xref: /linux/arch/mips/kernel/smp.c (revision 67faad74352d1ce0c1f411f92fdb1e0c0f3c9380)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Copyright (C) 2000, 2001 Kanoj Sarcar
5  * Copyright (C) 2000, 2001 Ralf Baechle
6  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
7  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
8  */
9 #include <linux/cache.h>
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/profile.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/threads.h>
17 #include <linux/export.h>
18 #include <linux/time.h>
19 #include <linux/timex.h>
20 #include <linux/sched/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/err.h>
24 #include <linux/ftrace.h>
25 #include <linux/irqdomain.h>
26 #include <linux/of.h>
27 #include <linux/of_irq.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/cpu.h>
31 #include <asm/ginvt.h>
32 #include <asm/processor.h>
33 #include <asm/idle.h>
34 #include <asm/r4k-timer.h>
35 #include <asm/mips-cps.h>
36 #include <asm/mmu_context.h>
37 #include <asm/time.h>
38 #include <asm/setup.h>
39 #include <asm/maar.h>
40 
41 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
42 EXPORT_SYMBOL(__cpu_number_map);
43 
44 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
45 EXPORT_SYMBOL(__cpu_logical_map);
46 
47 /* Number of TCs (or siblings in Intel speak) per CPU core */
48 int smp_num_siblings = 1;
49 EXPORT_SYMBOL(smp_num_siblings);
50 
51 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
52 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
53 EXPORT_SYMBOL(cpu_sibling_map);
54 
55 /* representing the core map of multi-core chips of each logical CPU */
56 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
57 EXPORT_SYMBOL(cpu_core_map);
58 
59 #ifndef CONFIG_HOTPLUG_PARALLEL
60 static DECLARE_COMPLETION(cpu_starting);
61 static DECLARE_COMPLETION(cpu_running);
62 #endif
63 
64 /*
65  * A logical cpu mask containing only one VPE per core to
66  * reduce the number of IPIs on large MT systems.
67  */
68 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
69 EXPORT_SYMBOL(cpu_foreign_map);
70 
71 /* representing cpus for which sibling maps can be computed */
72 static cpumask_t cpu_sibling_setup_map;
73 
74 /* representing cpus for which core maps can be computed */
75 static cpumask_t cpu_core_setup_map;
76 
77 cpumask_t cpu_coherent_mask;
78 
79 struct cpumask __cpu_primary_thread_mask __read_mostly;
80 
81 unsigned int smp_max_threads __initdata = UINT_MAX;
82 
early_nosmt(char * s)83 static int __init early_nosmt(char *s)
84 {
85 	smp_max_threads = 1;
86 	return 0;
87 }
88 early_param("nosmt", early_nosmt);
89 
early_smt(char * s)90 static int __init early_smt(char *s)
91 {
92 	get_option(&s, &smp_max_threads);
93 	/* Ensure at least one thread is available */
94 	smp_max_threads = clamp_val(smp_max_threads, 1U, UINT_MAX);
95 	return 0;
96 }
97 early_param("smt", early_smt);
98 
99 #ifdef CONFIG_GENERIC_IRQ_IPI
100 static struct irq_desc *call_desc;
101 static struct irq_desc *sched_desc;
102 #endif
103 
set_cpu_sibling_map(int cpu)104 static inline void set_cpu_sibling_map(int cpu)
105 {
106 	int i;
107 
108 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
109 
110 	if (smp_num_siblings > 1) {
111 		for_each_cpu(i, &cpu_sibling_setup_map) {
112 			if (cpus_are_siblings(cpu, i)) {
113 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
114 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
115 			}
116 		}
117 	} else
118 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
119 }
120 
set_cpu_core_map(int cpu)121 static inline void set_cpu_core_map(int cpu)
122 {
123 	int i;
124 
125 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
126 
127 	for_each_cpu(i, &cpu_core_setup_map) {
128 		if (cpu_data[cpu].package == cpu_data[i].package) {
129 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
130 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
131 		}
132 	}
133 }
134 
135 /*
136  * Calculate a new cpu_foreign_map mask whenever a
137  * new cpu appears or disappears.
138  */
calculate_cpu_foreign_map(void)139 void calculate_cpu_foreign_map(void)
140 {
141 	int i, k, core_present;
142 	cpumask_t temp_foreign_map;
143 
144 	/* Re-calculate the mask */
145 	cpumask_clear(&temp_foreign_map);
146 	for_each_online_cpu(i) {
147 		core_present = 0;
148 		for_each_cpu(k, &temp_foreign_map)
149 			if (cpus_are_siblings(i, k))
150 				core_present = 1;
151 		if (!core_present)
152 			cpumask_set_cpu(i, &temp_foreign_map);
153 	}
154 
155 	for_each_online_cpu(i)
156 		cpumask_andnot(&cpu_foreign_map[i],
157 			       &temp_foreign_map, &cpu_sibling_map[i]);
158 }
159 
160 const struct plat_smp_ops *mp_ops;
161 EXPORT_SYMBOL(mp_ops);
162 
register_smp_ops(const struct plat_smp_ops * ops)163 void register_smp_ops(const struct plat_smp_ops *ops)
164 {
165 	if (mp_ops)
166 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
167 
168 	mp_ops = ops;
169 }
170 
171 #ifdef CONFIG_GENERIC_IRQ_IPI
mips_smp_send_ipi_single(int cpu,unsigned int action)172 void mips_smp_send_ipi_single(int cpu, unsigned int action)
173 {
174 	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
175 }
176 
mips_smp_send_ipi_mask(const struct cpumask * mask,unsigned int action)177 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
178 {
179 	unsigned long flags;
180 	unsigned int core;
181 	int cpu;
182 
183 	local_irq_save(flags);
184 
185 	switch (action) {
186 	case SMP_CALL_FUNCTION:
187 		__ipi_send_mask(call_desc, mask);
188 		break;
189 
190 	case SMP_RESCHEDULE_YOURSELF:
191 		__ipi_send_mask(sched_desc, mask);
192 		break;
193 
194 	default:
195 		BUG();
196 	}
197 
198 	if (mips_cpc_present()) {
199 		for_each_cpu(cpu, mask) {
200 			if (cpus_are_siblings(cpu, smp_processor_id()))
201 				continue;
202 
203 			core = cpu_core(&cpu_data[cpu]);
204 
205 			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
206 				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
207 				mips_cpc_lock_other(core);
208 				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
209 				mips_cpc_unlock_other();
210 				mips_cm_unlock_other();
211 			}
212 		}
213 	}
214 
215 	local_irq_restore(flags);
216 }
217 
218 
ipi_resched_interrupt(int irq,void * dev_id)219 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
220 {
221 	scheduler_ipi();
222 
223 	return IRQ_HANDLED;
224 }
225 
ipi_call_interrupt(int irq,void * dev_id)226 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
227 {
228 	generic_smp_call_function_interrupt();
229 
230 	return IRQ_HANDLED;
231 }
232 
smp_ipi_init_one(unsigned int virq,const char * name,irq_handler_t handler)233 static void smp_ipi_init_one(unsigned int virq, const char *name,
234 			     irq_handler_t handler)
235 {
236 	int ret;
237 
238 	irq_set_handler(virq, handle_percpu_irq);
239 	ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL);
240 	BUG_ON(ret);
241 }
242 
243 static unsigned int call_virq, sched_virq;
244 
mips_smp_ipi_allocate(const struct cpumask * mask)245 int mips_smp_ipi_allocate(const struct cpumask *mask)
246 {
247 	int virq;
248 	struct irq_domain *ipidomain;
249 	struct device_node *node;
250 
251 	node = of_irq_find_parent(of_root);
252 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
253 
254 	/*
255 	 * Some platforms have half DT setup. So if we found irq node but
256 	 * didn't find an ipidomain, try to search for one that is not in the
257 	 * DT.
258 	 */
259 	if (node && !ipidomain)
260 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
261 
262 	/*
263 	 * There are systems which use IPI IRQ domains, but only have one
264 	 * registered when some runtime condition is met. For example a Malta
265 	 * kernel may include support for GIC & CPU interrupt controller IPI
266 	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
267 	 * neither will be supported or registered.
268 	 *
269 	 * We only have a problem if we're actually using multiple CPUs so fail
270 	 * loudly if that is the case. Otherwise simply return, skipping IPI
271 	 * setup, if we're running with only a single CPU.
272 	 */
273 	if (!ipidomain) {
274 		BUG_ON(num_present_cpus() > 1);
275 		return 0;
276 	}
277 
278 	virq = irq_reserve_ipi(ipidomain, mask);
279 	BUG_ON(!virq);
280 	if (!call_virq)
281 		call_virq = virq;
282 
283 	virq = irq_reserve_ipi(ipidomain, mask);
284 	BUG_ON(!virq);
285 	if (!sched_virq)
286 		sched_virq = virq;
287 
288 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
289 		int cpu;
290 
291 		for_each_cpu(cpu, mask) {
292 			smp_ipi_init_one(call_virq + cpu, "IPI call",
293 					 ipi_call_interrupt);
294 			smp_ipi_init_one(sched_virq + cpu, "IPI resched",
295 					 ipi_resched_interrupt);
296 		}
297 	} else {
298 		smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt);
299 		smp_ipi_init_one(sched_virq, "IPI resched",
300 				 ipi_resched_interrupt);
301 	}
302 
303 	return 0;
304 }
305 
mips_smp_ipi_free(const struct cpumask * mask)306 int mips_smp_ipi_free(const struct cpumask *mask)
307 {
308 	struct irq_domain *ipidomain;
309 	struct device_node *node;
310 
311 	node = of_irq_find_parent(of_root);
312 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
313 
314 	/*
315 	 * Some platforms have half DT setup. So if we found irq node but
316 	 * didn't find an ipidomain, try to search for one that is not in the
317 	 * DT.
318 	 */
319 	if (node && !ipidomain)
320 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
321 
322 	BUG_ON(!ipidomain);
323 
324 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
325 		int cpu;
326 
327 		for_each_cpu(cpu, mask) {
328 			free_irq(call_virq + cpu, NULL);
329 			free_irq(sched_virq + cpu, NULL);
330 		}
331 	}
332 	irq_destroy_ipi(call_virq, mask);
333 	irq_destroy_ipi(sched_virq, mask);
334 	return 0;
335 }
336 
337 
mips_smp_ipi_init(void)338 static int __init mips_smp_ipi_init(void)
339 {
340 	if (num_possible_cpus() == 1)
341 		return 0;
342 
343 	mips_smp_ipi_allocate(cpu_possible_mask);
344 
345 	call_desc = irq_to_desc(call_virq);
346 	sched_desc = irq_to_desc(sched_virq);
347 
348 	return 0;
349 }
350 early_initcall(mips_smp_ipi_init);
351 #endif
352 
353 /*
354  * First C code run on the secondary CPUs after being started up by
355  * the master.
356  */
start_secondary(void)357 asmlinkage void start_secondary(void)
358 {
359 	unsigned int cpu = raw_smp_processor_id();
360 
361 	cpu_probe();
362 	per_cpu_trap_init(false);
363 	rcutree_report_cpu_starting(cpu);
364 	mips_clockevent_init();
365 	mp_ops->init_secondary();
366 	cpu_report();
367 	maar_init();
368 
369 	/*
370 	 * XXX parity protection should be folded in here when it's converted
371 	 * to an option instead of something based on .cputype
372 	 */
373 
374 #ifdef CONFIG_HOTPLUG_PARALLEL
375 	cpuhp_ap_sync_alive();
376 #endif
377 	calibrate_delay();
378 	cpu_data[cpu].udelay_val = loops_per_jiffy;
379 
380 	set_cpu_sibling_map(cpu);
381 	set_cpu_core_map(cpu);
382 
383 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
384 	notify_cpu_starting(cpu);
385 
386 #ifndef CONFIG_HOTPLUG_PARALLEL
387 	/* Notify boot CPU that we're starting & ready to sync counters */
388 	complete(&cpu_starting);
389 #endif
390 
391 	synchronise_count_slave(cpu);
392 
393 	/* The CPU is running and counters synchronised, now mark it online */
394 	set_cpu_online(cpu, true);
395 
396 	calculate_cpu_foreign_map();
397 
398 #ifndef CONFIG_HOTPLUG_PARALLEL
399 	/*
400 	 * Notify boot CPU that we're up & online and it can safely return
401 	 * from __cpu_up
402 	 */
403 	complete(&cpu_running);
404 #endif
405 
406 	/*
407 	 * irq will be enabled in ->smp_finish(), enabling it too early
408 	 * is dangerous.
409 	 */
410 	WARN_ON_ONCE(!irqs_disabled());
411 	mp_ops->smp_finish();
412 
413 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
414 }
415 
stop_this_cpu(void * dummy)416 static void stop_this_cpu(void *dummy)
417 {
418 	/*
419 	 * Remove this CPU:
420 	 */
421 
422 	set_cpu_online(smp_processor_id(), false);
423 	calculate_cpu_foreign_map();
424 	local_irq_disable();
425 	while (1);
426 }
427 
smp_send_stop(void)428 void smp_send_stop(void)
429 {
430 	smp_call_function(stop_this_cpu, NULL, 0);
431 }
432 
smp_cpus_done(unsigned int max_cpus)433 void __init smp_cpus_done(unsigned int max_cpus)
434 {
435 }
436 
437 /* called from main before smp_init() */
smp_prepare_cpus(unsigned int max_cpus)438 void __init smp_prepare_cpus(unsigned int max_cpus)
439 {
440 	init_new_context(current, &init_mm);
441 	current_thread_info()->cpu = 0;
442 	mp_ops->prepare_cpus(max_cpus);
443 	set_cpu_sibling_map(0);
444 	set_cpu_core_map(0);
445 	calculate_cpu_foreign_map();
446 #ifndef CONFIG_HOTPLUG_CPU
447 	init_cpu_present(cpu_possible_mask);
448 #endif
449 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
450 }
451 
452 /* preload SMP state for boot cpu */
smp_prepare_boot_cpu(void)453 void __init smp_prepare_boot_cpu(void)
454 {
455 	if (mp_ops->prepare_boot_cpu)
456 		mp_ops->prepare_boot_cpu();
457 	set_cpu_possible(0, true);
458 	set_cpu_online(0, true);
459 }
460 
461 #ifdef CONFIG_HOTPLUG_PARALLEL
arch_cpuhp_kick_ap_alive(unsigned int cpu,struct task_struct * tidle)462 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
463 {
464 	return mp_ops->boot_secondary(cpu, tidle);
465 }
466 #else
__cpu_up(unsigned int cpu,struct task_struct * tidle)467 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
468 {
469 	int err;
470 
471 	err = mp_ops->boot_secondary(cpu, tidle);
472 	if (err)
473 		return err;
474 
475 	/* Wait for CPU to start and be ready to sync counters */
476 	if (!wait_for_completion_timeout(&cpu_starting,
477 					 msecs_to_jiffies(1000))) {
478 		pr_crit("CPU%u: failed to start\n", cpu);
479 		return -EIO;
480 	}
481 
482 	/* Wait for CPU to finish startup & mark itself online before return */
483 	wait_for_completion(&cpu_running);
484 	return 0;
485 }
486 #endif
487 
488 #ifdef CONFIG_PROFILING
489 /* Not really SMP stuff ... */
setup_profiling_timer(unsigned int multiplier)490 int setup_profiling_timer(unsigned int multiplier)
491 {
492 	return 0;
493 }
494 #endif
495 
flush_tlb_all_ipi(void * info)496 static void flush_tlb_all_ipi(void *info)
497 {
498 	local_flush_tlb_all();
499 }
500 
flush_tlb_all(void)501 void flush_tlb_all(void)
502 {
503 	if (cpu_has_mmid) {
504 		htw_stop();
505 		ginvt_full();
506 		sync_ginv();
507 		instruction_hazard();
508 		htw_start();
509 		return;
510 	}
511 
512 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
513 }
514 
flush_tlb_mm_ipi(void * mm)515 static void flush_tlb_mm_ipi(void *mm)
516 {
517 	drop_mmu_context((struct mm_struct *)mm);
518 }
519 
520 /*
521  * Special Variant of smp_call_function for use by TLB functions:
522  *
523  *  o No return value
524  *  o collapses to normal function call on UP kernels
525  *  o collapses to normal function call on systems with a single shared
526  *    primary cache.
527  */
smp_on_other_tlbs(void (* func)(void * info),void * info)528 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
529 {
530 	smp_call_function(func, info, 1);
531 }
532 
smp_on_each_tlb(void (* func)(void * info),void * info)533 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
534 {
535 	preempt_disable();
536 
537 	smp_on_other_tlbs(func, info);
538 	func(info);
539 
540 	preempt_enable();
541 }
542 
543 /*
544  * The following tlb flush calls are invoked when old translations are
545  * being torn down, or pte attributes are changing. For single threaded
546  * address spaces, a new context is obtained on the current cpu, and tlb
547  * context on other cpus are invalidated to force a new context allocation
548  * at switch_mm time, should the mm ever be used on other cpus. For
549  * multithreaded address spaces, inter-CPU interrupts have to be sent.
550  * Another case where inter-CPU interrupts are required is when the target
551  * mm might be active on another cpu (eg debuggers doing the flushes on
552  * behalf of debugees, kswapd stealing pages from another process etc).
553  * Kanoj 07/00.
554  */
555 
flush_tlb_mm(struct mm_struct * mm)556 void flush_tlb_mm(struct mm_struct *mm)
557 {
558 	if (!mm)
559 		return;
560 
561 	if (atomic_read(&mm->mm_users) == 0)
562 		return;		/* happens as a result of exit_mmap() */
563 
564 	preempt_disable();
565 
566 	if (cpu_has_mmid) {
567 		/*
568 		 * No need to worry about other CPUs - the ginvt in
569 		 * drop_mmu_context() will be globalized.
570 		 */
571 	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
572 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
573 	} else {
574 		unsigned int cpu;
575 
576 		for_each_online_cpu(cpu) {
577 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
578 				set_cpu_context(cpu, mm, 0);
579 		}
580 	}
581 	drop_mmu_context(mm);
582 
583 	preempt_enable();
584 }
585 
586 struct flush_tlb_data {
587 	struct vm_area_struct *vma;
588 	unsigned long addr1;
589 	unsigned long addr2;
590 };
591 
flush_tlb_range_ipi(void * info)592 static void flush_tlb_range_ipi(void *info)
593 {
594 	struct flush_tlb_data *fd = info;
595 
596 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
597 }
598 
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)599 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
600 {
601 	struct mm_struct *mm = vma->vm_mm;
602 	unsigned long addr;
603 	u32 old_mmid;
604 
605 	preempt_disable();
606 	if (cpu_has_mmid) {
607 		htw_stop();
608 		old_mmid = read_c0_memorymapid();
609 		write_c0_memorymapid(cpu_asid(0, mm));
610 		mtc0_tlbw_hazard();
611 		addr = round_down(start, PAGE_SIZE * 2);
612 		end = round_up(end, PAGE_SIZE * 2);
613 		do {
614 			ginvt_va_mmid(addr);
615 			sync_ginv();
616 			addr += PAGE_SIZE * 2;
617 		} while (addr < end);
618 		write_c0_memorymapid(old_mmid);
619 		instruction_hazard();
620 		htw_start();
621 	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
622 		struct flush_tlb_data fd = {
623 			.vma = vma,
624 			.addr1 = start,
625 			.addr2 = end,
626 		};
627 
628 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
629 		local_flush_tlb_range(vma, start, end);
630 	} else {
631 		unsigned int cpu;
632 		int exec = vma->vm_flags & VM_EXEC;
633 
634 		for_each_online_cpu(cpu) {
635 			/*
636 			 * flush_cache_range() will only fully flush icache if
637 			 * the VMA is executable, otherwise we must invalidate
638 			 * ASID without it appearing to has_valid_asid() as if
639 			 * mm has been completely unused by that CPU.
640 			 */
641 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
642 				set_cpu_context(cpu, mm, !exec);
643 		}
644 		local_flush_tlb_range(vma, start, end);
645 	}
646 	preempt_enable();
647 }
648 
flush_tlb_kernel_range_ipi(void * info)649 static void flush_tlb_kernel_range_ipi(void *info)
650 {
651 	struct flush_tlb_data *fd = info;
652 
653 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
654 }
655 
flush_tlb_kernel_range(unsigned long start,unsigned long end)656 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
657 {
658 	struct flush_tlb_data fd = {
659 		.addr1 = start,
660 		.addr2 = end,
661 	};
662 
663 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
664 }
665 
flush_tlb_page_ipi(void * info)666 static void flush_tlb_page_ipi(void *info)
667 {
668 	struct flush_tlb_data *fd = info;
669 
670 	local_flush_tlb_page(fd->vma, fd->addr1);
671 }
672 
flush_tlb_page(struct vm_area_struct * vma,unsigned long page)673 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
674 {
675 	u32 old_mmid;
676 
677 	preempt_disable();
678 	if (cpu_has_mmid) {
679 		htw_stop();
680 		old_mmid = read_c0_memorymapid();
681 		write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
682 		mtc0_tlbw_hazard();
683 		ginvt_va_mmid(page);
684 		sync_ginv();
685 		write_c0_memorymapid(old_mmid);
686 		instruction_hazard();
687 		htw_start();
688 	} else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
689 		   (current->mm != vma->vm_mm)) {
690 		struct flush_tlb_data fd = {
691 			.vma = vma,
692 			.addr1 = page,
693 		};
694 
695 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
696 		local_flush_tlb_page(vma, page);
697 	} else {
698 		unsigned int cpu;
699 
700 		for_each_online_cpu(cpu) {
701 			/*
702 			 * flush_cache_page() only does partial flushes, so
703 			 * invalidate ASID without it appearing to
704 			 * has_valid_asid() as if mm has been completely unused
705 			 * by that CPU.
706 			 */
707 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
708 				set_cpu_context(cpu, vma->vm_mm, 1);
709 		}
710 		local_flush_tlb_page(vma, page);
711 	}
712 	preempt_enable();
713 }
714 
flush_tlb_one_ipi(void * info)715 static void flush_tlb_one_ipi(void *info)
716 {
717 	unsigned long vaddr = (unsigned long) info;
718 
719 	local_flush_tlb_one(vaddr);
720 }
721 
flush_tlb_one(unsigned long vaddr)722 void flush_tlb_one(unsigned long vaddr)
723 {
724 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
725 }
726 
727 EXPORT_SYMBOL(flush_tlb_page);
728 EXPORT_SYMBOL(flush_tlb_one);
729 
730 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)731 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
732 {
733 	if (mp_ops->cleanup_dead_cpu)
734 		mp_ops->cleanup_dead_cpu(cpu);
735 }
736 #endif
737 
738 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
739 
tick_broadcast_callee(void * info)740 static void tick_broadcast_callee(void *info)
741 {
742 	tick_receive_broadcast();
743 }
744 
745 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) =
746 	CSD_INIT(tick_broadcast_callee, NULL);
747 
tick_broadcast(const struct cpumask * mask)748 void tick_broadcast(const struct cpumask *mask)
749 {
750 	call_single_data_t *csd;
751 	int cpu;
752 
753 	for_each_cpu(cpu, mask) {
754 		csd = &per_cpu(tick_broadcast_csd, cpu);
755 		smp_call_function_single_async(cpu, csd);
756 	}
757 }
758 
759 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
760