xref: /linux/fs/smb/client/smbdirect.c (revision aaf724ed69264719550ec4f194d3ab17b886af9a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) 2017, Microsoft Corporation.
4  *
5  *   Author(s): Long Li <longli@microsoft.com>
6  */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include <linux/folio_queue.h>
10 #include "../common/smbdirect/smbdirect_pdu.h"
11 #include "smbdirect.h"
12 #include "cifs_debug.h"
13 #include "cifsproto.h"
14 #include "smb2proto.h"
15 
16 static struct smbd_response *get_empty_queue_buffer(
17 		struct smbd_connection *info);
18 static struct smbd_response *get_receive_buffer(
19 		struct smbd_connection *info);
20 static void put_receive_buffer(
21 		struct smbd_connection *info,
22 		struct smbd_response *response);
23 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
24 static void destroy_receive_buffers(struct smbd_connection *info);
25 
26 static void put_empty_packet(
27 		struct smbd_connection *info, struct smbd_response *response);
28 static void enqueue_reassembly(
29 		struct smbd_connection *info,
30 		struct smbd_response *response, int data_length);
31 static struct smbd_response *_get_first_reassembly(
32 		struct smbd_connection *info);
33 
34 static int smbd_post_recv(
35 		struct smbd_connection *info,
36 		struct smbd_response *response);
37 
38 static int smbd_post_send_empty(struct smbd_connection *info);
39 
40 static void destroy_mr_list(struct smbd_connection *info);
41 static int allocate_mr_list(struct smbd_connection *info);
42 
43 struct smb_extract_to_rdma {
44 	struct ib_sge		*sge;
45 	unsigned int		nr_sge;
46 	unsigned int		max_sge;
47 	struct ib_device	*device;
48 	u32			local_dma_lkey;
49 	enum dma_data_direction	direction;
50 };
51 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
52 					struct smb_extract_to_rdma *rdma);
53 
54 /* Port numbers for SMBD transport */
55 #define SMB_PORT	445
56 #define SMBD_PORT	5445
57 
58 /* Address lookup and resolve timeout in ms */
59 #define RDMA_RESOLVE_TIMEOUT	5000
60 
61 /* SMBD negotiation timeout in seconds */
62 #define SMBD_NEGOTIATE_TIMEOUT	120
63 
64 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
65 #define SMBD_MIN_RECEIVE_SIZE		128
66 #define SMBD_MIN_FRAGMENTED_SIZE	131072
67 
68 /*
69  * Default maximum number of RDMA read/write outstanding on this connection
70  * This value is possibly decreased during QP creation on hardware limit
71  */
72 #define SMBD_CM_RESPONDER_RESOURCES	32
73 
74 /* Maximum number of retries on data transfer operations */
75 #define SMBD_CM_RETRY			6
76 /* No need to retry on Receiver Not Ready since SMBD manages credits */
77 #define SMBD_CM_RNR_RETRY		0
78 
79 /*
80  * User configurable initial values per SMBD transport connection
81  * as defined in [MS-SMBD] 3.1.1.1
82  * Those may change after a SMBD negotiation
83  */
84 /* The local peer's maximum number of credits to grant to the peer */
85 int smbd_receive_credit_max = 255;
86 
87 /* The remote peer's credit request of local peer */
88 int smbd_send_credit_target = 255;
89 
90 /* The maximum single message size can be sent to remote peer */
91 int smbd_max_send_size = 1364;
92 
93 /*  The maximum fragmented upper-layer payload receive size supported */
94 int smbd_max_fragmented_recv_size = 1024 * 1024;
95 
96 /*  The maximum single-message size which can be received */
97 int smbd_max_receive_size = 1364;
98 
99 /* The timeout to initiate send of a keepalive message on idle */
100 int smbd_keep_alive_interval = 120;
101 
102 /*
103  * User configurable initial values for RDMA transport
104  * The actual values used may be lower and are limited to hardware capabilities
105  */
106 /* Default maximum number of pages in a single RDMA write/read */
107 int smbd_max_frmr_depth = 2048;
108 
109 /* If payload is less than this byte, use RDMA send/recv not read/write */
110 int rdma_readwrite_threshold = 4096;
111 
112 /* Transport logging functions
113  * Logging are defined as classes. They can be OR'ed to define the actual
114  * logging level via module parameter smbd_logging_class
115  * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
116  * log_rdma_event()
117  */
118 #define LOG_OUTGOING			0x1
119 #define LOG_INCOMING			0x2
120 #define LOG_READ			0x4
121 #define LOG_WRITE			0x8
122 #define LOG_RDMA_SEND			0x10
123 #define LOG_RDMA_RECV			0x20
124 #define LOG_KEEP_ALIVE			0x40
125 #define LOG_RDMA_EVENT			0x80
126 #define LOG_RDMA_MR			0x100
127 static unsigned int smbd_logging_class;
128 module_param(smbd_logging_class, uint, 0644);
129 MODULE_PARM_DESC(smbd_logging_class,
130 	"Logging class for SMBD transport 0x0 to 0x100");
131 
132 #define ERR		0x0
133 #define INFO		0x1
134 static unsigned int smbd_logging_level = ERR;
135 module_param(smbd_logging_level, uint, 0644);
136 MODULE_PARM_DESC(smbd_logging_level,
137 	"Logging level for SMBD transport, 0 (default): error, 1: info");
138 
139 #define log_rdma(level, class, fmt, args...)				\
140 do {									\
141 	if (level <= smbd_logging_level || class & smbd_logging_class)	\
142 		cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
143 } while (0)
144 
145 #define log_outgoing(level, fmt, args...) \
146 		log_rdma(level, LOG_OUTGOING, fmt, ##args)
147 #define log_incoming(level, fmt, args...) \
148 		log_rdma(level, LOG_INCOMING, fmt, ##args)
149 #define log_read(level, fmt, args...)	log_rdma(level, LOG_READ, fmt, ##args)
150 #define log_write(level, fmt, args...)	log_rdma(level, LOG_WRITE, fmt, ##args)
151 #define log_rdma_send(level, fmt, args...) \
152 		log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
153 #define log_rdma_recv(level, fmt, args...) \
154 		log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
155 #define log_keep_alive(level, fmt, args...) \
156 		log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
157 #define log_rdma_event(level, fmt, args...) \
158 		log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
159 #define log_rdma_mr(level, fmt, args...) \
160 		log_rdma(level, LOG_RDMA_MR, fmt, ##args)
161 
smbd_disconnect_rdma_work(struct work_struct * work)162 static void smbd_disconnect_rdma_work(struct work_struct *work)
163 {
164 	struct smbd_connection *info =
165 		container_of(work, struct smbd_connection, disconnect_work);
166 	struct smbdirect_socket *sc = &info->socket;
167 
168 	if (sc->status == SMBDIRECT_SOCKET_CONNECTED) {
169 		sc->status = SMBDIRECT_SOCKET_DISCONNECTING;
170 		rdma_disconnect(sc->rdma.cm_id);
171 	}
172 }
173 
smbd_disconnect_rdma_connection(struct smbd_connection * info)174 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
175 {
176 	queue_work(info->workqueue, &info->disconnect_work);
177 }
178 
179 /* Upcall from RDMA CM */
smbd_conn_upcall(struct rdma_cm_id * id,struct rdma_cm_event * event)180 static int smbd_conn_upcall(
181 		struct rdma_cm_id *id, struct rdma_cm_event *event)
182 {
183 	struct smbd_connection *info = id->context;
184 	struct smbdirect_socket *sc = &info->socket;
185 
186 	log_rdma_event(INFO, "event=%d status=%d\n",
187 		event->event, event->status);
188 
189 	switch (event->event) {
190 	case RDMA_CM_EVENT_ADDR_RESOLVED:
191 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
192 		info->ri_rc = 0;
193 		complete(&info->ri_done);
194 		break;
195 
196 	case RDMA_CM_EVENT_ADDR_ERROR:
197 		info->ri_rc = -EHOSTUNREACH;
198 		complete(&info->ri_done);
199 		break;
200 
201 	case RDMA_CM_EVENT_ROUTE_ERROR:
202 		info->ri_rc = -ENETUNREACH;
203 		complete(&info->ri_done);
204 		break;
205 
206 	case RDMA_CM_EVENT_ESTABLISHED:
207 		log_rdma_event(INFO, "connected event=%d\n", event->event);
208 		sc->status = SMBDIRECT_SOCKET_CONNECTED;
209 		wake_up_interruptible(&info->conn_wait);
210 		break;
211 
212 	case RDMA_CM_EVENT_CONNECT_ERROR:
213 	case RDMA_CM_EVENT_UNREACHABLE:
214 	case RDMA_CM_EVENT_REJECTED:
215 		log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
216 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
217 		wake_up_interruptible(&info->conn_wait);
218 		break;
219 
220 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
221 	case RDMA_CM_EVENT_DISCONNECTED:
222 		/* This happens when we fail the negotiation */
223 		if (sc->status == SMBDIRECT_SOCKET_NEGOTIATE_FAILED) {
224 			sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
225 			wake_up(&info->conn_wait);
226 			break;
227 		}
228 
229 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
230 		wake_up_interruptible(&info->disconn_wait);
231 		wake_up_interruptible(&info->wait_reassembly_queue);
232 		wake_up_interruptible_all(&info->wait_send_queue);
233 		break;
234 
235 	default:
236 		break;
237 	}
238 
239 	return 0;
240 }
241 
242 /* Upcall from RDMA QP */
243 static void
smbd_qp_async_error_upcall(struct ib_event * event,void * context)244 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
245 {
246 	struct smbd_connection *info = context;
247 
248 	log_rdma_event(ERR, "%s on device %s info %p\n",
249 		ib_event_msg(event->event), event->device->name, info);
250 
251 	switch (event->event) {
252 	case IB_EVENT_CQ_ERR:
253 	case IB_EVENT_QP_FATAL:
254 		smbd_disconnect_rdma_connection(info);
255 		break;
256 
257 	default:
258 		break;
259 	}
260 }
261 
smbd_request_payload(struct smbd_request * request)262 static inline void *smbd_request_payload(struct smbd_request *request)
263 {
264 	return (void *)request->packet;
265 }
266 
smbd_response_payload(struct smbd_response * response)267 static inline void *smbd_response_payload(struct smbd_response *response)
268 {
269 	return (void *)response->packet;
270 }
271 
272 /* Called when a RDMA send is done */
send_done(struct ib_cq * cq,struct ib_wc * wc)273 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
274 {
275 	int i;
276 	struct smbd_request *request =
277 		container_of(wc->wr_cqe, struct smbd_request, cqe);
278 	struct smbd_connection *info = request->info;
279 	struct smbdirect_socket *sc = &info->socket;
280 
281 	log_rdma_send(INFO, "smbd_request 0x%p completed wc->status=%d\n",
282 		request, wc->status);
283 
284 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
285 		log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
286 			wc->status, wc->opcode);
287 		smbd_disconnect_rdma_connection(request->info);
288 	}
289 
290 	for (i = 0; i < request->num_sge; i++)
291 		ib_dma_unmap_single(sc->ib.dev,
292 			request->sge[i].addr,
293 			request->sge[i].length,
294 			DMA_TO_DEVICE);
295 
296 	if (atomic_dec_and_test(&request->info->send_pending))
297 		wake_up(&request->info->wait_send_pending);
298 
299 	wake_up(&request->info->wait_post_send);
300 
301 	mempool_free(request, request->info->request_mempool);
302 }
303 
dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp * resp)304 static void dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp *resp)
305 {
306 	log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
307 		       resp->min_version, resp->max_version,
308 		       resp->negotiated_version, resp->credits_requested,
309 		       resp->credits_granted, resp->status,
310 		       resp->max_readwrite_size, resp->preferred_send_size,
311 		       resp->max_receive_size, resp->max_fragmented_size);
312 }
313 
314 /*
315  * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
316  * response, packet_length: the negotiation response message
317  * return value: true if negotiation is a success, false if failed
318  */
process_negotiation_response(struct smbd_response * response,int packet_length)319 static bool process_negotiation_response(
320 		struct smbd_response *response, int packet_length)
321 {
322 	struct smbd_connection *info = response->info;
323 	struct smbdirect_socket *sc = &info->socket;
324 	struct smbdirect_socket_parameters *sp = &sc->parameters;
325 	struct smbdirect_negotiate_resp *packet = smbd_response_payload(response);
326 
327 	if (packet_length < sizeof(struct smbdirect_negotiate_resp)) {
328 		log_rdma_event(ERR,
329 			"error: packet_length=%d\n", packet_length);
330 		return false;
331 	}
332 
333 	if (le16_to_cpu(packet->negotiated_version) != SMBDIRECT_V1) {
334 		log_rdma_event(ERR, "error: negotiated_version=%x\n",
335 			le16_to_cpu(packet->negotiated_version));
336 		return false;
337 	}
338 	info->protocol = le16_to_cpu(packet->negotiated_version);
339 
340 	if (packet->credits_requested == 0) {
341 		log_rdma_event(ERR, "error: credits_requested==0\n");
342 		return false;
343 	}
344 	info->receive_credit_target = le16_to_cpu(packet->credits_requested);
345 
346 	if (packet->credits_granted == 0) {
347 		log_rdma_event(ERR, "error: credits_granted==0\n");
348 		return false;
349 	}
350 	atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
351 
352 	atomic_set(&info->receive_credits, 0);
353 
354 	if (le32_to_cpu(packet->preferred_send_size) > sp->max_recv_size) {
355 		log_rdma_event(ERR, "error: preferred_send_size=%d\n",
356 			le32_to_cpu(packet->preferred_send_size));
357 		return false;
358 	}
359 	sp->max_recv_size = le32_to_cpu(packet->preferred_send_size);
360 
361 	if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
362 		log_rdma_event(ERR, "error: max_receive_size=%d\n",
363 			le32_to_cpu(packet->max_receive_size));
364 		return false;
365 	}
366 	sp->max_send_size = min_t(u32, sp->max_send_size,
367 				  le32_to_cpu(packet->max_receive_size));
368 
369 	if (le32_to_cpu(packet->max_fragmented_size) <
370 			SMBD_MIN_FRAGMENTED_SIZE) {
371 		log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
372 			le32_to_cpu(packet->max_fragmented_size));
373 		return false;
374 	}
375 	sp->max_fragmented_send_size =
376 		le32_to_cpu(packet->max_fragmented_size);
377 	info->rdma_readwrite_threshold =
378 		rdma_readwrite_threshold > sp->max_fragmented_send_size ?
379 		sp->max_fragmented_send_size :
380 		rdma_readwrite_threshold;
381 
382 
383 	sp->max_read_write_size = min_t(u32,
384 			le32_to_cpu(packet->max_readwrite_size),
385 			info->max_frmr_depth * PAGE_SIZE);
386 	info->max_frmr_depth = sp->max_read_write_size / PAGE_SIZE;
387 
388 	return true;
389 }
390 
smbd_post_send_credits(struct work_struct * work)391 static void smbd_post_send_credits(struct work_struct *work)
392 {
393 	int ret = 0;
394 	int use_receive_queue = 1;
395 	int rc;
396 	struct smbd_response *response;
397 	struct smbd_connection *info =
398 		container_of(work, struct smbd_connection,
399 			post_send_credits_work);
400 	struct smbdirect_socket *sc = &info->socket;
401 
402 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
403 		wake_up(&info->wait_receive_queues);
404 		return;
405 	}
406 
407 	if (info->receive_credit_target >
408 		atomic_read(&info->receive_credits)) {
409 		while (true) {
410 			if (use_receive_queue)
411 				response = get_receive_buffer(info);
412 			else
413 				response = get_empty_queue_buffer(info);
414 			if (!response) {
415 				/* now switch to empty packet queue */
416 				if (use_receive_queue) {
417 					use_receive_queue = 0;
418 					continue;
419 				} else
420 					break;
421 			}
422 
423 			response->type = SMBD_TRANSFER_DATA;
424 			response->first_segment = false;
425 			rc = smbd_post_recv(info, response);
426 			if (rc) {
427 				log_rdma_recv(ERR,
428 					"post_recv failed rc=%d\n", rc);
429 				put_receive_buffer(info, response);
430 				break;
431 			}
432 
433 			ret++;
434 		}
435 	}
436 
437 	spin_lock(&info->lock_new_credits_offered);
438 	info->new_credits_offered += ret;
439 	spin_unlock(&info->lock_new_credits_offered);
440 
441 	/* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
442 	info->send_immediate = true;
443 	if (atomic_read(&info->receive_credits) <
444 		info->receive_credit_target - 1) {
445 		if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
446 		    info->send_immediate) {
447 			log_keep_alive(INFO, "send an empty message\n");
448 			smbd_post_send_empty(info);
449 		}
450 	}
451 }
452 
453 /* Called from softirq, when recv is done */
recv_done(struct ib_cq * cq,struct ib_wc * wc)454 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
455 {
456 	struct smbdirect_data_transfer *data_transfer;
457 	struct smbd_response *response =
458 		container_of(wc->wr_cqe, struct smbd_response, cqe);
459 	struct smbd_connection *info = response->info;
460 	int data_length = 0;
461 
462 	log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n",
463 		      response, response->type, wc->status, wc->opcode,
464 		      wc->byte_len, wc->pkey_index);
465 
466 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
467 		log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
468 			wc->status, wc->opcode);
469 		smbd_disconnect_rdma_connection(info);
470 		goto error;
471 	}
472 
473 	ib_dma_sync_single_for_cpu(
474 		wc->qp->device,
475 		response->sge.addr,
476 		response->sge.length,
477 		DMA_FROM_DEVICE);
478 
479 	switch (response->type) {
480 	/* SMBD negotiation response */
481 	case SMBD_NEGOTIATE_RESP:
482 		dump_smbdirect_negotiate_resp(smbd_response_payload(response));
483 		info->full_packet_received = true;
484 		info->negotiate_done =
485 			process_negotiation_response(response, wc->byte_len);
486 		complete(&info->negotiate_completion);
487 		break;
488 
489 	/* SMBD data transfer packet */
490 	case SMBD_TRANSFER_DATA:
491 		data_transfer = smbd_response_payload(response);
492 		data_length = le32_to_cpu(data_transfer->data_length);
493 
494 		/*
495 		 * If this is a packet with data playload place the data in
496 		 * reassembly queue and wake up the reading thread
497 		 */
498 		if (data_length) {
499 			if (info->full_packet_received)
500 				response->first_segment = true;
501 
502 			if (le32_to_cpu(data_transfer->remaining_data_length))
503 				info->full_packet_received = false;
504 			else
505 				info->full_packet_received = true;
506 
507 			enqueue_reassembly(
508 				info,
509 				response,
510 				data_length);
511 		} else
512 			put_empty_packet(info, response);
513 
514 		if (data_length)
515 			wake_up_interruptible(&info->wait_reassembly_queue);
516 
517 		atomic_dec(&info->receive_credits);
518 		info->receive_credit_target =
519 			le16_to_cpu(data_transfer->credits_requested);
520 		if (le16_to_cpu(data_transfer->credits_granted)) {
521 			atomic_add(le16_to_cpu(data_transfer->credits_granted),
522 				&info->send_credits);
523 			/*
524 			 * We have new send credits granted from remote peer
525 			 * If any sender is waiting for credits, unblock it
526 			 */
527 			wake_up_interruptible(&info->wait_send_queue);
528 		}
529 
530 		log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
531 			     le16_to_cpu(data_transfer->flags),
532 			     le32_to_cpu(data_transfer->data_offset),
533 			     le32_to_cpu(data_transfer->data_length),
534 			     le32_to_cpu(data_transfer->remaining_data_length));
535 
536 		/* Send a KEEP_ALIVE response right away if requested */
537 		info->keep_alive_requested = KEEP_ALIVE_NONE;
538 		if (le16_to_cpu(data_transfer->flags) &
539 				SMBDIRECT_FLAG_RESPONSE_REQUESTED) {
540 			info->keep_alive_requested = KEEP_ALIVE_PENDING;
541 		}
542 
543 		return;
544 
545 	default:
546 		log_rdma_recv(ERR,
547 			"unexpected response type=%d\n", response->type);
548 	}
549 
550 error:
551 	put_receive_buffer(info, response);
552 }
553 
smbd_create_id(struct smbd_connection * info,struct sockaddr * dstaddr,int port)554 static struct rdma_cm_id *smbd_create_id(
555 		struct smbd_connection *info,
556 		struct sockaddr *dstaddr, int port)
557 {
558 	struct rdma_cm_id *id;
559 	int rc;
560 	__be16 *sport;
561 
562 	id = rdma_create_id(&init_net, smbd_conn_upcall, info,
563 		RDMA_PS_TCP, IB_QPT_RC);
564 	if (IS_ERR(id)) {
565 		rc = PTR_ERR(id);
566 		log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
567 		return id;
568 	}
569 
570 	if (dstaddr->sa_family == AF_INET6)
571 		sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
572 	else
573 		sport = &((struct sockaddr_in *)dstaddr)->sin_port;
574 
575 	*sport = htons(port);
576 
577 	init_completion(&info->ri_done);
578 	info->ri_rc = -ETIMEDOUT;
579 
580 	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
581 		RDMA_RESOLVE_TIMEOUT);
582 	if (rc) {
583 		log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
584 		goto out;
585 	}
586 	rc = wait_for_completion_interruptible_timeout(
587 		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
588 	/* e.g. if interrupted returns -ERESTARTSYS */
589 	if (rc < 0) {
590 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
591 		goto out;
592 	}
593 	rc = info->ri_rc;
594 	if (rc) {
595 		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
596 		goto out;
597 	}
598 
599 	info->ri_rc = -ETIMEDOUT;
600 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
601 	if (rc) {
602 		log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
603 		goto out;
604 	}
605 	rc = wait_for_completion_interruptible_timeout(
606 		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
607 	/* e.g. if interrupted returns -ERESTARTSYS */
608 	if (rc < 0)  {
609 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
610 		goto out;
611 	}
612 	rc = info->ri_rc;
613 	if (rc) {
614 		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
615 		goto out;
616 	}
617 
618 	return id;
619 
620 out:
621 	rdma_destroy_id(id);
622 	return ERR_PTR(rc);
623 }
624 
625 /*
626  * Test if FRWR (Fast Registration Work Requests) is supported on the device
627  * This implementation requires FRWR on RDMA read/write
628  * return value: true if it is supported
629  */
frwr_is_supported(struct ib_device_attr * attrs)630 static bool frwr_is_supported(struct ib_device_attr *attrs)
631 {
632 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
633 		return false;
634 	if (attrs->max_fast_reg_page_list_len == 0)
635 		return false;
636 	return true;
637 }
638 
smbd_ia_open(struct smbd_connection * info,struct sockaddr * dstaddr,int port)639 static int smbd_ia_open(
640 		struct smbd_connection *info,
641 		struct sockaddr *dstaddr, int port)
642 {
643 	struct smbdirect_socket *sc = &info->socket;
644 	int rc;
645 
646 	sc->rdma.cm_id = smbd_create_id(info, dstaddr, port);
647 	if (IS_ERR(sc->rdma.cm_id)) {
648 		rc = PTR_ERR(sc->rdma.cm_id);
649 		goto out1;
650 	}
651 	sc->ib.dev = sc->rdma.cm_id->device;
652 
653 	if (!frwr_is_supported(&sc->ib.dev->attrs)) {
654 		log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
655 		log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
656 			       sc->ib.dev->attrs.device_cap_flags,
657 			       sc->ib.dev->attrs.max_fast_reg_page_list_len);
658 		rc = -EPROTONOSUPPORT;
659 		goto out2;
660 	}
661 	info->max_frmr_depth = min_t(int,
662 		smbd_max_frmr_depth,
663 		sc->ib.dev->attrs.max_fast_reg_page_list_len);
664 	info->mr_type = IB_MR_TYPE_MEM_REG;
665 	if (sc->ib.dev->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
666 		info->mr_type = IB_MR_TYPE_SG_GAPS;
667 
668 	sc->ib.pd = ib_alloc_pd(sc->ib.dev, 0);
669 	if (IS_ERR(sc->ib.pd)) {
670 		rc = PTR_ERR(sc->ib.pd);
671 		log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
672 		goto out2;
673 	}
674 
675 	return 0;
676 
677 out2:
678 	rdma_destroy_id(sc->rdma.cm_id);
679 	sc->rdma.cm_id = NULL;
680 
681 out1:
682 	return rc;
683 }
684 
685 /*
686  * Send a negotiation request message to the peer
687  * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
688  * After negotiation, the transport is connected and ready for
689  * carrying upper layer SMB payload
690  */
smbd_post_send_negotiate_req(struct smbd_connection * info)691 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
692 {
693 	struct smbdirect_socket *sc = &info->socket;
694 	struct smbdirect_socket_parameters *sp = &sc->parameters;
695 	struct ib_send_wr send_wr;
696 	int rc = -ENOMEM;
697 	struct smbd_request *request;
698 	struct smbdirect_negotiate_req *packet;
699 
700 	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
701 	if (!request)
702 		return rc;
703 
704 	request->info = info;
705 
706 	packet = smbd_request_payload(request);
707 	packet->min_version = cpu_to_le16(SMBDIRECT_V1);
708 	packet->max_version = cpu_to_le16(SMBDIRECT_V1);
709 	packet->reserved = 0;
710 	packet->credits_requested = cpu_to_le16(sp->send_credit_target);
711 	packet->preferred_send_size = cpu_to_le32(sp->max_send_size);
712 	packet->max_receive_size = cpu_to_le32(sp->max_recv_size);
713 	packet->max_fragmented_size =
714 		cpu_to_le32(sp->max_fragmented_recv_size);
715 
716 	request->num_sge = 1;
717 	request->sge[0].addr = ib_dma_map_single(
718 				sc->ib.dev, (void *)packet,
719 				sizeof(*packet), DMA_TO_DEVICE);
720 	if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
721 		rc = -EIO;
722 		goto dma_mapping_failed;
723 	}
724 
725 	request->sge[0].length = sizeof(*packet);
726 	request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
727 
728 	ib_dma_sync_single_for_device(
729 		sc->ib.dev, request->sge[0].addr,
730 		request->sge[0].length, DMA_TO_DEVICE);
731 
732 	request->cqe.done = send_done;
733 
734 	send_wr.next = NULL;
735 	send_wr.wr_cqe = &request->cqe;
736 	send_wr.sg_list = request->sge;
737 	send_wr.num_sge = request->num_sge;
738 	send_wr.opcode = IB_WR_SEND;
739 	send_wr.send_flags = IB_SEND_SIGNALED;
740 
741 	log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
742 		request->sge[0].addr,
743 		request->sge[0].length, request->sge[0].lkey);
744 
745 	atomic_inc(&info->send_pending);
746 	rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
747 	if (!rc)
748 		return 0;
749 
750 	/* if we reach here, post send failed */
751 	log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
752 	atomic_dec(&info->send_pending);
753 	ib_dma_unmap_single(sc->ib.dev, request->sge[0].addr,
754 		request->sge[0].length, DMA_TO_DEVICE);
755 
756 	smbd_disconnect_rdma_connection(info);
757 
758 dma_mapping_failed:
759 	mempool_free(request, info->request_mempool);
760 	return rc;
761 }
762 
763 /*
764  * Extend the credits to remote peer
765  * This implements [MS-SMBD] 3.1.5.9
766  * The idea is that we should extend credits to remote peer as quickly as
767  * it's allowed, to maintain data flow. We allocate as much receive
768  * buffer as possible, and extend the receive credits to remote peer
769  * return value: the new credtis being granted.
770  */
manage_credits_prior_sending(struct smbd_connection * info)771 static int manage_credits_prior_sending(struct smbd_connection *info)
772 {
773 	int new_credits;
774 
775 	spin_lock(&info->lock_new_credits_offered);
776 	new_credits = info->new_credits_offered;
777 	info->new_credits_offered = 0;
778 	spin_unlock(&info->lock_new_credits_offered);
779 
780 	return new_credits;
781 }
782 
783 /*
784  * Check if we need to send a KEEP_ALIVE message
785  * The idle connection timer triggers a KEEP_ALIVE message when expires
786  * SMBDIRECT_FLAG_RESPONSE_REQUESTED is set in the message flag to have peer send
787  * back a response.
788  * return value:
789  * 1 if SMBDIRECT_FLAG_RESPONSE_REQUESTED needs to be set
790  * 0: otherwise
791  */
manage_keep_alive_before_sending(struct smbd_connection * info)792 static int manage_keep_alive_before_sending(struct smbd_connection *info)
793 {
794 	if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
795 		info->keep_alive_requested = KEEP_ALIVE_SENT;
796 		return 1;
797 	}
798 	return 0;
799 }
800 
801 /* Post the send request */
smbd_post_send(struct smbd_connection * info,struct smbd_request * request)802 static int smbd_post_send(struct smbd_connection *info,
803 		struct smbd_request *request)
804 {
805 	struct smbdirect_socket *sc = &info->socket;
806 	struct smbdirect_socket_parameters *sp = &sc->parameters;
807 	struct ib_send_wr send_wr;
808 	int rc, i;
809 
810 	for (i = 0; i < request->num_sge; i++) {
811 		log_rdma_send(INFO,
812 			"rdma_request sge[%d] addr=0x%llx length=%u\n",
813 			i, request->sge[i].addr, request->sge[i].length);
814 		ib_dma_sync_single_for_device(
815 			sc->ib.dev,
816 			request->sge[i].addr,
817 			request->sge[i].length,
818 			DMA_TO_DEVICE);
819 	}
820 
821 	request->cqe.done = send_done;
822 
823 	send_wr.next = NULL;
824 	send_wr.wr_cqe = &request->cqe;
825 	send_wr.sg_list = request->sge;
826 	send_wr.num_sge = request->num_sge;
827 	send_wr.opcode = IB_WR_SEND;
828 	send_wr.send_flags = IB_SEND_SIGNALED;
829 
830 	rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
831 	if (rc) {
832 		log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
833 		smbd_disconnect_rdma_connection(info);
834 		rc = -EAGAIN;
835 	} else
836 		/* Reset timer for idle connection after packet is sent */
837 		mod_delayed_work(info->workqueue, &info->idle_timer_work,
838 			msecs_to_jiffies(sp->keepalive_interval_msec));
839 
840 	return rc;
841 }
842 
smbd_post_send_iter(struct smbd_connection * info,struct iov_iter * iter,int * _remaining_data_length)843 static int smbd_post_send_iter(struct smbd_connection *info,
844 			       struct iov_iter *iter,
845 			       int *_remaining_data_length)
846 {
847 	struct smbdirect_socket *sc = &info->socket;
848 	struct smbdirect_socket_parameters *sp = &sc->parameters;
849 	int i, rc;
850 	int header_length;
851 	int data_length;
852 	struct smbd_request *request;
853 	struct smbdirect_data_transfer *packet;
854 	int new_credits = 0;
855 
856 wait_credit:
857 	/* Wait for send credits. A SMBD packet needs one credit */
858 	rc = wait_event_interruptible(info->wait_send_queue,
859 		atomic_read(&info->send_credits) > 0 ||
860 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
861 	if (rc)
862 		goto err_wait_credit;
863 
864 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
865 		log_outgoing(ERR, "disconnected not sending on wait_credit\n");
866 		rc = -EAGAIN;
867 		goto err_wait_credit;
868 	}
869 	if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
870 		atomic_inc(&info->send_credits);
871 		goto wait_credit;
872 	}
873 
874 wait_send_queue:
875 	wait_event(info->wait_post_send,
876 		atomic_read(&info->send_pending) < sp->send_credit_target ||
877 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
878 
879 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
880 		log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
881 		rc = -EAGAIN;
882 		goto err_wait_send_queue;
883 	}
884 
885 	if (unlikely(atomic_inc_return(&info->send_pending) >
886 				sp->send_credit_target)) {
887 		atomic_dec(&info->send_pending);
888 		goto wait_send_queue;
889 	}
890 
891 	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
892 	if (!request) {
893 		rc = -ENOMEM;
894 		goto err_alloc;
895 	}
896 
897 	request->info = info;
898 	memset(request->sge, 0, sizeof(request->sge));
899 
900 	/* Fill in the data payload to find out how much data we can add */
901 	if (iter) {
902 		struct smb_extract_to_rdma extract = {
903 			.nr_sge		= 1,
904 			.max_sge	= SMBDIRECT_MAX_SEND_SGE,
905 			.sge		= request->sge,
906 			.device		= sc->ib.dev,
907 			.local_dma_lkey	= sc->ib.pd->local_dma_lkey,
908 			.direction	= DMA_TO_DEVICE,
909 		};
910 		size_t payload_len = umin(*_remaining_data_length,
911 					  sp->max_send_size - sizeof(*packet));
912 
913 		rc = smb_extract_iter_to_rdma(iter, payload_len,
914 					      &extract);
915 		if (rc < 0)
916 			goto err_dma;
917 		data_length = rc;
918 		request->num_sge = extract.nr_sge;
919 		*_remaining_data_length -= data_length;
920 	} else {
921 		data_length = 0;
922 		request->num_sge = 1;
923 	}
924 
925 	/* Fill in the packet header */
926 	packet = smbd_request_payload(request);
927 	packet->credits_requested = cpu_to_le16(sp->send_credit_target);
928 
929 	new_credits = manage_credits_prior_sending(info);
930 	atomic_add(new_credits, &info->receive_credits);
931 	packet->credits_granted = cpu_to_le16(new_credits);
932 
933 	info->send_immediate = false;
934 
935 	packet->flags = 0;
936 	if (manage_keep_alive_before_sending(info))
937 		packet->flags |= cpu_to_le16(SMBDIRECT_FLAG_RESPONSE_REQUESTED);
938 
939 	packet->reserved = 0;
940 	if (!data_length)
941 		packet->data_offset = 0;
942 	else
943 		packet->data_offset = cpu_to_le32(24);
944 	packet->data_length = cpu_to_le32(data_length);
945 	packet->remaining_data_length = cpu_to_le32(*_remaining_data_length);
946 	packet->padding = 0;
947 
948 	log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
949 		     le16_to_cpu(packet->credits_requested),
950 		     le16_to_cpu(packet->credits_granted),
951 		     le32_to_cpu(packet->data_offset),
952 		     le32_to_cpu(packet->data_length),
953 		     le32_to_cpu(packet->remaining_data_length));
954 
955 	/* Map the packet to DMA */
956 	header_length = sizeof(struct smbdirect_data_transfer);
957 	/* If this is a packet without payload, don't send padding */
958 	if (!data_length)
959 		header_length = offsetof(struct smbdirect_data_transfer, padding);
960 
961 	request->sge[0].addr = ib_dma_map_single(sc->ib.dev,
962 						 (void *)packet,
963 						 header_length,
964 						 DMA_TO_DEVICE);
965 	if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
966 		rc = -EIO;
967 		request->sge[0].addr = 0;
968 		goto err_dma;
969 	}
970 
971 	request->sge[0].length = header_length;
972 	request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
973 
974 	rc = smbd_post_send(info, request);
975 	if (!rc)
976 		return 0;
977 
978 err_dma:
979 	for (i = 0; i < request->num_sge; i++)
980 		if (request->sge[i].addr)
981 			ib_dma_unmap_single(sc->ib.dev,
982 					    request->sge[i].addr,
983 					    request->sge[i].length,
984 					    DMA_TO_DEVICE);
985 	mempool_free(request, info->request_mempool);
986 
987 	/* roll back receive credits and credits to be offered */
988 	spin_lock(&info->lock_new_credits_offered);
989 	info->new_credits_offered += new_credits;
990 	spin_unlock(&info->lock_new_credits_offered);
991 	atomic_sub(new_credits, &info->receive_credits);
992 
993 err_alloc:
994 	if (atomic_dec_and_test(&info->send_pending))
995 		wake_up(&info->wait_send_pending);
996 
997 err_wait_send_queue:
998 	/* roll back send credits and pending */
999 	atomic_inc(&info->send_credits);
1000 
1001 err_wait_credit:
1002 	return rc;
1003 }
1004 
1005 /*
1006  * Send an empty message
1007  * Empty message is used to extend credits to peer to for keep live
1008  * while there is no upper layer payload to send at the time
1009  */
smbd_post_send_empty(struct smbd_connection * info)1010 static int smbd_post_send_empty(struct smbd_connection *info)
1011 {
1012 	int remaining_data_length = 0;
1013 
1014 	info->count_send_empty++;
1015 	return smbd_post_send_iter(info, NULL, &remaining_data_length);
1016 }
1017 
smbd_post_send_full_iter(struct smbd_connection * info,struct iov_iter * iter,int * _remaining_data_length)1018 static int smbd_post_send_full_iter(struct smbd_connection *info,
1019 				    struct iov_iter *iter,
1020 				    int *_remaining_data_length)
1021 {
1022 	int rc = 0;
1023 
1024 	/*
1025 	 * smbd_post_send_iter() respects the
1026 	 * negotiated max_send_size, so we need to
1027 	 * loop until the full iter is posted
1028 	 */
1029 
1030 	while (iov_iter_count(iter) > 0) {
1031 		rc = smbd_post_send_iter(info, iter, _remaining_data_length);
1032 		if (rc < 0)
1033 			break;
1034 	}
1035 
1036 	return rc;
1037 }
1038 
1039 /*
1040  * Post a receive request to the transport
1041  * The remote peer can only send data when a receive request is posted
1042  * The interaction is controlled by send/receive credit system
1043  */
smbd_post_recv(struct smbd_connection * info,struct smbd_response * response)1044 static int smbd_post_recv(
1045 		struct smbd_connection *info, struct smbd_response *response)
1046 {
1047 	struct smbdirect_socket *sc = &info->socket;
1048 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1049 	struct ib_recv_wr recv_wr;
1050 	int rc = -EIO;
1051 
1052 	response->sge.addr = ib_dma_map_single(
1053 				sc->ib.dev, response->packet,
1054 				sp->max_recv_size, DMA_FROM_DEVICE);
1055 	if (ib_dma_mapping_error(sc->ib.dev, response->sge.addr))
1056 		return rc;
1057 
1058 	response->sge.length = sp->max_recv_size;
1059 	response->sge.lkey = sc->ib.pd->local_dma_lkey;
1060 
1061 	response->cqe.done = recv_done;
1062 
1063 	recv_wr.wr_cqe = &response->cqe;
1064 	recv_wr.next = NULL;
1065 	recv_wr.sg_list = &response->sge;
1066 	recv_wr.num_sge = 1;
1067 
1068 	rc = ib_post_recv(sc->ib.qp, &recv_wr, NULL);
1069 	if (rc) {
1070 		ib_dma_unmap_single(sc->ib.dev, response->sge.addr,
1071 				    response->sge.length, DMA_FROM_DEVICE);
1072 		smbd_disconnect_rdma_connection(info);
1073 		log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1074 	}
1075 
1076 	return rc;
1077 }
1078 
1079 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
smbd_negotiate(struct smbd_connection * info)1080 static int smbd_negotiate(struct smbd_connection *info)
1081 {
1082 	int rc;
1083 	struct smbd_response *response = get_receive_buffer(info);
1084 
1085 	response->type = SMBD_NEGOTIATE_RESP;
1086 	rc = smbd_post_recv(info, response);
1087 	log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1088 		       rc, response->sge.addr,
1089 		       response->sge.length, response->sge.lkey);
1090 	if (rc)
1091 		return rc;
1092 
1093 	init_completion(&info->negotiate_completion);
1094 	info->negotiate_done = false;
1095 	rc = smbd_post_send_negotiate_req(info);
1096 	if (rc)
1097 		return rc;
1098 
1099 	rc = wait_for_completion_interruptible_timeout(
1100 		&info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1101 	log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1102 
1103 	if (info->negotiate_done)
1104 		return 0;
1105 
1106 	if (rc == 0)
1107 		rc = -ETIMEDOUT;
1108 	else if (rc == -ERESTARTSYS)
1109 		rc = -EINTR;
1110 	else
1111 		rc = -ENOTCONN;
1112 
1113 	return rc;
1114 }
1115 
put_empty_packet(struct smbd_connection * info,struct smbd_response * response)1116 static void put_empty_packet(
1117 		struct smbd_connection *info, struct smbd_response *response)
1118 {
1119 	spin_lock(&info->empty_packet_queue_lock);
1120 	list_add_tail(&response->list, &info->empty_packet_queue);
1121 	info->count_empty_packet_queue++;
1122 	spin_unlock(&info->empty_packet_queue_lock);
1123 
1124 	queue_work(info->workqueue, &info->post_send_credits_work);
1125 }
1126 
1127 /*
1128  * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1129  * This is a queue for reassembling upper layer payload and present to upper
1130  * layer. All the inncoming payload go to the reassembly queue, regardless of
1131  * if reassembly is required. The uuper layer code reads from the queue for all
1132  * incoming payloads.
1133  * Put a received packet to the reassembly queue
1134  * response: the packet received
1135  * data_length: the size of payload in this packet
1136  */
enqueue_reassembly(struct smbd_connection * info,struct smbd_response * response,int data_length)1137 static void enqueue_reassembly(
1138 	struct smbd_connection *info,
1139 	struct smbd_response *response,
1140 	int data_length)
1141 {
1142 	spin_lock(&info->reassembly_queue_lock);
1143 	list_add_tail(&response->list, &info->reassembly_queue);
1144 	info->reassembly_queue_length++;
1145 	/*
1146 	 * Make sure reassembly_data_length is updated after list and
1147 	 * reassembly_queue_length are updated. On the dequeue side
1148 	 * reassembly_data_length is checked without a lock to determine
1149 	 * if reassembly_queue_length and list is up to date
1150 	 */
1151 	virt_wmb();
1152 	info->reassembly_data_length += data_length;
1153 	spin_unlock(&info->reassembly_queue_lock);
1154 	info->count_reassembly_queue++;
1155 	info->count_enqueue_reassembly_queue++;
1156 }
1157 
1158 /*
1159  * Get the first entry at the front of reassembly queue
1160  * Caller is responsible for locking
1161  * return value: the first entry if any, NULL if queue is empty
1162  */
_get_first_reassembly(struct smbd_connection * info)1163 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1164 {
1165 	struct smbd_response *ret = NULL;
1166 
1167 	if (!list_empty(&info->reassembly_queue)) {
1168 		ret = list_first_entry(
1169 			&info->reassembly_queue,
1170 			struct smbd_response, list);
1171 	}
1172 	return ret;
1173 }
1174 
get_empty_queue_buffer(struct smbd_connection * info)1175 static struct smbd_response *get_empty_queue_buffer(
1176 		struct smbd_connection *info)
1177 {
1178 	struct smbd_response *ret = NULL;
1179 	unsigned long flags;
1180 
1181 	spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1182 	if (!list_empty(&info->empty_packet_queue)) {
1183 		ret = list_first_entry(
1184 			&info->empty_packet_queue,
1185 			struct smbd_response, list);
1186 		list_del(&ret->list);
1187 		info->count_empty_packet_queue--;
1188 	}
1189 	spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1190 
1191 	return ret;
1192 }
1193 
1194 /*
1195  * Get a receive buffer
1196  * For each remote send, we need to post a receive. The receive buffers are
1197  * pre-allocated in advance.
1198  * return value: the receive buffer, NULL if none is available
1199  */
get_receive_buffer(struct smbd_connection * info)1200 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1201 {
1202 	struct smbd_response *ret = NULL;
1203 	unsigned long flags;
1204 
1205 	spin_lock_irqsave(&info->receive_queue_lock, flags);
1206 	if (!list_empty(&info->receive_queue)) {
1207 		ret = list_first_entry(
1208 			&info->receive_queue,
1209 			struct smbd_response, list);
1210 		list_del(&ret->list);
1211 		info->count_receive_queue--;
1212 		info->count_get_receive_buffer++;
1213 	}
1214 	spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1215 
1216 	return ret;
1217 }
1218 
1219 /*
1220  * Return a receive buffer
1221  * Upon returning of a receive buffer, we can post new receive and extend
1222  * more receive credits to remote peer. This is done immediately after a
1223  * receive buffer is returned.
1224  */
put_receive_buffer(struct smbd_connection * info,struct smbd_response * response)1225 static void put_receive_buffer(
1226 	struct smbd_connection *info, struct smbd_response *response)
1227 {
1228 	struct smbdirect_socket *sc = &info->socket;
1229 	unsigned long flags;
1230 
1231 	ib_dma_unmap_single(sc->ib.dev, response->sge.addr,
1232 		response->sge.length, DMA_FROM_DEVICE);
1233 
1234 	spin_lock_irqsave(&info->receive_queue_lock, flags);
1235 	list_add_tail(&response->list, &info->receive_queue);
1236 	info->count_receive_queue++;
1237 	info->count_put_receive_buffer++;
1238 	spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1239 
1240 	queue_work(info->workqueue, &info->post_send_credits_work);
1241 }
1242 
1243 /* Preallocate all receive buffer on transport establishment */
allocate_receive_buffers(struct smbd_connection * info,int num_buf)1244 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1245 {
1246 	int i;
1247 	struct smbd_response *response;
1248 
1249 	INIT_LIST_HEAD(&info->reassembly_queue);
1250 	spin_lock_init(&info->reassembly_queue_lock);
1251 	info->reassembly_data_length = 0;
1252 	info->reassembly_queue_length = 0;
1253 
1254 	INIT_LIST_HEAD(&info->receive_queue);
1255 	spin_lock_init(&info->receive_queue_lock);
1256 	info->count_receive_queue = 0;
1257 
1258 	INIT_LIST_HEAD(&info->empty_packet_queue);
1259 	spin_lock_init(&info->empty_packet_queue_lock);
1260 	info->count_empty_packet_queue = 0;
1261 
1262 	init_waitqueue_head(&info->wait_receive_queues);
1263 
1264 	for (i = 0; i < num_buf; i++) {
1265 		response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1266 		if (!response)
1267 			goto allocate_failed;
1268 
1269 		response->info = info;
1270 		list_add_tail(&response->list, &info->receive_queue);
1271 		info->count_receive_queue++;
1272 	}
1273 
1274 	return 0;
1275 
1276 allocate_failed:
1277 	while (!list_empty(&info->receive_queue)) {
1278 		response = list_first_entry(
1279 				&info->receive_queue,
1280 				struct smbd_response, list);
1281 		list_del(&response->list);
1282 		info->count_receive_queue--;
1283 
1284 		mempool_free(response, info->response_mempool);
1285 	}
1286 	return -ENOMEM;
1287 }
1288 
destroy_receive_buffers(struct smbd_connection * info)1289 static void destroy_receive_buffers(struct smbd_connection *info)
1290 {
1291 	struct smbd_response *response;
1292 
1293 	while ((response = get_receive_buffer(info)))
1294 		mempool_free(response, info->response_mempool);
1295 
1296 	while ((response = get_empty_queue_buffer(info)))
1297 		mempool_free(response, info->response_mempool);
1298 }
1299 
1300 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
idle_connection_timer(struct work_struct * work)1301 static void idle_connection_timer(struct work_struct *work)
1302 {
1303 	struct smbd_connection *info = container_of(
1304 					work, struct smbd_connection,
1305 					idle_timer_work.work);
1306 	struct smbdirect_socket *sc = &info->socket;
1307 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1308 
1309 	if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1310 		log_keep_alive(ERR,
1311 			"error status info->keep_alive_requested=%d\n",
1312 			info->keep_alive_requested);
1313 		smbd_disconnect_rdma_connection(info);
1314 		return;
1315 	}
1316 
1317 	log_keep_alive(INFO, "about to send an empty idle message\n");
1318 	smbd_post_send_empty(info);
1319 
1320 	/* Setup the next idle timeout work */
1321 	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1322 			msecs_to_jiffies(sp->keepalive_interval_msec));
1323 }
1324 
1325 /*
1326  * Destroy the transport and related RDMA and memory resources
1327  * Need to go through all the pending counters and make sure on one is using
1328  * the transport while it is destroyed
1329  */
smbd_destroy(struct TCP_Server_Info * server)1330 void smbd_destroy(struct TCP_Server_Info *server)
1331 {
1332 	struct smbd_connection *info = server->smbd_conn;
1333 	struct smbdirect_socket *sc;
1334 	struct smbdirect_socket_parameters *sp;
1335 	struct smbd_response *response;
1336 	unsigned long flags;
1337 
1338 	if (!info) {
1339 		log_rdma_event(INFO, "rdma session already destroyed\n");
1340 		return;
1341 	}
1342 	sc = &info->socket;
1343 	sp = &sc->parameters;
1344 
1345 	log_rdma_event(INFO, "destroying rdma session\n");
1346 	if (sc->status != SMBDIRECT_SOCKET_DISCONNECTED) {
1347 		rdma_disconnect(sc->rdma.cm_id);
1348 		log_rdma_event(INFO, "wait for transport being disconnected\n");
1349 		wait_event_interruptible(
1350 			info->disconn_wait,
1351 			sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1352 	}
1353 
1354 	log_rdma_event(INFO, "destroying qp\n");
1355 	ib_drain_qp(sc->ib.qp);
1356 	rdma_destroy_qp(sc->rdma.cm_id);
1357 	sc->ib.qp = NULL;
1358 
1359 	log_rdma_event(INFO, "cancelling idle timer\n");
1360 	cancel_delayed_work_sync(&info->idle_timer_work);
1361 
1362 	log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1363 	wait_event(info->wait_send_pending,
1364 		atomic_read(&info->send_pending) == 0);
1365 
1366 	/* It's not possible for upper layer to get to reassembly */
1367 	log_rdma_event(INFO, "drain the reassembly queue\n");
1368 	do {
1369 		spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1370 		response = _get_first_reassembly(info);
1371 		if (response) {
1372 			list_del(&response->list);
1373 			spin_unlock_irqrestore(
1374 				&info->reassembly_queue_lock, flags);
1375 			put_receive_buffer(info, response);
1376 		} else
1377 			spin_unlock_irqrestore(
1378 				&info->reassembly_queue_lock, flags);
1379 	} while (response);
1380 	info->reassembly_data_length = 0;
1381 
1382 	log_rdma_event(INFO, "free receive buffers\n");
1383 	wait_event(info->wait_receive_queues,
1384 		info->count_receive_queue + info->count_empty_packet_queue
1385 			== sp->recv_credit_max);
1386 	destroy_receive_buffers(info);
1387 
1388 	/*
1389 	 * For performance reasons, memory registration and deregistration
1390 	 * are not locked by srv_mutex. It is possible some processes are
1391 	 * blocked on transport srv_mutex while holding memory registration.
1392 	 * Release the transport srv_mutex to allow them to hit the failure
1393 	 * path when sending data, and then release memory registrations.
1394 	 */
1395 	log_rdma_event(INFO, "freeing mr list\n");
1396 	wake_up_interruptible_all(&info->wait_mr);
1397 	while (atomic_read(&info->mr_used_count)) {
1398 		cifs_server_unlock(server);
1399 		msleep(1000);
1400 		cifs_server_lock(server);
1401 	}
1402 	destroy_mr_list(info);
1403 
1404 	ib_free_cq(sc->ib.send_cq);
1405 	ib_free_cq(sc->ib.recv_cq);
1406 	ib_dealloc_pd(sc->ib.pd);
1407 	rdma_destroy_id(sc->rdma.cm_id);
1408 
1409 	/* free mempools */
1410 	mempool_destroy(info->request_mempool);
1411 	kmem_cache_destroy(info->request_cache);
1412 
1413 	mempool_destroy(info->response_mempool);
1414 	kmem_cache_destroy(info->response_cache);
1415 
1416 	sc->status = SMBDIRECT_SOCKET_DESTROYED;
1417 
1418 	destroy_workqueue(info->workqueue);
1419 	log_rdma_event(INFO,  "rdma session destroyed\n");
1420 	kfree(info);
1421 	server->smbd_conn = NULL;
1422 }
1423 
1424 /*
1425  * Reconnect this SMBD connection, called from upper layer
1426  * return value: 0 on success, or actual error code
1427  */
smbd_reconnect(struct TCP_Server_Info * server)1428 int smbd_reconnect(struct TCP_Server_Info *server)
1429 {
1430 	log_rdma_event(INFO, "reconnecting rdma session\n");
1431 
1432 	if (!server->smbd_conn) {
1433 		log_rdma_event(INFO, "rdma session already destroyed\n");
1434 		goto create_conn;
1435 	}
1436 
1437 	/*
1438 	 * This is possible if transport is disconnected and we haven't received
1439 	 * notification from RDMA, but upper layer has detected timeout
1440 	 */
1441 	if (server->smbd_conn->socket.status == SMBDIRECT_SOCKET_CONNECTED) {
1442 		log_rdma_event(INFO, "disconnecting transport\n");
1443 		smbd_destroy(server);
1444 	}
1445 
1446 create_conn:
1447 	log_rdma_event(INFO, "creating rdma session\n");
1448 	server->smbd_conn = smbd_get_connection(
1449 		server, (struct sockaddr *) &server->dstaddr);
1450 
1451 	if (server->smbd_conn) {
1452 		cifs_dbg(VFS, "RDMA transport re-established\n");
1453 		trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr);
1454 		return 0;
1455 	}
1456 	trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr);
1457 	return -ENOENT;
1458 }
1459 
destroy_caches_and_workqueue(struct smbd_connection * info)1460 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1461 {
1462 	destroy_receive_buffers(info);
1463 	destroy_workqueue(info->workqueue);
1464 	mempool_destroy(info->response_mempool);
1465 	kmem_cache_destroy(info->response_cache);
1466 	mempool_destroy(info->request_mempool);
1467 	kmem_cache_destroy(info->request_cache);
1468 }
1469 
1470 #define MAX_NAME_LEN	80
allocate_caches_and_workqueue(struct smbd_connection * info)1471 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1472 {
1473 	struct smbdirect_socket *sc = &info->socket;
1474 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1475 	char name[MAX_NAME_LEN];
1476 	int rc;
1477 
1478 	if (WARN_ON_ONCE(sp->max_recv_size < sizeof(struct smbdirect_data_transfer)))
1479 		return -ENOMEM;
1480 
1481 	scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1482 	info->request_cache =
1483 		kmem_cache_create(
1484 			name,
1485 			sizeof(struct smbd_request) +
1486 				sizeof(struct smbdirect_data_transfer),
1487 			0, SLAB_HWCACHE_ALIGN, NULL);
1488 	if (!info->request_cache)
1489 		return -ENOMEM;
1490 
1491 	info->request_mempool =
1492 		mempool_create(sp->send_credit_target, mempool_alloc_slab,
1493 			mempool_free_slab, info->request_cache);
1494 	if (!info->request_mempool)
1495 		goto out1;
1496 
1497 	scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1498 
1499 	struct kmem_cache_args response_args = {
1500 		.align		= __alignof__(struct smbd_response),
1501 		.useroffset	= (offsetof(struct smbd_response, packet) +
1502 				   sizeof(struct smbdirect_data_transfer)),
1503 		.usersize	= sp->max_recv_size - sizeof(struct smbdirect_data_transfer),
1504 	};
1505 	info->response_cache =
1506 		kmem_cache_create(name,
1507 				  sizeof(struct smbd_response) + sp->max_recv_size,
1508 				  &response_args, SLAB_HWCACHE_ALIGN);
1509 	if (!info->response_cache)
1510 		goto out2;
1511 
1512 	info->response_mempool =
1513 		mempool_create(sp->recv_credit_max, mempool_alloc_slab,
1514 		       mempool_free_slab, info->response_cache);
1515 	if (!info->response_mempool)
1516 		goto out3;
1517 
1518 	scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1519 	info->workqueue = create_workqueue(name);
1520 	if (!info->workqueue)
1521 		goto out4;
1522 
1523 	rc = allocate_receive_buffers(info, sp->recv_credit_max);
1524 	if (rc) {
1525 		log_rdma_event(ERR, "failed to allocate receive buffers\n");
1526 		goto out5;
1527 	}
1528 
1529 	return 0;
1530 
1531 out5:
1532 	destroy_workqueue(info->workqueue);
1533 out4:
1534 	mempool_destroy(info->response_mempool);
1535 out3:
1536 	kmem_cache_destroy(info->response_cache);
1537 out2:
1538 	mempool_destroy(info->request_mempool);
1539 out1:
1540 	kmem_cache_destroy(info->request_cache);
1541 	return -ENOMEM;
1542 }
1543 
1544 /* Create a SMBD connection, called by upper layer */
_smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr,int port)1545 static struct smbd_connection *_smbd_get_connection(
1546 	struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1547 {
1548 	int rc;
1549 	struct smbd_connection *info;
1550 	struct smbdirect_socket *sc;
1551 	struct smbdirect_socket_parameters *sp;
1552 	struct rdma_conn_param conn_param;
1553 	struct ib_qp_init_attr qp_attr;
1554 	struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1555 	struct ib_port_immutable port_immutable;
1556 	u32 ird_ord_hdr[2];
1557 
1558 	info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1559 	if (!info)
1560 		return NULL;
1561 	sc = &info->socket;
1562 	sp = &sc->parameters;
1563 
1564 	sc->status = SMBDIRECT_SOCKET_CONNECTING;
1565 	rc = smbd_ia_open(info, dstaddr, port);
1566 	if (rc) {
1567 		log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1568 		goto create_id_failed;
1569 	}
1570 
1571 	if (smbd_send_credit_target > sc->ib.dev->attrs.max_cqe ||
1572 	    smbd_send_credit_target > sc->ib.dev->attrs.max_qp_wr) {
1573 		log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1574 			       smbd_send_credit_target,
1575 			       sc->ib.dev->attrs.max_cqe,
1576 			       sc->ib.dev->attrs.max_qp_wr);
1577 		goto config_failed;
1578 	}
1579 
1580 	if (smbd_receive_credit_max > sc->ib.dev->attrs.max_cqe ||
1581 	    smbd_receive_credit_max > sc->ib.dev->attrs.max_qp_wr) {
1582 		log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1583 			       smbd_receive_credit_max,
1584 			       sc->ib.dev->attrs.max_cqe,
1585 			       sc->ib.dev->attrs.max_qp_wr);
1586 		goto config_failed;
1587 	}
1588 
1589 	sp->recv_credit_max = smbd_receive_credit_max;
1590 	sp->send_credit_target = smbd_send_credit_target;
1591 	sp->max_send_size = smbd_max_send_size;
1592 	sp->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1593 	sp->max_recv_size = smbd_max_receive_size;
1594 	sp->keepalive_interval_msec = smbd_keep_alive_interval * 1000;
1595 
1596 	if (sc->ib.dev->attrs.max_send_sge < SMBDIRECT_MAX_SEND_SGE ||
1597 	    sc->ib.dev->attrs.max_recv_sge < SMBDIRECT_MAX_RECV_SGE) {
1598 		log_rdma_event(ERR,
1599 			"device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1600 			IB_DEVICE_NAME_MAX,
1601 			sc->ib.dev->name,
1602 			sc->ib.dev->attrs.max_send_sge,
1603 			sc->ib.dev->attrs.max_recv_sge);
1604 		goto config_failed;
1605 	}
1606 
1607 	sc->ib.send_cq =
1608 		ib_alloc_cq_any(sc->ib.dev, info,
1609 				sp->send_credit_target, IB_POLL_SOFTIRQ);
1610 	if (IS_ERR(sc->ib.send_cq)) {
1611 		sc->ib.send_cq = NULL;
1612 		goto alloc_cq_failed;
1613 	}
1614 
1615 	sc->ib.recv_cq =
1616 		ib_alloc_cq_any(sc->ib.dev, info,
1617 				sp->recv_credit_max, IB_POLL_SOFTIRQ);
1618 	if (IS_ERR(sc->ib.recv_cq)) {
1619 		sc->ib.recv_cq = NULL;
1620 		goto alloc_cq_failed;
1621 	}
1622 
1623 	memset(&qp_attr, 0, sizeof(qp_attr));
1624 	qp_attr.event_handler = smbd_qp_async_error_upcall;
1625 	qp_attr.qp_context = info;
1626 	qp_attr.cap.max_send_wr = sp->send_credit_target;
1627 	qp_attr.cap.max_recv_wr = sp->recv_credit_max;
1628 	qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SEND_SGE;
1629 	qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_RECV_SGE;
1630 	qp_attr.cap.max_inline_data = 0;
1631 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1632 	qp_attr.qp_type = IB_QPT_RC;
1633 	qp_attr.send_cq = sc->ib.send_cq;
1634 	qp_attr.recv_cq = sc->ib.recv_cq;
1635 	qp_attr.port_num = ~0;
1636 
1637 	rc = rdma_create_qp(sc->rdma.cm_id, sc->ib.pd, &qp_attr);
1638 	if (rc) {
1639 		log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1640 		goto create_qp_failed;
1641 	}
1642 	sc->ib.qp = sc->rdma.cm_id->qp;
1643 
1644 	memset(&conn_param, 0, sizeof(conn_param));
1645 	conn_param.initiator_depth = 0;
1646 
1647 	conn_param.responder_resources =
1648 		min(sc->ib.dev->attrs.max_qp_rd_atom,
1649 		    SMBD_CM_RESPONDER_RESOURCES);
1650 	info->responder_resources = conn_param.responder_resources;
1651 	log_rdma_mr(INFO, "responder_resources=%d\n",
1652 		info->responder_resources);
1653 
1654 	/* Need to send IRD/ORD in private data for iWARP */
1655 	sc->ib.dev->ops.get_port_immutable(
1656 		sc->ib.dev, sc->rdma.cm_id->port_num, &port_immutable);
1657 	if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1658 		ird_ord_hdr[0] = info->responder_resources;
1659 		ird_ord_hdr[1] = 1;
1660 		conn_param.private_data = ird_ord_hdr;
1661 		conn_param.private_data_len = sizeof(ird_ord_hdr);
1662 	} else {
1663 		conn_param.private_data = NULL;
1664 		conn_param.private_data_len = 0;
1665 	}
1666 
1667 	conn_param.retry_count = SMBD_CM_RETRY;
1668 	conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1669 	conn_param.flow_control = 0;
1670 
1671 	log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1672 		&addr_in->sin_addr, port);
1673 
1674 	init_waitqueue_head(&info->conn_wait);
1675 	init_waitqueue_head(&info->disconn_wait);
1676 	init_waitqueue_head(&info->wait_reassembly_queue);
1677 	rc = rdma_connect(sc->rdma.cm_id, &conn_param);
1678 	if (rc) {
1679 		log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1680 		goto rdma_connect_failed;
1681 	}
1682 
1683 	wait_event_interruptible(
1684 		info->conn_wait, sc->status != SMBDIRECT_SOCKET_CONNECTING);
1685 
1686 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1687 		log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1688 		goto rdma_connect_failed;
1689 	}
1690 
1691 	log_rdma_event(INFO, "rdma_connect connected\n");
1692 
1693 	rc = allocate_caches_and_workqueue(info);
1694 	if (rc) {
1695 		log_rdma_event(ERR, "cache allocation failed\n");
1696 		goto allocate_cache_failed;
1697 	}
1698 
1699 	init_waitqueue_head(&info->wait_send_queue);
1700 	INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1701 	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1702 		msecs_to_jiffies(sp->keepalive_interval_msec));
1703 
1704 	init_waitqueue_head(&info->wait_send_pending);
1705 	atomic_set(&info->send_pending, 0);
1706 
1707 	init_waitqueue_head(&info->wait_post_send);
1708 
1709 	INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1710 	INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1711 	info->new_credits_offered = 0;
1712 	spin_lock_init(&info->lock_new_credits_offered);
1713 
1714 	rc = smbd_negotiate(info);
1715 	if (rc) {
1716 		log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1717 		goto negotiation_failed;
1718 	}
1719 
1720 	rc = allocate_mr_list(info);
1721 	if (rc) {
1722 		log_rdma_mr(ERR, "memory registration allocation failed\n");
1723 		goto allocate_mr_failed;
1724 	}
1725 
1726 	return info;
1727 
1728 allocate_mr_failed:
1729 	/* At this point, need to a full transport shutdown */
1730 	server->smbd_conn = info;
1731 	smbd_destroy(server);
1732 	return NULL;
1733 
1734 negotiation_failed:
1735 	cancel_delayed_work_sync(&info->idle_timer_work);
1736 	destroy_caches_and_workqueue(info);
1737 	sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
1738 	init_waitqueue_head(&info->conn_wait);
1739 	rdma_disconnect(sc->rdma.cm_id);
1740 	wait_event(info->conn_wait,
1741 		sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1742 
1743 allocate_cache_failed:
1744 rdma_connect_failed:
1745 	rdma_destroy_qp(sc->rdma.cm_id);
1746 
1747 create_qp_failed:
1748 alloc_cq_failed:
1749 	if (sc->ib.send_cq)
1750 		ib_free_cq(sc->ib.send_cq);
1751 	if (sc->ib.recv_cq)
1752 		ib_free_cq(sc->ib.recv_cq);
1753 
1754 config_failed:
1755 	ib_dealloc_pd(sc->ib.pd);
1756 	rdma_destroy_id(sc->rdma.cm_id);
1757 
1758 create_id_failed:
1759 	kfree(info);
1760 	return NULL;
1761 }
1762 
smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr)1763 struct smbd_connection *smbd_get_connection(
1764 	struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1765 {
1766 	struct smbd_connection *ret;
1767 	int port = SMBD_PORT;
1768 
1769 try_again:
1770 	ret = _smbd_get_connection(server, dstaddr, port);
1771 
1772 	/* Try SMB_PORT if SMBD_PORT doesn't work */
1773 	if (!ret && port == SMBD_PORT) {
1774 		port = SMB_PORT;
1775 		goto try_again;
1776 	}
1777 	return ret;
1778 }
1779 
1780 /*
1781  * Receive data from the transport's receive reassembly queue
1782  * All the incoming data packets are placed in reassembly queue
1783  * iter: the buffer to read data into
1784  * size: the length of data to read
1785  * return value: actual data read
1786  *
1787  * Note: this implementation copies the data from reassembly queue to receive
1788  * buffers used by upper layer. This is not the optimal code path. A better way
1789  * to do it is to not have upper layer allocate its receive buffers but rather
1790  * borrow the buffer from reassembly queue, and return it after data is
1791  * consumed. But this will require more changes to upper layer code, and also
1792  * need to consider packet boundaries while they still being reassembled.
1793  */
smbd_recv(struct smbd_connection * info,struct msghdr * msg)1794 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1795 {
1796 	struct smbdirect_socket *sc = &info->socket;
1797 	struct smbd_response *response;
1798 	struct smbdirect_data_transfer *data_transfer;
1799 	size_t size = iov_iter_count(&msg->msg_iter);
1800 	int to_copy, to_read, data_read, offset;
1801 	u32 data_length, remaining_data_length, data_offset;
1802 	int rc;
1803 
1804 	if (WARN_ON_ONCE(iov_iter_rw(&msg->msg_iter) == WRITE))
1805 		return -EINVAL; /* It's a bug in upper layer to get there */
1806 
1807 again:
1808 	/*
1809 	 * No need to hold the reassembly queue lock all the time as we are
1810 	 * the only one reading from the front of the queue. The transport
1811 	 * may add more entries to the back of the queue at the same time
1812 	 */
1813 	log_read(INFO, "size=%zd info->reassembly_data_length=%d\n", size,
1814 		info->reassembly_data_length);
1815 	if (info->reassembly_data_length >= size) {
1816 		int queue_length;
1817 		int queue_removed = 0;
1818 
1819 		/*
1820 		 * Need to make sure reassembly_data_length is read before
1821 		 * reading reassembly_queue_length and calling
1822 		 * _get_first_reassembly. This call is lock free
1823 		 * as we never read at the end of the queue which are being
1824 		 * updated in SOFTIRQ as more data is received
1825 		 */
1826 		virt_rmb();
1827 		queue_length = info->reassembly_queue_length;
1828 		data_read = 0;
1829 		to_read = size;
1830 		offset = info->first_entry_offset;
1831 		while (data_read < size) {
1832 			response = _get_first_reassembly(info);
1833 			data_transfer = smbd_response_payload(response);
1834 			data_length = le32_to_cpu(data_transfer->data_length);
1835 			remaining_data_length =
1836 				le32_to_cpu(
1837 					data_transfer->remaining_data_length);
1838 			data_offset = le32_to_cpu(data_transfer->data_offset);
1839 
1840 			/*
1841 			 * The upper layer expects RFC1002 length at the
1842 			 * beginning of the payload. Return it to indicate
1843 			 * the total length of the packet. This minimize the
1844 			 * change to upper layer packet processing logic. This
1845 			 * will be eventually remove when an intermediate
1846 			 * transport layer is added
1847 			 */
1848 			if (response->first_segment && size == 4) {
1849 				unsigned int rfc1002_len =
1850 					data_length + remaining_data_length;
1851 				__be32 rfc1002_hdr = cpu_to_be32(rfc1002_len);
1852 				if (copy_to_iter(&rfc1002_hdr, sizeof(rfc1002_hdr),
1853 						 &msg->msg_iter) != sizeof(rfc1002_hdr))
1854 					return -EFAULT;
1855 				data_read = 4;
1856 				response->first_segment = false;
1857 				log_read(INFO, "returning rfc1002 length %d\n",
1858 					rfc1002_len);
1859 				goto read_rfc1002_done;
1860 			}
1861 
1862 			to_copy = min_t(int, data_length - offset, to_read);
1863 			if (copy_to_iter((char *)data_transfer + data_offset + offset,
1864 					 to_copy, &msg->msg_iter) != to_copy)
1865 				return -EFAULT;
1866 
1867 			/* move on to the next buffer? */
1868 			if (to_copy == data_length - offset) {
1869 				queue_length--;
1870 				/*
1871 				 * No need to lock if we are not at the
1872 				 * end of the queue
1873 				 */
1874 				if (queue_length)
1875 					list_del(&response->list);
1876 				else {
1877 					spin_lock_irq(
1878 						&info->reassembly_queue_lock);
1879 					list_del(&response->list);
1880 					spin_unlock_irq(
1881 						&info->reassembly_queue_lock);
1882 				}
1883 				queue_removed++;
1884 				info->count_reassembly_queue--;
1885 				info->count_dequeue_reassembly_queue++;
1886 				put_receive_buffer(info, response);
1887 				offset = 0;
1888 				log_read(INFO, "put_receive_buffer offset=0\n");
1889 			} else
1890 				offset += to_copy;
1891 
1892 			to_read -= to_copy;
1893 			data_read += to_copy;
1894 
1895 			log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1896 				 to_copy, data_length - offset,
1897 				 to_read, data_read, offset);
1898 		}
1899 
1900 		spin_lock_irq(&info->reassembly_queue_lock);
1901 		info->reassembly_data_length -= data_read;
1902 		info->reassembly_queue_length -= queue_removed;
1903 		spin_unlock_irq(&info->reassembly_queue_lock);
1904 
1905 		info->first_entry_offset = offset;
1906 		log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1907 			 data_read, info->reassembly_data_length,
1908 			 info->first_entry_offset);
1909 read_rfc1002_done:
1910 		return data_read;
1911 	}
1912 
1913 	log_read(INFO, "wait_event on more data\n");
1914 	rc = wait_event_interruptible(
1915 		info->wait_reassembly_queue,
1916 		info->reassembly_data_length >= size ||
1917 			sc->status != SMBDIRECT_SOCKET_CONNECTED);
1918 	/* Don't return any data if interrupted */
1919 	if (rc)
1920 		return rc;
1921 
1922 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1923 		log_read(ERR, "disconnected\n");
1924 		return -ECONNABORTED;
1925 	}
1926 
1927 	goto again;
1928 }
1929 
1930 /*
1931  * Send data to transport
1932  * Each rqst is transported as a SMBDirect payload
1933  * rqst: the data to write
1934  * return value: 0 if successfully write, otherwise error code
1935  */
smbd_send(struct TCP_Server_Info * server,int num_rqst,struct smb_rqst * rqst_array)1936 int smbd_send(struct TCP_Server_Info *server,
1937 	int num_rqst, struct smb_rqst *rqst_array)
1938 {
1939 	struct smbd_connection *info = server->smbd_conn;
1940 	struct smbdirect_socket *sc = &info->socket;
1941 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1942 	struct smb_rqst *rqst;
1943 	struct iov_iter iter;
1944 	unsigned int remaining_data_length, klen;
1945 	int rc, i, rqst_idx;
1946 
1947 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
1948 		return -EAGAIN;
1949 
1950 	/*
1951 	 * Add in the page array if there is one. The caller needs to set
1952 	 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
1953 	 * ends at page boundary
1954 	 */
1955 	remaining_data_length = 0;
1956 	for (i = 0; i < num_rqst; i++)
1957 		remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
1958 
1959 	if (unlikely(remaining_data_length > sp->max_fragmented_send_size)) {
1960 		/* assertion: payload never exceeds negotiated maximum */
1961 		log_write(ERR, "payload size %d > max size %d\n",
1962 			remaining_data_length, sp->max_fragmented_send_size);
1963 		return -EINVAL;
1964 	}
1965 
1966 	log_write(INFO, "num_rqst=%d total length=%u\n",
1967 			num_rqst, remaining_data_length);
1968 
1969 	rqst_idx = 0;
1970 	do {
1971 		rqst = &rqst_array[rqst_idx];
1972 
1973 		cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
1974 			 rqst_idx, smb_rqst_len(server, rqst));
1975 		for (i = 0; i < rqst->rq_nvec; i++)
1976 			dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len);
1977 
1978 		log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n",
1979 			  rqst_idx, rqst->rq_nvec, remaining_data_length,
1980 			  iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst));
1981 
1982 		/* Send the metadata pages. */
1983 		klen = 0;
1984 		for (i = 0; i < rqst->rq_nvec; i++)
1985 			klen += rqst->rq_iov[i].iov_len;
1986 		iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen);
1987 
1988 		rc = smbd_post_send_full_iter(info, &iter, &remaining_data_length);
1989 		if (rc < 0)
1990 			break;
1991 
1992 		if (iov_iter_count(&rqst->rq_iter) > 0) {
1993 			/* And then the data pages if there are any */
1994 			rc = smbd_post_send_full_iter(info, &rqst->rq_iter,
1995 						      &remaining_data_length);
1996 			if (rc < 0)
1997 				break;
1998 		}
1999 
2000 	} while (++rqst_idx < num_rqst);
2001 
2002 	/*
2003 	 * As an optimization, we don't wait for individual I/O to finish
2004 	 * before sending the next one.
2005 	 * Send them all and wait for pending send count to get to 0
2006 	 * that means all the I/Os have been out and we are good to return
2007 	 */
2008 
2009 	wait_event(info->wait_send_pending,
2010 		atomic_read(&info->send_pending) == 0);
2011 
2012 	return rc;
2013 }
2014 
register_mr_done(struct ib_cq * cq,struct ib_wc * wc)2015 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2016 {
2017 	struct smbd_mr *mr;
2018 	struct ib_cqe *cqe;
2019 
2020 	if (wc->status) {
2021 		log_rdma_mr(ERR, "status=%d\n", wc->status);
2022 		cqe = wc->wr_cqe;
2023 		mr = container_of(cqe, struct smbd_mr, cqe);
2024 		smbd_disconnect_rdma_connection(mr->conn);
2025 	}
2026 }
2027 
2028 /*
2029  * The work queue function that recovers MRs
2030  * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2031  * again. Both calls are slow, so finish them in a workqueue. This will not
2032  * block I/O path.
2033  * There is one workqueue that recovers MRs, there is no need to lock as the
2034  * I/O requests calling smbd_register_mr will never update the links in the
2035  * mr_list.
2036  */
smbd_mr_recovery_work(struct work_struct * work)2037 static void smbd_mr_recovery_work(struct work_struct *work)
2038 {
2039 	struct smbd_connection *info =
2040 		container_of(work, struct smbd_connection, mr_recovery_work);
2041 	struct smbdirect_socket *sc = &info->socket;
2042 	struct smbd_mr *smbdirect_mr;
2043 	int rc;
2044 
2045 	list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2046 		if (smbdirect_mr->state == MR_ERROR) {
2047 
2048 			/* recover this MR entry */
2049 			rc = ib_dereg_mr(smbdirect_mr->mr);
2050 			if (rc) {
2051 				log_rdma_mr(ERR,
2052 					"ib_dereg_mr failed rc=%x\n",
2053 					rc);
2054 				smbd_disconnect_rdma_connection(info);
2055 				continue;
2056 			}
2057 
2058 			smbdirect_mr->mr = ib_alloc_mr(
2059 				sc->ib.pd, info->mr_type,
2060 				info->max_frmr_depth);
2061 			if (IS_ERR(smbdirect_mr->mr)) {
2062 				log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2063 					    info->mr_type,
2064 					    info->max_frmr_depth);
2065 				smbd_disconnect_rdma_connection(info);
2066 				continue;
2067 			}
2068 		} else
2069 			/* This MR is being used, don't recover it */
2070 			continue;
2071 
2072 		smbdirect_mr->state = MR_READY;
2073 
2074 		/* smbdirect_mr->state is updated by this function
2075 		 * and is read and updated by I/O issuing CPUs trying
2076 		 * to get a MR, the call to atomic_inc_return
2077 		 * implicates a memory barrier and guarantees this
2078 		 * value is updated before waking up any calls to
2079 		 * get_mr() from the I/O issuing CPUs
2080 		 */
2081 		if (atomic_inc_return(&info->mr_ready_count) == 1)
2082 			wake_up_interruptible(&info->wait_mr);
2083 	}
2084 }
2085 
destroy_mr_list(struct smbd_connection * info)2086 static void destroy_mr_list(struct smbd_connection *info)
2087 {
2088 	struct smbdirect_socket *sc = &info->socket;
2089 	struct smbd_mr *mr, *tmp;
2090 
2091 	cancel_work_sync(&info->mr_recovery_work);
2092 	list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2093 		if (mr->state == MR_INVALIDATED)
2094 			ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl,
2095 				mr->sgt.nents, mr->dir);
2096 		ib_dereg_mr(mr->mr);
2097 		kfree(mr->sgt.sgl);
2098 		kfree(mr);
2099 	}
2100 }
2101 
2102 /*
2103  * Allocate MRs used for RDMA read/write
2104  * The number of MRs will not exceed hardware capability in responder_resources
2105  * All MRs are kept in mr_list. The MR can be recovered after it's used
2106  * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2107  * as MRs are used and recovered for I/O, but the list links will not change
2108  */
allocate_mr_list(struct smbd_connection * info)2109 static int allocate_mr_list(struct smbd_connection *info)
2110 {
2111 	struct smbdirect_socket *sc = &info->socket;
2112 	int i;
2113 	struct smbd_mr *smbdirect_mr, *tmp;
2114 
2115 	INIT_LIST_HEAD(&info->mr_list);
2116 	init_waitqueue_head(&info->wait_mr);
2117 	spin_lock_init(&info->mr_list_lock);
2118 	atomic_set(&info->mr_ready_count, 0);
2119 	atomic_set(&info->mr_used_count, 0);
2120 	init_waitqueue_head(&info->wait_for_mr_cleanup);
2121 	INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2122 	/* Allocate more MRs (2x) than hardware responder_resources */
2123 	for (i = 0; i < info->responder_resources * 2; i++) {
2124 		smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2125 		if (!smbdirect_mr)
2126 			goto cleanup_entries;
2127 		smbdirect_mr->mr = ib_alloc_mr(sc->ib.pd, info->mr_type,
2128 					info->max_frmr_depth);
2129 		if (IS_ERR(smbdirect_mr->mr)) {
2130 			log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2131 				    info->mr_type, info->max_frmr_depth);
2132 			goto out;
2133 		}
2134 		smbdirect_mr->sgt.sgl = kcalloc(info->max_frmr_depth,
2135 						sizeof(struct scatterlist),
2136 						GFP_KERNEL);
2137 		if (!smbdirect_mr->sgt.sgl) {
2138 			log_rdma_mr(ERR, "failed to allocate sgl\n");
2139 			ib_dereg_mr(smbdirect_mr->mr);
2140 			goto out;
2141 		}
2142 		smbdirect_mr->state = MR_READY;
2143 		smbdirect_mr->conn = info;
2144 
2145 		list_add_tail(&smbdirect_mr->list, &info->mr_list);
2146 		atomic_inc(&info->mr_ready_count);
2147 	}
2148 	return 0;
2149 
2150 out:
2151 	kfree(smbdirect_mr);
2152 cleanup_entries:
2153 	list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2154 		list_del(&smbdirect_mr->list);
2155 		ib_dereg_mr(smbdirect_mr->mr);
2156 		kfree(smbdirect_mr->sgt.sgl);
2157 		kfree(smbdirect_mr);
2158 	}
2159 	return -ENOMEM;
2160 }
2161 
2162 /*
2163  * Get a MR from mr_list. This function waits until there is at least one
2164  * MR available in the list. It may access the list while the
2165  * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2166  * as they never modify the same places. However, there may be several CPUs
2167  * issuing I/O trying to get MR at the same time, mr_list_lock is used to
2168  * protect this situation.
2169  */
get_mr(struct smbd_connection * info)2170 static struct smbd_mr *get_mr(struct smbd_connection *info)
2171 {
2172 	struct smbdirect_socket *sc = &info->socket;
2173 	struct smbd_mr *ret;
2174 	int rc;
2175 again:
2176 	rc = wait_event_interruptible(info->wait_mr,
2177 		atomic_read(&info->mr_ready_count) ||
2178 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
2179 	if (rc) {
2180 		log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2181 		return NULL;
2182 	}
2183 
2184 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2185 		log_rdma_mr(ERR, "sc->status=%x\n", sc->status);
2186 		return NULL;
2187 	}
2188 
2189 	spin_lock(&info->mr_list_lock);
2190 	list_for_each_entry(ret, &info->mr_list, list) {
2191 		if (ret->state == MR_READY) {
2192 			ret->state = MR_REGISTERED;
2193 			spin_unlock(&info->mr_list_lock);
2194 			atomic_dec(&info->mr_ready_count);
2195 			atomic_inc(&info->mr_used_count);
2196 			return ret;
2197 		}
2198 	}
2199 
2200 	spin_unlock(&info->mr_list_lock);
2201 	/*
2202 	 * It is possible that we could fail to get MR because other processes may
2203 	 * try to acquire a MR at the same time. If this is the case, retry it.
2204 	 */
2205 	goto again;
2206 }
2207 
2208 /*
2209  * Transcribe the pages from an iterator into an MR scatterlist.
2210  */
smbd_iter_to_mr(struct smbd_connection * info,struct iov_iter * iter,struct sg_table * sgt,unsigned int max_sg)2211 static int smbd_iter_to_mr(struct smbd_connection *info,
2212 			   struct iov_iter *iter,
2213 			   struct sg_table *sgt,
2214 			   unsigned int max_sg)
2215 {
2216 	int ret;
2217 
2218 	memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist));
2219 
2220 	ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0);
2221 	WARN_ON(ret < 0);
2222 	if (sgt->nents > 0)
2223 		sg_mark_end(&sgt->sgl[sgt->nents - 1]);
2224 	return ret;
2225 }
2226 
2227 /*
2228  * Register memory for RDMA read/write
2229  * iter: the buffer to register memory with
2230  * writing: true if this is a RDMA write (SMB read), false for RDMA read
2231  * need_invalidate: true if this MR needs to be locally invalidated after I/O
2232  * return value: the MR registered, NULL if failed.
2233  */
smbd_register_mr(struct smbd_connection * info,struct iov_iter * iter,bool writing,bool need_invalidate)2234 struct smbd_mr *smbd_register_mr(struct smbd_connection *info,
2235 				 struct iov_iter *iter,
2236 				 bool writing, bool need_invalidate)
2237 {
2238 	struct smbdirect_socket *sc = &info->socket;
2239 	struct smbd_mr *smbdirect_mr;
2240 	int rc, num_pages;
2241 	enum dma_data_direction dir;
2242 	struct ib_reg_wr *reg_wr;
2243 
2244 	num_pages = iov_iter_npages(iter, info->max_frmr_depth + 1);
2245 	if (num_pages > info->max_frmr_depth) {
2246 		log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2247 			num_pages, info->max_frmr_depth);
2248 		WARN_ON_ONCE(1);
2249 		return NULL;
2250 	}
2251 
2252 	smbdirect_mr = get_mr(info);
2253 	if (!smbdirect_mr) {
2254 		log_rdma_mr(ERR, "get_mr returning NULL\n");
2255 		return NULL;
2256 	}
2257 
2258 	dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2259 	smbdirect_mr->dir = dir;
2260 	smbdirect_mr->need_invalidate = need_invalidate;
2261 	smbdirect_mr->sgt.nents = 0;
2262 	smbdirect_mr->sgt.orig_nents = 0;
2263 
2264 	log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n",
2265 		    num_pages, iov_iter_count(iter), info->max_frmr_depth);
2266 	smbd_iter_to_mr(info, iter, &smbdirect_mr->sgt, info->max_frmr_depth);
2267 
2268 	rc = ib_dma_map_sg(sc->ib.dev, smbdirect_mr->sgt.sgl,
2269 			   smbdirect_mr->sgt.nents, dir);
2270 	if (!rc) {
2271 		log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2272 			num_pages, dir, rc);
2273 		goto dma_map_error;
2274 	}
2275 
2276 	rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl,
2277 			  smbdirect_mr->sgt.nents, NULL, PAGE_SIZE);
2278 	if (rc != smbdirect_mr->sgt.nents) {
2279 		log_rdma_mr(ERR,
2280 			"ib_map_mr_sg failed rc = %d nents = %x\n",
2281 			rc, smbdirect_mr->sgt.nents);
2282 		goto map_mr_error;
2283 	}
2284 
2285 	ib_update_fast_reg_key(smbdirect_mr->mr,
2286 		ib_inc_rkey(smbdirect_mr->mr->rkey));
2287 	reg_wr = &smbdirect_mr->wr;
2288 	reg_wr->wr.opcode = IB_WR_REG_MR;
2289 	smbdirect_mr->cqe.done = register_mr_done;
2290 	reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2291 	reg_wr->wr.num_sge = 0;
2292 	reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2293 	reg_wr->mr = smbdirect_mr->mr;
2294 	reg_wr->key = smbdirect_mr->mr->rkey;
2295 	reg_wr->access = writing ?
2296 			IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2297 			IB_ACCESS_REMOTE_READ;
2298 
2299 	/*
2300 	 * There is no need for waiting for complemtion on ib_post_send
2301 	 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2302 	 * on the next ib_post_send when we actually send I/O to remote peer
2303 	 */
2304 	rc = ib_post_send(sc->ib.qp, &reg_wr->wr, NULL);
2305 	if (!rc)
2306 		return smbdirect_mr;
2307 
2308 	log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2309 		rc, reg_wr->key);
2310 
2311 	/* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2312 map_mr_error:
2313 	ib_dma_unmap_sg(sc->ib.dev, smbdirect_mr->sgt.sgl,
2314 			smbdirect_mr->sgt.nents, smbdirect_mr->dir);
2315 
2316 dma_map_error:
2317 	smbdirect_mr->state = MR_ERROR;
2318 	if (atomic_dec_and_test(&info->mr_used_count))
2319 		wake_up(&info->wait_for_mr_cleanup);
2320 
2321 	smbd_disconnect_rdma_connection(info);
2322 
2323 	return NULL;
2324 }
2325 
local_inv_done(struct ib_cq * cq,struct ib_wc * wc)2326 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2327 {
2328 	struct smbd_mr *smbdirect_mr;
2329 	struct ib_cqe *cqe;
2330 
2331 	cqe = wc->wr_cqe;
2332 	smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2333 	smbdirect_mr->state = MR_INVALIDATED;
2334 	if (wc->status != IB_WC_SUCCESS) {
2335 		log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2336 		smbdirect_mr->state = MR_ERROR;
2337 	}
2338 	complete(&smbdirect_mr->invalidate_done);
2339 }
2340 
2341 /*
2342  * Deregister a MR after I/O is done
2343  * This function may wait if remote invalidation is not used
2344  * and we have to locally invalidate the buffer to prevent data is being
2345  * modified by remote peer after upper layer consumes it
2346  */
smbd_deregister_mr(struct smbd_mr * smbdirect_mr)2347 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2348 {
2349 	struct ib_send_wr *wr;
2350 	struct smbd_connection *info = smbdirect_mr->conn;
2351 	struct smbdirect_socket *sc = &info->socket;
2352 	int rc = 0;
2353 
2354 	if (smbdirect_mr->need_invalidate) {
2355 		/* Need to finish local invalidation before returning */
2356 		wr = &smbdirect_mr->inv_wr;
2357 		wr->opcode = IB_WR_LOCAL_INV;
2358 		smbdirect_mr->cqe.done = local_inv_done;
2359 		wr->wr_cqe = &smbdirect_mr->cqe;
2360 		wr->num_sge = 0;
2361 		wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2362 		wr->send_flags = IB_SEND_SIGNALED;
2363 
2364 		init_completion(&smbdirect_mr->invalidate_done);
2365 		rc = ib_post_send(sc->ib.qp, wr, NULL);
2366 		if (rc) {
2367 			log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2368 			smbd_disconnect_rdma_connection(info);
2369 			goto done;
2370 		}
2371 		wait_for_completion(&smbdirect_mr->invalidate_done);
2372 		smbdirect_mr->need_invalidate = false;
2373 	} else
2374 		/*
2375 		 * For remote invalidation, just set it to MR_INVALIDATED
2376 		 * and defer to mr_recovery_work to recover the MR for next use
2377 		 */
2378 		smbdirect_mr->state = MR_INVALIDATED;
2379 
2380 	if (smbdirect_mr->state == MR_INVALIDATED) {
2381 		ib_dma_unmap_sg(
2382 			sc->ib.dev, smbdirect_mr->sgt.sgl,
2383 			smbdirect_mr->sgt.nents,
2384 			smbdirect_mr->dir);
2385 		smbdirect_mr->state = MR_READY;
2386 		if (atomic_inc_return(&info->mr_ready_count) == 1)
2387 			wake_up_interruptible(&info->wait_mr);
2388 	} else
2389 		/*
2390 		 * Schedule the work to do MR recovery for future I/Os MR
2391 		 * recovery is slow and don't want it to block current I/O
2392 		 */
2393 		queue_work(info->workqueue, &info->mr_recovery_work);
2394 
2395 done:
2396 	if (atomic_dec_and_test(&info->mr_used_count))
2397 		wake_up(&info->wait_for_mr_cleanup);
2398 
2399 	return rc;
2400 }
2401 
smb_set_sge(struct smb_extract_to_rdma * rdma,struct page * lowest_page,size_t off,size_t len)2402 static bool smb_set_sge(struct smb_extract_to_rdma *rdma,
2403 			struct page *lowest_page, size_t off, size_t len)
2404 {
2405 	struct ib_sge *sge = &rdma->sge[rdma->nr_sge];
2406 	u64 addr;
2407 
2408 	addr = ib_dma_map_page(rdma->device, lowest_page,
2409 			       off, len, rdma->direction);
2410 	if (ib_dma_mapping_error(rdma->device, addr))
2411 		return false;
2412 
2413 	sge->addr   = addr;
2414 	sge->length = len;
2415 	sge->lkey   = rdma->local_dma_lkey;
2416 	rdma->nr_sge++;
2417 	return true;
2418 }
2419 
2420 /*
2421  * Extract page fragments from a BVEC-class iterator and add them to an RDMA
2422  * element list.  The pages are not pinned.
2423  */
smb_extract_bvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2424 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter,
2425 					struct smb_extract_to_rdma *rdma,
2426 					ssize_t maxsize)
2427 {
2428 	const struct bio_vec *bv = iter->bvec;
2429 	unsigned long start = iter->iov_offset;
2430 	unsigned int i;
2431 	ssize_t ret = 0;
2432 
2433 	for (i = 0; i < iter->nr_segs; i++) {
2434 		size_t off, len;
2435 
2436 		len = bv[i].bv_len;
2437 		if (start >= len) {
2438 			start -= len;
2439 			continue;
2440 		}
2441 
2442 		len = min_t(size_t, maxsize, len - start);
2443 		off = bv[i].bv_offset + start;
2444 
2445 		if (!smb_set_sge(rdma, bv[i].bv_page, off, len))
2446 			return -EIO;
2447 
2448 		ret += len;
2449 		maxsize -= len;
2450 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2451 			break;
2452 		start = 0;
2453 	}
2454 
2455 	if (ret > 0)
2456 		iov_iter_advance(iter, ret);
2457 	return ret;
2458 }
2459 
2460 /*
2461  * Extract fragments from a KVEC-class iterator and add them to an RDMA list.
2462  * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers.
2463  * The pages are not pinned.
2464  */
smb_extract_kvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2465 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter,
2466 					struct smb_extract_to_rdma *rdma,
2467 					ssize_t maxsize)
2468 {
2469 	const struct kvec *kv = iter->kvec;
2470 	unsigned long start = iter->iov_offset;
2471 	unsigned int i;
2472 	ssize_t ret = 0;
2473 
2474 	for (i = 0; i < iter->nr_segs; i++) {
2475 		struct page *page;
2476 		unsigned long kaddr;
2477 		size_t off, len, seg;
2478 
2479 		len = kv[i].iov_len;
2480 		if (start >= len) {
2481 			start -= len;
2482 			continue;
2483 		}
2484 
2485 		kaddr = (unsigned long)kv[i].iov_base + start;
2486 		off = kaddr & ~PAGE_MASK;
2487 		len = min_t(size_t, maxsize, len - start);
2488 		kaddr &= PAGE_MASK;
2489 
2490 		maxsize -= len;
2491 		do {
2492 			seg = min_t(size_t, len, PAGE_SIZE - off);
2493 
2494 			if (is_vmalloc_or_module_addr((void *)kaddr))
2495 				page = vmalloc_to_page((void *)kaddr);
2496 			else
2497 				page = virt_to_page((void *)kaddr);
2498 
2499 			if (!smb_set_sge(rdma, page, off, seg))
2500 				return -EIO;
2501 
2502 			ret += seg;
2503 			len -= seg;
2504 			kaddr += PAGE_SIZE;
2505 			off = 0;
2506 		} while (len > 0 && rdma->nr_sge < rdma->max_sge);
2507 
2508 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2509 			break;
2510 		start = 0;
2511 	}
2512 
2513 	if (ret > 0)
2514 		iov_iter_advance(iter, ret);
2515 	return ret;
2516 }
2517 
2518 /*
2519  * Extract folio fragments from a FOLIOQ-class iterator and add them to an RDMA
2520  * list.  The folios are not pinned.
2521  */
smb_extract_folioq_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2522 static ssize_t smb_extract_folioq_to_rdma(struct iov_iter *iter,
2523 					  struct smb_extract_to_rdma *rdma,
2524 					  ssize_t maxsize)
2525 {
2526 	const struct folio_queue *folioq = iter->folioq;
2527 	unsigned int slot = iter->folioq_slot;
2528 	ssize_t ret = 0;
2529 	size_t offset = iter->iov_offset;
2530 
2531 	BUG_ON(!folioq);
2532 
2533 	if (slot >= folioq_nr_slots(folioq)) {
2534 		folioq = folioq->next;
2535 		if (WARN_ON_ONCE(!folioq))
2536 			return -EIO;
2537 		slot = 0;
2538 	}
2539 
2540 	do {
2541 		struct folio *folio = folioq_folio(folioq, slot);
2542 		size_t fsize = folioq_folio_size(folioq, slot);
2543 
2544 		if (offset < fsize) {
2545 			size_t part = umin(maxsize, fsize - offset);
2546 
2547 			if (!smb_set_sge(rdma, folio_page(folio, 0), offset, part))
2548 				return -EIO;
2549 
2550 			offset += part;
2551 			ret += part;
2552 			maxsize -= part;
2553 		}
2554 
2555 		if (offset >= fsize) {
2556 			offset = 0;
2557 			slot++;
2558 			if (slot >= folioq_nr_slots(folioq)) {
2559 				if (!folioq->next) {
2560 					WARN_ON_ONCE(ret < iter->count);
2561 					break;
2562 				}
2563 				folioq = folioq->next;
2564 				slot = 0;
2565 			}
2566 		}
2567 	} while (rdma->nr_sge < rdma->max_sge && maxsize > 0);
2568 
2569 	iter->folioq = folioq;
2570 	iter->folioq_slot = slot;
2571 	iter->iov_offset = offset;
2572 	iter->count -= ret;
2573 	return ret;
2574 }
2575 
2576 /*
2577  * Extract page fragments from up to the given amount of the source iterator
2578  * and build up an RDMA list that refers to all of those bits.  The RDMA list
2579  * is appended to, up to the maximum number of elements set in the parameter
2580  * block.
2581  *
2582  * The extracted page fragments are not pinned or ref'd in any way; if an
2583  * IOVEC/UBUF-type iterator is to be used, it should be converted to a
2584  * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some
2585  * way.
2586  */
smb_extract_iter_to_rdma(struct iov_iter * iter,size_t len,struct smb_extract_to_rdma * rdma)2587 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
2588 					struct smb_extract_to_rdma *rdma)
2589 {
2590 	ssize_t ret;
2591 	int before = rdma->nr_sge;
2592 
2593 	switch (iov_iter_type(iter)) {
2594 	case ITER_BVEC:
2595 		ret = smb_extract_bvec_to_rdma(iter, rdma, len);
2596 		break;
2597 	case ITER_KVEC:
2598 		ret = smb_extract_kvec_to_rdma(iter, rdma, len);
2599 		break;
2600 	case ITER_FOLIOQ:
2601 		ret = smb_extract_folioq_to_rdma(iter, rdma, len);
2602 		break;
2603 	default:
2604 		WARN_ON_ONCE(1);
2605 		return -EIO;
2606 	}
2607 
2608 	if (ret < 0) {
2609 		while (rdma->nr_sge > before) {
2610 			struct ib_sge *sge = &rdma->sge[rdma->nr_sge--];
2611 
2612 			ib_dma_unmap_single(rdma->device, sge->addr, sge->length,
2613 					    rdma->direction);
2614 			sge->addr = 0;
2615 		}
2616 	}
2617 
2618 	return ret;
2619 }
2620