xref: /linux/arch/x86/mm/pat/set_memory.c (revision 9afe652958c3ee88f24df1e4a97f298afce89407)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002 Andi Kleen, SuSE Labs.
4  * Thanks to Ben LaHaise for precious feedback.
5  */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/proc_fs.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/vmalloc.h>
19 #include <linux/libnvdimm.h>
20 #include <linux/vmstat.h>
21 #include <linux/kernel.h>
22 #include <linux/cc_platform.h>
23 #include <linux/set_memory.h>
24 #include <linux/memregion.h>
25 
26 #include <asm/e820/api.h>
27 #include <asm/processor.h>
28 #include <asm/tlbflush.h>
29 #include <asm/sections.h>
30 #include <asm/setup.h>
31 #include <linux/uaccess.h>
32 #include <asm/pgalloc.h>
33 #include <asm/proto.h>
34 #include <asm/memtype.h>
35 
36 #include "../mm_internal.h"
37 
38 /*
39  * The current flushing context - we pass it instead of 5 arguments:
40  */
41 struct cpa_data {
42 	unsigned long	*vaddr;
43 	pgd_t		*pgd;
44 	pgprot_t	mask_set;
45 	pgprot_t	mask_clr;
46 	unsigned long	numpages;
47 	unsigned long	curpage;
48 	unsigned long	pfn;
49 	unsigned int	flags;
50 	unsigned int	force_split		: 1,
51 			force_static_prot	: 1,
52 			force_flush_all		: 1;
53 	struct page	**pages;
54 };
55 
56 enum cpa_warn {
57 	CPA_CONFLICT,
58 	CPA_PROTECT,
59 	CPA_DETECT,
60 };
61 
62 static const int cpa_warn_level = CPA_PROTECT;
63 
64 /*
65  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
66  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
67  * entries change the page attribute in parallel to some other cpu
68  * splitting a large page entry along with changing the attribute.
69  */
70 static DEFINE_SPINLOCK(cpa_lock);
71 
72 #define CPA_FLUSHTLB 1
73 #define CPA_ARRAY 2
74 #define CPA_PAGES_ARRAY 4
75 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
76 #define CPA_COLLAPSE 16 /* try to collapse large pages */
77 
cachemode2pgprot(enum page_cache_mode pcm)78 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
79 {
80 	return __pgprot(cachemode2protval(pcm));
81 }
82 
83 #ifdef CONFIG_PROC_FS
84 static unsigned long direct_pages_count[PG_LEVEL_NUM];
85 
update_page_count(int level,unsigned long pages)86 void update_page_count(int level, unsigned long pages)
87 {
88 	/* Protect against CPA */
89 	spin_lock(&pgd_lock);
90 	direct_pages_count[level] += pages;
91 	spin_unlock(&pgd_lock);
92 }
93 
split_page_count(int level)94 static void split_page_count(int level)
95 {
96 	if (direct_pages_count[level] == 0)
97 		return;
98 
99 	direct_pages_count[level]--;
100 	if (system_state == SYSTEM_RUNNING) {
101 		if (level == PG_LEVEL_2M)
102 			count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
103 		else if (level == PG_LEVEL_1G)
104 			count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
105 	}
106 	direct_pages_count[level - 1] += PTRS_PER_PTE;
107 }
108 
collapse_page_count(int level)109 static void collapse_page_count(int level)
110 {
111 	direct_pages_count[level]++;
112 	if (system_state == SYSTEM_RUNNING) {
113 		if (level == PG_LEVEL_2M)
114 			count_vm_event(DIRECT_MAP_LEVEL2_COLLAPSE);
115 		else if (level == PG_LEVEL_1G)
116 			count_vm_event(DIRECT_MAP_LEVEL3_COLLAPSE);
117 	}
118 	direct_pages_count[level - 1] -= PTRS_PER_PTE;
119 }
120 
arch_report_meminfo(struct seq_file * m)121 void arch_report_meminfo(struct seq_file *m)
122 {
123 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
124 			direct_pages_count[PG_LEVEL_4K] << 2);
125 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
126 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
127 			direct_pages_count[PG_LEVEL_2M] << 11);
128 #else
129 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
130 			direct_pages_count[PG_LEVEL_2M] << 12);
131 #endif
132 	if (direct_gbpages)
133 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
134 			direct_pages_count[PG_LEVEL_1G] << 20);
135 }
136 #else
split_page_count(int level)137 static inline void split_page_count(int level) { }
collapse_page_count(int level)138 static inline void collapse_page_count(int level) { }
139 #endif
140 
141 #ifdef CONFIG_X86_CPA_STATISTICS
142 
143 static unsigned long cpa_1g_checked;
144 static unsigned long cpa_1g_sameprot;
145 static unsigned long cpa_1g_preserved;
146 static unsigned long cpa_2m_checked;
147 static unsigned long cpa_2m_sameprot;
148 static unsigned long cpa_2m_preserved;
149 static unsigned long cpa_4k_install;
150 
cpa_inc_1g_checked(void)151 static inline void cpa_inc_1g_checked(void)
152 {
153 	cpa_1g_checked++;
154 }
155 
cpa_inc_2m_checked(void)156 static inline void cpa_inc_2m_checked(void)
157 {
158 	cpa_2m_checked++;
159 }
160 
cpa_inc_4k_install(void)161 static inline void cpa_inc_4k_install(void)
162 {
163 	data_race(cpa_4k_install++);
164 }
165 
cpa_inc_lp_sameprot(int level)166 static inline void cpa_inc_lp_sameprot(int level)
167 {
168 	if (level == PG_LEVEL_1G)
169 		cpa_1g_sameprot++;
170 	else
171 		cpa_2m_sameprot++;
172 }
173 
cpa_inc_lp_preserved(int level)174 static inline void cpa_inc_lp_preserved(int level)
175 {
176 	if (level == PG_LEVEL_1G)
177 		cpa_1g_preserved++;
178 	else
179 		cpa_2m_preserved++;
180 }
181 
cpastats_show(struct seq_file * m,void * p)182 static int cpastats_show(struct seq_file *m, void *p)
183 {
184 	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
185 	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
186 	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
187 	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
188 	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
189 	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
190 	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
191 	return 0;
192 }
193 
cpastats_open(struct inode * inode,struct file * file)194 static int cpastats_open(struct inode *inode, struct file *file)
195 {
196 	return single_open(file, cpastats_show, NULL);
197 }
198 
199 static const struct file_operations cpastats_fops = {
200 	.open		= cpastats_open,
201 	.read		= seq_read,
202 	.llseek		= seq_lseek,
203 	.release	= single_release,
204 };
205 
cpa_stats_init(void)206 static int __init cpa_stats_init(void)
207 {
208 	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
209 			    &cpastats_fops);
210 	return 0;
211 }
212 late_initcall(cpa_stats_init);
213 #else
cpa_inc_1g_checked(void)214 static inline void cpa_inc_1g_checked(void) { }
cpa_inc_2m_checked(void)215 static inline void cpa_inc_2m_checked(void) { }
cpa_inc_4k_install(void)216 static inline void cpa_inc_4k_install(void) { }
cpa_inc_lp_sameprot(int level)217 static inline void cpa_inc_lp_sameprot(int level) { }
cpa_inc_lp_preserved(int level)218 static inline void cpa_inc_lp_preserved(int level) { }
219 #endif
220 
221 
222 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)223 within(unsigned long addr, unsigned long start, unsigned long end)
224 {
225 	return addr >= start && addr < end;
226 }
227 
228 #ifdef CONFIG_X86_64
229 
230 static inline int
within_inclusive(unsigned long addr,unsigned long start,unsigned long end)231 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
232 {
233 	return addr >= start && addr <= end;
234 }
235 
236 /*
237  * The kernel image is mapped into two places in the virtual address space
238  * (addresses without KASLR, of course):
239  *
240  * 1. The kernel direct map (0xffff880000000000)
241  * 2. The "high kernel map" (0xffffffff81000000)
242  *
243  * We actually execute out of #2. If we get the address of a kernel symbol, it
244  * points to #2, but almost all physical-to-virtual translations point to #1.
245  *
246  * This is so that we can have both a directmap of all physical memory *and*
247  * take full advantage of the limited (s32) immediate addressing range (2G)
248  * of x86_64.
249  *
250  * See Documentation/arch/x86/x86_64/mm.rst for more detail.
251  */
252 
highmap_start_pfn(void)253 static inline unsigned long highmap_start_pfn(void)
254 {
255 	return __pa_symbol(_text) >> PAGE_SHIFT;
256 }
257 
highmap_end_pfn(void)258 static inline unsigned long highmap_end_pfn(void)
259 {
260 	/* Do not reference physical address outside the kernel. */
261 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
262 }
263 
__cpa_pfn_in_highmap(unsigned long pfn)264 static bool __cpa_pfn_in_highmap(unsigned long pfn)
265 {
266 	/*
267 	 * Kernel text has an alias mapping at a high address, known
268 	 * here as "highmap".
269 	 */
270 	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
271 }
272 
273 #else
274 
__cpa_pfn_in_highmap(unsigned long pfn)275 static bool __cpa_pfn_in_highmap(unsigned long pfn)
276 {
277 	/* There is no highmap on 32-bit */
278 	return false;
279 }
280 
281 #endif
282 
283 /*
284  * See set_mce_nospec().
285  *
286  * Machine check recovery code needs to change cache mode of poisoned pages to
287  * UC to avoid speculative access logging another error. But passing the
288  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
289  * speculative access. So we cheat and flip the top bit of the address. This
290  * works fine for the code that updates the page tables. But at the end of the
291  * process we need to flush the TLB and cache and the non-canonical address
292  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
293  *
294  * But in the common case we already have a canonical address. This code
295  * will fix the top bit if needed and is a no-op otherwise.
296  */
fix_addr(unsigned long addr)297 static inline unsigned long fix_addr(unsigned long addr)
298 {
299 #ifdef CONFIG_X86_64
300 	return (long)(addr << 1) >> 1;
301 #else
302 	return addr;
303 #endif
304 }
305 
__cpa_addr(struct cpa_data * cpa,unsigned long idx)306 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
307 {
308 	if (cpa->flags & CPA_PAGES_ARRAY) {
309 		struct page *page = cpa->pages[idx];
310 
311 		if (unlikely(PageHighMem(page)))
312 			return 0;
313 
314 		return (unsigned long)page_address(page);
315 	}
316 
317 	if (cpa->flags & CPA_ARRAY)
318 		return cpa->vaddr[idx];
319 
320 	return *cpa->vaddr + idx * PAGE_SIZE;
321 }
322 
323 /*
324  * Flushing functions
325  */
326 
clflush_cache_range_opt(void * vaddr,unsigned int size)327 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
328 {
329 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
330 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
331 	void *vend = vaddr + size;
332 
333 	if (p >= vend)
334 		return;
335 
336 	for (; p < vend; p += clflush_size)
337 		clflushopt(p);
338 }
339 
340 /**
341  * clflush_cache_range - flush a cache range with clflush
342  * @vaddr:	virtual start address
343  * @size:	number of bytes to flush
344  *
345  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
346  * SFENCE to avoid ordering issues.
347  */
clflush_cache_range(void * vaddr,unsigned int size)348 void clflush_cache_range(void *vaddr, unsigned int size)
349 {
350 	mb();
351 	clflush_cache_range_opt(vaddr, size);
352 	mb();
353 }
354 EXPORT_SYMBOL_GPL(clflush_cache_range);
355 
356 #ifdef CONFIG_ARCH_HAS_PMEM_API
arch_invalidate_pmem(void * addr,size_t size)357 void arch_invalidate_pmem(void *addr, size_t size)
358 {
359 	clflush_cache_range(addr, size);
360 }
361 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
362 #endif
363 
364 #ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
cpu_cache_has_invalidate_memregion(void)365 bool cpu_cache_has_invalidate_memregion(void)
366 {
367 	return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR);
368 }
369 EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, "DEVMEM");
370 
cpu_cache_invalidate_memregion(int res_desc)371 int cpu_cache_invalidate_memregion(int res_desc)
372 {
373 	if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion()))
374 		return -ENXIO;
375 	wbinvd_on_all_cpus();
376 	return 0;
377 }
378 EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, "DEVMEM");
379 #endif
380 
__cpa_flush_all(void * arg)381 static void __cpa_flush_all(void *arg)
382 {
383 	unsigned long cache = (unsigned long)arg;
384 
385 	/*
386 	 * Flush all to work around Errata in early athlons regarding
387 	 * large page flushing.
388 	 */
389 	__flush_tlb_all();
390 
391 	if (cache && boot_cpu_data.x86 >= 4)
392 		wbinvd();
393 }
394 
cpa_flush_all(unsigned long cache)395 static void cpa_flush_all(unsigned long cache)
396 {
397 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
398 
399 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
400 }
401 
__cpa_flush_tlb(void * data)402 static void __cpa_flush_tlb(void *data)
403 {
404 	struct cpa_data *cpa = data;
405 	unsigned int i;
406 
407 	for (i = 0; i < cpa->numpages; i++)
408 		flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
409 }
410 
411 static int collapse_large_pages(unsigned long addr, struct list_head *pgtables);
412 
cpa_collapse_large_pages(struct cpa_data * cpa)413 static void cpa_collapse_large_pages(struct cpa_data *cpa)
414 {
415 	unsigned long start, addr, end;
416 	struct ptdesc *ptdesc, *tmp;
417 	LIST_HEAD(pgtables);
418 	int collapsed = 0;
419 	int i;
420 
421 	if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
422 		for (i = 0; i < cpa->numpages; i++)
423 			collapsed += collapse_large_pages(__cpa_addr(cpa, i),
424 							  &pgtables);
425 	} else {
426 		addr = __cpa_addr(cpa, 0);
427 		start = addr & PMD_MASK;
428 		end = addr + PAGE_SIZE * cpa->numpages;
429 
430 		for (addr = start; within(addr, start, end); addr += PMD_SIZE)
431 			collapsed += collapse_large_pages(addr, &pgtables);
432 	}
433 
434 	if (!collapsed)
435 		return;
436 
437 	flush_tlb_all();
438 
439 	list_for_each_entry_safe(ptdesc, tmp, &pgtables, pt_list) {
440 		list_del(&ptdesc->pt_list);
441 		__free_page(ptdesc_page(ptdesc));
442 	}
443 }
444 
cpa_flush(struct cpa_data * cpa,int cache)445 static void cpa_flush(struct cpa_data *cpa, int cache)
446 {
447 	unsigned int i;
448 
449 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
450 
451 	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
452 		cpa_flush_all(cache);
453 		goto collapse_large_pages;
454 	}
455 
456 	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
457 		flush_tlb_all();
458 	else
459 		on_each_cpu(__cpa_flush_tlb, cpa, 1);
460 
461 	if (!cache)
462 		goto collapse_large_pages;
463 
464 	mb();
465 	for (i = 0; i < cpa->numpages; i++) {
466 		unsigned long addr = __cpa_addr(cpa, i);
467 		unsigned int level;
468 
469 		pte_t *pte = lookup_address(addr, &level);
470 
471 		/*
472 		 * Only flush present addresses:
473 		 */
474 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
475 			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
476 	}
477 	mb();
478 
479 collapse_large_pages:
480 	if (cpa->flags & CPA_COLLAPSE)
481 		cpa_collapse_large_pages(cpa);
482 }
483 
overlaps(unsigned long r1_start,unsigned long r1_end,unsigned long r2_start,unsigned long r2_end)484 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
485 		     unsigned long r2_start, unsigned long r2_end)
486 {
487 	return (r1_start <= r2_end && r1_end >= r2_start) ||
488 		(r2_start <= r1_end && r2_end >= r1_start);
489 }
490 
491 #ifdef CONFIG_PCI_BIOS
492 /*
493  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
494  * based config access (CONFIG_PCI_GOBIOS) support.
495  */
496 #define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
497 #define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
498 
protect_pci_bios(unsigned long spfn,unsigned long epfn)499 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
500 {
501 	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
502 		return _PAGE_NX;
503 	return 0;
504 }
505 #else
protect_pci_bios(unsigned long spfn,unsigned long epfn)506 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
507 {
508 	return 0;
509 }
510 #endif
511 
512 /*
513  * The .rodata section needs to be read-only. Using the pfn catches all
514  * aliases.  This also includes __ro_after_init, so do not enforce until
515  * kernel_set_to_readonly is true.
516  */
protect_rodata(unsigned long spfn,unsigned long epfn)517 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
518 {
519 	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
520 
521 	/*
522 	 * Note: __end_rodata is at page aligned and not inclusive, so
523 	 * subtract 1 to get the last enforced PFN in the rodata area.
524 	 */
525 	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
526 
527 	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
528 		return _PAGE_RW;
529 	return 0;
530 }
531 
532 /*
533  * Protect kernel text against becoming non executable by forbidding
534  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
535  * out of which the kernel actually executes.  Do not protect the low
536  * mapping.
537  *
538  * This does not cover __inittext since that is gone after boot.
539  */
protect_kernel_text(unsigned long start,unsigned long end)540 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
541 {
542 	unsigned long t_end = (unsigned long)_etext - 1;
543 	unsigned long t_start = (unsigned long)_text;
544 
545 	if (overlaps(start, end, t_start, t_end))
546 		return _PAGE_NX;
547 	return 0;
548 }
549 
550 #if defined(CONFIG_X86_64)
551 /*
552  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
553  * kernel text mappings for the large page aligned text, rodata sections
554  * will be always read-only. For the kernel identity mappings covering the
555  * holes caused by this alignment can be anything that user asks.
556  *
557  * This will preserve the large page mappings for kernel text/data at no
558  * extra cost.
559  */
protect_kernel_text_ro(unsigned long start,unsigned long end)560 static pgprotval_t protect_kernel_text_ro(unsigned long start,
561 					  unsigned long end)
562 {
563 	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
564 	unsigned long t_start = (unsigned long)_text;
565 	unsigned int level;
566 
567 	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
568 		return 0;
569 	/*
570 	 * Don't enforce the !RW mapping for the kernel text mapping, if
571 	 * the current mapping is already using small page mapping.  No
572 	 * need to work hard to preserve large page mappings in this case.
573 	 *
574 	 * This also fixes the Linux Xen paravirt guest boot failure caused
575 	 * by unexpected read-only mappings for kernel identity
576 	 * mappings. In this paravirt guest case, the kernel text mapping
577 	 * and the kernel identity mapping share the same page-table pages,
578 	 * so the protections for kernel text and identity mappings have to
579 	 * be the same.
580 	 */
581 	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
582 		return _PAGE_RW;
583 	return 0;
584 }
585 #else
protect_kernel_text_ro(unsigned long start,unsigned long end)586 static pgprotval_t protect_kernel_text_ro(unsigned long start,
587 					  unsigned long end)
588 {
589 	return 0;
590 }
591 #endif
592 
conflicts(pgprot_t prot,pgprotval_t val)593 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
594 {
595 	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
596 }
597 
check_conflict(int warnlvl,pgprot_t prot,pgprotval_t val,unsigned long start,unsigned long end,unsigned long pfn,const char * txt)598 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
599 				  unsigned long start, unsigned long end,
600 				  unsigned long pfn, const char *txt)
601 {
602 	static const char *lvltxt[] = {
603 		[CPA_CONFLICT]	= "conflict",
604 		[CPA_PROTECT]	= "protect",
605 		[CPA_DETECT]	= "detect",
606 	};
607 
608 	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
609 		return;
610 
611 	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
612 		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
613 		(unsigned long long)val);
614 }
615 
616 /*
617  * Certain areas of memory on x86 require very specific protection flags,
618  * for example the BIOS area or kernel text. Callers don't always get this
619  * right (again, ioremap() on BIOS memory is not uncommon) so this function
620  * checks and fixes these known static required protection bits.
621  */
static_protections(pgprot_t prot,unsigned long start,unsigned long pfn,unsigned long npg,unsigned long lpsize,int warnlvl)622 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
623 					  unsigned long pfn, unsigned long npg,
624 					  unsigned long lpsize, int warnlvl)
625 {
626 	pgprotval_t forbidden, res;
627 	unsigned long end;
628 
629 	/*
630 	 * There is no point in checking RW/NX conflicts when the requested
631 	 * mapping is setting the page !PRESENT.
632 	 */
633 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
634 		return prot;
635 
636 	/* Operate on the virtual address */
637 	end = start + npg * PAGE_SIZE - 1;
638 
639 	res = protect_kernel_text(start, end);
640 	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
641 	forbidden = res;
642 
643 	/*
644 	 * Special case to preserve a large page. If the change spawns the
645 	 * full large page mapping then there is no point to split it
646 	 * up. Happens with ftrace and is going to be removed once ftrace
647 	 * switched to text_poke().
648 	 */
649 	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
650 		res = protect_kernel_text_ro(start, end);
651 		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
652 		forbidden |= res;
653 	}
654 
655 	/* Check the PFN directly */
656 	res = protect_pci_bios(pfn, pfn + npg - 1);
657 	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
658 	forbidden |= res;
659 
660 	res = protect_rodata(pfn, pfn + npg - 1);
661 	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
662 	forbidden |= res;
663 
664 	return __pgprot(pgprot_val(prot) & ~forbidden);
665 }
666 
667 /*
668  * Validate strict W^X semantics.
669  */
verify_rwx(pgprot_t old,pgprot_t new,unsigned long start,unsigned long pfn,unsigned long npg,bool nx,bool rw)670 static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start,
671 				  unsigned long pfn, unsigned long npg,
672 				  bool nx, bool rw)
673 {
674 	unsigned long end;
675 
676 	/*
677 	 * 32-bit has some unfixable W+X issues, like EFI code
678 	 * and writeable data being in the same page.  Disable
679 	 * detection and enforcement there.
680 	 */
681 	if (IS_ENABLED(CONFIG_X86_32))
682 		return new;
683 
684 	/* Only verify when NX is supported: */
685 	if (!(__supported_pte_mask & _PAGE_NX))
686 		return new;
687 
688 	if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX)))
689 		return new;
690 
691 	if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW)
692 		return new;
693 
694 	/* Non-leaf translation entries can disable writing or execution. */
695 	if (!rw || nx)
696 		return new;
697 
698 	end = start + npg * PAGE_SIZE - 1;
699 	WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
700 		  (unsigned long long)pgprot_val(old),
701 		  (unsigned long long)pgprot_val(new),
702 		  start, end, pfn);
703 
704 	/*
705 	 * For now, allow all permission change attempts by returning the
706 	 * attempted permissions.  This can 'return old' to actively
707 	 * refuse the permission change at a later time.
708 	 */
709 	return new;
710 }
711 
712 /*
713  * Lookup the page table entry for a virtual address in a specific pgd.
714  * Return a pointer to the entry (or NULL if the entry does not exist),
715  * the level of the entry, and the effective NX and RW bits of all
716  * page table levels.
717  */
lookup_address_in_pgd_attr(pgd_t * pgd,unsigned long address,unsigned int * level,bool * nx,bool * rw)718 pte_t *lookup_address_in_pgd_attr(pgd_t *pgd, unsigned long address,
719 				  unsigned int *level, bool *nx, bool *rw)
720 {
721 	p4d_t *p4d;
722 	pud_t *pud;
723 	pmd_t *pmd;
724 
725 	*level = PG_LEVEL_256T;
726 	*nx = false;
727 	*rw = true;
728 
729 	if (pgd_none(*pgd))
730 		return NULL;
731 
732 	*level = PG_LEVEL_512G;
733 	*nx |= pgd_flags(*pgd) & _PAGE_NX;
734 	*rw &= pgd_flags(*pgd) & _PAGE_RW;
735 
736 	p4d = p4d_offset(pgd, address);
737 	if (p4d_none(*p4d))
738 		return NULL;
739 
740 	if (p4d_leaf(*p4d) || !p4d_present(*p4d))
741 		return (pte_t *)p4d;
742 
743 	*level = PG_LEVEL_1G;
744 	*nx |= p4d_flags(*p4d) & _PAGE_NX;
745 	*rw &= p4d_flags(*p4d) & _PAGE_RW;
746 
747 	pud = pud_offset(p4d, address);
748 	if (pud_none(*pud))
749 		return NULL;
750 
751 	if (pud_leaf(*pud) || !pud_present(*pud))
752 		return (pte_t *)pud;
753 
754 	*level = PG_LEVEL_2M;
755 	*nx |= pud_flags(*pud) & _PAGE_NX;
756 	*rw &= pud_flags(*pud) & _PAGE_RW;
757 
758 	pmd = pmd_offset(pud, address);
759 	if (pmd_none(*pmd))
760 		return NULL;
761 
762 	if (pmd_leaf(*pmd) || !pmd_present(*pmd))
763 		return (pte_t *)pmd;
764 
765 	*level = PG_LEVEL_4K;
766 	*nx |= pmd_flags(*pmd) & _PAGE_NX;
767 	*rw &= pmd_flags(*pmd) & _PAGE_RW;
768 
769 	return pte_offset_kernel(pmd, address);
770 }
771 
772 /*
773  * Lookup the page table entry for a virtual address in a specific pgd.
774  * Return a pointer to the entry and the level of the mapping.
775  */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)776 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
777 			     unsigned int *level)
778 {
779 	bool nx, rw;
780 
781 	return lookup_address_in_pgd_attr(pgd, address, level, &nx, &rw);
782 }
783 
784 /*
785  * Lookup the page table entry for a virtual address. Return a pointer
786  * to the entry and the level of the mapping.
787  *
788  * Note: the function returns p4d, pud or pmd either when the entry is marked
789  * large or when the present bit is not set. Otherwise it returns NULL.
790  */
lookup_address(unsigned long address,unsigned int * level)791 pte_t *lookup_address(unsigned long address, unsigned int *level)
792 {
793 	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
794 }
795 EXPORT_SYMBOL_GPL(lookup_address);
796 
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level,bool * nx,bool * rw)797 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
798 				  unsigned int *level, bool *nx, bool *rw)
799 {
800 	pgd_t *pgd;
801 
802 	if (!cpa->pgd)
803 		pgd = pgd_offset_k(address);
804 	else
805 		pgd = cpa->pgd + pgd_index(address);
806 
807 	return lookup_address_in_pgd_attr(pgd, address, level, nx, rw);
808 }
809 
810 /*
811  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
812  * or NULL if not present.
813  */
lookup_pmd_address(unsigned long address)814 pmd_t *lookup_pmd_address(unsigned long address)
815 {
816 	pgd_t *pgd;
817 	p4d_t *p4d;
818 	pud_t *pud;
819 
820 	pgd = pgd_offset_k(address);
821 	if (pgd_none(*pgd))
822 		return NULL;
823 
824 	p4d = p4d_offset(pgd, address);
825 	if (p4d_none(*p4d) || p4d_leaf(*p4d) || !p4d_present(*p4d))
826 		return NULL;
827 
828 	pud = pud_offset(p4d, address);
829 	if (pud_none(*pud) || pud_leaf(*pud) || !pud_present(*pud))
830 		return NULL;
831 
832 	return pmd_offset(pud, address);
833 }
834 
835 /*
836  * This is necessary because __pa() does not work on some
837  * kinds of memory, like vmalloc() or the alloc_remap()
838  * areas on 32-bit NUMA systems.  The percpu areas can
839  * end up in this kind of memory, for instance.
840  *
841  * Note that as long as the PTEs are well-formed with correct PFNs, this
842  * works without checking the PRESENT bit in the leaf PTE.  This is unlike
843  * the similar vmalloc_to_page() and derivatives.  Callers may depend on
844  * this behavior.
845  *
846  * This could be optimized, but it is only used in paths that are not perf
847  * sensitive, and keeping it unoptimized should increase the testing coverage
848  * for the more obscure platforms.
849  */
slow_virt_to_phys(void * __virt_addr)850 phys_addr_t slow_virt_to_phys(void *__virt_addr)
851 {
852 	unsigned long virt_addr = (unsigned long)__virt_addr;
853 	phys_addr_t phys_addr;
854 	unsigned long offset;
855 	enum pg_level level;
856 	pte_t *pte;
857 
858 	pte = lookup_address(virt_addr, &level);
859 	BUG_ON(!pte);
860 
861 	/*
862 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
863 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
864 	 * make 32-PAE kernel work correctly.
865 	 */
866 	switch (level) {
867 	case PG_LEVEL_1G:
868 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
869 		offset = virt_addr & ~PUD_MASK;
870 		break;
871 	case PG_LEVEL_2M:
872 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
873 		offset = virt_addr & ~PMD_MASK;
874 		break;
875 	default:
876 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
877 		offset = virt_addr & ~PAGE_MASK;
878 	}
879 
880 	return (phys_addr_t)(phys_addr | offset);
881 }
882 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
883 
884 /*
885  * Set the new pmd in all the pgds we know about:
886  */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)887 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
888 {
889 	/* change init_mm */
890 	set_pte_atomic(kpte, pte);
891 #ifdef CONFIG_X86_32
892 	{
893 		struct page *page;
894 
895 		list_for_each_entry(page, &pgd_list, lru) {
896 			pgd_t *pgd;
897 			p4d_t *p4d;
898 			pud_t *pud;
899 			pmd_t *pmd;
900 
901 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
902 			p4d = p4d_offset(pgd, address);
903 			pud = pud_offset(p4d, address);
904 			pmd = pmd_offset(pud, address);
905 			set_pte_atomic((pte_t *)pmd, pte);
906 		}
907 	}
908 #endif
909 }
910 
pgprot_clear_protnone_bits(pgprot_t prot)911 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
912 {
913 	/*
914 	 * _PAGE_GLOBAL means "global page" for present PTEs.
915 	 * But, it is also used to indicate _PAGE_PROTNONE
916 	 * for non-present PTEs.
917 	 *
918 	 * This ensures that a _PAGE_GLOBAL PTE going from
919 	 * present to non-present is not confused as
920 	 * _PAGE_PROTNONE.
921 	 */
922 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
923 		pgprot_val(prot) &= ~_PAGE_GLOBAL;
924 
925 	return prot;
926 }
927 
__should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)928 static int __should_split_large_page(pte_t *kpte, unsigned long address,
929 				     struct cpa_data *cpa)
930 {
931 	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
932 	pgprot_t old_prot, new_prot, req_prot, chk_prot;
933 	pte_t new_pte, *tmp;
934 	enum pg_level level;
935 	bool nx, rw;
936 
937 	/*
938 	 * Check for races, another CPU might have split this page
939 	 * up already:
940 	 */
941 	tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
942 	if (tmp != kpte)
943 		return 1;
944 
945 	switch (level) {
946 	case PG_LEVEL_2M:
947 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
948 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
949 		cpa_inc_2m_checked();
950 		break;
951 	case PG_LEVEL_1G:
952 		old_prot = pud_pgprot(*(pud_t *)kpte);
953 		old_pfn = pud_pfn(*(pud_t *)kpte);
954 		cpa_inc_1g_checked();
955 		break;
956 	default:
957 		return -EINVAL;
958 	}
959 
960 	psize = page_level_size(level);
961 	pmask = page_level_mask(level);
962 
963 	/*
964 	 * Calculate the number of pages, which fit into this large
965 	 * page starting at address:
966 	 */
967 	lpaddr = (address + psize) & pmask;
968 	numpages = (lpaddr - address) >> PAGE_SHIFT;
969 	if (numpages < cpa->numpages)
970 		cpa->numpages = numpages;
971 
972 	/*
973 	 * We are safe now. Check whether the new pgprot is the same:
974 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
975 	 * up accordingly.
976 	 */
977 
978 	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
979 	req_prot = pgprot_large_2_4k(old_prot);
980 
981 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
982 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
983 
984 	/*
985 	 * req_prot is in format of 4k pages. It must be converted to large
986 	 * page format: the caching mode includes the PAT bit located at
987 	 * different bit positions in the two formats.
988 	 */
989 	req_prot = pgprot_4k_2_large(req_prot);
990 	req_prot = pgprot_clear_protnone_bits(req_prot);
991 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
992 		pgprot_val(req_prot) |= _PAGE_PSE;
993 
994 	/*
995 	 * old_pfn points to the large page base pfn. So we need to add the
996 	 * offset of the virtual address:
997 	 */
998 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
999 	cpa->pfn = pfn;
1000 
1001 	/*
1002 	 * Calculate the large page base address and the number of 4K pages
1003 	 * in the large page
1004 	 */
1005 	lpaddr = address & pmask;
1006 	numpages = psize >> PAGE_SHIFT;
1007 
1008 	/*
1009 	 * Sanity check that the existing mapping is correct versus the static
1010 	 * protections. static_protections() guards against !PRESENT, so no
1011 	 * extra conditional required here.
1012 	 */
1013 	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
1014 				      psize, CPA_CONFLICT);
1015 
1016 	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
1017 		/*
1018 		 * Split the large page and tell the split code to
1019 		 * enforce static protections.
1020 		 */
1021 		cpa->force_static_prot = 1;
1022 		return 1;
1023 	}
1024 
1025 	/*
1026 	 * Optimization: If the requested pgprot is the same as the current
1027 	 * pgprot, then the large page can be preserved and no updates are
1028 	 * required independent of alignment and length of the requested
1029 	 * range. The above already established that the current pgprot is
1030 	 * correct, which in consequence makes the requested pgprot correct
1031 	 * as well if it is the same. The static protection scan below will
1032 	 * not come to a different conclusion.
1033 	 */
1034 	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
1035 		cpa_inc_lp_sameprot(level);
1036 		return 0;
1037 	}
1038 
1039 	/*
1040 	 * If the requested range does not cover the full page, split it up
1041 	 */
1042 	if (address != lpaddr || cpa->numpages != numpages)
1043 		return 1;
1044 
1045 	/*
1046 	 * Check whether the requested pgprot is conflicting with a static
1047 	 * protection requirement in the large page.
1048 	 */
1049 	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
1050 				      psize, CPA_DETECT);
1051 
1052 	new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages,
1053 			      nx, rw);
1054 
1055 	/*
1056 	 * If there is a conflict, split the large page.
1057 	 *
1058 	 * There used to be a 4k wise evaluation trying really hard to
1059 	 * preserve the large pages, but experimentation has shown, that this
1060 	 * does not help at all. There might be corner cases which would
1061 	 * preserve one large page occasionally, but it's really not worth the
1062 	 * extra code and cycles for the common case.
1063 	 */
1064 	if (pgprot_val(req_prot) != pgprot_val(new_prot))
1065 		return 1;
1066 
1067 	/* All checks passed. Update the large page mapping. */
1068 	new_pte = pfn_pte(old_pfn, new_prot);
1069 	__set_pmd_pte(kpte, address, new_pte);
1070 	cpa->flags |= CPA_FLUSHTLB;
1071 	cpa_inc_lp_preserved(level);
1072 	return 0;
1073 }
1074 
should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)1075 static int should_split_large_page(pte_t *kpte, unsigned long address,
1076 				   struct cpa_data *cpa)
1077 {
1078 	int do_split;
1079 
1080 	if (cpa->force_split)
1081 		return 1;
1082 
1083 	spin_lock(&pgd_lock);
1084 	do_split = __should_split_large_page(kpte, address, cpa);
1085 	spin_unlock(&pgd_lock);
1086 
1087 	return do_split;
1088 }
1089 
split_set_pte(struct cpa_data * cpa,pte_t * pte,unsigned long pfn,pgprot_t ref_prot,unsigned long address,unsigned long size)1090 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
1091 			  pgprot_t ref_prot, unsigned long address,
1092 			  unsigned long size)
1093 {
1094 	unsigned int npg = PFN_DOWN(size);
1095 	pgprot_t prot;
1096 
1097 	/*
1098 	 * If should_split_large_page() discovered an inconsistent mapping,
1099 	 * remove the invalid protection in the split mapping.
1100 	 */
1101 	if (!cpa->force_static_prot)
1102 		goto set;
1103 
1104 	/* Hand in lpsize = 0 to enforce the protection mechanism */
1105 	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
1106 
1107 	if (pgprot_val(prot) == pgprot_val(ref_prot))
1108 		goto set;
1109 
1110 	/*
1111 	 * If this is splitting a PMD, fix it up. PUD splits cannot be
1112 	 * fixed trivially as that would require to rescan the newly
1113 	 * installed PMD mappings after returning from split_large_page()
1114 	 * so an eventual further split can allocate the necessary PTE
1115 	 * pages. Warn for now and revisit it in case this actually
1116 	 * happens.
1117 	 */
1118 	if (size == PAGE_SIZE)
1119 		ref_prot = prot;
1120 	else
1121 		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
1122 set:
1123 	set_pte(pte, pfn_pte(pfn, ref_prot));
1124 }
1125 
1126 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)1127 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
1128 		   struct page *base)
1129 {
1130 	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
1131 	pte_t *pbase = (pte_t *)page_address(base);
1132 	unsigned int i, level;
1133 	pgprot_t ref_prot;
1134 	bool nx, rw;
1135 	pte_t *tmp;
1136 
1137 	spin_lock(&pgd_lock);
1138 	/*
1139 	 * Check for races, another CPU might have split this page
1140 	 * up for us already:
1141 	 */
1142 	tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
1143 	if (tmp != kpte) {
1144 		spin_unlock(&pgd_lock);
1145 		return 1;
1146 	}
1147 
1148 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
1149 
1150 	switch (level) {
1151 	case PG_LEVEL_2M:
1152 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
1153 		/*
1154 		 * Clear PSE (aka _PAGE_PAT) and move
1155 		 * PAT bit to correct position.
1156 		 */
1157 		ref_prot = pgprot_large_2_4k(ref_prot);
1158 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1159 		lpaddr = address & PMD_MASK;
1160 		lpinc = PAGE_SIZE;
1161 		break;
1162 
1163 	case PG_LEVEL_1G:
1164 		ref_prot = pud_pgprot(*(pud_t *)kpte);
1165 		ref_pfn = pud_pfn(*(pud_t *)kpte);
1166 		pfninc = PMD_SIZE >> PAGE_SHIFT;
1167 		lpaddr = address & PUD_MASK;
1168 		lpinc = PMD_SIZE;
1169 		/*
1170 		 * Clear the PSE flags if the PRESENT flag is not set
1171 		 * otherwise pmd_present() will return true even on a non
1172 		 * present pmd.
1173 		 */
1174 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1175 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1176 		break;
1177 
1178 	default:
1179 		spin_unlock(&pgd_lock);
1180 		return 1;
1181 	}
1182 
1183 	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1184 
1185 	/*
1186 	 * Get the target pfn from the original entry:
1187 	 */
1188 	pfn = ref_pfn;
1189 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1190 		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1191 
1192 	if (virt_addr_valid(address)) {
1193 		unsigned long pfn = PFN_DOWN(__pa(address));
1194 
1195 		if (pfn_range_is_mapped(pfn, pfn + 1))
1196 			split_page_count(level);
1197 	}
1198 
1199 	/*
1200 	 * Install the new, split up pagetable.
1201 	 *
1202 	 * We use the standard kernel pagetable protections for the new
1203 	 * pagetable protections, the actual ptes set above control the
1204 	 * primary protection behavior:
1205 	 */
1206 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1207 
1208 	/*
1209 	 * Do a global flush tlb after splitting the large page
1210 	 * and before we do the actual change page attribute in the PTE.
1211 	 *
1212 	 * Without this, we violate the TLB application note, that says:
1213 	 * "The TLBs may contain both ordinary and large-page
1214 	 *  translations for a 4-KByte range of linear addresses. This
1215 	 *  may occur if software modifies the paging structures so that
1216 	 *  the page size used for the address range changes. If the two
1217 	 *  translations differ with respect to page frame or attributes
1218 	 *  (e.g., permissions), processor behavior is undefined and may
1219 	 *  be implementation-specific."
1220 	 *
1221 	 * We do this global tlb flush inside the cpa_lock, so that we
1222 	 * don't allow any other cpu, with stale tlb entries change the
1223 	 * page attribute in parallel, that also falls into the
1224 	 * just split large page entry.
1225 	 */
1226 	flush_tlb_all();
1227 	spin_unlock(&pgd_lock);
1228 
1229 	return 0;
1230 }
1231 
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)1232 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1233 			    unsigned long address)
1234 {
1235 	struct page *base;
1236 
1237 	if (!debug_pagealloc_enabled())
1238 		spin_unlock(&cpa_lock);
1239 	base = alloc_pages(GFP_KERNEL, 0);
1240 	if (!debug_pagealloc_enabled())
1241 		spin_lock(&cpa_lock);
1242 	if (!base)
1243 		return -ENOMEM;
1244 
1245 	if (__split_large_page(cpa, kpte, address, base))
1246 		__free_page(base);
1247 
1248 	return 0;
1249 }
1250 
collapse_pmd_page(pmd_t * pmd,unsigned long addr,struct list_head * pgtables)1251 static int collapse_pmd_page(pmd_t *pmd, unsigned long addr,
1252 			     struct list_head *pgtables)
1253 {
1254 	pmd_t _pmd, old_pmd;
1255 	pte_t *pte, first;
1256 	unsigned long pfn;
1257 	pgprot_t pgprot;
1258 	int i = 0;
1259 
1260 	if (!cpu_feature_enabled(X86_FEATURE_PSE))
1261 		return 0;
1262 
1263 	addr &= PMD_MASK;
1264 	pte = pte_offset_kernel(pmd, addr);
1265 	first = *pte;
1266 	pfn = pte_pfn(first);
1267 
1268 	/* Make sure alignment is suitable */
1269 	if (PFN_PHYS(pfn) & ~PMD_MASK)
1270 		return 0;
1271 
1272 	/* The page is 4k intentionally */
1273 	if (pte_flags(first) & _PAGE_KERNEL_4K)
1274 		return 0;
1275 
1276 	/* Check that the rest of PTEs are compatible with the first one */
1277 	for (i = 1, pte++; i < PTRS_PER_PTE; i++, pte++) {
1278 		pte_t entry = *pte;
1279 
1280 		if (!pte_present(entry))
1281 			return 0;
1282 		if (pte_flags(entry) != pte_flags(first))
1283 			return 0;
1284 		if (pte_pfn(entry) != pte_pfn(first) + i)
1285 			return 0;
1286 	}
1287 
1288 	old_pmd = *pmd;
1289 
1290 	/* Success: set up a large page */
1291 	pgprot = pgprot_4k_2_large(pte_pgprot(first));
1292 	pgprot_val(pgprot) |= _PAGE_PSE;
1293 	_pmd = pfn_pmd(pfn, pgprot);
1294 	set_pmd(pmd, _pmd);
1295 
1296 	/* Queue the page table to be freed after TLB flush */
1297 	list_add(&page_ptdesc(pmd_page(old_pmd))->pt_list, pgtables);
1298 
1299 	if (IS_ENABLED(CONFIG_X86_32)) {
1300 		struct page *page;
1301 
1302 		/* Update all PGD tables to use the same large page */
1303 		list_for_each_entry(page, &pgd_list, lru) {
1304 			pgd_t *pgd = (pgd_t *)page_address(page) + pgd_index(addr);
1305 			p4d_t *p4d = p4d_offset(pgd, addr);
1306 			pud_t *pud = pud_offset(p4d, addr);
1307 			pmd_t *pmd = pmd_offset(pud, addr);
1308 			/* Something is wrong if entries doesn't match */
1309 			if (WARN_ON(pmd_val(old_pmd) != pmd_val(*pmd)))
1310 				continue;
1311 			set_pmd(pmd, _pmd);
1312 		}
1313 	}
1314 
1315 	if (virt_addr_valid(addr) && pfn_range_is_mapped(pfn, pfn + 1))
1316 		collapse_page_count(PG_LEVEL_2M);
1317 
1318 	return 1;
1319 }
1320 
collapse_pud_page(pud_t * pud,unsigned long addr,struct list_head * pgtables)1321 static int collapse_pud_page(pud_t *pud, unsigned long addr,
1322 			     struct list_head *pgtables)
1323 {
1324 	unsigned long pfn;
1325 	pmd_t *pmd, first;
1326 	int i;
1327 
1328 	if (!direct_gbpages)
1329 		return 0;
1330 
1331 	addr &= PUD_MASK;
1332 	pmd = pmd_offset(pud, addr);
1333 	first = *pmd;
1334 
1335 	/*
1336 	 * To restore PUD page all PMD entries must be large and
1337 	 * have suitable alignment
1338 	 */
1339 	pfn = pmd_pfn(first);
1340 	if (!pmd_leaf(first) || (PFN_PHYS(pfn) & ~PUD_MASK))
1341 		return 0;
1342 
1343 	/*
1344 	 * To restore PUD page, all following PMDs must be compatible with the
1345 	 * first one.
1346 	 */
1347 	for (i = 1, pmd++; i < PTRS_PER_PMD; i++, pmd++) {
1348 		pmd_t entry = *pmd;
1349 
1350 		if (!pmd_present(entry) || !pmd_leaf(entry))
1351 			return 0;
1352 		if (pmd_flags(entry) != pmd_flags(first))
1353 			return 0;
1354 		if (pmd_pfn(entry) != pmd_pfn(first) + i * PTRS_PER_PTE)
1355 			return 0;
1356 	}
1357 
1358 	/* Restore PUD page and queue page table to be freed after TLB flush */
1359 	list_add(&page_ptdesc(pud_page(*pud))->pt_list, pgtables);
1360 	set_pud(pud, pfn_pud(pfn, pmd_pgprot(first)));
1361 
1362 	if (virt_addr_valid(addr) && pfn_range_is_mapped(pfn, pfn + 1))
1363 		collapse_page_count(PG_LEVEL_1G);
1364 
1365 	return 1;
1366 }
1367 
1368 /*
1369  * Collapse PMD and PUD pages in the kernel mapping around the address where
1370  * possible.
1371  *
1372  * Caller must flush TLB and free page tables queued on the list before
1373  * touching the new entries. CPU must not see TLB entries of different size
1374  * with different attributes.
1375  */
collapse_large_pages(unsigned long addr,struct list_head * pgtables)1376 static int collapse_large_pages(unsigned long addr, struct list_head *pgtables)
1377 {
1378 	int collapsed = 0;
1379 	pgd_t *pgd;
1380 	p4d_t *p4d;
1381 	pud_t *pud;
1382 	pmd_t *pmd;
1383 
1384 	addr &= PMD_MASK;
1385 
1386 	spin_lock(&pgd_lock);
1387 	pgd = pgd_offset_k(addr);
1388 	if (pgd_none(*pgd))
1389 		goto out;
1390 	p4d = p4d_offset(pgd, addr);
1391 	if (p4d_none(*p4d))
1392 		goto out;
1393 	pud = pud_offset(p4d, addr);
1394 	if (!pud_present(*pud) || pud_leaf(*pud))
1395 		goto out;
1396 	pmd = pmd_offset(pud, addr);
1397 	if (!pmd_present(*pmd) || pmd_leaf(*pmd))
1398 		goto out;
1399 
1400 	collapsed = collapse_pmd_page(pmd, addr, pgtables);
1401 	if (collapsed)
1402 		collapsed += collapse_pud_page(pud, addr, pgtables);
1403 
1404 out:
1405 	spin_unlock(&pgd_lock);
1406 	return collapsed;
1407 }
1408 
try_to_free_pte_page(pte_t * pte)1409 static bool try_to_free_pte_page(pte_t *pte)
1410 {
1411 	int i;
1412 
1413 	for (i = 0; i < PTRS_PER_PTE; i++)
1414 		if (!pte_none(pte[i]))
1415 			return false;
1416 
1417 	free_page((unsigned long)pte);
1418 	return true;
1419 }
1420 
try_to_free_pmd_page(pmd_t * pmd)1421 static bool try_to_free_pmd_page(pmd_t *pmd)
1422 {
1423 	int i;
1424 
1425 	for (i = 0; i < PTRS_PER_PMD; i++)
1426 		if (!pmd_none(pmd[i]))
1427 			return false;
1428 
1429 	free_page((unsigned long)pmd);
1430 	return true;
1431 }
1432 
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)1433 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1434 {
1435 	pte_t *pte = pte_offset_kernel(pmd, start);
1436 
1437 	while (start < end) {
1438 		set_pte(pte, __pte(0));
1439 
1440 		start += PAGE_SIZE;
1441 		pte++;
1442 	}
1443 
1444 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1445 		pmd_clear(pmd);
1446 		return true;
1447 	}
1448 	return false;
1449 }
1450 
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)1451 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1452 			      unsigned long start, unsigned long end)
1453 {
1454 	if (unmap_pte_range(pmd, start, end))
1455 		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1456 			pud_clear(pud);
1457 }
1458 
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)1459 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1460 {
1461 	pmd_t *pmd = pmd_offset(pud, start);
1462 
1463 	/*
1464 	 * Not on a 2MB page boundary?
1465 	 */
1466 	if (start & (PMD_SIZE - 1)) {
1467 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1468 		unsigned long pre_end = min_t(unsigned long, end, next_page);
1469 
1470 		__unmap_pmd_range(pud, pmd, start, pre_end);
1471 
1472 		start = pre_end;
1473 		pmd++;
1474 	}
1475 
1476 	/*
1477 	 * Try to unmap in 2M chunks.
1478 	 */
1479 	while (end - start >= PMD_SIZE) {
1480 		if (pmd_leaf(*pmd))
1481 			pmd_clear(pmd);
1482 		else
1483 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1484 
1485 		start += PMD_SIZE;
1486 		pmd++;
1487 	}
1488 
1489 	/*
1490 	 * 4K leftovers?
1491 	 */
1492 	if (start < end)
1493 		return __unmap_pmd_range(pud, pmd, start, end);
1494 
1495 	/*
1496 	 * Try again to free the PMD page if haven't succeeded above.
1497 	 */
1498 	if (!pud_none(*pud))
1499 		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1500 			pud_clear(pud);
1501 }
1502 
unmap_pud_range(p4d_t * p4d,unsigned long start,unsigned long end)1503 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1504 {
1505 	pud_t *pud = pud_offset(p4d, start);
1506 
1507 	/*
1508 	 * Not on a GB page boundary?
1509 	 */
1510 	if (start & (PUD_SIZE - 1)) {
1511 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1512 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1513 
1514 		unmap_pmd_range(pud, start, pre_end);
1515 
1516 		start = pre_end;
1517 		pud++;
1518 	}
1519 
1520 	/*
1521 	 * Try to unmap in 1G chunks?
1522 	 */
1523 	while (end - start >= PUD_SIZE) {
1524 
1525 		if (pud_leaf(*pud))
1526 			pud_clear(pud);
1527 		else
1528 			unmap_pmd_range(pud, start, start + PUD_SIZE);
1529 
1530 		start += PUD_SIZE;
1531 		pud++;
1532 	}
1533 
1534 	/*
1535 	 * 2M leftovers?
1536 	 */
1537 	if (start < end)
1538 		unmap_pmd_range(pud, start, end);
1539 
1540 	/*
1541 	 * No need to try to free the PUD page because we'll free it in
1542 	 * populate_pgd's error path
1543 	 */
1544 }
1545 
alloc_pte_page(pmd_t * pmd)1546 static int alloc_pte_page(pmd_t *pmd)
1547 {
1548 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1549 	if (!pte)
1550 		return -1;
1551 
1552 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1553 	return 0;
1554 }
1555 
alloc_pmd_page(pud_t * pud)1556 static int alloc_pmd_page(pud_t *pud)
1557 {
1558 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1559 	if (!pmd)
1560 		return -1;
1561 
1562 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1563 	return 0;
1564 }
1565 
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)1566 static void populate_pte(struct cpa_data *cpa,
1567 			 unsigned long start, unsigned long end,
1568 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1569 {
1570 	pte_t *pte;
1571 
1572 	pte = pte_offset_kernel(pmd, start);
1573 
1574 	pgprot = pgprot_clear_protnone_bits(pgprot);
1575 
1576 	while (num_pages-- && start < end) {
1577 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1578 
1579 		start	 += PAGE_SIZE;
1580 		cpa->pfn++;
1581 		pte++;
1582 	}
1583 }
1584 
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)1585 static long populate_pmd(struct cpa_data *cpa,
1586 			 unsigned long start, unsigned long end,
1587 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1588 {
1589 	long cur_pages = 0;
1590 	pmd_t *pmd;
1591 	pgprot_t pmd_pgprot;
1592 
1593 	/*
1594 	 * Not on a 2M boundary?
1595 	 */
1596 	if (start & (PMD_SIZE - 1)) {
1597 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1598 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1599 
1600 		pre_end   = min_t(unsigned long, pre_end, next_page);
1601 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1602 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1603 
1604 		/*
1605 		 * Need a PTE page?
1606 		 */
1607 		pmd = pmd_offset(pud, start);
1608 		if (pmd_none(*pmd))
1609 			if (alloc_pte_page(pmd))
1610 				return -1;
1611 
1612 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1613 
1614 		start = pre_end;
1615 	}
1616 
1617 	/*
1618 	 * We mapped them all?
1619 	 */
1620 	if (num_pages == cur_pages)
1621 		return cur_pages;
1622 
1623 	pmd_pgprot = pgprot_4k_2_large(pgprot);
1624 
1625 	while (end - start >= PMD_SIZE) {
1626 
1627 		/*
1628 		 * We cannot use a 1G page so allocate a PMD page if needed.
1629 		 */
1630 		if (pud_none(*pud))
1631 			if (alloc_pmd_page(pud))
1632 				return -1;
1633 
1634 		pmd = pmd_offset(pud, start);
1635 
1636 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1637 					canon_pgprot(pmd_pgprot))));
1638 
1639 		start	  += PMD_SIZE;
1640 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1641 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1642 	}
1643 
1644 	/*
1645 	 * Map trailing 4K pages.
1646 	 */
1647 	if (start < end) {
1648 		pmd = pmd_offset(pud, start);
1649 		if (pmd_none(*pmd))
1650 			if (alloc_pte_page(pmd))
1651 				return -1;
1652 
1653 		populate_pte(cpa, start, end, num_pages - cur_pages,
1654 			     pmd, pgprot);
1655 	}
1656 	return num_pages;
1657 }
1658 
populate_pud(struct cpa_data * cpa,unsigned long start,p4d_t * p4d,pgprot_t pgprot)1659 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1660 			pgprot_t pgprot)
1661 {
1662 	pud_t *pud;
1663 	unsigned long end;
1664 	long cur_pages = 0;
1665 	pgprot_t pud_pgprot;
1666 
1667 	end = start + (cpa->numpages << PAGE_SHIFT);
1668 
1669 	/*
1670 	 * Not on a Gb page boundary? => map everything up to it with
1671 	 * smaller pages.
1672 	 */
1673 	if (start & (PUD_SIZE - 1)) {
1674 		unsigned long pre_end;
1675 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1676 
1677 		pre_end   = min_t(unsigned long, end, next_page);
1678 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1679 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1680 
1681 		pud = pud_offset(p4d, start);
1682 
1683 		/*
1684 		 * Need a PMD page?
1685 		 */
1686 		if (pud_none(*pud))
1687 			if (alloc_pmd_page(pud))
1688 				return -1;
1689 
1690 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1691 					 pud, pgprot);
1692 		if (cur_pages < 0)
1693 			return cur_pages;
1694 
1695 		start = pre_end;
1696 	}
1697 
1698 	/* We mapped them all? */
1699 	if (cpa->numpages == cur_pages)
1700 		return cur_pages;
1701 
1702 	pud = pud_offset(p4d, start);
1703 	pud_pgprot = pgprot_4k_2_large(pgprot);
1704 
1705 	/*
1706 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1707 	 */
1708 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1709 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1710 				   canon_pgprot(pud_pgprot))));
1711 
1712 		start	  += PUD_SIZE;
1713 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1714 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1715 		pud++;
1716 	}
1717 
1718 	/* Map trailing leftover */
1719 	if (start < end) {
1720 		long tmp;
1721 
1722 		pud = pud_offset(p4d, start);
1723 		if (pud_none(*pud))
1724 			if (alloc_pmd_page(pud))
1725 				return -1;
1726 
1727 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1728 				   pud, pgprot);
1729 		if (tmp < 0)
1730 			return cur_pages;
1731 
1732 		cur_pages += tmp;
1733 	}
1734 	return cur_pages;
1735 }
1736 
1737 /*
1738  * Restrictions for kernel page table do not necessarily apply when mapping in
1739  * an alternate PGD.
1740  */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1741 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1742 {
1743 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1744 	pud_t *pud = NULL;	/* shut up gcc */
1745 	p4d_t *p4d;
1746 	pgd_t *pgd_entry;
1747 	long ret;
1748 
1749 	pgd_entry = cpa->pgd + pgd_index(addr);
1750 
1751 	if (pgd_none(*pgd_entry)) {
1752 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1753 		if (!p4d)
1754 			return -1;
1755 
1756 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1757 	}
1758 
1759 	/*
1760 	 * Allocate a PUD page and hand it down for mapping.
1761 	 */
1762 	p4d = p4d_offset(pgd_entry, addr);
1763 	if (p4d_none(*p4d)) {
1764 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1765 		if (!pud)
1766 			return -1;
1767 
1768 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1769 	}
1770 
1771 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1772 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1773 
1774 	ret = populate_pud(cpa, addr, p4d, pgprot);
1775 	if (ret < 0) {
1776 		/*
1777 		 * Leave the PUD page in place in case some other CPU or thread
1778 		 * already found it, but remove any useless entries we just
1779 		 * added to it.
1780 		 */
1781 		unmap_pud_range(p4d, addr,
1782 				addr + (cpa->numpages << PAGE_SHIFT));
1783 		return ret;
1784 	}
1785 
1786 	cpa->numpages = ret;
1787 	return 0;
1788 }
1789 
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1790 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1791 			       int primary)
1792 {
1793 	if (cpa->pgd) {
1794 		/*
1795 		 * Right now, we only execute this code path when mapping
1796 		 * the EFI virtual memory map regions, no other users
1797 		 * provide a ->pgd value. This may change in the future.
1798 		 */
1799 		return populate_pgd(cpa, vaddr);
1800 	}
1801 
1802 	/*
1803 	 * Ignore all non primary paths.
1804 	 */
1805 	if (!primary) {
1806 		cpa->numpages = 1;
1807 		return 0;
1808 	}
1809 
1810 	/*
1811 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1812 	 * to have holes.
1813 	 * Also set numpages to '1' indicating that we processed cpa req for
1814 	 * one virtual address page and its pfn. TBD: numpages can be set based
1815 	 * on the initial value and the level returned by lookup_address().
1816 	 */
1817 	if (within(vaddr, PAGE_OFFSET,
1818 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1819 		cpa->numpages = 1;
1820 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1821 		return 0;
1822 
1823 	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1824 		/* Faults in the highmap are OK, so do not warn: */
1825 		return -EFAULT;
1826 	} else {
1827 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1828 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1829 			*cpa->vaddr);
1830 
1831 		return -EFAULT;
1832 	}
1833 }
1834 
__change_page_attr(struct cpa_data * cpa,int primary)1835 static int __change_page_attr(struct cpa_data *cpa, int primary)
1836 {
1837 	unsigned long address;
1838 	int do_split, err;
1839 	unsigned int level;
1840 	pte_t *kpte, old_pte;
1841 	bool nx, rw;
1842 
1843 	address = __cpa_addr(cpa, cpa->curpage);
1844 repeat:
1845 	kpte = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
1846 	if (!kpte)
1847 		return __cpa_process_fault(cpa, address, primary);
1848 
1849 	old_pte = *kpte;
1850 	if (pte_none(old_pte))
1851 		return __cpa_process_fault(cpa, address, primary);
1852 
1853 	if (level == PG_LEVEL_4K) {
1854 		pte_t new_pte;
1855 		pgprot_t old_prot = pte_pgprot(old_pte);
1856 		pgprot_t new_prot = pte_pgprot(old_pte);
1857 		unsigned long pfn = pte_pfn(old_pte);
1858 
1859 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1860 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1861 
1862 		cpa_inc_4k_install();
1863 		/* Hand in lpsize = 0 to enforce the protection mechanism */
1864 		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1865 					      CPA_PROTECT);
1866 
1867 		new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1,
1868 				      nx, rw);
1869 
1870 		new_prot = pgprot_clear_protnone_bits(new_prot);
1871 
1872 		/*
1873 		 * We need to keep the pfn from the existing PTE,
1874 		 * after all we're only going to change its attributes
1875 		 * not the memory it points to
1876 		 */
1877 		new_pte = pfn_pte(pfn, new_prot);
1878 		cpa->pfn = pfn;
1879 		/*
1880 		 * Do we really change anything ?
1881 		 */
1882 		if (pte_val(old_pte) != pte_val(new_pte)) {
1883 			set_pte_atomic(kpte, new_pte);
1884 			cpa->flags |= CPA_FLUSHTLB;
1885 		}
1886 		cpa->numpages = 1;
1887 		return 0;
1888 	}
1889 
1890 	/*
1891 	 * Check, whether we can keep the large page intact
1892 	 * and just change the pte:
1893 	 */
1894 	do_split = should_split_large_page(kpte, address, cpa);
1895 	/*
1896 	 * When the range fits into the existing large page,
1897 	 * return. cp->numpages and cpa->tlbflush have been updated in
1898 	 * try_large_page:
1899 	 */
1900 	if (do_split <= 0)
1901 		return do_split;
1902 
1903 	/*
1904 	 * We have to split the large page:
1905 	 */
1906 	err = split_large_page(cpa, kpte, address);
1907 	if (!err)
1908 		goto repeat;
1909 
1910 	return err;
1911 }
1912 
1913 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary);
1914 
1915 /*
1916  * Check the directmap and "high kernel map" 'aliases'.
1917  */
cpa_process_alias(struct cpa_data * cpa)1918 static int cpa_process_alias(struct cpa_data *cpa)
1919 {
1920 	struct cpa_data alias_cpa;
1921 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1922 	unsigned long vaddr;
1923 	int ret;
1924 
1925 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1926 		return 0;
1927 
1928 	/*
1929 	 * No need to redo, when the primary call touched the direct
1930 	 * mapping already:
1931 	 */
1932 	vaddr = __cpa_addr(cpa, cpa->curpage);
1933 	if (!(within(vaddr, PAGE_OFFSET,
1934 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1935 
1936 		alias_cpa = *cpa;
1937 		alias_cpa.vaddr = &laddr;
1938 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1939 		alias_cpa.curpage = 0;
1940 
1941 		/* Directmap always has NX set, do not modify. */
1942 		if (__supported_pte_mask & _PAGE_NX) {
1943 			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1944 			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1945 		}
1946 
1947 		cpa->force_flush_all = 1;
1948 
1949 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1950 		if (ret)
1951 			return ret;
1952 	}
1953 
1954 #ifdef CONFIG_X86_64
1955 	/*
1956 	 * If the primary call didn't touch the high mapping already
1957 	 * and the physical address is inside the kernel map, we need
1958 	 * to touch the high mapped kernel as well:
1959 	 */
1960 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1961 	    __cpa_pfn_in_highmap(cpa->pfn)) {
1962 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1963 					       __START_KERNEL_map - phys_base;
1964 		alias_cpa = *cpa;
1965 		alias_cpa.vaddr = &temp_cpa_vaddr;
1966 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1967 		alias_cpa.curpage = 0;
1968 
1969 		/*
1970 		 * [_text, _brk_end) also covers data, do not modify NX except
1971 		 * in cases where the highmap is the primary target.
1972 		 */
1973 		if (__supported_pte_mask & _PAGE_NX) {
1974 			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1975 			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1976 		}
1977 
1978 		cpa->force_flush_all = 1;
1979 		/*
1980 		 * The high mapping range is imprecise, so ignore the
1981 		 * return value.
1982 		 */
1983 		__change_page_attr_set_clr(&alias_cpa, 0);
1984 	}
1985 #endif
1986 
1987 	return 0;
1988 }
1989 
__change_page_attr_set_clr(struct cpa_data * cpa,int primary)1990 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary)
1991 {
1992 	unsigned long numpages = cpa->numpages;
1993 	unsigned long rempages = numpages;
1994 	int ret = 0;
1995 
1996 	/*
1997 	 * No changes, easy!
1998 	 */
1999 	if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) &&
2000 	    !cpa->force_split)
2001 		return ret;
2002 
2003 	while (rempages) {
2004 		/*
2005 		 * Store the remaining nr of pages for the large page
2006 		 * preservation check.
2007 		 */
2008 		cpa->numpages = rempages;
2009 		/* for array changes, we can't use large page */
2010 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
2011 			cpa->numpages = 1;
2012 
2013 		if (!debug_pagealloc_enabled())
2014 			spin_lock(&cpa_lock);
2015 		ret = __change_page_attr(cpa, primary);
2016 		if (!debug_pagealloc_enabled())
2017 			spin_unlock(&cpa_lock);
2018 		if (ret)
2019 			goto out;
2020 
2021 		if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) {
2022 			ret = cpa_process_alias(cpa);
2023 			if (ret)
2024 				goto out;
2025 		}
2026 
2027 		/*
2028 		 * Adjust the number of pages with the result of the
2029 		 * CPA operation. Either a large page has been
2030 		 * preserved or a single page update happened.
2031 		 */
2032 		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
2033 		rempages -= cpa->numpages;
2034 		cpa->curpage += cpa->numpages;
2035 	}
2036 
2037 out:
2038 	/* Restore the original numpages */
2039 	cpa->numpages = numpages;
2040 	return ret;
2041 }
2042 
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)2043 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
2044 				    pgprot_t mask_set, pgprot_t mask_clr,
2045 				    int force_split, int in_flag,
2046 				    struct page **pages)
2047 {
2048 	struct cpa_data cpa;
2049 	int ret, cache;
2050 
2051 	memset(&cpa, 0, sizeof(cpa));
2052 
2053 	/*
2054 	 * Check, if we are requested to set a not supported
2055 	 * feature.  Clearing non-supported features is OK.
2056 	 */
2057 	mask_set = canon_pgprot(mask_set);
2058 
2059 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
2060 		return 0;
2061 
2062 	/* Ensure we are PAGE_SIZE aligned */
2063 	if (in_flag & CPA_ARRAY) {
2064 		int i;
2065 		for (i = 0; i < numpages; i++) {
2066 			if (addr[i] & ~PAGE_MASK) {
2067 				addr[i] &= PAGE_MASK;
2068 				WARN_ON_ONCE(1);
2069 			}
2070 		}
2071 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
2072 		/*
2073 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
2074 		 * No need to check in that case
2075 		 */
2076 		if (*addr & ~PAGE_MASK) {
2077 			*addr &= PAGE_MASK;
2078 			/*
2079 			 * People should not be passing in unaligned addresses:
2080 			 */
2081 			WARN_ON_ONCE(1);
2082 		}
2083 	}
2084 
2085 	/* Must avoid aliasing mappings in the highmem code */
2086 	kmap_flush_unused();
2087 
2088 	vm_unmap_aliases();
2089 
2090 	cpa.vaddr = addr;
2091 	cpa.pages = pages;
2092 	cpa.numpages = numpages;
2093 	cpa.mask_set = mask_set;
2094 	cpa.mask_clr = mask_clr;
2095 	cpa.flags = in_flag;
2096 	cpa.curpage = 0;
2097 	cpa.force_split = force_split;
2098 
2099 	ret = __change_page_attr_set_clr(&cpa, 1);
2100 
2101 	/*
2102 	 * Check whether we really changed something:
2103 	 */
2104 	if (!(cpa.flags & CPA_FLUSHTLB))
2105 		goto out;
2106 
2107 	/*
2108 	 * No need to flush, when we did not set any of the caching
2109 	 * attributes:
2110 	 */
2111 	cache = !!pgprot2cachemode(mask_set);
2112 
2113 	/*
2114 	 * On error; flush everything to be sure.
2115 	 */
2116 	if (ret) {
2117 		cpa_flush_all(cache);
2118 		goto out;
2119 	}
2120 
2121 	cpa_flush(&cpa, cache);
2122 out:
2123 	return ret;
2124 }
2125 
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)2126 static inline int change_page_attr_set(unsigned long *addr, int numpages,
2127 				       pgprot_t mask, int array)
2128 {
2129 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
2130 		(array ? CPA_ARRAY : 0), NULL);
2131 }
2132 
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)2133 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
2134 					 pgprot_t mask, int array)
2135 {
2136 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
2137 		(array ? CPA_ARRAY : 0), NULL);
2138 }
2139 
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)2140 static inline int cpa_set_pages_array(struct page **pages, int numpages,
2141 				       pgprot_t mask)
2142 {
2143 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
2144 		CPA_PAGES_ARRAY, pages);
2145 }
2146 
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)2147 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
2148 					 pgprot_t mask)
2149 {
2150 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
2151 		CPA_PAGES_ARRAY, pages);
2152 }
2153 
2154 /*
2155  * __set_memory_prot is an internal helper for callers that have been passed
2156  * a pgprot_t value from upper layers and a reservation has already been taken.
2157  * If you want to set the pgprot to a specific page protocol, use the
2158  * set_memory_xx() functions.
2159  */
__set_memory_prot(unsigned long addr,int numpages,pgprot_t prot)2160 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
2161 {
2162 	return change_page_attr_set_clr(&addr, numpages, prot,
2163 					__pgprot(~pgprot_val(prot)), 0, 0,
2164 					NULL);
2165 }
2166 
_set_memory_uc(unsigned long addr,int numpages)2167 int _set_memory_uc(unsigned long addr, int numpages)
2168 {
2169 	/*
2170 	 * for now UC MINUS. see comments in ioremap()
2171 	 * If you really need strong UC use ioremap_uc(), but note
2172 	 * that you cannot override IO areas with set_memory_*() as
2173 	 * these helpers cannot work with IO memory.
2174 	 */
2175 	return change_page_attr_set(&addr, numpages,
2176 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
2177 				    0);
2178 }
2179 
set_memory_uc(unsigned long addr,int numpages)2180 int set_memory_uc(unsigned long addr, int numpages)
2181 {
2182 	int ret;
2183 
2184 	/*
2185 	 * for now UC MINUS. see comments in ioremap()
2186 	 */
2187 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
2188 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
2189 	if (ret)
2190 		goto out_err;
2191 
2192 	ret = _set_memory_uc(addr, numpages);
2193 	if (ret)
2194 		goto out_free;
2195 
2196 	return 0;
2197 
2198 out_free:
2199 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2200 out_err:
2201 	return ret;
2202 }
2203 EXPORT_SYMBOL(set_memory_uc);
2204 
_set_memory_wc(unsigned long addr,int numpages)2205 int _set_memory_wc(unsigned long addr, int numpages)
2206 {
2207 	int ret;
2208 
2209 	ret = change_page_attr_set(&addr, numpages,
2210 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
2211 				   0);
2212 	if (!ret) {
2213 		ret = change_page_attr_set_clr(&addr, numpages,
2214 					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
2215 					       __pgprot(_PAGE_CACHE_MASK),
2216 					       0, 0, NULL);
2217 	}
2218 	return ret;
2219 }
2220 
set_memory_wc(unsigned long addr,int numpages)2221 int set_memory_wc(unsigned long addr, int numpages)
2222 {
2223 	int ret;
2224 
2225 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
2226 		_PAGE_CACHE_MODE_WC, NULL);
2227 	if (ret)
2228 		return ret;
2229 
2230 	ret = _set_memory_wc(addr, numpages);
2231 	if (ret)
2232 		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2233 
2234 	return ret;
2235 }
2236 EXPORT_SYMBOL(set_memory_wc);
2237 
_set_memory_wt(unsigned long addr,int numpages)2238 int _set_memory_wt(unsigned long addr, int numpages)
2239 {
2240 	return change_page_attr_set(&addr, numpages,
2241 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
2242 }
2243 
_set_memory_wb(unsigned long addr,int numpages)2244 int _set_memory_wb(unsigned long addr, int numpages)
2245 {
2246 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2247 	return change_page_attr_clear(&addr, numpages,
2248 				      __pgprot(_PAGE_CACHE_MASK), 0);
2249 }
2250 
set_memory_wb(unsigned long addr,int numpages)2251 int set_memory_wb(unsigned long addr, int numpages)
2252 {
2253 	int ret;
2254 
2255 	ret = _set_memory_wb(addr, numpages);
2256 	if (ret)
2257 		return ret;
2258 
2259 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2260 	return 0;
2261 }
2262 EXPORT_SYMBOL(set_memory_wb);
2263 
2264 /* Prevent speculative access to a page by marking it not-present */
2265 #ifdef CONFIG_X86_64
set_mce_nospec(unsigned long pfn)2266 int set_mce_nospec(unsigned long pfn)
2267 {
2268 	unsigned long decoy_addr;
2269 	int rc;
2270 
2271 	/* SGX pages are not in the 1:1 map */
2272 	if (arch_is_platform_page(pfn << PAGE_SHIFT))
2273 		return 0;
2274 	/*
2275 	 * We would like to just call:
2276 	 *      set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
2277 	 * but doing that would radically increase the odds of a
2278 	 * speculative access to the poison page because we'd have
2279 	 * the virtual address of the kernel 1:1 mapping sitting
2280 	 * around in registers.
2281 	 * Instead we get tricky.  We create a non-canonical address
2282 	 * that looks just like the one we want, but has bit 63 flipped.
2283 	 * This relies on set_memory_XX() properly sanitizing any __pa()
2284 	 * results with __PHYSICAL_MASK or PTE_PFN_MASK.
2285 	 */
2286 	decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
2287 
2288 	rc = set_memory_np(decoy_addr, 1);
2289 	if (rc)
2290 		pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
2291 	return rc;
2292 }
2293 EXPORT_SYMBOL_GPL(set_mce_nospec);
2294 
2295 /* Restore full speculative operation to the pfn. */
clear_mce_nospec(unsigned long pfn)2296 int clear_mce_nospec(unsigned long pfn)
2297 {
2298 	unsigned long addr = (unsigned long) pfn_to_kaddr(pfn);
2299 
2300 	return set_memory_p(addr, 1);
2301 }
2302 EXPORT_SYMBOL_GPL(clear_mce_nospec);
2303 #endif /* CONFIG_X86_64 */
2304 
set_memory_x(unsigned long addr,int numpages)2305 int set_memory_x(unsigned long addr, int numpages)
2306 {
2307 	if (!(__supported_pte_mask & _PAGE_NX))
2308 		return 0;
2309 
2310 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2311 }
2312 
set_memory_nx(unsigned long addr,int numpages)2313 int set_memory_nx(unsigned long addr, int numpages)
2314 {
2315 	if (!(__supported_pte_mask & _PAGE_NX))
2316 		return 0;
2317 
2318 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2319 }
2320 
set_memory_ro(unsigned long addr,int numpages)2321 int set_memory_ro(unsigned long addr, int numpages)
2322 {
2323 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0);
2324 }
2325 
set_memory_rox(unsigned long addr,int numpages)2326 int set_memory_rox(unsigned long addr, int numpages)
2327 {
2328 	pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY);
2329 
2330 	if (__supported_pte_mask & _PAGE_NX)
2331 		clr.pgprot |= _PAGE_NX;
2332 
2333 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0), clr, 0,
2334 					CPA_COLLAPSE, NULL);
2335 }
2336 
set_memory_rw(unsigned long addr,int numpages)2337 int set_memory_rw(unsigned long addr, int numpages)
2338 {
2339 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2340 }
2341 
set_memory_np(unsigned long addr,int numpages)2342 int set_memory_np(unsigned long addr, int numpages)
2343 {
2344 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2345 }
2346 
set_memory_np_noalias(unsigned long addr,int numpages)2347 int set_memory_np_noalias(unsigned long addr, int numpages)
2348 {
2349 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2350 					__pgprot(_PAGE_PRESENT), 0,
2351 					CPA_NO_CHECK_ALIAS, NULL);
2352 }
2353 
set_memory_p(unsigned long addr,int numpages)2354 int set_memory_p(unsigned long addr, int numpages)
2355 {
2356 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2357 }
2358 
set_memory_4k(unsigned long addr,int numpages)2359 int set_memory_4k(unsigned long addr, int numpages)
2360 {
2361 	return change_page_attr_set_clr(&addr, numpages,
2362 					__pgprot(_PAGE_KERNEL_4K),
2363 					__pgprot(0), 1, 0, NULL);
2364 }
2365 
set_memory_nonglobal(unsigned long addr,int numpages)2366 int set_memory_nonglobal(unsigned long addr, int numpages)
2367 {
2368 	return change_page_attr_clear(&addr, numpages,
2369 				      __pgprot(_PAGE_GLOBAL), 0);
2370 }
2371 
set_memory_global(unsigned long addr,int numpages)2372 int set_memory_global(unsigned long addr, int numpages)
2373 {
2374 	return change_page_attr_set(&addr, numpages,
2375 				    __pgprot(_PAGE_GLOBAL), 0);
2376 }
2377 
2378 /*
2379  * __set_memory_enc_pgtable() is used for the hypervisors that get
2380  * informed about "encryption" status via page tables.
2381  */
__set_memory_enc_pgtable(unsigned long addr,int numpages,bool enc)2382 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
2383 {
2384 	pgprot_t empty = __pgprot(0);
2385 	struct cpa_data cpa;
2386 	int ret;
2387 
2388 	/* Should not be working on unaligned addresses */
2389 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2390 		addr &= PAGE_MASK;
2391 
2392 	memset(&cpa, 0, sizeof(cpa));
2393 	cpa.vaddr = &addr;
2394 	cpa.numpages = numpages;
2395 	cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
2396 	cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
2397 	cpa.pgd = init_mm.pgd;
2398 
2399 	/* Must avoid aliasing mappings in the highmem code */
2400 	kmap_flush_unused();
2401 	vm_unmap_aliases();
2402 
2403 	/* Flush the caches as needed before changing the encryption attribute. */
2404 	if (x86_platform.guest.enc_tlb_flush_required(enc))
2405 		cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
2406 
2407 	/* Notify hypervisor that we are about to set/clr encryption attribute. */
2408 	ret = x86_platform.guest.enc_status_change_prepare(addr, numpages, enc);
2409 	if (ret)
2410 		goto vmm_fail;
2411 
2412 	ret = __change_page_attr_set_clr(&cpa, 1);
2413 
2414 	/*
2415 	 * After changing the encryption attribute, we need to flush TLBs again
2416 	 * in case any speculative TLB caching occurred (but no need to flush
2417 	 * caches again).  We could just use cpa_flush_all(), but in case TLB
2418 	 * flushing gets optimized in the cpa_flush() path use the same logic
2419 	 * as above.
2420 	 */
2421 	cpa_flush(&cpa, 0);
2422 
2423 	if (ret)
2424 		return ret;
2425 
2426 	/* Notify hypervisor that we have successfully set/clr encryption attribute. */
2427 	ret = x86_platform.guest.enc_status_change_finish(addr, numpages, enc);
2428 	if (ret)
2429 		goto vmm_fail;
2430 
2431 	return 0;
2432 
2433 vmm_fail:
2434 	WARN_ONCE(1, "CPA VMM failure to convert memory (addr=%p, numpages=%d) to %s: %d\n",
2435 		  (void *)addr, numpages, enc ? "private" : "shared", ret);
2436 
2437 	return ret;
2438 }
2439 
2440 /*
2441  * The lock serializes conversions between private and shared memory.
2442  *
2443  * It is taken for read on conversion. A write lock guarantees that no
2444  * concurrent conversions are in progress.
2445  */
2446 static DECLARE_RWSEM(mem_enc_lock);
2447 
2448 /*
2449  * Stop new private<->shared conversions.
2450  *
2451  * Taking the exclusive mem_enc_lock waits for in-flight conversions to complete.
2452  * The lock is not released to prevent new conversions from being started.
2453  */
set_memory_enc_stop_conversion(void)2454 bool set_memory_enc_stop_conversion(void)
2455 {
2456 	/*
2457 	 * In a crash scenario, sleep is not allowed. Try to take the lock.
2458 	 * Failure indicates that there is a race with the conversion.
2459 	 */
2460 	if (oops_in_progress)
2461 		return down_write_trylock(&mem_enc_lock);
2462 
2463 	down_write(&mem_enc_lock);
2464 
2465 	return true;
2466 }
2467 
__set_memory_enc_dec(unsigned long addr,int numpages,bool enc)2468 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2469 {
2470 	int ret = 0;
2471 
2472 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
2473 		if (!down_read_trylock(&mem_enc_lock))
2474 			return -EBUSY;
2475 
2476 		ret = __set_memory_enc_pgtable(addr, numpages, enc);
2477 
2478 		up_read(&mem_enc_lock);
2479 	}
2480 
2481 	return ret;
2482 }
2483 
set_memory_encrypted(unsigned long addr,int numpages)2484 int set_memory_encrypted(unsigned long addr, int numpages)
2485 {
2486 	return __set_memory_enc_dec(addr, numpages, true);
2487 }
2488 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2489 
set_memory_decrypted(unsigned long addr,int numpages)2490 int set_memory_decrypted(unsigned long addr, int numpages)
2491 {
2492 	return __set_memory_enc_dec(addr, numpages, false);
2493 }
2494 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2495 
set_pages_uc(struct page * page,int numpages)2496 int set_pages_uc(struct page *page, int numpages)
2497 {
2498 	unsigned long addr = (unsigned long)page_address(page);
2499 
2500 	return set_memory_uc(addr, numpages);
2501 }
2502 EXPORT_SYMBOL(set_pages_uc);
2503 
_set_pages_array(struct page ** pages,int numpages,enum page_cache_mode new_type)2504 static int _set_pages_array(struct page **pages, int numpages,
2505 		enum page_cache_mode new_type)
2506 {
2507 	unsigned long start;
2508 	unsigned long end;
2509 	enum page_cache_mode set_type;
2510 	int i;
2511 	int free_idx;
2512 	int ret;
2513 
2514 	for (i = 0; i < numpages; i++) {
2515 		if (PageHighMem(pages[i]))
2516 			continue;
2517 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2518 		end = start + PAGE_SIZE;
2519 		if (memtype_reserve(start, end, new_type, NULL))
2520 			goto err_out;
2521 	}
2522 
2523 	/* If WC, set to UC- first and then WC */
2524 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2525 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2526 
2527 	ret = cpa_set_pages_array(pages, numpages,
2528 				  cachemode2pgprot(set_type));
2529 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2530 		ret = change_page_attr_set_clr(NULL, numpages,
2531 					       cachemode2pgprot(
2532 						_PAGE_CACHE_MODE_WC),
2533 					       __pgprot(_PAGE_CACHE_MASK),
2534 					       0, CPA_PAGES_ARRAY, pages);
2535 	if (ret)
2536 		goto err_out;
2537 	return 0; /* Success */
2538 err_out:
2539 	free_idx = i;
2540 	for (i = 0; i < free_idx; i++) {
2541 		if (PageHighMem(pages[i]))
2542 			continue;
2543 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2544 		end = start + PAGE_SIZE;
2545 		memtype_free(start, end);
2546 	}
2547 	return -EINVAL;
2548 }
2549 
set_pages_array_uc(struct page ** pages,int numpages)2550 int set_pages_array_uc(struct page **pages, int numpages)
2551 {
2552 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2553 }
2554 EXPORT_SYMBOL(set_pages_array_uc);
2555 
set_pages_array_wc(struct page ** pages,int numpages)2556 int set_pages_array_wc(struct page **pages, int numpages)
2557 {
2558 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2559 }
2560 EXPORT_SYMBOL(set_pages_array_wc);
2561 
set_pages_wb(struct page * page,int numpages)2562 int set_pages_wb(struct page *page, int numpages)
2563 {
2564 	unsigned long addr = (unsigned long)page_address(page);
2565 
2566 	return set_memory_wb(addr, numpages);
2567 }
2568 EXPORT_SYMBOL(set_pages_wb);
2569 
set_pages_array_wb(struct page ** pages,int numpages)2570 int set_pages_array_wb(struct page **pages, int numpages)
2571 {
2572 	int retval;
2573 	unsigned long start;
2574 	unsigned long end;
2575 	int i;
2576 
2577 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2578 	retval = cpa_clear_pages_array(pages, numpages,
2579 			__pgprot(_PAGE_CACHE_MASK));
2580 	if (retval)
2581 		return retval;
2582 
2583 	for (i = 0; i < numpages; i++) {
2584 		if (PageHighMem(pages[i]))
2585 			continue;
2586 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2587 		end = start + PAGE_SIZE;
2588 		memtype_free(start, end);
2589 	}
2590 
2591 	return 0;
2592 }
2593 EXPORT_SYMBOL(set_pages_array_wb);
2594 
set_pages_ro(struct page * page,int numpages)2595 int set_pages_ro(struct page *page, int numpages)
2596 {
2597 	unsigned long addr = (unsigned long)page_address(page);
2598 
2599 	return set_memory_ro(addr, numpages);
2600 }
2601 
set_pages_rw(struct page * page,int numpages)2602 int set_pages_rw(struct page *page, int numpages)
2603 {
2604 	unsigned long addr = (unsigned long)page_address(page);
2605 
2606 	return set_memory_rw(addr, numpages);
2607 }
2608 
__set_pages_p(struct page * page,int numpages)2609 static int __set_pages_p(struct page *page, int numpages)
2610 {
2611 	unsigned long tempaddr = (unsigned long) page_address(page);
2612 	struct cpa_data cpa = { .vaddr = &tempaddr,
2613 				.pgd = NULL,
2614 				.numpages = numpages,
2615 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2616 				.mask_clr = __pgprot(0),
2617 				.flags = CPA_NO_CHECK_ALIAS };
2618 
2619 	/*
2620 	 * No alias checking needed for setting present flag. otherwise,
2621 	 * we may need to break large pages for 64-bit kernel text
2622 	 * mappings (this adds to complexity if we want to do this from
2623 	 * atomic context especially). Let's keep it simple!
2624 	 */
2625 	return __change_page_attr_set_clr(&cpa, 1);
2626 }
2627 
__set_pages_np(struct page * page,int numpages)2628 static int __set_pages_np(struct page *page, int numpages)
2629 {
2630 	unsigned long tempaddr = (unsigned long) page_address(page);
2631 	struct cpa_data cpa = { .vaddr = &tempaddr,
2632 				.pgd = NULL,
2633 				.numpages = numpages,
2634 				.mask_set = __pgprot(0),
2635 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY),
2636 				.flags = CPA_NO_CHECK_ALIAS };
2637 
2638 	/*
2639 	 * No alias checking needed for setting not present flag. otherwise,
2640 	 * we may need to break large pages for 64-bit kernel text
2641 	 * mappings (this adds to complexity if we want to do this from
2642 	 * atomic context especially). Let's keep it simple!
2643 	 */
2644 	return __change_page_attr_set_clr(&cpa, 1);
2645 }
2646 
set_direct_map_invalid_noflush(struct page * page)2647 int set_direct_map_invalid_noflush(struct page *page)
2648 {
2649 	return __set_pages_np(page, 1);
2650 }
2651 
set_direct_map_default_noflush(struct page * page)2652 int set_direct_map_default_noflush(struct page *page)
2653 {
2654 	return __set_pages_p(page, 1);
2655 }
2656 
set_direct_map_valid_noflush(struct page * page,unsigned nr,bool valid)2657 int set_direct_map_valid_noflush(struct page *page, unsigned nr, bool valid)
2658 {
2659 	if (valid)
2660 		return __set_pages_p(page, nr);
2661 
2662 	return __set_pages_np(page, nr);
2663 }
2664 
2665 #ifdef CONFIG_DEBUG_PAGEALLOC
__kernel_map_pages(struct page * page,int numpages,int enable)2666 void __kernel_map_pages(struct page *page, int numpages, int enable)
2667 {
2668 	if (PageHighMem(page))
2669 		return;
2670 	if (!enable) {
2671 		debug_check_no_locks_freed(page_address(page),
2672 					   numpages * PAGE_SIZE);
2673 	}
2674 
2675 	/*
2676 	 * The return value is ignored as the calls cannot fail.
2677 	 * Large pages for identity mappings are not used at boot time
2678 	 * and hence no memory allocations during large page split.
2679 	 */
2680 	if (enable)
2681 		__set_pages_p(page, numpages);
2682 	else
2683 		__set_pages_np(page, numpages);
2684 
2685 	/*
2686 	 * We should perform an IPI and flush all tlbs,
2687 	 * but that can deadlock->flush only current cpu.
2688 	 * Preemption needs to be disabled around __flush_tlb_all() due to
2689 	 * CR3 reload in __native_flush_tlb().
2690 	 */
2691 	preempt_disable();
2692 	__flush_tlb_all();
2693 	preempt_enable();
2694 
2695 	arch_flush_lazy_mmu_mode();
2696 }
2697 #endif /* CONFIG_DEBUG_PAGEALLOC */
2698 
kernel_page_present(struct page * page)2699 bool kernel_page_present(struct page *page)
2700 {
2701 	unsigned int level;
2702 	pte_t *pte;
2703 
2704 	if (PageHighMem(page))
2705 		return false;
2706 
2707 	pte = lookup_address((unsigned long)page_address(page), &level);
2708 	return (pte_val(*pte) & _PAGE_PRESENT);
2709 }
2710 
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)2711 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2712 				   unsigned numpages, unsigned long page_flags)
2713 {
2714 	int retval = -EINVAL;
2715 
2716 	struct cpa_data cpa = {
2717 		.vaddr = &address,
2718 		.pfn = pfn,
2719 		.pgd = pgd,
2720 		.numpages = numpages,
2721 		.mask_set = __pgprot(0),
2722 		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW|_PAGE_DIRTY)),
2723 		.flags = CPA_NO_CHECK_ALIAS,
2724 	};
2725 
2726 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2727 
2728 	if (!(__supported_pte_mask & _PAGE_NX))
2729 		goto out;
2730 
2731 	if (!(page_flags & _PAGE_ENC))
2732 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2733 
2734 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2735 
2736 	retval = __change_page_attr_set_clr(&cpa, 1);
2737 	__flush_tlb_all();
2738 
2739 out:
2740 	return retval;
2741 }
2742 
2743 /*
2744  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2745  * function shouldn't be used in an SMP environment. Presently, it's used only
2746  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2747  */
kernel_unmap_pages_in_pgd(pgd_t * pgd,unsigned long address,unsigned long numpages)2748 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2749 				     unsigned long numpages)
2750 {
2751 	int retval;
2752 
2753 	/*
2754 	 * The typical sequence for unmapping is to find a pte through
2755 	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2756 	 * the address is already mapped) and change its protections. As pfn is
2757 	 * the *target* of a mapping, it's not useful while unmapping.
2758 	 */
2759 	struct cpa_data cpa = {
2760 		.vaddr		= &address,
2761 		.pfn		= 0,
2762 		.pgd		= pgd,
2763 		.numpages	= numpages,
2764 		.mask_set	= __pgprot(0),
2765 		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY),
2766 		.flags		= CPA_NO_CHECK_ALIAS,
2767 	};
2768 
2769 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2770 
2771 	retval = __change_page_attr_set_clr(&cpa, 1);
2772 	__flush_tlb_all();
2773 
2774 	return retval;
2775 }
2776 
2777 /*
2778  * The testcases use internal knowledge of the implementation that shouldn't
2779  * be exposed to the rest of the kernel. Include these directly here.
2780  */
2781 #ifdef CONFIG_CPA_DEBUG
2782 #include "cpa-test.c"
2783 #endif
2784