASSERT_WITH_CODE((tmp_result == 0),
1768 "Failed to disable AVFS!", result = tmp_result);
1769
1770 tmp_result = smu7_stop_dpm(hwmgr);
1771 PP_ASSERT_WITH_CODE((tmp_result == 0),
1772 "Failed to stop DPM!", result = tmp_result);
1773
1774 tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr);
1775 PP_ASSERT_WITH_CODE((tmp_result == 0),
1776 "Failed to disable deep sleep master switch!", result = tmp_result);
1777
1778 tmp_result = smu7_disable_ulv(hwmgr);
1779 PP_ASSERT_WITH_CODE((tmp_result == 0),
1780 "Failed to disable ULV!", result = tmp_result);
1781
1782 tmp_result = smu7_clear_voting_clients(hwmgr);
1783 PP_ASSERT_WITH_CODE((tmp_result == 0),
1784 "Failed to clear voting clients!", result = tmp_result);
1785
1786 tmp_result = smu7_reset_to_default(hwmgr);
1787 PP_ASSERT_WITH_CODE((tmp_result == 0),
1788 "Failed to reset to default!", result = tmp_result);
1789
1790 tmp_result = smum_stop_smc(hwmgr);
1791 PP_ASSERT_WITH_CODE((tmp_result == 0),
1792 "Failed to stop smc!", result = tmp_result);
1793
1794 tmp_result = smu7_force_switch_to_arbf0(hwmgr);
1795 PP_ASSERT_WITH_CODE((tmp_result == 0),
1796 "Failed to force to switch arbf0!", result = tmp_result);
1797
1798 return result;
1799 }
1800
smu7_init_dpm_defaults(struct pp_hwmgr * hwmgr)1801 static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr)
1802 {
1803 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1804 struct phm_ppt_v1_information *table_info =
1805 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1806 struct amdgpu_device *adev = hwmgr->adev;
1807 uint8_t tmp1, tmp2;
1808 uint16_t tmp3 = 0;
1809
1810 data->dll_default_on = false;
1811 data->mclk_dpm0_activity_target = 0xa;
1812 data->vddc_vddgfx_delta = 300;
1813 data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT;
1814 data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT;
1815 data->voting_rights_clients[0] = SMU7_VOTINGRIGHTSCLIENTS_DFLT0;
1816 data->voting_rights_clients[1] = SMU7_VOTINGRIGHTSCLIENTS_DFLT1;
1817 data->voting_rights_clients[2] = SMU7_VOTINGRIGHTSCLIENTS_DFLT2;
1818 data->voting_rights_clients[3] = SMU7_VOTINGRIGHTSCLIENTS_DFLT3;
1819 data->voting_rights_clients[4] = SMU7_VOTINGRIGHTSCLIENTS_DFLT4;
1820 data->voting_rights_clients[5] = SMU7_VOTINGRIGHTSCLIENTS_DFLT5;
1821 data->voting_rights_clients[6] = SMU7_VOTINGRIGHTSCLIENTS_DFLT6;
1822 data->voting_rights_clients[7] = SMU7_VOTINGRIGHTSCLIENTS_DFLT7;
1823
1824 data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
1825 data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
1826 data->pcie_dpm_key_disabled = !(hwmgr->feature_mask & PP_PCIE_DPM_MASK);
1827 /* need to set voltage control types before EVV patching */
1828 data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE;
1829 data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE;
1830 data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE;
1831 data->enable_tdc_limit_feature = true;
1832 data->enable_pkg_pwr_tracking_feature = true;
1833 data->force_pcie_gen = PP_PCIEGenInvalid;
1834 data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false;
1835 data->current_profile_setting.bupdate_sclk = 1;
1836 data->current_profile_setting.sclk_up_hyst = 0;
1837 data->current_profile_setting.sclk_down_hyst = 100;
1838 data->current_profile_setting.sclk_activity = SMU7_SCLK_TARGETACTIVITY_DFLT;
1839 data->current_profile_setting.bupdate_mclk = 1;
1840 if (hwmgr->chip_id >= CHIP_POLARIS10) {
1841 if (adev->gmc.vram_width == 256) {
1842 data->current_profile_setting.mclk_up_hyst = 10;
1843 data->current_profile_setting.mclk_down_hyst = 60;
1844 data->current_profile_setting.mclk_activity = 25;
1845 } else if (adev->gmc.vram_width == 128) {
1846 data->current_profile_setting.mclk_up_hyst = 5;
1847 data->current_profile_setting.mclk_down_hyst = 16;
1848 data->current_profile_setting.mclk_activity = 20;
1849 } else if (adev->gmc.vram_width == 64) {
1850 data->current_profile_setting.mclk_up_hyst = 3;
1851 data->current_profile_setting.mclk_down_hyst = 16;
1852 data->current_profile_setting.mclk_activity = 20;
1853 }
1854 } else {
1855 data->current_profile_setting.mclk_up_hyst = 0;
1856 data->current_profile_setting.mclk_down_hyst = 100;
1857 data->current_profile_setting.mclk_activity = SMU7_MCLK_TARGETACTIVITY_DFLT;
1858 }
1859 hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D];
1860 hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
1861 hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
1862
1863 if (hwmgr->chip_id == CHIP_HAWAII) {
1864 data->thermal_temp_setting.temperature_low = 94500;
1865 data->thermal_temp_setting.temperature_high = 95000;
1866 data->thermal_temp_setting.temperature_shutdown = 104000;
1867 } else {
1868 data->thermal_temp_setting.temperature_low = 99500;
1869 data->thermal_temp_setting.temperature_high = 100000;
1870 data->thermal_temp_setting.temperature_shutdown = 104000;
1871 }
1872
1873 data->fast_watermark_threshold = 100;
1874 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1875 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
1876 data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1877 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1878 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT))
1879 data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1880
1881 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1882 PHM_PlatformCaps_ControlVDDGFX)) {
1883 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1884 VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
1885 data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1886 }
1887 }
1888
1889 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1890 PHM_PlatformCaps_EnableMVDDControl)) {
1891 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1892 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
1893 data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1894 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1895 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
1896 data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1897 }
1898
1899 if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control)
1900 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1901 PHM_PlatformCaps_ControlVDDGFX);
1902
1903 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1904 PHM_PlatformCaps_ControlVDDCI)) {
1905 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1906 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
1907 data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1908 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1909 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
1910 data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1911 }
1912
1913 if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
1914 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1915 PHM_PlatformCaps_EnableMVDDControl);
1916
1917 if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE)
1918 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1919 PHM_PlatformCaps_ControlVDDCI);
1920
1921 data->vddc_phase_shed_control = 1;
1922 if ((hwmgr->chip_id == CHIP_POLARIS12) ||
1923 ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) ||
1924 ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) ||
1925 ASICID_IS_P30(adev->pdev->device, adev->pdev->revision) ||
1926 ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) {
1927 if (data->voltage_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1928 atomctrl_get_svi2_info(hwmgr, VOLTAGE_TYPE_VDDC, &tmp1, &tmp2,
1929 &tmp3);
1930 tmp3 = (tmp3 >> 5) & 0x3;
1931 data->vddc_phase_shed_control = ((tmp3 << 1) | (tmp3 >> 1)) & 0x3;
1932 }
1933 } else if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
1934 data->vddc_phase_shed_control = 1;
1935 }
1936
1937 if ((hwmgr->pp_table_version != PP_TABLE_V0) && (hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK)
1938 && (table_info->cac_dtp_table->usClockStretchAmount != 0))
1939 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1940 PHM_PlatformCaps_ClockStretcher);
1941
1942 data->pcie_gen_performance.max = PP_PCIEGen1;
1943 data->pcie_gen_performance.min = PP_PCIEGen3;
1944 data->pcie_gen_power_saving.max = PP_PCIEGen1;
1945 data->pcie_gen_power_saving.min = PP_PCIEGen3;
1946 data->pcie_lane_performance.max = 0;
1947 data->pcie_lane_performance.min = 16;
1948 data->pcie_lane_power_saving.max = 0;
1949 data->pcie_lane_power_saving.min = 16;
1950
1951
1952 if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
1953 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1954 PHM_PlatformCaps_UVDPowerGating);
1955 if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
1956 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1957 PHM_PlatformCaps_VCEPowerGating);
1958
1959 data->disable_edc_leakage_controller = true;
1960 if (((adev->asic_type == CHIP_POLARIS10) && hwmgr->is_kicker) ||
1961 ((adev->asic_type == CHIP_POLARIS11) && hwmgr->is_kicker) ||
1962 (adev->asic_type == CHIP_POLARIS12) ||
1963 (adev->asic_type == CHIP_VEGAM))
1964 data->disable_edc_leakage_controller = false;
1965
1966 if (!atomctrl_is_asic_internal_ss_supported(hwmgr)) {
1967 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1968 PHM_PlatformCaps_MemorySpreadSpectrumSupport);
1969 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1970 PHM_PlatformCaps_EngineSpreadSpectrumSupport);
1971 }
1972
1973 if ((adev->pdev->device == 0x699F) &&
1974 (adev->pdev->revision == 0xCF)) {
1975 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1976 PHM_PlatformCaps_PowerContainment);
1977 data->enable_tdc_limit_feature = false;
1978 data->enable_pkg_pwr_tracking_feature = false;
1979 data->disable_edc_leakage_controller = true;
1980 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1981 PHM_PlatformCaps_ClockStretcher);
1982 }
1983 }
1984
smu7_calculate_ro_range(struct pp_hwmgr * hwmgr)1985 static int smu7_calculate_ro_range(struct pp_hwmgr *hwmgr)
1986 {
1987 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1988 struct amdgpu_device *adev = hwmgr->adev;
1989 uint32_t asicrev1, evv_revision, max = 0, min = 0;
1990
1991 atomctrl_read_efuse(hwmgr, STRAP_EVV_REVISION_LSB, STRAP_EVV_REVISION_MSB,
1992 &evv_revision);
1993
1994 atomctrl_read_efuse(hwmgr, 568, 579, &asicrev1);
1995
1996 if (ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) ||
1997 ASICID_IS_P30(adev->pdev->device, adev->pdev->revision)) {
1998 min = 1200;
1999 max = 2500;
2000 } else if (ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) ||
2001 ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) {
2002 min = 900;
2003 max = 2100;
2004 } else if (hwmgr->chip_id == CHIP_POLARIS10) {
2005 if (adev->pdev->subsystem_vendor == 0x106B) {
2006 min = 1000;
2007 max = 2300;
2008 } else {
2009 if (evv_revision == 0) {
2010 min = 1000;
2011 max = 2300;
2012 } else if (evv_revision == 1) {
2013 if (asicrev1 == 326) {
2014 min = 1200;
2015 max = 2500;
2016 /* TODO: PATCH RO in VBIOS */
2017 } else {
2018 min = 1200;
2019 max = 2000;
2020 }
2021 } else if (evv_revision == 2) {
2022 min = 1200;
2023 max = 2500;
2024 }
2025 }
2026 } else {
2027 min = 1100;
2028 max = 2100;
2029 }
2030
2031 data->ro_range_minimum = min;
2032 data->ro_range_maximum = max;
2033
2034 /* TODO: PATCH RO in VBIOS here */
2035
2036 return 0;
2037 }
2038
2039 /**
2040 * smu7_get_evv_voltages - Get Leakage VDDC based on leakage ID.
2041 *
2042 * @hwmgr: the address of the powerplay hardware manager.
2043 * Return: always 0
2044 */
smu7_get_evv_voltages(struct pp_hwmgr * hwmgr)2045 static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr)
2046 {
2047 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2048 uint16_t vv_id;
2049 uint16_t vddc = 0;
2050 uint16_t vddgfx = 0;
2051 uint16_t i, j;
2052 uint32_t sclk = 0;
2053 struct phm_ppt_v1_information *table_info =
2054 (struct phm_ppt_v1_information *)hwmgr->pptable;
2055 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL;
2056
2057 if (hwmgr->chip_id == CHIP_POLARIS10 ||
2058 hwmgr->chip_id == CHIP_POLARIS11 ||
2059 hwmgr->chip_id == CHIP_POLARIS12)
2060 smu7_calculate_ro_range(hwmgr);
2061
2062 for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
2063 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
2064
2065 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2066 if ((hwmgr->pp_table_version == PP_TABLE_V1)
2067 && !phm_get_sclk_for_voltage_evv(hwmgr,
2068 table_info->vddgfx_lookup_table, vv_id, &sclk)) {
2069 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2070 PHM_PlatformCaps_ClockStretcher)) {
2071 sclk_table = table_info->vdd_dep_on_sclk;
2072
2073 for (j = 1; j < sclk_table->count; j++) {
2074 if (sclk_table->entries[j].clk == sclk &&
2075 sclk_table->entries[j].cks_enable == 0) {
2076 sclk += 5000;
2077 break;
2078 }
2079 }
2080 }
2081 if (0 == atomctrl_get_voltage_evv_on_sclk
2082 (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
2083 vv_id, &vddgfx)) {
2084 /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
2085 PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL);
2086
2087 /* the voltage should not be zero nor equal to leakage ID */
2088 if (vddgfx != 0 && vddgfx != vv_id) {
2089 data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
2090 data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id;
2091 data->vddcgfx_leakage.count++;
2092 }
2093 } else {
2094 pr_info("Error retrieving EVV voltage value!\n");
2095 }
2096 }
2097 } else {
2098 if ((hwmgr->pp_table_version == PP_TABLE_V0)
2099 || !phm_get_sclk_for_voltage_evv(hwmgr,
2100 table_info->vddc_lookup_table, vv_id, &sclk)) {
2101 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2102 PHM_PlatformCaps_ClockStretcher)) {
2103 if (table_info == NULL)
2104 return -EINVAL;
2105 sclk_table = table_info->vdd_dep_on_sclk;
2106
2107 for (j = 1; j < sclk_table->count; j++) {
2108 if (sclk_table->entries[j].clk == sclk &&
2109 sclk_table->entries[j].cks_enable == 0) {
2110 sclk += 5000;
2111 break;
2112 }
2113 }
2114 }
2115
2116 if (phm_get_voltage_evv_on_sclk(hwmgr,
2117 VOLTAGE_TYPE_VDDC,
2118 sclk, vv_id, &vddc) == 0) {
2119 if (vddc >= 2000 || vddc == 0)
2120 return -EINVAL;
2121 } else {
2122 pr_debug("failed to retrieving EVV voltage!\n");
2123 continue;
2124 }
2125
2126 /* the voltage should not be zero nor equal to leakage ID */
2127 if (vddc != 0 && vddc != vv_id) {
2128 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc);
2129 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
2130 data->vddc_leakage.count++;
2131 }
2132 }
2133 }
2134 }
2135
2136 return 0;
2137 }
2138
2139 /**
2140 * smu7_patch_ppt_v1_with_vdd_leakage - Change virtual leakage voltage to actual value.
2141 *
2142 * @hwmgr: the address of the powerplay hardware manager.
2143 * @voltage: pointer to changing voltage
2144 * @leakage_table: pointer to leakage table
2145 */
smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr * hwmgr,uint16_t * voltage,struct smu7_leakage_voltage * leakage_table)2146 static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2147 uint16_t *voltage, struct smu7_leakage_voltage *leakage_table)
2148 {
2149 uint32_t index;
2150
2151 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
2152 for (index = 0; index < leakage_table->count; index++) {
2153 /* if this voltage matches a leakage voltage ID */
2154 /* patch with actual leakage voltage */
2155 if (leakage_table->leakage_id[index] == *voltage) {
2156 *voltage = leakage_table->actual_voltage[index];
2157 break;
2158 }
2159 }
2160
2161 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2162 pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
2163 }
2164
2165 /**
2166 * smu7_patch_lookup_table_with_leakage - Patch voltage lookup table by EVV leakages.
2167 *
2168 * @hwmgr: the address of the powerplay hardware manager.
2169 * @lookup_table: pointer to voltage lookup table
2170 * @leakage_table: pointer to leakage table
2171 * Return: always 0
2172 */
smu7_patch_lookup_table_with_leakage(struct pp_hwmgr * hwmgr,phm_ppt_v1_voltage_lookup_table * lookup_table,struct smu7_leakage_voltage * leakage_table)2173 static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
2174 phm_ppt_v1_voltage_lookup_table *lookup_table,
2175 struct smu7_leakage_voltage *leakage_table)
2176 {
2177 uint32_t i;
2178
2179 for (i = 0; i < lookup_table->count; i++)
2180 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
2181 &lookup_table->entries[i].us_vdd, leakage_table);
2182
2183 return 0;
2184 }
2185
smu7_patch_clock_voltage_limits_with_vddc_leakage(struct pp_hwmgr * hwmgr,struct smu7_leakage_voltage * leakage_table,uint16_t * vddc)2186 static int smu7_patch_clock_voltage_limits_with_vddc_leakage(
2187 struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table,
2188 uint16_t *vddc)
2189 {
2190 struct phm_ppt_v1_information *table_info =
2191 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2192 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
2193 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
2194 table_info->max_clock_voltage_on_dc.vddc;
2195 return 0;
2196 }
2197
smu7_patch_voltage_dependency_tables_with_lookup_table(struct pp_hwmgr * hwmgr)2198 static int smu7_patch_voltage_dependency_tables_with_lookup_table(
2199 struct pp_hwmgr *hwmgr)
2200 {
2201 uint8_t entry_id;
2202 uint8_t voltage_id;
2203 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2204 struct phm_ppt_v1_information *table_info =
2205 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2206
2207 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2208 table_info->vdd_dep_on_sclk;
2209 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
2210 table_info->vdd_dep_on_mclk;
2211 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2212 table_info->mm_dep_table;
2213
2214 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2215 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2216 voltage_id = sclk_table->entries[entry_id].vddInd;
2217 sclk_table->entries[entry_id].vddgfx =
2218 table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd;
2219 }
2220 } else {
2221 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2222 voltage_id = sclk_table->entries[entry_id].vddInd;
2223 sclk_table->entries[entry_id].vddc =
2224 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2225 }
2226 }
2227
2228 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
2229 voltage_id = mclk_table->entries[entry_id].vddInd;
2230 mclk_table->entries[entry_id].vddc =
2231 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2232 }
2233
2234 for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
2235 voltage_id = mm_table->entries[entry_id].vddcInd;
2236 mm_table->entries[entry_id].vddc =
2237 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2238 }
2239
2240 return 0;
2241
2242 }
2243
phm_add_voltage(struct pp_hwmgr * hwmgr,phm_ppt_v1_voltage_lookup_table * look_up_table,phm_ppt_v1_voltage_lookup_record * record)2244 static int phm_add_voltage(struct pp_hwmgr *hwmgr,
2245 phm_ppt_v1_voltage_lookup_table *look_up_table,
2246 phm_ppt_v1_voltage_lookup_record *record)
2247 {
2248 uint32_t i;
2249
2250 PP_ASSERT_WITH_CODE((NULL != look_up_table),
2251 "Lookup Table empty.", return -EINVAL);
2252 PP_ASSERT_WITH_CODE((0 != look_up_table->count),
2253 "Lookup Table empty.", return -EINVAL);
2254
2255 i = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
2256 PP_ASSERT_WITH_CODE((i >= look_up_table->count),
2257 "Lookup Table is full.", return -EINVAL);
2258
2259 /* This is to avoid entering duplicate calculated records. */
2260 for (i = 0; i < look_up_table->count; i++) {
2261 if (look_up_table->entries[i].us_vdd == record->us_vdd) {
2262 if (look_up_table->entries[i].us_calculated == 1)
2263 return 0;
2264 break;
2265 }
2266 }
2267
2268 look_up_table->entries[i].us_calculated = 1;
2269 look_up_table->entries[i].us_vdd = record->us_vdd;
2270 look_up_table->entries[i].us_cac_low = record->us_cac_low;
2271 look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
2272 look_up_table->entries[i].us_cac_high = record->us_cac_high;
2273 /* Only increment the count when we're appending, not replacing duplicate entry. */
2274 if (i == look_up_table->count)
2275 look_up_table->count++;
2276
2277 return 0;
2278 }
2279
2280
smu7_calc_voltage_dependency_tables(struct pp_hwmgr * hwmgr)2281 static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
2282 {
2283 uint8_t entry_id;
2284 struct phm_ppt_v1_voltage_lookup_record v_record;
2285 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2286 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2287
2288 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
2289 phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
2290
2291 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2292 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2293 if (sclk_table->entries[entry_id].vdd_offset & (1 << 15))
2294 v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
2295 sclk_table->entries[entry_id].vdd_offset - 0xFFFF;
2296 else
2297 v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
2298 sclk_table->entries[entry_id].vdd_offset;
2299
2300 sclk_table->entries[entry_id].vddc =
2301 v_record.us_cac_low = v_record.us_cac_mid =
2302 v_record.us_cac_high = v_record.us_vdd;
2303
2304 phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
2305 }
2306
2307 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
2308 if (mclk_table->entries[entry_id].vdd_offset & (1 << 15))
2309 v_record.us_vdd = mclk_table->entries[entry_id].vddc +
2310 mclk_table->entries[entry_id].vdd_offset - 0xFFFF;
2311 else
2312 v_record.us_vdd = mclk_table->entries[entry_id].vddc +
2313 mclk_table->entries[entry_id].vdd_offset;
2314
2315 mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low =
2316 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
2317 phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
2318 }
2319 }
2320 return 0;
2321 }
2322
smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr * hwmgr)2323 static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
2324 {
2325 uint8_t entry_id;
2326 struct phm_ppt_v1_voltage_lookup_record v_record;
2327 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2328 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2329 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
2330
2331 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2332 for (entry_id = 0; entry_id < mm_table->count; entry_id++) {
2333 if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15))
2334 v_record.us_vdd = mm_table->entries[entry_id].vddc +
2335 mm_table->entries[entry_id].vddgfx_offset - 0xFFFF;
2336 else
2337 v_record.us_vdd = mm_table->entries[entry_id].vddc +
2338 mm_table->entries[entry_id].vddgfx_offset;
2339
2340 /* Add the calculated VDDGFX to the VDDGFX lookup table */
2341 mm_table->entries[entry_id].vddgfx = v_record.us_cac_low =
2342 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
2343 phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
2344 }
2345 }
2346 return 0;
2347 }
2348
smu7_sort_lookup_table(struct pp_hwmgr * hwmgr,struct phm_ppt_v1_voltage_lookup_table * lookup_table)2349 static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr,
2350 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
2351 {
2352 uint32_t table_size, i, j;
2353 table_size = lookup_table->count;
2354
2355 PP_ASSERT_WITH_CODE(0 != lookup_table->count,
2356 "Lookup table is empty", return -EINVAL);
2357
2358 /* Sorting voltages */
2359 for (i = 0; i < table_size - 1; i++) {
2360 for (j = i + 1; j > 0; j--) {
2361 if (lookup_table->entries[j].us_vdd <
2362 lookup_table->entries[j - 1].us_vdd) {
2363 swap(lookup_table->entries[j - 1],
2364 lookup_table->entries[j]);
2365 }
2366 }
2367 }
2368
2369 return 0;
2370 }
2371
smu7_complete_dependency_tables(struct pp_hwmgr * hwmgr)2372 static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr)
2373 {
2374 int result = 0;
2375 int tmp_result;
2376 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2377 struct phm_ppt_v1_information *table_info =
2378 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2379
2380 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2381 tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
2382 table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
2383 if (tmp_result != 0)
2384 result = tmp_result;
2385
2386 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
2387 &table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage));
2388 } else {
2389
2390 tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
2391 table_info->vddc_lookup_table, &(data->vddc_leakage));
2392 if (tmp_result)
2393 result = tmp_result;
2394
2395 tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
2396 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
2397 if (tmp_result)
2398 result = tmp_result;
2399 }
2400
2401 tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
2402 if (tmp_result)
2403 result = tmp_result;
2404
2405 tmp_result = smu7_calc_voltage_dependency_tables(hwmgr);
2406 if (tmp_result)
2407 result = tmp_result;
2408
2409 tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr);
2410 if (tmp_result)
2411 result = tmp_result;
2412
2413 tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table);
2414 if (tmp_result)
2415 result = tmp_result;
2416
2417 tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
2418 if (tmp_result)
2419 result = tmp_result;
2420
2421 return result;
2422 }
2423
smu7_find_highest_vddc(struct pp_hwmgr * hwmgr)2424 static int smu7_find_highest_vddc(struct pp_hwmgr *hwmgr)
2425 {
2426 struct phm_ppt_v1_information *table_info =
2427 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2428 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
2429 table_info->vdd_dep_on_sclk;
2430 struct phm_ppt_v1_voltage_lookup_table *lookup_table =
2431 table_info->vddc_lookup_table;
2432 uint16_t highest_voltage;
2433 uint32_t i;
2434
2435 highest_voltage = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
2436
2437 for (i = 0; i < lookup_table->count; i++) {
2438 if (lookup_table->entries[i].us_vdd < ATOM_VIRTUAL_VOLTAGE_ID0 &&
2439 lookup_table->entries[i].us_vdd > highest_voltage)
2440 highest_voltage = lookup_table->entries[i].us_vdd;
2441 }
2442
2443 return highest_voltage;
2444 }
2445
smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr * hwmgr)2446 static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr)
2447 {
2448 struct phm_ppt_v1_information *table_info =
2449 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2450
2451 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
2452 table_info->vdd_dep_on_sclk;
2453 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
2454 table_info->vdd_dep_on_mclk;
2455
2456 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
2457 "VDD dependency on SCLK table is missing.",
2458 return -EINVAL);
2459 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
2460 "VDD dependency on SCLK table has to have is missing.",
2461 return -EINVAL);
2462
2463 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
2464 "VDD dependency on MCLK table is missing",
2465 return -EINVAL);
2466 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
2467 "VDD dependency on MCLK table has to have is missing.",
2468 return -EINVAL);
2469
2470 table_info->max_clock_voltage_on_ac.sclk =
2471 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
2472 table_info->max_clock_voltage_on_ac.mclk =
2473 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
2474 if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM)
2475 table_info->max_clock_voltage_on_ac.vddc =
2476 smu7_find_highest_vddc(hwmgr);
2477 else
2478 table_info->max_clock_voltage_on_ac.vddc =
2479 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
2480 table_info->max_clock_voltage_on_ac.vddci =
2481 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
2482
2483 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk;
2484 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk;
2485 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc;
2486 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci;
2487
2488 return 0;
2489 }
2490
smu7_patch_voltage_workaround(struct pp_hwmgr * hwmgr)2491 static int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr)
2492 {
2493 struct phm_ppt_v1_information *table_info =
2494 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2495 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
2496 struct phm_ppt_v1_voltage_lookup_table *lookup_table;
2497 uint32_t i;
2498 uint32_t hw_revision, sub_vendor_id, sub_sys_id;
2499 struct amdgpu_device *adev = hwmgr->adev;
2500
2501 if (table_info != NULL) {
2502 dep_mclk_table = table_info->vdd_dep_on_mclk;
2503 lookup_table = table_info->vddc_lookup_table;
2504 } else
2505 return 0;
2506
2507 hw_revision = adev->pdev->revision;
2508 sub_sys_id = adev->pdev->subsystem_device;
2509 sub_vendor_id = adev->pdev->subsystem_vendor;
2510
2511 if (adev->pdev->device == 0x67DF && hw_revision == 0xC7 &&
2512 ((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) ||
2513 (sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) ||
2514 (sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) {
2515
2516 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
2517 CGS_IND_REG__SMC,
2518 PWR_CKS_CNTL,
2519 CKS_STRETCH_AMOUNT,
2520 0x3);
2521
2522 if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000)
2523 return 0;
2524
2525 for (i = 0; i < lookup_table->count; i++) {
2526 if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) {
2527 dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i;
2528 return 0;
2529 }
2530 }
2531 }
2532 return 0;
2533 }
2534
smu7_thermal_parameter_init(struct pp_hwmgr * hwmgr)2535 static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr)
2536 {
2537 struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2538 uint32_t temp_reg;
2539 struct phm_ppt_v1_information *table_info =
2540 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2541
2542
2543 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
2544 temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
2545 switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
2546 case 0:
2547 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
2548 break;
2549 case 1:
2550 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
2551 break;
2552 case 2:
2553 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
2554 break;
2555 case 3:
2556 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
2557 break;
2558 case 4:
2559 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
2560 break;
2561 default:
2562 break;
2563 }
2564 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
2565 }
2566
2567 if (table_info == NULL)
2568 return 0;
2569
2570 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 &&
2571 hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) {
2572 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit =
2573 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
2574
2575 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit =
2576 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
2577
2578 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1;
2579
2580 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100;
2581
2582 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit =
2583 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
2584
2585 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1;
2586
2587 table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ?
2588 (table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0;
2589
2590 table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2591 table_info->cac_dtp_table->usOperatingTempStep = 1;
2592 table_info->cac_dtp_table->usOperatingTempHyst = 1;
2593
2594 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
2595 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
2596
2597 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
2598 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
2599
2600 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
2601 table_info->cac_dtp_table->usOperatingTempMinLimit;
2602
2603 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
2604 table_info->cac_dtp_table->usOperatingTempMaxLimit;
2605
2606 hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
2607 table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2608
2609 hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
2610 table_info->cac_dtp_table->usOperatingTempStep;
2611
2612 hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
2613 table_info->cac_dtp_table->usTargetOperatingTemp;
2614 if (hwmgr->feature_mask & PP_OD_FUZZY_FAN_CONTROL_MASK)
2615 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2616 PHM_PlatformCaps_ODFuzzyFanControlSupport);
2617 }
2618
2619 return 0;
2620 }
2621
2622 /**
2623 * smu7_patch_ppt_v0_with_vdd_leakage - Change virtual leakage voltage to actual value.
2624 *
2625 * @hwmgr: the address of the powerplay hardware manager.
2626 * @voltage: pointer to changing voltage
2627 * @leakage_table: pointer to leakage table
2628 */
smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr * hwmgr,uint32_t * voltage,struct smu7_leakage_voltage * leakage_table)2629 static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2630 uint32_t *voltage, struct smu7_leakage_voltage *leakage_table)
2631 {
2632 uint32_t index;
2633
2634 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
2635 for (index = 0; index < leakage_table->count; index++) {
2636 /* if this voltage matches a leakage voltage ID */
2637 /* patch with actual leakage voltage */
2638 if (leakage_table->leakage_id[index] == *voltage) {
2639 *voltage = leakage_table->actual_voltage[index];
2640 break;
2641 }
2642 }
2643
2644 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2645 pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
2646 }
2647
2648
smu7_patch_vddc(struct pp_hwmgr * hwmgr,struct phm_clock_voltage_dependency_table * tab)2649 static int smu7_patch_vddc(struct pp_hwmgr *hwmgr,
2650 struct phm_clock_voltage_dependency_table *tab)
2651 {
2652 uint16_t i;
2653 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2654
2655 if (tab)
2656 for (i = 0; i < tab->count; i++)
2657 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2658 &data->vddc_leakage);
2659
2660 return 0;
2661 }
2662
smu7_patch_vddci(struct pp_hwmgr * hwmgr,struct phm_clock_voltage_dependency_table * tab)2663 static int smu7_patch_vddci(struct pp_hwmgr *hwmgr,
2664 struct phm_clock_voltage_dependency_table *tab)
2665 {
2666 uint16_t i;
2667 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2668
2669 if (tab)
2670 for (i = 0; i < tab->count; i++)
2671 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2672 &data->vddci_leakage);
2673
2674 return 0;
2675 }
2676
smu7_patch_vce_vddc(struct pp_hwmgr * hwmgr,struct phm_vce_clock_voltage_dependency_table * tab)2677 static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr,
2678 struct phm_vce_clock_voltage_dependency_table *tab)
2679 {
2680 uint16_t i;
2681 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2682
2683 if (tab)
2684 for (i = 0; i < tab->count; i++)
2685 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2686 &data->vddc_leakage);
2687
2688 return 0;
2689 }
2690
2691
smu7_patch_uvd_vddc(struct pp_hwmgr * hwmgr,struct phm_uvd_clock_voltage_dependency_table * tab)2692 static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr,
2693 struct phm_uvd_clock_voltage_dependency_table *tab)
2694 {
2695 uint16_t i;
2696 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2697
2698 if (tab)
2699 for (i = 0; i < tab->count; i++)
2700 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2701 &data->vddc_leakage);
2702
2703 return 0;
2704 }
2705
smu7_patch_vddc_shed_limit(struct pp_hwmgr * hwmgr,struct phm_phase_shedding_limits_table * tab)2706 static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr,
2707 struct phm_phase_shedding_limits_table *tab)
2708 {
2709 uint16_t i;
2710 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2711
2712 if (tab)
2713 for (i = 0; i < tab->count; i++)
2714 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage,
2715 &data->vddc_leakage);
2716
2717 return 0;
2718 }
2719
smu7_patch_samu_vddc(struct pp_hwmgr * hwmgr,struct phm_samu_clock_voltage_dependency_table * tab)2720 static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr,
2721 struct phm_samu_clock_voltage_dependency_table *tab)
2722 {
2723 uint16_t i;
2724 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2725
2726 if (tab)
2727 for (i = 0; i < tab->count; i++)
2728 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2729 &data->vddc_leakage);
2730
2731 return 0;
2732 }
2733
smu7_patch_acp_vddc(struct pp_hwmgr * hwmgr,struct phm_acp_clock_voltage_dependency_table * tab)2734 static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr,
2735 struct phm_acp_clock_voltage_dependency_table *tab)
2736 {
2737 uint16_t i;
2738 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2739
2740 if (tab)
2741 for (i = 0; i < tab->count; i++)
2742 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2743 &data->vddc_leakage);
2744
2745 return 0;
2746 }
2747
smu7_patch_limits_vddc(struct pp_hwmgr * hwmgr,struct phm_clock_and_voltage_limits * tab)2748 static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr,
2749 struct phm_clock_and_voltage_limits *tab)
2750 {
2751 uint32_t vddc, vddci;
2752 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2753
2754 if (tab) {
2755 vddc = tab->vddc;
2756 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc,
2757 &data->vddc_leakage);
2758 tab->vddc = vddc;
2759 vddci = tab->vddci;
2760 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci,
2761 &data->vddci_leakage);
2762 tab->vddci = vddci;
2763 }
2764
2765 return 0;
2766 }
2767
smu7_patch_cac_vddc(struct pp_hwmgr * hwmgr,struct phm_cac_leakage_table * tab)2768 static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab)
2769 {
2770 uint32_t i;
2771 uint32_t vddc;
2772 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2773
2774 if (tab) {
2775 for (i = 0; i < tab->count; i++) {
2776 vddc = (uint32_t)(tab->entries[i].Vddc);
2777 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage);
2778 tab->entries[i].Vddc = (uint16_t)vddc;
2779 }
2780 }
2781
2782 return 0;
2783 }
2784
smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr * hwmgr)2785 static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr)
2786 {
2787 int tmp;
2788
2789 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk);
2790 if (tmp)
2791 return -EINVAL;
2792
2793 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk);
2794 if (tmp)
2795 return -EINVAL;
2796
2797 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2798 if (tmp)
2799 return -EINVAL;
2800
2801 tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk);
2802 if (tmp)
2803 return -EINVAL;
2804
2805 tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table);
2806 if (tmp)
2807 return -EINVAL;
2808
2809 tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table);
2810 if (tmp)
2811 return -EINVAL;
2812
2813 tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table);
2814 if (tmp)
2815 return -EINVAL;
2816
2817 tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table);
2818 if (tmp)
2819 return -EINVAL;
2820
2821 tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table);
2822 if (tmp)
2823 return -EINVAL;
2824
2825 tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac);
2826 if (tmp)
2827 return -EINVAL;
2828
2829 tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc);
2830 if (tmp)
2831 return -EINVAL;
2832
2833 tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table);
2834 if (tmp)
2835 return -EINVAL;
2836
2837 return 0;
2838 }
2839
2840
smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr * hwmgr)2841 static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr)
2842 {
2843 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2844
2845 struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
2846 struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
2847 struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
2848
2849 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL,
2850 "VDDC dependency on SCLK table is missing. This table is mandatory",
2851 return -EINVAL);
2852 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1,
2853 "VDDC dependency on SCLK table has to have is missing. This table is mandatory",
2854 return -EINVAL);
2855
2856 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL,
2857 "VDDC dependency on MCLK table is missing. This table is mandatory",
2858 return -EINVAL);
2859 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1,
2860 "VDD dependency on MCLK table has to have is missing. This table is mandatory",
2861 return -EINVAL);
2862
2863 data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v;
2864 data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2865
2866 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
2867 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
2868 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
2869 allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk;
2870 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
2871 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2872
2873 if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) {
2874 data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v;
2875 data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
2876 }
2877
2878 if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count >= 1)
2879 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v;
2880
2881 return 0;
2882 }
2883
smu7_hwmgr_backend_fini(struct pp_hwmgr * hwmgr)2884 static int smu7_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
2885 {
2886 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2887 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
2888 kfree(hwmgr->backend);
2889 hwmgr->backend = NULL;
2890
2891 return 0;
2892 }
2893
smu7_get_elb_voltages(struct pp_hwmgr * hwmgr)2894 static int smu7_get_elb_voltages(struct pp_hwmgr *hwmgr)
2895 {
2896 uint16_t virtual_voltage_id, vddc, vddci, efuse_voltage_id;
2897 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2898 int i;
2899
2900 if (atomctrl_get_leakage_id_from_efuse(hwmgr, &efuse_voltage_id) == 0) {
2901 for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
2902 virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
2903 if (atomctrl_get_leakage_vddc_base_on_leakage(hwmgr, &vddc, &vddci,
2904 virtual_voltage_id,
2905 efuse_voltage_id) == 0) {
2906 if (vddc != 0 && vddc != virtual_voltage_id) {
2907 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
2908 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
2909 data->vddc_leakage.count++;
2910 }
2911 if (vddci != 0 && vddci != virtual_voltage_id) {
2912 data->vddci_leakage.actual_voltage[data->vddci_leakage.count] = vddci;
2913 data->vddci_leakage.leakage_id[data->vddci_leakage.count] = virtual_voltage_id;
2914 data->vddci_leakage.count++;
2915 }
2916 }
2917 }
2918 }
2919 return 0;
2920 }
2921
2922 #define LEAKAGE_ID_MSB 463
2923 #define LEAKAGE_ID_LSB 454
2924
smu7_update_edc_leakage_table(struct pp_hwmgr * hwmgr)2925 static int smu7_update_edc_leakage_table(struct pp_hwmgr *hwmgr)
2926 {
2927 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2928 uint32_t efuse;
2929 uint16_t offset;
2930 int ret = 0;
2931
2932 if (data->disable_edc_leakage_controller)
2933 return 0;
2934
2935 ret = atomctrl_get_edc_hilo_leakage_offset_table(hwmgr,
2936 &data->edc_hilo_leakage_offset_from_vbios);
2937 if (ret)
2938 return ret;
2939
2940 if (data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset &&
2941 data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) {
2942 atomctrl_read_efuse(hwmgr, LEAKAGE_ID_LSB, LEAKAGE_ID_MSB, &efuse);
2943 if (efuse < data->edc_hilo_leakage_offset_from_vbios.usHiLoLeakageThreshold)
2944 offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset;
2945 else
2946 offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset;
2947
2948 ret = atomctrl_get_edc_leakage_table(hwmgr,
2949 &data->edc_leakage_table,
2950 offset);
2951 if (ret)
2952 return ret;
2953 }
2954
2955 return ret;
2956 }
2957
smu7_hwmgr_backend_init(struct pp_hwmgr * hwmgr)2958 static int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
2959 {
2960 struct amdgpu_device *adev = hwmgr->adev;
2961 struct smu7_hwmgr *data;
2962 int result = 0;
2963
2964 data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL);
2965 if (data == NULL)
2966 return -ENOMEM;
2967
2968 hwmgr->backend = data;
2969 smu7_patch_voltage_workaround(hwmgr);
2970 smu7_init_dpm_defaults(hwmgr);
2971
2972 /* Get leakage voltage based on leakage ID. */
2973 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2974 PHM_PlatformCaps_EVV)) {
2975 result = smu7_get_evv_voltages(hwmgr);
2976 if (result) {
2977 pr_info("Get EVV Voltage Failed. Abort Driver loading!\n");
2978 kfree(hwmgr->backend);
2979 hwmgr->backend = NULL;
2980 return -EINVAL;
2981 }
2982 } else {
2983 smu7_get_elb_voltages(hwmgr);
2984 }
2985
2986 if (hwmgr->pp_table_version == PP_TABLE_V1) {
2987 smu7_complete_dependency_tables(hwmgr);
2988 smu7_set_private_data_based_on_pptable_v1(hwmgr);
2989 } else if (hwmgr->pp_table_version == PP_TABLE_V0) {
2990 smu7_patch_dependency_tables_with_leakage(hwmgr);
2991 smu7_set_private_data_based_on_pptable_v0(hwmgr);
2992 }
2993
2994 /* Initalize Dynamic State Adjustment Rule Settings */
2995 result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
2996
2997 if (result)
2998 goto fail;
2999
3000 data->is_tlu_enabled = false;
3001
3002 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
3003 SMU7_MAX_HARDWARE_POWERLEVELS;
3004 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
3005 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
3006
3007 data->pcie_gen_cap = adev->pm.pcie_gen_mask;
3008 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
3009 data->pcie_spc_cap = 20;
3010 else
3011 data->pcie_spc_cap = 16;
3012 data->pcie_lane_cap = adev->pm.pcie_mlw_mask;
3013
3014 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
3015 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
3016 hwmgr->platform_descriptor.clockStep.engineClock = 500;
3017 hwmgr->platform_descriptor.clockStep.memoryClock = 500;
3018 smu7_thermal_parameter_init(hwmgr);
3019
3020 result = smu7_update_edc_leakage_table(hwmgr);
3021 if (result)
3022 goto fail;
3023
3024 return 0;
3025 fail:
3026 smu7_hwmgr_backend_fini(hwmgr);
3027 return result;
3028 }
3029
smu7_force_dpm_highest(struct pp_hwmgr * hwmgr)3030 static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr)
3031 {
3032 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3033 uint32_t level, tmp;
3034
3035 if (!data->pcie_dpm_key_disabled) {
3036 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3037 level = 0;
3038 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3039 while (tmp >>= 1)
3040 level++;
3041
3042 if (level)
3043 smum_send_msg_to_smc_with_parameter(hwmgr,
3044 PPSMC_MSG_PCIeDPM_ForceLevel, level,
3045 NULL);
3046 }
3047 }
3048
3049 if (!data->sclk_dpm_key_disabled) {
3050 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3051 level = 0;
3052 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3053 while (tmp >>= 1)
3054 level++;
3055
3056 if (level)
3057 smum_send_msg_to_smc_with_parameter(hwmgr,
3058 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3059 (1 << level),
3060 NULL);
3061 }
3062 }
3063
3064 if (!data->mclk_dpm_key_disabled) {
3065 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3066 level = 0;
3067 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3068 while (tmp >>= 1)
3069 level++;
3070
3071 if (level)
3072 smum_send_msg_to_smc_with_parameter(hwmgr,
3073 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3074 (1 << level),
3075 NULL);
3076 }
3077 }
3078
3079 return 0;
3080 }
3081
smu7_upload_dpm_level_enable_mask(struct pp_hwmgr * hwmgr)3082 static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
3083 {
3084 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3085
3086 if (hwmgr->pp_table_version == PP_TABLE_V1)
3087 phm_apply_dal_min_voltage_request(hwmgr);
3088 /* TO DO for v0 iceland and Ci*/
3089
3090 if (!data->sclk_dpm_key_disabled) {
3091 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
3092 smum_send_msg_to_smc_with_parameter(hwmgr,
3093 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3094 data->dpm_level_enable_mask.sclk_dpm_enable_mask,
3095 NULL);
3096 }
3097
3098 if (!data->mclk_dpm_key_disabled) {
3099 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
3100 smum_send_msg_to_smc_with_parameter(hwmgr,
3101 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3102 data->dpm_level_enable_mask.mclk_dpm_enable_mask,
3103 NULL);
3104 }
3105
3106 return 0;
3107 }
3108
smu7_unforce_dpm_levels(struct pp_hwmgr * hwmgr)3109 static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3110 {
3111 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3112
3113 if (!smum_is_dpm_running(hwmgr))
3114 return -EINVAL;
3115
3116 if (!data->pcie_dpm_key_disabled) {
3117 smum_send_msg_to_smc(hwmgr,
3118 PPSMC_MSG_PCIeDPM_UnForceLevel,
3119 NULL);
3120 }
3121
3122 return smu7_upload_dpm_level_enable_mask(hwmgr);
3123 }
3124
smu7_force_dpm_lowest(struct pp_hwmgr * hwmgr)3125 static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3126 {
3127 struct smu7_hwmgr *data =
3128 (struct smu7_hwmgr *)(hwmgr->backend);
3129 uint32_t level;
3130
3131 if (!data->sclk_dpm_key_disabled)
3132 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3133 level = phm_get_lowest_enabled_level(hwmgr,
3134 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3135 smum_send_msg_to_smc_with_parameter(hwmgr,
3136 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3137 (1 << level),
3138 NULL);
3139
3140 }
3141
3142 if (!data->mclk_dpm_key_disabled) {
3143 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3144 level = phm_get_lowest_enabled_level(hwmgr,
3145 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3146 smum_send_msg_to_smc_with_parameter(hwmgr,
3147 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3148 (1 << level),
3149 NULL);
3150 }
3151 }
3152
3153 if (!data->pcie_dpm_key_disabled) {
3154 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3155 level = phm_get_lowest_enabled_level(hwmgr,
3156 data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3157 smum_send_msg_to_smc_with_parameter(hwmgr,
3158 PPSMC_MSG_PCIeDPM_ForceLevel,
3159 (level),
3160 NULL);
3161 }
3162 }
3163
3164 return 0;
3165 }
3166
smu7_get_profiling_clk(struct pp_hwmgr * hwmgr,enum amd_dpm_forced_level level,uint32_t * sclk_mask,uint32_t * mclk_mask,uint32_t * pcie_mask)3167 static int smu7_get_profiling_clk(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
3168 uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *pcie_mask)
3169 {
3170 uint32_t percentage;
3171 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3172 struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
3173 int32_t tmp_mclk;
3174 int32_t tmp_sclk;
3175 int32_t count;
3176
3177 if (golden_dpm_table->mclk_table.count < 1)
3178 return -EINVAL;
3179
3180 percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value /
3181 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
3182
3183 if (golden_dpm_table->mclk_table.count == 1) {
3184 percentage = 70;
3185 tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
3186 *mclk_mask = golden_dpm_table->mclk_table.count - 1;
3187 } else {
3188 tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value;
3189 *mclk_mask = golden_dpm_table->mclk_table.count - 2;
3190 }
3191
3192 tmp_sclk = tmp_mclk * percentage / 100;
3193
3194 if (hwmgr->pp_table_version == PP_TABLE_V0) {
3195 for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
3196 count >= 0; count--) {
3197 if (tmp_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) {
3198 *sclk_mask = count;
3199 break;
3200 }
3201 }
3202 if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK)
3203 *sclk_mask = 0;
3204
3205 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3206 *sclk_mask = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
3207 } else if (hwmgr->pp_table_version == PP_TABLE_V1) {
3208 struct phm_ppt_v1_information *table_info =
3209 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3210
3211 for (count = table_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
3212 if (tmp_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) {
3213 *sclk_mask = count;
3214 break;
3215 }
3216 }
3217 if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK)
3218 *sclk_mask = 0;
3219
3220 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3221 *sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
3222 }
3223
3224 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK)
3225 *mclk_mask = 0;
3226 else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3227 *mclk_mask = golden_dpm_table->mclk_table.count - 1;
3228
3229 *pcie_mask = data->dpm_table.pcie_speed_table.count - 1;
3230
3231 return 0;
3232 }
3233
smu7_force_dpm_level(struct pp_hwmgr * hwmgr,enum amd_dpm_forced_level level)3234 static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr,
3235 enum amd_dpm_forced_level level)
3236 {
3237 int ret = 0;
3238 uint32_t sclk_mask = 0;
3239 uint32_t mclk_mask = 0;
3240 uint32_t pcie_mask = 0;
3241
3242 switch (level) {
3243 case AMD_DPM_FORCED_LEVEL_HIGH:
3244 ret = smu7_force_dpm_highest(hwmgr);
3245 break;
3246 case AMD_DPM_FORCED_LEVEL_LOW:
3247 ret = smu7_force_dpm_lowest(hwmgr);
3248 break;
3249 case AMD_DPM_FORCED_LEVEL_AUTO:
3250 ret = smu7_unforce_dpm_levels(hwmgr);
3251 break;
3252 case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
3253 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
3254 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
3255 case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
3256 ret = smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask);
3257 if (ret)
3258 return ret;
3259 smu7_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
3260 smu7_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
3261 smu7_force_clock_level(hwmgr, PP_PCIE, 1<<pcie_mask);
3262 break;
3263 case AMD_DPM_FORCED_LEVEL_MANUAL:
3264 case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
3265 default:
3266 break;
3267 }
3268
3269 if (!ret) {
3270 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3271 smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
3272 else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3273 smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr);
3274 }
3275 return ret;
3276 }
3277
smu7_get_power_state_size(struct pp_hwmgr * hwmgr)3278 static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr)
3279 {
3280 return sizeof(struct smu7_power_state);
3281 }
3282
smu7_vblank_too_short(struct pp_hwmgr * hwmgr,uint32_t vblank_time_us)3283 static int smu7_vblank_too_short(struct pp_hwmgr *hwmgr,
3284 uint32_t vblank_time_us)
3285 {
3286 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3287 uint32_t switch_limit_us;
3288
3289 switch (hwmgr->chip_id) {
3290 case CHIP_POLARIS10:
3291 case CHIP_POLARIS11:
3292 case CHIP_POLARIS12:
3293 if (hwmgr->is_kicker || (hwmgr->chip_id == CHIP_POLARIS12))
3294 switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
3295 else
3296 switch_limit_us = data->is_memory_gddr5 ? 200 : 150;
3297 break;
3298 case CHIP_VEGAM:
3299 switch_limit_us = 30;
3300 break;
3301 default:
3302 switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
3303 break;
3304 }
3305
3306 if (vblank_time_us < switch_limit_us)
3307 return true;
3308 else
3309 return false;
3310 }
3311
smu7_apply_state_adjust_rules(struct pp_hwmgr * hwmgr,struct pp_power_state * request_ps,const struct pp_power_state * current_ps)3312 static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3313 struct pp_power_state *request_ps,
3314 const struct pp_power_state *current_ps)
3315 {
3316 struct amdgpu_device *adev = hwmgr->adev;
3317 struct smu7_power_state *smu7_ps;
3318 uint32_t sclk;
3319 uint32_t mclk;
3320 struct PP_Clocks minimum_clocks = {0};
3321 bool disable_mclk_switching;
3322 bool disable_mclk_switching_for_frame_lock;
3323 bool disable_mclk_switching_for_display;
3324 const struct phm_clock_and_voltage_limits *max_limits;
3325 uint32_t i;
3326 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3327 struct phm_ppt_v1_information *table_info =
3328 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3329 int32_t count;
3330 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3331 uint32_t latency;
3332 bool latency_allowed = false;
3333
3334 smu7_ps = cast_phw_smu7_power_state(&request_ps->hardware);
3335 if (!smu7_ps)
3336 return -EINVAL;
3337
3338 data->battery_state = (PP_StateUILabel_Battery ==
3339 request_ps->classification.ui_label);
3340 data->mclk_ignore_signal = false;
3341
3342 max_limits = adev->pm.ac_power ?
3343 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3344 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
3345
3346 /* Cap clock DPM tables at DC MAX if it is in DC. */
3347 if (!adev->pm.ac_power) {
3348 for (i = 0; i < smu7_ps->performance_level_count; i++) {
3349 if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk)
3350 smu7_ps->performance_levels[i].memory_clock = max_limits->mclk;
3351 if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk)
3352 smu7_ps->performance_levels[i].engine_clock = max_limits->sclk;
3353 }
3354 }
3355
3356 minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
3357 minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3358
3359 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3360 PHM_PlatformCaps_StablePState)) {
3361 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3362 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
3363
3364 for (count = table_info->vdd_dep_on_sclk->count - 1;
3365 count >= 0; count--) {
3366 if (stable_pstate_sclk >=
3367 table_info->vdd_dep_on_sclk->entries[count].clk) {
3368 stable_pstate_sclk =
3369 table_info->vdd_dep_on_sclk->entries[count].clk;
3370 break;
3371 }
3372 }
3373
3374 if (count < 0)
3375 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3376
3377 stable_pstate_mclk = max_limits->mclk;
3378
3379 minimum_clocks.engineClock = stable_pstate_sclk;
3380 minimum_clocks.memoryClock = stable_pstate_mclk;
3381 }
3382
3383 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
3384 hwmgr->platform_descriptor.platformCaps,
3385 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3386
3387 disable_mclk_switching_for_display = ((1 < hwmgr->display_config->num_display) &&
3388 !hwmgr->display_config->multi_monitor_in_sync) ||
3389 (hwmgr->display_config->num_display &&
3390 smu7_vblank_too_short(hwmgr, hwmgr->display_config->min_vblank_time));
3391
3392 disable_mclk_switching = disable_mclk_switching_for_frame_lock ||
3393 disable_mclk_switching_for_display;
3394
3395 if (hwmgr->display_config->num_display == 0) {
3396 if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM)
3397 data->mclk_ignore_signal = true;
3398 else
3399 disable_mclk_switching = false;
3400 }
3401
3402 sclk = smu7_ps->performance_levels[0].engine_clock;
3403 mclk = smu7_ps->performance_levels[0].memory_clock;
3404
3405 if (disable_mclk_switching &&
3406 (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
3407 hwmgr->chip_id <= CHIP_VEGAM)))
3408 mclk = smu7_ps->performance_levels
3409 [smu7_ps->performance_level_count - 1].memory_clock;
3410
3411 if (sclk < minimum_clocks.engineClock)
3412 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3413 max_limits->sclk : minimum_clocks.engineClock;
3414
3415 if (mclk < minimum_clocks.memoryClock)
3416 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3417 max_limits->mclk : minimum_clocks.memoryClock;
3418
3419 smu7_ps->performance_levels[0].engine_clock = sclk;
3420 smu7_ps->performance_levels[0].memory_clock = mclk;
3421
3422 smu7_ps->performance_levels[1].engine_clock =
3423 (smu7_ps->performance_levels[1].engine_clock >=
3424 smu7_ps->performance_levels[0].engine_clock) ?
3425 smu7_ps->performance_levels[1].engine_clock :
3426 smu7_ps->performance_levels[0].engine_clock;
3427
3428 if (disable_mclk_switching) {
3429 if (mclk < smu7_ps->performance_levels[1].memory_clock)
3430 mclk = smu7_ps->performance_levels[1].memory_clock;
3431
3432 if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) {
3433 if (disable_mclk_switching_for_display) {
3434 /* Find the lowest MCLK frequency that is within
3435 * the tolerable latency defined in DAL
3436 */
3437 latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
3438 for (i = 0; i < data->mclk_latency_table.count; i++) {
3439 if (data->mclk_latency_table.entries[i].latency <= latency) {
3440 latency_allowed = true;
3441
3442 if ((data->mclk_latency_table.entries[i].frequency >=
3443 smu7_ps->performance_levels[0].memory_clock) &&
3444 (data->mclk_latency_table.entries[i].frequency <=
3445 smu7_ps->performance_levels[1].memory_clock)) {
3446 mclk = data->mclk_latency_table.entries[i].frequency;
3447 break;
3448 }
3449 }
3450 }
3451 if ((i >= data->mclk_latency_table.count - 1) && !latency_allowed) {
3452 data->mclk_ignore_signal = true;
3453 } else {
3454 data->mclk_ignore_signal = false;
3455 }
3456 }
3457
3458 if (disable_mclk_switching_for_frame_lock)
3459 mclk = smu7_ps->performance_levels[1].memory_clock;
3460 }
3461
3462 smu7_ps->performance_levels[0].memory_clock = mclk;
3463
3464 if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
3465 hwmgr->chip_id <= CHIP_VEGAM))
3466 smu7_ps->performance_levels[1].memory_clock = mclk;
3467 } else {
3468 if (smu7_ps->performance_levels[1].memory_clock <
3469 smu7_ps->performance_levels[0].memory_clock)
3470 smu7_ps->performance_levels[1].memory_clock =
3471 smu7_ps->performance_levels[0].memory_clock;
3472 }
3473
3474 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3475 PHM_PlatformCaps_StablePState)) {
3476 for (i = 0; i < smu7_ps->performance_level_count; i++) {
3477 smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
3478 smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
3479 smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
3480 smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
3481 }
3482 }
3483 return 0;
3484 }
3485
3486
smu7_dpm_get_mclk(struct pp_hwmgr * hwmgr,bool low)3487 static uint32_t smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3488 {
3489 struct pp_power_state *ps;
3490 struct smu7_power_state *smu7_ps;
3491
3492 if (hwmgr == NULL)
3493 return -EINVAL;
3494
3495 ps = hwmgr->request_ps;
3496
3497 if (ps == NULL)
3498 return -EINVAL;
3499
3500 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
3501
3502 if (low)
3503 return smu7_ps->performance_levels[0].memory_clock;
3504 else
3505 return smu7_ps->performance_levels
3506 [smu7_ps->performance_level_count-1].memory_clock;
3507 }
3508
smu7_dpm_get_sclk(struct pp_hwmgr * hwmgr,bool low)3509 static uint32_t smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3510 {
3511 struct pp_power_state *ps;
3512 struct smu7_power_state *smu7_ps;
3513
3514 if (hwmgr == NULL)
3515 return -EINVAL;
3516
3517 ps = hwmgr->request_ps;
3518
3519 if (ps == NULL)
3520 return -EINVAL;
3521
3522 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
3523
3524 if (low)
3525 return smu7_ps->performance_levels[0].engine_clock;
3526 else
3527 return smu7_ps->performance_levels
3528 [smu7_ps->performance_level_count-1].engine_clock;
3529 }
3530
smu7_dpm_patch_boot_state(struct pp_hwmgr * hwmgr,struct pp_hw_power_state * hw_ps)3531 static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
3532 struct pp_hw_power_state *hw_ps)
3533 {
3534 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3535 struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps;
3536 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
3537 uint16_t size;
3538 uint8_t frev, crev;
3539 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
3540
3541 /* First retrieve the Boot clocks and VDDC from the firmware info table.
3542 * We assume here that fw_info is unchanged if this call fails.
3543 */
3544 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)smu_atom_get_data_table(hwmgr->adev, index,
3545 &size, &frev, &crev);
3546 if (!fw_info)
3547 /* During a test, there is no firmware info table. */
3548 return 0;
3549
3550 /* Patch the state. */
3551 data->vbios_boot_state.sclk_bootup_value =
3552 le32_to_cpu(fw_info->ulDefaultEngineClock);
3553 data->vbios_boot_state.mclk_bootup_value =
3554 le32_to_cpu(fw_info->ulDefaultMemoryClock);
3555 data->vbios_boot_state.mvdd_bootup_value =
3556 le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
3557 data->vbios_boot_state.vddc_bootup_value =
3558 le16_to_cpu(fw_info->usBootUpVDDCVoltage);
3559 data->vbios_boot_state.vddci_bootup_value =
3560 le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
3561 data->vbios_boot_state.pcie_gen_bootup_value =
3562 smu7_get_current_pcie_speed(hwmgr);
3563
3564 data->vbios_boot_state.pcie_lane_bootup_value =
3565 (uint16_t)smu7_get_current_pcie_lane_number(hwmgr);
3566
3567 /* set boot power state */
3568 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
3569 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
3570 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
3571 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
3572
3573 return 0;
3574 }
3575
smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr * hwmgr)3576 static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
3577 {
3578 int result;
3579 unsigned long ret = 0;
3580
3581 if (hwmgr->pp_table_version == PP_TABLE_V0) {
3582 result = pp_tables_get_num_of_entries(hwmgr, &ret);
3583 return result ? 0 : ret;
3584 } else if (hwmgr->pp_table_version == PP_TABLE_V1) {
3585 result = get_number_of_powerplay_table_entries_v1_0(hwmgr);
3586 return result;
3587 }
3588 return 0;
3589 }
3590
smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr * hwmgr,void * state,struct pp_power_state * power_state,void * pp_table,uint32_t classification_flag)3591 static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr,
3592 void *state, struct pp_power_state *power_state,
3593 void *pp_table, uint32_t classification_flag)
3594 {
3595 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3596 struct smu7_power_state *smu7_power_state =
3597 (struct smu7_power_state *)(&(power_state->hardware));
3598 struct smu7_performance_level *performance_level;
3599 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3600 ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3601 (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3602 PPTable_Generic_SubTable_Header *sclk_dep_table =
3603 (PPTable_Generic_SubTable_Header *)
3604 (((unsigned long)powerplay_table) +
3605 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3606
3607 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3608 (ATOM_Tonga_MCLK_Dependency_Table *)
3609 (((unsigned long)powerplay_table) +
3610 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3611
3612 /* The following fields are not initialized here: id orderedList allStatesList */
3613 power_state->classification.ui_label =
3614 (le16_to_cpu(state_entry->usClassification) &
3615 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3616 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3617 power_state->classification.flags = classification_flag;
3618 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3619
3620 power_state->classification.temporary_state = false;
3621 power_state->classification.to_be_deleted = false;
3622
3623 power_state->validation.disallowOnDC =
3624 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3625 ATOM_Tonga_DISALLOW_ON_DC));
3626
3627 power_state->pcie.lanes = 0;
3628
3629 power_state->display.disableFrameModulation = false;
3630 power_state->display.limitRefreshrate = false;
3631 power_state->display.enableVariBright =
3632 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3633 ATOM_Tonga_ENABLE_VARIBRIGHT));
3634
3635 power_state->validation.supportedPowerLevels = 0;
3636 power_state->uvd_clocks.VCLK = 0;
3637 power_state->uvd_clocks.DCLK = 0;
3638 power_state->temperatures.min = 0;
3639 power_state->temperatures.max = 0;
3640
3641 performance_level = &(smu7_power_state->performance_levels
3642 [smu7_power_state->performance_level_count++]);
3643
3644 PP_ASSERT_WITH_CODE(
3645 (smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3646 "Performance levels exceeds SMC limit!",
3647 return -EINVAL);
3648
3649 PP_ASSERT_WITH_CODE(
3650 (smu7_power_state->performance_level_count <
3651 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3652 "Performance levels exceeds Driver limit!",
3653 return -EINVAL);
3654
3655 /* Performance levels are arranged from low to high. */
3656 performance_level->memory_clock = mclk_dep_table->entries
3657 [state_entry->ucMemoryClockIndexLow].ulMclk;
3658 if (sclk_dep_table->ucRevId == 0)
3659 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3660 [state_entry->ucEngineClockIndexLow].ulSclk;
3661 else if (sclk_dep_table->ucRevId == 1)
3662 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3663 [state_entry->ucEngineClockIndexLow].ulSclk;
3664 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3665 state_entry->ucPCIEGenLow);
3666 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3667 state_entry->ucPCIELaneLow);
3668
3669 performance_level = &(smu7_power_state->performance_levels
3670 [smu7_power_state->performance_level_count++]);
3671 performance_level->memory_clock = mclk_dep_table->entries
3672 [state_entry->ucMemoryClockIndexHigh].ulMclk;
3673
3674 if (sclk_dep_table->ucRevId == 0)
3675 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3676 [state_entry->ucEngineClockIndexHigh].ulSclk;
3677 else if (sclk_dep_table->ucRevId == 1)
3678 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3679 [state_entry->ucEngineClockIndexHigh].ulSclk;
3680
3681 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3682 state_entry->ucPCIEGenHigh);
3683 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3684 state_entry->ucPCIELaneHigh);
3685
3686 return 0;
3687 }
3688
smu7_get_pp_table_entry_v1(struct pp_hwmgr * hwmgr,unsigned long entry_index,struct pp_power_state * state)3689 static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr,
3690 unsigned long entry_index, struct pp_power_state *state)
3691 {
3692 int result;
3693 struct smu7_power_state *ps;
3694 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3695 struct phm_ppt_v1_information *table_info =
3696 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3697 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
3698 table_info->vdd_dep_on_mclk;
3699
3700 state->hardware.magic = PHM_VIslands_Magic;
3701
3702 ps = (struct smu7_power_state *)(&state->hardware);
3703
3704 result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state,
3705 smu7_get_pp_table_entry_callback_func_v1);
3706
3707 /* This is the earliest time we have all the dependency table and the VBIOS boot state
3708 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
3709 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
3710 */
3711 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3712 if (dep_mclk_table->entries[0].clk !=
3713 data->vbios_boot_state.mclk_bootup_value)
3714 pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3715 "does not match VBIOS boot MCLK level");
3716 if (dep_mclk_table->entries[0].vddci !=
3717 data->vbios_boot_state.vddci_bootup_value)
3718 pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3719 "does not match VBIOS boot VDDCI level");
3720 }
3721
3722 /* set DC compatible flag if this state supports DC */
3723 if (!state->validation.disallowOnDC)
3724 ps->dc_compatible = true;
3725
3726 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3727 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3728
3729 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3730 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3731
3732 if (!result) {
3733 uint32_t i;
3734
3735 switch (state->classification.ui_label) {
3736 case PP_StateUILabel_Performance:
3737 data->use_pcie_performance_levels = true;
3738 for (i = 0; i < ps->performance_level_count; i++) {
3739 if (data->pcie_gen_performance.max <
3740 ps->performance_levels[i].pcie_gen)
3741 data->pcie_gen_performance.max =
3742 ps->performance_levels[i].pcie_gen;
3743
3744 if (data->pcie_gen_performance.min >
3745 ps->performance_levels[i].pcie_gen)
3746 data->pcie_gen_performance.min =
3747 ps->performance_levels[i].pcie_gen;
3748
3749 if (data->pcie_lane_performance.max <
3750 ps->performance_levels[i].pcie_lane)
3751 data->pcie_lane_performance.max =
3752 ps->performance_levels[i].pcie_lane;
3753 if (data->pcie_lane_performance.min >
3754 ps->performance_levels[i].pcie_lane)
3755 data->pcie_lane_performance.min =
3756 ps->performance_levels[i].pcie_lane;
3757 }
3758 break;
3759 case PP_StateUILabel_Battery:
3760 data->use_pcie_power_saving_levels = true;
3761
3762 for (i = 0; i < ps->performance_level_count; i++) {
3763 if (data->pcie_gen_power_saving.max <
3764 ps->performance_levels[i].pcie_gen)
3765 data->pcie_gen_power_saving.max =
3766 ps->performance_levels[i].pcie_gen;
3767
3768 if (data->pcie_gen_power_saving.min >
3769 ps->performance_levels[i].pcie_gen)
3770 data->pcie_gen_power_saving.min =
3771 ps->performance_levels[i].pcie_gen;
3772
3773 if (data->pcie_lane_power_saving.max <
3774 ps->performance_levels[i].pcie_lane)
3775 data->pcie_lane_power_saving.max =
3776 ps->performance_levels[i].pcie_lane;
3777
3778 if (data->pcie_lane_power_saving.min >
3779 ps->performance_levels[i].pcie_lane)
3780 data->pcie_lane_power_saving.min =
3781 ps->performance_levels[i].pcie_lane;
3782 }
3783 break;
3784 default:
3785 break;
3786 }
3787 }
3788 return 0;
3789 }
3790
smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr * hwmgr,struct pp_hw_power_state * power_state,unsigned int index,const void * clock_info)3791 static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr,
3792 struct pp_hw_power_state *power_state,
3793 unsigned int index, const void *clock_info)
3794 {
3795 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3796 struct smu7_power_state *ps = cast_phw_smu7_power_state(power_state);
3797 const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info;
3798 struct smu7_performance_level *performance_level;
3799 uint32_t engine_clock, memory_clock;
3800 uint16_t pcie_gen_from_bios;
3801
3802 engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow;
3803 memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow;
3804
3805 if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk)
3806 data->highest_mclk = memory_clock;
3807
3808 PP_ASSERT_WITH_CODE(
3809 (ps->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3810 "Performance levels exceeds SMC limit!",
3811 return -EINVAL);
3812
3813 PP_ASSERT_WITH_CODE(
3814 (ps->performance_level_count <
3815 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3816 "Performance levels exceeds Driver limit, Skip!",
3817 return 0);
3818
3819 performance_level = &(ps->performance_levels
3820 [ps->performance_level_count++]);
3821
3822 /* Performance levels are arranged from low to high. */
3823 performance_level->memory_clock = memory_clock;
3824 performance_level->engine_clock = engine_clock;
3825
3826 pcie_gen_from_bios = visland_clk_info->ucPCIEGen;
3827
3828 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios);
3829 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane);
3830
3831 return 0;
3832 }
3833
smu7_get_pp_table_entry_v0(struct pp_hwmgr * hwmgr,unsigned long entry_index,struct pp_power_state * state)3834 static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr,
3835 unsigned long entry_index, struct pp_power_state *state)
3836 {
3837 int result;
3838 struct smu7_power_state *ps;
3839 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3840 struct phm_clock_voltage_dependency_table *dep_mclk_table =
3841 hwmgr->dyn_state.vddci_dependency_on_mclk;
3842
3843 memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state));
3844
3845 state->hardware.magic = PHM_VIslands_Magic;
3846
3847 ps = (struct smu7_power_state *)(&state->hardware);
3848
3849 result = pp_tables_get_entry(hwmgr, entry_index, state,
3850 smu7_get_pp_table_entry_callback_func_v0);
3851
3852 /*
3853 * This is the earliest time we have all the dependency table
3854 * and the VBIOS boot state as
3855 * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot
3856 * state if there is only one VDDCI/MCLK level, check if it's
3857 * the same as VBIOS boot state
3858 */
3859 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3860 if (dep_mclk_table->entries[0].clk !=
3861 data->vbios_boot_state.mclk_bootup_value)
3862 pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3863 "does not match VBIOS boot MCLK level");
3864 if (dep_mclk_table->entries[0].v !=
3865 data->vbios_boot_state.vddci_bootup_value)
3866 pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3867 "does not match VBIOS boot VDDCI level");
3868 }
3869
3870 /* set DC compatible flag if this state supports DC */
3871 if (!state->validation.disallowOnDC)
3872 ps->dc_compatible = true;
3873
3874 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3875 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3876
3877 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3878 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3879
3880 if (!result) {
3881 uint32_t i;
3882
3883 switch (state->classification.ui_label) {
3884 case PP_StateUILabel_Performance:
3885 data->use_pcie_performance_levels = true;
3886
3887 for (i = 0; i < ps->performance_level_count; i++) {
3888 if (data->pcie_gen_performance.max <
3889 ps->performance_levels[i].pcie_gen)
3890 data->pcie_gen_performance.max =
3891 ps->performance_levels[i].pcie_gen;
3892
3893 if (data->pcie_gen_performance.min >
3894 ps->performance_levels[i].pcie_gen)
3895 data->pcie_gen_performance.min =
3896 ps->performance_levels[i].pcie_gen;
3897
3898 if (data->pcie_lane_performance.max <
3899 ps->performance_levels[i].pcie_lane)
3900 data->pcie_lane_performance.max =
3901 ps->performance_levels[i].pcie_lane;
3902
3903 if (data->pcie_lane_performance.min >
3904 ps->performance_levels[i].pcie_lane)
3905 data->pcie_lane_performance.min =
3906 ps->performance_levels[i].pcie_lane;
3907 }
3908 break;
3909 case PP_StateUILabel_Battery:
3910 data->use_pcie_power_saving_levels = true;
3911
3912 for (i = 0; i < ps->performance_level_count; i++) {
3913 if (data->pcie_gen_power_saving.max <
3914 ps->performance_levels[i].pcie_gen)
3915 data->pcie_gen_power_saving.max =
3916 ps->performance_levels[i].pcie_gen;
3917
3918 if (data->pcie_gen_power_saving.min >
3919 ps->performance_levels[i].pcie_gen)
3920 data->pcie_gen_power_saving.min =
3921 ps->performance_levels[i].pcie_gen;
3922
3923 if (data->pcie_lane_power_saving.max <
3924 ps->performance_levels[i].pcie_lane)
3925 data->pcie_lane_power_saving.max =
3926 ps->performance_levels[i].pcie_lane;
3927
3928 if (data->pcie_lane_power_saving.min >
3929 ps->performance_levels[i].pcie_lane)
3930 data->pcie_lane_power_saving.min =
3931 ps->performance_levels[i].pcie_lane;
3932 }
3933 break;
3934 default:
3935 break;
3936 }
3937 }
3938 return 0;
3939 }
3940
smu7_get_pp_table_entry(struct pp_hwmgr * hwmgr,unsigned long entry_index,struct pp_power_state * state)3941 static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3942 unsigned long entry_index, struct pp_power_state *state)
3943 {
3944 if (hwmgr->pp_table_version == PP_TABLE_V0)
3945 return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state);
3946 else if (hwmgr->pp_table_version == PP_TABLE_V1)
3947 return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state);
3948
3949 return 0;
3950 }
3951
smu7_get_gpu_power(struct pp_hwmgr * hwmgr,u32 * query)3952 static int smu7_get_gpu_power(struct pp_hwmgr *hwmgr, u32 *query)
3953 {
3954 struct amdgpu_device *adev = hwmgr->adev;
3955 int i;
3956 u32 tmp = 0;
3957
3958 if (!query)
3959 return -EINVAL;
3960
3961 /*
3962 * PPSMC_MSG_GetCurrPkgPwr is not supported on:
3963 * - Hawaii
3964 * - Bonaire
3965 * - Fiji
3966 * - Tonga
3967 */
3968 if ((adev->asic_type != CHIP_HAWAII) &&
3969 (adev->asic_type != CHIP_BONAIRE) &&
3970 (adev->asic_type != CHIP_FIJI) &&
3971 (adev->asic_type != CHIP_TONGA)) {
3972 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetCurrPkgPwr, 0, &tmp);
3973 *query = tmp;
3974
3975 if (tmp != 0)
3976 return 0;
3977 }
3978
3979 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogStart, NULL);
3980 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3981 ixSMU_PM_STATUS_95, 0);
3982
3983 for (i = 0; i < 10; i++) {
3984 msleep(500);
3985 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogSample, NULL);
3986 tmp = cgs_read_ind_register(hwmgr->device,
3987 CGS_IND_REG__SMC,
3988 ixSMU_PM_STATUS_95);
3989 if (tmp != 0)
3990 break;
3991 }
3992 *query = tmp;
3993
3994 return 0;
3995 }
3996
smu7_read_sensor(struct pp_hwmgr * hwmgr,int idx,void * value,int * size)3997 static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3998 void *value, int *size)
3999 {
4000 uint32_t sclk, mclk, activity_percent;
4001 uint32_t offset, val_vid;
4002 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4003 struct amdgpu_device *adev = hwmgr->adev;
4004 int ret = 0;
4005
4006 /* size must be at least 4 bytes for all sensors */
4007 if (*size < 4)
4008 return -EINVAL;
4009
4010 switch (idx) {
4011 case AMDGPU_PP_SENSOR_GFX_SCLK:
4012 ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &sclk);
4013 if (ret)
4014 return ret;
4015 *((uint32_t *)value) = sclk;
4016 *size = 4;
4017 return 0;
4018 case AMDGPU_PP_SENSOR_GFX_MCLK:
4019 ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &mclk);
4020 if (ret)
4021 return ret;
4022 *((uint32_t *)value) = mclk;
4023 *size = 4;
4024 return 0;
4025 case AMDGPU_PP_SENSOR_GPU_LOAD:
4026 case AMDGPU_PP_SENSOR_MEM_LOAD:
4027 offset = data->soft_regs_start + smum_get_offsetof(hwmgr,
4028 SMU_SoftRegisters,
4029 (idx == AMDGPU_PP_SENSOR_GPU_LOAD) ?
4030 AverageGraphicsActivity :
4031 AverageMemoryActivity);
4032
4033 activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
4034 activity_percent += 0x80;
4035 activity_percent >>= 8;
4036 *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
4037 *size = 4;
4038 return 0;
4039 case AMDGPU_PP_SENSOR_GPU_TEMP:
4040 *((uint32_t *)value) = smu7_thermal_get_temperature(hwmgr);
4041 *size = 4;
4042 return 0;
4043 case AMDGPU_PP_SENSOR_UVD_POWER:
4044 *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
4045 *size = 4;
4046 return 0;
4047 case AMDGPU_PP_SENSOR_VCE_POWER:
4048 *((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
4049 *size = 4;
4050 return 0;
4051 case AMDGPU_PP_SENSOR_GPU_INPUT_POWER:
4052 if ((adev->asic_type != CHIP_HAWAII) &&
4053 (adev->asic_type != CHIP_BONAIRE) &&
4054 (adev->asic_type != CHIP_FIJI) &&
4055 (adev->asic_type != CHIP_TONGA))
4056 return smu7_get_gpu_power(hwmgr, (uint32_t *)value);
4057 else
4058 return -EOPNOTSUPP;
4059 case AMDGPU_PP_SENSOR_GPU_AVG_POWER:
4060 if ((adev->asic_type != CHIP_HAWAII) &&
4061 (adev->asic_type != CHIP_BONAIRE) &&
4062 (adev->asic_type != CHIP_FIJI) &&
4063 (adev->asic_type != CHIP_TONGA))
4064 return -EOPNOTSUPP;
4065 else
4066 return smu7_get_gpu_power(hwmgr, (uint32_t *)value);
4067 case AMDGPU_PP_SENSOR_VDDGFX:
4068 if ((data->vr_config & VRCONF_VDDGFX_MASK) ==
4069 (VR_SVI2_PLANE_2 << VRCONF_VDDGFX_SHIFT))
4070 val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4071 CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE2_VID);
4072 else
4073 val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4074 CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE1_VID);
4075
4076 *((uint32_t *)value) = (uint32_t)convert_to_vddc(val_vid);
4077 return 0;
4078 default:
4079 return -EOPNOTSUPP;
4080 }
4081 }
4082
smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr * hwmgr,const void * input)4083 static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
4084 {
4085 const struct phm_set_power_state_input *states =
4086 (const struct phm_set_power_state_input *)input;
4087 const struct smu7_power_state *smu7_ps =
4088 cast_const_phw_smu7_power_state(states->pnew_state);
4089 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4090 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4091 uint32_t sclk = smu7_ps->performance_levels
4092 [smu7_ps->performance_level_count - 1].engine_clock;
4093 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4094 uint32_t mclk = smu7_ps->performance_levels
4095 [smu7_ps->performance_level_count - 1].memory_clock;
4096 struct PP_Clocks min_clocks = {0};
4097 uint32_t i;
4098
4099 for (i = 0; i < sclk_table->count; i++) {
4100 if (sclk == sclk_table->dpm_levels[i].value)
4101 break;
4102 }
4103
4104 if (i >= sclk_table->count) {
4105 if (sclk > sclk_table->dpm_levels[i-1].value) {
4106 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
4107 sclk_table->dpm_levels[i-1].value = sclk;
4108 }
4109 } else {
4110 /* TODO: Check SCLK in DAL's minimum clocks
4111 * in case DeepSleep divider update is required.
4112 */
4113 if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
4114 (min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK ||
4115 data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
4116 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
4117 }
4118
4119 for (i = 0; i < mclk_table->count; i++) {
4120 if (mclk == mclk_table->dpm_levels[i].value)
4121 break;
4122 }
4123
4124 if (i >= mclk_table->count) {
4125 if (mclk > mclk_table->dpm_levels[i-1].value) {
4126 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
4127 mclk_table->dpm_levels[i-1].value = mclk;
4128 }
4129 }
4130
4131 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4132 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
4133
4134 return 0;
4135 }
4136
smu7_get_maximum_link_speed(struct pp_hwmgr * hwmgr,const struct smu7_power_state * smu7_ps)4137 static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
4138 const struct smu7_power_state *smu7_ps)
4139 {
4140 uint32_t i;
4141 uint32_t sclk, max_sclk = 0;
4142 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4143 struct smu7_dpm_table *dpm_table = &data->dpm_table;
4144
4145 for (i = 0; i < smu7_ps->performance_level_count; i++) {
4146 sclk = smu7_ps->performance_levels[i].engine_clock;
4147 if (max_sclk < sclk)
4148 max_sclk = sclk;
4149 }
4150
4151 for (i = 0; i < dpm_table->sclk_table.count; i++) {
4152 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
4153 return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
4154 dpm_table->pcie_speed_table.dpm_levels
4155 [dpm_table->pcie_speed_table.count - 1].value :
4156 dpm_table->pcie_speed_table.dpm_levels[i].value);
4157 }
4158
4159 return 0;
4160 }
4161
smu7_request_link_speed_change_before_state_change(struct pp_hwmgr * hwmgr,const void * input)4162 static int smu7_request_link_speed_change_before_state_change(
4163 struct pp_hwmgr *hwmgr, const void *input)
4164 {
4165 const struct phm_set_power_state_input *states =
4166 (const struct phm_set_power_state_input *)input;
4167 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4168 const struct smu7_power_state *smu7_nps =
4169 cast_const_phw_smu7_power_state(states->pnew_state);
4170 const struct smu7_power_state *polaris10_cps =
4171 cast_const_phw_smu7_power_state(states->pcurrent_state);
4172
4173 uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps);
4174 uint16_t current_link_speed;
4175
4176 if (data->force_pcie_gen == PP_PCIEGenInvalid)
4177 current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps);
4178 else
4179 current_link_speed = data->force_pcie_gen;
4180
4181 data->force_pcie_gen = PP_PCIEGenInvalid;
4182 data->pspp_notify_required = false;
4183
4184 if (target_link_speed > current_link_speed) {
4185 switch (target_link_speed) {
4186 #ifdef CONFIG_ACPI
4187 case PP_PCIEGen3:
4188 if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN3, false))
4189 break;
4190 data->force_pcie_gen = PP_PCIEGen2;
4191 if (current_link_speed == PP_PCIEGen2)
4192 break;
4193 fallthrough;
4194 case PP_PCIEGen2:
4195 if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN2, false))
4196 break;
4197 fallthrough;
4198 #endif
4199 default:
4200 data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr);
4201 break;
4202 }
4203 } else {
4204 if (target_link_speed < current_link_speed)
4205 data->pspp_notify_required = true;
4206 }
4207
4208 return 0;
4209 }
4210
smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr * hwmgr)4211 static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4212 {
4213 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4214
4215 if (0 == data->need_update_smu7_dpm_table)
4216 return 0;
4217
4218 if ((0 == data->sclk_dpm_key_disabled) &&
4219 (data->need_update_smu7_dpm_table &
4220 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) {
4221 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4222 "Trying to freeze SCLK DPM when DPM is disabled",
4223 );
4224 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4225 PPSMC_MSG_SCLKDPM_FreezeLevel,
4226 NULL),
4227 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
4228 return -EINVAL);
4229 }
4230
4231 if ((0 == data->mclk_dpm_key_disabled) &&
4232 !data->mclk_ignore_signal &&
4233 (data->need_update_smu7_dpm_table &
4234 DPMTABLE_OD_UPDATE_MCLK)) {
4235 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4236 "Trying to freeze MCLK DPM when DPM is disabled",
4237 );
4238 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4239 PPSMC_MSG_MCLKDPM_FreezeLevel,
4240 NULL),
4241 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
4242 return -EINVAL);
4243 }
4244
4245 return 0;
4246 }
4247
smu7_populate_and_upload_sclk_mclk_dpm_levels(struct pp_hwmgr * hwmgr,const void * input)4248 static int smu7_populate_and_upload_sclk_mclk_dpm_levels(
4249 struct pp_hwmgr *hwmgr, const void *input)
4250 {
4251 int result = 0;
4252 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4253 struct smu7_dpm_table *dpm_table = &data->dpm_table;
4254 uint32_t count;
4255 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
4256 struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
4257 struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
4258
4259 if (0 == data->need_update_smu7_dpm_table)
4260 return 0;
4261
4262 if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
4263 for (count = 0; count < dpm_table->sclk_table.count; count++) {
4264 dpm_table->sclk_table.dpm_levels[count].enabled = odn_sclk_table->entries[count].enabled;
4265 dpm_table->sclk_table.dpm_levels[count].value = odn_sclk_table->entries[count].clock;
4266 }
4267 }
4268
4269 if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
4270 for (count = 0; count < dpm_table->mclk_table.count; count++) {
4271 dpm_table->mclk_table.dpm_levels[count].enabled = odn_mclk_table->entries[count].enabled;
4272 dpm_table->mclk_table.dpm_levels[count].value = odn_mclk_table->entries[count].clock;
4273 }
4274 }
4275
4276 if (data->need_update_smu7_dpm_table &
4277 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK)) {
4278 result = smum_populate_all_graphic_levels(hwmgr);
4279 PP_ASSERT_WITH_CODE((0 == result),
4280 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4281 return result);
4282 }
4283
4284 if (data->need_update_smu7_dpm_table &
4285 (DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
4286 /*populate MCLK dpm table to SMU7 */
4287 result = smum_populate_all_memory_levels(hwmgr);
4288 PP_ASSERT_WITH_CODE((0 == result),
4289 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4290 return result);
4291 }
4292
4293 return result;
4294 }
4295
smu7_trim_single_dpm_states(struct pp_hwmgr * hwmgr,struct smu7_single_dpm_table * dpm_table,uint32_t low_limit,uint32_t high_limit)4296 static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4297 struct smu7_single_dpm_table *dpm_table,
4298 uint32_t low_limit, uint32_t high_limit)
4299 {
4300 uint32_t i;
4301
4302 /* force the trim if mclk_switching is disabled to prevent flicker */
4303 bool force_trim = (low_limit == high_limit);
4304 for (i = 0; i < dpm_table->count; i++) {
4305 /*skip the trim if od is enabled*/
4306 if ((!hwmgr->od_enabled || force_trim)
4307 && (dpm_table->dpm_levels[i].value < low_limit
4308 || dpm_table->dpm_levels[i].value > high_limit))
4309 dpm_table->dpm_levels[i].enabled = false;
4310 else
4311 dpm_table->dpm_levels[i].enabled = true;
4312 }
4313
4314 return 0;
4315 }
4316
smu7_trim_dpm_states(struct pp_hwmgr * hwmgr,const struct smu7_power_state * smu7_ps)4317 static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr,
4318 const struct smu7_power_state *smu7_ps)
4319 {
4320 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4321 uint32_t high_limit_count;
4322
4323 PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1),
4324 "power state did not have any performance level",
4325 return -EINVAL);
4326
4327 high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1;
4328
4329 smu7_trim_single_dpm_states(hwmgr,
4330 &(data->dpm_table.sclk_table),
4331 smu7_ps->performance_levels[0].engine_clock,
4332 smu7_ps->performance_levels[high_limit_count].engine_clock);
4333
4334 smu7_trim_single_dpm_states(hwmgr,
4335 &(data->dpm_table.mclk_table),
4336 smu7_ps->performance_levels[0].memory_clock,
4337 smu7_ps->performance_levels[high_limit_count].memory_clock);
4338
4339 return 0;
4340 }
4341
smu7_generate_dpm_level_enable_mask(struct pp_hwmgr * hwmgr,const void * input)4342 static int smu7_generate_dpm_level_enable_mask(
4343 struct pp_hwmgr *hwmgr, const void *input)
4344 {
4345 int result = 0;
4346 const struct phm_set_power_state_input *states =
4347 (const struct phm_set_power_state_input *)input;
4348 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4349 const struct smu7_power_state *smu7_ps =
4350 cast_const_phw_smu7_power_state(states->pnew_state);
4351
4352
4353 result = smu7_trim_dpm_states(hwmgr, smu7_ps);
4354 if (result)
4355 return result;
4356
4357 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
4358 phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4359 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
4360 phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4361 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
4362 phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4363
4364 return 0;
4365 }
4366
smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr * hwmgr)4367 static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4368 {
4369 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4370
4371 if (0 == data->need_update_smu7_dpm_table)
4372 return 0;
4373
4374 if ((0 == data->sclk_dpm_key_disabled) &&
4375 (data->need_update_smu7_dpm_table &
4376 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) {
4377
4378 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4379 "Trying to Unfreeze SCLK DPM when DPM is disabled",
4380 );
4381 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4382 PPSMC_MSG_SCLKDPM_UnfreezeLevel,
4383 NULL),
4384 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4385 return -EINVAL);
4386 }
4387
4388 if ((0 == data->mclk_dpm_key_disabled) &&
4389 !data->mclk_ignore_signal &&
4390 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4391
4392 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4393 "Trying to Unfreeze MCLK DPM when DPM is disabled",
4394 );
4395 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4396 PPSMC_MSG_MCLKDPM_UnfreezeLevel,
4397 NULL),
4398 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4399 return -EINVAL);
4400 }
4401
4402 data->need_update_smu7_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
4403
4404 return 0;
4405 }
4406
smu7_notify_link_speed_change_after_state_change(struct pp_hwmgr * hwmgr,const void * input)4407 static int smu7_notify_link_speed_change_after_state_change(
4408 struct pp_hwmgr *hwmgr, const void *input)
4409 {
4410 const struct phm_set_power_state_input *states =
4411 (const struct phm_set_power_state_input *)input;
4412 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4413 const struct smu7_power_state *smu7_ps =
4414 cast_const_phw_smu7_power_state(states->pnew_state);
4415 uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps);
4416 uint8_t request;
4417
4418 if (data->pspp_notify_required) {
4419 if (target_link_speed == PP_PCIEGen3)
4420 request = PCIE_PERF_REQ_GEN3;
4421 else if (target_link_speed == PP_PCIEGen2)
4422 request = PCIE_PERF_REQ_GEN2;
4423 else
4424 request = PCIE_PERF_REQ_GEN1;
4425
4426 if (request == PCIE_PERF_REQ_GEN1 &&
4427 smu7_get_current_pcie_speed(hwmgr) > 0)
4428 return 0;
4429
4430 #ifdef CONFIG_ACPI
4431 if (amdgpu_acpi_pcie_performance_request(hwmgr->adev, request, false)) {
4432 if (PP_PCIEGen2 == target_link_speed)
4433 pr_info("PSPP request to switch to Gen2 from Gen3 Failed!");
4434 else
4435 pr_info("PSPP request to switch to Gen1 from Gen2 Failed!");
4436 }
4437 #endif
4438 }
4439
4440 return 0;
4441 }
4442
smu7_notify_no_display(struct pp_hwmgr * hwmgr)4443 static int smu7_notify_no_display(struct pp_hwmgr *hwmgr)
4444 {
4445 return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL) == 0) ? 0 : -EINVAL;
4446 }
4447
smu7_notify_has_display(struct pp_hwmgr * hwmgr)4448 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr)
4449 {
4450 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4451
4452 if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK) {
4453 if (hwmgr->chip_id == CHIP_VEGAM)
4454 smum_send_msg_to_smc_with_parameter(hwmgr,
4455 (PPSMC_Msg)PPSMC_MSG_SetVBITimeout_VEGAM, data->frame_time_x2,
4456 NULL);
4457 else
4458 smum_send_msg_to_smc_with_parameter(hwmgr,
4459 (PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2,
4460 NULL);
4461 data->last_sent_vbi_timeout = data->frame_time_x2;
4462 }
4463
4464 return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_HasDisplay, NULL) == 0) ? 0 : -EINVAL;
4465 }
4466
smu7_notify_smc_display(struct pp_hwmgr * hwmgr)4467 static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr)
4468 {
4469 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4470 int result = 0;
4471
4472 if (data->mclk_ignore_signal)
4473 result = smu7_notify_no_display(hwmgr);
4474 else
4475 result = smu7_notify_has_display(hwmgr);
4476
4477 return result;
4478 }
4479
smu7_set_power_state_tasks(struct pp_hwmgr * hwmgr,const void * input)4480 static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
4481 {
4482 int tmp_result, result = 0;
4483 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4484
4485 tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4486 PP_ASSERT_WITH_CODE((0 == tmp_result),
4487 "Failed to find DPM states clocks in DPM table!",
4488 result = tmp_result);
4489
4490 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4491 PHM_PlatformCaps_PCIEPerformanceRequest)) {
4492 tmp_result =
4493 smu7_request_link_speed_change_before_state_change(hwmgr, input);
4494 PP_ASSERT_WITH_CODE((0 == tmp_result),
4495 "Failed to request link speed change before state change!",
4496 result = tmp_result);
4497 }
4498
4499 tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr);
4500 PP_ASSERT_WITH_CODE((0 == tmp_result),
4501 "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4502
4503 tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4504 PP_ASSERT_WITH_CODE((0 == tmp_result),
4505 "Failed to populate and upload SCLK MCLK DPM levels!",
4506 result = tmp_result);
4507
4508 /*
4509 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
4510 * That effectively disables AVFS feature.
4511 */
4512 if (hwmgr->hardcode_pp_table != NULL)
4513 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
4514
4515 tmp_result = smu7_update_avfs(hwmgr);
4516 PP_ASSERT_WITH_CODE((0 == tmp_result),
4517 "Failed to update avfs voltages!",
4518 result = tmp_result);
4519
4520 tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input);
4521 PP_ASSERT_WITH_CODE((0 == tmp_result),
4522 "Failed to generate DPM level enabled mask!",
4523 result = tmp_result);
4524
4525 tmp_result = smum_update_sclk_threshold(hwmgr);
4526 PP_ASSERT_WITH_CODE((0 == tmp_result),
4527 "Failed to update SCLK threshold!",
4528 result = tmp_result);
4529
4530 tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr);
4531 PP_ASSERT_WITH_CODE((0 == tmp_result),
4532 "Failed to unfreeze SCLK MCLK DPM!",
4533 result = tmp_result);
4534
4535 tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr);
4536 PP_ASSERT_WITH_CODE((0 == tmp_result),
4537 "Failed to upload DPM level enabled mask!",
4538 result = tmp_result);
4539
4540 tmp_result = smu7_notify_smc_display(hwmgr);
4541 PP_ASSERT_WITH_CODE((0 == tmp_result),
4542 "Failed to notify smc display settings!",
4543 result = tmp_result);
4544
4545 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4546 PHM_PlatformCaps_PCIEPerformanceRequest)) {
4547 tmp_result =
4548 smu7_notify_link_speed_change_after_state_change(hwmgr, input);
4549 PP_ASSERT_WITH_CODE((0 == tmp_result),
4550 "Failed to notify link speed change after state change!",
4551 result = tmp_result);
4552 }
4553 data->apply_optimized_settings = false;
4554 return result;
4555 }
4556
smu7_set_max_fan_pwm_output(struct pp_hwmgr * hwmgr,uint16_t us_max_fan_pwm)4557 static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
4558 {
4559 hwmgr->thermal_controller.
4560 advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
4561
4562 return smum_send_msg_to_smc_with_parameter(hwmgr,
4563 PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm,
4564 NULL);
4565 }
4566
4567 static int
smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr * hwmgr)4568 smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
4569 {
4570 return 0;
4571 }
4572
4573 /**
4574 * smu7_program_display_gap - Programs the display gap
4575 *
4576 * @hwmgr: the address of the powerplay hardware manager.
4577 * Return: always OK
4578 */
smu7_program_display_gap(struct pp_hwmgr * hwmgr)4579 static int smu7_program_display_gap(struct pp_hwmgr *hwmgr)
4580 {
4581 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4582 uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4583 uint32_t display_gap2;
4584 uint32_t pre_vbi_time_in_us;
4585 uint32_t frame_time_in_us;
4586 uint32_t ref_clock, refresh_rate;
4587
4588 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (hwmgr->display_config->num_display > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
4589 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
4590
4591 ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
4592 refresh_rate = hwmgr->display_config->vrefresh;
4593
4594 if (0 == refresh_rate)
4595 refresh_rate = 60;
4596
4597 frame_time_in_us = 1000000 / refresh_rate;
4598
4599 pre_vbi_time_in_us = frame_time_in_us - 200 - hwmgr->display_config->min_vblank_time;
4600
4601 data->frame_time_x2 = frame_time_in_us * 2 / 100;
4602
4603 if (data->frame_time_x2 < 280) {
4604 pr_debug("%s: enforce minimal VBITimeout: %d -> 280\n", __func__, data->frame_time_x2);
4605 data->frame_time_x2 = 280;
4606 }
4607
4608 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
4609
4610 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
4611
4612 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4613 data->soft_regs_start + smum_get_offsetof(hwmgr,
4614 SMU_SoftRegisters,
4615 PreVBlankGap), 0x64);
4616
4617 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4618 data->soft_regs_start + smum_get_offsetof(hwmgr,
4619 SMU_SoftRegisters,
4620 VBlankTimeout),
4621 (frame_time_in_us - pre_vbi_time_in_us));
4622
4623 return 0;
4624 }
4625
smu7_display_configuration_changed_task(struct pp_hwmgr * hwmgr)4626 static int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4627 {
4628 return smu7_program_display_gap(hwmgr);
4629 }
4630
4631 /**
4632 * smu7_set_max_fan_rpm_output - Set maximum target operating fan output RPM
4633 *
4634 * @hwmgr: the address of the powerplay hardware manager.
4635 * @us_max_fan_rpm: max operating fan RPM value.
4636 * Return: The response that came from the SMC.
4637 */
smu7_set_max_fan_rpm_output(struct pp_hwmgr * hwmgr,uint16_t us_max_fan_rpm)4638 static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
4639 {
4640 hwmgr->thermal_controller.
4641 advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
4642
4643 return smum_send_msg_to_smc_with_parameter(hwmgr,
4644 PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm,
4645 NULL);
4646 }
4647
4648 static const struct amdgpu_irq_src_funcs smu7_irq_funcs = {
4649 .process = phm_irq_process,
4650 };
4651
smu7_register_irq_handlers(struct pp_hwmgr * hwmgr)4652 static int smu7_register_irq_handlers(struct pp_hwmgr *hwmgr)
4653 {
4654 struct amdgpu_irq_src *source =
4655 kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
4656
4657 if (!source)
4658 return -ENOMEM;
4659
4660 source->funcs = &smu7_irq_funcs;
4661
4662 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4663 AMDGPU_IRQ_CLIENTID_LEGACY,
4664 VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH,
4665 source);
4666 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4667 AMDGPU_IRQ_CLIENTID_LEGACY,
4668 VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW,
4669 source);
4670
4671 /* Register CTF(GPIO_19) interrupt */
4672 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4673 AMDGPU_IRQ_CLIENTID_LEGACY,
4674 VISLANDS30_IV_SRCID_GPIO_19,
4675 source);
4676
4677 return 0;
4678 }
4679
4680 static bool
smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr * hwmgr)4681 smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4682 {
4683 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4684 bool is_update_required = false;
4685
4686 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4687 is_update_required = true;
4688
4689 if (data->display_timing.vrefresh != hwmgr->display_config->vrefresh)
4690 is_update_required = true;
4691
4692 if (hwmgr->chip_id >= CHIP_POLARIS10 &&
4693 hwmgr->chip_id <= CHIP_VEGAM &&
4694 data->last_sent_vbi_timeout != data->frame_time_x2)
4695 is_update_required = true;
4696
4697 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
4698 if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr &&
4699 (data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK ||
4700 hwmgr->display_config->min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
4701 is_update_required = true;
4702 }
4703 return is_update_required;
4704 }
4705
smu7_are_power_levels_equal(const struct smu7_performance_level * pl1,const struct smu7_performance_level * pl2)4706 static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1,
4707 const struct smu7_performance_level *pl2)
4708 {
4709 return ((pl1->memory_clock == pl2->memory_clock) &&
4710 (pl1->engine_clock == pl2->engine_clock) &&
4711 (pl1->pcie_gen == pl2->pcie_gen) &&
4712 (pl1->pcie_lane == pl2->pcie_lane));
4713 }
4714
smu7_check_states_equal(struct pp_hwmgr * hwmgr,const struct pp_hw_power_state * pstate1,const struct pp_hw_power_state * pstate2,bool * equal)4715 static int smu7_check_states_equal(struct pp_hwmgr *hwmgr,
4716 const struct pp_hw_power_state *pstate1,
4717 const struct pp_hw_power_state *pstate2, bool *equal)
4718 {
4719 const struct smu7_power_state *psa;
4720 const struct smu7_power_state *psb;
4721 int i;
4722 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4723
4724 if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4725 return -EINVAL;
4726
4727 psa = cast_const_phw_smu7_power_state(pstate1);
4728 psb = cast_const_phw_smu7_power_state(pstate2);
4729 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
4730 if (psa->performance_level_count != psb->performance_level_count) {
4731 *equal = false;
4732 return 0;
4733 }
4734
4735 for (i = 0; i < psa->performance_level_count; i++) {
4736 if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4737 /* If we have found even one performance level pair that is different the states are different. */
4738 *equal = false;
4739 return 0;
4740 }
4741 }
4742
4743 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4744 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4745 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4746 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
4747 /* For OD call, set value based on flag */
4748 *equal &= !(data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK |
4749 DPMTABLE_OD_UPDATE_MCLK |
4750 DPMTABLE_OD_UPDATE_VDDC));
4751
4752 return 0;
4753 }
4754
smu7_check_mc_firmware(struct pp_hwmgr * hwmgr)4755 static int smu7_check_mc_firmware(struct pp_hwmgr *hwmgr)
4756 {
4757 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4758
4759 uint32_t tmp;
4760
4761 /* Read MC indirect register offset 0x9F bits [3:0] to see
4762 * if VBIOS has already loaded a full version of MC ucode
4763 * or not.
4764 */
4765
4766 smu7_get_mc_microcode_version(hwmgr);
4767
4768 data->need_long_memory_training = false;
4769
4770 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX,
4771 ixMC_IO_DEBUG_UP_13);
4772 tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
4773
4774 if (tmp & (1 << 23)) {
4775 data->mem_latency_high = MEM_LATENCY_HIGH;
4776 data->mem_latency_low = MEM_LATENCY_LOW;
4777 if ((hwmgr->chip_id == CHIP_POLARIS10) ||
4778 (hwmgr->chip_id == CHIP_POLARIS11) ||
4779 (hwmgr->chip_id == CHIP_POLARIS12))
4780 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableFFC, NULL);
4781 } else {
4782 data->mem_latency_high = 330;
4783 data->mem_latency_low = 330;
4784 if ((hwmgr->chip_id == CHIP_POLARIS10) ||
4785 (hwmgr->chip_id == CHIP_POLARIS11) ||
4786 (hwmgr->chip_id == CHIP_POLARIS12))
4787 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableFFC, NULL);
4788 }
4789
4790 return 0;
4791 }
4792
smu7_read_clock_registers(struct pp_hwmgr * hwmgr)4793 static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr)
4794 {
4795 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4796
4797 data->clock_registers.vCG_SPLL_FUNC_CNTL =
4798 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
4799 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
4800 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
4801 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
4802 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
4803 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
4804 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
4805 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
4806 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
4807 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
4808 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
4809 data->clock_registers.vDLL_CNTL =
4810 cgs_read_register(hwmgr->device, mmDLL_CNTL);
4811 data->clock_registers.vMCLK_PWRMGT_CNTL =
4812 cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
4813 data->clock_registers.vMPLL_AD_FUNC_CNTL =
4814 cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
4815 data->clock_registers.vMPLL_DQ_FUNC_CNTL =
4816 cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
4817 data->clock_registers.vMPLL_FUNC_CNTL =
4818 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
4819 data->clock_registers.vMPLL_FUNC_CNTL_1 =
4820 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
4821 data->clock_registers.vMPLL_FUNC_CNTL_2 =
4822 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
4823 data->clock_registers.vMPLL_SS1 =
4824 cgs_read_register(hwmgr->device, mmMPLL_SS1);
4825 data->clock_registers.vMPLL_SS2 =
4826 cgs_read_register(hwmgr->device, mmMPLL_SS2);
4827 return 0;
4828
4829 }
4830
4831 /**
4832 * smu7_get_memory_type - Find out if memory is GDDR5.
4833 *
4834 * @hwmgr: the address of the powerplay hardware manager.
4835 * Return: always 0
4836 */
smu7_get_memory_type(struct pp_hwmgr * hwmgr)4837 static int smu7_get_memory_type(struct pp_hwmgr *hwmgr)
4838 {
4839 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4840 struct amdgpu_device *adev = hwmgr->adev;
4841
4842 data->is_memory_gddr5 = (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5);
4843
4844 return 0;
4845 }
4846
4847 /**
4848 * smu7_enable_acpi_power_management - Enables Dynamic Power Management by SMC
4849 *
4850 * @hwmgr: the address of the powerplay hardware manager.
4851 * Return: always 0
4852 */
smu7_enable_acpi_power_management(struct pp_hwmgr * hwmgr)4853 static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
4854 {
4855 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4856 GENERAL_PWRMGT, STATIC_PM_EN, 1);
4857
4858 return 0;
4859 }
4860
4861 /**
4862 * smu7_init_power_gate_state - Initialize PowerGating States for different engines
4863 *
4864 * @hwmgr: the address of the powerplay hardware manager.
4865 * Return: always 0
4866 */
smu7_init_power_gate_state(struct pp_hwmgr * hwmgr)4867 static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr)
4868 {
4869 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4870
4871 data->uvd_power_gated = false;
4872 data->vce_power_gated = false;
4873
4874 return 0;
4875 }
4876
smu7_init_sclk_threshold(struct pp_hwmgr * hwmgr)4877 static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr)
4878 {
4879 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4880
4881 data->low_sclk_interrupt_threshold = 0;
4882 return 0;
4883 }
4884
smu7_setup_asic_task(struct pp_hwmgr * hwmgr)4885 static int smu7_setup_asic_task(struct pp_hwmgr *hwmgr)
4886 {
4887 int tmp_result, result = 0;
4888
4889 smu7_check_mc_firmware(hwmgr);
4890
4891 tmp_result = smu7_read_clock_registers(hwmgr);
4892 PP_ASSERT_WITH_CODE((0 == tmp_result),
4893 "Failed to read clock registers!", result = tmp_result);
4894
4895 tmp_result = smu7_get_memory_type(hwmgr);
4896 PP_ASSERT_WITH_CODE((0 == tmp_result),
4897 "Failed to get memory type!", result = tmp_result);
4898
4899 tmp_result = smu7_enable_acpi_power_management(hwmgr);
4900 PP_ASSERT_WITH_CODE((0 == tmp_result),
4901 "Failed to enable ACPI power management!", result = tmp_result);
4902
4903 tmp_result = smu7_init_power_gate_state(hwmgr);
4904 PP_ASSERT_WITH_CODE((0 == tmp_result),
4905 "Failed to init power gate state!", result = tmp_result);
4906
4907 tmp_result = smu7_get_mc_microcode_version(hwmgr);
4908 PP_ASSERT_WITH_CODE((0 == tmp_result),
4909 "Failed to get MC microcode version!", result = tmp_result);
4910
4911 tmp_result = smu7_init_sclk_threshold(hwmgr);
4912 PP_ASSERT_WITH_CODE((0 == tmp_result),
4913 "Failed to init sclk threshold!", result = tmp_result);
4914
4915 return result;
4916 }
4917
smu7_force_clock_level(struct pp_hwmgr * hwmgr,enum pp_clock_type type,uint32_t mask)4918 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
4919 enum pp_clock_type type, uint32_t mask)
4920 {
4921 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4922
4923 if (mask == 0)
4924 return -EINVAL;
4925
4926 switch (type) {
4927 case PP_SCLK:
4928 if (!data->sclk_dpm_key_disabled)
4929 smum_send_msg_to_smc_with_parameter(hwmgr,
4930 PPSMC_MSG_SCLKDPM_SetEnabledMask,
4931 data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask,
4932 NULL);
4933 break;
4934 case PP_MCLK:
4935 if (!data->mclk_dpm_key_disabled)
4936 smum_send_msg_to_smc_with_parameter(hwmgr,
4937 PPSMC_MSG_MCLKDPM_SetEnabledMask,
4938 data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask,
4939 NULL);
4940 break;
4941 case PP_PCIE:
4942 {
4943 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
4944
4945 if (!data->pcie_dpm_key_disabled) {
4946 if (fls(tmp) != ffs(tmp))
4947 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_UnForceLevel,
4948 NULL);
4949 else
4950 smum_send_msg_to_smc_with_parameter(hwmgr,
4951 PPSMC_MSG_PCIeDPM_ForceLevel,
4952 fls(tmp) - 1,
4953 NULL);
4954 }
4955 break;
4956 }
4957 default:
4958 break;
4959 }
4960
4961 return 0;
4962 }
4963
smu7_print_clock_levels(struct pp_hwmgr * hwmgr,enum pp_clock_type type,char * buf)4964 static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr,
4965 enum pp_clock_type type, char *buf)
4966 {
4967 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4968 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4969 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4970 struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
4971 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
4972 struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
4973 struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
4974 int size = 0, ret = 0;
4975 uint32_t i, now, clock, pcie_speed;
4976
4977 switch (type) {
4978 case PP_SCLK:
4979 ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &clock);
4980 if (ret)
4981 return ret;
4982 for (i = 0; i < sclk_table->count; i++) {
4983 if (clock > sclk_table->dpm_levels[i].value)
4984 continue;
4985 break;
4986 }
4987 now = i;
4988
4989 for (i = 0; i < sclk_table->count; i++)
4990 size += sprintf(buf + size, "%d: %uMhz %s\n",
4991 i, sclk_table->dpm_levels[i].value / 100,
4992 (i == now) ? "*" : "");
4993 break;
4994 case PP_MCLK:
4995 ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &clock);
4996 if (ret)
4997 return ret;
4998 for (i = 0; i < mclk_table->count; i++) {
4999 if (clock > mclk_table->dpm_levels[i].value)
5000 continue;
5001 break;
5002 }
5003 now = i;
5004
5005 for (i = 0; i < mclk_table->count; i++)
5006 size += sprintf(buf + size, "%d: %uMhz %s\n",
5007 i, mclk_table->dpm_levels[i].value / 100,
5008 (i == now) ? "*" : "");
5009 break;
5010 case PP_PCIE:
5011 pcie_speed = smu7_get_current_pcie_speed(hwmgr);
5012 for (i = 0; i < pcie_table->count; i++) {
5013 if (pcie_speed != pcie_table->dpm_levels[i].value)
5014 continue;
5015 break;
5016 }
5017 now = i;
5018
5019 for (i = 0; i < pcie_table->count; i++)
5020 size += sprintf(buf + size, "%d: %s %s\n", i,
5021 (pcie_table->dpm_levels[i].value == 0) ? "2.5GT/s, x8" :
5022 (pcie_table->dpm_levels[i].value == 1) ? "5.0GT/s, x16" :
5023 (pcie_table->dpm_levels[i].value == 2) ? "8.0GT/s, x16" : "",
5024 (i == now) ? "*" : "");
5025 break;
5026 case OD_SCLK:
5027 if (hwmgr->od_enabled) {
5028 size += sprintf(buf + size, "%s:\n", "OD_SCLK");
5029 for (i = 0; i < odn_sclk_table->num_of_pl; i++)
5030 size += sprintf(buf + size, "%d: %10uMHz %10umV\n",
5031 i, odn_sclk_table->entries[i].clock/100,
5032 odn_sclk_table->entries[i].vddc);
5033 }
5034 break;
5035 case OD_MCLK:
5036 if (hwmgr->od_enabled) {
5037 size += sprintf(buf + size, "%s:\n", "OD_MCLK");
5038 for (i = 0; i < odn_mclk_table->num_of_pl; i++)
5039 size += sprintf(buf + size, "%d: %10uMHz %10umV\n",
5040 i, odn_mclk_table->entries[i].clock/100,
5041 odn_mclk_table->entries[i].vddc);
5042 }
5043 break;
5044 case OD_RANGE:
5045 if (hwmgr->od_enabled) {
5046 size += sprintf(buf + size, "%s:\n", "OD_RANGE");
5047 size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
5048 data->golden_dpm_table.sclk_table.dpm_levels[0].value/100,
5049 hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5050 size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
5051 data->golden_dpm_table.mclk_table.dpm_levels[0].value/100,
5052 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5053 size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
5054 data->odn_dpm_table.min_vddc,
5055 data->odn_dpm_table.max_vddc);
5056 }
5057 break;
5058 default:
5059 break;
5060 }
5061 return size;
5062 }
5063
smu7_set_fan_control_mode(struct pp_hwmgr * hwmgr,uint32_t mode)5064 static void smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
5065 {
5066 switch (mode) {
5067 case AMD_FAN_CTRL_NONE:
5068 smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
5069 break;
5070 case AMD_FAN_CTRL_MANUAL:
5071 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5072 PHM_PlatformCaps_MicrocodeFanControl))
5073 smu7_fan_ctrl_stop_smc_fan_control(hwmgr);
5074 break;
5075 case AMD_FAN_CTRL_AUTO:
5076 if (!smu7_fan_ctrl_set_static_mode(hwmgr, mode))
5077 smu7_fan_ctrl_start_smc_fan_control(hwmgr);
5078 break;
5079 default:
5080 break;
5081 }
5082 }
5083
smu7_get_fan_control_mode(struct pp_hwmgr * hwmgr)5084 static uint32_t smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr)
5085 {
5086 return hwmgr->fan_ctrl_enabled ? AMD_FAN_CTRL_AUTO : AMD_FAN_CTRL_MANUAL;
5087 }
5088
smu7_get_sclk_od(struct pp_hwmgr * hwmgr)5089 static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr)
5090 {
5091 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5092 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5093 struct smu7_single_dpm_table *golden_sclk_table =
5094 &(data->golden_dpm_table.sclk_table);
5095 int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
5096 int golden_value = golden_sclk_table->dpm_levels
5097 [golden_sclk_table->count - 1].value;
5098
5099 value -= golden_value;
5100 value = DIV_ROUND_UP(value * 100, golden_value);
5101
5102 return value;
5103 }
5104
smu7_set_sclk_od(struct pp_hwmgr * hwmgr,uint32_t value)5105 static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5106 {
5107 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5108 struct smu7_single_dpm_table *golden_sclk_table =
5109 &(data->golden_dpm_table.sclk_table);
5110 struct pp_power_state *ps;
5111 struct smu7_power_state *smu7_ps;
5112
5113 if (value > 20)
5114 value = 20;
5115
5116 ps = hwmgr->request_ps;
5117
5118 if (ps == NULL)
5119 return -EINVAL;
5120
5121 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
5122
5123 smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock =
5124 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
5125 value / 100 +
5126 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
5127
5128 return 0;
5129 }
5130
smu7_get_mclk_od(struct pp_hwmgr * hwmgr)5131 static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr)
5132 {
5133 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5134 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5135 struct smu7_single_dpm_table *golden_mclk_table =
5136 &(data->golden_dpm_table.mclk_table);
5137 int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
5138 int golden_value = golden_mclk_table->dpm_levels
5139 [golden_mclk_table->count - 1].value;
5140
5141 value -= golden_value;
5142 value = DIV_ROUND_UP(value * 100, golden_value);
5143
5144 return value;
5145 }
5146
smu7_set_mclk_od(struct pp_hwmgr * hwmgr,uint32_t value)5147 static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5148 {
5149 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5150 struct smu7_single_dpm_table *golden_mclk_table =
5151 &(data->golden_dpm_table.mclk_table);
5152 struct pp_power_state *ps;
5153 struct smu7_power_state *smu7_ps;
5154
5155 if (value > 20)
5156 value = 20;
5157
5158 ps = hwmgr->request_ps;
5159
5160 if (ps == NULL)
5161 return -EINVAL;
5162
5163 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
5164
5165 smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock =
5166 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
5167 value / 100 +
5168 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
5169
5170 return 0;
5171 }
5172
5173
smu7_get_sclks(struct pp_hwmgr * hwmgr,struct amd_pp_clocks * clocks)5174 static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
5175 {
5176 struct phm_ppt_v1_information *table_info =
5177 (struct phm_ppt_v1_information *)hwmgr->pptable;
5178 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL;
5179 struct phm_clock_voltage_dependency_table *sclk_table;
5180 int i;
5181
5182 if (hwmgr->pp_table_version == PP_TABLE_V1) {
5183 if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL)
5184 return -EINVAL;
5185 dep_sclk_table = table_info->vdd_dep_on_sclk;
5186 for (i = 0; i < dep_sclk_table->count; i++)
5187 clocks->clock[i] = dep_sclk_table->entries[i].clk * 10;
5188 clocks->count = dep_sclk_table->count;
5189 } else if (hwmgr->pp_table_version == PP_TABLE_V0) {
5190 sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
5191 for (i = 0; i < sclk_table->count; i++)
5192 clocks->clock[i] = sclk_table->entries[i].clk * 10;
5193 clocks->count = sclk_table->count;
5194 }
5195
5196 return 0;
5197 }
5198
smu7_get_mem_latency(struct pp_hwmgr * hwmgr,uint32_t clk)5199 static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk)
5200 {
5201 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5202
5203 if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY)
5204 return data->mem_latency_high;
5205 else if (clk >= MEM_FREQ_HIGH_LATENCY)
5206 return data->mem_latency_low;
5207 else
5208 return MEM_LATENCY_ERR;
5209 }
5210
smu7_get_mclks(struct pp_hwmgr * hwmgr,struct amd_pp_clocks * clocks)5211 static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
5212 {
5213 struct phm_ppt_v1_information *table_info =
5214 (struct phm_ppt_v1_information *)hwmgr->pptable;
5215 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
5216 int i;
5217 struct phm_clock_voltage_dependency_table *mclk_table;
5218
5219 if (hwmgr->pp_table_version == PP_TABLE_V1) {
5220 if (table_info == NULL)
5221 return -EINVAL;
5222 dep_mclk_table = table_info->vdd_dep_on_mclk;
5223 for (i = 0; i < dep_mclk_table->count; i++) {
5224 clocks->clock[i] = dep_mclk_table->entries[i].clk * 10;
5225 clocks->latency[i] = smu7_get_mem_latency(hwmgr,
5226 dep_mclk_table->entries[i].clk);
5227 }
5228 clocks->count = dep_mclk_table->count;
5229 } else if (hwmgr->pp_table_version == PP_TABLE_V0) {
5230 mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
5231 for (i = 0; i < mclk_table->count; i++)
5232 clocks->clock[i] = mclk_table->entries[i].clk * 10;
5233 clocks->count = mclk_table->count;
5234 }
5235 return 0;
5236 }
5237
smu7_get_clock_by_type(struct pp_hwmgr * hwmgr,enum amd_pp_clock_type type,struct amd_pp_clocks * clocks)5238 static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type,
5239 struct amd_pp_clocks *clocks)
5240 {
5241 switch (type) {
5242 case amd_pp_sys_clock:
5243 smu7_get_sclks(hwmgr, clocks);
5244 break;
5245 case amd_pp_mem_clock:
5246 smu7_get_mclks(hwmgr, clocks);
5247 break;
5248 default:
5249 return -EINVAL;
5250 }
5251
5252 return 0;
5253 }
5254
smu7_get_sclks_with_latency(struct pp_hwmgr * hwmgr,struct pp_clock_levels_with_latency * clocks)5255 static int smu7_get_sclks_with_latency(struct pp_hwmgr *hwmgr,
5256 struct pp_clock_levels_with_latency *clocks)
5257 {
5258 struct phm_ppt_v1_information *table_info =
5259 (struct phm_ppt_v1_information *)hwmgr->pptable;
5260 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
5261 table_info->vdd_dep_on_sclk;
5262 int i;
5263
5264 clocks->num_levels = 0;
5265 for (i = 0; i < dep_sclk_table->count; i++) {
5266 if (dep_sclk_table->entries[i].clk) {
5267 clocks->data[clocks->num_levels].clocks_in_khz =
5268 dep_sclk_table->entries[i].clk * 10;
5269 clocks->num_levels++;
5270 }
5271 }
5272
5273 return 0;
5274 }
5275
smu7_get_mclks_with_latency(struct pp_hwmgr * hwmgr,struct pp_clock_levels_with_latency * clocks)5276 static int smu7_get_mclks_with_latency(struct pp_hwmgr *hwmgr,
5277 struct pp_clock_levels_with_latency *clocks)
5278 {
5279 struct phm_ppt_v1_information *table_info =
5280 (struct phm_ppt_v1_information *)hwmgr->pptable;
5281 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5282 table_info->vdd_dep_on_mclk;
5283 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5284 int i;
5285
5286 clocks->num_levels = 0;
5287 data->mclk_latency_table.count = 0;
5288 for (i = 0; i < dep_mclk_table->count; i++) {
5289 if (dep_mclk_table->entries[i].clk) {
5290 clocks->data[clocks->num_levels].clocks_in_khz =
5291 dep_mclk_table->entries[i].clk * 10;
5292 data->mclk_latency_table.entries[data->mclk_latency_table.count].frequency =
5293 dep_mclk_table->entries[i].clk;
5294 clocks->data[clocks->num_levels].latency_in_us =
5295 data->mclk_latency_table.entries[data->mclk_latency_table.count].latency =
5296 smu7_get_mem_latency(hwmgr, dep_mclk_table->entries[i].clk);
5297 clocks->num_levels++;
5298 data->mclk_latency_table.count++;
5299 }
5300 }
5301
5302 return 0;
5303 }
5304
smu7_get_clock_by_type_with_latency(struct pp_hwmgr * hwmgr,enum amd_pp_clock_type type,struct pp_clock_levels_with_latency * clocks)5305 static int smu7_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
5306 enum amd_pp_clock_type type,
5307 struct pp_clock_levels_with_latency *clocks)
5308 {
5309 if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
5310 hwmgr->chip_id <= CHIP_VEGAM))
5311 return -EINVAL;
5312
5313 switch (type) {
5314 case amd_pp_sys_clock:
5315 smu7_get_sclks_with_latency(hwmgr, clocks);
5316 break;
5317 case amd_pp_mem_clock:
5318 smu7_get_mclks_with_latency(hwmgr, clocks);
5319 break;
5320 default:
5321 return -EINVAL;
5322 }
5323
5324 return 0;
5325 }
5326
smu7_set_watermarks_for_clocks_ranges(struct pp_hwmgr * hwmgr,void * clock_range)5327 static int smu7_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
5328 void *clock_range)
5329 {
5330 struct phm_ppt_v1_information *table_info =
5331 (struct phm_ppt_v1_information *)hwmgr->pptable;
5332 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5333 table_info->vdd_dep_on_mclk;
5334 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
5335 table_info->vdd_dep_on_sclk;
5336 struct polaris10_smumgr *smu_data =
5337 (struct polaris10_smumgr *)(hwmgr->smu_backend);
5338 SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table);
5339 struct dm_pp_wm_sets_with_clock_ranges *watermarks =
5340 (struct dm_pp_wm_sets_with_clock_ranges *)clock_range;
5341 uint32_t i, j, k;
5342 bool valid_entry;
5343
5344 if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
5345 hwmgr->chip_id <= CHIP_VEGAM))
5346 return -EINVAL;
5347
5348 for (i = 0; i < dep_mclk_table->count; i++) {
5349 for (j = 0; j < dep_sclk_table->count; j++) {
5350 valid_entry = false;
5351 for (k = 0; k < watermarks->num_wm_sets; k++) {
5352 if (dep_sclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_eng_clk_in_khz / 10 &&
5353 dep_sclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_eng_clk_in_khz / 10 &&
5354 dep_mclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_mem_clk_in_khz / 10 &&
5355 dep_mclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_mem_clk_in_khz / 10) {
5356 valid_entry = true;
5357 table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k].wm_set_id;
5358 break;
5359 }
5360 }
5361 PP_ASSERT_WITH_CODE(valid_entry,
5362 "Clock is not in range of specified clock range for watermark from DAL! Using highest water mark set.",
5363 table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k - 1].wm_set_id);
5364 }
5365 }
5366
5367 return smu7_copy_bytes_to_smc(hwmgr,
5368 smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, DisplayWatermark),
5369 (uint8_t *)table->DisplayWatermark,
5370 sizeof(uint8_t) * SMU74_MAX_LEVELS_MEMORY * SMU74_MAX_LEVELS_GRAPHICS,
5371 SMC_RAM_END);
5372 }
5373
smu7_notify_cac_buffer_info(struct pp_hwmgr * hwmgr,uint32_t virtual_addr_low,uint32_t virtual_addr_hi,uint32_t mc_addr_low,uint32_t mc_addr_hi,uint32_t size)5374 static int smu7_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
5375 uint32_t virtual_addr_low,
5376 uint32_t virtual_addr_hi,
5377 uint32_t mc_addr_low,
5378 uint32_t mc_addr_hi,
5379 uint32_t size)
5380 {
5381 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5382
5383 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5384 data->soft_regs_start +
5385 smum_get_offsetof(hwmgr,
5386 SMU_SoftRegisters, DRAM_LOG_ADDR_H),
5387 mc_addr_hi);
5388
5389 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5390 data->soft_regs_start +
5391 smum_get_offsetof(hwmgr,
5392 SMU_SoftRegisters, DRAM_LOG_ADDR_L),
5393 mc_addr_low);
5394
5395 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5396 data->soft_regs_start +
5397 smum_get_offsetof(hwmgr,
5398 SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_H),
5399 virtual_addr_hi);
5400
5401 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5402 data->soft_regs_start +
5403 smum_get_offsetof(hwmgr,
5404 SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_L),
5405 virtual_addr_low);
5406
5407 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5408 data->soft_regs_start +
5409 smum_get_offsetof(hwmgr,
5410 SMU_SoftRegisters, DRAM_LOG_BUFF_SIZE),
5411 size);
5412 return 0;
5413 }
5414
smu7_get_max_high_clocks(struct pp_hwmgr * hwmgr,struct amd_pp_simple_clock_info * clocks)5415 static int smu7_get_max_high_clocks(struct pp_hwmgr *hwmgr,
5416 struct amd_pp_simple_clock_info *clocks)
5417 {
5418 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5419 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5420 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5421
5422 if (clocks == NULL)
5423 return -EINVAL;
5424
5425 clocks->memory_max_clock = mclk_table->count > 1 ?
5426 mclk_table->dpm_levels[mclk_table->count-1].value :
5427 mclk_table->dpm_levels[0].value;
5428 clocks->engine_max_clock = sclk_table->count > 1 ?
5429 sclk_table->dpm_levels[sclk_table->count-1].value :
5430 sclk_table->dpm_levels[0].value;
5431 return 0;
5432 }
5433
smu7_get_thermal_temperature_range(struct pp_hwmgr * hwmgr,struct PP_TemperatureRange * thermal_data)5434 static int smu7_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
5435 struct PP_TemperatureRange *thermal_data)
5436 {
5437 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5438 struct phm_ppt_v1_information *table_info =
5439 (struct phm_ppt_v1_information *)hwmgr->pptable;
5440
5441 memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange));
5442
5443 if (hwmgr->pp_table_version == PP_TABLE_V1)
5444 thermal_data->max = table_info->cac_dtp_table->usSoftwareShutdownTemp *
5445 PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5446 else if (hwmgr->pp_table_version == PP_TABLE_V0)
5447 thermal_data->max = data->thermal_temp_setting.temperature_shutdown *
5448 PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5449
5450 thermal_data->sw_ctf_threshold = thermal_data->max;
5451
5452 return 0;
5453 }
5454
smu7_check_clk_voltage_valid(struct pp_hwmgr * hwmgr,enum PP_OD_DPM_TABLE_COMMAND type,uint32_t clk,uint32_t voltage)5455 static bool smu7_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
5456 enum PP_OD_DPM_TABLE_COMMAND type,
5457 uint32_t clk,
5458 uint32_t voltage)
5459 {
5460 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5461
5462 if (voltage < data->odn_dpm_table.min_vddc || voltage > data->odn_dpm_table.max_vddc) {
5463 pr_info("OD voltage is out of range [%d - %d] mV\n",
5464 data->odn_dpm_table.min_vddc,
5465 data->odn_dpm_table.max_vddc);
5466 return false;
5467 }
5468
5469 if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5470 if (data->golden_dpm_table.sclk_table.dpm_levels[0].value > clk ||
5471 hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
5472 pr_info("OD engine clock is out of range [%d - %d] MHz\n",
5473 data->golden_dpm_table.sclk_table.dpm_levels[0].value/100,
5474 hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5475 return false;
5476 }
5477 } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5478 if (data->golden_dpm_table.mclk_table.dpm_levels[0].value > clk ||
5479 hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
5480 pr_info("OD memory clock is out of range [%d - %d] MHz\n",
5481 data->golden_dpm_table.mclk_table.dpm_levels[0].value/100,
5482 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5483 return false;
5484 }
5485 } else {
5486 return false;
5487 }
5488
5489 return true;
5490 }
5491
smu7_odn_edit_dpm_table(struct pp_hwmgr * hwmgr,enum PP_OD_DPM_TABLE_COMMAND type,long * input,uint32_t size)5492 static int smu7_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
5493 enum PP_OD_DPM_TABLE_COMMAND type,
5494 long *input, uint32_t size)
5495 {
5496 uint32_t i;
5497 struct phm_odn_clock_levels *podn_dpm_table_in_backend = NULL;
5498 struct smu7_odn_clock_voltage_dependency_table *podn_vdd_dep_in_backend = NULL;
5499 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5500
5501 uint32_t input_clk;
5502 uint32_t input_vol;
5503 uint32_t input_level;
5504
5505 PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
5506 return -EINVAL);
5507
5508 if (!hwmgr->od_enabled) {
5509 pr_info("OverDrive feature not enabled\n");
5510 return -EINVAL;
5511 }
5512
5513 if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
5514 podn_dpm_table_in_backend = &data->odn_dpm_table.odn_core_clock_dpm_levels;
5515 podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_sclk;
5516 PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
5517 "Failed to get ODN SCLK and Voltage tables",
5518 return -EINVAL);
5519 } else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
5520 podn_dpm_table_in_backend = &data->odn_dpm_table.odn_memory_clock_dpm_levels;
5521 podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_mclk;
5522
5523 PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
5524 "Failed to get ODN MCLK and Voltage tables",
5525 return -EINVAL);
5526 } else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
5527 smu7_odn_initial_default_setting(hwmgr);
5528 return 0;
5529 } else if (PP_OD_COMMIT_DPM_TABLE == type) {
5530 smu7_check_dpm_table_updated(hwmgr);
5531 return 0;
5532 } else {
5533 return -EINVAL;
5534 }
5535
5536 for (i = 0; i < size; i += 3) {
5537 if (i + 3 > size || input[i] >= podn_dpm_table_in_backend->num_of_pl) {
5538 pr_info("invalid clock voltage input \n");
5539 return 0;
5540 }
5541 input_level = input[i];
5542 input_clk = input[i+1] * 100;
5543 input_vol = input[i+2];
5544
5545 if (smu7_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
5546 podn_dpm_table_in_backend->entries[input_level].clock = input_clk;
5547 podn_vdd_dep_in_backend->entries[input_level].clk = input_clk;
5548 podn_dpm_table_in_backend->entries[input_level].vddc = input_vol;
5549 podn_vdd_dep_in_backend->entries[input_level].vddc = input_vol;
5550 podn_vdd_dep_in_backend->entries[input_level].vddgfx = input_vol;
5551 } else {
5552 return -EINVAL;
5553 }
5554 }
5555
5556 return 0;
5557 }
5558
smu7_get_power_profile_mode(struct pp_hwmgr * hwmgr,char * buf)5559 static int smu7_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
5560 {
5561 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5562 uint32_t i, size = 0;
5563 uint32_t len;
5564
5565 static const char *title[8] = {"NUM",
5566 "MODE_NAME",
5567 "SCLK_UP_HYST",
5568 "SCLK_DOWN_HYST",
5569 "SCLK_ACTIVE_LEVEL",
5570 "MCLK_UP_HYST",
5571 "MCLK_DOWN_HYST",
5572 "MCLK_ACTIVE_LEVEL"};
5573
5574 if (!buf)
5575 return -EINVAL;
5576
5577 phm_get_sysfs_buf(&buf, &size);
5578
5579 size += sysfs_emit_at(buf, size, "%s %16s %16s %16s %16s %16s %16s %16s\n",
5580 title[0], title[1], title[2], title[3],
5581 title[4], title[5], title[6], title[7]);
5582
5583 len = ARRAY_SIZE(smu7_profiling);
5584
5585 for (i = 0; i < len; i++) {
5586 if (i == hwmgr->power_profile_mode) {
5587 size += sysfs_emit_at(buf, size, "%3d %14s %s: %8d %16d %16d %16d %16d %16d\n",
5588 i, amdgpu_pp_profile_name[i], "*",
5589 data->current_profile_setting.sclk_up_hyst,
5590 data->current_profile_setting.sclk_down_hyst,
5591 data->current_profile_setting.sclk_activity,
5592 data->current_profile_setting.mclk_up_hyst,
5593 data->current_profile_setting.mclk_down_hyst,
5594 data->current_profile_setting.mclk_activity);
5595 continue;
5596 }
5597 if (smu7_profiling[i].bupdate_sclk)
5598 size += sysfs_emit_at(buf, size, "%3d %16s: %8d %16d %16d ",
5599 i, amdgpu_pp_profile_name[i], smu7_profiling[i].sclk_up_hyst,
5600 smu7_profiling[i].sclk_down_hyst,
5601 smu7_profiling[i].sclk_activity);
5602 else
5603 size += sysfs_emit_at(buf, size, "%3d %16s: %8s %16s %16s ",
5604 i, amdgpu_pp_profile_name[i], "-", "-", "-");
5605
5606 if (smu7_profiling[i].bupdate_mclk)
5607 size += sysfs_emit_at(buf, size, "%16d %16d %16d\n",
5608 smu7_profiling[i].mclk_up_hyst,
5609 smu7_profiling[i].mclk_down_hyst,
5610 smu7_profiling[i].mclk_activity);
5611 else
5612 size += sysfs_emit_at(buf, size, "%16s %16s %16s\n",
5613 "-", "-", "-");
5614 }
5615
5616 return size;
5617 }
5618
smu7_patch_compute_profile_mode(struct pp_hwmgr * hwmgr,enum PP_SMC_POWER_PROFILE requst)5619 static void smu7_patch_compute_profile_mode(struct pp_hwmgr *hwmgr,
5620 enum PP_SMC_POWER_PROFILE requst)
5621 {
5622 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5623 uint32_t tmp, level;
5624
5625 if (requst == PP_SMC_POWER_PROFILE_COMPUTE) {
5626 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
5627 level = 0;
5628 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
5629 while (tmp >>= 1)
5630 level++;
5631 if (level > 0)
5632 smu7_force_clock_level(hwmgr, PP_SCLK, 3 << (level-1));
5633 }
5634 } else if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE) {
5635 smu7_force_clock_level(hwmgr, PP_SCLK, data->dpm_level_enable_mask.sclk_dpm_enable_mask);
5636 }
5637 }
5638
smu7_set_power_profile_mode(struct pp_hwmgr * hwmgr,long * input,uint32_t size)5639 static int smu7_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
5640 {
5641 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5642 struct profile_mode_setting tmp;
5643 enum PP_SMC_POWER_PROFILE mode;
5644
5645 if (input == NULL)
5646 return -EINVAL;
5647
5648 mode = input[size];
5649 switch (mode) {
5650 case PP_SMC_POWER_PROFILE_CUSTOM:
5651 if (size != 8 && size != 0)
5652 return -EINVAL;
5653 /* If only CUSTOM is passed in, use the saved values. Check
5654 * that we actually have a CUSTOM profile by ensuring that
5655 * the "use sclk" or the "use mclk" bits are set
5656 */
5657 tmp = smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM];
5658 if (size == 0) {
5659 if (tmp.bupdate_sclk == 0 && tmp.bupdate_mclk == 0)
5660 return -EINVAL;
5661 } else {
5662 tmp.bupdate_sclk = input[0];
5663 tmp.sclk_up_hyst = input[1];
5664 tmp.sclk_down_hyst = input[2];
5665 tmp.sclk_activity = input[3];
5666 tmp.bupdate_mclk = input[4];
5667 tmp.mclk_up_hyst = input[5];
5668 tmp.mclk_down_hyst = input[6];
5669 tmp.mclk_activity = input[7];
5670 smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM] = tmp;
5671 }
5672 if (!smum_update_dpm_settings(hwmgr, &tmp)) {
5673 memcpy(&data->current_profile_setting, &tmp, sizeof(struct profile_mode_setting));
5674 hwmgr->power_profile_mode = mode;
5675 }
5676 break;
5677 case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
5678 case PP_SMC_POWER_PROFILE_POWERSAVING:
5679 case PP_SMC_POWER_PROFILE_VIDEO:
5680 case PP_SMC_POWER_PROFILE_VR:
5681 case PP_SMC_POWER_PROFILE_COMPUTE:
5682 if (mode == hwmgr->power_profile_mode)
5683 return 0;
5684
5685 memcpy(&tmp, &smu7_profiling[mode], sizeof(struct profile_mode_setting));
5686 if (!smum_update_dpm_settings(hwmgr, &tmp)) {
5687 if (tmp.bupdate_sclk) {
5688 data->current_profile_setting.bupdate_sclk = tmp.bupdate_sclk;
5689 data->current_profile_setting.sclk_up_hyst = tmp.sclk_up_hyst;
5690 data->current_profile_setting.sclk_down_hyst = tmp.sclk_down_hyst;
5691 data->current_profile_setting.sclk_activity = tmp.sclk_activity;
5692 }
5693 if (tmp.bupdate_mclk) {
5694 data->current_profile_setting.bupdate_mclk = tmp.bupdate_mclk;
5695 data->current_profile_setting.mclk_up_hyst = tmp.mclk_up_hyst;
5696 data->current_profile_setting.mclk_down_hyst = tmp.mclk_down_hyst;
5697 data->current_profile_setting.mclk_activity = tmp.mclk_activity;
5698 }
5699 smu7_patch_compute_profile_mode(hwmgr, mode);
5700 hwmgr->power_profile_mode = mode;
5701 }
5702 break;
5703 default:
5704 return -EINVAL;
5705 }
5706
5707 return 0;
5708 }
5709
smu7_get_performance_level(struct pp_hwmgr * hwmgr,const struct pp_hw_power_state * state,PHM_PerformanceLevelDesignation designation,uint32_t index,PHM_PerformanceLevel * level)5710 static int smu7_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
5711 PHM_PerformanceLevelDesignation designation, uint32_t index,
5712 PHM_PerformanceLevel *level)
5713 {
5714 const struct smu7_power_state *ps;
5715 uint32_t i;
5716
5717 if (level == NULL || hwmgr == NULL || state == NULL)
5718 return -EINVAL;
5719
5720 ps = cast_const_phw_smu7_power_state(state);
5721
5722 i = index > ps->performance_level_count - 1 ?
5723 ps->performance_level_count - 1 : index;
5724
5725 level->coreClock = ps->performance_levels[i].engine_clock;
5726 level->memory_clock = ps->performance_levels[i].memory_clock;
5727
5728 return 0;
5729 }
5730
smu7_power_off_asic(struct pp_hwmgr * hwmgr)5731 static int smu7_power_off_asic(struct pp_hwmgr *hwmgr)
5732 {
5733 int result;
5734
5735 result = smu7_disable_dpm_tasks(hwmgr);
5736 PP_ASSERT_WITH_CODE((0 == result),
5737 "[disable_dpm_tasks] Failed to disable DPM!",
5738 );
5739
5740 return result;
5741 }
5742
5743 static const struct pp_hwmgr_func smu7_hwmgr_funcs = {
5744 .backend_init = &smu7_hwmgr_backend_init,
5745 .backend_fini = &smu7_hwmgr_backend_fini,
5746 .asic_setup = &smu7_setup_asic_task,
5747 .dynamic_state_management_enable = &smu7_enable_dpm_tasks,
5748 .apply_state_adjust_rules = smu7_apply_state_adjust_rules,
5749 .force_dpm_level = &smu7_force_dpm_level,
5750 .power_state_set = smu7_set_power_state_tasks,
5751 .get_power_state_size = smu7_get_power_state_size,
5752 .get_mclk = smu7_dpm_get_mclk,
5753 .get_sclk = smu7_dpm_get_sclk,
5754 .patch_boot_state = smu7_dpm_patch_boot_state,
5755 .get_pp_table_entry = smu7_get_pp_table_entry,
5756 .get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries,
5757 .powerdown_uvd = smu7_powerdown_uvd,
5758 .powergate_uvd = smu7_powergate_uvd,
5759 .powergate_vce = smu7_powergate_vce,
5760 .disable_clock_power_gating = smu7_disable_clock_power_gating,
5761 .update_clock_gatings = smu7_update_clock_gatings,
5762 .notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment,
5763 .display_config_changed = smu7_display_configuration_changed_task,
5764 .set_max_fan_pwm_output = smu7_set_max_fan_pwm_output,
5765 .set_max_fan_rpm_output = smu7_set_max_fan_rpm_output,
5766 .stop_thermal_controller = smu7_thermal_stop_thermal_controller,
5767 .get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info,
5768 .get_fan_speed_pwm = smu7_fan_ctrl_get_fan_speed_pwm,
5769 .set_fan_speed_pwm = smu7_fan_ctrl_set_fan_speed_pwm,
5770 .reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default,
5771 .get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm,
5772 .set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm,
5773 .uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller,
5774 .register_irq_handlers = smu7_register_irq_handlers,
5775 .check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration,
5776 .check_states_equal = smu7_check_states_equal,
5777 .set_fan_control_mode = smu7_set_fan_control_mode,
5778 .get_fan_control_mode = smu7_get_fan_control_mode,
5779 .force_clock_level = smu7_force_clock_level,
5780 .print_clock_levels = smu7_print_clock_levels,
5781 .powergate_gfx = smu7_powergate_gfx,
5782 .get_sclk_od = smu7_get_sclk_od,
5783 .set_sclk_od = smu7_set_sclk_od,
5784 .get_mclk_od = smu7_get_mclk_od,
5785 .set_mclk_od = smu7_set_mclk_od,
5786 .get_clock_by_type = smu7_get_clock_by_type,
5787 .get_clock_by_type_with_latency = smu7_get_clock_by_type_with_latency,
5788 .set_watermarks_for_clocks_ranges = smu7_set_watermarks_for_clocks_ranges,
5789 .read_sensor = smu7_read_sensor,
5790 .dynamic_state_management_disable = smu7_disable_dpm_tasks,
5791 .avfs_control = smu7_avfs_control,
5792 .disable_smc_firmware_ctf = smu7_thermal_disable_alert,
5793 .start_thermal_controller = smu7_start_thermal_controller,
5794 .notify_cac_buffer_info = smu7_notify_cac_buffer_info,
5795 .get_max_high_clocks = smu7_get_max_high_clocks,
5796 .get_thermal_temperature_range = smu7_get_thermal_temperature_range,
5797 .odn_edit_dpm_table = smu7_odn_edit_dpm_table,
5798 .set_power_limit = smu7_set_power_limit,
5799 .get_power_profile_mode = smu7_get_power_profile_mode,
5800 .set_power_profile_mode = smu7_set_power_profile_mode,
5801 .get_performance_level = smu7_get_performance_level,
5802 .get_bamaco_support = smu7_get_bamaco_support,
5803 .get_asic_baco_state = smu7_baco_get_state,
5804 .set_asic_baco_state = smu7_baco_set_state,
5805 .power_off_asic = smu7_power_off_asic,
5806 };
5807
smu7_get_sleep_divider_id_from_clock(uint32_t clock,uint32_t clock_insr)5808 uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock,
5809 uint32_t clock_insr)
5810 {
5811 uint8_t i;
5812 uint32_t temp;
5813 uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
5814
5815 PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
5816 for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
5817 temp = clock >> i;
5818
5819 if (temp >= min || i == 0)
5820 break;
5821 }
5822 return i;
5823 }
5824
smu7_init_function_pointers(struct pp_hwmgr * hwmgr)5825 int smu7_init_function_pointers(struct pp_hwmgr *hwmgr)
5826 {
5827 hwmgr->hwmgr_func = &smu7_hwmgr_funcs;
5828 if (hwmgr->pp_table_version == PP_TABLE_V0)
5829 hwmgr->pptable_func = &pptable_funcs;
5830 else if (hwmgr->pp_table_version == PP_TABLE_V1)
5831 hwmgr->pptable_func = &pptable_v1_0_funcs;
5832
5833 return 0;
5834 }
5835