1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * smc91x.c
4 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5 *
6 * Copyright (C) 1996 by Erik Stahlman
7 * Copyright (C) 2001 Standard Microsystems Corporation
8 * Developed by Simple Network Magic Corporation
9 * Copyright (C) 2003 Monta Vista Software, Inc.
10 * Unified SMC91x driver by Nicolas Pitre
11 *
12 * Arguments:
13 * io = for the base address
14 * irq = for the IRQ
15 * nowait = 0 for normal wait states, 1 eliminates additional wait states
16 *
17 * original author:
18 * Erik Stahlman <erik@vt.edu>
19 *
20 * hardware multicast code:
21 * Peter Cammaert <pc@denkart.be>
22 *
23 * contributors:
24 * Daris A Nevil <dnevil@snmc.com>
25 * Nicolas Pitre <nico@fluxnic.net>
26 * Russell King <rmk@arm.linux.org.uk>
27 *
28 * History:
29 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
30 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
31 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
32 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
33 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
34 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
35 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
36 * more bus abstraction, big cleanup, etc.
37 * 29/09/03 Russell King - add driver model support
38 * - ethtool support
39 * - convert to use generic MII interface
40 * - add link up/down notification
41 * - don't try to handle full negotiation in
42 * smc_phy_configure
43 * - clean up (and fix stack overrun) in PHY
44 * MII read/write functions
45 * 22/09/04 Nicolas Pitre big update (see commit log for details)
46 */
47 static const char version[] =
48 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
49
50 /* Debugging level */
51 #ifndef SMC_DEBUG
52 #define SMC_DEBUG 0
53 #endif
54
55
56 #include <linux/module.h>
57 #include <linux/kernel.h>
58 #include <linux/sched.h>
59 #include <linux/delay.h>
60 #include <linux/gpio/consumer.h>
61 #include <linux/interrupt.h>
62 #include <linux/irq.h>
63 #include <linux/errno.h>
64 #include <linux/ioport.h>
65 #include <linux/crc32.h>
66 #include <linux/platform_device.h>
67 #include <linux/spinlock.h>
68 #include <linux/ethtool.h>
69 #include <linux/mii.h>
70 #include <linux/workqueue.h>
71 #include <linux/of.h>
72 #include <linux/of_device.h>
73
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77
78 #include <asm/io.h>
79
80 #include "smc91x.h"
81
82 #if defined(CONFIG_ASSABET_NEPONSET)
83 #include <mach/assabet.h>
84 #include <mach/neponset.h>
85 #endif
86
87 #ifndef SMC_NOWAIT
88 # define SMC_NOWAIT 0
89 #endif
90 static int nowait = SMC_NOWAIT;
91 module_param(nowait, int, 0400);
92 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
93
94 /*
95 * Transmit timeout, default 5 seconds.
96 */
97 static int watchdog = 1000;
98 module_param(watchdog, int, 0400);
99 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
100
101 MODULE_DESCRIPTION("SMC 91C9x/91C1xxx Ethernet driver");
102 MODULE_LICENSE("GPL");
103 MODULE_ALIAS("platform:smc91x");
104
105 /*
106 * The internal workings of the driver. If you are changing anything
107 * here with the SMC stuff, you should have the datasheet and know
108 * what you are doing.
109 */
110 #define CARDNAME "smc91x"
111
112 /*
113 * Use power-down feature of the chip
114 */
115 #define POWER_DOWN 1
116
117 /*
118 * Wait time for memory to be free. This probably shouldn't be
119 * tuned that much, as waiting for this means nothing else happens
120 * in the system
121 */
122 #define MEMORY_WAIT_TIME 16
123
124 /*
125 * The maximum number of processing loops allowed for each call to the
126 * IRQ handler.
127 */
128 #define MAX_IRQ_LOOPS 8
129
130 /*
131 * This selects whether TX packets are sent one by one to the SMC91x internal
132 * memory and throttled until transmission completes. This may prevent
133 * RX overruns a litle by keeping much of the memory free for RX packets
134 * but to the expense of reduced TX throughput and increased IRQ overhead.
135 * Note this is not a cure for a too slow data bus or too high IRQ latency.
136 */
137 #define THROTTLE_TX_PKTS 0
138
139 /*
140 * The MII clock high/low times. 2x this number gives the MII clock period
141 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
142 */
143 #define MII_DELAY 1
144
145 #define DBG(n, dev, fmt, ...) \
146 do { \
147 if (SMC_DEBUG >= (n)) \
148 netdev_dbg(dev, fmt, ##__VA_ARGS__); \
149 } while (0)
150
151 #define PRINTK(dev, fmt, ...) \
152 do { \
153 if (SMC_DEBUG > 0) \
154 netdev_info(dev, fmt, ##__VA_ARGS__); \
155 else \
156 netdev_dbg(dev, fmt, ##__VA_ARGS__); \
157 } while (0)
158
159 #if SMC_DEBUG > 3
PRINT_PKT(u_char * buf,int length)160 static void PRINT_PKT(u_char *buf, int length)
161 {
162 int i;
163 int remainder;
164 int lines;
165
166 lines = length / 16;
167 remainder = length % 16;
168
169 for (i = 0; i < lines ; i ++) {
170 int cur;
171 printk(KERN_DEBUG);
172 for (cur = 0; cur < 8; cur++) {
173 u_char a, b;
174 a = *buf++;
175 b = *buf++;
176 pr_cont("%02x%02x ", a, b);
177 }
178 pr_cont("\n");
179 }
180 printk(KERN_DEBUG);
181 for (i = 0; i < remainder/2 ; i++) {
182 u_char a, b;
183 a = *buf++;
184 b = *buf++;
185 pr_cont("%02x%02x ", a, b);
186 }
187 pr_cont("\n");
188 }
189 #else
PRINT_PKT(u_char * buf,int length)190 static inline void PRINT_PKT(u_char *buf, int length) { }
191 #endif
192
193
194 /* this enables an interrupt in the interrupt mask register */
195 #define SMC_ENABLE_INT(lp, x) do { \
196 unsigned char mask; \
197 unsigned long smc_enable_flags; \
198 spin_lock_irqsave(&lp->lock, smc_enable_flags); \
199 mask = SMC_GET_INT_MASK(lp); \
200 mask |= (x); \
201 SMC_SET_INT_MASK(lp, mask); \
202 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \
203 } while (0)
204
205 /* this disables an interrupt from the interrupt mask register */
206 #define SMC_DISABLE_INT(lp, x) do { \
207 unsigned char mask; \
208 unsigned long smc_disable_flags; \
209 spin_lock_irqsave(&lp->lock, smc_disable_flags); \
210 mask = SMC_GET_INT_MASK(lp); \
211 mask &= ~(x); \
212 SMC_SET_INT_MASK(lp, mask); \
213 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \
214 } while (0)
215
216 /*
217 * Wait while MMU is busy. This is usually in the order of a few nanosecs
218 * if at all, but let's avoid deadlocking the system if the hardware
219 * decides to go south.
220 */
221 #define SMC_WAIT_MMU_BUSY(lp) do { \
222 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \
223 unsigned long timeout = jiffies + 2; \
224 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \
225 if (time_after(jiffies, timeout)) { \
226 netdev_dbg(dev, "timeout %s line %d\n", \
227 __FILE__, __LINE__); \
228 break; \
229 } \
230 cpu_relax(); \
231 } \
232 } \
233 } while (0)
234
235
236 /*
237 * this does a soft reset on the device
238 */
smc_reset(struct net_device * dev)239 static void smc_reset(struct net_device *dev)
240 {
241 struct smc_local *lp = netdev_priv(dev);
242 void __iomem *ioaddr = lp->base;
243 unsigned int ctl, cfg;
244 struct sk_buff *pending_skb;
245
246 DBG(2, dev, "%s\n", __func__);
247
248 /* Disable all interrupts, block TX tasklet */
249 spin_lock_irq(&lp->lock);
250 SMC_SELECT_BANK(lp, 2);
251 SMC_SET_INT_MASK(lp, 0);
252 pending_skb = lp->pending_tx_skb;
253 lp->pending_tx_skb = NULL;
254 spin_unlock_irq(&lp->lock);
255
256 /* free any pending tx skb */
257 if (pending_skb) {
258 dev_kfree_skb(pending_skb);
259 dev->stats.tx_errors++;
260 dev->stats.tx_aborted_errors++;
261 }
262
263 /*
264 * This resets the registers mostly to defaults, but doesn't
265 * affect EEPROM. That seems unnecessary
266 */
267 SMC_SELECT_BANK(lp, 0);
268 SMC_SET_RCR(lp, RCR_SOFTRST);
269
270 /*
271 * Setup the Configuration Register
272 * This is necessary because the CONFIG_REG is not affected
273 * by a soft reset
274 */
275 SMC_SELECT_BANK(lp, 1);
276
277 cfg = CONFIG_DEFAULT;
278
279 /*
280 * Setup for fast accesses if requested. If the card/system
281 * can't handle it then there will be no recovery except for
282 * a hard reset or power cycle
283 */
284 if (lp->cfg.flags & SMC91X_NOWAIT)
285 cfg |= CONFIG_NO_WAIT;
286
287 /*
288 * Release from possible power-down state
289 * Configuration register is not affected by Soft Reset
290 */
291 cfg |= CONFIG_EPH_POWER_EN;
292
293 SMC_SET_CONFIG(lp, cfg);
294
295 /* this should pause enough for the chip to be happy */
296 /*
297 * elaborate? What does the chip _need_? --jgarzik
298 *
299 * This seems to be undocumented, but something the original
300 * driver(s) have always done. Suspect undocumented timing
301 * info/determined empirically. --rmk
302 */
303 udelay(1);
304
305 /* Disable transmit and receive functionality */
306 SMC_SELECT_BANK(lp, 0);
307 SMC_SET_RCR(lp, RCR_CLEAR);
308 SMC_SET_TCR(lp, TCR_CLEAR);
309
310 SMC_SELECT_BANK(lp, 1);
311 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
312
313 /*
314 * Set the control register to automatically release successfully
315 * transmitted packets, to make the best use out of our limited
316 * memory
317 */
318 if(!THROTTLE_TX_PKTS)
319 ctl |= CTL_AUTO_RELEASE;
320 else
321 ctl &= ~CTL_AUTO_RELEASE;
322 SMC_SET_CTL(lp, ctl);
323
324 /* Reset the MMU */
325 SMC_SELECT_BANK(lp, 2);
326 SMC_SET_MMU_CMD(lp, MC_RESET);
327 SMC_WAIT_MMU_BUSY(lp);
328 }
329
330 /*
331 * Enable Interrupts, Receive, and Transmit
332 */
smc_enable(struct net_device * dev)333 static void smc_enable(struct net_device *dev)
334 {
335 struct smc_local *lp = netdev_priv(dev);
336 void __iomem *ioaddr = lp->base;
337 int mask;
338
339 DBG(2, dev, "%s\n", __func__);
340
341 /* see the header file for options in TCR/RCR DEFAULT */
342 SMC_SELECT_BANK(lp, 0);
343 SMC_SET_TCR(lp, lp->tcr_cur_mode);
344 SMC_SET_RCR(lp, lp->rcr_cur_mode);
345
346 SMC_SELECT_BANK(lp, 1);
347 SMC_SET_MAC_ADDR(lp, dev->dev_addr);
348
349 /* now, enable interrupts */
350 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
351 if (lp->version >= (CHIP_91100 << 4))
352 mask |= IM_MDINT;
353 SMC_SELECT_BANK(lp, 2);
354 SMC_SET_INT_MASK(lp, mask);
355
356 /*
357 * From this point the register bank must _NOT_ be switched away
358 * to something else than bank 2 without proper locking against
359 * races with any tasklet or interrupt handlers until smc_shutdown()
360 * or smc_reset() is called.
361 */
362 }
363
364 /*
365 * this puts the device in an inactive state
366 */
smc_shutdown(struct net_device * dev)367 static void smc_shutdown(struct net_device *dev)
368 {
369 struct smc_local *lp = netdev_priv(dev);
370 void __iomem *ioaddr = lp->base;
371 struct sk_buff *pending_skb;
372
373 DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
374
375 /* no more interrupts for me */
376 spin_lock_irq(&lp->lock);
377 SMC_SELECT_BANK(lp, 2);
378 SMC_SET_INT_MASK(lp, 0);
379 pending_skb = lp->pending_tx_skb;
380 lp->pending_tx_skb = NULL;
381 spin_unlock_irq(&lp->lock);
382 dev_kfree_skb(pending_skb);
383
384 /* and tell the card to stay away from that nasty outside world */
385 SMC_SELECT_BANK(lp, 0);
386 SMC_SET_RCR(lp, RCR_CLEAR);
387 SMC_SET_TCR(lp, TCR_CLEAR);
388
389 #ifdef POWER_DOWN
390 /* finally, shut the chip down */
391 SMC_SELECT_BANK(lp, 1);
392 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
393 #endif
394 }
395
396 /*
397 * This is the procedure to handle the receipt of a packet.
398 */
smc_rcv(struct net_device * dev)399 static inline void smc_rcv(struct net_device *dev)
400 {
401 struct smc_local *lp = netdev_priv(dev);
402 void __iomem *ioaddr = lp->base;
403 unsigned int packet_number, status, packet_len;
404
405 DBG(3, dev, "%s\n", __func__);
406
407 packet_number = SMC_GET_RXFIFO(lp);
408 if (unlikely(packet_number & RXFIFO_REMPTY)) {
409 PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
410 return;
411 }
412
413 /* read from start of packet */
414 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
415
416 /* First two words are status and packet length */
417 SMC_GET_PKT_HDR(lp, status, packet_len);
418 packet_len &= 0x07ff; /* mask off top bits */
419 DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
420 packet_number, status, packet_len, packet_len);
421
422 back:
423 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
424 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
425 /* accept VLAN packets */
426 status &= ~RS_TOOLONG;
427 goto back;
428 }
429 if (packet_len < 6) {
430 /* bloody hardware */
431 netdev_err(dev, "fubar (rxlen %u status %x\n",
432 packet_len, status);
433 status |= RS_TOOSHORT;
434 }
435 SMC_WAIT_MMU_BUSY(lp);
436 SMC_SET_MMU_CMD(lp, MC_RELEASE);
437 dev->stats.rx_errors++;
438 if (status & RS_ALGNERR)
439 dev->stats.rx_frame_errors++;
440 if (status & (RS_TOOSHORT | RS_TOOLONG))
441 dev->stats.rx_length_errors++;
442 if (status & RS_BADCRC)
443 dev->stats.rx_crc_errors++;
444 } else {
445 struct sk_buff *skb;
446 unsigned char *data;
447 unsigned int data_len;
448
449 /* set multicast stats */
450 if (status & RS_MULTICAST)
451 dev->stats.multicast++;
452
453 /*
454 * Actual payload is packet_len - 6 (or 5 if odd byte).
455 * We want skb_reserve(2) and the final ctrl word
456 * (2 bytes, possibly containing the payload odd byte).
457 * Furthermore, we add 2 bytes to allow rounding up to
458 * multiple of 4 bytes on 32 bit buses.
459 * Hence packet_len - 6 + 2 + 2 + 2.
460 */
461 skb = netdev_alloc_skb(dev, packet_len);
462 if (unlikely(skb == NULL)) {
463 SMC_WAIT_MMU_BUSY(lp);
464 SMC_SET_MMU_CMD(lp, MC_RELEASE);
465 dev->stats.rx_dropped++;
466 return;
467 }
468
469 /* Align IP header to 32 bits */
470 skb_reserve(skb, 2);
471
472 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
473 if (lp->version == 0x90)
474 status |= RS_ODDFRAME;
475
476 /*
477 * If odd length: packet_len - 5,
478 * otherwise packet_len - 6.
479 * With the trailing ctrl byte it's packet_len - 4.
480 */
481 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
482 data = skb_put(skb, data_len);
483 SMC_PULL_DATA(lp, data, packet_len - 4);
484
485 SMC_WAIT_MMU_BUSY(lp);
486 SMC_SET_MMU_CMD(lp, MC_RELEASE);
487
488 PRINT_PKT(data, packet_len - 4);
489
490 skb->protocol = eth_type_trans(skb, dev);
491 netif_rx(skb);
492 dev->stats.rx_packets++;
493 dev->stats.rx_bytes += data_len;
494 }
495 }
496
497 #ifdef CONFIG_SMP
498 /*
499 * On SMP we have the following problem:
500 *
501 * A = smc_hardware_send_pkt()
502 * B = smc_hard_start_xmit()
503 * C = smc_interrupt()
504 *
505 * A and B can never be executed simultaneously. However, at least on UP,
506 * it is possible (and even desirable) for C to interrupt execution of
507 * A or B in order to have better RX reliability and avoid overruns.
508 * C, just like A and B, must have exclusive access to the chip and
509 * each of them must lock against any other concurrent access.
510 * Unfortunately this is not possible to have C suspend execution of A or
511 * B taking place on another CPU. On UP this is no an issue since A and B
512 * are run from softirq context and C from hard IRQ context, and there is
513 * no other CPU where concurrent access can happen.
514 * If ever there is a way to force at least B and C to always be executed
515 * on the same CPU then we could use read/write locks to protect against
516 * any other concurrent access and C would always interrupt B. But life
517 * isn't that easy in a SMP world...
518 */
519 #define smc_special_trylock(lock, flags) \
520 ({ \
521 int __ret; \
522 local_irq_save(flags); \
523 __ret = spin_trylock(lock); \
524 if (!__ret) \
525 local_irq_restore(flags); \
526 __ret; \
527 })
528 #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags)
529 #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags)
530 #else
531 #define smc_special_trylock(lock, flags) ((void)flags, true)
532 #define smc_special_lock(lock, flags) do { flags = 0; } while (0)
533 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
534 #endif
535
536 /*
537 * This is called to actually send a packet to the chip.
538 */
smc_hardware_send_pkt(struct tasklet_struct * t)539 static void smc_hardware_send_pkt(struct tasklet_struct *t)
540 {
541 struct smc_local *lp = from_tasklet(lp, t, tx_task);
542 struct net_device *dev = lp->dev;
543 void __iomem *ioaddr = lp->base;
544 struct sk_buff *skb;
545 unsigned int packet_no, len;
546 unsigned char *buf;
547 unsigned long flags;
548
549 DBG(3, dev, "%s\n", __func__);
550
551 if (!smc_special_trylock(&lp->lock, flags)) {
552 netif_stop_queue(dev);
553 tasklet_schedule(&lp->tx_task);
554 return;
555 }
556
557 skb = lp->pending_tx_skb;
558 if (unlikely(!skb)) {
559 smc_special_unlock(&lp->lock, flags);
560 return;
561 }
562 lp->pending_tx_skb = NULL;
563
564 packet_no = SMC_GET_AR(lp);
565 if (unlikely(packet_no & AR_FAILED)) {
566 netdev_err(dev, "Memory allocation failed.\n");
567 dev->stats.tx_errors++;
568 dev->stats.tx_fifo_errors++;
569 smc_special_unlock(&lp->lock, flags);
570 goto done;
571 }
572
573 /* point to the beginning of the packet */
574 SMC_SET_PN(lp, packet_no);
575 SMC_SET_PTR(lp, PTR_AUTOINC);
576
577 buf = skb->data;
578 len = skb->len;
579 DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
580 packet_no, len, len, buf);
581 PRINT_PKT(buf, len);
582
583 /*
584 * Send the packet length (+6 for status words, length, and ctl.
585 * The card will pad to 64 bytes with zeroes if packet is too small.
586 */
587 SMC_PUT_PKT_HDR(lp, 0, len + 6);
588
589 /* send the actual data */
590 SMC_PUSH_DATA(lp, buf, len & ~1);
591
592 /* Send final ctl word with the last byte if there is one */
593 SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
594 DATA_REG(lp));
595
596 /*
597 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
598 * have the effect of having at most one packet queued for TX
599 * in the chip's memory at all time.
600 *
601 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
602 * when memory allocation (MC_ALLOC) does not succeed right away.
603 */
604 if (THROTTLE_TX_PKTS)
605 netif_stop_queue(dev);
606
607 /* queue the packet for TX */
608 SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
609 smc_special_unlock(&lp->lock, flags);
610
611 netif_trans_update(dev);
612 dev->stats.tx_packets++;
613 dev->stats.tx_bytes += len;
614
615 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
616
617 done: if (!THROTTLE_TX_PKTS)
618 netif_wake_queue(dev);
619
620 dev_consume_skb_any(skb);
621 }
622
623 /*
624 * Since I am not sure if I will have enough room in the chip's ram
625 * to store the packet, I call this routine which either sends it
626 * now, or set the card to generates an interrupt when ready
627 * for the packet.
628 */
629 static netdev_tx_t
smc_hard_start_xmit(struct sk_buff * skb,struct net_device * dev)630 smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
631 {
632 struct smc_local *lp = netdev_priv(dev);
633 void __iomem *ioaddr = lp->base;
634 unsigned int numPages, poll_count, status;
635 unsigned long flags;
636
637 DBG(3, dev, "%s\n", __func__);
638
639 BUG_ON(lp->pending_tx_skb != NULL);
640
641 /*
642 * The MMU wants the number of pages to be the number of 256 bytes
643 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
644 *
645 * The 91C111 ignores the size bits, but earlier models don't.
646 *
647 * Pkt size for allocating is data length +6 (for additional status
648 * words, length and ctl)
649 *
650 * If odd size then last byte is included in ctl word.
651 */
652 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
653 if (unlikely(numPages > 7)) {
654 netdev_warn(dev, "Far too big packet error.\n");
655 dev->stats.tx_errors++;
656 dev->stats.tx_dropped++;
657 dev_kfree_skb_any(skb);
658 return NETDEV_TX_OK;
659 }
660
661 smc_special_lock(&lp->lock, flags);
662
663 /* now, try to allocate the memory */
664 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
665
666 /*
667 * Poll the chip for a short amount of time in case the
668 * allocation succeeds quickly.
669 */
670 poll_count = MEMORY_WAIT_TIME;
671 do {
672 status = SMC_GET_INT(lp);
673 if (status & IM_ALLOC_INT) {
674 SMC_ACK_INT(lp, IM_ALLOC_INT);
675 break;
676 }
677 } while (--poll_count);
678
679 smc_special_unlock(&lp->lock, flags);
680
681 lp->pending_tx_skb = skb;
682 if (!poll_count) {
683 /* oh well, wait until the chip finds memory later */
684 netif_stop_queue(dev);
685 DBG(2, dev, "TX memory allocation deferred.\n");
686 SMC_ENABLE_INT(lp, IM_ALLOC_INT);
687 } else {
688 /*
689 * Allocation succeeded: push packet to the chip's own memory
690 * immediately.
691 */
692 smc_hardware_send_pkt(&lp->tx_task);
693 }
694
695 return NETDEV_TX_OK;
696 }
697
698 /*
699 * This handles a TX interrupt, which is only called when:
700 * - a TX error occurred, or
701 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
702 */
smc_tx(struct net_device * dev)703 static void smc_tx(struct net_device *dev)
704 {
705 struct smc_local *lp = netdev_priv(dev);
706 void __iomem *ioaddr = lp->base;
707 unsigned int saved_packet, packet_no, tx_status;
708 unsigned int pkt_len __always_unused;
709
710 DBG(3, dev, "%s\n", __func__);
711
712 /* If the TX FIFO is empty then nothing to do */
713 packet_no = SMC_GET_TXFIFO(lp);
714 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
715 PRINTK(dev, "smc_tx with nothing on FIFO.\n");
716 return;
717 }
718
719 /* select packet to read from */
720 saved_packet = SMC_GET_PN(lp);
721 SMC_SET_PN(lp, packet_no);
722
723 /* read the first word (status word) from this packet */
724 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
725 SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
726 DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
727 tx_status, packet_no);
728
729 if (!(tx_status & ES_TX_SUC))
730 dev->stats.tx_errors++;
731
732 if (tx_status & ES_LOSTCARR)
733 dev->stats.tx_carrier_errors++;
734
735 if (tx_status & (ES_LATCOL | ES_16COL)) {
736 PRINTK(dev, "%s occurred on last xmit\n",
737 (tx_status & ES_LATCOL) ?
738 "late collision" : "too many collisions");
739 dev->stats.tx_window_errors++;
740 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
741 netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
742 }
743 }
744
745 /* kill the packet */
746 SMC_WAIT_MMU_BUSY(lp);
747 SMC_SET_MMU_CMD(lp, MC_FREEPKT);
748
749 /* Don't restore Packet Number Reg until busy bit is cleared */
750 SMC_WAIT_MMU_BUSY(lp);
751 SMC_SET_PN(lp, saved_packet);
752
753 /* re-enable transmit */
754 SMC_SELECT_BANK(lp, 0);
755 SMC_SET_TCR(lp, lp->tcr_cur_mode);
756 SMC_SELECT_BANK(lp, 2);
757 }
758
759
760 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
761
smc_mii_out(struct net_device * dev,unsigned int val,int bits)762 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
763 {
764 struct smc_local *lp = netdev_priv(dev);
765 void __iomem *ioaddr = lp->base;
766 unsigned int mii_reg, mask;
767
768 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
769 mii_reg |= MII_MDOE;
770
771 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
772 if (val & mask)
773 mii_reg |= MII_MDO;
774 else
775 mii_reg &= ~MII_MDO;
776
777 SMC_SET_MII(lp, mii_reg);
778 udelay(MII_DELAY);
779 SMC_SET_MII(lp, mii_reg | MII_MCLK);
780 udelay(MII_DELAY);
781 }
782 }
783
smc_mii_in(struct net_device * dev,int bits)784 static unsigned int smc_mii_in(struct net_device *dev, int bits)
785 {
786 struct smc_local *lp = netdev_priv(dev);
787 void __iomem *ioaddr = lp->base;
788 unsigned int mii_reg, mask, val;
789
790 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
791 SMC_SET_MII(lp, mii_reg);
792
793 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
794 if (SMC_GET_MII(lp) & MII_MDI)
795 val |= mask;
796
797 SMC_SET_MII(lp, mii_reg);
798 udelay(MII_DELAY);
799 SMC_SET_MII(lp, mii_reg | MII_MCLK);
800 udelay(MII_DELAY);
801 }
802
803 return val;
804 }
805
806 /*
807 * Reads a register from the MII Management serial interface
808 */
smc_phy_read(struct net_device * dev,int phyaddr,int phyreg)809 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
810 {
811 struct smc_local *lp = netdev_priv(dev);
812 void __iomem *ioaddr = lp->base;
813 unsigned int phydata;
814
815 SMC_SELECT_BANK(lp, 3);
816
817 /* Idle - 32 ones */
818 smc_mii_out(dev, 0xffffffff, 32);
819
820 /* Start code (01) + read (10) + phyaddr + phyreg */
821 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
822
823 /* Turnaround (2bits) + phydata */
824 phydata = smc_mii_in(dev, 18);
825
826 /* Return to idle state */
827 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
828
829 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
830 __func__, phyaddr, phyreg, phydata);
831
832 SMC_SELECT_BANK(lp, 2);
833 return phydata;
834 }
835
836 /*
837 * Writes a register to the MII Management serial interface
838 */
smc_phy_write(struct net_device * dev,int phyaddr,int phyreg,int phydata)839 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
840 int phydata)
841 {
842 struct smc_local *lp = netdev_priv(dev);
843 void __iomem *ioaddr = lp->base;
844
845 SMC_SELECT_BANK(lp, 3);
846
847 /* Idle - 32 ones */
848 smc_mii_out(dev, 0xffffffff, 32);
849
850 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
851 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
852
853 /* Return to idle state */
854 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
855
856 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
857 __func__, phyaddr, phyreg, phydata);
858
859 SMC_SELECT_BANK(lp, 2);
860 }
861
862 /*
863 * Finds and reports the PHY address
864 */
smc_phy_detect(struct net_device * dev)865 static void smc_phy_detect(struct net_device *dev)
866 {
867 struct smc_local *lp = netdev_priv(dev);
868 int phyaddr;
869
870 DBG(2, dev, "%s\n", __func__);
871
872 lp->phy_type = 0;
873
874 /*
875 * Scan all 32 PHY addresses if necessary, starting at
876 * PHY#1 to PHY#31, and then PHY#0 last.
877 */
878 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
879 unsigned int id1, id2;
880
881 /* Read the PHY identifiers */
882 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
883 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
884
885 DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
886 id1, id2);
887
888 /* Make sure it is a valid identifier */
889 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
890 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
891 /* Save the PHY's address */
892 lp->mii.phy_id = phyaddr & 31;
893 lp->phy_type = id1 << 16 | id2;
894 break;
895 }
896 }
897 }
898
899 /*
900 * Sets the PHY to a configuration as determined by the user
901 */
smc_phy_fixed(struct net_device * dev)902 static int smc_phy_fixed(struct net_device *dev)
903 {
904 struct smc_local *lp = netdev_priv(dev);
905 void __iomem *ioaddr = lp->base;
906 int phyaddr = lp->mii.phy_id;
907 int bmcr, cfg1;
908
909 DBG(3, dev, "%s\n", __func__);
910
911 /* Enter Link Disable state */
912 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
913 cfg1 |= PHY_CFG1_LNKDIS;
914 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
915
916 /*
917 * Set our fixed capabilities
918 * Disable auto-negotiation
919 */
920 bmcr = 0;
921
922 if (lp->ctl_rfduplx)
923 bmcr |= BMCR_FULLDPLX;
924
925 if (lp->ctl_rspeed == 100)
926 bmcr |= BMCR_SPEED100;
927
928 /* Write our capabilities to the phy control register */
929 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
930
931 /* Re-Configure the Receive/Phy Control register */
932 SMC_SELECT_BANK(lp, 0);
933 SMC_SET_RPC(lp, lp->rpc_cur_mode);
934 SMC_SELECT_BANK(lp, 2);
935
936 return 1;
937 }
938
939 /**
940 * smc_phy_reset - reset the phy
941 * @dev: net device
942 * @phy: phy address
943 *
944 * Issue a software reset for the specified PHY and
945 * wait up to 100ms for the reset to complete. We should
946 * not access the PHY for 50ms after issuing the reset.
947 *
948 * The time to wait appears to be dependent on the PHY.
949 *
950 * Must be called with lp->lock locked.
951 */
smc_phy_reset(struct net_device * dev,int phy)952 static int smc_phy_reset(struct net_device *dev, int phy)
953 {
954 struct smc_local *lp = netdev_priv(dev);
955 unsigned int bmcr;
956 int timeout;
957
958 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
959
960 for (timeout = 2; timeout; timeout--) {
961 spin_unlock_irq(&lp->lock);
962 msleep(50);
963 spin_lock_irq(&lp->lock);
964
965 bmcr = smc_phy_read(dev, phy, MII_BMCR);
966 if (!(bmcr & BMCR_RESET))
967 break;
968 }
969
970 return bmcr & BMCR_RESET;
971 }
972
973 /**
974 * smc_phy_powerdown - powerdown phy
975 * @dev: net device
976 *
977 * Power down the specified PHY
978 */
smc_phy_powerdown(struct net_device * dev)979 static void smc_phy_powerdown(struct net_device *dev)
980 {
981 struct smc_local *lp = netdev_priv(dev);
982 unsigned int bmcr;
983 int phy = lp->mii.phy_id;
984
985 if (lp->phy_type == 0)
986 return;
987
988 /* We need to ensure that no calls to smc_phy_configure are
989 pending.
990 */
991 cancel_work_sync(&lp->phy_configure);
992
993 bmcr = smc_phy_read(dev, phy, MII_BMCR);
994 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
995 }
996
997 /**
998 * smc_phy_check_media - check the media status and adjust TCR
999 * @dev: net device
1000 * @init: set true for initialisation
1001 *
1002 * Select duplex mode depending on negotiation state. This
1003 * also updates our carrier state.
1004 */
smc_phy_check_media(struct net_device * dev,int init)1005 static void smc_phy_check_media(struct net_device *dev, int init)
1006 {
1007 struct smc_local *lp = netdev_priv(dev);
1008 void __iomem *ioaddr = lp->base;
1009
1010 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1011 /* duplex state has changed */
1012 if (lp->mii.full_duplex) {
1013 lp->tcr_cur_mode |= TCR_SWFDUP;
1014 } else {
1015 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1016 }
1017
1018 SMC_SELECT_BANK(lp, 0);
1019 SMC_SET_TCR(lp, lp->tcr_cur_mode);
1020 }
1021 }
1022
1023 /*
1024 * Configures the specified PHY through the MII management interface
1025 * using Autonegotiation.
1026 * Calls smc_phy_fixed() if the user has requested a certain config.
1027 * If RPC ANEG bit is set, the media selection is dependent purely on
1028 * the selection by the MII (either in the MII BMCR reg or the result
1029 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1030 * is controlled by the RPC SPEED and RPC DPLX bits.
1031 */
smc_phy_configure(struct work_struct * work)1032 static void smc_phy_configure(struct work_struct *work)
1033 {
1034 struct smc_local *lp =
1035 container_of(work, struct smc_local, phy_configure);
1036 struct net_device *dev = lp->dev;
1037 void __iomem *ioaddr = lp->base;
1038 int phyaddr = lp->mii.phy_id;
1039 int my_phy_caps; /* My PHY capabilities */
1040 int my_ad_caps; /* My Advertised capabilities */
1041
1042 DBG(3, dev, "smc_program_phy()\n");
1043
1044 spin_lock_irq(&lp->lock);
1045
1046 /*
1047 * We should not be called if phy_type is zero.
1048 */
1049 if (lp->phy_type == 0)
1050 goto smc_phy_configure_exit;
1051
1052 if (smc_phy_reset(dev, phyaddr)) {
1053 netdev_info(dev, "PHY reset timed out\n");
1054 goto smc_phy_configure_exit;
1055 }
1056
1057 /*
1058 * Enable PHY Interrupts (for register 18)
1059 * Interrupts listed here are disabled
1060 */
1061 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1062 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1063 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1064 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1065
1066 /* Configure the Receive/Phy Control register */
1067 SMC_SELECT_BANK(lp, 0);
1068 SMC_SET_RPC(lp, lp->rpc_cur_mode);
1069
1070 /* If the user requested no auto neg, then go set his request */
1071 if (lp->mii.force_media) {
1072 smc_phy_fixed(dev);
1073 goto smc_phy_configure_exit;
1074 }
1075
1076 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1077 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1078
1079 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1080 netdev_info(dev, "Auto negotiation NOT supported\n");
1081 smc_phy_fixed(dev);
1082 goto smc_phy_configure_exit;
1083 }
1084
1085 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1086
1087 if (my_phy_caps & BMSR_100BASE4)
1088 my_ad_caps |= ADVERTISE_100BASE4;
1089 if (my_phy_caps & BMSR_100FULL)
1090 my_ad_caps |= ADVERTISE_100FULL;
1091 if (my_phy_caps & BMSR_100HALF)
1092 my_ad_caps |= ADVERTISE_100HALF;
1093 if (my_phy_caps & BMSR_10FULL)
1094 my_ad_caps |= ADVERTISE_10FULL;
1095 if (my_phy_caps & BMSR_10HALF)
1096 my_ad_caps |= ADVERTISE_10HALF;
1097
1098 /* Disable capabilities not selected by our user */
1099 if (lp->ctl_rspeed != 100)
1100 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1101
1102 if (!lp->ctl_rfduplx)
1103 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1104
1105 /* Update our Auto-Neg Advertisement Register */
1106 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1107 lp->mii.advertising = my_ad_caps;
1108
1109 /*
1110 * Read the register back. Without this, it appears that when
1111 * auto-negotiation is restarted, sometimes it isn't ready and
1112 * the link does not come up.
1113 */
1114 smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1115
1116 DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1117 DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1118
1119 /* Restart auto-negotiation process in order to advertise my caps */
1120 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1121
1122 smc_phy_check_media(dev, 1);
1123
1124 smc_phy_configure_exit:
1125 SMC_SELECT_BANK(lp, 2);
1126 spin_unlock_irq(&lp->lock);
1127 }
1128
1129 /*
1130 * smc_phy_interrupt
1131 *
1132 * Purpose: Handle interrupts relating to PHY register 18. This is
1133 * called from the "hard" interrupt handler under our private spinlock.
1134 */
smc_phy_interrupt(struct net_device * dev)1135 static void smc_phy_interrupt(struct net_device *dev)
1136 {
1137 struct smc_local *lp = netdev_priv(dev);
1138 int phyaddr = lp->mii.phy_id;
1139 int phy18;
1140
1141 DBG(2, dev, "%s\n", __func__);
1142
1143 if (lp->phy_type == 0)
1144 return;
1145
1146 for(;;) {
1147 smc_phy_check_media(dev, 0);
1148
1149 /* Read PHY Register 18, Status Output */
1150 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1151 if ((phy18 & PHY_INT_INT) == 0)
1152 break;
1153 }
1154 }
1155
1156 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1157
smc_10bt_check_media(struct net_device * dev,int init)1158 static void smc_10bt_check_media(struct net_device *dev, int init)
1159 {
1160 struct smc_local *lp = netdev_priv(dev);
1161 void __iomem *ioaddr = lp->base;
1162 unsigned int old_carrier, new_carrier;
1163
1164 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1165
1166 SMC_SELECT_BANK(lp, 0);
1167 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1168 SMC_SELECT_BANK(lp, 2);
1169
1170 if (init || (old_carrier != new_carrier)) {
1171 if (!new_carrier) {
1172 netif_carrier_off(dev);
1173 } else {
1174 netif_carrier_on(dev);
1175 }
1176 if (netif_msg_link(lp))
1177 netdev_info(dev, "link %s\n",
1178 new_carrier ? "up" : "down");
1179 }
1180 }
1181
smc_eph_interrupt(struct net_device * dev)1182 static void smc_eph_interrupt(struct net_device *dev)
1183 {
1184 struct smc_local *lp = netdev_priv(dev);
1185 void __iomem *ioaddr = lp->base;
1186 unsigned int ctl;
1187
1188 smc_10bt_check_media(dev, 0);
1189
1190 SMC_SELECT_BANK(lp, 1);
1191 ctl = SMC_GET_CTL(lp);
1192 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1193 SMC_SET_CTL(lp, ctl);
1194 SMC_SELECT_BANK(lp, 2);
1195 }
1196
1197 /*
1198 * This is the main routine of the driver, to handle the device when
1199 * it needs some attention.
1200 */
smc_interrupt(int irq,void * dev_id)1201 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1202 {
1203 struct net_device *dev = dev_id;
1204 struct smc_local *lp = netdev_priv(dev);
1205 void __iomem *ioaddr = lp->base;
1206 int status, mask, timeout, card_stats;
1207 int saved_pointer;
1208
1209 DBG(3, dev, "%s\n", __func__);
1210
1211 spin_lock(&lp->lock);
1212
1213 /* A preamble may be used when there is a potential race
1214 * between the interruptible transmit functions and this
1215 * ISR. */
1216 SMC_INTERRUPT_PREAMBLE;
1217
1218 saved_pointer = SMC_GET_PTR(lp);
1219 mask = SMC_GET_INT_MASK(lp);
1220 SMC_SET_INT_MASK(lp, 0);
1221
1222 /* set a timeout value, so I don't stay here forever */
1223 timeout = MAX_IRQ_LOOPS;
1224
1225 do {
1226 status = SMC_GET_INT(lp);
1227
1228 DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1229 status, mask,
1230 ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1231 meminfo = SMC_GET_MIR(lp);
1232 SMC_SELECT_BANK(lp, 2); meminfo; }),
1233 SMC_GET_FIFO(lp));
1234
1235 status &= mask;
1236 if (!status)
1237 break;
1238
1239 if (status & IM_TX_INT) {
1240 /* do this before RX as it will free memory quickly */
1241 DBG(3, dev, "TX int\n");
1242 smc_tx(dev);
1243 SMC_ACK_INT(lp, IM_TX_INT);
1244 if (THROTTLE_TX_PKTS)
1245 netif_wake_queue(dev);
1246 } else if (status & IM_RCV_INT) {
1247 DBG(3, dev, "RX irq\n");
1248 smc_rcv(dev);
1249 } else if (status & IM_ALLOC_INT) {
1250 DBG(3, dev, "Allocation irq\n");
1251 tasklet_hi_schedule(&lp->tx_task);
1252 mask &= ~IM_ALLOC_INT;
1253 } else if (status & IM_TX_EMPTY_INT) {
1254 DBG(3, dev, "TX empty\n");
1255 mask &= ~IM_TX_EMPTY_INT;
1256
1257 /* update stats */
1258 SMC_SELECT_BANK(lp, 0);
1259 card_stats = SMC_GET_COUNTER(lp);
1260 SMC_SELECT_BANK(lp, 2);
1261
1262 /* single collisions */
1263 dev->stats.collisions += card_stats & 0xF;
1264 card_stats >>= 4;
1265
1266 /* multiple collisions */
1267 dev->stats.collisions += card_stats & 0xF;
1268 } else if (status & IM_RX_OVRN_INT) {
1269 DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1270 ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1271 eph_st = SMC_GET_EPH_STATUS(lp);
1272 SMC_SELECT_BANK(lp, 2); eph_st; }));
1273 SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1274 dev->stats.rx_errors++;
1275 dev->stats.rx_fifo_errors++;
1276 } else if (status & IM_EPH_INT) {
1277 smc_eph_interrupt(dev);
1278 } else if (status & IM_MDINT) {
1279 SMC_ACK_INT(lp, IM_MDINT);
1280 smc_phy_interrupt(dev);
1281 } else if (status & IM_ERCV_INT) {
1282 SMC_ACK_INT(lp, IM_ERCV_INT);
1283 PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1284 }
1285 } while (--timeout);
1286
1287 /* restore register states */
1288 SMC_SET_PTR(lp, saved_pointer);
1289 SMC_SET_INT_MASK(lp, mask);
1290 spin_unlock(&lp->lock);
1291
1292 #ifndef CONFIG_NET_POLL_CONTROLLER
1293 if (timeout == MAX_IRQ_LOOPS)
1294 PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1295 mask);
1296 #endif
1297 DBG(3, dev, "Interrupt done (%d loops)\n",
1298 MAX_IRQ_LOOPS - timeout);
1299
1300 /*
1301 * We return IRQ_HANDLED unconditionally here even if there was
1302 * nothing to do. There is a possibility that a packet might
1303 * get enqueued into the chip right after TX_EMPTY_INT is raised
1304 * but just before the CPU acknowledges the IRQ.
1305 * Better take an unneeded IRQ in some occasions than complexifying
1306 * the code for all cases.
1307 */
1308 return IRQ_HANDLED;
1309 }
1310
1311 #ifdef CONFIG_NET_POLL_CONTROLLER
1312 /*
1313 * Polling receive - used by netconsole and other diagnostic tools
1314 * to allow network i/o with interrupts disabled.
1315 */
smc_poll_controller(struct net_device * dev)1316 static void smc_poll_controller(struct net_device *dev)
1317 {
1318 disable_irq(dev->irq);
1319 smc_interrupt(dev->irq, dev);
1320 enable_irq(dev->irq);
1321 }
1322 #endif
1323
1324 /* Our watchdog timed out. Called by the networking layer */
smc_timeout(struct net_device * dev,unsigned int txqueue)1325 static void smc_timeout(struct net_device *dev, unsigned int txqueue)
1326 {
1327 struct smc_local *lp = netdev_priv(dev);
1328 void __iomem *ioaddr = lp->base;
1329 int status, mask, eph_st, meminfo, fifo;
1330
1331 DBG(2, dev, "%s\n", __func__);
1332
1333 spin_lock_irq(&lp->lock);
1334 status = SMC_GET_INT(lp);
1335 mask = SMC_GET_INT_MASK(lp);
1336 fifo = SMC_GET_FIFO(lp);
1337 SMC_SELECT_BANK(lp, 0);
1338 eph_st = SMC_GET_EPH_STATUS(lp);
1339 meminfo = SMC_GET_MIR(lp);
1340 SMC_SELECT_BANK(lp, 2);
1341 spin_unlock_irq(&lp->lock);
1342 PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1343 status, mask, meminfo, fifo, eph_st);
1344
1345 smc_reset(dev);
1346 smc_enable(dev);
1347
1348 /*
1349 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1350 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1351 * which calls schedule(). Hence we use a work queue.
1352 */
1353 if (lp->phy_type != 0)
1354 schedule_work(&lp->phy_configure);
1355
1356 /* We can accept TX packets again */
1357 netif_trans_update(dev); /* prevent tx timeout */
1358 netif_wake_queue(dev);
1359 }
1360
1361 /*
1362 * This routine will, depending on the values passed to it,
1363 * either make it accept multicast packets, go into
1364 * promiscuous mode (for TCPDUMP and cousins) or accept
1365 * a select set of multicast packets
1366 */
smc_set_multicast_list(struct net_device * dev)1367 static void smc_set_multicast_list(struct net_device *dev)
1368 {
1369 struct smc_local *lp = netdev_priv(dev);
1370 void __iomem *ioaddr = lp->base;
1371 unsigned char multicast_table[8];
1372 int update_multicast = 0;
1373
1374 DBG(2, dev, "%s\n", __func__);
1375
1376 if (dev->flags & IFF_PROMISC) {
1377 DBG(2, dev, "RCR_PRMS\n");
1378 lp->rcr_cur_mode |= RCR_PRMS;
1379 }
1380
1381 /* BUG? I never disable promiscuous mode if multicasting was turned on.
1382 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1383 when promiscuous mode is turned on.
1384 */
1385
1386 /*
1387 * Here, I am setting this to accept all multicast packets.
1388 * I don't need to zero the multicast table, because the flag is
1389 * checked before the table is
1390 */
1391 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1392 DBG(2, dev, "RCR_ALMUL\n");
1393 lp->rcr_cur_mode |= RCR_ALMUL;
1394 }
1395
1396 /*
1397 * This sets the internal hardware table to filter out unwanted
1398 * multicast packets before they take up memory.
1399 *
1400 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1401 * address are the offset into the table. If that bit is 1, then the
1402 * multicast packet is accepted. Otherwise, it's dropped silently.
1403 *
1404 * To use the 6 bits as an offset into the table, the high 3 bits are
1405 * the number of the 8 bit register, while the low 3 bits are the bit
1406 * within that register.
1407 */
1408 else if (!netdev_mc_empty(dev)) {
1409 struct netdev_hw_addr *ha;
1410
1411 /* table for flipping the order of 3 bits */
1412 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1413
1414 /* start with a table of all zeros: reject all */
1415 memset(multicast_table, 0, sizeof(multicast_table));
1416
1417 netdev_for_each_mc_addr(ha, dev) {
1418 int position;
1419
1420 /* only use the low order bits */
1421 position = crc32_le(~0, ha->addr, 6) & 0x3f;
1422
1423 /* do some messy swapping to put the bit in the right spot */
1424 multicast_table[invert3[position&7]] |=
1425 (1<<invert3[(position>>3)&7]);
1426 }
1427
1428 /* be sure I get rid of flags I might have set */
1429 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1430
1431 /* now, the table can be loaded into the chipset */
1432 update_multicast = 1;
1433 } else {
1434 DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1435 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1436
1437 /*
1438 * since I'm disabling all multicast entirely, I need to
1439 * clear the multicast list
1440 */
1441 memset(multicast_table, 0, sizeof(multicast_table));
1442 update_multicast = 1;
1443 }
1444
1445 spin_lock_irq(&lp->lock);
1446 SMC_SELECT_BANK(lp, 0);
1447 SMC_SET_RCR(lp, lp->rcr_cur_mode);
1448 if (update_multicast) {
1449 SMC_SELECT_BANK(lp, 3);
1450 SMC_SET_MCAST(lp, multicast_table);
1451 }
1452 SMC_SELECT_BANK(lp, 2);
1453 spin_unlock_irq(&lp->lock);
1454 }
1455
1456
1457 /*
1458 * Open and Initialize the board
1459 *
1460 * Set up everything, reset the card, etc..
1461 */
1462 static int
smc_open(struct net_device * dev)1463 smc_open(struct net_device *dev)
1464 {
1465 struct smc_local *lp = netdev_priv(dev);
1466
1467 DBG(2, dev, "%s\n", __func__);
1468
1469 /* Setup the default Register Modes */
1470 lp->tcr_cur_mode = TCR_DEFAULT;
1471 lp->rcr_cur_mode = RCR_DEFAULT;
1472 lp->rpc_cur_mode = RPC_DEFAULT |
1473 lp->cfg.leda << RPC_LSXA_SHFT |
1474 lp->cfg.ledb << RPC_LSXB_SHFT;
1475
1476 /*
1477 * If we are not using a MII interface, we need to
1478 * monitor our own carrier signal to detect faults.
1479 */
1480 if (lp->phy_type == 0)
1481 lp->tcr_cur_mode |= TCR_MON_CSN;
1482
1483 /* reset the hardware */
1484 smc_reset(dev);
1485 smc_enable(dev);
1486
1487 /* Configure the PHY, initialize the link state */
1488 if (lp->phy_type != 0)
1489 smc_phy_configure(&lp->phy_configure);
1490 else {
1491 spin_lock_irq(&lp->lock);
1492 smc_10bt_check_media(dev, 1);
1493 spin_unlock_irq(&lp->lock);
1494 }
1495
1496 netif_start_queue(dev);
1497 return 0;
1498 }
1499
1500 /*
1501 * smc_close
1502 *
1503 * this makes the board clean up everything that it can
1504 * and not talk to the outside world. Caused by
1505 * an 'ifconfig ethX down'
1506 */
smc_close(struct net_device * dev)1507 static int smc_close(struct net_device *dev)
1508 {
1509 struct smc_local *lp = netdev_priv(dev);
1510
1511 DBG(2, dev, "%s\n", __func__);
1512
1513 netif_stop_queue(dev);
1514 netif_carrier_off(dev);
1515
1516 /* clear everything */
1517 smc_shutdown(dev);
1518 tasklet_kill(&lp->tx_task);
1519 smc_phy_powerdown(dev);
1520 return 0;
1521 }
1522
1523 /*
1524 * Ethtool support
1525 */
1526 static int
smc_ethtool_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1527 smc_ethtool_get_link_ksettings(struct net_device *dev,
1528 struct ethtool_link_ksettings *cmd)
1529 {
1530 struct smc_local *lp = netdev_priv(dev);
1531
1532 if (lp->phy_type != 0) {
1533 spin_lock_irq(&lp->lock);
1534 mii_ethtool_get_link_ksettings(&lp->mii, cmd);
1535 spin_unlock_irq(&lp->lock);
1536 } else {
1537 u32 supported = SUPPORTED_10baseT_Half |
1538 SUPPORTED_10baseT_Full |
1539 SUPPORTED_TP | SUPPORTED_AUI;
1540
1541 if (lp->ctl_rspeed == 10)
1542 cmd->base.speed = SPEED_10;
1543 else if (lp->ctl_rspeed == 100)
1544 cmd->base.speed = SPEED_100;
1545
1546 cmd->base.autoneg = AUTONEG_DISABLE;
1547 cmd->base.port = 0;
1548 cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
1549 DUPLEX_FULL : DUPLEX_HALF;
1550
1551 ethtool_convert_legacy_u32_to_link_mode(
1552 cmd->link_modes.supported, supported);
1553 }
1554
1555 return 0;
1556 }
1557
1558 static int
smc_ethtool_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1559 smc_ethtool_set_link_ksettings(struct net_device *dev,
1560 const struct ethtool_link_ksettings *cmd)
1561 {
1562 struct smc_local *lp = netdev_priv(dev);
1563 int ret;
1564
1565 if (lp->phy_type != 0) {
1566 spin_lock_irq(&lp->lock);
1567 ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
1568 spin_unlock_irq(&lp->lock);
1569 } else {
1570 if (cmd->base.autoneg != AUTONEG_DISABLE ||
1571 cmd->base.speed != SPEED_10 ||
1572 (cmd->base.duplex != DUPLEX_HALF &&
1573 cmd->base.duplex != DUPLEX_FULL) ||
1574 (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
1575 return -EINVAL;
1576
1577 lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
1578
1579 ret = 0;
1580 }
1581
1582 return ret;
1583 }
1584
1585 static void
smc_ethtool_getdrvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1586 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1587 {
1588 strscpy(info->driver, CARDNAME, sizeof(info->driver));
1589 strscpy(info->version, version, sizeof(info->version));
1590 strscpy(info->bus_info, dev_name(dev->dev.parent),
1591 sizeof(info->bus_info));
1592 }
1593
smc_ethtool_nwayreset(struct net_device * dev)1594 static int smc_ethtool_nwayreset(struct net_device *dev)
1595 {
1596 struct smc_local *lp = netdev_priv(dev);
1597 int ret = -EINVAL;
1598
1599 if (lp->phy_type != 0) {
1600 spin_lock_irq(&lp->lock);
1601 ret = mii_nway_restart(&lp->mii);
1602 spin_unlock_irq(&lp->lock);
1603 }
1604
1605 return ret;
1606 }
1607
smc_ethtool_getmsglevel(struct net_device * dev)1608 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1609 {
1610 struct smc_local *lp = netdev_priv(dev);
1611 return lp->msg_enable;
1612 }
1613
smc_ethtool_setmsglevel(struct net_device * dev,u32 level)1614 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1615 {
1616 struct smc_local *lp = netdev_priv(dev);
1617 lp->msg_enable = level;
1618 }
1619
smc_write_eeprom_word(struct net_device * dev,u16 addr,u16 word)1620 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1621 {
1622 u16 ctl;
1623 struct smc_local *lp = netdev_priv(dev);
1624 void __iomem *ioaddr = lp->base;
1625
1626 spin_lock_irq(&lp->lock);
1627 /* load word into GP register */
1628 SMC_SELECT_BANK(lp, 1);
1629 SMC_SET_GP(lp, word);
1630 /* set the address to put the data in EEPROM */
1631 SMC_SELECT_BANK(lp, 2);
1632 SMC_SET_PTR(lp, addr);
1633 /* tell it to write */
1634 SMC_SELECT_BANK(lp, 1);
1635 ctl = SMC_GET_CTL(lp);
1636 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1637 /* wait for it to finish */
1638 do {
1639 udelay(1);
1640 } while (SMC_GET_CTL(lp) & CTL_STORE);
1641 /* clean up */
1642 SMC_SET_CTL(lp, ctl);
1643 SMC_SELECT_BANK(lp, 2);
1644 spin_unlock_irq(&lp->lock);
1645 return 0;
1646 }
1647
smc_read_eeprom_word(struct net_device * dev,u16 addr,u16 * word)1648 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1649 {
1650 u16 ctl;
1651 struct smc_local *lp = netdev_priv(dev);
1652 void __iomem *ioaddr = lp->base;
1653
1654 spin_lock_irq(&lp->lock);
1655 /* set the EEPROM address to get the data from */
1656 SMC_SELECT_BANK(lp, 2);
1657 SMC_SET_PTR(lp, addr | PTR_READ);
1658 /* tell it to load */
1659 SMC_SELECT_BANK(lp, 1);
1660 SMC_SET_GP(lp, 0xffff); /* init to known */
1661 ctl = SMC_GET_CTL(lp);
1662 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1663 /* wait for it to finish */
1664 do {
1665 udelay(1);
1666 } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1667 /* read word from GP register */
1668 *word = SMC_GET_GP(lp);
1669 /* clean up */
1670 SMC_SET_CTL(lp, ctl);
1671 SMC_SELECT_BANK(lp, 2);
1672 spin_unlock_irq(&lp->lock);
1673 return 0;
1674 }
1675
smc_ethtool_geteeprom_len(struct net_device * dev)1676 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1677 {
1678 return 0x23 * 2;
1679 }
1680
smc_ethtool_geteeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1681 static int smc_ethtool_geteeprom(struct net_device *dev,
1682 struct ethtool_eeprom *eeprom, u8 *data)
1683 {
1684 int i;
1685 int imax;
1686
1687 DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1688 eeprom->len, eeprom->offset, eeprom->offset);
1689 imax = smc_ethtool_geteeprom_len(dev);
1690 for (i = 0; i < eeprom->len; i += 2) {
1691 int ret;
1692 u16 wbuf;
1693 int offset = i + eeprom->offset;
1694 if (offset > imax)
1695 break;
1696 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1697 if (ret != 0)
1698 return ret;
1699 DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1700 data[i] = (wbuf >> 8) & 0xff;
1701 data[i+1] = wbuf & 0xff;
1702 }
1703 return 0;
1704 }
1705
smc_ethtool_seteeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1706 static int smc_ethtool_seteeprom(struct net_device *dev,
1707 struct ethtool_eeprom *eeprom, u8 *data)
1708 {
1709 int i;
1710 int imax;
1711
1712 DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1713 eeprom->len, eeprom->offset, eeprom->offset);
1714 imax = smc_ethtool_geteeprom_len(dev);
1715 for (i = 0; i < eeprom->len; i += 2) {
1716 int ret;
1717 u16 wbuf;
1718 int offset = i + eeprom->offset;
1719 if (offset > imax)
1720 break;
1721 wbuf = (data[i] << 8) | data[i + 1];
1722 DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1723 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1724 if (ret != 0)
1725 return ret;
1726 }
1727 return 0;
1728 }
1729
1730
1731 static const struct ethtool_ops smc_ethtool_ops = {
1732 .get_drvinfo = smc_ethtool_getdrvinfo,
1733
1734 .get_msglevel = smc_ethtool_getmsglevel,
1735 .set_msglevel = smc_ethtool_setmsglevel,
1736 .nway_reset = smc_ethtool_nwayreset,
1737 .get_link = ethtool_op_get_link,
1738 .get_eeprom_len = smc_ethtool_geteeprom_len,
1739 .get_eeprom = smc_ethtool_geteeprom,
1740 .set_eeprom = smc_ethtool_seteeprom,
1741 .get_link_ksettings = smc_ethtool_get_link_ksettings,
1742 .set_link_ksettings = smc_ethtool_set_link_ksettings,
1743 };
1744
1745 static const struct net_device_ops smc_netdev_ops = {
1746 .ndo_open = smc_open,
1747 .ndo_stop = smc_close,
1748 .ndo_start_xmit = smc_hard_start_xmit,
1749 .ndo_tx_timeout = smc_timeout,
1750 .ndo_set_rx_mode = smc_set_multicast_list,
1751 .ndo_validate_addr = eth_validate_addr,
1752 .ndo_set_mac_address = eth_mac_addr,
1753 #ifdef CONFIG_NET_POLL_CONTROLLER
1754 .ndo_poll_controller = smc_poll_controller,
1755 #endif
1756 };
1757
1758 /*
1759 * smc_findirq
1760 *
1761 * This routine has a simple purpose -- make the SMC chip generate an
1762 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1763 */
1764 /*
1765 * does this still work?
1766 *
1767 * I just deleted auto_irq.c, since it was never built...
1768 * --jgarzik
1769 */
smc_findirq(struct smc_local * lp)1770 static int smc_findirq(struct smc_local *lp)
1771 {
1772 void __iomem *ioaddr = lp->base;
1773 int timeout = 20;
1774 unsigned long cookie;
1775
1776 DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1777
1778 cookie = probe_irq_on();
1779
1780 /*
1781 * What I try to do here is trigger an ALLOC_INT. This is done
1782 * by allocating a small chunk of memory, which will give an interrupt
1783 * when done.
1784 */
1785 /* enable ALLOCation interrupts ONLY */
1786 SMC_SELECT_BANK(lp, 2);
1787 SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1788
1789 /*
1790 * Allocate 512 bytes of memory. Note that the chip was just
1791 * reset so all the memory is available
1792 */
1793 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1794
1795 /*
1796 * Wait until positive that the interrupt has been generated
1797 */
1798 do {
1799 int int_status;
1800 udelay(10);
1801 int_status = SMC_GET_INT(lp);
1802 if (int_status & IM_ALLOC_INT)
1803 break; /* got the interrupt */
1804 } while (--timeout);
1805
1806 /*
1807 * there is really nothing that I can do here if timeout fails,
1808 * as autoirq_report will return a 0 anyway, which is what I
1809 * want in this case. Plus, the clean up is needed in both
1810 * cases.
1811 */
1812
1813 /* and disable all interrupts again */
1814 SMC_SET_INT_MASK(lp, 0);
1815
1816 /* and return what I found */
1817 return probe_irq_off(cookie);
1818 }
1819
1820 /*
1821 * Function: smc_probe(unsigned long ioaddr)
1822 *
1823 * Purpose:
1824 * Tests to see if a given ioaddr points to an SMC91x chip.
1825 * Returns a 0 on success
1826 *
1827 * Algorithm:
1828 * (1) see if the high byte of BANK_SELECT is 0x33
1829 * (2) compare the ioaddr with the base register's address
1830 * (3) see if I recognize the chip ID in the appropriate register
1831 *
1832 * Here I do typical initialization tasks.
1833 *
1834 * o Initialize the structure if needed
1835 * o print out my vanity message if not done so already
1836 * o print out what type of hardware is detected
1837 * o print out the ethernet address
1838 * o find the IRQ
1839 * o set up my private data
1840 * o configure the dev structure with my subroutines
1841 * o actually GRAB the irq.
1842 * o GRAB the region
1843 */
smc_probe(struct net_device * dev,void __iomem * ioaddr,unsigned long irq_flags)1844 static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1845 unsigned long irq_flags)
1846 {
1847 struct smc_local *lp = netdev_priv(dev);
1848 int retval;
1849 unsigned int val, revision_register;
1850 const char *version_string;
1851 u8 addr[ETH_ALEN];
1852
1853 DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1854
1855 /* First, see if the high byte is 0x33 */
1856 val = SMC_CURRENT_BANK(lp);
1857 DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1858 CARDNAME, val);
1859 if ((val & 0xFF00) != 0x3300) {
1860 if ((val & 0xFF) == 0x33) {
1861 netdev_warn(dev,
1862 "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1863 CARDNAME, ioaddr);
1864 }
1865 retval = -ENODEV;
1866 goto err_out;
1867 }
1868
1869 /*
1870 * The above MIGHT indicate a device, but I need to write to
1871 * further test this.
1872 */
1873 SMC_SELECT_BANK(lp, 0);
1874 val = SMC_CURRENT_BANK(lp);
1875 if ((val & 0xFF00) != 0x3300) {
1876 retval = -ENODEV;
1877 goto err_out;
1878 }
1879
1880 /*
1881 * well, we've already written once, so hopefully another
1882 * time won't hurt. This time, I need to switch the bank
1883 * register to bank 1, so I can access the base address
1884 * register
1885 */
1886 SMC_SELECT_BANK(lp, 1);
1887 val = SMC_GET_BASE(lp);
1888 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1889 if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1890 netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1891 CARDNAME, ioaddr, val);
1892 }
1893
1894 /*
1895 * check if the revision register is something that I
1896 * recognize. These might need to be added to later,
1897 * as future revisions could be added.
1898 */
1899 SMC_SELECT_BANK(lp, 3);
1900 revision_register = SMC_GET_REV(lp);
1901 DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1902 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1903 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1904 /* I don't recognize this chip, so... */
1905 netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1906 CARDNAME, ioaddr, revision_register);
1907
1908 retval = -ENODEV;
1909 goto err_out;
1910 }
1911
1912 /* At this point I'll assume that the chip is an SMC91x. */
1913 pr_info_once("%s\n", version);
1914
1915 /* fill in some of the fields */
1916 dev->base_addr = (unsigned long)ioaddr;
1917 lp->base = ioaddr;
1918 lp->version = revision_register & 0xff;
1919 spin_lock_init(&lp->lock);
1920
1921 /* Get the MAC address */
1922 SMC_SELECT_BANK(lp, 1);
1923 SMC_GET_MAC_ADDR(lp, addr);
1924 eth_hw_addr_set(dev, addr);
1925
1926 /* now, reset the chip, and put it into a known state */
1927 smc_reset(dev);
1928
1929 /*
1930 * If dev->irq is 0, then the device has to be banged on to see
1931 * what the IRQ is.
1932 *
1933 * This banging doesn't always detect the IRQ, for unknown reasons.
1934 * a workaround is to reset the chip and try again.
1935 *
1936 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1937 * be what is requested on the command line. I don't do that, mostly
1938 * because the card that I have uses a non-standard method of accessing
1939 * the IRQs, and because this _should_ work in most configurations.
1940 *
1941 * Specifying an IRQ is done with the assumption that the user knows
1942 * what (s)he is doing. No checking is done!!!!
1943 */
1944 if (dev->irq < 1) {
1945 int trials;
1946
1947 trials = 3;
1948 while (trials--) {
1949 dev->irq = smc_findirq(lp);
1950 if (dev->irq)
1951 break;
1952 /* kick the card and try again */
1953 smc_reset(dev);
1954 }
1955 }
1956 if (dev->irq == 0) {
1957 netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1958 retval = -ENODEV;
1959 goto err_out;
1960 }
1961 dev->irq = irq_canonicalize(dev->irq);
1962
1963 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1964 dev->netdev_ops = &smc_netdev_ops;
1965 dev->ethtool_ops = &smc_ethtool_ops;
1966
1967 tasklet_setup(&lp->tx_task, smc_hardware_send_pkt);
1968 INIT_WORK(&lp->phy_configure, smc_phy_configure);
1969 lp->dev = dev;
1970 lp->mii.phy_id_mask = 0x1f;
1971 lp->mii.reg_num_mask = 0x1f;
1972 lp->mii.force_media = 0;
1973 lp->mii.full_duplex = 0;
1974 lp->mii.dev = dev;
1975 lp->mii.mdio_read = smc_phy_read;
1976 lp->mii.mdio_write = smc_phy_write;
1977
1978 /*
1979 * Locate the phy, if any.
1980 */
1981 if (lp->version >= (CHIP_91100 << 4))
1982 smc_phy_detect(dev);
1983
1984 /* then shut everything down to save power */
1985 smc_shutdown(dev);
1986 smc_phy_powerdown(dev);
1987
1988 /* Set default parameters */
1989 lp->msg_enable = NETIF_MSG_LINK;
1990 lp->ctl_rfduplx = 0;
1991 lp->ctl_rspeed = 10;
1992
1993 if (lp->version >= (CHIP_91100 << 4)) {
1994 lp->ctl_rfduplx = 1;
1995 lp->ctl_rspeed = 100;
1996 }
1997
1998 /* Grab the IRQ */
1999 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2000 if (retval)
2001 goto err_out;
2002
2003 #ifdef CONFIG_ARCH_PXA
2004 # ifdef SMC_USE_PXA_DMA
2005 lp->cfg.flags |= SMC91X_USE_DMA;
2006 # endif
2007 if (lp->cfg.flags & SMC91X_USE_DMA) {
2008 dma_cap_mask_t mask;
2009
2010 dma_cap_zero(mask);
2011 dma_cap_set(DMA_SLAVE, mask);
2012 lp->dma_chan = dma_request_channel(mask, NULL, NULL);
2013 }
2014 #endif
2015
2016 retval = register_netdev(dev);
2017 if (retval == 0) {
2018 /* now, print out the card info, in a short format.. */
2019 netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2020 version_string, revision_register & 0x0f,
2021 lp->base, dev->irq);
2022
2023 if (lp->dma_chan)
2024 pr_cont(" DMA %p", lp->dma_chan);
2025
2026 pr_cont("%s%s\n",
2027 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2028 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2029
2030 if (!is_valid_ether_addr(dev->dev_addr)) {
2031 netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2032 } else {
2033 /* Print the Ethernet address */
2034 netdev_info(dev, "Ethernet addr: %pM\n",
2035 dev->dev_addr);
2036 }
2037
2038 if (lp->phy_type == 0) {
2039 PRINTK(dev, "No PHY found\n");
2040 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2041 PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2042 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2043 PRINTK(dev, "PHY LAN83C180\n");
2044 }
2045 }
2046
2047 err_out:
2048 #ifdef CONFIG_ARCH_PXA
2049 if (retval && lp->dma_chan)
2050 dma_release_channel(lp->dma_chan);
2051 #endif
2052 return retval;
2053 }
2054
smc_enable_device(struct platform_device * pdev)2055 static int smc_enable_device(struct platform_device *pdev)
2056 {
2057 struct net_device *ndev = platform_get_drvdata(pdev);
2058 struct smc_local *lp = netdev_priv(ndev);
2059 unsigned long flags;
2060 unsigned char ecor, ecsr;
2061 void __iomem *addr;
2062 struct resource * res;
2063
2064 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2065 if (!res)
2066 return 0;
2067
2068 /*
2069 * Map the attribute space. This is overkill, but clean.
2070 */
2071 addr = ioremap(res->start, ATTRIB_SIZE);
2072 if (!addr)
2073 return -ENOMEM;
2074
2075 /*
2076 * Reset the device. We must disable IRQs around this
2077 * since a reset causes the IRQ line become active.
2078 */
2079 local_irq_save(flags);
2080 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2081 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2082 readb(addr + (ECOR << SMC_IO_SHIFT));
2083
2084 /*
2085 * Wait 100us for the chip to reset.
2086 */
2087 udelay(100);
2088
2089 /*
2090 * The device will ignore all writes to the enable bit while
2091 * reset is asserted, even if the reset bit is cleared in the
2092 * same write. Must clear reset first, then enable the device.
2093 */
2094 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2095 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2096
2097 /*
2098 * Set the appropriate byte/word mode.
2099 */
2100 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2101 if (!SMC_16BIT(lp))
2102 ecsr |= ECSR_IOIS8;
2103 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2104 local_irq_restore(flags);
2105
2106 iounmap(addr);
2107
2108 /*
2109 * Wait for the chip to wake up. We could poll the control
2110 * register in the main register space, but that isn't mapped
2111 * yet. We know this is going to take 750us.
2112 */
2113 msleep(1);
2114
2115 return 0;
2116 }
2117
smc_request_attrib(struct platform_device * pdev,struct net_device * ndev)2118 static int smc_request_attrib(struct platform_device *pdev,
2119 struct net_device *ndev)
2120 {
2121 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2122 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2123
2124 if (!res)
2125 return 0;
2126
2127 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2128 return -EBUSY;
2129
2130 return 0;
2131 }
2132
smc_release_attrib(struct platform_device * pdev,struct net_device * ndev)2133 static void smc_release_attrib(struct platform_device *pdev,
2134 struct net_device *ndev)
2135 {
2136 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2137 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2138
2139 if (res)
2140 release_mem_region(res->start, ATTRIB_SIZE);
2141 }
2142
smc_request_datacs(struct platform_device * pdev,struct net_device * ndev)2143 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2144 {
2145 if (SMC_CAN_USE_DATACS) {
2146 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2147 struct smc_local *lp = netdev_priv(ndev);
2148
2149 if (!res)
2150 return;
2151
2152 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2153 netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2154 CARDNAME);
2155 return;
2156 }
2157
2158 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2159 }
2160 }
2161
smc_release_datacs(struct platform_device * pdev,struct net_device * ndev)2162 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2163 {
2164 if (SMC_CAN_USE_DATACS) {
2165 struct smc_local *lp = netdev_priv(ndev);
2166 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2167
2168 if (lp->datacs)
2169 iounmap(lp->datacs);
2170
2171 lp->datacs = NULL;
2172
2173 if (res)
2174 release_mem_region(res->start, SMC_DATA_EXTENT);
2175 }
2176 }
2177
2178 static const struct acpi_device_id smc91x_acpi_match[] = {
2179 { "LNRO0003", 0 },
2180 { }
2181 };
2182 MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2183
2184 #if IS_BUILTIN(CONFIG_OF)
2185 static const struct of_device_id smc91x_match[] = {
2186 { .compatible = "smsc,lan91c94", },
2187 { .compatible = "smsc,lan91c111", },
2188 {},
2189 };
2190 MODULE_DEVICE_TABLE(of, smc91x_match);
2191
2192 /**
2193 * try_toggle_control_gpio - configure a gpio if it exists
2194 * @dev: net device
2195 * @desc: where to store the GPIO descriptor, if it exists
2196 * @name: name of the GPIO in DT
2197 * @index: index of the GPIO in DT
2198 * @value: set the GPIO to this value
2199 * @nsdelay: delay before setting the GPIO
2200 */
try_toggle_control_gpio(struct device * dev,struct gpio_desc ** desc,const char * name,int index,int value,unsigned int nsdelay)2201 static int try_toggle_control_gpio(struct device *dev,
2202 struct gpio_desc **desc,
2203 const char *name, int index,
2204 int value, unsigned int nsdelay)
2205 {
2206 struct gpio_desc *gpio;
2207 enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2208
2209 gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2210 if (IS_ERR(gpio))
2211 return PTR_ERR(gpio);
2212
2213 if (gpio) {
2214 if (nsdelay)
2215 usleep_range(nsdelay, 2 * nsdelay);
2216 gpiod_set_value_cansleep(gpio, value);
2217 }
2218 *desc = gpio;
2219
2220 return 0;
2221 }
2222 #endif
2223
2224 /*
2225 * smc_init(void)
2226 * Input parameters:
2227 * dev->base_addr == 0, try to find all possible locations
2228 * dev->base_addr > 0x1ff, this is the address to check
2229 * dev->base_addr == <anything else>, return failure code
2230 *
2231 * Output:
2232 * 0 --> there is a device
2233 * anything else, error
2234 */
smc_drv_probe(struct platform_device * pdev)2235 static int smc_drv_probe(struct platform_device *pdev)
2236 {
2237 struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2238 const struct of_device_id *match = NULL;
2239 struct smc_local *lp;
2240 struct net_device *ndev;
2241 struct resource *res;
2242 unsigned int __iomem *addr;
2243 unsigned long irq_flags = SMC_IRQ_FLAGS;
2244 unsigned long irq_resflags;
2245 int ret;
2246
2247 ndev = alloc_etherdev(sizeof(struct smc_local));
2248 if (!ndev) {
2249 ret = -ENOMEM;
2250 goto out;
2251 }
2252 SET_NETDEV_DEV(ndev, &pdev->dev);
2253
2254 /* get configuration from platform data, only allow use of
2255 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2256 */
2257
2258 lp = netdev_priv(ndev);
2259 lp->cfg.flags = 0;
2260
2261 if (pd) {
2262 memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2263 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2264
2265 if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2266 dev_err(&pdev->dev,
2267 "at least one of 8-bit or 16-bit access support is required.\n");
2268 ret = -ENXIO;
2269 goto out_free_netdev;
2270 }
2271 }
2272
2273 #if IS_BUILTIN(CONFIG_OF)
2274 match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2275 if (match) {
2276 u32 val;
2277
2278 /* Optional pwrdwn GPIO configured? */
2279 ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2280 "power", 0, 0, 100);
2281 if (ret)
2282 goto out_free_netdev;
2283
2284 /*
2285 * Optional reset GPIO configured? Minimum 100 ns reset needed
2286 * according to LAN91C96 datasheet page 14.
2287 */
2288 ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2289 "reset", 0, 0, 100);
2290 if (ret)
2291 goto out_free_netdev;
2292
2293 /*
2294 * Need to wait for optional EEPROM to load, max 750 us according
2295 * to LAN91C96 datasheet page 55.
2296 */
2297 if (lp->reset_gpio)
2298 usleep_range(750, 1000);
2299
2300 /* Combination of IO widths supported, default to 16-bit */
2301 if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2302 &val)) {
2303 if (val & 1)
2304 lp->cfg.flags |= SMC91X_USE_8BIT;
2305 if ((val == 0) || (val & 2))
2306 lp->cfg.flags |= SMC91X_USE_16BIT;
2307 if (val & 4)
2308 lp->cfg.flags |= SMC91X_USE_32BIT;
2309 } else {
2310 lp->cfg.flags |= SMC91X_USE_16BIT;
2311 }
2312 if (!device_property_read_u32(&pdev->dev, "reg-shift",
2313 &val))
2314 lp->io_shift = val;
2315 lp->cfg.pxa_u16_align4 =
2316 device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2317 }
2318 #endif
2319
2320 if (!pd && !match) {
2321 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0;
2322 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2323 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2324 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2325 }
2326
2327 if (!lp->cfg.leda && !lp->cfg.ledb) {
2328 lp->cfg.leda = RPC_LSA_DEFAULT;
2329 lp->cfg.ledb = RPC_LSB_DEFAULT;
2330 }
2331
2332 ndev->dma = (unsigned char)-1;
2333
2334 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2335 if (!res)
2336 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2337 if (!res) {
2338 ret = -ENODEV;
2339 goto out_free_netdev;
2340 }
2341
2342
2343 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2344 ret = -EBUSY;
2345 goto out_free_netdev;
2346 }
2347
2348 ndev->irq = platform_get_irq(pdev, 0);
2349 if (ndev->irq < 0) {
2350 ret = ndev->irq;
2351 goto out_release_io;
2352 }
2353 /*
2354 * If this platform does not specify any special irqflags, or if
2355 * the resource supplies a trigger, override the irqflags with
2356 * the trigger flags from the resource.
2357 */
2358 irq_resflags = irq_get_trigger_type(ndev->irq);
2359 if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2360 irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2361
2362 ret = smc_request_attrib(pdev, ndev);
2363 if (ret)
2364 goto out_release_io;
2365 #if defined(CONFIG_ASSABET_NEPONSET)
2366 if (machine_is_assabet() && machine_has_neponset())
2367 neponset_ncr_set(NCR_ENET_OSC_EN);
2368 #endif
2369 platform_set_drvdata(pdev, ndev);
2370 ret = smc_enable_device(pdev);
2371 if (ret)
2372 goto out_release_attrib;
2373
2374 addr = ioremap(res->start, SMC_IO_EXTENT);
2375 if (!addr) {
2376 ret = -ENOMEM;
2377 goto out_release_attrib;
2378 }
2379
2380 #ifdef CONFIG_ARCH_PXA
2381 {
2382 struct smc_local *lp = netdev_priv(ndev);
2383 lp->device = &pdev->dev;
2384 lp->physaddr = res->start;
2385
2386 }
2387 #endif
2388
2389 ret = smc_probe(ndev, addr, irq_flags);
2390 if (ret != 0)
2391 goto out_iounmap;
2392
2393 smc_request_datacs(pdev, ndev);
2394
2395 return 0;
2396
2397 out_iounmap:
2398 iounmap(addr);
2399 out_release_attrib:
2400 smc_release_attrib(pdev, ndev);
2401 out_release_io:
2402 release_mem_region(res->start, SMC_IO_EXTENT);
2403 out_free_netdev:
2404 free_netdev(ndev);
2405 out:
2406 pr_info("%s: not found (%d).\n", CARDNAME, ret);
2407
2408 return ret;
2409 }
2410
smc_drv_remove(struct platform_device * pdev)2411 static void smc_drv_remove(struct platform_device *pdev)
2412 {
2413 struct net_device *ndev = platform_get_drvdata(pdev);
2414 struct smc_local *lp = netdev_priv(ndev);
2415 struct resource *res;
2416
2417 unregister_netdev(ndev);
2418
2419 free_irq(ndev->irq, ndev);
2420
2421 #ifdef CONFIG_ARCH_PXA
2422 if (lp->dma_chan)
2423 dma_release_channel(lp->dma_chan);
2424 #endif
2425 iounmap(lp->base);
2426
2427 smc_release_datacs(pdev,ndev);
2428 smc_release_attrib(pdev,ndev);
2429
2430 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2431 if (!res)
2432 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2433 release_mem_region(res->start, SMC_IO_EXTENT);
2434
2435 free_netdev(ndev);
2436 }
2437
smc_drv_suspend(struct device * dev)2438 static int smc_drv_suspend(struct device *dev)
2439 {
2440 struct net_device *ndev = dev_get_drvdata(dev);
2441
2442 if (ndev) {
2443 if (netif_running(ndev)) {
2444 netif_device_detach(ndev);
2445 smc_shutdown(ndev);
2446 smc_phy_powerdown(ndev);
2447 }
2448 }
2449 return 0;
2450 }
2451
smc_drv_resume(struct device * dev)2452 static int smc_drv_resume(struct device *dev)
2453 {
2454 struct platform_device *pdev = to_platform_device(dev);
2455 struct net_device *ndev = platform_get_drvdata(pdev);
2456
2457 if (ndev) {
2458 struct smc_local *lp = netdev_priv(ndev);
2459 smc_enable_device(pdev);
2460 if (netif_running(ndev)) {
2461 smc_reset(ndev);
2462 smc_enable(ndev);
2463 if (lp->phy_type != 0)
2464 smc_phy_configure(&lp->phy_configure);
2465 netif_device_attach(ndev);
2466 }
2467 }
2468 return 0;
2469 }
2470
2471 static const struct dev_pm_ops smc_drv_pm_ops = {
2472 .suspend = smc_drv_suspend,
2473 .resume = smc_drv_resume,
2474 };
2475
2476 static struct platform_driver smc_driver = {
2477 .probe = smc_drv_probe,
2478 .remove = smc_drv_remove,
2479 .driver = {
2480 .name = CARDNAME,
2481 .pm = &smc_drv_pm_ops,
2482 .of_match_table = of_match_ptr(smc91x_match),
2483 .acpi_match_table = smc91x_acpi_match,
2484 },
2485 };
2486
2487 module_platform_driver(smc_driver);
2488