1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4
5 #include <linux/reciprocal_div.h>
6 #include <linux/list_lru.h>
7 #include <linux/local_lock.h>
8 #include <linux/random.h>
9 #include <linux/kobject.h>
10 #include <linux/sched/mm.h>
11 #include <linux/memcontrol.h>
12 #include <linux/kfence.h>
13 #include <linux/kasan.h>
14
15 /*
16 * Internal slab definitions
17 */
18
19 #ifdef CONFIG_64BIT
20 # ifdef system_has_cmpxchg128
21 # define system_has_freelist_aba() system_has_cmpxchg128()
22 # define try_cmpxchg_freelist try_cmpxchg128
23 # endif
24 #define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg128
25 typedef u128 freelist_full_t;
26 #else /* CONFIG_64BIT */
27 # ifdef system_has_cmpxchg64
28 # define system_has_freelist_aba() system_has_cmpxchg64()
29 # define try_cmpxchg_freelist try_cmpxchg64
30 # endif
31 #define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg64
32 typedef u64 freelist_full_t;
33 #endif /* CONFIG_64BIT */
34
35 #if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
36 #undef system_has_freelist_aba
37 #endif
38
39 /*
40 * Freelist pointer and counter to cmpxchg together, avoids the typical ABA
41 * problems with cmpxchg of just a pointer.
42 */
43 typedef union {
44 struct {
45 void *freelist;
46 unsigned long counter;
47 };
48 freelist_full_t full;
49 } freelist_aba_t;
50
51 /* Reuses the bits in struct page */
52 struct slab {
53 unsigned long flags;
54
55 struct kmem_cache *slab_cache;
56 union {
57 struct {
58 union {
59 struct list_head slab_list;
60 #ifdef CONFIG_SLUB_CPU_PARTIAL
61 struct {
62 struct slab *next;
63 int slabs; /* Nr of slabs left */
64 };
65 #endif
66 };
67 /* Double-word boundary */
68 union {
69 struct {
70 void *freelist; /* first free object */
71 union {
72 unsigned long counters;
73 struct {
74 unsigned inuse:16;
75 unsigned objects:15;
76 /*
77 * If slab debugging is enabled then the
78 * frozen bit can be reused to indicate
79 * that the slab was corrupted
80 */
81 unsigned frozen:1;
82 };
83 };
84 };
85 #ifdef system_has_freelist_aba
86 freelist_aba_t freelist_counter;
87 #endif
88 };
89 };
90 struct rcu_head rcu_head;
91 };
92
93 unsigned int __page_type;
94 atomic_t __page_refcount;
95 #ifdef CONFIG_SLAB_OBJ_EXT
96 unsigned long obj_exts;
97 #endif
98 };
99
100 #define SLAB_MATCH(pg, sl) \
101 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
102 SLAB_MATCH(flags, flags);
103 SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */
104 SLAB_MATCH(_refcount, __page_refcount);
105 #ifdef CONFIG_MEMCG
106 SLAB_MATCH(memcg_data, obj_exts);
107 #elif defined(CONFIG_SLAB_OBJ_EXT)
108 SLAB_MATCH(_unused_slab_obj_exts, obj_exts);
109 #endif
110 #undef SLAB_MATCH
111 static_assert(sizeof(struct slab) <= sizeof(struct page));
112 #if defined(system_has_freelist_aba)
113 static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(freelist_aba_t)));
114 #endif
115
116 /**
117 * folio_slab - Converts from folio to slab.
118 * @folio: The folio.
119 *
120 * Currently struct slab is a different representation of a folio where
121 * folio_test_slab() is true.
122 *
123 * Return: The slab which contains this folio.
124 */
125 #define folio_slab(folio) (_Generic((folio), \
126 const struct folio *: (const struct slab *)(folio), \
127 struct folio *: (struct slab *)(folio)))
128
129 /**
130 * slab_folio - The folio allocated for a slab
131 * @s: The slab.
132 *
133 * Slabs are allocated as folios that contain the individual objects and are
134 * using some fields in the first struct page of the folio - those fields are
135 * now accessed by struct slab. It is occasionally necessary to convert back to
136 * a folio in order to communicate with the rest of the mm. Please use this
137 * helper function instead of casting yourself, as the implementation may change
138 * in the future.
139 */
140 #define slab_folio(s) (_Generic((s), \
141 const struct slab *: (const struct folio *)s, \
142 struct slab *: (struct folio *)s))
143
144 /**
145 * page_slab - Converts from first struct page to slab.
146 * @p: The first (either head of compound or single) page of slab.
147 *
148 * A temporary wrapper to convert struct page to struct slab in situations where
149 * we know the page is the compound head, or single order-0 page.
150 *
151 * Long-term ideally everything would work with struct slab directly or go
152 * through folio to struct slab.
153 *
154 * Return: The slab which contains this page
155 */
156 #define page_slab(p) (_Generic((p), \
157 const struct page *: (const struct slab *)(p), \
158 struct page *: (struct slab *)(p)))
159
160 /**
161 * slab_page - The first struct page allocated for a slab
162 * @s: The slab.
163 *
164 * A convenience wrapper for converting slab to the first struct page of the
165 * underlying folio, to communicate with code not yet converted to folio or
166 * struct slab.
167 */
168 #define slab_page(s) folio_page(slab_folio(s), 0)
169
slab_address(const struct slab * slab)170 static inline void *slab_address(const struct slab *slab)
171 {
172 return folio_address(slab_folio(slab));
173 }
174
slab_nid(const struct slab * slab)175 static inline int slab_nid(const struct slab *slab)
176 {
177 return folio_nid(slab_folio(slab));
178 }
179
slab_pgdat(const struct slab * slab)180 static inline pg_data_t *slab_pgdat(const struct slab *slab)
181 {
182 return folio_pgdat(slab_folio(slab));
183 }
184
virt_to_slab(const void * addr)185 static inline struct slab *virt_to_slab(const void *addr)
186 {
187 struct folio *folio = virt_to_folio(addr);
188
189 if (!folio_test_slab(folio))
190 return NULL;
191
192 return folio_slab(folio);
193 }
194
slab_order(const struct slab * slab)195 static inline int slab_order(const struct slab *slab)
196 {
197 return folio_order(slab_folio(slab));
198 }
199
slab_size(const struct slab * slab)200 static inline size_t slab_size(const struct slab *slab)
201 {
202 return PAGE_SIZE << slab_order(slab);
203 }
204
205 #ifdef CONFIG_SLUB_CPU_PARTIAL
206 #define slub_percpu_partial(c) ((c)->partial)
207
208 #define slub_set_percpu_partial(c, p) \
209 ({ \
210 slub_percpu_partial(c) = (p)->next; \
211 })
212
213 #define slub_percpu_partial_read_once(c) READ_ONCE(slub_percpu_partial(c))
214 #else
215 #define slub_percpu_partial(c) NULL
216
217 #define slub_set_percpu_partial(c, p)
218
219 #define slub_percpu_partial_read_once(c) NULL
220 #endif // CONFIG_SLUB_CPU_PARTIAL
221
222 /*
223 * Word size structure that can be atomically updated or read and that
224 * contains both the order and the number of objects that a slab of the
225 * given order would contain.
226 */
227 struct kmem_cache_order_objects {
228 unsigned int x;
229 };
230
231 /*
232 * Slab cache management.
233 */
234 struct kmem_cache {
235 #ifndef CONFIG_SLUB_TINY
236 struct kmem_cache_cpu __percpu *cpu_slab;
237 #endif
238 /* Used for retrieving partial slabs, etc. */
239 slab_flags_t flags;
240 unsigned long min_partial;
241 unsigned int size; /* Object size including metadata */
242 unsigned int object_size; /* Object size without metadata */
243 struct reciprocal_value reciprocal_size;
244 unsigned int offset; /* Free pointer offset */
245 #ifdef CONFIG_SLUB_CPU_PARTIAL
246 /* Number of per cpu partial objects to keep around */
247 unsigned int cpu_partial;
248 /* Number of per cpu partial slabs to keep around */
249 unsigned int cpu_partial_slabs;
250 #endif
251 struct kmem_cache_order_objects oo;
252
253 /* Allocation and freeing of slabs */
254 struct kmem_cache_order_objects min;
255 gfp_t allocflags; /* gfp flags to use on each alloc */
256 int refcount; /* Refcount for slab cache destroy */
257 void (*ctor)(void *object); /* Object constructor */
258 unsigned int inuse; /* Offset to metadata */
259 unsigned int align; /* Alignment */
260 unsigned int red_left_pad; /* Left redzone padding size */
261 const char *name; /* Name (only for display!) */
262 struct list_head list; /* List of slab caches */
263 #ifdef CONFIG_SYSFS
264 struct kobject kobj; /* For sysfs */
265 #endif
266 #ifdef CONFIG_SLAB_FREELIST_HARDENED
267 unsigned long random;
268 #endif
269
270 #ifdef CONFIG_NUMA
271 /*
272 * Defragmentation by allocating from a remote node.
273 */
274 unsigned int remote_node_defrag_ratio;
275 #endif
276
277 #ifdef CONFIG_SLAB_FREELIST_RANDOM
278 unsigned int *random_seq;
279 #endif
280
281 #ifdef CONFIG_KASAN_GENERIC
282 struct kasan_cache kasan_info;
283 #endif
284
285 #ifdef CONFIG_HARDENED_USERCOPY
286 unsigned int useroffset; /* Usercopy region offset */
287 unsigned int usersize; /* Usercopy region size */
288 #endif
289
290 struct kmem_cache_node *node[MAX_NUMNODES];
291 };
292
293 #if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY)
294 #define SLAB_SUPPORTS_SYSFS 1
295 void sysfs_slab_unlink(struct kmem_cache *s);
296 void sysfs_slab_release(struct kmem_cache *s);
297 #else
sysfs_slab_unlink(struct kmem_cache * s)298 static inline void sysfs_slab_unlink(struct kmem_cache *s) { }
sysfs_slab_release(struct kmem_cache * s)299 static inline void sysfs_slab_release(struct kmem_cache *s) { }
300 #endif
301
302 void *fixup_red_left(struct kmem_cache *s, void *p);
303
nearest_obj(struct kmem_cache * cache,const struct slab * slab,void * x)304 static inline void *nearest_obj(struct kmem_cache *cache,
305 const struct slab *slab, void *x)
306 {
307 void *object = x - (x - slab_address(slab)) % cache->size;
308 void *last_object = slab_address(slab) +
309 (slab->objects - 1) * cache->size;
310 void *result = (unlikely(object > last_object)) ? last_object : object;
311
312 result = fixup_red_left(cache, result);
313 return result;
314 }
315
316 /* Determine object index from a given position */
__obj_to_index(const struct kmem_cache * cache,void * addr,void * obj)317 static inline unsigned int __obj_to_index(const struct kmem_cache *cache,
318 void *addr, void *obj)
319 {
320 return reciprocal_divide(kasan_reset_tag(obj) - addr,
321 cache->reciprocal_size);
322 }
323
obj_to_index(const struct kmem_cache * cache,const struct slab * slab,void * obj)324 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
325 const struct slab *slab, void *obj)
326 {
327 if (is_kfence_address(obj))
328 return 0;
329 return __obj_to_index(cache, slab_address(slab), obj);
330 }
331
objs_per_slab(const struct kmem_cache * cache,const struct slab * slab)332 static inline int objs_per_slab(const struct kmem_cache *cache,
333 const struct slab *slab)
334 {
335 return slab->objects;
336 }
337
338 /*
339 * State of the slab allocator.
340 *
341 * This is used to describe the states of the allocator during bootup.
342 * Allocators use this to gradually bootstrap themselves. Most allocators
343 * have the problem that the structures used for managing slab caches are
344 * allocated from slab caches themselves.
345 */
346 enum slab_state {
347 DOWN, /* No slab functionality yet */
348 PARTIAL, /* SLUB: kmem_cache_node available */
349 UP, /* Slab caches usable but not all extras yet */
350 FULL /* Everything is working */
351 };
352
353 extern enum slab_state slab_state;
354
355 /* The slab cache mutex protects the management structures during changes */
356 extern struct mutex slab_mutex;
357
358 /* The list of all slab caches on the system */
359 extern struct list_head slab_caches;
360
361 /* The slab cache that manages slab cache information */
362 extern struct kmem_cache *kmem_cache;
363
364 /* A table of kmalloc cache names and sizes */
365 extern const struct kmalloc_info_struct {
366 const char *name[NR_KMALLOC_TYPES];
367 unsigned int size;
368 } kmalloc_info[];
369
370 /* Kmalloc array related functions */
371 void setup_kmalloc_cache_index_table(void);
372 void create_kmalloc_caches(void);
373
374 extern u8 kmalloc_size_index[24];
375
size_index_elem(unsigned int bytes)376 static inline unsigned int size_index_elem(unsigned int bytes)
377 {
378 return (bytes - 1) / 8;
379 }
380
381 /*
382 * Find the kmem_cache structure that serves a given size of
383 * allocation
384 *
385 * This assumes size is larger than zero and not larger than
386 * KMALLOC_MAX_CACHE_SIZE and the caller must check that.
387 */
388 static inline struct kmem_cache *
kmalloc_slab(size_t size,kmem_buckets * b,gfp_t flags,unsigned long caller)389 kmalloc_slab(size_t size, kmem_buckets *b, gfp_t flags, unsigned long caller)
390 {
391 unsigned int index;
392
393 if (!b)
394 b = &kmalloc_caches[kmalloc_type(flags, caller)];
395 if (size <= 192)
396 index = kmalloc_size_index[size_index_elem(size)];
397 else
398 index = fls(size - 1);
399
400 return (*b)[index];
401 }
402
403 gfp_t kmalloc_fix_flags(gfp_t flags);
404
405 /* Functions provided by the slab allocators */
406 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
407 unsigned int size, struct kmem_cache_args *args,
408 slab_flags_t flags);
409
410 void __init kmem_cache_init(void);
411 extern void create_boot_cache(struct kmem_cache *, const char *name,
412 unsigned int size, slab_flags_t flags,
413 unsigned int useroffset, unsigned int usersize);
414
415 int slab_unmergeable(struct kmem_cache *s);
416 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
417 slab_flags_t flags, const char *name, void (*ctor)(void *));
418 struct kmem_cache *
419 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
420 slab_flags_t flags, void (*ctor)(void *));
421
422 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name);
423
is_kmalloc_cache(struct kmem_cache * s)424 static inline bool is_kmalloc_cache(struct kmem_cache *s)
425 {
426 return (s->flags & SLAB_KMALLOC);
427 }
428
is_kmalloc_normal(struct kmem_cache * s)429 static inline bool is_kmalloc_normal(struct kmem_cache *s)
430 {
431 if (!is_kmalloc_cache(s))
432 return false;
433 return !(s->flags & (SLAB_CACHE_DMA|SLAB_ACCOUNT|SLAB_RECLAIM_ACCOUNT));
434 }
435
436 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
437 SLAB_CACHE_DMA32 | SLAB_PANIC | \
438 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS | \
439 SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
440 SLAB_TEMPORARY | SLAB_ACCOUNT | \
441 SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE)
442
443 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
444 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
445
446 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS)
447
448 bool __kmem_cache_empty(struct kmem_cache *);
449 int __kmem_cache_shutdown(struct kmem_cache *);
450 void __kmem_cache_release(struct kmem_cache *);
451 int __kmem_cache_shrink(struct kmem_cache *);
452 void slab_kmem_cache_release(struct kmem_cache *);
453
454 struct seq_file;
455 struct file;
456
457 struct slabinfo {
458 unsigned long active_objs;
459 unsigned long num_objs;
460 unsigned long active_slabs;
461 unsigned long num_slabs;
462 unsigned long shared_avail;
463 unsigned int limit;
464 unsigned int batchcount;
465 unsigned int shared;
466 unsigned int objects_per_slab;
467 unsigned int cache_order;
468 };
469
470 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
471
472 #ifdef CONFIG_SLUB_DEBUG
473 #ifdef CONFIG_SLUB_DEBUG_ON
474 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
475 #else
476 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
477 #endif
478 extern void print_tracking(struct kmem_cache *s, void *object);
479 long validate_slab_cache(struct kmem_cache *s);
__slub_debug_enabled(void)480 static inline bool __slub_debug_enabled(void)
481 {
482 return static_branch_unlikely(&slub_debug_enabled);
483 }
484 #else
print_tracking(struct kmem_cache * s,void * object)485 static inline void print_tracking(struct kmem_cache *s, void *object)
486 {
487 }
__slub_debug_enabled(void)488 static inline bool __slub_debug_enabled(void)
489 {
490 return false;
491 }
492 #endif
493
494 /*
495 * Returns true if any of the specified slab_debug flags is enabled for the
496 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
497 * the static key.
498 */
kmem_cache_debug_flags(struct kmem_cache * s,slab_flags_t flags)499 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
500 {
501 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
502 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
503 if (__slub_debug_enabled())
504 return s->flags & flags;
505 return false;
506 }
507
508 #if IS_ENABLED(CONFIG_SLUB_DEBUG) && IS_ENABLED(CONFIG_KUNIT)
509 bool slab_in_kunit_test(void);
510 #else
slab_in_kunit_test(void)511 static inline bool slab_in_kunit_test(void) { return false; }
512 #endif
513
514 #ifdef CONFIG_SLAB_OBJ_EXT
515
516 /*
517 * slab_obj_exts - get the pointer to the slab object extension vector
518 * associated with a slab.
519 * @slab: a pointer to the slab struct
520 *
521 * Returns a pointer to the object extension vector associated with the slab,
522 * or NULL if no such vector has been associated yet.
523 */
slab_obj_exts(struct slab * slab)524 static inline struct slabobj_ext *slab_obj_exts(struct slab *slab)
525 {
526 unsigned long obj_exts = READ_ONCE(slab->obj_exts);
527
528 #ifdef CONFIG_MEMCG
529 VM_BUG_ON_PAGE(obj_exts && !(obj_exts & MEMCG_DATA_OBJEXTS),
530 slab_page(slab));
531 VM_BUG_ON_PAGE(obj_exts & MEMCG_DATA_KMEM, slab_page(slab));
532 #endif
533 return (struct slabobj_ext *)(obj_exts & ~OBJEXTS_FLAGS_MASK);
534 }
535
536 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
537 gfp_t gfp, bool new_slab);
538
539 #else /* CONFIG_SLAB_OBJ_EXT */
540
slab_obj_exts(struct slab * slab)541 static inline struct slabobj_ext *slab_obj_exts(struct slab *slab)
542 {
543 return NULL;
544 }
545
546 #endif /* CONFIG_SLAB_OBJ_EXT */
547
cache_vmstat_idx(struct kmem_cache * s)548 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
549 {
550 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
551 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
552 }
553
554 #ifdef CONFIG_MEMCG
555 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
556 gfp_t flags, size_t size, void **p);
557 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
558 void **p, int objects, struct slabobj_ext *obj_exts);
559 #endif
560
561 void kvfree_rcu_cb(struct rcu_head *head);
562
563 size_t __ksize(const void *objp);
564
slab_ksize(const struct kmem_cache * s)565 static inline size_t slab_ksize(const struct kmem_cache *s)
566 {
567 #ifdef CONFIG_SLUB_DEBUG
568 /*
569 * Debugging requires use of the padding between object
570 * and whatever may come after it.
571 */
572 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
573 return s->object_size;
574 #endif
575 if (s->flags & SLAB_KASAN)
576 return s->object_size;
577 /*
578 * If we have the need to store the freelist pointer
579 * back there or track user information then we can
580 * only use the space before that information.
581 */
582 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
583 return s->inuse;
584 /*
585 * Else we can use all the padding etc for the allocation
586 */
587 return s->size;
588 }
589
590 #ifdef CONFIG_SLUB_DEBUG
591 void dump_unreclaimable_slab(void);
592 #else
dump_unreclaimable_slab(void)593 static inline void dump_unreclaimable_slab(void)
594 {
595 }
596 #endif
597
598 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
599
600 #ifdef CONFIG_SLAB_FREELIST_RANDOM
601 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
602 gfp_t gfp);
603 void cache_random_seq_destroy(struct kmem_cache *cachep);
604 #else
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)605 static inline int cache_random_seq_create(struct kmem_cache *cachep,
606 unsigned int count, gfp_t gfp)
607 {
608 return 0;
609 }
cache_random_seq_destroy(struct kmem_cache * cachep)610 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
611 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
612
slab_want_init_on_alloc(gfp_t flags,struct kmem_cache * c)613 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
614 {
615 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
616 &init_on_alloc)) {
617 if (c->ctor)
618 return false;
619 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
620 return flags & __GFP_ZERO;
621 return true;
622 }
623 return flags & __GFP_ZERO;
624 }
625
slab_want_init_on_free(struct kmem_cache * c)626 static inline bool slab_want_init_on_free(struct kmem_cache *c)
627 {
628 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
629 &init_on_free))
630 return !(c->ctor ||
631 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
632 return false;
633 }
634
635 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
636 void debugfs_slab_release(struct kmem_cache *);
637 #else
debugfs_slab_release(struct kmem_cache * s)638 static inline void debugfs_slab_release(struct kmem_cache *s) { }
639 #endif
640
641 #ifdef CONFIG_PRINTK
642 #define KS_ADDRS_COUNT 16
643 struct kmem_obj_info {
644 void *kp_ptr;
645 struct slab *kp_slab;
646 void *kp_objp;
647 unsigned long kp_data_offset;
648 struct kmem_cache *kp_slab_cache;
649 void *kp_ret;
650 void *kp_stack[KS_ADDRS_COUNT];
651 void *kp_free_stack[KS_ADDRS_COUNT];
652 };
653 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
654 #endif
655
656 void __check_heap_object(const void *ptr, unsigned long n,
657 const struct slab *slab, bool to_user);
658
slub_debug_orig_size(struct kmem_cache * s)659 static inline bool slub_debug_orig_size(struct kmem_cache *s)
660 {
661 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
662 (s->flags & SLAB_KMALLOC));
663 }
664
665 #ifdef CONFIG_SLUB_DEBUG
666 void skip_orig_size_check(struct kmem_cache *s, const void *object);
667 #endif
668
669 #endif /* MM_SLAB_H */
670