1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72
73 /*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79 /* This is the per-socket lock. The spinlock provides a synchronization
80 * between user contexts and software interrupt processing, whereas the
81 * mini-semaphore synchronizes multiple users amongst themselves.
82 */
83 typedef struct {
84 spinlock_t slock;
85 int owned;
86 wait_queue_head_t wq;
87 /*
88 * We express the mutex-alike socket_lock semantics
89 * to the lock validator by explicitly managing
90 * the slock as a lock variant (in addition to
91 * the slock itself):
92 */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 struct lockdep_map dep_map;
95 #endif
96 } socket_lock_t;
97
98 struct sock;
99 struct proto;
100 struct net;
101
102 typedef __u32 __bitwise __portpair;
103 typedef __u64 __bitwise __addrpair;
104
105 /**
106 * struct sock_common - minimal network layer representation of sockets
107 * @skc_daddr: Foreign IPv4 addr
108 * @skc_rcv_saddr: Bound local IPv4 addr
109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110 * @skc_hash: hash value used with various protocol lookup tables
111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
112 * @skc_dport: placeholder for inet_dport/tw_dport
113 * @skc_num: placeholder for inet_num/tw_num
114 * @skc_portpair: __u32 union of @skc_dport & @skc_num
115 * @skc_family: network address family
116 * @skc_state: Connection state
117 * @skc_reuse: %SO_REUSEADDR setting
118 * @skc_reuseport: %SO_REUSEPORT setting
119 * @skc_ipv6only: socket is IPV6 only
120 * @skc_net_refcnt: socket is using net ref counting
121 * @skc_bypass_prot_mem: bypass the per-protocol memory accounting for skb
122 * @skc_bound_dev_if: bound device index if != 0
123 * @skc_bind_node: bind hash linkage for various protocol lookup tables
124 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
125 * @skc_prot: protocol handlers inside a network family
126 * @skc_net: reference to the network namespace of this socket
127 * @skc_v6_daddr: IPV6 destination address
128 * @skc_v6_rcv_saddr: IPV6 source address
129 * @skc_cookie: socket's cookie value
130 * @skc_node: main hash linkage for various protocol lookup tables
131 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
132 * @skc_tx_queue_mapping: tx queue number for this connection
133 * @skc_rx_queue_mapping: rx queue number for this connection
134 * @skc_flags: place holder for sk_flags
135 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
136 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
137 * @skc_listener: connection request listener socket (aka rsk_listener)
138 * [union with @skc_flags]
139 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
140 * [union with @skc_flags]
141 * @skc_incoming_cpu: record/match cpu processing incoming packets
142 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
143 * [union with @skc_incoming_cpu]
144 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
145 * [union with @skc_incoming_cpu]
146 * @skc_refcnt: reference count
147 *
148 * This is the minimal network layer representation of sockets, the header
149 * for struct sock and struct inet_timewait_sock.
150 */
151 struct sock_common {
152 union {
153 __addrpair skc_addrpair;
154 struct {
155 __be32 skc_daddr;
156 __be32 skc_rcv_saddr;
157 };
158 };
159 union {
160 unsigned int skc_hash;
161 __u16 skc_u16hashes[2];
162 };
163 /* skc_dport && skc_num must be grouped as well */
164 union {
165 __portpair skc_portpair;
166 struct {
167 __be16 skc_dport;
168 __u16 skc_num;
169 };
170 };
171
172 unsigned short skc_family;
173 volatile unsigned char skc_state;
174 unsigned char skc_reuse:4;
175 unsigned char skc_reuseport:1;
176 unsigned char skc_ipv6only:1;
177 unsigned char skc_net_refcnt:1;
178 unsigned char skc_bypass_prot_mem:1;
179 int skc_bound_dev_if;
180 union {
181 struct hlist_node skc_bind_node;
182 struct hlist_node skc_portaddr_node;
183 };
184 struct proto *skc_prot;
185 possible_net_t skc_net;
186
187 #if IS_ENABLED(CONFIG_IPV6)
188 struct in6_addr skc_v6_daddr;
189 struct in6_addr skc_v6_rcv_saddr;
190 #endif
191
192 atomic64_t skc_cookie;
193
194 /* following fields are padding to force
195 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
196 * assuming IPV6 is enabled. We use this padding differently
197 * for different kind of 'sockets'
198 */
199 union {
200 unsigned long skc_flags;
201 struct sock *skc_listener; /* request_sock */
202 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
203 };
204 /*
205 * fields between dontcopy_begin/dontcopy_end
206 * are not copied in sock_copy()
207 */
208 /* private: */
209 int skc_dontcopy_begin[0];
210 /* public: */
211 union {
212 struct hlist_node skc_node;
213 struct hlist_nulls_node skc_nulls_node;
214 };
215 unsigned short skc_tx_queue_mapping;
216 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
217 unsigned short skc_rx_queue_mapping;
218 #endif
219 union {
220 int skc_incoming_cpu;
221 u32 skc_rcv_wnd;
222 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
223 };
224
225 refcount_t skc_refcnt;
226 /* private: */
227 int skc_dontcopy_end[0];
228 union {
229 u32 skc_rxhash;
230 u32 skc_window_clamp;
231 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
232 };
233 /* public: */
234 };
235
236 struct bpf_local_storage;
237 struct sk_filter;
238
239 /**
240 * struct sock - network layer representation of sockets
241 * @__sk_common: shared layout with inet_timewait_sock
242 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
243 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
244 * @sk_lock: synchronizer
245 * @sk_kern_sock: True if sock is using kernel lock classes
246 * @sk_rcvbuf: size of receive buffer in bytes
247 * @sk_wq: sock wait queue and async head
248 * @sk_rx_dst: receive input route used by early demux
249 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
250 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
251 * @sk_dst_cache: destination cache
252 * @sk_dst_pending_confirm: need to confirm neighbour
253 * @sk_policy: flow policy
254 * @psp_assoc: PSP association, if socket is PSP-secured
255 * @sk_receive_queue: incoming packets
256 * @sk_wmem_alloc: transmit queue bytes committed
257 * @sk_tsq_flags: TCP Small Queues flags
258 * @sk_write_queue: Packet sending queue
259 * @sk_omem_alloc: "o" is "option" or "other"
260 * @sk_wmem_queued: persistent queue size
261 * @sk_forward_alloc: space allocated forward
262 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
263 * @sk_napi_id: id of the last napi context to receive data for sk
264 * @sk_ll_usec: usecs to busypoll when there is no data
265 * @sk_allocation: allocation mode
266 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
267 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
268 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
269 * @sk_sndbuf: size of send buffer in bytes
270 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
271 * @sk_no_check_rx: allow zero checksum in RX packets
272 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
273 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
274 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
275 * @sk_gso_max_size: Maximum GSO segment size to build
276 * @sk_gso_max_segs: Maximum number of GSO segments
277 * @sk_pacing_shift: scaling factor for TCP Small Queues
278 * @sk_lingertime: %SO_LINGER l_linger setting
279 * @sk_backlog: always used with the per-socket spinlock held
280 * @sk_callback_lock: used with the callbacks in the end of this struct
281 * @sk_error_queue: rarely used
282 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
283 * IPV6_ADDRFORM for instance)
284 * @sk_err: last error
285 * @sk_err_soft: errors that don't cause failure but are the cause of a
286 * persistent failure not just 'timed out'
287 * @sk_drops: raw/udp drops counter
288 * @sk_drop_counters: optional pointer to numa_drop_counters
289 * @sk_ack_backlog: current listen backlog
290 * @sk_max_ack_backlog: listen backlog set in listen()
291 * @sk_uid: user id of owner
292 * @sk_ino: inode number (zero if orphaned)
293 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
294 * @sk_busy_poll_budget: napi processing budget when busypolling
295 * @sk_priority: %SO_PRIORITY setting
296 * @sk_type: socket type (%SOCK_STREAM, etc)
297 * @sk_protocol: which protocol this socket belongs in this network family
298 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
299 * @sk_peer_pid: &struct pid for this socket's peer
300 * @sk_peer_cred: %SO_PEERCRED setting
301 * @sk_rcvlowat: %SO_RCVLOWAT setting
302 * @sk_rcvtimeo: %SO_RCVTIMEO setting
303 * @sk_sndtimeo: %SO_SNDTIMEO setting
304 * @sk_txhash: computed flow hash for use on transmit
305 * @sk_txrehash: enable TX hash rethink
306 * @sk_filter: socket filtering instructions
307 * @sk_timer: sock cleanup timer
308 * @tcp_retransmit_timer: tcp retransmit timer
309 * @mptcp_retransmit_timer: mptcp retransmit timer
310 * @sk_stamp: time stamp of last packet received
311 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
312 * @sk_tsflags: SO_TIMESTAMPING flags
313 * @sk_bpf_cb_flags: used in bpf_setsockopt()
314 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
315 * Sockets that can be used under memory reclaim should
316 * set this to false.
317 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
318 * for timestamping
319 * @sk_tskey: counter to disambiguate concurrent tstamp requests
320 * @sk_tx_queue_mapping_jiffies: time in jiffies of last @sk_tx_queue_mapping refresh.
321 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
322 * @sk_socket: Identd and reporting IO signals
323 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
324 * @sk_frag: cached page frag
325 * @sk_peek_off: current peek_offset value
326 * @sk_send_head: front of stuff to transmit
327 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
328 * @sk_security: used by security modules
329 * @sk_mark: generic packet mark
330 * @sk_cgrp_data: cgroup data for this cgroup
331 * @sk_memcg: this socket's memory cgroup association
332 * @sk_write_pending: a write to stream socket waits to start
333 * @sk_disconnects: number of disconnect operations performed on this sock
334 * @sk_state_change: callback to indicate change in the state of the sock
335 * @sk_data_ready: callback to indicate there is data to be processed
336 * @sk_write_space: callback to indicate there is bf sending space available
337 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
338 * @sk_backlog_rcv: callback to process the backlog
339 * @sk_validate_xmit_skb: ptr to an optional validate function
340 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
341 * @sk_reuseport_cb: reuseport group container
342 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
343 * @sk_rcu: used during RCU grace period
344 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
345 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
346 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
347 * @sk_txtime_unused: unused txtime flags
348 * @sk_scm_recv_flags: all flags used by scm_recv()
349 * @sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS
350 * @sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY
351 * @sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD
352 * @sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS
353 * @sk_scm_unused: unused flags for scm_recv()
354 * @ns_tracker: tracker for netns reference
355 * @sk_user_frags: xarray of pages the user is holding a reference on.
356 * @sk_owner: reference to the real owner of the socket that calls
357 * sock_lock_init_class_and_name().
358 */
359 struct sock {
360 /*
361 * Now struct inet_timewait_sock also uses sock_common, so please just
362 * don't add nothing before this first member (__sk_common) --acme
363 */
364 struct sock_common __sk_common;
365 #define sk_node __sk_common.skc_node
366 #define sk_nulls_node __sk_common.skc_nulls_node
367 #define sk_refcnt __sk_common.skc_refcnt
368 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
369 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
370 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
371 #endif
372
373 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
374 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
375 #define sk_hash __sk_common.skc_hash
376 #define sk_portpair __sk_common.skc_portpair
377 #define sk_num __sk_common.skc_num
378 #define sk_dport __sk_common.skc_dport
379 #define sk_addrpair __sk_common.skc_addrpair
380 #define sk_daddr __sk_common.skc_daddr
381 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
382 #define sk_family __sk_common.skc_family
383 #define sk_state __sk_common.skc_state
384 #define sk_reuse __sk_common.skc_reuse
385 #define sk_reuseport __sk_common.skc_reuseport
386 #define sk_ipv6only __sk_common.skc_ipv6only
387 #define sk_net_refcnt __sk_common.skc_net_refcnt
388 #define sk_bypass_prot_mem __sk_common.skc_bypass_prot_mem
389 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
390 #define sk_bind_node __sk_common.skc_bind_node
391 #define sk_prot __sk_common.skc_prot
392 #define sk_net __sk_common.skc_net
393 #define sk_v6_daddr __sk_common.skc_v6_daddr
394 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
395 #define sk_cookie __sk_common.skc_cookie
396 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
397 #define sk_flags __sk_common.skc_flags
398 #define sk_rxhash __sk_common.skc_rxhash
399
400 __cacheline_group_begin(sock_write_rx);
401
402 atomic_t sk_drops;
403 __s32 sk_peek_off;
404 struct sk_buff_head sk_error_queue;
405 struct sk_buff_head sk_receive_queue;
406 /*
407 * The backlog queue is special, it is always used with
408 * the per-socket spinlock held and requires low latency
409 * access. Therefore we special case it's implementation.
410 * Note : rmem_alloc is in this structure to fill a hole
411 * on 64bit arches, not because its logically part of
412 * backlog.
413 */
414 struct {
415 atomic_t rmem_alloc;
416 int len;
417 struct sk_buff *head;
418 struct sk_buff *tail;
419 } sk_backlog;
420 #define sk_rmem_alloc sk_backlog.rmem_alloc
421
422 __cacheline_group_end(sock_write_rx);
423
424 __cacheline_group_begin(sock_read_rx);
425 /* early demux fields */
426 struct dst_entry __rcu *sk_rx_dst;
427 int sk_rx_dst_ifindex;
428 u32 sk_rx_dst_cookie;
429
430 #ifdef CONFIG_NET_RX_BUSY_POLL
431 unsigned int sk_ll_usec;
432 unsigned int sk_napi_id;
433 u16 sk_busy_poll_budget;
434 u8 sk_prefer_busy_poll;
435 #endif
436 u8 sk_userlocks;
437 int sk_rcvbuf;
438
439 struct sk_filter __rcu *sk_filter;
440 union {
441 struct socket_wq __rcu *sk_wq;
442 /* private: */
443 struct socket_wq *sk_wq_raw;
444 /* public: */
445 };
446
447 void (*sk_data_ready)(struct sock *sk);
448 long sk_rcvtimeo;
449 int sk_rcvlowat;
450 __cacheline_group_end(sock_read_rx);
451
452 __cacheline_group_begin(sock_read_rxtx);
453 int sk_err;
454 struct socket *sk_socket;
455 #ifdef CONFIG_MEMCG
456 struct mem_cgroup *sk_memcg;
457 #endif
458 #ifdef CONFIG_XFRM
459 struct xfrm_policy __rcu *sk_policy[2];
460 #endif
461 #if IS_ENABLED(CONFIG_INET_PSP)
462 struct psp_assoc __rcu *psp_assoc;
463 #endif
464 __cacheline_group_end(sock_read_rxtx);
465
466 __cacheline_group_begin(sock_write_rxtx);
467 socket_lock_t sk_lock;
468 u32 sk_reserved_mem;
469 int sk_forward_alloc;
470 u32 sk_tsflags;
471 __cacheline_group_end(sock_write_rxtx);
472
473 __cacheline_group_begin(sock_write_tx);
474 int sk_write_pending;
475 atomic_t sk_omem_alloc;
476 int sk_err_soft;
477
478 int sk_wmem_queued;
479 refcount_t sk_wmem_alloc;
480 unsigned long sk_tsq_flags;
481 union {
482 struct sk_buff *sk_send_head;
483 struct rb_root tcp_rtx_queue;
484 };
485 struct sk_buff_head sk_write_queue;
486 struct page_frag sk_frag;
487 union {
488 struct timer_list sk_timer;
489 struct timer_list tcp_retransmit_timer;
490 struct timer_list mptcp_retransmit_timer;
491 };
492 unsigned long sk_pacing_rate; /* bytes per second */
493 atomic_t sk_zckey;
494 atomic_t sk_tskey;
495 unsigned long sk_tx_queue_mapping_jiffies;
496 __cacheline_group_end(sock_write_tx);
497
498 __cacheline_group_begin(sock_read_tx);
499 u32 sk_dst_pending_confirm;
500 u32 sk_pacing_status; /* see enum sk_pacing */
501 unsigned long sk_max_pacing_rate;
502 long sk_sndtimeo;
503 u32 sk_priority;
504 u32 sk_mark;
505 kuid_t sk_uid;
506 u16 sk_protocol;
507 u16 sk_type;
508 struct dst_entry __rcu *sk_dst_cache;
509 netdev_features_t sk_route_caps;
510 #ifdef CONFIG_SOCK_VALIDATE_XMIT
511 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
512 struct net_device *dev,
513 struct sk_buff *skb);
514 #endif
515 u16 sk_gso_type;
516 u16 sk_gso_max_segs;
517 unsigned int sk_gso_max_size;
518 gfp_t sk_allocation;
519 u32 sk_txhash;
520 int sk_sndbuf;
521 u8 sk_pacing_shift;
522 bool sk_use_task_frag;
523 __cacheline_group_end(sock_read_tx);
524
525 /*
526 * Because of non atomicity rules, all
527 * changes are protected by socket lock.
528 */
529 u8 sk_gso_disabled : 1,
530 sk_kern_sock : 1,
531 sk_no_check_tx : 1,
532 sk_no_check_rx : 1;
533 u8 sk_shutdown;
534 unsigned long sk_lingertime;
535 struct proto *sk_prot_creator;
536 rwlock_t sk_callback_lock;
537 u32 sk_ack_backlog;
538 u32 sk_max_ack_backlog;
539 unsigned long sk_ino;
540 spinlock_t sk_peer_lock;
541 int sk_bind_phc;
542 struct pid *sk_peer_pid;
543 const struct cred *sk_peer_cred;
544
545 ktime_t sk_stamp;
546 #if BITS_PER_LONG==32
547 seqlock_t sk_stamp_seq;
548 #endif
549 int sk_disconnects;
550
551 union {
552 u8 sk_txrehash;
553 u8 sk_scm_recv_flags;
554 struct {
555 u8 sk_scm_credentials : 1,
556 sk_scm_security : 1,
557 sk_scm_pidfd : 1,
558 sk_scm_rights : 1,
559 sk_scm_unused : 4;
560 };
561 };
562 u8 sk_clockid;
563 u8 sk_txtime_deadline_mode : 1,
564 sk_txtime_report_errors : 1,
565 sk_txtime_unused : 6;
566 #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG))
567 u8 sk_bpf_cb_flags;
568
569 void *sk_user_data;
570 #ifdef CONFIG_SECURITY
571 void *sk_security;
572 #endif
573 struct sock_cgroup_data sk_cgrp_data;
574 void (*sk_state_change)(struct sock *sk);
575 void (*sk_write_space)(struct sock *sk);
576 void (*sk_error_report)(struct sock *sk);
577 int (*sk_backlog_rcv)(struct sock *sk,
578 struct sk_buff *skb);
579 void (*sk_destruct)(struct sock *sk);
580 struct sock_reuseport __rcu *sk_reuseport_cb;
581 #ifdef CONFIG_BPF_SYSCALL
582 struct bpf_local_storage __rcu *sk_bpf_storage;
583 #endif
584 struct numa_drop_counters *sk_drop_counters;
585 struct rcu_head sk_rcu;
586 netns_tracker ns_tracker;
587 struct xarray sk_user_frags;
588
589 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
590 struct module *sk_owner;
591 #endif
592 };
593
594 struct sock_bh_locked {
595 struct sock *sock;
596 local_lock_t bh_lock;
597 };
598
599 enum sk_pacing {
600 SK_PACING_NONE = 0,
601 SK_PACING_NEEDED = 1,
602 SK_PACING_FQ = 2,
603 };
604
605 /* flag bits in sk_user_data
606 *
607 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
608 * not be suitable for copying when cloning the socket. For instance,
609 * it can point to a reference counted object. sk_user_data bottom
610 * bit is set if pointer must not be copied.
611 *
612 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
613 * managed/owned by a BPF reuseport array. This bit should be set
614 * when sk_user_data's sk is added to the bpf's reuseport_array.
615 *
616 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
617 * sk_user_data points to psock type. This bit should be set
618 * when sk_user_data is assigned to a psock object.
619 */
620 #define SK_USER_DATA_NOCOPY 1UL
621 #define SK_USER_DATA_BPF 2UL
622 #define SK_USER_DATA_PSOCK 4UL
623 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
624 SK_USER_DATA_PSOCK)
625
626 /**
627 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
628 * @sk: socket
629 */
sk_user_data_is_nocopy(const struct sock * sk)630 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
631 {
632 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
633 }
634
635 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
636
637 /**
638 * __locked_read_sk_user_data_with_flags - return the pointer
639 * only if argument flags all has been set in sk_user_data. Otherwise
640 * return NULL
641 *
642 * @sk: socket
643 * @flags: flag bits
644 *
645 * The caller must be holding sk->sk_callback_lock.
646 */
647 static inline void *
__locked_read_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)648 __locked_read_sk_user_data_with_flags(const struct sock *sk,
649 uintptr_t flags)
650 {
651 uintptr_t sk_user_data =
652 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
653 lockdep_is_held(&sk->sk_callback_lock));
654
655 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
656
657 if ((sk_user_data & flags) == flags)
658 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
659 return NULL;
660 }
661
662 /**
663 * __rcu_dereference_sk_user_data_with_flags - return the pointer
664 * only if argument flags all has been set in sk_user_data. Otherwise
665 * return NULL
666 *
667 * @sk: socket
668 * @flags: flag bits
669 */
670 static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)671 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
672 uintptr_t flags)
673 {
674 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
675
676 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
677
678 if ((sk_user_data & flags) == flags)
679 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
680 return NULL;
681 }
682
683 #define rcu_dereference_sk_user_data(sk) \
684 __rcu_dereference_sk_user_data_with_flags(sk, 0)
685 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
686 ({ \
687 uintptr_t __tmp1 = (uintptr_t)(ptr), \
688 __tmp2 = (uintptr_t)(flags); \
689 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
690 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
691 rcu_assign_pointer(__sk_user_data((sk)), \
692 __tmp1 | __tmp2); \
693 })
694 #define rcu_assign_sk_user_data(sk, ptr) \
695 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
696
697 static inline
sock_net(const struct sock * sk)698 struct net *sock_net(const struct sock *sk)
699 {
700 return read_pnet(&sk->sk_net);
701 }
702
703 static inline
sock_net_set(struct sock * sk,struct net * net)704 void sock_net_set(struct sock *sk, struct net *net)
705 {
706 write_pnet(&sk->sk_net, net);
707 }
708
709 /*
710 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
711 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
712 * on a socket means that the socket will reuse everybody else's port
713 * without looking at the other's sk_reuse value.
714 */
715
716 #define SK_NO_REUSE 0
717 #define SK_CAN_REUSE 1
718 #define SK_FORCE_REUSE 2
719
720 int sk_set_peek_off(struct sock *sk, int val);
721
sk_peek_offset(const struct sock * sk,int flags)722 static inline int sk_peek_offset(const struct sock *sk, int flags)
723 {
724 if (unlikely(flags & MSG_PEEK)) {
725 return READ_ONCE(sk->sk_peek_off);
726 }
727
728 return 0;
729 }
730
sk_peek_offset_bwd(struct sock * sk,int val)731 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
732 {
733 s32 off = READ_ONCE(sk->sk_peek_off);
734
735 if (unlikely(off >= 0)) {
736 off = max_t(s32, off - val, 0);
737 WRITE_ONCE(sk->sk_peek_off, off);
738 }
739 }
740
sk_peek_offset_fwd(struct sock * sk,int val)741 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
742 {
743 sk_peek_offset_bwd(sk, -val);
744 }
745
746 /*
747 * Hashed lists helper routines
748 */
sk_entry(const struct hlist_node * node)749 static inline struct sock *sk_entry(const struct hlist_node *node)
750 {
751 return hlist_entry(node, struct sock, sk_node);
752 }
753
__sk_head(const struct hlist_head * head)754 static inline struct sock *__sk_head(const struct hlist_head *head)
755 {
756 return hlist_entry(head->first, struct sock, sk_node);
757 }
758
sk_head(const struct hlist_head * head)759 static inline struct sock *sk_head(const struct hlist_head *head)
760 {
761 return hlist_empty(head) ? NULL : __sk_head(head);
762 }
763
__sk_nulls_head(const struct hlist_nulls_head * head)764 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
765 {
766 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
767 }
768
sk_nulls_head(const struct hlist_nulls_head * head)769 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
770 {
771 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
772 }
773
sk_next(const struct sock * sk)774 static inline struct sock *sk_next(const struct sock *sk)
775 {
776 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
777 }
778
sk_nulls_next(const struct sock * sk)779 static inline struct sock *sk_nulls_next(const struct sock *sk)
780 {
781 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
782 hlist_nulls_entry(sk->sk_nulls_node.next,
783 struct sock, sk_nulls_node) :
784 NULL;
785 }
786
sk_unhashed(const struct sock * sk)787 static inline bool sk_unhashed(const struct sock *sk)
788 {
789 return hlist_unhashed(&sk->sk_node);
790 }
791
sk_hashed(const struct sock * sk)792 static inline bool sk_hashed(const struct sock *sk)
793 {
794 return !sk_unhashed(sk);
795 }
796
sk_node_init(struct hlist_node * node)797 static inline void sk_node_init(struct hlist_node *node)
798 {
799 node->pprev = NULL;
800 }
801
__sk_del_node(struct sock * sk)802 static inline void __sk_del_node(struct sock *sk)
803 {
804 __hlist_del(&sk->sk_node);
805 }
806
807 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)808 static inline bool __sk_del_node_init(struct sock *sk)
809 {
810 if (sk_hashed(sk)) {
811 __sk_del_node(sk);
812 sk_node_init(&sk->sk_node);
813 return true;
814 }
815 return false;
816 }
817
818 /* Grab socket reference count. This operation is valid only
819 when sk is ALREADY grabbed f.e. it is found in hash table
820 or a list and the lookup is made under lock preventing hash table
821 modifications.
822 */
823
sock_hold(struct sock * sk)824 static __always_inline void sock_hold(struct sock *sk)
825 {
826 refcount_inc(&sk->sk_refcnt);
827 }
828
829 /* Ungrab socket in the context, which assumes that socket refcnt
830 cannot hit zero, f.e. it is true in context of any socketcall.
831 */
__sock_put(struct sock * sk)832 static __always_inline void __sock_put(struct sock *sk)
833 {
834 refcount_dec(&sk->sk_refcnt);
835 }
836
sk_del_node_init(struct sock * sk)837 static inline bool sk_del_node_init(struct sock *sk)
838 {
839 bool rc = __sk_del_node_init(sk);
840
841 if (rc)
842 __sock_put(sk);
843
844 return rc;
845 }
846 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
847
__sk_nulls_del_node_init_rcu(struct sock * sk)848 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
849 {
850 if (sk_hashed(sk)) {
851 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
852 return true;
853 }
854 return false;
855 }
856
sk_nulls_del_node_init_rcu(struct sock * sk)857 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
858 {
859 bool rc = __sk_nulls_del_node_init_rcu(sk);
860
861 if (rc)
862 __sock_put(sk);
863
864 return rc;
865 }
866
sk_nulls_replace_node_init_rcu(struct sock * old,struct sock * new)867 static inline bool sk_nulls_replace_node_init_rcu(struct sock *old,
868 struct sock *new)
869 {
870 if (sk_hashed(old)) {
871 hlist_nulls_replace_init_rcu(&old->sk_nulls_node,
872 &new->sk_nulls_node);
873 __sock_put(old);
874 return true;
875 }
876
877 return false;
878 }
879
__sk_add_node(struct sock * sk,struct hlist_head * list)880 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
881 {
882 hlist_add_head(&sk->sk_node, list);
883 }
884
sk_add_node(struct sock * sk,struct hlist_head * list)885 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
886 {
887 sock_hold(sk);
888 __sk_add_node(sk, list);
889 }
890
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)891 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
892 {
893 sock_hold(sk);
894 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
895 sk->sk_family == AF_INET6)
896 hlist_add_tail_rcu(&sk->sk_node, list);
897 else
898 hlist_add_head_rcu(&sk->sk_node, list);
899 }
900
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)901 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
902 {
903 sock_hold(sk);
904 hlist_add_tail_rcu(&sk->sk_node, list);
905 }
906
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)907 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
908 {
909 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
910 }
911
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)912 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
913 {
914 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
915 }
916
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)917 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
918 {
919 sock_hold(sk);
920 __sk_nulls_add_node_rcu(sk, list);
921 }
922
__sk_del_bind_node(struct sock * sk)923 static inline void __sk_del_bind_node(struct sock *sk)
924 {
925 __hlist_del(&sk->sk_bind_node);
926 }
927
sk_add_bind_node(struct sock * sk,struct hlist_head * list)928 static inline void sk_add_bind_node(struct sock *sk,
929 struct hlist_head *list)
930 {
931 hlist_add_head(&sk->sk_bind_node, list);
932 }
933
934 #define sk_for_each(__sk, list) \
935 hlist_for_each_entry(__sk, list, sk_node)
936 #define sk_for_each_rcu(__sk, list) \
937 hlist_for_each_entry_rcu(__sk, list, sk_node)
938 #define sk_nulls_for_each(__sk, node, list) \
939 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
940 #define sk_nulls_for_each_rcu(__sk, node, list) \
941 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
942 #define sk_for_each_from(__sk) \
943 hlist_for_each_entry_from(__sk, sk_node)
944 #define sk_nulls_for_each_from(__sk, node) \
945 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
946 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
947 #define sk_for_each_safe(__sk, tmp, list) \
948 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
949 #define sk_for_each_bound(__sk, list) \
950 hlist_for_each_entry(__sk, list, sk_bind_node)
951 #define sk_for_each_bound_safe(__sk, tmp, list) \
952 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node)
953
954 /**
955 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
956 * @tpos: the type * to use as a loop cursor.
957 * @pos: the &struct hlist_node to use as a loop cursor.
958 * @head: the head for your list.
959 * @offset: offset of hlist_node within the struct.
960 *
961 */
962 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
963 for (pos = rcu_dereference(hlist_first_rcu(head)); \
964 pos != NULL && \
965 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
966 pos = rcu_dereference(hlist_next_rcu(pos)))
967
sk_user_ns(const struct sock * sk)968 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
969 {
970 /* Careful only use this in a context where these parameters
971 * can not change and must all be valid, such as recvmsg from
972 * userspace.
973 */
974 return sk->sk_socket->file->f_cred->user_ns;
975 }
976
977 /* Sock flags */
978 enum sock_flags {
979 SOCK_DEAD,
980 SOCK_DONE,
981 SOCK_URGINLINE,
982 SOCK_KEEPOPEN,
983 SOCK_LINGER,
984 SOCK_DESTROY,
985 SOCK_BROADCAST,
986 SOCK_TIMESTAMP,
987 SOCK_ZAPPED,
988 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
989 SOCK_DBG, /* %SO_DEBUG setting */
990 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
991 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
992 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
993 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
994 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
995 SOCK_FASYNC, /* fasync() active */
996 SOCK_RXQ_OVFL,
997 SOCK_ZEROCOPY, /* buffers from userspace */
998 SOCK_WIFI_STATUS, /* push wifi status to userspace */
999 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
1000 * Will use last 4 bytes of packet sent from
1001 * user-space instead.
1002 */
1003 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
1004 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
1005 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
1006 SOCK_TXTIME,
1007 SOCK_XDP, /* XDP is attached */
1008 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
1009 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
1010 SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */
1011 SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */
1012 };
1013
1014 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
1015 /*
1016 * The highest bit of sk_tsflags is reserved for kernel-internal
1017 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that
1018 * SOF_TIMESTAMPING* values do not reach this reserved area
1019 */
1020 #define SOCKCM_FLAG_TS_OPT_ID BIT(31)
1021
sock_copy_flags(struct sock * nsk,const struct sock * osk)1022 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
1023 {
1024 nsk->sk_flags = osk->sk_flags;
1025 }
1026
sock_set_flag(struct sock * sk,enum sock_flags flag)1027 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
1028 {
1029 __set_bit(flag, &sk->sk_flags);
1030 }
1031
sock_reset_flag(struct sock * sk,enum sock_flags flag)1032 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
1033 {
1034 __clear_bit(flag, &sk->sk_flags);
1035 }
1036
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)1037 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
1038 int valbool)
1039 {
1040 if (valbool)
1041 sock_set_flag(sk, bit);
1042 else
1043 sock_reset_flag(sk, bit);
1044 }
1045
sock_flag(const struct sock * sk,enum sock_flags flag)1046 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
1047 {
1048 return test_bit(flag, &sk->sk_flags);
1049 }
1050
1051 #ifdef CONFIG_NET
1052 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)1053 static inline int sk_memalloc_socks(void)
1054 {
1055 return static_branch_unlikely(&memalloc_socks_key);
1056 }
1057
1058 void __receive_sock(struct file *file);
1059 #else
1060
sk_memalloc_socks(void)1061 static inline int sk_memalloc_socks(void)
1062 {
1063 return 0;
1064 }
1065
__receive_sock(struct file * file)1066 static inline void __receive_sock(struct file *file)
1067 { }
1068 #endif
1069
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)1070 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1071 {
1072 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1073 }
1074
sk_acceptq_removed(struct sock * sk)1075 static inline void sk_acceptq_removed(struct sock *sk)
1076 {
1077 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1078 }
1079
sk_acceptq_added(struct sock * sk)1080 static inline void sk_acceptq_added(struct sock *sk)
1081 {
1082 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1083 }
1084
1085 /* Note: If you think the test should be:
1086 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1087 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1088 */
sk_acceptq_is_full(const struct sock * sk)1089 static inline bool sk_acceptq_is_full(const struct sock *sk)
1090 {
1091 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1092 }
1093
1094 /*
1095 * Compute minimal free write space needed to queue new packets.
1096 */
sk_stream_min_wspace(const struct sock * sk)1097 static inline int sk_stream_min_wspace(const struct sock *sk)
1098 {
1099 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1100 }
1101
sk_stream_wspace(const struct sock * sk)1102 static inline int sk_stream_wspace(const struct sock *sk)
1103 {
1104 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1105 }
1106
sk_wmem_queued_add(struct sock * sk,int val)1107 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1108 {
1109 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1110 }
1111
sk_forward_alloc_add(struct sock * sk,int val)1112 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1113 {
1114 /* Paired with lockless reads of sk->sk_forward_alloc */
1115 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1116 }
1117
1118 void sk_stream_write_space(struct sock *sk);
1119
1120 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)1121 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1122 {
1123 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1124 skb_dst_force(skb);
1125
1126 if (!sk->sk_backlog.tail)
1127 WRITE_ONCE(sk->sk_backlog.head, skb);
1128 else
1129 sk->sk_backlog.tail->next = skb;
1130
1131 WRITE_ONCE(sk->sk_backlog.tail, skb);
1132 skb->next = NULL;
1133 }
1134
1135 /*
1136 * Take into account size of receive queue and backlog queue
1137 * Do not take into account this skb truesize,
1138 * to allow even a single big packet to come.
1139 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1140 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1141 {
1142 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1143
1144 return qsize > limit;
1145 }
1146
1147 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1148 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1149 unsigned int limit)
1150 {
1151 if (sk_rcvqueues_full(sk, limit))
1152 return -ENOBUFS;
1153
1154 /*
1155 * If the skb was allocated from pfmemalloc reserves, only
1156 * allow SOCK_MEMALLOC sockets to use it as this socket is
1157 * helping free memory
1158 */
1159 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1160 return -ENOMEM;
1161
1162 __sk_add_backlog(sk, skb);
1163 sk->sk_backlog.len += skb->truesize;
1164 return 0;
1165 }
1166
1167 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1168
1169 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1170 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1171
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1172 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1173 {
1174 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1175 return __sk_backlog_rcv(sk, skb);
1176
1177 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1178 tcp_v6_do_rcv,
1179 tcp_v4_do_rcv,
1180 sk, skb);
1181 }
1182
sk_incoming_cpu_update(struct sock * sk)1183 static inline void sk_incoming_cpu_update(struct sock *sk)
1184 {
1185 int cpu = raw_smp_processor_id();
1186
1187 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1188 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1189 }
1190
1191
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1192 static inline void sock_rps_save_rxhash(struct sock *sk,
1193 const struct sk_buff *skb)
1194 {
1195 #ifdef CONFIG_RPS
1196 /* The following WRITE_ONCE() is paired with the READ_ONCE()
1197 * here, and another one in sock_rps_record_flow().
1198 */
1199 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1200 WRITE_ONCE(sk->sk_rxhash, skb->hash);
1201 #endif
1202 }
1203
sock_rps_reset_rxhash(struct sock * sk)1204 static inline void sock_rps_reset_rxhash(struct sock *sk)
1205 {
1206 #ifdef CONFIG_RPS
1207 /* Paired with READ_ONCE() in sock_rps_record_flow() */
1208 WRITE_ONCE(sk->sk_rxhash, 0);
1209 #endif
1210 }
1211
1212 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1213 ({ int __rc, __dis = __sk->sk_disconnects; \
1214 release_sock(__sk); \
1215 __rc = __condition; \
1216 if (!__rc) { \
1217 *(__timeo) = wait_woken(__wait, \
1218 TASK_INTERRUPTIBLE, \
1219 *(__timeo)); \
1220 } \
1221 sched_annotate_sleep(); \
1222 lock_sock(__sk); \
1223 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1224 __rc; \
1225 })
1226
1227 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1228 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1229 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1230 int sk_stream_error(struct sock *sk, int flags, int err);
1231 void sk_stream_kill_queues(struct sock *sk);
1232 void sk_set_memalloc(struct sock *sk);
1233 void sk_clear_memalloc(struct sock *sk);
1234
1235 void __sk_flush_backlog(struct sock *sk);
1236
sk_flush_backlog(struct sock * sk)1237 static inline bool sk_flush_backlog(struct sock *sk)
1238 {
1239 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1240 __sk_flush_backlog(sk);
1241 return true;
1242 }
1243 return false;
1244 }
1245
1246 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1247
1248 struct request_sock_ops;
1249 struct timewait_sock_ops;
1250 struct inet_hashinfo;
1251 struct raw_hashinfo;
1252 struct smc_hashinfo;
1253 struct module;
1254 struct sk_psock;
1255
1256 /*
1257 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1258 * un-modified. Special care is taken when initializing object to zero.
1259 */
sk_prot_clear_nulls(struct sock * sk,int size)1260 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1261 {
1262 if (offsetof(struct sock, sk_node.next) != 0)
1263 memset(sk, 0, offsetof(struct sock, sk_node.next));
1264 memset(&sk->sk_node.pprev, 0,
1265 size - offsetof(struct sock, sk_node.pprev));
1266 }
1267
1268 struct proto_accept_arg {
1269 int flags;
1270 int err;
1271 int is_empty;
1272 bool kern;
1273 };
1274
1275 /* Networking protocol blocks we attach to sockets.
1276 * socket layer -> transport layer interface
1277 */
1278 struct proto {
1279 void (*close)(struct sock *sk,
1280 long timeout);
1281 int (*pre_connect)(struct sock *sk,
1282 struct sockaddr_unsized *uaddr,
1283 int addr_len);
1284 int (*connect)(struct sock *sk,
1285 struct sockaddr_unsized *uaddr,
1286 int addr_len);
1287 int (*disconnect)(struct sock *sk, int flags);
1288
1289 struct sock * (*accept)(struct sock *sk,
1290 struct proto_accept_arg *arg);
1291
1292 int (*ioctl)(struct sock *sk, int cmd,
1293 int *karg);
1294 int (*init)(struct sock *sk);
1295 void (*destroy)(struct sock *sk);
1296 void (*shutdown)(struct sock *sk, int how);
1297 int (*setsockopt)(struct sock *sk, int level,
1298 int optname, sockptr_t optval,
1299 unsigned int optlen);
1300 int (*getsockopt)(struct sock *sk, int level,
1301 int optname, char __user *optval,
1302 int __user *option);
1303 void (*keepalive)(struct sock *sk, int valbool);
1304 #ifdef CONFIG_COMPAT
1305 int (*compat_ioctl)(struct sock *sk,
1306 unsigned int cmd, unsigned long arg);
1307 #endif
1308 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1309 size_t len);
1310 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1311 size_t len, int flags, int *addr_len);
1312 void (*splice_eof)(struct socket *sock);
1313 int (*bind)(struct sock *sk,
1314 struct sockaddr_unsized *addr, int addr_len);
1315 int (*bind_add)(struct sock *sk,
1316 struct sockaddr_unsized *addr, int addr_len);
1317
1318 int (*backlog_rcv) (struct sock *sk,
1319 struct sk_buff *skb);
1320 bool (*bpf_bypass_getsockopt)(int level,
1321 int optname);
1322
1323 void (*release_cb)(struct sock *sk);
1324
1325 /* Keeping track of sk's, looking them up, and port selection methods. */
1326 int (*hash)(struct sock *sk);
1327 void (*unhash)(struct sock *sk);
1328 void (*rehash)(struct sock *sk);
1329 int (*get_port)(struct sock *sk, unsigned short snum);
1330 void (*put_port)(struct sock *sk);
1331 #ifdef CONFIG_BPF_SYSCALL
1332 int (*psock_update_sk_prot)(struct sock *sk,
1333 struct sk_psock *psock,
1334 bool restore);
1335 #endif
1336
1337 /* Keeping track of sockets in use */
1338 #ifdef CONFIG_PROC_FS
1339 unsigned int inuse_idx;
1340 #endif
1341
1342 bool (*stream_memory_free)(const struct sock *sk, int wake);
1343 bool (*sock_is_readable)(struct sock *sk);
1344 /* Memory pressure */
1345 void (*enter_memory_pressure)(struct sock *sk);
1346 void (*leave_memory_pressure)(struct sock *sk);
1347 atomic_long_t *memory_allocated; /* Current allocated memory. */
1348 int __percpu *per_cpu_fw_alloc;
1349 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1350
1351 /*
1352 * Pressure flag: try to collapse.
1353 * Technical note: it is used by multiple contexts non atomically.
1354 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1355 * All the __sk_mem_schedule() is of this nature: accounting
1356 * is strict, actions are advisory and have some latency.
1357 */
1358 unsigned long *memory_pressure;
1359 long *sysctl_mem;
1360
1361 int *sysctl_wmem;
1362 int *sysctl_rmem;
1363 u32 sysctl_wmem_offset;
1364 u32 sysctl_rmem_offset;
1365
1366 int max_header;
1367 bool no_autobind;
1368
1369 struct kmem_cache *slab;
1370 unsigned int obj_size;
1371 unsigned int ipv6_pinfo_offset;
1372 slab_flags_t slab_flags;
1373 unsigned int useroffset; /* Usercopy region offset */
1374 unsigned int usersize; /* Usercopy region size */
1375
1376 struct request_sock_ops *rsk_prot;
1377 struct timewait_sock_ops *twsk_prot;
1378
1379 union {
1380 struct inet_hashinfo *hashinfo;
1381 struct udp_table *udp_table;
1382 struct raw_hashinfo *raw_hash;
1383 struct smc_hashinfo *smc_hash;
1384 } h;
1385
1386 struct module *owner;
1387
1388 char name[32];
1389
1390 struct list_head node;
1391 int (*diag_destroy)(struct sock *sk, int err);
1392 } __randomize_layout;
1393
1394 int proto_register(struct proto *prot, int alloc_slab);
1395 void proto_unregister(struct proto *prot);
1396 int sock_load_diag_module(int family, int protocol);
1397
1398 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1399
__sk_stream_memory_free(const struct sock * sk,int wake)1400 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1401 {
1402 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1403 return false;
1404
1405 return sk->sk_prot->stream_memory_free ?
1406 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1407 tcp_stream_memory_free, sk, wake) : true;
1408 }
1409
sk_stream_memory_free(const struct sock * sk)1410 static inline bool sk_stream_memory_free(const struct sock *sk)
1411 {
1412 return __sk_stream_memory_free(sk, 0);
1413 }
1414
__sk_stream_is_writeable(const struct sock * sk,int wake)1415 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1416 {
1417 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1418 __sk_stream_memory_free(sk, wake);
1419 }
1420
sk_stream_is_writeable(const struct sock * sk)1421 static inline bool sk_stream_is_writeable(const struct sock *sk)
1422 {
1423 return __sk_stream_is_writeable(sk, 0);
1424 }
1425
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1426 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1427 struct cgroup *ancestor)
1428 {
1429 #ifdef CONFIG_SOCK_CGROUP_DATA
1430 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1431 ancestor);
1432 #else
1433 return -ENOTSUPP;
1434 #endif
1435 }
1436
1437 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1438
sk_sockets_allocated_dec(struct sock * sk)1439 static inline void sk_sockets_allocated_dec(struct sock *sk)
1440 {
1441 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1442 SK_ALLOC_PERCPU_COUNTER_BATCH);
1443 }
1444
sk_sockets_allocated_inc(struct sock * sk)1445 static inline void sk_sockets_allocated_inc(struct sock *sk)
1446 {
1447 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1448 SK_ALLOC_PERCPU_COUNTER_BATCH);
1449 }
1450
1451 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1452 sk_sockets_allocated_read_positive(struct sock *sk)
1453 {
1454 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1455 }
1456
1457 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1458 proto_sockets_allocated_sum_positive(struct proto *prot)
1459 {
1460 return percpu_counter_sum_positive(prot->sockets_allocated);
1461 }
1462
1463 #ifdef CONFIG_PROC_FS
1464 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
1465 struct prot_inuse {
1466 int all;
1467 int val[PROTO_INUSE_NR];
1468 };
1469
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1470 static inline void sock_prot_inuse_add(const struct net *net,
1471 const struct proto *prot, int val)
1472 {
1473 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1474 }
1475
sock_inuse_add(const struct net * net,int val)1476 static inline void sock_inuse_add(const struct net *net, int val)
1477 {
1478 this_cpu_add(net->core.prot_inuse->all, val);
1479 }
1480
1481 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1482 int sock_inuse_get(struct net *net);
1483 #else
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1484 static inline void sock_prot_inuse_add(const struct net *net,
1485 const struct proto *prot, int val)
1486 {
1487 }
1488
sock_inuse_add(const struct net * net,int val)1489 static inline void sock_inuse_add(const struct net *net, int val)
1490 {
1491 }
1492 #endif
1493
1494
1495 /* With per-bucket locks this operation is not-atomic, so that
1496 * this version is not worse.
1497 */
__sk_prot_rehash(struct sock * sk)1498 static inline int __sk_prot_rehash(struct sock *sk)
1499 {
1500 sk->sk_prot->unhash(sk);
1501 return sk->sk_prot->hash(sk);
1502 }
1503
1504 /* About 10 seconds */
1505 #define SOCK_DESTROY_TIME (10*HZ)
1506
1507 /* Sockets 0-1023 can't be bound to unless you are superuser */
1508 #define PROT_SOCK 1024
1509
1510 #define SHUTDOWN_MASK 3
1511 #define RCV_SHUTDOWN 1
1512 #define SEND_SHUTDOWN 2
1513
1514 #define SOCK_BINDADDR_LOCK 4
1515 #define SOCK_BINDPORT_LOCK 8
1516 /**
1517 * define SOCK_CONNECT_BIND - &sock->sk_userlocks flag for auto-bind at connect() time
1518 */
1519 #define SOCK_CONNECT_BIND 16
1520
1521 struct socket_alloc {
1522 struct socket socket;
1523 struct inode vfs_inode;
1524 };
1525
SOCKET_I(struct inode * inode)1526 static inline struct socket *SOCKET_I(struct inode *inode)
1527 {
1528 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1529 }
1530
SOCK_INODE(struct socket * socket)1531 static inline struct inode *SOCK_INODE(struct socket *socket)
1532 {
1533 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1534 }
1535
1536 /*
1537 * Functions for memory accounting
1538 */
1539 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1540 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1541 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1542 void __sk_mem_reclaim(struct sock *sk, int amount);
1543
1544 #define SK_MEM_SEND 0
1545 #define SK_MEM_RECV 1
1546
1547 /* sysctl_mem values are in pages */
sk_prot_mem_limits(const struct sock * sk,int index)1548 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1549 {
1550 return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1551 }
1552
sk_mem_pages(int amt)1553 static inline int sk_mem_pages(int amt)
1554 {
1555 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1556 }
1557
sk_has_account(struct sock * sk)1558 static inline bool sk_has_account(struct sock *sk)
1559 {
1560 /* return true if protocol supports memory accounting */
1561 return !!sk->sk_prot->memory_allocated;
1562 }
1563
sk_wmem_schedule(struct sock * sk,int size)1564 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1565 {
1566 int delta;
1567
1568 if (!sk_has_account(sk))
1569 return true;
1570 delta = size - sk->sk_forward_alloc;
1571 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1572 }
1573
1574 static inline bool
__sk_rmem_schedule(struct sock * sk,int size,bool pfmemalloc)1575 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc)
1576 {
1577 int delta;
1578
1579 if (!sk_has_account(sk))
1580 return true;
1581 delta = size - sk->sk_forward_alloc;
1582 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1583 pfmemalloc;
1584 }
1585
1586 static inline bool
sk_rmem_schedule(struct sock * sk,const struct sk_buff * skb,int size)1587 sk_rmem_schedule(struct sock *sk, const struct sk_buff *skb, int size)
1588 {
1589 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb));
1590 }
1591
sk_unused_reserved_mem(const struct sock * sk)1592 static inline int sk_unused_reserved_mem(const struct sock *sk)
1593 {
1594 int unused_mem;
1595
1596 if (likely(!sk->sk_reserved_mem))
1597 return 0;
1598
1599 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1600 atomic_read(&sk->sk_rmem_alloc);
1601
1602 return unused_mem > 0 ? unused_mem : 0;
1603 }
1604
sk_mem_reclaim(struct sock * sk)1605 static inline void sk_mem_reclaim(struct sock *sk)
1606 {
1607 int reclaimable;
1608
1609 if (!sk_has_account(sk))
1610 return;
1611
1612 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1613
1614 if (reclaimable >= (int)PAGE_SIZE)
1615 __sk_mem_reclaim(sk, reclaimable);
1616 }
1617
sk_mem_reclaim_final(struct sock * sk)1618 static inline void sk_mem_reclaim_final(struct sock *sk)
1619 {
1620 sk->sk_reserved_mem = 0;
1621 sk_mem_reclaim(sk);
1622 }
1623
sk_mem_charge(struct sock * sk,int size)1624 static inline void sk_mem_charge(struct sock *sk, int size)
1625 {
1626 if (!sk_has_account(sk))
1627 return;
1628 sk_forward_alloc_add(sk, -size);
1629 }
1630
sk_mem_uncharge(struct sock * sk,int size)1631 static inline void sk_mem_uncharge(struct sock *sk, int size)
1632 {
1633 if (!sk_has_account(sk))
1634 return;
1635 sk_forward_alloc_add(sk, size);
1636 sk_mem_reclaim(sk);
1637 }
1638
1639 void __sk_charge(struct sock *sk, gfp_t gfp);
1640
1641 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
sk_owner_set(struct sock * sk,struct module * owner)1642 static inline void sk_owner_set(struct sock *sk, struct module *owner)
1643 {
1644 __module_get(owner);
1645 sk->sk_owner = owner;
1646 }
1647
sk_owner_clear(struct sock * sk)1648 static inline void sk_owner_clear(struct sock *sk)
1649 {
1650 sk->sk_owner = NULL;
1651 }
1652
sk_owner_put(struct sock * sk)1653 static inline void sk_owner_put(struct sock *sk)
1654 {
1655 module_put(sk->sk_owner);
1656 }
1657 #else
sk_owner_set(struct sock * sk,struct module * owner)1658 static inline void sk_owner_set(struct sock *sk, struct module *owner)
1659 {
1660 }
1661
sk_owner_clear(struct sock * sk)1662 static inline void sk_owner_clear(struct sock *sk)
1663 {
1664 }
1665
sk_owner_put(struct sock * sk)1666 static inline void sk_owner_put(struct sock *sk)
1667 {
1668 }
1669 #endif
1670 /*
1671 * Macro so as to not evaluate some arguments when
1672 * lockdep is not enabled.
1673 *
1674 * Mark both the sk_lock and the sk_lock.slock as a
1675 * per-address-family lock class.
1676 */
1677 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1678 do { \
1679 sk_owner_set(sk, THIS_MODULE); \
1680 sk->sk_lock.owned = 0; \
1681 init_waitqueue_head(&sk->sk_lock.wq); \
1682 spin_lock_init(&(sk)->sk_lock.slock); \
1683 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1684 sizeof((sk)->sk_lock)); \
1685 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1686 (skey), (sname)); \
1687 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1688 } while (0)
1689
lockdep_sock_is_held(const struct sock * sk)1690 static inline bool lockdep_sock_is_held(const struct sock *sk)
1691 {
1692 return lockdep_is_held(&sk->sk_lock) ||
1693 lockdep_is_held(&sk->sk_lock.slock);
1694 }
1695
1696 void lock_sock_nested(struct sock *sk, int subclass);
1697
lock_sock(struct sock * sk)1698 static inline void lock_sock(struct sock *sk)
1699 {
1700 lock_sock_nested(sk, 0);
1701 }
1702
1703 void __lock_sock(struct sock *sk);
1704 void __release_sock(struct sock *sk);
1705 void release_sock(struct sock *sk);
1706
1707 /* BH context may only use the following locking interface. */
1708 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1709 #define bh_lock_sock_nested(__sk) \
1710 spin_lock_nested(&((__sk)->sk_lock.slock), \
1711 SINGLE_DEPTH_NESTING)
1712 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1713
1714 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1715
1716 /**
1717 * lock_sock_fast - fast version of lock_sock
1718 * @sk: socket
1719 *
1720 * This version should be used for very small section, where process won't block
1721 * return false if fast path is taken:
1722 *
1723 * sk_lock.slock locked, owned = 0, BH disabled
1724 *
1725 * return true if slow path is taken:
1726 *
1727 * sk_lock.slock unlocked, owned = 1, BH enabled
1728 */
lock_sock_fast(struct sock * sk)1729 static inline bool lock_sock_fast(struct sock *sk)
1730 {
1731 /* The sk_lock has mutex_lock() semantics here. */
1732 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1733
1734 return __lock_sock_fast(sk);
1735 }
1736
1737 /* fast socket lock variant for caller already holding a [different] socket lock */
lock_sock_fast_nested(struct sock * sk)1738 static inline bool lock_sock_fast_nested(struct sock *sk)
1739 {
1740 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1741
1742 return __lock_sock_fast(sk);
1743 }
1744
1745 /**
1746 * unlock_sock_fast - complement of lock_sock_fast
1747 * @sk: socket
1748 * @slow: slow mode
1749 *
1750 * fast unlock socket for user context.
1751 * If slow mode is on, we call regular release_sock()
1752 */
unlock_sock_fast(struct sock * sk,bool slow)1753 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1754 __releases(&sk->sk_lock.slock)
1755 {
1756 if (slow) {
1757 release_sock(sk);
1758 __release(&sk->sk_lock.slock);
1759 } else {
1760 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1761 spin_unlock_bh(&sk->sk_lock.slock);
1762 }
1763 }
1764
1765 void sockopt_lock_sock(struct sock *sk);
1766 void sockopt_release_sock(struct sock *sk);
1767 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1768 bool sockopt_capable(int cap);
1769
1770 /* Used by processes to "lock" a socket state, so that
1771 * interrupts and bottom half handlers won't change it
1772 * from under us. It essentially blocks any incoming
1773 * packets, so that we won't get any new data or any
1774 * packets that change the state of the socket.
1775 *
1776 * While locked, BH processing will add new packets to
1777 * the backlog queue. This queue is processed by the
1778 * owner of the socket lock right before it is released.
1779 *
1780 * Since ~2.3.5 it is also exclusive sleep lock serializing
1781 * accesses from user process context.
1782 */
1783
sock_owned_by_me(const struct sock * sk)1784 static inline void sock_owned_by_me(const struct sock *sk)
1785 {
1786 #ifdef CONFIG_LOCKDEP
1787 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1788 #endif
1789 }
1790
sock_not_owned_by_me(const struct sock * sk)1791 static inline void sock_not_owned_by_me(const struct sock *sk)
1792 {
1793 #ifdef CONFIG_LOCKDEP
1794 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1795 #endif
1796 }
1797
sock_owned_by_user(const struct sock * sk)1798 static inline bool sock_owned_by_user(const struct sock *sk)
1799 {
1800 sock_owned_by_me(sk);
1801 return sk->sk_lock.owned;
1802 }
1803
sock_owned_by_user_nocheck(const struct sock * sk)1804 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1805 {
1806 return sk->sk_lock.owned;
1807 }
1808
sock_release_ownership(struct sock * sk)1809 static inline void sock_release_ownership(struct sock *sk)
1810 {
1811 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1812 sk->sk_lock.owned = 0;
1813
1814 /* The sk_lock has mutex_unlock() semantics: */
1815 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1816 }
1817
1818 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1819 static inline bool sock_allow_reclassification(const struct sock *csk)
1820 {
1821 struct sock *sk = (struct sock *)csk;
1822
1823 return !sock_owned_by_user_nocheck(sk) &&
1824 !spin_is_locked(&sk->sk_lock.slock);
1825 }
1826
1827 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1828 struct proto *prot, int kern);
1829 void sk_free(struct sock *sk);
1830 void sk_net_refcnt_upgrade(struct sock *sk);
1831 void sk_destruct(struct sock *sk);
1832 struct sock *sk_clone(const struct sock *sk, const gfp_t priority, bool lock);
1833
sk_clone_lock(const struct sock * sk,const gfp_t priority)1834 static inline struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1835 {
1836 return sk_clone(sk, priority, true);
1837 }
1838
1839 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1840 gfp_t priority);
1841 void __sock_wfree(struct sk_buff *skb);
1842 void sock_wfree(struct sk_buff *skb);
1843 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1844 gfp_t priority);
1845 void skb_orphan_partial(struct sk_buff *skb);
1846 void sock_rfree(struct sk_buff *skb);
1847 void sock_efree(struct sk_buff *skb);
1848 #ifdef CONFIG_INET
1849 void sock_edemux(struct sk_buff *skb);
1850 void sock_pfree(struct sk_buff *skb);
1851
skb_set_owner_edemux(struct sk_buff * skb,struct sock * sk)1852 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk)
1853 {
1854 skb_orphan(skb);
1855 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1856 skb->sk = sk;
1857 skb->destructor = sock_edemux;
1858 }
1859 }
1860 #else
1861 #define sock_edemux sock_efree
1862 #endif
1863
1864 int sk_setsockopt(struct sock *sk, int level, int optname,
1865 sockptr_t optval, unsigned int optlen);
1866 int sock_setsockopt(struct socket *sock, int level, int op,
1867 sockptr_t optval, unsigned int optlen);
1868 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1869 int optname, sockptr_t optval, int optlen);
1870 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1871 int optname, sockptr_t optval, sockptr_t optlen);
1872
1873 int sk_getsockopt(struct sock *sk, int level, int optname,
1874 sockptr_t optval, sockptr_t optlen);
1875 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1876 bool timeval, bool time32);
1877 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1878 unsigned long data_len, int noblock,
1879 int *errcode, int max_page_order);
1880
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1881 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1882 unsigned long size,
1883 int noblock, int *errcode)
1884 {
1885 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1886 }
1887
1888 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1889 void *sock_kmemdup(struct sock *sk, const void *src,
1890 int size, gfp_t priority);
1891 void sock_kfree_s(struct sock *sk, void *mem, int size);
1892 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1893 void sk_send_sigurg(struct sock *sk);
1894
sock_replace_proto(struct sock * sk,struct proto * proto)1895 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1896 {
1897 if (sk->sk_socket)
1898 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1899 WRITE_ONCE(sk->sk_prot, proto);
1900 }
1901
1902 struct sockcm_cookie {
1903 u64 transmit_time;
1904 u32 mark;
1905 u32 tsflags;
1906 u32 ts_opt_id;
1907 u32 priority;
1908 u32 dmabuf_id;
1909 };
1910
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1911 static inline void sockcm_init(struct sockcm_cookie *sockc,
1912 const struct sock *sk)
1913 {
1914 *sockc = (struct sockcm_cookie) {
1915 .mark = READ_ONCE(sk->sk_mark),
1916 .tsflags = READ_ONCE(sk->sk_tsflags),
1917 .priority = READ_ONCE(sk->sk_priority),
1918 };
1919 }
1920
1921 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1922 struct sockcm_cookie *sockc);
1923 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1924 struct sockcm_cookie *sockc);
1925
1926 /*
1927 * Functions to fill in entries in struct proto_ops when a protocol
1928 * does not implement a particular function.
1929 */
1930 int sock_no_bind(struct socket *sock, struct sockaddr_unsized *saddr, int len);
1931 int sock_no_connect(struct socket *sock, struct sockaddr_unsized *saddr, int len, int flags);
1932 int sock_no_socketpair(struct socket *, struct socket *);
1933 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
1934 int sock_no_getname(struct socket *, struct sockaddr *, int);
1935 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1936 int sock_no_listen(struct socket *, int);
1937 int sock_no_shutdown(struct socket *, int);
1938 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1939 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1940 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1941 int sock_no_mmap(struct file *file, struct socket *sock,
1942 struct vm_area_struct *vma);
1943
1944 /*
1945 * Functions to fill in entries in struct proto_ops when a protocol
1946 * uses the inet style.
1947 */
1948 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1949 char __user *optval, int __user *optlen);
1950 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1951 int flags);
1952 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1953 sockptr_t optval, unsigned int optlen);
1954
1955 void sk_common_release(struct sock *sk);
1956
1957 /*
1958 * Default socket callbacks and setup code
1959 */
1960
1961 /* Initialise core socket variables using an explicit uid. */
1962 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1963
1964 /* Initialise core socket variables.
1965 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1966 */
1967 void sock_init_data(struct socket *sock, struct sock *sk);
1968
1969 /*
1970 * Socket reference counting postulates.
1971 *
1972 * * Each user of socket SHOULD hold a reference count.
1973 * * Each access point to socket (an hash table bucket, reference from a list,
1974 * running timer, skb in flight MUST hold a reference count.
1975 * * When reference count hits 0, it means it will never increase back.
1976 * * When reference count hits 0, it means that no references from
1977 * outside exist to this socket and current process on current CPU
1978 * is last user and may/should destroy this socket.
1979 * * sk_free is called from any context: process, BH, IRQ. When
1980 * it is called, socket has no references from outside -> sk_free
1981 * may release descendant resources allocated by the socket, but
1982 * to the time when it is called, socket is NOT referenced by any
1983 * hash tables, lists etc.
1984 * * Packets, delivered from outside (from network or from another process)
1985 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1986 * when they sit in queue. Otherwise, packets will leak to hole, when
1987 * socket is looked up by one cpu and unhasing is made by another CPU.
1988 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1989 * (leak to backlog). Packet socket does all the processing inside
1990 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1991 * use separate SMP lock, so that they are prone too.
1992 */
1993
1994 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1995 static inline void sock_put(struct sock *sk)
1996 {
1997 if (refcount_dec_and_test(&sk->sk_refcnt))
1998 sk_free(sk);
1999 }
2000 /* Generic version of sock_put(), dealing with all sockets
2001 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
2002 */
2003 void sock_gen_put(struct sock *sk);
2004
2005 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
2006 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)2007 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
2008 const int nested)
2009 {
2010 return __sk_receive_skb(sk, skb, nested, 1, true);
2011 }
2012
sk_tx_queue_set(struct sock * sk,int tx_queue)2013 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
2014 {
2015 /* sk_tx_queue_mapping accept only upto a 16-bit value */
2016 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
2017 return;
2018 /* Paired with READ_ONCE() in sk_tx_queue_get() and
2019 * other WRITE_ONCE() because socket lock might be not held.
2020 */
2021 if (READ_ONCE(sk->sk_tx_queue_mapping) != tx_queue) {
2022 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
2023 WRITE_ONCE(sk->sk_tx_queue_mapping_jiffies, jiffies);
2024 return;
2025 }
2026
2027 /* Refresh sk_tx_queue_mapping_jiffies if too old. */
2028 if (time_is_before_jiffies(READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + HZ))
2029 WRITE_ONCE(sk->sk_tx_queue_mapping_jiffies, jiffies);
2030 }
2031
2032 #define NO_QUEUE_MAPPING USHRT_MAX
2033
sk_tx_queue_clear(struct sock * sk)2034 static inline void sk_tx_queue_clear(struct sock *sk)
2035 {
2036 /* Paired with READ_ONCE() in sk_tx_queue_get() and
2037 * other WRITE_ONCE() because socket lock might be not held.
2038 */
2039 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
2040 }
2041
2042 int sk_tx_queue_get(const struct sock *sk);
2043
__sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb,bool force_set)2044 static inline void __sk_rx_queue_set(struct sock *sk,
2045 const struct sk_buff *skb,
2046 bool force_set)
2047 {
2048 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2049 if (skb_rx_queue_recorded(skb)) {
2050 u16 rx_queue = skb_get_rx_queue(skb);
2051
2052 if (force_set ||
2053 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2054 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2055 }
2056 #endif
2057 }
2058
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)2059 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2060 {
2061 __sk_rx_queue_set(sk, skb, true);
2062 }
2063
sk_rx_queue_update(struct sock * sk,const struct sk_buff * skb)2064 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2065 {
2066 __sk_rx_queue_set(sk, skb, false);
2067 }
2068
sk_rx_queue_clear(struct sock * sk)2069 static inline void sk_rx_queue_clear(struct sock *sk)
2070 {
2071 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2072 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2073 #endif
2074 }
2075
sk_rx_queue_get(const struct sock * sk)2076 static inline int sk_rx_queue_get(const struct sock *sk)
2077 {
2078 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2079 if (sk) {
2080 int res = READ_ONCE(sk->sk_rx_queue_mapping);
2081
2082 if (res != NO_QUEUE_MAPPING)
2083 return res;
2084 }
2085 #endif
2086
2087 return -1;
2088 }
2089
sk_set_socket(struct sock * sk,struct socket * sock)2090 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2091 {
2092 sk->sk_socket = sock;
2093 if (sock) {
2094 WRITE_ONCE(sk->sk_uid, SOCK_INODE(sock)->i_uid);
2095 WRITE_ONCE(sk->sk_ino, SOCK_INODE(sock)->i_ino);
2096 } else {
2097 /* Note: sk_uid is unchanged. */
2098 WRITE_ONCE(sk->sk_ino, 0);
2099 }
2100 }
2101
sk_sleep(struct sock * sk)2102 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2103 {
2104 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2105 return &rcu_dereference_raw(sk->sk_wq)->wait;
2106 }
2107 /* Detach socket from process context.
2108 * Announce socket dead, detach it from wait queue and inode.
2109 * Note that parent inode held reference count on this struct sock,
2110 * we do not release it in this function, because protocol
2111 * probably wants some additional cleanups or even continuing
2112 * to work with this socket (TCP).
2113 */
sock_orphan(struct sock * sk)2114 static inline void sock_orphan(struct sock *sk)
2115 {
2116 write_lock_bh(&sk->sk_callback_lock);
2117 sock_set_flag(sk, SOCK_DEAD);
2118 sk_set_socket(sk, NULL);
2119 sk->sk_wq = NULL;
2120 write_unlock_bh(&sk->sk_callback_lock);
2121 }
2122
sock_graft(struct sock * sk,struct socket * parent)2123 static inline void sock_graft(struct sock *sk, struct socket *parent)
2124 {
2125 WARN_ON(parent->sk);
2126 write_lock_bh(&sk->sk_callback_lock);
2127 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2128 parent->sk = sk;
2129 sk_set_socket(sk, parent);
2130 security_sock_graft(sk, parent);
2131 write_unlock_bh(&sk->sk_callback_lock);
2132 }
2133
sock_i_ino(const struct sock * sk)2134 static inline unsigned long sock_i_ino(const struct sock *sk)
2135 {
2136 /* Paired with WRITE_ONCE() in sock_graft() and sock_orphan() */
2137 return READ_ONCE(sk->sk_ino);
2138 }
2139
sk_uid(const struct sock * sk)2140 static inline kuid_t sk_uid(const struct sock *sk)
2141 {
2142 /* Paired with WRITE_ONCE() in sockfs_setattr() */
2143 return READ_ONCE(sk->sk_uid);
2144 }
2145
sock_net_uid(const struct net * net,const struct sock * sk)2146 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2147 {
2148 return sk ? sk_uid(sk) : make_kuid(net->user_ns, 0);
2149 }
2150
net_tx_rndhash(void)2151 static inline u32 net_tx_rndhash(void)
2152 {
2153 u32 v = get_random_u32();
2154
2155 return v ?: 1;
2156 }
2157
sk_set_txhash(struct sock * sk)2158 static inline void sk_set_txhash(struct sock *sk)
2159 {
2160 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2161 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2162 }
2163
sk_rethink_txhash(struct sock * sk)2164 static inline bool sk_rethink_txhash(struct sock *sk)
2165 {
2166 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2167 sk_set_txhash(sk);
2168 return true;
2169 }
2170 return false;
2171 }
2172
2173 static inline struct dst_entry *
__sk_dst_get(const struct sock * sk)2174 __sk_dst_get(const struct sock *sk)
2175 {
2176 return rcu_dereference_check(sk->sk_dst_cache,
2177 lockdep_sock_is_held(sk));
2178 }
2179
2180 static inline struct dst_entry *
sk_dst_get(const struct sock * sk)2181 sk_dst_get(const struct sock *sk)
2182 {
2183 struct dst_entry *dst;
2184
2185 rcu_read_lock();
2186 dst = rcu_dereference(sk->sk_dst_cache);
2187 if (dst && !rcuref_get(&dst->__rcuref))
2188 dst = NULL;
2189 rcu_read_unlock();
2190 return dst;
2191 }
2192
__dst_negative_advice(struct sock * sk)2193 static inline void __dst_negative_advice(struct sock *sk)
2194 {
2195 struct dst_entry *dst = __sk_dst_get(sk);
2196
2197 if (dst && dst->ops->negative_advice)
2198 dst->ops->negative_advice(sk, dst);
2199 }
2200
dst_negative_advice(struct sock * sk)2201 static inline void dst_negative_advice(struct sock *sk)
2202 {
2203 sk_rethink_txhash(sk);
2204 __dst_negative_advice(sk);
2205 }
2206
2207 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2208 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2209 {
2210 struct dst_entry *old_dst;
2211
2212 sk_tx_queue_clear(sk);
2213 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2214 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2215 lockdep_sock_is_held(sk));
2216 rcu_assign_pointer(sk->sk_dst_cache, dst);
2217 dst_release(old_dst);
2218 }
2219
2220 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2221 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2222 {
2223 struct dst_entry *old_dst;
2224
2225 sk_tx_queue_clear(sk);
2226 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2227 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst)));
2228 dst_release(old_dst);
2229 }
2230
2231 static inline void
__sk_dst_reset(struct sock * sk)2232 __sk_dst_reset(struct sock *sk)
2233 {
2234 __sk_dst_set(sk, NULL);
2235 }
2236
2237 static inline void
sk_dst_reset(struct sock * sk)2238 sk_dst_reset(struct sock *sk)
2239 {
2240 sk_dst_set(sk, NULL);
2241 }
2242
2243 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2244
2245 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2246
sk_dst_confirm(struct sock * sk)2247 static inline void sk_dst_confirm(struct sock *sk)
2248 {
2249 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2250 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2251 }
2252
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2253 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2254 {
2255 if (skb_get_dst_pending_confirm(skb)) {
2256 struct sock *sk = skb->sk;
2257
2258 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2259 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2260 neigh_confirm(n);
2261 }
2262 }
2263
2264 bool sk_mc_loop(const struct sock *sk);
2265
sk_can_gso(const struct sock * sk)2266 static inline bool sk_can_gso(const struct sock *sk)
2267 {
2268 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2269 }
2270
2271 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2272
sk_gso_disable(struct sock * sk)2273 static inline void sk_gso_disable(struct sock *sk)
2274 {
2275 sk->sk_gso_disabled = 1;
2276 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2277 }
2278
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2279 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2280 struct iov_iter *from, char *to,
2281 int copy, int offset)
2282 {
2283 if (skb->ip_summed == CHECKSUM_NONE) {
2284 __wsum csum = 0;
2285 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2286 return -EFAULT;
2287 skb->csum = csum_block_add(skb->csum, csum, offset);
2288 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2289 if (!copy_from_iter_full_nocache(to, copy, from))
2290 return -EFAULT;
2291 } else if (!copy_from_iter_full(to, copy, from))
2292 return -EFAULT;
2293
2294 return 0;
2295 }
2296
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2297 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2298 struct iov_iter *from, int copy)
2299 {
2300 int err, offset = skb->len;
2301
2302 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2303 copy, offset);
2304 if (err)
2305 __skb_trim(skb, offset);
2306
2307 return err;
2308 }
2309
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2310 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2311 struct sk_buff *skb,
2312 struct page *page,
2313 int off, int copy)
2314 {
2315 int err;
2316
2317 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2318 copy, skb->len);
2319 if (err)
2320 return err;
2321
2322 skb_len_add(skb, copy);
2323 sk_wmem_queued_add(sk, copy);
2324 sk_mem_charge(sk, copy);
2325 return 0;
2326 }
2327
2328 #define SK_WMEM_ALLOC_BIAS 1
2329 /**
2330 * sk_wmem_alloc_get - returns write allocations
2331 * @sk: socket
2332 *
2333 * Return: sk_wmem_alloc minus initial offset of one
2334 */
sk_wmem_alloc_get(const struct sock * sk)2335 static inline int sk_wmem_alloc_get(const struct sock *sk)
2336 {
2337 return refcount_read(&sk->sk_wmem_alloc) - SK_WMEM_ALLOC_BIAS;
2338 }
2339
2340 /**
2341 * sk_rmem_alloc_get - returns read allocations
2342 * @sk: socket
2343 *
2344 * Return: sk_rmem_alloc
2345 */
sk_rmem_alloc_get(const struct sock * sk)2346 static inline int sk_rmem_alloc_get(const struct sock *sk)
2347 {
2348 return atomic_read(&sk->sk_rmem_alloc);
2349 }
2350
2351 /**
2352 * sk_has_allocations - check if allocations are outstanding
2353 * @sk: socket
2354 *
2355 * Return: true if socket has write or read allocations
2356 */
sk_has_allocations(const struct sock * sk)2357 static inline bool sk_has_allocations(const struct sock *sk)
2358 {
2359 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2360 }
2361
2362 /**
2363 * skwq_has_sleeper - check if there are any waiting processes
2364 * @wq: struct socket_wq
2365 *
2366 * Return: true if socket_wq has waiting processes
2367 *
2368 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2369 * barrier call. They were added due to the race found within the tcp code.
2370 *
2371 * Consider following tcp code paths::
2372 *
2373 * CPU1 CPU2
2374 * sys_select receive packet
2375 * ... ...
2376 * __add_wait_queue update tp->rcv_nxt
2377 * ... ...
2378 * tp->rcv_nxt check sock_def_readable
2379 * ... {
2380 * schedule rcu_read_lock();
2381 * wq = rcu_dereference(sk->sk_wq);
2382 * if (wq && waitqueue_active(&wq->wait))
2383 * wake_up_interruptible(&wq->wait)
2384 * ...
2385 * }
2386 *
2387 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2388 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2389 * could then endup calling schedule and sleep forever if there are no more
2390 * data on the socket.
2391 *
2392 */
skwq_has_sleeper(struct socket_wq * wq)2393 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2394 {
2395 return wq && wq_has_sleeper(&wq->wait);
2396 }
2397
2398 /**
2399 * sock_poll_wait - wrapper for the poll_wait call.
2400 * @filp: file
2401 * @sock: socket to wait on
2402 * @p: poll_table
2403 *
2404 * See the comments in the wq_has_sleeper function.
2405 */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2406 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2407 poll_table *p)
2408 {
2409 /* Provides a barrier we need to be sure we are in sync
2410 * with the socket flags modification.
2411 *
2412 * This memory barrier is paired in the wq_has_sleeper.
2413 */
2414 poll_wait(filp, &sock->wq.wait, p);
2415 }
2416
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2417 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2418 {
2419 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2420 u32 txhash = READ_ONCE(sk->sk_txhash);
2421
2422 if (txhash) {
2423 skb->l4_hash = 1;
2424 skb->hash = txhash;
2425 }
2426 }
2427
2428 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2429
2430 /*
2431 * Queue a received datagram if it will fit. Stream and sequenced
2432 * protocols can't normally use this as they need to fit buffers in
2433 * and play with them.
2434 *
2435 * Inlined as it's very short and called for pretty much every
2436 * packet ever received.
2437 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2438 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2439 {
2440 skb_orphan(skb);
2441 skb->sk = sk;
2442 skb->destructor = sock_rfree;
2443 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2444 sk_mem_charge(sk, skb->truesize);
2445 }
2446
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2447 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2448 {
2449 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2450 skb_orphan(skb);
2451 skb->destructor = sock_efree;
2452 skb->sk = sk;
2453 return true;
2454 }
2455 return false;
2456 }
2457
skb_clone_and_charge_r(struct sk_buff * skb,struct sock * sk)2458 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2459 {
2460 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2461 if (skb) {
2462 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2463 skb_set_owner_r(skb, sk);
2464 return skb;
2465 }
2466 __kfree_skb(skb);
2467 }
2468 return NULL;
2469 }
2470
skb_prepare_for_gro(struct sk_buff * skb)2471 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2472 {
2473 if (skb->destructor != sock_wfree) {
2474 skb_orphan(skb);
2475 return;
2476 }
2477 skb->slow_gro = 1;
2478 }
2479
2480 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2481 unsigned long expires);
2482
2483 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2484
2485 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2486
2487 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2488 struct sk_buff *skb, unsigned int flags,
2489 void (*destructor)(struct sock *sk,
2490 struct sk_buff *skb));
2491 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2492
2493 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2494 enum skb_drop_reason *reason);
2495
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2496 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2497 {
2498 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2499 }
2500
2501 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2502 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2503
2504 /*
2505 * Recover an error report and clear atomically
2506 */
2507
sock_error(struct sock * sk)2508 static inline int sock_error(struct sock *sk)
2509 {
2510 int err;
2511
2512 /* Avoid an atomic operation for the common case.
2513 * This is racy since another cpu/thread can change sk_err under us.
2514 */
2515 if (likely(data_race(!sk->sk_err)))
2516 return 0;
2517
2518 err = xchg(&sk->sk_err, 0);
2519 return -err;
2520 }
2521
2522 void sk_error_report(struct sock *sk);
2523
sock_wspace(struct sock * sk)2524 static inline unsigned long sock_wspace(struct sock *sk)
2525 {
2526 int amt = 0;
2527
2528 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2529 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2530 if (amt < 0)
2531 amt = 0;
2532 }
2533 return amt;
2534 }
2535
2536 /* Note:
2537 * We use sk->sk_wq_raw, from contexts knowing this
2538 * pointer is not NULL and cannot disappear/change.
2539 */
sk_set_bit(int nr,struct sock * sk)2540 static inline void sk_set_bit(int nr, struct sock *sk)
2541 {
2542 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2543 !sock_flag(sk, SOCK_FASYNC))
2544 return;
2545
2546 set_bit(nr, &sk->sk_wq_raw->flags);
2547 }
2548
sk_clear_bit(int nr,struct sock * sk)2549 static inline void sk_clear_bit(int nr, struct sock *sk)
2550 {
2551 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2552 !sock_flag(sk, SOCK_FASYNC))
2553 return;
2554
2555 clear_bit(nr, &sk->sk_wq_raw->flags);
2556 }
2557
sk_wake_async(const struct sock * sk,int how,int band)2558 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2559 {
2560 if (sock_flag(sk, SOCK_FASYNC)) {
2561 rcu_read_lock();
2562 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2563 rcu_read_unlock();
2564 }
2565 }
2566
sk_wake_async_rcu(const struct sock * sk,int how,int band)2567 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
2568 {
2569 if (unlikely(sock_flag(sk, SOCK_FASYNC)))
2570 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2571 }
2572
2573 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2574 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2575 * Note: for send buffers, TCP works better if we can build two skbs at
2576 * minimum.
2577 */
2578 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2579
2580 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2581 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2582
sk_stream_moderate_sndbuf(struct sock * sk)2583 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2584 {
2585 u32 val;
2586
2587 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2588 return;
2589
2590 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2591 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2592
2593 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2594 }
2595
2596 /**
2597 * sk_page_frag - return an appropriate page_frag
2598 * @sk: socket
2599 *
2600 * Use the per task page_frag instead of the per socket one for
2601 * optimization when we know that we're in process context and own
2602 * everything that's associated with %current.
2603 *
2604 * Both direct reclaim and page faults can nest inside other
2605 * socket operations and end up recursing into sk_page_frag()
2606 * while it's already in use: explicitly avoid task page_frag
2607 * when users disable sk_use_task_frag.
2608 *
2609 * Return: a per task page_frag if context allows that,
2610 * otherwise a per socket one.
2611 */
sk_page_frag(struct sock * sk)2612 static inline struct page_frag *sk_page_frag(struct sock *sk)
2613 {
2614 if (sk->sk_use_task_frag)
2615 return ¤t->task_frag;
2616
2617 return &sk->sk_frag;
2618 }
2619
2620 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2621
__sock_writeable(const struct sock * sk,int wmem_alloc)2622 static inline bool __sock_writeable(const struct sock *sk, int wmem_alloc)
2623 {
2624 return wmem_alloc < (READ_ONCE(sk->sk_sndbuf) >> 1);
2625 }
2626 /*
2627 * Default write policy as shown to user space via poll/select/SIGIO
2628 */
sock_writeable(const struct sock * sk)2629 static inline bool sock_writeable(const struct sock *sk)
2630 {
2631 return __sock_writeable(sk, refcount_read(&sk->sk_wmem_alloc));
2632 }
2633
gfp_any(void)2634 static inline gfp_t gfp_any(void)
2635 {
2636 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2637 }
2638
gfp_memcg_charge(void)2639 static inline gfp_t gfp_memcg_charge(void)
2640 {
2641 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2642 }
2643
2644 #ifdef CONFIG_MEMCG
mem_cgroup_from_sk(const struct sock * sk)2645 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk)
2646 {
2647 return sk->sk_memcg;
2648 }
2649
mem_cgroup_sk_enabled(const struct sock * sk)2650 static inline bool mem_cgroup_sk_enabled(const struct sock *sk)
2651 {
2652 return mem_cgroup_sockets_enabled && mem_cgroup_from_sk(sk);
2653 }
2654
mem_cgroup_sk_under_memory_pressure(const struct sock * sk)2655 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk)
2656 {
2657 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
2658
2659 #ifdef CONFIG_MEMCG_V1
2660 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2661 return !!memcg->tcpmem_pressure;
2662 #endif /* CONFIG_MEMCG_V1 */
2663
2664 do {
2665 if (time_before64(get_jiffies_64(),
2666 mem_cgroup_get_socket_pressure(memcg))) {
2667 memcg_memory_event(mem_cgroup_from_sk(sk),
2668 MEMCG_SOCK_THROTTLED);
2669 return true;
2670 }
2671 } while ((memcg = parent_mem_cgroup(memcg)));
2672
2673 return false;
2674 }
2675 #else
mem_cgroup_from_sk(const struct sock * sk)2676 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk)
2677 {
2678 return NULL;
2679 }
2680
mem_cgroup_sk_enabled(const struct sock * sk)2681 static inline bool mem_cgroup_sk_enabled(const struct sock *sk)
2682 {
2683 return false;
2684 }
2685
mem_cgroup_sk_under_memory_pressure(const struct sock * sk)2686 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk)
2687 {
2688 return false;
2689 }
2690 #endif
2691
sock_rcvtimeo(const struct sock * sk,bool noblock)2692 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2693 {
2694 return noblock ? 0 : READ_ONCE(sk->sk_rcvtimeo);
2695 }
2696
sock_sndtimeo(const struct sock * sk,bool noblock)2697 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2698 {
2699 return noblock ? 0 : READ_ONCE(sk->sk_sndtimeo);
2700 }
2701
sock_rcvlowat(const struct sock * sk,int waitall,int len)2702 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2703 {
2704 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2705
2706 return v ?: 1;
2707 }
2708
2709 /* Alas, with timeout socket operations are not restartable.
2710 * Compare this to poll().
2711 */
sock_intr_errno(long timeo)2712 static inline int sock_intr_errno(long timeo)
2713 {
2714 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2715 }
2716
2717 struct sock_skb_cb {
2718 u32 dropcount;
2719 };
2720
2721 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2722 * using skb->cb[] would keep using it directly and utilize its
2723 * alignment guarantee.
2724 */
2725 #define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \
2726 sizeof(struct sock_skb_cb))
2727
2728 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2729 SOCK_SKB_CB_OFFSET))
2730
2731 #define sock_skb_cb_check_size(size) \
2732 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2733
sk_drops_add(struct sock * sk,int segs)2734 static inline void sk_drops_add(struct sock *sk, int segs)
2735 {
2736 struct numa_drop_counters *ndc = sk->sk_drop_counters;
2737
2738 if (ndc)
2739 numa_drop_add(ndc, segs);
2740 else
2741 atomic_add(segs, &sk->sk_drops);
2742 }
2743
sk_drops_inc(struct sock * sk)2744 static inline void sk_drops_inc(struct sock *sk)
2745 {
2746 sk_drops_add(sk, 1);
2747 }
2748
sk_drops_read(const struct sock * sk)2749 static inline int sk_drops_read(const struct sock *sk)
2750 {
2751 const struct numa_drop_counters *ndc = sk->sk_drop_counters;
2752
2753 if (ndc) {
2754 DEBUG_NET_WARN_ON_ONCE(atomic_read(&sk->sk_drops));
2755 return numa_drop_read(ndc);
2756 }
2757 return atomic_read(&sk->sk_drops);
2758 }
2759
sk_drops_reset(struct sock * sk)2760 static inline void sk_drops_reset(struct sock *sk)
2761 {
2762 struct numa_drop_counters *ndc = sk->sk_drop_counters;
2763
2764 if (ndc)
2765 numa_drop_reset(ndc);
2766 atomic_set(&sk->sk_drops, 0);
2767 }
2768
2769 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2770 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2771 {
2772 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2773 sk_drops_read(sk) : 0;
2774 }
2775
sk_drops_skbadd(struct sock * sk,const struct sk_buff * skb)2776 static inline void sk_drops_skbadd(struct sock *sk, const struct sk_buff *skb)
2777 {
2778 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2779
2780 sk_drops_add(sk, segs);
2781 }
2782
sock_read_timestamp(struct sock * sk)2783 static inline ktime_t sock_read_timestamp(struct sock *sk)
2784 {
2785 #if BITS_PER_LONG==32
2786 unsigned int seq;
2787 ktime_t kt;
2788
2789 do {
2790 seq = read_seqbegin(&sk->sk_stamp_seq);
2791 kt = sk->sk_stamp;
2792 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2793
2794 return kt;
2795 #else
2796 return READ_ONCE(sk->sk_stamp);
2797 #endif
2798 }
2799
sock_write_timestamp(struct sock * sk,ktime_t kt)2800 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2801 {
2802 #if BITS_PER_LONG==32
2803 write_seqlock(&sk->sk_stamp_seq);
2804 sk->sk_stamp = kt;
2805 write_sequnlock(&sk->sk_stamp_seq);
2806 #else
2807 WRITE_ONCE(sk->sk_stamp, kt);
2808 #endif
2809 }
2810
2811 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2812 struct sk_buff *skb);
2813 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2814 struct sk_buff *skb);
2815
2816 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk);
2817 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk,
2818 struct timespec64 *ts);
2819
2820 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2821 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2822 {
2823 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2824 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2825 ktime_t kt = skb->tstamp;
2826 /*
2827 * generate control messages if
2828 * - receive time stamping in software requested
2829 * - software time stamp available and wanted
2830 * - hardware time stamps available and wanted
2831 */
2832 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2833 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2834 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2835 (hwtstamps->hwtstamp &&
2836 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2837 __sock_recv_timestamp(msg, sk, skb);
2838 else
2839 sock_write_timestamp(sk, kt);
2840
2841 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2842 __sock_recv_wifi_status(msg, sk, skb);
2843 }
2844
2845 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2846 struct sk_buff *skb);
2847
2848 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2849 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2850 struct sk_buff *skb)
2851 {
2852 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2853 (1UL << SOCK_RCVTSTAMP) | \
2854 (1UL << SOCK_RCVMARK) | \
2855 (1UL << SOCK_RCVPRIORITY) | \
2856 (1UL << SOCK_TIMESTAMPING_ANY))
2857 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2858 SOF_TIMESTAMPING_RAW_HARDWARE)
2859
2860 if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS)
2861 __sock_recv_cmsgs(msg, sk, skb);
2862 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2863 sock_write_timestamp(sk, skb->tstamp);
2864 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2865 sock_write_timestamp(sk, 0);
2866 }
2867
2868 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags);
2869
2870 /**
2871 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2872 * @sk: socket sending this packet
2873 * @sockc: pointer to socket cmsg cookie to get timestamping info
2874 * @tx_flags: completed with instructions for time stamping
2875 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2876 *
2877 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2878 */
_sock_tx_timestamp(struct sock * sk,const struct sockcm_cookie * sockc,__u8 * tx_flags,__u32 * tskey)2879 static inline void _sock_tx_timestamp(struct sock *sk,
2880 const struct sockcm_cookie *sockc,
2881 __u8 *tx_flags, __u32 *tskey)
2882 {
2883 __u32 tsflags = sockc->tsflags;
2884
2885 if (unlikely(tsflags)) {
2886 __sock_tx_timestamp(tsflags, tx_flags);
2887 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2888 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) {
2889 if (tsflags & SOCKCM_FLAG_TS_OPT_ID)
2890 *tskey = sockc->ts_opt_id;
2891 else
2892 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2893 }
2894 }
2895 }
2896
sock_tx_timestamp(struct sock * sk,const struct sockcm_cookie * sockc,__u8 * tx_flags)2897 static inline void sock_tx_timestamp(struct sock *sk,
2898 const struct sockcm_cookie *sockc,
2899 __u8 *tx_flags)
2900 {
2901 _sock_tx_timestamp(sk, sockc, tx_flags, NULL);
2902 }
2903
skb_setup_tx_timestamp(struct sk_buff * skb,const struct sockcm_cookie * sockc)2904 static inline void skb_setup_tx_timestamp(struct sk_buff *skb,
2905 const struct sockcm_cookie *sockc)
2906 {
2907 _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags,
2908 &skb_shinfo(skb)->tskey);
2909 }
2910
sk_is_inet(const struct sock * sk)2911 static inline bool sk_is_inet(const struct sock *sk)
2912 {
2913 int family = READ_ONCE(sk->sk_family);
2914
2915 return family == AF_INET || family == AF_INET6;
2916 }
2917
sk_is_tcp(const struct sock * sk)2918 static inline bool sk_is_tcp(const struct sock *sk)
2919 {
2920 return sk_is_inet(sk) &&
2921 sk->sk_type == SOCK_STREAM &&
2922 sk->sk_protocol == IPPROTO_TCP;
2923 }
2924
sk_is_udp(const struct sock * sk)2925 static inline bool sk_is_udp(const struct sock *sk)
2926 {
2927 return sk_is_inet(sk) &&
2928 sk->sk_type == SOCK_DGRAM &&
2929 sk->sk_protocol == IPPROTO_UDP;
2930 }
2931
sk_is_unix(const struct sock * sk)2932 static inline bool sk_is_unix(const struct sock *sk)
2933 {
2934 return sk->sk_family == AF_UNIX;
2935 }
2936
sk_is_stream_unix(const struct sock * sk)2937 static inline bool sk_is_stream_unix(const struct sock *sk)
2938 {
2939 return sk_is_unix(sk) && sk->sk_type == SOCK_STREAM;
2940 }
2941
sk_is_vsock(const struct sock * sk)2942 static inline bool sk_is_vsock(const struct sock *sk)
2943 {
2944 return sk->sk_family == AF_VSOCK;
2945 }
2946
sk_may_scm_recv(const struct sock * sk)2947 static inline bool sk_may_scm_recv(const struct sock *sk)
2948 {
2949 return (IS_ENABLED(CONFIG_UNIX) && sk->sk_family == AF_UNIX) ||
2950 sk->sk_family == AF_NETLINK ||
2951 (IS_ENABLED(CONFIG_BT) && sk->sk_family == AF_BLUETOOTH);
2952 }
2953
2954 /**
2955 * sk_eat_skb - Release a skb if it is no longer needed
2956 * @sk: socket to eat this skb from
2957 * @skb: socket buffer to eat
2958 *
2959 * This routine must be called with interrupts disabled or with the socket
2960 * locked so that the sk_buff queue operation is ok.
2961 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2962 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2963 {
2964 __skb_unlink(skb, &sk->sk_receive_queue);
2965 __kfree_skb(skb);
2966 }
2967
2968 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2969 skb_sk_is_prefetched(struct sk_buff *skb)
2970 {
2971 #ifdef CONFIG_INET
2972 return skb->destructor == sock_pfree;
2973 #else
2974 return false;
2975 #endif /* CONFIG_INET */
2976 }
2977
2978 /* This helper checks if a socket is a full socket,
2979 * ie _not_ a timewait or request socket.
2980 */
sk_fullsock(const struct sock * sk)2981 static inline bool sk_fullsock(const struct sock *sk)
2982 {
2983 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2984 }
2985
2986 static inline bool
sk_is_refcounted(struct sock * sk)2987 sk_is_refcounted(struct sock *sk)
2988 {
2989 /* Only full sockets have sk->sk_flags. */
2990 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2991 }
2992
2993 static inline bool
sk_requests_wifi_status(struct sock * sk)2994 sk_requests_wifi_status(struct sock *sk)
2995 {
2996 return sk && sk_fullsock(sk) && sock_flag(sk, SOCK_WIFI_STATUS);
2997 }
2998
2999 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
3000 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
3001 */
sk_listener(const struct sock * sk)3002 static inline bool sk_listener(const struct sock *sk)
3003 {
3004 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
3005 }
3006
3007 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT
3008 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE)
3009 * TCP RST and ACK can be attached to TIME_WAIT.
3010 */
sk_listener_or_tw(const struct sock * sk)3011 static inline bool sk_listener_or_tw(const struct sock *sk)
3012 {
3013 return (1 << READ_ONCE(sk->sk_state)) &
3014 (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT);
3015 }
3016
3017 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
3018 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
3019 int type);
3020
3021 bool sk_ns_capable(const struct sock *sk,
3022 struct user_namespace *user_ns, int cap);
3023 bool sk_capable(const struct sock *sk, int cap);
3024 bool sk_net_capable(const struct sock *sk, int cap);
3025
3026 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
3027
3028 /* Take into consideration the size of the struct sk_buff overhead in the
3029 * determination of these values, since that is non-constant across
3030 * platforms. This makes socket queueing behavior and performance
3031 * not depend upon such differences.
3032 */
3033 #define _SK_MEM_PACKETS 256
3034 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
3035 #define SK_WMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
3036 #define SK_RMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
3037
3038 extern __u32 sysctl_wmem_max;
3039 extern __u32 sysctl_rmem_max;
3040
3041 extern __u32 sysctl_wmem_default;
3042 extern __u32 sysctl_rmem_default;
3043
3044 #define SKB_FRAG_PAGE_ORDER get_order(32768)
3045 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
3046
sk_get_wmem0(const struct sock * sk,const struct proto * proto)3047 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
3048 {
3049 /* Does this proto have per netns sysctl_wmem ? */
3050 if (proto->sysctl_wmem_offset)
3051 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
3052
3053 return READ_ONCE(*proto->sysctl_wmem);
3054 }
3055
sk_get_rmem0(const struct sock * sk,const struct proto * proto)3056 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
3057 {
3058 /* Does this proto have per netns sysctl_rmem ? */
3059 if (proto->sysctl_rmem_offset)
3060 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
3061
3062 return READ_ONCE(*proto->sysctl_rmem);
3063 }
3064
3065 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
3066 * Some wifi drivers need to tweak it to get more chunks.
3067 * They can use this helper from their ndo_start_xmit()
3068 */
sk_pacing_shift_update(struct sock * sk,int val)3069 static inline void sk_pacing_shift_update(struct sock *sk, int val)
3070 {
3071 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
3072 return;
3073 WRITE_ONCE(sk->sk_pacing_shift, val);
3074 }
3075
3076 /* if a socket is bound to a device, check that the given device
3077 * index is either the same or that the socket is bound to an L3
3078 * master device and the given device index is also enslaved to
3079 * that L3 master
3080 */
sk_dev_equal_l3scope(struct sock * sk,int dif)3081 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
3082 {
3083 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
3084 int mdif;
3085
3086 if (!bound_dev_if || bound_dev_if == dif)
3087 return true;
3088
3089 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
3090 if (mdif && mdif == bound_dev_if)
3091 return true;
3092
3093 return false;
3094 }
3095
3096 void sock_def_readable(struct sock *sk);
3097
3098 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
3099 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
3100 int sock_set_timestamping(struct sock *sk, int optname,
3101 struct so_timestamping timestamping);
3102
3103 #if defined(CONFIG_CGROUP_BPF)
3104 void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op);
3105 #else
bpf_skops_tx_timestamping(struct sock * sk,struct sk_buff * skb,int op)3106 static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op)
3107 {
3108 }
3109 #endif
3110 void sock_no_linger(struct sock *sk);
3111 void sock_set_keepalive(struct sock *sk);
3112 void sock_set_priority(struct sock *sk, u32 priority);
3113 void sock_set_rcvbuf(struct sock *sk, int val);
3114 void sock_set_mark(struct sock *sk, u32 val);
3115 void sock_set_reuseaddr(struct sock *sk);
3116 void sock_set_reuseport(struct sock *sk);
3117 void sock_set_sndtimeo(struct sock *sk, s64 secs);
3118
3119 int sock_bind_add(struct sock *sk, struct sockaddr_unsized *addr, int addr_len);
3120
3121 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
3122 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
3123 sockptr_t optval, int optlen, bool old_timeval);
3124
3125 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
3126 void __user *arg, void *karg, size_t size);
3127 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
sk_is_readable(struct sock * sk)3128 static inline bool sk_is_readable(struct sock *sk)
3129 {
3130 const struct proto *prot = READ_ONCE(sk->sk_prot);
3131
3132 if (prot->sock_is_readable)
3133 return prot->sock_is_readable(sk);
3134
3135 return false;
3136 }
3137 #endif /* _SOCK_H */
3138