1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/skbuff_ref.h> 55 #include <linux/splice.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/scatterlist.h> 60 #include <linux/errqueue.h> 61 #include <linux/prefetch.h> 62 #include <linux/bitfield.h> 63 #include <linux/if_vlan.h> 64 #include <linux/mpls.h> 65 #include <linux/kcov.h> 66 #include <linux/iov_iter.h> 67 #include <linux/crc32.h> 68 69 #include <net/protocol.h> 70 #include <net/dst.h> 71 #include <net/sock.h> 72 #include <net/checksum.h> 73 #include <net/gro.h> 74 #include <net/gso.h> 75 #include <net/hotdata.h> 76 #include <net/ip6_checksum.h> 77 #include <net/xfrm.h> 78 #include <net/mpls.h> 79 #include <net/mptcp.h> 80 #include <net/mctp.h> 81 #include <net/page_pool/helpers.h> 82 #include <net/psp/types.h> 83 #include <net/dropreason.h> 84 85 #include <linux/uaccess.h> 86 #include <trace/events/skb.h> 87 #include <linux/highmem.h> 88 #include <linux/capability.h> 89 #include <linux/user_namespace.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/textsearch.h> 92 93 #include "dev.h" 94 #include "devmem.h" 95 #include "netmem_priv.h" 96 #include "sock_destructor.h" 97 98 #ifdef CONFIG_SKB_EXTENSIONS 99 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 100 #endif 101 102 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN) 103 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \ 104 GRO_MAX_HEAD_PAD)) 105 106 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 107 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 108 * size, and we can differentiate heads from skb_small_head_cache 109 * vs system slabs by looking at their size (skb_end_offset()). 110 */ 111 #define SKB_SMALL_HEAD_CACHE_SIZE \ 112 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 113 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 114 SKB_SMALL_HEAD_SIZE) 115 116 #define SKB_SMALL_HEAD_HEADROOM \ 117 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 118 119 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use 120 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the 121 * netmem is a page. 122 */ 123 static_assert(offsetof(struct bio_vec, bv_page) == 124 offsetof(skb_frag_t, netmem)); 125 static_assert(sizeof_field(struct bio_vec, bv_page) == 126 sizeof_field(skb_frag_t, netmem)); 127 128 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len)); 129 static_assert(sizeof_field(struct bio_vec, bv_len) == 130 sizeof_field(skb_frag_t, len)); 131 132 static_assert(offsetof(struct bio_vec, bv_offset) == 133 offsetof(skb_frag_t, offset)); 134 static_assert(sizeof_field(struct bio_vec, bv_offset) == 135 sizeof_field(skb_frag_t, offset)); 136 137 #undef FN 138 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 139 static const char * const drop_reasons[] = { 140 [SKB_CONSUMED] = "CONSUMED", 141 DEFINE_DROP_REASON(FN, FN) 142 }; 143 144 static const struct drop_reason_list drop_reasons_core = { 145 .reasons = drop_reasons, 146 .n_reasons = ARRAY_SIZE(drop_reasons), 147 }; 148 149 const struct drop_reason_list __rcu * 150 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 151 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 152 }; 153 EXPORT_SYMBOL(drop_reasons_by_subsys); 154 155 /** 156 * drop_reasons_register_subsys - register another drop reason subsystem 157 * @subsys: the subsystem to register, must not be the core 158 * @list: the list of drop reasons within the subsystem, must point to 159 * a statically initialized list 160 */ 161 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 162 const struct drop_reason_list *list) 163 { 164 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 165 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 166 "invalid subsystem %d\n", subsys)) 167 return; 168 169 /* must point to statically allocated memory, so INIT is OK */ 170 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 171 } 172 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 173 174 /** 175 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 176 * @subsys: the subsystem to remove, must not be the core 177 * 178 * Note: This will synchronize_rcu() to ensure no users when it returns. 179 */ 180 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 181 { 182 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 183 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 184 "invalid subsystem %d\n", subsys)) 185 return; 186 187 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 188 189 synchronize_rcu(); 190 } 191 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 192 193 /** 194 * skb_panic - private function for out-of-line support 195 * @skb: buffer 196 * @sz: size 197 * @addr: address 198 * @msg: skb_over_panic or skb_under_panic 199 * 200 * Out-of-line support for skb_put() and skb_push(). 201 * Called via the wrapper skb_over_panic() or skb_under_panic(). 202 * Keep out of line to prevent kernel bloat. 203 * __builtin_return_address is not used because it is not always reliable. 204 */ 205 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 206 const char msg[]) 207 { 208 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 209 msg, addr, skb->len, sz, skb->head, skb->data, 210 (unsigned long)skb->tail, (unsigned long)skb->end, 211 skb->dev ? skb->dev->name : "<NULL>"); 212 BUG(); 213 } 214 215 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 216 { 217 skb_panic(skb, sz, addr, __func__); 218 } 219 220 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 221 { 222 skb_panic(skb, sz, addr, __func__); 223 } 224 225 #define NAPI_SKB_CACHE_SIZE 64 226 #define NAPI_SKB_CACHE_BULK 16 227 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 228 229 struct napi_alloc_cache { 230 local_lock_t bh_lock; 231 struct page_frag_cache page; 232 unsigned int skb_count; 233 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 234 }; 235 236 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 237 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = { 238 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 239 }; 240 241 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 242 { 243 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 244 void *data; 245 246 fragsz = SKB_DATA_ALIGN(fragsz); 247 248 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 249 data = __page_frag_alloc_align(&nc->page, fragsz, 250 GFP_ATOMIC | __GFP_NOWARN, align_mask); 251 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 252 return data; 253 254 } 255 EXPORT_SYMBOL(__napi_alloc_frag_align); 256 257 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 258 { 259 void *data; 260 261 if (in_hardirq() || irqs_disabled()) { 262 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 263 264 fragsz = SKB_DATA_ALIGN(fragsz); 265 data = __page_frag_alloc_align(nc, fragsz, 266 GFP_ATOMIC | __GFP_NOWARN, 267 align_mask); 268 } else { 269 local_bh_disable(); 270 data = __napi_alloc_frag_align(fragsz, align_mask); 271 local_bh_enable(); 272 } 273 return data; 274 } 275 EXPORT_SYMBOL(__netdev_alloc_frag_align); 276 277 static struct sk_buff *napi_skb_cache_get(void) 278 { 279 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 280 struct sk_buff *skb; 281 282 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 283 if (unlikely(!nc->skb_count)) { 284 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 285 GFP_ATOMIC | __GFP_NOWARN, 286 NAPI_SKB_CACHE_BULK, 287 nc->skb_cache); 288 if (unlikely(!nc->skb_count)) { 289 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 290 return NULL; 291 } 292 } 293 294 skb = nc->skb_cache[--nc->skb_count]; 295 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 296 kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache)); 297 298 return skb; 299 } 300 301 /** 302 * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache 303 * @skbs: pointer to an at least @n-sized array to fill with skb pointers 304 * @n: number of entries to provide 305 * 306 * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes 307 * the pointers into the provided array @skbs. If there are less entries 308 * available, tries to replenish the cache and bulk-allocates the diff from 309 * the MM layer if needed. 310 * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are 311 * ready for {,__}build_skb_around() and don't have any data buffers attached. 312 * Must be called *only* from the BH context. 313 * 314 * Return: number of successfully allocated skbs (@n if no actual allocation 315 * needed or kmem_cache_alloc_bulk() didn't fail). 316 */ 317 u32 napi_skb_cache_get_bulk(void **skbs, u32 n) 318 { 319 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 320 u32 bulk, total = n; 321 322 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 323 324 if (nc->skb_count >= n) 325 goto get; 326 327 /* No enough cached skbs. Try refilling the cache first */ 328 bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK); 329 nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 330 GFP_ATOMIC | __GFP_NOWARN, bulk, 331 &nc->skb_cache[nc->skb_count]); 332 if (likely(nc->skb_count >= n)) 333 goto get; 334 335 /* Still not enough. Bulk-allocate the missing part directly, zeroed */ 336 n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 337 GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN, 338 n - nc->skb_count, &skbs[nc->skb_count]); 339 if (likely(nc->skb_count >= n)) 340 goto get; 341 342 /* kmem_cache didn't allocate the number we need, limit the output */ 343 total -= n - nc->skb_count; 344 n = nc->skb_count; 345 346 get: 347 for (u32 base = nc->skb_count - n, i = 0; i < n; i++) { 348 u32 cache_size = kmem_cache_size(net_hotdata.skbuff_cache); 349 350 skbs[i] = nc->skb_cache[base + i]; 351 352 kasan_mempool_unpoison_object(skbs[i], cache_size); 353 memset(skbs[i], 0, offsetof(struct sk_buff, tail)); 354 } 355 356 nc->skb_count -= n; 357 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 358 359 return total; 360 } 361 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk); 362 363 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 364 unsigned int size) 365 { 366 struct skb_shared_info *shinfo; 367 368 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 369 370 /* Assumes caller memset cleared SKB */ 371 skb->truesize = SKB_TRUESIZE(size); 372 refcount_set(&skb->users, 1); 373 skb->head = data; 374 skb->data = data; 375 skb_reset_tail_pointer(skb); 376 skb_set_end_offset(skb, size); 377 skb->mac_header = (typeof(skb->mac_header))~0U; 378 skb->transport_header = (typeof(skb->transport_header))~0U; 379 skb->alloc_cpu = raw_smp_processor_id(); 380 /* make sure we initialize shinfo sequentially */ 381 shinfo = skb_shinfo(skb); 382 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 383 atomic_set(&shinfo->dataref, 1); 384 385 skb_set_kcov_handle(skb, kcov_common_handle()); 386 } 387 388 static inline void *__slab_build_skb(void *data, unsigned int *size) 389 { 390 void *resized; 391 392 /* Must find the allocation size (and grow it to match). */ 393 *size = ksize(data); 394 /* krealloc() will immediately return "data" when 395 * "ksize(data)" is requested: it is the existing upper 396 * bounds. As a result, GFP_ATOMIC will be ignored. Note 397 * that this "new" pointer needs to be passed back to the 398 * caller for use so the __alloc_size hinting will be 399 * tracked correctly. 400 */ 401 resized = krealloc(data, *size, GFP_ATOMIC); 402 WARN_ON_ONCE(resized != data); 403 return resized; 404 } 405 406 /* build_skb() variant which can operate on slab buffers. 407 * Note that this should be used sparingly as slab buffers 408 * cannot be combined efficiently by GRO! 409 */ 410 struct sk_buff *slab_build_skb(void *data) 411 { 412 struct sk_buff *skb; 413 unsigned int size; 414 415 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 416 GFP_ATOMIC | __GFP_NOWARN); 417 if (unlikely(!skb)) 418 return NULL; 419 420 memset(skb, 0, offsetof(struct sk_buff, tail)); 421 data = __slab_build_skb(data, &size); 422 __finalize_skb_around(skb, data, size); 423 424 return skb; 425 } 426 EXPORT_SYMBOL(slab_build_skb); 427 428 /* Caller must provide SKB that is memset cleared */ 429 static void __build_skb_around(struct sk_buff *skb, void *data, 430 unsigned int frag_size) 431 { 432 unsigned int size = frag_size; 433 434 /* frag_size == 0 is considered deprecated now. Callers 435 * using slab buffer should use slab_build_skb() instead. 436 */ 437 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 438 data = __slab_build_skb(data, &size); 439 440 __finalize_skb_around(skb, data, size); 441 } 442 443 /** 444 * __build_skb - build a network buffer 445 * @data: data buffer provided by caller 446 * @frag_size: size of data (must not be 0) 447 * 448 * Allocate a new &sk_buff. Caller provides space holding head and 449 * skb_shared_info. @data must have been allocated from the page 450 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 451 * allocation is deprecated, and callers should use slab_build_skb() 452 * instead.) 453 * The return is the new skb buffer. 454 * On a failure the return is %NULL, and @data is not freed. 455 * Notes : 456 * Before IO, driver allocates only data buffer where NIC put incoming frame 457 * Driver should add room at head (NET_SKB_PAD) and 458 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 459 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 460 * before giving packet to stack. 461 * RX rings only contains data buffers, not full skbs. 462 */ 463 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 464 { 465 struct sk_buff *skb; 466 467 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 468 GFP_ATOMIC | __GFP_NOWARN); 469 if (unlikely(!skb)) 470 return NULL; 471 472 memset(skb, 0, offsetof(struct sk_buff, tail)); 473 __build_skb_around(skb, data, frag_size); 474 475 return skb; 476 } 477 478 /* build_skb() is wrapper over __build_skb(), that specifically 479 * takes care of skb->head and skb->pfmemalloc 480 */ 481 struct sk_buff *build_skb(void *data, unsigned int frag_size) 482 { 483 struct sk_buff *skb = __build_skb(data, frag_size); 484 485 if (likely(skb && frag_size)) { 486 skb->head_frag = 1; 487 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 488 } 489 return skb; 490 } 491 EXPORT_SYMBOL(build_skb); 492 493 /** 494 * build_skb_around - build a network buffer around provided skb 495 * @skb: sk_buff provide by caller, must be memset cleared 496 * @data: data buffer provided by caller 497 * @frag_size: size of data 498 */ 499 struct sk_buff *build_skb_around(struct sk_buff *skb, 500 void *data, unsigned int frag_size) 501 { 502 if (unlikely(!skb)) 503 return NULL; 504 505 __build_skb_around(skb, data, frag_size); 506 507 if (frag_size) { 508 skb->head_frag = 1; 509 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 510 } 511 return skb; 512 } 513 EXPORT_SYMBOL(build_skb_around); 514 515 /** 516 * __napi_build_skb - build a network buffer 517 * @data: data buffer provided by caller 518 * @frag_size: size of data 519 * 520 * Version of __build_skb() that uses NAPI percpu caches to obtain 521 * skbuff_head instead of inplace allocation. 522 * 523 * Returns a new &sk_buff on success, %NULL on allocation failure. 524 */ 525 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 526 { 527 struct sk_buff *skb; 528 529 skb = napi_skb_cache_get(); 530 if (unlikely(!skb)) 531 return NULL; 532 533 memset(skb, 0, offsetof(struct sk_buff, tail)); 534 __build_skb_around(skb, data, frag_size); 535 536 return skb; 537 } 538 539 /** 540 * napi_build_skb - build a network buffer 541 * @data: data buffer provided by caller 542 * @frag_size: size of data 543 * 544 * Version of __napi_build_skb() that takes care of skb->head_frag 545 * and skb->pfmemalloc when the data is a page or page fragment. 546 * 547 * Returns a new &sk_buff on success, %NULL on allocation failure. 548 */ 549 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 550 { 551 struct sk_buff *skb = __napi_build_skb(data, frag_size); 552 553 if (likely(skb) && frag_size) { 554 skb->head_frag = 1; 555 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 556 } 557 558 return skb; 559 } 560 EXPORT_SYMBOL(napi_build_skb); 561 562 /* 563 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 564 * the caller if emergency pfmemalloc reserves are being used. If it is and 565 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 566 * may be used. Otherwise, the packet data may be discarded until enough 567 * memory is free 568 */ 569 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 570 bool *pfmemalloc) 571 { 572 bool ret_pfmemalloc = false; 573 size_t obj_size; 574 void *obj; 575 576 obj_size = SKB_HEAD_ALIGN(*size); 577 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 578 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 579 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 580 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 581 node); 582 *size = SKB_SMALL_HEAD_CACHE_SIZE; 583 if (obj || !(gfp_pfmemalloc_allowed(flags))) 584 goto out; 585 /* Try again but now we are using pfmemalloc reserves */ 586 ret_pfmemalloc = true; 587 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node); 588 goto out; 589 } 590 591 obj_size = kmalloc_size_roundup(obj_size); 592 /* The following cast might truncate high-order bits of obj_size, this 593 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 594 */ 595 *size = (unsigned int)obj_size; 596 597 /* 598 * Try a regular allocation, when that fails and we're not entitled 599 * to the reserves, fail. 600 */ 601 obj = kmalloc_node_track_caller(obj_size, 602 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 603 node); 604 if (obj || !(gfp_pfmemalloc_allowed(flags))) 605 goto out; 606 607 /* Try again but now we are using pfmemalloc reserves */ 608 ret_pfmemalloc = true; 609 obj = kmalloc_node_track_caller(obj_size, flags, node); 610 611 out: 612 if (pfmemalloc) 613 *pfmemalloc = ret_pfmemalloc; 614 615 return obj; 616 } 617 618 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 619 * 'private' fields and also do memory statistics to find all the 620 * [BEEP] leaks. 621 * 622 */ 623 624 /** 625 * __alloc_skb - allocate a network buffer 626 * @size: size to allocate 627 * @gfp_mask: allocation mask 628 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 629 * instead of head cache and allocate a cloned (child) skb. 630 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 631 * allocations in case the data is required for writeback 632 * @node: numa node to allocate memory on 633 * 634 * Allocate a new &sk_buff. The returned buffer has no headroom and a 635 * tail room of at least size bytes. The object has a reference count 636 * of one. The return is the buffer. On a failure the return is %NULL. 637 * 638 * Buffers may only be allocated from interrupts using a @gfp_mask of 639 * %GFP_ATOMIC. 640 */ 641 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 642 int flags, int node) 643 { 644 struct kmem_cache *cache; 645 struct sk_buff *skb; 646 bool pfmemalloc; 647 u8 *data; 648 649 cache = (flags & SKB_ALLOC_FCLONE) 650 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache; 651 652 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 653 gfp_mask |= __GFP_MEMALLOC; 654 655 /* Get the HEAD */ 656 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 657 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 658 skb = napi_skb_cache_get(); 659 else 660 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 661 if (unlikely(!skb)) 662 return NULL; 663 prefetchw(skb); 664 665 /* We do our best to align skb_shared_info on a separate cache 666 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 667 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 668 * Both skb->head and skb_shared_info are cache line aligned. 669 */ 670 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 671 if (unlikely(!data)) 672 goto nodata; 673 /* kmalloc_size_roundup() might give us more room than requested. 674 * Put skb_shared_info exactly at the end of allocated zone, 675 * to allow max possible filling before reallocation. 676 */ 677 prefetchw(data + SKB_WITH_OVERHEAD(size)); 678 679 /* 680 * Only clear those fields we need to clear, not those that we will 681 * actually initialise below. Hence, don't put any more fields after 682 * the tail pointer in struct sk_buff! 683 */ 684 memset(skb, 0, offsetof(struct sk_buff, tail)); 685 __build_skb_around(skb, data, size); 686 skb->pfmemalloc = pfmemalloc; 687 688 if (flags & SKB_ALLOC_FCLONE) { 689 struct sk_buff_fclones *fclones; 690 691 fclones = container_of(skb, struct sk_buff_fclones, skb1); 692 693 skb->fclone = SKB_FCLONE_ORIG; 694 refcount_set(&fclones->fclone_ref, 1); 695 } 696 697 return skb; 698 699 nodata: 700 kmem_cache_free(cache, skb); 701 return NULL; 702 } 703 EXPORT_SYMBOL(__alloc_skb); 704 705 /** 706 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 707 * @dev: network device to receive on 708 * @len: length to allocate 709 * @gfp_mask: get_free_pages mask, passed to alloc_skb 710 * 711 * Allocate a new &sk_buff and assign it a usage count of one. The 712 * buffer has NET_SKB_PAD headroom built in. Users should allocate 713 * the headroom they think they need without accounting for the 714 * built in space. The built in space is used for optimisations. 715 * 716 * %NULL is returned if there is no free memory. 717 */ 718 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 719 gfp_t gfp_mask) 720 { 721 struct page_frag_cache *nc; 722 struct sk_buff *skb; 723 bool pfmemalloc; 724 void *data; 725 726 len += NET_SKB_PAD; 727 728 /* If requested length is either too small or too big, 729 * we use kmalloc() for skb->head allocation. 730 */ 731 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 732 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 733 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 734 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 735 if (!skb) 736 goto skb_fail; 737 goto skb_success; 738 } 739 740 len = SKB_HEAD_ALIGN(len); 741 742 if (sk_memalloc_socks()) 743 gfp_mask |= __GFP_MEMALLOC; 744 745 if (in_hardirq() || irqs_disabled()) { 746 nc = this_cpu_ptr(&netdev_alloc_cache); 747 data = page_frag_alloc(nc, len, gfp_mask); 748 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 749 } else { 750 local_bh_disable(); 751 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 752 753 nc = this_cpu_ptr(&napi_alloc_cache.page); 754 data = page_frag_alloc(nc, len, gfp_mask); 755 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 756 757 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 758 local_bh_enable(); 759 } 760 761 if (unlikely(!data)) 762 return NULL; 763 764 skb = __build_skb(data, len); 765 if (unlikely(!skb)) { 766 skb_free_frag(data); 767 return NULL; 768 } 769 770 if (pfmemalloc) 771 skb->pfmemalloc = 1; 772 skb->head_frag = 1; 773 774 skb_success: 775 skb_reserve(skb, NET_SKB_PAD); 776 skb->dev = dev; 777 778 skb_fail: 779 return skb; 780 } 781 EXPORT_SYMBOL(__netdev_alloc_skb); 782 783 /** 784 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 785 * @napi: napi instance this buffer was allocated for 786 * @len: length to allocate 787 * 788 * Allocate a new sk_buff for use in NAPI receive. This buffer will 789 * attempt to allocate the head from a special reserved region used 790 * only for NAPI Rx allocation. By doing this we can save several 791 * CPU cycles by avoiding having to disable and re-enable IRQs. 792 * 793 * %NULL is returned if there is no free memory. 794 */ 795 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len) 796 { 797 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN; 798 struct napi_alloc_cache *nc; 799 struct sk_buff *skb; 800 bool pfmemalloc; 801 void *data; 802 803 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 804 len += NET_SKB_PAD + NET_IP_ALIGN; 805 806 /* If requested length is either too small or too big, 807 * we use kmalloc() for skb->head allocation. 808 */ 809 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 810 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 811 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 812 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 813 NUMA_NO_NODE); 814 if (!skb) 815 goto skb_fail; 816 goto skb_success; 817 } 818 819 len = SKB_HEAD_ALIGN(len); 820 821 if (sk_memalloc_socks()) 822 gfp_mask |= __GFP_MEMALLOC; 823 824 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 825 nc = this_cpu_ptr(&napi_alloc_cache); 826 827 data = page_frag_alloc(&nc->page, len, gfp_mask); 828 pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page); 829 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 830 831 if (unlikely(!data)) 832 return NULL; 833 834 skb = __napi_build_skb(data, len); 835 if (unlikely(!skb)) { 836 skb_free_frag(data); 837 return NULL; 838 } 839 840 if (pfmemalloc) 841 skb->pfmemalloc = 1; 842 skb->head_frag = 1; 843 844 skb_success: 845 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 846 skb->dev = napi->dev; 847 848 skb_fail: 849 return skb; 850 } 851 EXPORT_SYMBOL(napi_alloc_skb); 852 853 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 854 int off, int size, unsigned int truesize) 855 { 856 DEBUG_NET_WARN_ON_ONCE(size > truesize); 857 858 skb_fill_netmem_desc(skb, i, netmem, off, size); 859 skb->len += size; 860 skb->data_len += size; 861 skb->truesize += truesize; 862 } 863 EXPORT_SYMBOL(skb_add_rx_frag_netmem); 864 865 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 866 unsigned int truesize) 867 { 868 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 869 870 DEBUG_NET_WARN_ON_ONCE(size > truesize); 871 872 skb_frag_size_add(frag, size); 873 skb->len += size; 874 skb->data_len += size; 875 skb->truesize += truesize; 876 } 877 EXPORT_SYMBOL(skb_coalesce_rx_frag); 878 879 static void skb_drop_list(struct sk_buff **listp) 880 { 881 kfree_skb_list(*listp); 882 *listp = NULL; 883 } 884 885 static inline void skb_drop_fraglist(struct sk_buff *skb) 886 { 887 skb_drop_list(&skb_shinfo(skb)->frag_list); 888 } 889 890 static void skb_clone_fraglist(struct sk_buff *skb) 891 { 892 struct sk_buff *list; 893 894 skb_walk_frags(skb, list) 895 skb_get(list); 896 } 897 898 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 899 unsigned int headroom) 900 { 901 #if IS_ENABLED(CONFIG_PAGE_POOL) 902 u32 size, truesize, len, max_head_size, off; 903 struct sk_buff *skb = *pskb, *nskb; 904 int err, i, head_off; 905 void *data; 906 907 /* XDP does not support fraglist so we need to linearize 908 * the skb. 909 */ 910 if (skb_has_frag_list(skb)) 911 return -EOPNOTSUPP; 912 913 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 914 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 915 return -ENOMEM; 916 917 size = min_t(u32, skb->len, max_head_size); 918 truesize = SKB_HEAD_ALIGN(size) + headroom; 919 data = page_pool_dev_alloc_va(pool, &truesize); 920 if (!data) 921 return -ENOMEM; 922 923 nskb = napi_build_skb(data, truesize); 924 if (!nskb) { 925 page_pool_free_va(pool, data, true); 926 return -ENOMEM; 927 } 928 929 skb_reserve(nskb, headroom); 930 skb_copy_header(nskb, skb); 931 skb_mark_for_recycle(nskb); 932 933 err = skb_copy_bits(skb, 0, nskb->data, size); 934 if (err) { 935 consume_skb(nskb); 936 return err; 937 } 938 skb_put(nskb, size); 939 940 head_off = skb_headroom(nskb) - skb_headroom(skb); 941 skb_headers_offset_update(nskb, head_off); 942 943 off = size; 944 len = skb->len - off; 945 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 946 struct page *page; 947 u32 page_off; 948 949 size = min_t(u32, len, PAGE_SIZE); 950 truesize = size; 951 952 page = page_pool_dev_alloc(pool, &page_off, &truesize); 953 if (!page) { 954 consume_skb(nskb); 955 return -ENOMEM; 956 } 957 958 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 959 err = skb_copy_bits(skb, off, page_address(page) + page_off, 960 size); 961 if (err) { 962 consume_skb(nskb); 963 return err; 964 } 965 966 len -= size; 967 off += size; 968 } 969 970 consume_skb(skb); 971 *pskb = nskb; 972 973 return 0; 974 #else 975 return -EOPNOTSUPP; 976 #endif 977 } 978 EXPORT_SYMBOL(skb_pp_cow_data); 979 980 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 981 const struct bpf_prog *prog) 982 { 983 if (!prog->aux->xdp_has_frags) 984 return -EINVAL; 985 986 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 987 } 988 EXPORT_SYMBOL(skb_cow_data_for_xdp); 989 990 #if IS_ENABLED(CONFIG_PAGE_POOL) 991 bool napi_pp_put_page(netmem_ref netmem) 992 { 993 netmem = netmem_compound_head(netmem); 994 995 if (unlikely(!netmem_is_pp(netmem))) 996 return false; 997 998 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false); 999 1000 return true; 1001 } 1002 EXPORT_SYMBOL(napi_pp_put_page); 1003 #endif 1004 1005 static bool skb_pp_recycle(struct sk_buff *skb, void *data) 1006 { 1007 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1008 return false; 1009 return napi_pp_put_page(page_to_netmem(virt_to_page(data))); 1010 } 1011 1012 /** 1013 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 1014 * @skb: page pool aware skb 1015 * 1016 * Increase the fragment reference count (pp_ref_count) of a skb. This is 1017 * intended to gain fragment references only for page pool aware skbs, 1018 * i.e. when skb->pp_recycle is true, and not for fragments in a 1019 * non-pp-recycling skb. It has a fallback to increase references on normal 1020 * pages, as page pool aware skbs may also have normal page fragments. 1021 */ 1022 static int skb_pp_frag_ref(struct sk_buff *skb) 1023 { 1024 struct skb_shared_info *shinfo; 1025 netmem_ref head_netmem; 1026 int i; 1027 1028 if (!skb->pp_recycle) 1029 return -EINVAL; 1030 1031 shinfo = skb_shinfo(skb); 1032 1033 for (i = 0; i < shinfo->nr_frags; i++) { 1034 head_netmem = netmem_compound_head(shinfo->frags[i].netmem); 1035 if (likely(netmem_is_pp(head_netmem))) 1036 page_pool_ref_netmem(head_netmem); 1037 else 1038 page_ref_inc(netmem_to_page(head_netmem)); 1039 } 1040 return 0; 1041 } 1042 1043 static void skb_kfree_head(void *head, unsigned int end_offset) 1044 { 1045 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1046 kmem_cache_free(net_hotdata.skb_small_head_cache, head); 1047 else 1048 kfree(head); 1049 } 1050 1051 static void skb_free_head(struct sk_buff *skb) 1052 { 1053 unsigned char *head = skb->head; 1054 1055 if (skb->head_frag) { 1056 if (skb_pp_recycle(skb, head)) 1057 return; 1058 skb_free_frag(head); 1059 } else { 1060 skb_kfree_head(head, skb_end_offset(skb)); 1061 } 1062 } 1063 1064 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason) 1065 { 1066 struct skb_shared_info *shinfo = skb_shinfo(skb); 1067 int i; 1068 1069 if (!skb_data_unref(skb, shinfo)) 1070 goto exit; 1071 1072 if (skb_zcopy(skb)) { 1073 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1074 1075 skb_zcopy_clear(skb, true); 1076 if (skip_unref) 1077 goto free_head; 1078 } 1079 1080 for (i = 0; i < shinfo->nr_frags; i++) 1081 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 1082 1083 free_head: 1084 if (shinfo->frag_list) 1085 kfree_skb_list_reason(shinfo->frag_list, reason); 1086 1087 skb_free_head(skb); 1088 exit: 1089 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1090 * bit is only set on the head though, so in order to avoid races 1091 * while trying to recycle fragments on __skb_frag_unref() we need 1092 * to make one SKB responsible for triggering the recycle path. 1093 * So disable the recycling bit if an SKB is cloned and we have 1094 * additional references to the fragmented part of the SKB. 1095 * Eventually the last SKB will have the recycling bit set and it's 1096 * dataref set to 0, which will trigger the recycling 1097 */ 1098 skb->pp_recycle = 0; 1099 } 1100 1101 /* 1102 * Free an skbuff by memory without cleaning the state. 1103 */ 1104 static void kfree_skbmem(struct sk_buff *skb) 1105 { 1106 struct sk_buff_fclones *fclones; 1107 1108 switch (skb->fclone) { 1109 case SKB_FCLONE_UNAVAILABLE: 1110 kmem_cache_free(net_hotdata.skbuff_cache, skb); 1111 return; 1112 1113 case SKB_FCLONE_ORIG: 1114 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1115 1116 /* We usually free the clone (TX completion) before original skb 1117 * This test would have no chance to be true for the clone, 1118 * while here, branch prediction will be good. 1119 */ 1120 if (refcount_read(&fclones->fclone_ref) == 1) 1121 goto fastpath; 1122 break; 1123 1124 default: /* SKB_FCLONE_CLONE */ 1125 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1126 break; 1127 } 1128 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1129 return; 1130 fastpath: 1131 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones); 1132 } 1133 1134 void skb_release_head_state(struct sk_buff *skb) 1135 { 1136 skb_dst_drop(skb); 1137 if (skb->destructor) { 1138 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1139 skb->destructor(skb); 1140 } 1141 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1142 nf_conntrack_put(skb_nfct(skb)); 1143 #endif 1144 skb_ext_put(skb); 1145 } 1146 1147 /* Free everything but the sk_buff shell. */ 1148 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason) 1149 { 1150 skb_release_head_state(skb); 1151 if (likely(skb->head)) 1152 skb_release_data(skb, reason); 1153 } 1154 1155 /** 1156 * __kfree_skb - private function 1157 * @skb: buffer 1158 * 1159 * Free an sk_buff. Release anything attached to the buffer. 1160 * Clean the state. This is an internal helper function. Users should 1161 * always call kfree_skb 1162 */ 1163 1164 void __kfree_skb(struct sk_buff *skb) 1165 { 1166 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1167 kfree_skbmem(skb); 1168 } 1169 EXPORT_SYMBOL(__kfree_skb); 1170 1171 static __always_inline 1172 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1173 enum skb_drop_reason reason) 1174 { 1175 if (unlikely(!skb_unref(skb))) 1176 return false; 1177 1178 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1179 u32_get_bits(reason, 1180 SKB_DROP_REASON_SUBSYS_MASK) >= 1181 SKB_DROP_REASON_SUBSYS_NUM); 1182 1183 if (reason == SKB_CONSUMED) 1184 trace_consume_skb(skb, __builtin_return_address(0)); 1185 else 1186 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk); 1187 return true; 1188 } 1189 1190 /** 1191 * sk_skb_reason_drop - free an sk_buff with special reason 1192 * @sk: the socket to receive @skb, or NULL if not applicable 1193 * @skb: buffer to free 1194 * @reason: reason why this skb is dropped 1195 * 1196 * Drop a reference to the buffer and free it if the usage count has hit 1197 * zero. Meanwhile, pass the receiving socket and drop reason to 1198 * 'kfree_skb' tracepoint. 1199 */ 1200 void __fix_address 1201 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 1202 { 1203 if (__sk_skb_reason_drop(sk, skb, reason)) 1204 __kfree_skb(skb); 1205 } 1206 EXPORT_SYMBOL(sk_skb_reason_drop); 1207 1208 #define KFREE_SKB_BULK_SIZE 16 1209 1210 struct skb_free_array { 1211 unsigned int skb_count; 1212 void *skb_array[KFREE_SKB_BULK_SIZE]; 1213 }; 1214 1215 static void kfree_skb_add_bulk(struct sk_buff *skb, 1216 struct skb_free_array *sa, 1217 enum skb_drop_reason reason) 1218 { 1219 /* if SKB is a clone, don't handle this case */ 1220 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1221 __kfree_skb(skb); 1222 return; 1223 } 1224 1225 skb_release_all(skb, reason); 1226 sa->skb_array[sa->skb_count++] = skb; 1227 1228 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1229 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE, 1230 sa->skb_array); 1231 sa->skb_count = 0; 1232 } 1233 } 1234 1235 void __fix_address 1236 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1237 { 1238 struct skb_free_array sa; 1239 1240 sa.skb_count = 0; 1241 1242 while (segs) { 1243 struct sk_buff *next = segs->next; 1244 1245 if (__sk_skb_reason_drop(NULL, segs, reason)) { 1246 skb_poison_list(segs); 1247 kfree_skb_add_bulk(segs, &sa, reason); 1248 } 1249 1250 segs = next; 1251 } 1252 1253 if (sa.skb_count) 1254 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array); 1255 } 1256 EXPORT_SYMBOL(kfree_skb_list_reason); 1257 1258 /* Dump skb information and contents. 1259 * 1260 * Must only be called from net_ratelimit()-ed paths. 1261 * 1262 * Dumps whole packets if full_pkt, only headers otherwise. 1263 */ 1264 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1265 { 1266 struct skb_shared_info *sh = skb_shinfo(skb); 1267 struct net_device *dev = skb->dev; 1268 struct sock *sk = skb->sk; 1269 struct sk_buff *list_skb; 1270 bool has_mac, has_trans; 1271 int headroom, tailroom; 1272 int i, len, seg_len; 1273 1274 if (full_pkt) 1275 len = skb->len; 1276 else 1277 len = min_t(int, skb->len, MAX_HEADER + 128); 1278 1279 headroom = skb_headroom(skb); 1280 tailroom = skb_tailroom(skb); 1281 1282 has_mac = skb_mac_header_was_set(skb); 1283 has_trans = skb_transport_header_was_set(skb); 1284 1285 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1286 "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n" 1287 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1288 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1289 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n" 1290 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n" 1291 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n", 1292 level, skb->len, headroom, skb_headlen(skb), tailroom, 1293 has_mac ? skb->mac_header : -1, 1294 has_mac ? skb_mac_header_len(skb) : -1, 1295 skb->mac_len, 1296 skb->network_header, 1297 has_trans ? skb_network_header_len(skb) : -1, 1298 has_trans ? skb->transport_header : -1, 1299 sh->tx_flags, sh->nr_frags, 1300 sh->gso_size, sh->gso_type, sh->gso_segs, 1301 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed, 1302 skb->csum_complete_sw, skb->csum_valid, skb->csum_level, 1303 skb->hash, skb->sw_hash, skb->l4_hash, 1304 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif, 1305 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all, 1306 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header, 1307 skb->inner_network_header, skb->inner_transport_header); 1308 1309 if (dev) 1310 printk("%sdev name=%s feat=%pNF\n", 1311 level, dev->name, &dev->features); 1312 if (sk) 1313 printk("%ssk family=%hu type=%u proto=%u\n", 1314 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1315 1316 if (full_pkt && headroom) 1317 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1318 16, 1, skb->head, headroom, false); 1319 1320 seg_len = min_t(int, skb_headlen(skb), len); 1321 if (seg_len) 1322 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1323 16, 1, skb->data, seg_len, false); 1324 len -= seg_len; 1325 1326 if (full_pkt && tailroom) 1327 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1328 16, 1, skb_tail_pointer(skb), tailroom, false); 1329 1330 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1331 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1332 u32 p_off, p_len, copied; 1333 struct page *p; 1334 u8 *vaddr; 1335 1336 if (skb_frag_is_net_iov(frag)) { 1337 printk("%sskb frag %d: not readable\n", level, i); 1338 len -= skb_frag_size(frag); 1339 if (!len) 1340 break; 1341 continue; 1342 } 1343 1344 skb_frag_foreach_page(frag, skb_frag_off(frag), 1345 skb_frag_size(frag), p, p_off, p_len, 1346 copied) { 1347 seg_len = min_t(int, p_len, len); 1348 vaddr = kmap_atomic(p); 1349 print_hex_dump(level, "skb frag: ", 1350 DUMP_PREFIX_OFFSET, 1351 16, 1, vaddr + p_off, seg_len, false); 1352 kunmap_atomic(vaddr); 1353 len -= seg_len; 1354 if (!len) 1355 break; 1356 } 1357 } 1358 1359 if (full_pkt && skb_has_frag_list(skb)) { 1360 printk("skb fraglist:\n"); 1361 skb_walk_frags(skb, list_skb) 1362 skb_dump(level, list_skb, true); 1363 } 1364 } 1365 EXPORT_SYMBOL(skb_dump); 1366 1367 /** 1368 * skb_tx_error - report an sk_buff xmit error 1369 * @skb: buffer that triggered an error 1370 * 1371 * Report xmit error if a device callback is tracking this skb. 1372 * skb must be freed afterwards. 1373 */ 1374 void skb_tx_error(struct sk_buff *skb) 1375 { 1376 if (skb) { 1377 skb_zcopy_downgrade_managed(skb); 1378 skb_zcopy_clear(skb, true); 1379 } 1380 } 1381 EXPORT_SYMBOL(skb_tx_error); 1382 1383 #ifdef CONFIG_TRACEPOINTS 1384 /** 1385 * consume_skb - free an skbuff 1386 * @skb: buffer to free 1387 * 1388 * Drop a ref to the buffer and free it if the usage count has hit zero 1389 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1390 * is being dropped after a failure and notes that 1391 */ 1392 void consume_skb(struct sk_buff *skb) 1393 { 1394 if (!skb_unref(skb)) 1395 return; 1396 1397 trace_consume_skb(skb, __builtin_return_address(0)); 1398 __kfree_skb(skb); 1399 } 1400 EXPORT_SYMBOL(consume_skb); 1401 #endif 1402 1403 /** 1404 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1405 * @skb: buffer to free 1406 * 1407 * Alike consume_skb(), but this variant assumes that this is the last 1408 * skb reference and all the head states have been already dropped 1409 */ 1410 void __consume_stateless_skb(struct sk_buff *skb) 1411 { 1412 trace_consume_skb(skb, __builtin_return_address(0)); 1413 skb_release_data(skb, SKB_CONSUMED); 1414 kfree_skbmem(skb); 1415 } 1416 1417 static void napi_skb_cache_put(struct sk_buff *skb) 1418 { 1419 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1420 u32 i; 1421 1422 if (!kasan_mempool_poison_object(skb)) 1423 return; 1424 1425 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 1426 nc->skb_cache[nc->skb_count++] = skb; 1427 1428 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1429 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1430 kasan_mempool_unpoison_object(nc->skb_cache[i], 1431 kmem_cache_size(net_hotdata.skbuff_cache)); 1432 1433 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF, 1434 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1435 nc->skb_count = NAPI_SKB_CACHE_HALF; 1436 } 1437 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 1438 } 1439 1440 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1441 { 1442 skb_release_all(skb, reason); 1443 napi_skb_cache_put(skb); 1444 } 1445 1446 void napi_skb_free_stolen_head(struct sk_buff *skb) 1447 { 1448 if (unlikely(skb->slow_gro)) { 1449 nf_reset_ct(skb); 1450 skb_dst_drop(skb); 1451 skb_ext_put(skb); 1452 skb_orphan(skb); 1453 skb->slow_gro = 0; 1454 } 1455 napi_skb_cache_put(skb); 1456 } 1457 1458 void napi_consume_skb(struct sk_buff *skb, int budget) 1459 { 1460 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1461 if (unlikely(!budget)) { 1462 dev_consume_skb_any(skb); 1463 return; 1464 } 1465 1466 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1467 1468 if (!skb_unref(skb)) 1469 return; 1470 1471 /* if reaching here SKB is ready to free */ 1472 trace_consume_skb(skb, __builtin_return_address(0)); 1473 1474 /* if SKB is a clone, don't handle this case */ 1475 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1476 __kfree_skb(skb); 1477 return; 1478 } 1479 1480 skb_release_all(skb, SKB_CONSUMED); 1481 napi_skb_cache_put(skb); 1482 } 1483 EXPORT_SYMBOL(napi_consume_skb); 1484 1485 /* Make sure a field is contained by headers group */ 1486 #define CHECK_SKB_FIELD(field) \ 1487 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1488 offsetof(struct sk_buff, headers.field)); \ 1489 1490 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1491 { 1492 new->tstamp = old->tstamp; 1493 /* We do not copy old->sk */ 1494 new->dev = old->dev; 1495 memcpy(new->cb, old->cb, sizeof(old->cb)); 1496 skb_dst_copy(new, old); 1497 __skb_ext_copy(new, old); 1498 __nf_copy(new, old, false); 1499 1500 /* Note : this field could be in the headers group. 1501 * It is not yet because we do not want to have a 16 bit hole 1502 */ 1503 new->queue_mapping = old->queue_mapping; 1504 1505 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1506 CHECK_SKB_FIELD(protocol); 1507 CHECK_SKB_FIELD(csum); 1508 CHECK_SKB_FIELD(hash); 1509 CHECK_SKB_FIELD(priority); 1510 CHECK_SKB_FIELD(skb_iif); 1511 CHECK_SKB_FIELD(vlan_proto); 1512 CHECK_SKB_FIELD(vlan_tci); 1513 CHECK_SKB_FIELD(transport_header); 1514 CHECK_SKB_FIELD(network_header); 1515 CHECK_SKB_FIELD(mac_header); 1516 CHECK_SKB_FIELD(inner_protocol); 1517 CHECK_SKB_FIELD(inner_transport_header); 1518 CHECK_SKB_FIELD(inner_network_header); 1519 CHECK_SKB_FIELD(inner_mac_header); 1520 CHECK_SKB_FIELD(mark); 1521 #ifdef CONFIG_NETWORK_SECMARK 1522 CHECK_SKB_FIELD(secmark); 1523 #endif 1524 #ifdef CONFIG_NET_RX_BUSY_POLL 1525 CHECK_SKB_FIELD(napi_id); 1526 #endif 1527 CHECK_SKB_FIELD(alloc_cpu); 1528 #ifdef CONFIG_XPS 1529 CHECK_SKB_FIELD(sender_cpu); 1530 #endif 1531 #ifdef CONFIG_NET_SCHED 1532 CHECK_SKB_FIELD(tc_index); 1533 #endif 1534 1535 } 1536 1537 /* 1538 * You should not add any new code to this function. Add it to 1539 * __copy_skb_header above instead. 1540 */ 1541 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1542 { 1543 #define C(x) n->x = skb->x 1544 1545 n->next = n->prev = NULL; 1546 n->sk = NULL; 1547 __copy_skb_header(n, skb); 1548 1549 C(len); 1550 C(data_len); 1551 C(mac_len); 1552 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1553 n->cloned = 1; 1554 n->nohdr = 0; 1555 n->peeked = 0; 1556 C(pfmemalloc); 1557 C(pp_recycle); 1558 n->destructor = NULL; 1559 C(tail); 1560 C(end); 1561 C(head); 1562 C(head_frag); 1563 C(data); 1564 C(truesize); 1565 refcount_set(&n->users, 1); 1566 1567 atomic_inc(&(skb_shinfo(skb)->dataref)); 1568 skb->cloned = 1; 1569 1570 return n; 1571 #undef C 1572 } 1573 1574 /** 1575 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1576 * @first: first sk_buff of the msg 1577 */ 1578 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1579 { 1580 struct sk_buff *n; 1581 1582 n = alloc_skb(0, GFP_ATOMIC); 1583 if (!n) 1584 return NULL; 1585 1586 n->len = first->len; 1587 n->data_len = first->len; 1588 n->truesize = first->truesize; 1589 1590 skb_shinfo(n)->frag_list = first; 1591 1592 __copy_skb_header(n, first); 1593 n->destructor = NULL; 1594 1595 return n; 1596 } 1597 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1598 1599 /** 1600 * skb_morph - morph one skb into another 1601 * @dst: the skb to receive the contents 1602 * @src: the skb to supply the contents 1603 * 1604 * This is identical to skb_clone except that the target skb is 1605 * supplied by the user. 1606 * 1607 * The target skb is returned upon exit. 1608 */ 1609 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1610 { 1611 skb_release_all(dst, SKB_CONSUMED); 1612 return __skb_clone(dst, src); 1613 } 1614 EXPORT_SYMBOL_GPL(skb_morph); 1615 1616 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1617 { 1618 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1619 struct user_struct *user; 1620 1621 if (capable(CAP_IPC_LOCK) || !size) 1622 return 0; 1623 1624 rlim = rlimit(RLIMIT_MEMLOCK); 1625 if (rlim == RLIM_INFINITY) 1626 return 0; 1627 1628 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1629 max_pg = rlim >> PAGE_SHIFT; 1630 user = mmp->user ? : current_user(); 1631 1632 old_pg = atomic_long_read(&user->locked_vm); 1633 do { 1634 new_pg = old_pg + num_pg; 1635 if (new_pg > max_pg) 1636 return -ENOBUFS; 1637 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1638 1639 if (!mmp->user) { 1640 mmp->user = get_uid(user); 1641 mmp->num_pg = num_pg; 1642 } else { 1643 mmp->num_pg += num_pg; 1644 } 1645 1646 return 0; 1647 } 1648 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1649 1650 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1651 { 1652 if (mmp->user) { 1653 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1654 free_uid(mmp->user); 1655 } 1656 } 1657 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1658 1659 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size, 1660 bool devmem) 1661 { 1662 struct ubuf_info_msgzc *uarg; 1663 struct sk_buff *skb; 1664 1665 WARN_ON_ONCE(!in_task()); 1666 1667 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1668 if (!skb) 1669 return NULL; 1670 1671 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1672 uarg = (void *)skb->cb; 1673 uarg->mmp.user = NULL; 1674 1675 if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) { 1676 kfree_skb(skb); 1677 return NULL; 1678 } 1679 1680 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops; 1681 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1682 uarg->len = 1; 1683 uarg->bytelen = size; 1684 uarg->zerocopy = 1; 1685 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1686 refcount_set(&uarg->ubuf.refcnt, 1); 1687 sock_hold(sk); 1688 1689 return &uarg->ubuf; 1690 } 1691 1692 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1693 { 1694 return container_of((void *)uarg, struct sk_buff, cb); 1695 } 1696 1697 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1698 struct ubuf_info *uarg, bool devmem) 1699 { 1700 if (uarg) { 1701 struct ubuf_info_msgzc *uarg_zc; 1702 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1703 u32 bytelen, next; 1704 1705 /* there might be non MSG_ZEROCOPY users */ 1706 if (uarg->ops != &msg_zerocopy_ubuf_ops) 1707 return NULL; 1708 1709 /* realloc only when socket is locked (TCP, UDP cork), 1710 * so uarg->len and sk_zckey access is serialized 1711 */ 1712 if (!sock_owned_by_user(sk)) { 1713 WARN_ON_ONCE(1); 1714 return NULL; 1715 } 1716 1717 uarg_zc = uarg_to_msgzc(uarg); 1718 bytelen = uarg_zc->bytelen + size; 1719 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1720 /* TCP can create new skb to attach new uarg */ 1721 if (sk->sk_type == SOCK_STREAM) 1722 goto new_alloc; 1723 return NULL; 1724 } 1725 1726 next = (u32)atomic_read(&sk->sk_zckey); 1727 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1728 if (likely(!devmem) && 1729 mm_account_pinned_pages(&uarg_zc->mmp, size)) 1730 return NULL; 1731 uarg_zc->len++; 1732 uarg_zc->bytelen = bytelen; 1733 atomic_set(&sk->sk_zckey, ++next); 1734 1735 /* no extra ref when appending to datagram (MSG_MORE) */ 1736 if (sk->sk_type == SOCK_STREAM) 1737 net_zcopy_get(uarg); 1738 1739 return uarg; 1740 } 1741 } 1742 1743 new_alloc: 1744 return msg_zerocopy_alloc(sk, size, devmem); 1745 } 1746 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1747 1748 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1749 { 1750 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1751 u32 old_lo, old_hi; 1752 u64 sum_len; 1753 1754 old_lo = serr->ee.ee_info; 1755 old_hi = serr->ee.ee_data; 1756 sum_len = old_hi - old_lo + 1ULL + len; 1757 1758 if (sum_len >= (1ULL << 32)) 1759 return false; 1760 1761 if (lo != old_hi + 1) 1762 return false; 1763 1764 serr->ee.ee_data += len; 1765 return true; 1766 } 1767 1768 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1769 { 1770 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1771 struct sock_exterr_skb *serr; 1772 struct sock *sk = skb->sk; 1773 struct sk_buff_head *q; 1774 unsigned long flags; 1775 bool is_zerocopy; 1776 u32 lo, hi; 1777 u16 len; 1778 1779 mm_unaccount_pinned_pages(&uarg->mmp); 1780 1781 /* if !len, there was only 1 call, and it was aborted 1782 * so do not queue a completion notification 1783 */ 1784 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1785 goto release; 1786 1787 len = uarg->len; 1788 lo = uarg->id; 1789 hi = uarg->id + len - 1; 1790 is_zerocopy = uarg->zerocopy; 1791 1792 serr = SKB_EXT_ERR(skb); 1793 memset(serr, 0, sizeof(*serr)); 1794 serr->ee.ee_errno = 0; 1795 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1796 serr->ee.ee_data = hi; 1797 serr->ee.ee_info = lo; 1798 if (!is_zerocopy) 1799 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1800 1801 q = &sk->sk_error_queue; 1802 spin_lock_irqsave(&q->lock, flags); 1803 tail = skb_peek_tail(q); 1804 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1805 !skb_zerocopy_notify_extend(tail, lo, len)) { 1806 __skb_queue_tail(q, skb); 1807 skb = NULL; 1808 } 1809 spin_unlock_irqrestore(&q->lock, flags); 1810 1811 sk_error_report(sk); 1812 1813 release: 1814 consume_skb(skb); 1815 sock_put(sk); 1816 } 1817 1818 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg, 1819 bool success) 1820 { 1821 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1822 1823 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1824 1825 if (refcount_dec_and_test(&uarg->refcnt)) 1826 __msg_zerocopy_callback(uarg_zc); 1827 } 1828 1829 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1830 { 1831 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1832 1833 atomic_dec(&sk->sk_zckey); 1834 uarg_to_msgzc(uarg)->len--; 1835 1836 if (have_uref) 1837 msg_zerocopy_complete(NULL, uarg, true); 1838 } 1839 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1840 1841 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = { 1842 .complete = msg_zerocopy_complete, 1843 }; 1844 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops); 1845 1846 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1847 struct msghdr *msg, int len, 1848 struct ubuf_info *uarg, 1849 struct net_devmem_dmabuf_binding *binding) 1850 { 1851 int err, orig_len = skb->len; 1852 1853 if (uarg->ops->link_skb) { 1854 err = uarg->ops->link_skb(skb, uarg); 1855 if (err) 1856 return err; 1857 } else { 1858 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1859 1860 /* An skb can only point to one uarg. This edge case happens 1861 * when TCP appends to an skb, but zerocopy_realloc triggered 1862 * a new alloc. 1863 */ 1864 if (orig_uarg && uarg != orig_uarg) 1865 return -EEXIST; 1866 } 1867 1868 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len, 1869 binding); 1870 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1871 struct sock *save_sk = skb->sk; 1872 1873 /* Streams do not free skb on error. Reset to prev state. */ 1874 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1875 skb->sk = sk; 1876 ___pskb_trim(skb, orig_len); 1877 skb->sk = save_sk; 1878 return err; 1879 } 1880 1881 skb_zcopy_set(skb, uarg, NULL); 1882 return skb->len - orig_len; 1883 } 1884 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1885 1886 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1887 { 1888 int i; 1889 1890 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1891 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1892 skb_frag_ref(skb, i); 1893 } 1894 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1895 1896 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1897 gfp_t gfp_mask) 1898 { 1899 if (skb_zcopy(orig)) { 1900 if (skb_zcopy(nskb)) { 1901 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1902 if (!gfp_mask) { 1903 WARN_ON_ONCE(1); 1904 return -ENOMEM; 1905 } 1906 if (skb_uarg(nskb) == skb_uarg(orig)) 1907 return 0; 1908 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1909 return -EIO; 1910 } 1911 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1912 } 1913 return 0; 1914 } 1915 1916 /** 1917 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1918 * @skb: the skb to modify 1919 * @gfp_mask: allocation priority 1920 * 1921 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1922 * It will copy all frags into kernel and drop the reference 1923 * to userspace pages. 1924 * 1925 * If this function is called from an interrupt gfp_mask() must be 1926 * %GFP_ATOMIC. 1927 * 1928 * Returns 0 on success or a negative error code on failure 1929 * to allocate kernel memory to copy to. 1930 */ 1931 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1932 { 1933 int num_frags = skb_shinfo(skb)->nr_frags; 1934 struct page *page, *head = NULL; 1935 int i, order, psize, new_frags; 1936 u32 d_off; 1937 1938 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1939 return -EINVAL; 1940 1941 if (!skb_frags_readable(skb)) 1942 return -EFAULT; 1943 1944 if (!num_frags) 1945 goto release; 1946 1947 /* We might have to allocate high order pages, so compute what minimum 1948 * page order is needed. 1949 */ 1950 order = 0; 1951 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1952 order++; 1953 psize = (PAGE_SIZE << order); 1954 1955 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1956 for (i = 0; i < new_frags; i++) { 1957 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1958 if (!page) { 1959 while (head) { 1960 struct page *next = (struct page *)page_private(head); 1961 put_page(head); 1962 head = next; 1963 } 1964 return -ENOMEM; 1965 } 1966 set_page_private(page, (unsigned long)head); 1967 head = page; 1968 } 1969 1970 page = head; 1971 d_off = 0; 1972 for (i = 0; i < num_frags; i++) { 1973 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1974 u32 p_off, p_len, copied; 1975 struct page *p; 1976 u8 *vaddr; 1977 1978 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1979 p, p_off, p_len, copied) { 1980 u32 copy, done = 0; 1981 vaddr = kmap_atomic(p); 1982 1983 while (done < p_len) { 1984 if (d_off == psize) { 1985 d_off = 0; 1986 page = (struct page *)page_private(page); 1987 } 1988 copy = min_t(u32, psize - d_off, p_len - done); 1989 memcpy(page_address(page) + d_off, 1990 vaddr + p_off + done, copy); 1991 done += copy; 1992 d_off += copy; 1993 } 1994 kunmap_atomic(vaddr); 1995 } 1996 } 1997 1998 /* skb frags release userspace buffers */ 1999 for (i = 0; i < num_frags; i++) 2000 skb_frag_unref(skb, i); 2001 2002 /* skb frags point to kernel buffers */ 2003 for (i = 0; i < new_frags - 1; i++) { 2004 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize); 2005 head = (struct page *)page_private(head); 2006 } 2007 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0, 2008 d_off); 2009 skb_shinfo(skb)->nr_frags = new_frags; 2010 2011 release: 2012 skb_zcopy_clear(skb, false); 2013 return 0; 2014 } 2015 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 2016 2017 /** 2018 * skb_clone - duplicate an sk_buff 2019 * @skb: buffer to clone 2020 * @gfp_mask: allocation priority 2021 * 2022 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 2023 * copies share the same packet data but not structure. The new 2024 * buffer has a reference count of 1. If the allocation fails the 2025 * function returns %NULL otherwise the new buffer is returned. 2026 * 2027 * If this function is called from an interrupt gfp_mask() must be 2028 * %GFP_ATOMIC. 2029 */ 2030 2031 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 2032 { 2033 struct sk_buff_fclones *fclones = container_of(skb, 2034 struct sk_buff_fclones, 2035 skb1); 2036 struct sk_buff *n; 2037 2038 if (skb_orphan_frags(skb, gfp_mask)) 2039 return NULL; 2040 2041 if (skb->fclone == SKB_FCLONE_ORIG && 2042 refcount_read(&fclones->fclone_ref) == 1) { 2043 n = &fclones->skb2; 2044 refcount_set(&fclones->fclone_ref, 2); 2045 n->fclone = SKB_FCLONE_CLONE; 2046 } else { 2047 if (skb_pfmemalloc(skb)) 2048 gfp_mask |= __GFP_MEMALLOC; 2049 2050 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask); 2051 if (!n) 2052 return NULL; 2053 2054 n->fclone = SKB_FCLONE_UNAVAILABLE; 2055 } 2056 2057 return __skb_clone(n, skb); 2058 } 2059 EXPORT_SYMBOL(skb_clone); 2060 2061 void skb_headers_offset_update(struct sk_buff *skb, int off) 2062 { 2063 /* Only adjust this if it actually is csum_start rather than csum */ 2064 if (skb->ip_summed == CHECKSUM_PARTIAL) 2065 skb->csum_start += off; 2066 /* {transport,network,mac}_header and tail are relative to skb->head */ 2067 skb->transport_header += off; 2068 skb->network_header += off; 2069 if (skb_mac_header_was_set(skb)) 2070 skb->mac_header += off; 2071 skb->inner_transport_header += off; 2072 skb->inner_network_header += off; 2073 skb->inner_mac_header += off; 2074 } 2075 EXPORT_SYMBOL(skb_headers_offset_update); 2076 2077 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2078 { 2079 __copy_skb_header(new, old); 2080 2081 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2082 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2083 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2084 } 2085 EXPORT_SYMBOL(skb_copy_header); 2086 2087 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2088 { 2089 if (skb_pfmemalloc(skb)) 2090 return SKB_ALLOC_RX; 2091 return 0; 2092 } 2093 2094 /** 2095 * skb_copy - create private copy of an sk_buff 2096 * @skb: buffer to copy 2097 * @gfp_mask: allocation priority 2098 * 2099 * Make a copy of both an &sk_buff and its data. This is used when the 2100 * caller wishes to modify the data and needs a private copy of the 2101 * data to alter. Returns %NULL on failure or the pointer to the buffer 2102 * on success. The returned buffer has a reference count of 1. 2103 * 2104 * As by-product this function converts non-linear &sk_buff to linear 2105 * one, so that &sk_buff becomes completely private and caller is allowed 2106 * to modify all the data of returned buffer. This means that this 2107 * function is not recommended for use in circumstances when only 2108 * header is going to be modified. Use pskb_copy() instead. 2109 */ 2110 2111 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2112 { 2113 struct sk_buff *n; 2114 unsigned int size; 2115 int headerlen; 2116 2117 if (!skb_frags_readable(skb)) 2118 return NULL; 2119 2120 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2121 return NULL; 2122 2123 headerlen = skb_headroom(skb); 2124 size = skb_end_offset(skb) + skb->data_len; 2125 n = __alloc_skb(size, gfp_mask, 2126 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2127 if (!n) 2128 return NULL; 2129 2130 /* Set the data pointer */ 2131 skb_reserve(n, headerlen); 2132 /* Set the tail pointer and length */ 2133 skb_put(n, skb->len); 2134 2135 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2136 2137 skb_copy_header(n, skb); 2138 return n; 2139 } 2140 EXPORT_SYMBOL(skb_copy); 2141 2142 /** 2143 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2144 * @skb: buffer to copy 2145 * @headroom: headroom of new skb 2146 * @gfp_mask: allocation priority 2147 * @fclone: if true allocate the copy of the skb from the fclone 2148 * cache instead of the head cache; it is recommended to set this 2149 * to true for the cases where the copy will likely be cloned 2150 * 2151 * Make a copy of both an &sk_buff and part of its data, located 2152 * in header. Fragmented data remain shared. This is used when 2153 * the caller wishes to modify only header of &sk_buff and needs 2154 * private copy of the header to alter. Returns %NULL on failure 2155 * or the pointer to the buffer on success. 2156 * The returned buffer has a reference count of 1. 2157 */ 2158 2159 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2160 gfp_t gfp_mask, bool fclone) 2161 { 2162 unsigned int size = skb_headlen(skb) + headroom; 2163 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2164 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2165 2166 if (!n) 2167 goto out; 2168 2169 /* Set the data pointer */ 2170 skb_reserve(n, headroom); 2171 /* Set the tail pointer and length */ 2172 skb_put(n, skb_headlen(skb)); 2173 /* Copy the bytes */ 2174 skb_copy_from_linear_data(skb, n->data, n->len); 2175 2176 n->truesize += skb->data_len; 2177 n->data_len = skb->data_len; 2178 n->len = skb->len; 2179 2180 if (skb_shinfo(skb)->nr_frags) { 2181 int i; 2182 2183 if (skb_orphan_frags(skb, gfp_mask) || 2184 skb_zerocopy_clone(n, skb, gfp_mask)) { 2185 kfree_skb(n); 2186 n = NULL; 2187 goto out; 2188 } 2189 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2190 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2191 skb_frag_ref(skb, i); 2192 } 2193 skb_shinfo(n)->nr_frags = i; 2194 } 2195 2196 if (skb_has_frag_list(skb)) { 2197 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2198 skb_clone_fraglist(n); 2199 } 2200 2201 skb_copy_header(n, skb); 2202 out: 2203 return n; 2204 } 2205 EXPORT_SYMBOL(__pskb_copy_fclone); 2206 2207 /** 2208 * pskb_expand_head - reallocate header of &sk_buff 2209 * @skb: buffer to reallocate 2210 * @nhead: room to add at head 2211 * @ntail: room to add at tail 2212 * @gfp_mask: allocation priority 2213 * 2214 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2215 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2216 * reference count of 1. Returns zero in the case of success or error, 2217 * if expansion failed. In the last case, &sk_buff is not changed. 2218 * 2219 * All the pointers pointing into skb header may change and must be 2220 * reloaded after call to this function. 2221 */ 2222 2223 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2224 gfp_t gfp_mask) 2225 { 2226 unsigned int osize = skb_end_offset(skb); 2227 unsigned int size = osize + nhead + ntail; 2228 long off; 2229 u8 *data; 2230 int i; 2231 2232 BUG_ON(nhead < 0); 2233 2234 BUG_ON(skb_shared(skb)); 2235 2236 skb_zcopy_downgrade_managed(skb); 2237 2238 if (skb_pfmemalloc(skb)) 2239 gfp_mask |= __GFP_MEMALLOC; 2240 2241 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2242 if (!data) 2243 goto nodata; 2244 size = SKB_WITH_OVERHEAD(size); 2245 2246 /* Copy only real data... and, alas, header. This should be 2247 * optimized for the cases when header is void. 2248 */ 2249 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2250 2251 memcpy((struct skb_shared_info *)(data + size), 2252 skb_shinfo(skb), 2253 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2254 2255 /* 2256 * if shinfo is shared we must drop the old head gracefully, but if it 2257 * is not we can just drop the old head and let the existing refcount 2258 * be since all we did is relocate the values 2259 */ 2260 if (skb_cloned(skb)) { 2261 if (skb_orphan_frags(skb, gfp_mask)) 2262 goto nofrags; 2263 if (skb_zcopy(skb)) 2264 refcount_inc(&skb_uarg(skb)->refcnt); 2265 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2266 skb_frag_ref(skb, i); 2267 2268 if (skb_has_frag_list(skb)) 2269 skb_clone_fraglist(skb); 2270 2271 skb_release_data(skb, SKB_CONSUMED); 2272 } else { 2273 skb_free_head(skb); 2274 } 2275 off = (data + nhead) - skb->head; 2276 2277 skb->head = data; 2278 skb->head_frag = 0; 2279 skb->data += off; 2280 2281 skb_set_end_offset(skb, size); 2282 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2283 off = nhead; 2284 #endif 2285 skb->tail += off; 2286 skb_headers_offset_update(skb, nhead); 2287 skb->cloned = 0; 2288 skb->hdr_len = 0; 2289 skb->nohdr = 0; 2290 atomic_set(&skb_shinfo(skb)->dataref, 1); 2291 2292 skb_metadata_clear(skb); 2293 2294 /* It is not generally safe to change skb->truesize. 2295 * For the moment, we really care of rx path, or 2296 * when skb is orphaned (not attached to a socket). 2297 */ 2298 if (!skb->sk || skb->destructor == sock_edemux) 2299 skb->truesize += size - osize; 2300 2301 return 0; 2302 2303 nofrags: 2304 skb_kfree_head(data, size); 2305 nodata: 2306 return -ENOMEM; 2307 } 2308 EXPORT_SYMBOL(pskb_expand_head); 2309 2310 /* Make private copy of skb with writable head and some headroom */ 2311 2312 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2313 { 2314 struct sk_buff *skb2; 2315 int delta = headroom - skb_headroom(skb); 2316 2317 if (delta <= 0) 2318 skb2 = pskb_copy(skb, GFP_ATOMIC); 2319 else { 2320 skb2 = skb_clone(skb, GFP_ATOMIC); 2321 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2322 GFP_ATOMIC)) { 2323 kfree_skb(skb2); 2324 skb2 = NULL; 2325 } 2326 } 2327 return skb2; 2328 } 2329 EXPORT_SYMBOL(skb_realloc_headroom); 2330 2331 /* Note: We plan to rework this in linux-6.4 */ 2332 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2333 { 2334 unsigned int saved_end_offset, saved_truesize; 2335 struct skb_shared_info *shinfo; 2336 int res; 2337 2338 saved_end_offset = skb_end_offset(skb); 2339 saved_truesize = skb->truesize; 2340 2341 res = pskb_expand_head(skb, 0, 0, pri); 2342 if (res) 2343 return res; 2344 2345 skb->truesize = saved_truesize; 2346 2347 if (likely(skb_end_offset(skb) == saved_end_offset)) 2348 return 0; 2349 2350 /* We can not change skb->end if the original or new value 2351 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2352 */ 2353 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2354 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2355 /* We think this path should not be taken. 2356 * Add a temporary trace to warn us just in case. 2357 */ 2358 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2359 saved_end_offset, skb_end_offset(skb)); 2360 WARN_ON_ONCE(1); 2361 return 0; 2362 } 2363 2364 shinfo = skb_shinfo(skb); 2365 2366 /* We are about to change back skb->end, 2367 * we need to move skb_shinfo() to its new location. 2368 */ 2369 memmove(skb->head + saved_end_offset, 2370 shinfo, 2371 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2372 2373 skb_set_end_offset(skb, saved_end_offset); 2374 2375 return 0; 2376 } 2377 2378 /** 2379 * skb_expand_head - reallocate header of &sk_buff 2380 * @skb: buffer to reallocate 2381 * @headroom: needed headroom 2382 * 2383 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2384 * if possible; copies skb->sk to new skb as needed 2385 * and frees original skb in case of failures. 2386 * 2387 * It expect increased headroom and generates warning otherwise. 2388 */ 2389 2390 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2391 { 2392 int delta = headroom - skb_headroom(skb); 2393 int osize = skb_end_offset(skb); 2394 struct sock *sk = skb->sk; 2395 2396 if (WARN_ONCE(delta <= 0, 2397 "%s is expecting an increase in the headroom", __func__)) 2398 return skb; 2399 2400 delta = SKB_DATA_ALIGN(delta); 2401 /* pskb_expand_head() might crash, if skb is shared. */ 2402 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2403 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2404 2405 if (unlikely(!nskb)) 2406 goto fail; 2407 2408 if (sk) 2409 skb_set_owner_w(nskb, sk); 2410 consume_skb(skb); 2411 skb = nskb; 2412 } 2413 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2414 goto fail; 2415 2416 if (sk && is_skb_wmem(skb)) { 2417 delta = skb_end_offset(skb) - osize; 2418 refcount_add(delta, &sk->sk_wmem_alloc); 2419 skb->truesize += delta; 2420 } 2421 return skb; 2422 2423 fail: 2424 kfree_skb(skb); 2425 return NULL; 2426 } 2427 EXPORT_SYMBOL(skb_expand_head); 2428 2429 /** 2430 * skb_copy_expand - copy and expand sk_buff 2431 * @skb: buffer to copy 2432 * @newheadroom: new free bytes at head 2433 * @newtailroom: new free bytes at tail 2434 * @gfp_mask: allocation priority 2435 * 2436 * Make a copy of both an &sk_buff and its data and while doing so 2437 * allocate additional space. 2438 * 2439 * This is used when the caller wishes to modify the data and needs a 2440 * private copy of the data to alter as well as more space for new fields. 2441 * Returns %NULL on failure or the pointer to the buffer 2442 * on success. The returned buffer has a reference count of 1. 2443 * 2444 * You must pass %GFP_ATOMIC as the allocation priority if this function 2445 * is called from an interrupt. 2446 */ 2447 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2448 int newheadroom, int newtailroom, 2449 gfp_t gfp_mask) 2450 { 2451 /* 2452 * Allocate the copy buffer 2453 */ 2454 int head_copy_len, head_copy_off; 2455 struct sk_buff *n; 2456 int oldheadroom; 2457 2458 if (!skb_frags_readable(skb)) 2459 return NULL; 2460 2461 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2462 return NULL; 2463 2464 oldheadroom = skb_headroom(skb); 2465 n = __alloc_skb(newheadroom + skb->len + newtailroom, 2466 gfp_mask, skb_alloc_rx_flag(skb), 2467 NUMA_NO_NODE); 2468 if (!n) 2469 return NULL; 2470 2471 skb_reserve(n, newheadroom); 2472 2473 /* Set the tail pointer and length */ 2474 skb_put(n, skb->len); 2475 2476 head_copy_len = oldheadroom; 2477 head_copy_off = 0; 2478 if (newheadroom <= head_copy_len) 2479 head_copy_len = newheadroom; 2480 else 2481 head_copy_off = newheadroom - head_copy_len; 2482 2483 /* Copy the linear header and data. */ 2484 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2485 skb->len + head_copy_len)); 2486 2487 skb_copy_header(n, skb); 2488 2489 skb_headers_offset_update(n, newheadroom - oldheadroom); 2490 2491 return n; 2492 } 2493 EXPORT_SYMBOL(skb_copy_expand); 2494 2495 /** 2496 * __skb_pad - zero pad the tail of an skb 2497 * @skb: buffer to pad 2498 * @pad: space to pad 2499 * @free_on_error: free buffer on error 2500 * 2501 * Ensure that a buffer is followed by a padding area that is zero 2502 * filled. Used by network drivers which may DMA or transfer data 2503 * beyond the buffer end onto the wire. 2504 * 2505 * May return error in out of memory cases. The skb is freed on error 2506 * if @free_on_error is true. 2507 */ 2508 2509 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2510 { 2511 int err; 2512 int ntail; 2513 2514 /* If the skbuff is non linear tailroom is always zero.. */ 2515 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2516 memset(skb->data+skb->len, 0, pad); 2517 return 0; 2518 } 2519 2520 ntail = skb->data_len + pad - (skb->end - skb->tail); 2521 if (likely(skb_cloned(skb) || ntail > 0)) { 2522 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2523 if (unlikely(err)) 2524 goto free_skb; 2525 } 2526 2527 /* FIXME: The use of this function with non-linear skb's really needs 2528 * to be audited. 2529 */ 2530 err = skb_linearize(skb); 2531 if (unlikely(err)) 2532 goto free_skb; 2533 2534 memset(skb->data + skb->len, 0, pad); 2535 return 0; 2536 2537 free_skb: 2538 if (free_on_error) 2539 kfree_skb(skb); 2540 return err; 2541 } 2542 EXPORT_SYMBOL(__skb_pad); 2543 2544 /** 2545 * pskb_put - add data to the tail of a potentially fragmented buffer 2546 * @skb: start of the buffer to use 2547 * @tail: tail fragment of the buffer to use 2548 * @len: amount of data to add 2549 * 2550 * This function extends the used data area of the potentially 2551 * fragmented buffer. @tail must be the last fragment of @skb -- or 2552 * @skb itself. If this would exceed the total buffer size the kernel 2553 * will panic. A pointer to the first byte of the extra data is 2554 * returned. 2555 */ 2556 2557 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2558 { 2559 if (tail != skb) { 2560 skb->data_len += len; 2561 skb->len += len; 2562 } 2563 return skb_put(tail, len); 2564 } 2565 EXPORT_SYMBOL_GPL(pskb_put); 2566 2567 /** 2568 * skb_put - add data to a buffer 2569 * @skb: buffer to use 2570 * @len: amount of data to add 2571 * 2572 * This function extends the used data area of the buffer. If this would 2573 * exceed the total buffer size the kernel will panic. A pointer to the 2574 * first byte of the extra data is returned. 2575 */ 2576 void *skb_put(struct sk_buff *skb, unsigned int len) 2577 { 2578 void *tmp = skb_tail_pointer(skb); 2579 SKB_LINEAR_ASSERT(skb); 2580 skb->tail += len; 2581 skb->len += len; 2582 if (unlikely(skb->tail > skb->end)) 2583 skb_over_panic(skb, len, __builtin_return_address(0)); 2584 return tmp; 2585 } 2586 EXPORT_SYMBOL(skb_put); 2587 2588 /** 2589 * skb_push - add data to the start of a buffer 2590 * @skb: buffer to use 2591 * @len: amount of data to add 2592 * 2593 * This function extends the used data area of the buffer at the buffer 2594 * start. If this would exceed the total buffer headroom the kernel will 2595 * panic. A pointer to the first byte of the extra data is returned. 2596 */ 2597 void *skb_push(struct sk_buff *skb, unsigned int len) 2598 { 2599 skb->data -= len; 2600 skb->len += len; 2601 if (unlikely(skb->data < skb->head)) 2602 skb_under_panic(skb, len, __builtin_return_address(0)); 2603 return skb->data; 2604 } 2605 EXPORT_SYMBOL(skb_push); 2606 2607 /** 2608 * skb_pull - remove data from the start of a buffer 2609 * @skb: buffer to use 2610 * @len: amount of data to remove 2611 * 2612 * This function removes data from the start of a buffer, returning 2613 * the memory to the headroom. A pointer to the next data in the buffer 2614 * is returned. Once the data has been pulled future pushes will overwrite 2615 * the old data. 2616 */ 2617 void *skb_pull(struct sk_buff *skb, unsigned int len) 2618 { 2619 return skb_pull_inline(skb, len); 2620 } 2621 EXPORT_SYMBOL(skb_pull); 2622 2623 /** 2624 * skb_pull_data - remove data from the start of a buffer returning its 2625 * original position. 2626 * @skb: buffer to use 2627 * @len: amount of data to remove 2628 * 2629 * This function removes data from the start of a buffer, returning 2630 * the memory to the headroom. A pointer to the original data in the buffer 2631 * is returned after checking if there is enough data to pull. Once the 2632 * data has been pulled future pushes will overwrite the old data. 2633 */ 2634 void *skb_pull_data(struct sk_buff *skb, size_t len) 2635 { 2636 void *data = skb->data; 2637 2638 if (skb->len < len) 2639 return NULL; 2640 2641 skb_pull(skb, len); 2642 2643 return data; 2644 } 2645 EXPORT_SYMBOL(skb_pull_data); 2646 2647 /** 2648 * skb_trim - remove end from a buffer 2649 * @skb: buffer to alter 2650 * @len: new length 2651 * 2652 * Cut the length of a buffer down by removing data from the tail. If 2653 * the buffer is already under the length specified it is not modified. 2654 * The skb must be linear. 2655 */ 2656 void skb_trim(struct sk_buff *skb, unsigned int len) 2657 { 2658 if (skb->len > len) 2659 __skb_trim(skb, len); 2660 } 2661 EXPORT_SYMBOL(skb_trim); 2662 2663 /* Trims skb to length len. It can change skb pointers. 2664 */ 2665 2666 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2667 { 2668 struct sk_buff **fragp; 2669 struct sk_buff *frag; 2670 int offset = skb_headlen(skb); 2671 int nfrags = skb_shinfo(skb)->nr_frags; 2672 int i; 2673 int err; 2674 2675 if (skb_cloned(skb) && 2676 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2677 return err; 2678 2679 i = 0; 2680 if (offset >= len) 2681 goto drop_pages; 2682 2683 for (; i < nfrags; i++) { 2684 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2685 2686 if (end < len) { 2687 offset = end; 2688 continue; 2689 } 2690 2691 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2692 2693 drop_pages: 2694 skb_shinfo(skb)->nr_frags = i; 2695 2696 for (; i < nfrags; i++) 2697 skb_frag_unref(skb, i); 2698 2699 if (skb_has_frag_list(skb)) 2700 skb_drop_fraglist(skb); 2701 goto done; 2702 } 2703 2704 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2705 fragp = &frag->next) { 2706 int end = offset + frag->len; 2707 2708 if (skb_shared(frag)) { 2709 struct sk_buff *nfrag; 2710 2711 nfrag = skb_clone(frag, GFP_ATOMIC); 2712 if (unlikely(!nfrag)) 2713 return -ENOMEM; 2714 2715 nfrag->next = frag->next; 2716 consume_skb(frag); 2717 frag = nfrag; 2718 *fragp = frag; 2719 } 2720 2721 if (end < len) { 2722 offset = end; 2723 continue; 2724 } 2725 2726 if (end > len && 2727 unlikely((err = pskb_trim(frag, len - offset)))) 2728 return err; 2729 2730 if (frag->next) 2731 skb_drop_list(&frag->next); 2732 break; 2733 } 2734 2735 done: 2736 if (len > skb_headlen(skb)) { 2737 skb->data_len -= skb->len - len; 2738 skb->len = len; 2739 } else { 2740 skb->len = len; 2741 skb->data_len = 0; 2742 skb_set_tail_pointer(skb, len); 2743 } 2744 2745 if (!skb->sk || skb->destructor == sock_edemux) 2746 skb_condense(skb); 2747 return 0; 2748 } 2749 EXPORT_SYMBOL(___pskb_trim); 2750 2751 /* Note : use pskb_trim_rcsum() instead of calling this directly 2752 */ 2753 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2754 { 2755 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2756 int delta = skb->len - len; 2757 2758 skb->csum = csum_block_sub(skb->csum, 2759 skb_checksum(skb, len, delta, 0), 2760 len); 2761 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2762 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2763 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2764 2765 if (offset + sizeof(__sum16) > hdlen) 2766 return -EINVAL; 2767 } 2768 return __pskb_trim(skb, len); 2769 } 2770 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2771 2772 /** 2773 * __pskb_pull_tail - advance tail of skb header 2774 * @skb: buffer to reallocate 2775 * @delta: number of bytes to advance tail 2776 * 2777 * The function makes a sense only on a fragmented &sk_buff, 2778 * it expands header moving its tail forward and copying necessary 2779 * data from fragmented part. 2780 * 2781 * &sk_buff MUST have reference count of 1. 2782 * 2783 * Returns %NULL (and &sk_buff does not change) if pull failed 2784 * or value of new tail of skb in the case of success. 2785 * 2786 * All the pointers pointing into skb header may change and must be 2787 * reloaded after call to this function. 2788 */ 2789 2790 /* Moves tail of skb head forward, copying data from fragmented part, 2791 * when it is necessary. 2792 * 1. It may fail due to malloc failure. 2793 * 2. It may change skb pointers. 2794 * 2795 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2796 */ 2797 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2798 { 2799 /* If skb has not enough free space at tail, get new one 2800 * plus 128 bytes for future expansions. If we have enough 2801 * room at tail, reallocate without expansion only if skb is cloned. 2802 */ 2803 int i, k, eat = (skb->tail + delta) - skb->end; 2804 2805 if (!skb_frags_readable(skb)) 2806 return NULL; 2807 2808 if (eat > 0 || skb_cloned(skb)) { 2809 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2810 GFP_ATOMIC)) 2811 return NULL; 2812 } 2813 2814 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2815 skb_tail_pointer(skb), delta)); 2816 2817 /* Optimization: no fragments, no reasons to preestimate 2818 * size of pulled pages. Superb. 2819 */ 2820 if (!skb_has_frag_list(skb)) 2821 goto pull_pages; 2822 2823 /* Estimate size of pulled pages. */ 2824 eat = delta; 2825 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2826 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2827 2828 if (size >= eat) 2829 goto pull_pages; 2830 eat -= size; 2831 } 2832 2833 /* If we need update frag list, we are in troubles. 2834 * Certainly, it is possible to add an offset to skb data, 2835 * but taking into account that pulling is expected to 2836 * be very rare operation, it is worth to fight against 2837 * further bloating skb head and crucify ourselves here instead. 2838 * Pure masohism, indeed. 8)8) 2839 */ 2840 if (eat) { 2841 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2842 struct sk_buff *clone = NULL; 2843 struct sk_buff *insp = NULL; 2844 2845 do { 2846 if (list->len <= eat) { 2847 /* Eaten as whole. */ 2848 eat -= list->len; 2849 list = list->next; 2850 insp = list; 2851 } else { 2852 /* Eaten partially. */ 2853 if (skb_is_gso(skb) && !list->head_frag && 2854 skb_headlen(list)) 2855 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2856 2857 if (skb_shared(list)) { 2858 /* Sucks! We need to fork list. :-( */ 2859 clone = skb_clone(list, GFP_ATOMIC); 2860 if (!clone) 2861 return NULL; 2862 insp = list->next; 2863 list = clone; 2864 } else { 2865 /* This may be pulled without 2866 * problems. */ 2867 insp = list; 2868 } 2869 if (!pskb_pull(list, eat)) { 2870 kfree_skb(clone); 2871 return NULL; 2872 } 2873 break; 2874 } 2875 } while (eat); 2876 2877 /* Free pulled out fragments. */ 2878 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2879 skb_shinfo(skb)->frag_list = list->next; 2880 consume_skb(list); 2881 } 2882 /* And insert new clone at head. */ 2883 if (clone) { 2884 clone->next = list; 2885 skb_shinfo(skb)->frag_list = clone; 2886 } 2887 } 2888 /* Success! Now we may commit changes to skb data. */ 2889 2890 pull_pages: 2891 eat = delta; 2892 k = 0; 2893 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2894 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2895 2896 if (size <= eat) { 2897 skb_frag_unref(skb, i); 2898 eat -= size; 2899 } else { 2900 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2901 2902 *frag = skb_shinfo(skb)->frags[i]; 2903 if (eat) { 2904 skb_frag_off_add(frag, eat); 2905 skb_frag_size_sub(frag, eat); 2906 if (!i) 2907 goto end; 2908 eat = 0; 2909 } 2910 k++; 2911 } 2912 } 2913 skb_shinfo(skb)->nr_frags = k; 2914 2915 end: 2916 skb->tail += delta; 2917 skb->data_len -= delta; 2918 2919 if (!skb->data_len) 2920 skb_zcopy_clear(skb, false); 2921 2922 return skb_tail_pointer(skb); 2923 } 2924 EXPORT_SYMBOL(__pskb_pull_tail); 2925 2926 /** 2927 * skb_copy_bits - copy bits from skb to kernel buffer 2928 * @skb: source skb 2929 * @offset: offset in source 2930 * @to: destination buffer 2931 * @len: number of bytes to copy 2932 * 2933 * Copy the specified number of bytes from the source skb to the 2934 * destination buffer. 2935 * 2936 * CAUTION ! : 2937 * If its prototype is ever changed, 2938 * check arch/{*}/net/{*}.S files, 2939 * since it is called from BPF assembly code. 2940 */ 2941 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2942 { 2943 int start = skb_headlen(skb); 2944 struct sk_buff *frag_iter; 2945 int i, copy; 2946 2947 if (offset > (int)skb->len - len) 2948 goto fault; 2949 2950 /* Copy header. */ 2951 if ((copy = start - offset) > 0) { 2952 if (copy > len) 2953 copy = len; 2954 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2955 if ((len -= copy) == 0) 2956 return 0; 2957 offset += copy; 2958 to += copy; 2959 } 2960 2961 if (!skb_frags_readable(skb)) 2962 goto fault; 2963 2964 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2965 int end; 2966 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2967 2968 WARN_ON(start > offset + len); 2969 2970 end = start + skb_frag_size(f); 2971 if ((copy = end - offset) > 0) { 2972 u32 p_off, p_len, copied; 2973 struct page *p; 2974 u8 *vaddr; 2975 2976 if (copy > len) 2977 copy = len; 2978 2979 skb_frag_foreach_page(f, 2980 skb_frag_off(f) + offset - start, 2981 copy, p, p_off, p_len, copied) { 2982 vaddr = kmap_atomic(p); 2983 memcpy(to + copied, vaddr + p_off, p_len); 2984 kunmap_atomic(vaddr); 2985 } 2986 2987 if ((len -= copy) == 0) 2988 return 0; 2989 offset += copy; 2990 to += copy; 2991 } 2992 start = end; 2993 } 2994 2995 skb_walk_frags(skb, frag_iter) { 2996 int end; 2997 2998 WARN_ON(start > offset + len); 2999 3000 end = start + frag_iter->len; 3001 if ((copy = end - offset) > 0) { 3002 if (copy > len) 3003 copy = len; 3004 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 3005 goto fault; 3006 if ((len -= copy) == 0) 3007 return 0; 3008 offset += copy; 3009 to += copy; 3010 } 3011 start = end; 3012 } 3013 3014 if (!len) 3015 return 0; 3016 3017 fault: 3018 return -EFAULT; 3019 } 3020 EXPORT_SYMBOL(skb_copy_bits); 3021 3022 /* 3023 * Callback from splice_to_pipe(), if we need to release some pages 3024 * at the end of the spd in case we error'ed out in filling the pipe. 3025 */ 3026 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 3027 { 3028 put_page(spd->pages[i]); 3029 } 3030 3031 static struct page *linear_to_page(struct page *page, unsigned int *len, 3032 unsigned int *offset, 3033 struct sock *sk) 3034 { 3035 struct page_frag *pfrag = sk_page_frag(sk); 3036 3037 if (!sk_page_frag_refill(sk, pfrag)) 3038 return NULL; 3039 3040 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 3041 3042 memcpy(page_address(pfrag->page) + pfrag->offset, 3043 page_address(page) + *offset, *len); 3044 *offset = pfrag->offset; 3045 pfrag->offset += *len; 3046 3047 return pfrag->page; 3048 } 3049 3050 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3051 struct page *page, 3052 unsigned int offset) 3053 { 3054 return spd->nr_pages && 3055 spd->pages[spd->nr_pages - 1] == page && 3056 (spd->partial[spd->nr_pages - 1].offset + 3057 spd->partial[spd->nr_pages - 1].len == offset); 3058 } 3059 3060 /* 3061 * Fill page/offset/length into spd, if it can hold more pages. 3062 */ 3063 static bool spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 3064 unsigned int *len, unsigned int offset, bool linear, 3065 struct sock *sk) 3066 { 3067 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3068 return true; 3069 3070 if (linear) { 3071 page = linear_to_page(page, len, &offset, sk); 3072 if (!page) 3073 return true; 3074 } 3075 if (spd_can_coalesce(spd, page, offset)) { 3076 spd->partial[spd->nr_pages - 1].len += *len; 3077 return false; 3078 } 3079 get_page(page); 3080 spd->pages[spd->nr_pages] = page; 3081 spd->partial[spd->nr_pages].len = *len; 3082 spd->partial[spd->nr_pages].offset = offset; 3083 spd->nr_pages++; 3084 3085 return false; 3086 } 3087 3088 static bool __splice_segment(struct page *page, unsigned int poff, 3089 unsigned int plen, unsigned int *off, 3090 unsigned int *len, 3091 struct splice_pipe_desc *spd, bool linear, 3092 struct sock *sk) 3093 { 3094 if (!*len) 3095 return true; 3096 3097 /* skip this segment if already processed */ 3098 if (*off >= plen) { 3099 *off -= plen; 3100 return false; 3101 } 3102 3103 /* ignore any bits we already processed */ 3104 poff += *off; 3105 plen -= *off; 3106 *off = 0; 3107 3108 do { 3109 unsigned int flen = min(*len, plen); 3110 3111 if (spd_fill_page(spd, page, &flen, poff, linear, sk)) 3112 return true; 3113 poff += flen; 3114 plen -= flen; 3115 *len -= flen; 3116 if (!*len) 3117 return true; 3118 } while (plen); 3119 3120 return false; 3121 } 3122 3123 /* 3124 * Map linear and fragment data from the skb to spd. It reports true if the 3125 * pipe is full or if we already spliced the requested length. 3126 */ 3127 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3128 unsigned int *offset, unsigned int *len, 3129 struct splice_pipe_desc *spd, struct sock *sk) 3130 { 3131 struct sk_buff *iter; 3132 int seg; 3133 3134 /* map the linear part : 3135 * If skb->head_frag is set, this 'linear' part is backed by a 3136 * fragment, and if the head is not shared with any clones then 3137 * we can avoid a copy since we own the head portion of this page. 3138 */ 3139 if (__splice_segment(virt_to_page(skb->data), 3140 (unsigned long) skb->data & (PAGE_SIZE - 1), 3141 skb_headlen(skb), 3142 offset, len, spd, 3143 skb_head_is_locked(skb), 3144 sk)) 3145 return true; 3146 3147 /* 3148 * then map the fragments 3149 */ 3150 if (!skb_frags_readable(skb)) 3151 return false; 3152 3153 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3154 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3155 3156 if (WARN_ON_ONCE(!skb_frag_page(f))) 3157 return false; 3158 3159 if (__splice_segment(skb_frag_page(f), 3160 skb_frag_off(f), skb_frag_size(f), 3161 offset, len, spd, false, sk)) 3162 return true; 3163 } 3164 3165 skb_walk_frags(skb, iter) { 3166 if (*offset >= iter->len) { 3167 *offset -= iter->len; 3168 continue; 3169 } 3170 /* __skb_splice_bits() only fails if the output has no room 3171 * left, so no point in going over the frag_list for the error 3172 * case. 3173 */ 3174 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3175 return true; 3176 } 3177 3178 return false; 3179 } 3180 3181 /* 3182 * Map data from the skb to a pipe. Should handle both the linear part, 3183 * the fragments, and the frag list. 3184 */ 3185 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3186 struct pipe_inode_info *pipe, unsigned int tlen, 3187 unsigned int flags) 3188 { 3189 struct partial_page partial[MAX_SKB_FRAGS]; 3190 struct page *pages[MAX_SKB_FRAGS]; 3191 struct splice_pipe_desc spd = { 3192 .pages = pages, 3193 .partial = partial, 3194 .nr_pages_max = MAX_SKB_FRAGS, 3195 .ops = &nosteal_pipe_buf_ops, 3196 .spd_release = sock_spd_release, 3197 }; 3198 int ret = 0; 3199 3200 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3201 3202 if (spd.nr_pages) 3203 ret = splice_to_pipe(pipe, &spd); 3204 3205 return ret; 3206 } 3207 EXPORT_SYMBOL_GPL(skb_splice_bits); 3208 3209 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3210 { 3211 struct socket *sock = sk->sk_socket; 3212 size_t size = msg_data_left(msg); 3213 3214 if (!sock) 3215 return -EINVAL; 3216 3217 if (!sock->ops->sendmsg_locked) 3218 return sock_no_sendmsg_locked(sk, msg, size); 3219 3220 return sock->ops->sendmsg_locked(sk, msg, size); 3221 } 3222 3223 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3224 { 3225 struct socket *sock = sk->sk_socket; 3226 3227 if (!sock) 3228 return -EINVAL; 3229 return sock_sendmsg(sock, msg); 3230 } 3231 3232 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3233 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3234 int len, sendmsg_func sendmsg, int flags) 3235 { 3236 int more_hint = sk_is_tcp(sk) ? MSG_MORE : 0; 3237 unsigned int orig_len = len; 3238 struct sk_buff *head = skb; 3239 unsigned short fragidx; 3240 int slen, ret; 3241 3242 do_frag_list: 3243 3244 /* Deal with head data */ 3245 while (offset < skb_headlen(skb) && len) { 3246 struct kvec kv; 3247 struct msghdr msg; 3248 3249 slen = min_t(int, len, skb_headlen(skb) - offset); 3250 kv.iov_base = skb->data + offset; 3251 kv.iov_len = slen; 3252 memset(&msg, 0, sizeof(msg)); 3253 msg.msg_flags = MSG_DONTWAIT | flags; 3254 if (slen < len) 3255 msg.msg_flags |= more_hint; 3256 3257 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3258 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3259 sendmsg_unlocked, sk, &msg); 3260 if (ret <= 0) 3261 goto error; 3262 3263 offset += ret; 3264 len -= ret; 3265 } 3266 3267 /* All the data was skb head? */ 3268 if (!len) 3269 goto out; 3270 3271 /* Make offset relative to start of frags */ 3272 offset -= skb_headlen(skb); 3273 3274 /* Find where we are in frag list */ 3275 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3276 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3277 3278 if (offset < skb_frag_size(frag)) 3279 break; 3280 3281 offset -= skb_frag_size(frag); 3282 } 3283 3284 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3285 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3286 3287 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3288 3289 while (slen) { 3290 struct bio_vec bvec; 3291 struct msghdr msg = { 3292 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | 3293 flags, 3294 }; 3295 3296 if (slen < len) 3297 msg.msg_flags |= more_hint; 3298 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3299 skb_frag_off(frag) + offset); 3300 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3301 slen); 3302 3303 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3304 sendmsg_unlocked, sk, &msg); 3305 if (ret <= 0) 3306 goto error; 3307 3308 len -= ret; 3309 offset += ret; 3310 slen -= ret; 3311 } 3312 3313 offset = 0; 3314 } 3315 3316 if (len) { 3317 /* Process any frag lists */ 3318 3319 if (skb == head) { 3320 if (skb_has_frag_list(skb)) { 3321 skb = skb_shinfo(skb)->frag_list; 3322 goto do_frag_list; 3323 } 3324 } else if (skb->next) { 3325 skb = skb->next; 3326 goto do_frag_list; 3327 } 3328 } 3329 3330 out: 3331 return orig_len - len; 3332 3333 error: 3334 return orig_len == len ? ret : orig_len - len; 3335 } 3336 3337 /* Send skb data on a socket. Socket must be locked. */ 3338 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3339 int len) 3340 { 3341 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0); 3342 } 3343 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3344 3345 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb, 3346 int offset, int len, int flags) 3347 { 3348 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags); 3349 } 3350 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags); 3351 3352 /* Send skb data on a socket. Socket must be unlocked. */ 3353 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3354 { 3355 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0); 3356 } 3357 3358 /** 3359 * skb_store_bits - store bits from kernel buffer to skb 3360 * @skb: destination buffer 3361 * @offset: offset in destination 3362 * @from: source buffer 3363 * @len: number of bytes to copy 3364 * 3365 * Copy the specified number of bytes from the source buffer to the 3366 * destination skb. This function handles all the messy bits of 3367 * traversing fragment lists and such. 3368 */ 3369 3370 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3371 { 3372 int start = skb_headlen(skb); 3373 struct sk_buff *frag_iter; 3374 int i, copy; 3375 3376 if (offset > (int)skb->len - len) 3377 goto fault; 3378 3379 if ((copy = start - offset) > 0) { 3380 if (copy > len) 3381 copy = len; 3382 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3383 if ((len -= copy) == 0) 3384 return 0; 3385 offset += copy; 3386 from += copy; 3387 } 3388 3389 if (!skb_frags_readable(skb)) 3390 goto fault; 3391 3392 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3393 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3394 int end; 3395 3396 WARN_ON(start > offset + len); 3397 3398 end = start + skb_frag_size(frag); 3399 if ((copy = end - offset) > 0) { 3400 u32 p_off, p_len, copied; 3401 struct page *p; 3402 u8 *vaddr; 3403 3404 if (copy > len) 3405 copy = len; 3406 3407 skb_frag_foreach_page(frag, 3408 skb_frag_off(frag) + offset - start, 3409 copy, p, p_off, p_len, copied) { 3410 vaddr = kmap_atomic(p); 3411 memcpy(vaddr + p_off, from + copied, p_len); 3412 kunmap_atomic(vaddr); 3413 } 3414 3415 if ((len -= copy) == 0) 3416 return 0; 3417 offset += copy; 3418 from += copy; 3419 } 3420 start = end; 3421 } 3422 3423 skb_walk_frags(skb, frag_iter) { 3424 int end; 3425 3426 WARN_ON(start > offset + len); 3427 3428 end = start + frag_iter->len; 3429 if ((copy = end - offset) > 0) { 3430 if (copy > len) 3431 copy = len; 3432 if (skb_store_bits(frag_iter, offset - start, 3433 from, copy)) 3434 goto fault; 3435 if ((len -= copy) == 0) 3436 return 0; 3437 offset += copy; 3438 from += copy; 3439 } 3440 start = end; 3441 } 3442 if (!len) 3443 return 0; 3444 3445 fault: 3446 return -EFAULT; 3447 } 3448 EXPORT_SYMBOL(skb_store_bits); 3449 3450 /* Checksum skb data. */ 3451 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum) 3452 { 3453 int start = skb_headlen(skb); 3454 int i, copy = start - offset; 3455 struct sk_buff *frag_iter; 3456 int pos = 0; 3457 3458 /* Checksum header. */ 3459 if (copy > 0) { 3460 if (copy > len) 3461 copy = len; 3462 csum = csum_partial(skb->data + offset, copy, csum); 3463 if ((len -= copy) == 0) 3464 return csum; 3465 offset += copy; 3466 pos = copy; 3467 } 3468 3469 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3470 return 0; 3471 3472 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3473 int end; 3474 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3475 3476 WARN_ON(start > offset + len); 3477 3478 end = start + skb_frag_size(frag); 3479 if ((copy = end - offset) > 0) { 3480 u32 p_off, p_len, copied; 3481 struct page *p; 3482 __wsum csum2; 3483 u8 *vaddr; 3484 3485 if (copy > len) 3486 copy = len; 3487 3488 skb_frag_foreach_page(frag, 3489 skb_frag_off(frag) + offset - start, 3490 copy, p, p_off, p_len, copied) { 3491 vaddr = kmap_atomic(p); 3492 csum2 = csum_partial(vaddr + p_off, p_len, 0); 3493 kunmap_atomic(vaddr); 3494 csum = csum_block_add(csum, csum2, pos); 3495 pos += p_len; 3496 } 3497 3498 if (!(len -= copy)) 3499 return csum; 3500 offset += copy; 3501 } 3502 start = end; 3503 } 3504 3505 skb_walk_frags(skb, frag_iter) { 3506 int end; 3507 3508 WARN_ON(start > offset + len); 3509 3510 end = start + frag_iter->len; 3511 if ((copy = end - offset) > 0) { 3512 __wsum csum2; 3513 if (copy > len) 3514 copy = len; 3515 csum2 = skb_checksum(frag_iter, offset - start, copy, 3516 0); 3517 csum = csum_block_add(csum, csum2, pos); 3518 if ((len -= copy) == 0) 3519 return csum; 3520 offset += copy; 3521 pos += copy; 3522 } 3523 start = end; 3524 } 3525 BUG_ON(len); 3526 3527 return csum; 3528 } 3529 EXPORT_SYMBOL(skb_checksum); 3530 3531 /* Both of above in one bottle. */ 3532 3533 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3534 u8 *to, int len) 3535 { 3536 int start = skb_headlen(skb); 3537 int i, copy = start - offset; 3538 struct sk_buff *frag_iter; 3539 int pos = 0; 3540 __wsum csum = 0; 3541 3542 /* Copy header. */ 3543 if (copy > 0) { 3544 if (copy > len) 3545 copy = len; 3546 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3547 copy); 3548 if ((len -= copy) == 0) 3549 return csum; 3550 offset += copy; 3551 to += copy; 3552 pos = copy; 3553 } 3554 3555 if (!skb_frags_readable(skb)) 3556 return 0; 3557 3558 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3559 int end; 3560 3561 WARN_ON(start > offset + len); 3562 3563 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3564 if ((copy = end - offset) > 0) { 3565 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3566 u32 p_off, p_len, copied; 3567 struct page *p; 3568 __wsum csum2; 3569 u8 *vaddr; 3570 3571 if (copy > len) 3572 copy = len; 3573 3574 skb_frag_foreach_page(frag, 3575 skb_frag_off(frag) + offset - start, 3576 copy, p, p_off, p_len, copied) { 3577 vaddr = kmap_atomic(p); 3578 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3579 to + copied, 3580 p_len); 3581 kunmap_atomic(vaddr); 3582 csum = csum_block_add(csum, csum2, pos); 3583 pos += p_len; 3584 } 3585 3586 if (!(len -= copy)) 3587 return csum; 3588 offset += copy; 3589 to += copy; 3590 } 3591 start = end; 3592 } 3593 3594 skb_walk_frags(skb, frag_iter) { 3595 __wsum csum2; 3596 int end; 3597 3598 WARN_ON(start > offset + len); 3599 3600 end = start + frag_iter->len; 3601 if ((copy = end - offset) > 0) { 3602 if (copy > len) 3603 copy = len; 3604 csum2 = skb_copy_and_csum_bits(frag_iter, 3605 offset - start, 3606 to, copy); 3607 csum = csum_block_add(csum, csum2, pos); 3608 if ((len -= copy) == 0) 3609 return csum; 3610 offset += copy; 3611 to += copy; 3612 pos += copy; 3613 } 3614 start = end; 3615 } 3616 BUG_ON(len); 3617 return csum; 3618 } 3619 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3620 3621 #ifdef CONFIG_NET_CRC32C 3622 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc) 3623 { 3624 int start = skb_headlen(skb); 3625 int i, copy = start - offset; 3626 struct sk_buff *frag_iter; 3627 3628 if (copy > 0) { 3629 copy = min(copy, len); 3630 crc = crc32c(crc, skb->data + offset, copy); 3631 len -= copy; 3632 if (len == 0) 3633 return crc; 3634 offset += copy; 3635 } 3636 3637 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3638 return 0; 3639 3640 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3641 int end; 3642 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3643 3644 WARN_ON(start > offset + len); 3645 3646 end = start + skb_frag_size(frag); 3647 copy = end - offset; 3648 if (copy > 0) { 3649 u32 p_off, p_len, copied; 3650 struct page *p; 3651 u8 *vaddr; 3652 3653 copy = min(copy, len); 3654 skb_frag_foreach_page(frag, 3655 skb_frag_off(frag) + offset - start, 3656 copy, p, p_off, p_len, copied) { 3657 vaddr = kmap_atomic(p); 3658 crc = crc32c(crc, vaddr + p_off, p_len); 3659 kunmap_atomic(vaddr); 3660 } 3661 len -= copy; 3662 if (len == 0) 3663 return crc; 3664 offset += copy; 3665 } 3666 start = end; 3667 } 3668 3669 skb_walk_frags(skb, frag_iter) { 3670 int end; 3671 3672 WARN_ON(start > offset + len); 3673 3674 end = start + frag_iter->len; 3675 copy = end - offset; 3676 if (copy > 0) { 3677 copy = min(copy, len); 3678 crc = skb_crc32c(frag_iter, offset - start, copy, crc); 3679 len -= copy; 3680 if (len == 0) 3681 return crc; 3682 offset += copy; 3683 } 3684 start = end; 3685 } 3686 BUG_ON(len); 3687 3688 return crc; 3689 } 3690 EXPORT_SYMBOL(skb_crc32c); 3691 #endif /* CONFIG_NET_CRC32C */ 3692 3693 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3694 { 3695 __sum16 sum; 3696 3697 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3698 /* See comments in __skb_checksum_complete(). */ 3699 if (likely(!sum)) { 3700 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3701 !skb->csum_complete_sw) 3702 netdev_rx_csum_fault(skb->dev, skb); 3703 } 3704 if (!skb_shared(skb)) 3705 skb->csum_valid = !sum; 3706 return sum; 3707 } 3708 EXPORT_SYMBOL(__skb_checksum_complete_head); 3709 3710 /* This function assumes skb->csum already holds pseudo header's checksum, 3711 * which has been changed from the hardware checksum, for example, by 3712 * __skb_checksum_validate_complete(). And, the original skb->csum must 3713 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3714 * 3715 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3716 * zero. The new checksum is stored back into skb->csum unless the skb is 3717 * shared. 3718 */ 3719 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3720 { 3721 __wsum csum; 3722 __sum16 sum; 3723 3724 csum = skb_checksum(skb, 0, skb->len, 0); 3725 3726 sum = csum_fold(csum_add(skb->csum, csum)); 3727 /* This check is inverted, because we already knew the hardware 3728 * checksum is invalid before calling this function. So, if the 3729 * re-computed checksum is valid instead, then we have a mismatch 3730 * between the original skb->csum and skb_checksum(). This means either 3731 * the original hardware checksum is incorrect or we screw up skb->csum 3732 * when moving skb->data around. 3733 */ 3734 if (likely(!sum)) { 3735 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3736 !skb->csum_complete_sw) 3737 netdev_rx_csum_fault(skb->dev, skb); 3738 } 3739 3740 if (!skb_shared(skb)) { 3741 /* Save full packet checksum */ 3742 skb->csum = csum; 3743 skb->ip_summed = CHECKSUM_COMPLETE; 3744 skb->csum_complete_sw = 1; 3745 skb->csum_valid = !sum; 3746 } 3747 3748 return sum; 3749 } 3750 EXPORT_SYMBOL(__skb_checksum_complete); 3751 3752 /** 3753 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3754 * @from: source buffer 3755 * 3756 * Calculates the amount of linear headroom needed in the 'to' skb passed 3757 * into skb_zerocopy(). 3758 */ 3759 unsigned int 3760 skb_zerocopy_headlen(const struct sk_buff *from) 3761 { 3762 unsigned int hlen = 0; 3763 3764 if (!from->head_frag || 3765 skb_headlen(from) < L1_CACHE_BYTES || 3766 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3767 hlen = skb_headlen(from); 3768 if (!hlen) 3769 hlen = from->len; 3770 } 3771 3772 if (skb_has_frag_list(from)) 3773 hlen = from->len; 3774 3775 return hlen; 3776 } 3777 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3778 3779 /** 3780 * skb_zerocopy - Zero copy skb to skb 3781 * @to: destination buffer 3782 * @from: source buffer 3783 * @len: number of bytes to copy from source buffer 3784 * @hlen: size of linear headroom in destination buffer 3785 * 3786 * Copies up to `len` bytes from `from` to `to` by creating references 3787 * to the frags in the source buffer. 3788 * 3789 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3790 * headroom in the `to` buffer. 3791 * 3792 * Return value: 3793 * 0: everything is OK 3794 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3795 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3796 */ 3797 int 3798 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3799 { 3800 int i, j = 0; 3801 int plen = 0; /* length of skb->head fragment */ 3802 int ret; 3803 struct page *page; 3804 unsigned int offset; 3805 3806 BUG_ON(!from->head_frag && !hlen); 3807 3808 /* dont bother with small payloads */ 3809 if (len <= skb_tailroom(to)) 3810 return skb_copy_bits(from, 0, skb_put(to, len), len); 3811 3812 if (hlen) { 3813 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3814 if (unlikely(ret)) 3815 return ret; 3816 len -= hlen; 3817 } else { 3818 plen = min_t(int, skb_headlen(from), len); 3819 if (plen) { 3820 page = virt_to_head_page(from->head); 3821 offset = from->data - (unsigned char *)page_address(page); 3822 __skb_fill_netmem_desc(to, 0, page_to_netmem(page), 3823 offset, plen); 3824 get_page(page); 3825 j = 1; 3826 len -= plen; 3827 } 3828 } 3829 3830 skb_len_add(to, len + plen); 3831 3832 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3833 skb_tx_error(from); 3834 return -ENOMEM; 3835 } 3836 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3837 3838 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3839 int size; 3840 3841 if (!len) 3842 break; 3843 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3844 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3845 len); 3846 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3847 len -= size; 3848 skb_frag_ref(to, j); 3849 j++; 3850 } 3851 skb_shinfo(to)->nr_frags = j; 3852 3853 return 0; 3854 } 3855 EXPORT_SYMBOL_GPL(skb_zerocopy); 3856 3857 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3858 { 3859 __wsum csum; 3860 long csstart; 3861 3862 if (skb->ip_summed == CHECKSUM_PARTIAL) 3863 csstart = skb_checksum_start_offset(skb); 3864 else 3865 csstart = skb_headlen(skb); 3866 3867 BUG_ON(csstart > skb_headlen(skb)); 3868 3869 skb_copy_from_linear_data(skb, to, csstart); 3870 3871 csum = 0; 3872 if (csstart != skb->len) 3873 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3874 skb->len - csstart); 3875 3876 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3877 long csstuff = csstart + skb->csum_offset; 3878 3879 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3880 } 3881 } 3882 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3883 3884 /** 3885 * skb_dequeue - remove from the head of the queue 3886 * @list: list to dequeue from 3887 * 3888 * Remove the head of the list. The list lock is taken so the function 3889 * may be used safely with other locking list functions. The head item is 3890 * returned or %NULL if the list is empty. 3891 */ 3892 3893 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3894 { 3895 unsigned long flags; 3896 struct sk_buff *result; 3897 3898 spin_lock_irqsave(&list->lock, flags); 3899 result = __skb_dequeue(list); 3900 spin_unlock_irqrestore(&list->lock, flags); 3901 return result; 3902 } 3903 EXPORT_SYMBOL(skb_dequeue); 3904 3905 /** 3906 * skb_dequeue_tail - remove from the tail of the queue 3907 * @list: list to dequeue from 3908 * 3909 * Remove the tail of the list. The list lock is taken so the function 3910 * may be used safely with other locking list functions. The tail item is 3911 * returned or %NULL if the list is empty. 3912 */ 3913 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3914 { 3915 unsigned long flags; 3916 struct sk_buff *result; 3917 3918 spin_lock_irqsave(&list->lock, flags); 3919 result = __skb_dequeue_tail(list); 3920 spin_unlock_irqrestore(&list->lock, flags); 3921 return result; 3922 } 3923 EXPORT_SYMBOL(skb_dequeue_tail); 3924 3925 /** 3926 * skb_queue_purge_reason - empty a list 3927 * @list: list to empty 3928 * @reason: drop reason 3929 * 3930 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3931 * the list and one reference dropped. This function takes the list 3932 * lock and is atomic with respect to other list locking functions. 3933 */ 3934 void skb_queue_purge_reason(struct sk_buff_head *list, 3935 enum skb_drop_reason reason) 3936 { 3937 struct sk_buff_head tmp; 3938 unsigned long flags; 3939 3940 if (skb_queue_empty_lockless(list)) 3941 return; 3942 3943 __skb_queue_head_init(&tmp); 3944 3945 spin_lock_irqsave(&list->lock, flags); 3946 skb_queue_splice_init(list, &tmp); 3947 spin_unlock_irqrestore(&list->lock, flags); 3948 3949 __skb_queue_purge_reason(&tmp, reason); 3950 } 3951 EXPORT_SYMBOL(skb_queue_purge_reason); 3952 3953 /** 3954 * skb_rbtree_purge - empty a skb rbtree 3955 * @root: root of the rbtree to empty 3956 * Return value: the sum of truesizes of all purged skbs. 3957 * 3958 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3959 * the list and one reference dropped. This function does not take 3960 * any lock. Synchronization should be handled by the caller (e.g., TCP 3961 * out-of-order queue is protected by the socket lock). 3962 */ 3963 unsigned int skb_rbtree_purge(struct rb_root *root) 3964 { 3965 struct rb_node *p = rb_first(root); 3966 unsigned int sum = 0; 3967 3968 while (p) { 3969 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3970 3971 p = rb_next(p); 3972 rb_erase(&skb->rbnode, root); 3973 sum += skb->truesize; 3974 kfree_skb(skb); 3975 } 3976 return sum; 3977 } 3978 3979 void skb_errqueue_purge(struct sk_buff_head *list) 3980 { 3981 struct sk_buff *skb, *next; 3982 struct sk_buff_head kill; 3983 unsigned long flags; 3984 3985 __skb_queue_head_init(&kill); 3986 3987 spin_lock_irqsave(&list->lock, flags); 3988 skb_queue_walk_safe(list, skb, next) { 3989 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3990 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3991 continue; 3992 __skb_unlink(skb, list); 3993 __skb_queue_tail(&kill, skb); 3994 } 3995 spin_unlock_irqrestore(&list->lock, flags); 3996 __skb_queue_purge(&kill); 3997 } 3998 EXPORT_SYMBOL(skb_errqueue_purge); 3999 4000 /** 4001 * skb_queue_head - queue a buffer at the list head 4002 * @list: list to use 4003 * @newsk: buffer to queue 4004 * 4005 * Queue a buffer at the start of the list. This function takes the 4006 * list lock and can be used safely with other locking &sk_buff functions 4007 * safely. 4008 * 4009 * A buffer cannot be placed on two lists at the same time. 4010 */ 4011 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 4012 { 4013 unsigned long flags; 4014 4015 spin_lock_irqsave(&list->lock, flags); 4016 __skb_queue_head(list, newsk); 4017 spin_unlock_irqrestore(&list->lock, flags); 4018 } 4019 EXPORT_SYMBOL(skb_queue_head); 4020 4021 /** 4022 * skb_queue_tail - queue a buffer at the list tail 4023 * @list: list to use 4024 * @newsk: buffer to queue 4025 * 4026 * Queue a buffer at the tail of the list. This function takes the 4027 * list lock and can be used safely with other locking &sk_buff functions 4028 * safely. 4029 * 4030 * A buffer cannot be placed on two lists at the same time. 4031 */ 4032 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 4033 { 4034 unsigned long flags; 4035 4036 spin_lock_irqsave(&list->lock, flags); 4037 __skb_queue_tail(list, newsk); 4038 spin_unlock_irqrestore(&list->lock, flags); 4039 } 4040 EXPORT_SYMBOL(skb_queue_tail); 4041 4042 /** 4043 * skb_unlink - remove a buffer from a list 4044 * @skb: buffer to remove 4045 * @list: list to use 4046 * 4047 * Remove a packet from a list. The list locks are taken and this 4048 * function is atomic with respect to other list locked calls 4049 * 4050 * You must know what list the SKB is on. 4051 */ 4052 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 4053 { 4054 unsigned long flags; 4055 4056 spin_lock_irqsave(&list->lock, flags); 4057 __skb_unlink(skb, list); 4058 spin_unlock_irqrestore(&list->lock, flags); 4059 } 4060 EXPORT_SYMBOL(skb_unlink); 4061 4062 /** 4063 * skb_append - append a buffer 4064 * @old: buffer to insert after 4065 * @newsk: buffer to insert 4066 * @list: list to use 4067 * 4068 * Place a packet after a given packet in a list. The list locks are taken 4069 * and this function is atomic with respect to other list locked calls. 4070 * A buffer cannot be placed on two lists at the same time. 4071 */ 4072 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 4073 { 4074 unsigned long flags; 4075 4076 spin_lock_irqsave(&list->lock, flags); 4077 __skb_queue_after(list, old, newsk); 4078 spin_unlock_irqrestore(&list->lock, flags); 4079 } 4080 EXPORT_SYMBOL(skb_append); 4081 4082 static inline void skb_split_inside_header(struct sk_buff *skb, 4083 struct sk_buff* skb1, 4084 const u32 len, const int pos) 4085 { 4086 int i; 4087 4088 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 4089 pos - len); 4090 /* And move data appendix as is. */ 4091 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4092 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 4093 4094 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 4095 skb1->unreadable = skb->unreadable; 4096 skb_shinfo(skb)->nr_frags = 0; 4097 skb1->data_len = skb->data_len; 4098 skb1->len += skb1->data_len; 4099 skb->data_len = 0; 4100 skb->len = len; 4101 skb_set_tail_pointer(skb, len); 4102 } 4103 4104 static inline void skb_split_no_header(struct sk_buff *skb, 4105 struct sk_buff* skb1, 4106 const u32 len, int pos) 4107 { 4108 int i, k = 0; 4109 const int nfrags = skb_shinfo(skb)->nr_frags; 4110 4111 skb_shinfo(skb)->nr_frags = 0; 4112 skb1->len = skb1->data_len = skb->len - len; 4113 skb->len = len; 4114 skb->data_len = len - pos; 4115 4116 for (i = 0; i < nfrags; i++) { 4117 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4118 4119 if (pos + size > len) { 4120 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4121 4122 if (pos < len) { 4123 /* Split frag. 4124 * We have two variants in this case: 4125 * 1. Move all the frag to the second 4126 * part, if it is possible. F.e. 4127 * this approach is mandatory for TUX, 4128 * where splitting is expensive. 4129 * 2. Split is accurately. We make this. 4130 */ 4131 skb_frag_ref(skb, i); 4132 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4133 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4134 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4135 skb_shinfo(skb)->nr_frags++; 4136 } 4137 k++; 4138 } else 4139 skb_shinfo(skb)->nr_frags++; 4140 pos += size; 4141 } 4142 skb_shinfo(skb1)->nr_frags = k; 4143 4144 skb1->unreadable = skb->unreadable; 4145 } 4146 4147 /** 4148 * skb_split - Split fragmented skb to two parts at length len. 4149 * @skb: the buffer to split 4150 * @skb1: the buffer to receive the second part 4151 * @len: new length for skb 4152 */ 4153 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4154 { 4155 int pos = skb_headlen(skb); 4156 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4157 4158 skb_zcopy_downgrade_managed(skb); 4159 4160 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4161 skb_zerocopy_clone(skb1, skb, 0); 4162 if (len < pos) /* Split line is inside header. */ 4163 skb_split_inside_header(skb, skb1, len, pos); 4164 else /* Second chunk has no header, nothing to copy. */ 4165 skb_split_no_header(skb, skb1, len, pos); 4166 } 4167 EXPORT_SYMBOL(skb_split); 4168 4169 /* Shifting from/to a cloned skb is a no-go. 4170 * 4171 * Caller cannot keep skb_shinfo related pointers past calling here! 4172 */ 4173 static int skb_prepare_for_shift(struct sk_buff *skb) 4174 { 4175 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4176 } 4177 4178 /** 4179 * skb_shift - Shifts paged data partially from skb to another 4180 * @tgt: buffer into which tail data gets added 4181 * @skb: buffer from which the paged data comes from 4182 * @shiftlen: shift up to this many bytes 4183 * 4184 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4185 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4186 * It's up to caller to free skb if everything was shifted. 4187 * 4188 * If @tgt runs out of frags, the whole operation is aborted. 4189 * 4190 * Skb cannot include anything else but paged data while tgt is allowed 4191 * to have non-paged data as well. 4192 * 4193 * TODO: full sized shift could be optimized but that would need 4194 * specialized skb free'er to handle frags without up-to-date nr_frags. 4195 */ 4196 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4197 { 4198 int from, to, merge, todo; 4199 skb_frag_t *fragfrom, *fragto; 4200 4201 BUG_ON(shiftlen > skb->len); 4202 4203 if (skb_headlen(skb)) 4204 return 0; 4205 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4206 return 0; 4207 4208 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle); 4209 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb)); 4210 4211 todo = shiftlen; 4212 from = 0; 4213 to = skb_shinfo(tgt)->nr_frags; 4214 fragfrom = &skb_shinfo(skb)->frags[from]; 4215 4216 /* Actual merge is delayed until the point when we know we can 4217 * commit all, so that we don't have to undo partial changes 4218 */ 4219 if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4220 skb_frag_off(fragfrom))) { 4221 merge = -1; 4222 } else { 4223 merge = to - 1; 4224 4225 todo -= skb_frag_size(fragfrom); 4226 if (todo < 0) { 4227 if (skb_prepare_for_shift(skb) || 4228 skb_prepare_for_shift(tgt)) 4229 return 0; 4230 4231 /* All previous frag pointers might be stale! */ 4232 fragfrom = &skb_shinfo(skb)->frags[from]; 4233 fragto = &skb_shinfo(tgt)->frags[merge]; 4234 4235 skb_frag_size_add(fragto, shiftlen); 4236 skb_frag_size_sub(fragfrom, shiftlen); 4237 skb_frag_off_add(fragfrom, shiftlen); 4238 4239 goto onlymerged; 4240 } 4241 4242 from++; 4243 } 4244 4245 /* Skip full, not-fitting skb to avoid expensive operations */ 4246 if ((shiftlen == skb->len) && 4247 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4248 return 0; 4249 4250 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4251 return 0; 4252 4253 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4254 if (to == MAX_SKB_FRAGS) 4255 return 0; 4256 4257 fragfrom = &skb_shinfo(skb)->frags[from]; 4258 fragto = &skb_shinfo(tgt)->frags[to]; 4259 4260 if (todo >= skb_frag_size(fragfrom)) { 4261 *fragto = *fragfrom; 4262 todo -= skb_frag_size(fragfrom); 4263 from++; 4264 to++; 4265 4266 } else { 4267 __skb_frag_ref(fragfrom); 4268 skb_frag_page_copy(fragto, fragfrom); 4269 skb_frag_off_copy(fragto, fragfrom); 4270 skb_frag_size_set(fragto, todo); 4271 4272 skb_frag_off_add(fragfrom, todo); 4273 skb_frag_size_sub(fragfrom, todo); 4274 todo = 0; 4275 4276 to++; 4277 break; 4278 } 4279 } 4280 4281 /* Ready to "commit" this state change to tgt */ 4282 skb_shinfo(tgt)->nr_frags = to; 4283 4284 if (merge >= 0) { 4285 fragfrom = &skb_shinfo(skb)->frags[0]; 4286 fragto = &skb_shinfo(tgt)->frags[merge]; 4287 4288 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4289 __skb_frag_unref(fragfrom, skb->pp_recycle); 4290 } 4291 4292 /* Reposition in the original skb */ 4293 to = 0; 4294 while (from < skb_shinfo(skb)->nr_frags) 4295 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4296 skb_shinfo(skb)->nr_frags = to; 4297 4298 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4299 4300 onlymerged: 4301 /* Most likely the tgt won't ever need its checksum anymore, skb on 4302 * the other hand might need it if it needs to be resent 4303 */ 4304 tgt->ip_summed = CHECKSUM_PARTIAL; 4305 skb->ip_summed = CHECKSUM_PARTIAL; 4306 4307 skb_len_add(skb, -shiftlen); 4308 skb_len_add(tgt, shiftlen); 4309 4310 return shiftlen; 4311 } 4312 4313 /** 4314 * skb_prepare_seq_read - Prepare a sequential read of skb data 4315 * @skb: the buffer to read 4316 * @from: lower offset of data to be read 4317 * @to: upper offset of data to be read 4318 * @st: state variable 4319 * 4320 * Initializes the specified state variable. Must be called before 4321 * invoking skb_seq_read() for the first time. 4322 */ 4323 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4324 unsigned int to, struct skb_seq_state *st) 4325 { 4326 st->lower_offset = from; 4327 st->upper_offset = to; 4328 st->root_skb = st->cur_skb = skb; 4329 st->frag_idx = st->stepped_offset = 0; 4330 st->frag_data = NULL; 4331 st->frag_off = 0; 4332 } 4333 EXPORT_SYMBOL(skb_prepare_seq_read); 4334 4335 /** 4336 * skb_seq_read - Sequentially read skb data 4337 * @consumed: number of bytes consumed by the caller so far 4338 * @data: destination pointer for data to be returned 4339 * @st: state variable 4340 * 4341 * Reads a block of skb data at @consumed relative to the 4342 * lower offset specified to skb_prepare_seq_read(). Assigns 4343 * the head of the data block to @data and returns the length 4344 * of the block or 0 if the end of the skb data or the upper 4345 * offset has been reached. 4346 * 4347 * The caller is not required to consume all of the data 4348 * returned, i.e. @consumed is typically set to the number 4349 * of bytes already consumed and the next call to 4350 * skb_seq_read() will return the remaining part of the block. 4351 * 4352 * Note 1: The size of each block of data returned can be arbitrary, 4353 * this limitation is the cost for zerocopy sequential 4354 * reads of potentially non linear data. 4355 * 4356 * Note 2: Fragment lists within fragments are not implemented 4357 * at the moment, state->root_skb could be replaced with 4358 * a stack for this purpose. 4359 */ 4360 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4361 struct skb_seq_state *st) 4362 { 4363 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4364 skb_frag_t *frag; 4365 4366 if (unlikely(abs_offset >= st->upper_offset)) { 4367 if (st->frag_data) { 4368 kunmap_atomic(st->frag_data); 4369 st->frag_data = NULL; 4370 } 4371 return 0; 4372 } 4373 4374 next_skb: 4375 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4376 4377 if (abs_offset < block_limit && !st->frag_data) { 4378 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4379 return block_limit - abs_offset; 4380 } 4381 4382 if (!skb_frags_readable(st->cur_skb)) 4383 return 0; 4384 4385 if (st->frag_idx == 0 && !st->frag_data) 4386 st->stepped_offset += skb_headlen(st->cur_skb); 4387 4388 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4389 unsigned int pg_idx, pg_off, pg_sz; 4390 4391 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4392 4393 pg_idx = 0; 4394 pg_off = skb_frag_off(frag); 4395 pg_sz = skb_frag_size(frag); 4396 4397 if (skb_frag_must_loop(skb_frag_page(frag))) { 4398 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4399 pg_off = offset_in_page(pg_off + st->frag_off); 4400 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4401 PAGE_SIZE - pg_off); 4402 } 4403 4404 block_limit = pg_sz + st->stepped_offset; 4405 if (abs_offset < block_limit) { 4406 if (!st->frag_data) 4407 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4408 4409 *data = (u8 *)st->frag_data + pg_off + 4410 (abs_offset - st->stepped_offset); 4411 4412 return block_limit - abs_offset; 4413 } 4414 4415 if (st->frag_data) { 4416 kunmap_atomic(st->frag_data); 4417 st->frag_data = NULL; 4418 } 4419 4420 st->stepped_offset += pg_sz; 4421 st->frag_off += pg_sz; 4422 if (st->frag_off == skb_frag_size(frag)) { 4423 st->frag_off = 0; 4424 st->frag_idx++; 4425 } 4426 } 4427 4428 if (st->frag_data) { 4429 kunmap_atomic(st->frag_data); 4430 st->frag_data = NULL; 4431 } 4432 4433 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4434 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4435 st->frag_idx = 0; 4436 goto next_skb; 4437 } else if (st->cur_skb->next) { 4438 st->cur_skb = st->cur_skb->next; 4439 st->frag_idx = 0; 4440 goto next_skb; 4441 } 4442 4443 return 0; 4444 } 4445 EXPORT_SYMBOL(skb_seq_read); 4446 4447 /** 4448 * skb_abort_seq_read - Abort a sequential read of skb data 4449 * @st: state variable 4450 * 4451 * Must be called if skb_seq_read() was not called until it 4452 * returned 0. 4453 */ 4454 void skb_abort_seq_read(struct skb_seq_state *st) 4455 { 4456 if (st->frag_data) 4457 kunmap_atomic(st->frag_data); 4458 } 4459 EXPORT_SYMBOL(skb_abort_seq_read); 4460 4461 /** 4462 * skb_copy_seq_read() - copy from a skb_seq_state to a buffer 4463 * @st: source skb_seq_state 4464 * @offset: offset in source 4465 * @to: destination buffer 4466 * @len: number of bytes to copy 4467 * 4468 * Copy @len bytes from @offset bytes into the source @st to the destination 4469 * buffer @to. `offset` should increase (or be unchanged) with each subsequent 4470 * call to this function. If offset needs to decrease from the previous use `st` 4471 * should be reset first. 4472 * 4473 * Return: 0 on success or -EINVAL if the copy ended early 4474 */ 4475 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len) 4476 { 4477 const u8 *data; 4478 u32 sqlen; 4479 4480 for (;;) { 4481 sqlen = skb_seq_read(offset, &data, st); 4482 if (sqlen == 0) 4483 return -EINVAL; 4484 if (sqlen >= len) { 4485 memcpy(to, data, len); 4486 return 0; 4487 } 4488 memcpy(to, data, sqlen); 4489 to += sqlen; 4490 offset += sqlen; 4491 len -= sqlen; 4492 } 4493 } 4494 EXPORT_SYMBOL(skb_copy_seq_read); 4495 4496 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4497 4498 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4499 struct ts_config *conf, 4500 struct ts_state *state) 4501 { 4502 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4503 } 4504 4505 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4506 { 4507 skb_abort_seq_read(TS_SKB_CB(state)); 4508 } 4509 4510 /** 4511 * skb_find_text - Find a text pattern in skb data 4512 * @skb: the buffer to look in 4513 * @from: search offset 4514 * @to: search limit 4515 * @config: textsearch configuration 4516 * 4517 * Finds a pattern in the skb data according to the specified 4518 * textsearch configuration. Use textsearch_next() to retrieve 4519 * subsequent occurrences of the pattern. Returns the offset 4520 * to the first occurrence or UINT_MAX if no match was found. 4521 */ 4522 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4523 unsigned int to, struct ts_config *config) 4524 { 4525 unsigned int patlen = config->ops->get_pattern_len(config); 4526 struct ts_state state; 4527 unsigned int ret; 4528 4529 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4530 4531 config->get_next_block = skb_ts_get_next_block; 4532 config->finish = skb_ts_finish; 4533 4534 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4535 4536 ret = textsearch_find(config, &state); 4537 return (ret + patlen <= to - from ? ret : UINT_MAX); 4538 } 4539 EXPORT_SYMBOL(skb_find_text); 4540 4541 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4542 int offset, size_t size, size_t max_frags) 4543 { 4544 int i = skb_shinfo(skb)->nr_frags; 4545 4546 if (skb_can_coalesce(skb, i, page, offset)) { 4547 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4548 } else if (i < max_frags) { 4549 skb_zcopy_downgrade_managed(skb); 4550 get_page(page); 4551 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4552 } else { 4553 return -EMSGSIZE; 4554 } 4555 4556 return 0; 4557 } 4558 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4559 4560 /** 4561 * skb_pull_rcsum - pull skb and update receive checksum 4562 * @skb: buffer to update 4563 * @len: length of data pulled 4564 * 4565 * This function performs an skb_pull on the packet and updates 4566 * the CHECKSUM_COMPLETE checksum. It should be used on 4567 * receive path processing instead of skb_pull unless you know 4568 * that the checksum difference is zero (e.g., a valid IP header) 4569 * or you are setting ip_summed to CHECKSUM_NONE. 4570 */ 4571 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4572 { 4573 unsigned char *data = skb->data; 4574 4575 BUG_ON(len > skb->len); 4576 __skb_pull(skb, len); 4577 skb_postpull_rcsum(skb, data, len); 4578 return skb->data; 4579 } 4580 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4581 4582 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4583 { 4584 skb_frag_t head_frag; 4585 struct page *page; 4586 4587 page = virt_to_head_page(frag_skb->head); 4588 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4589 (unsigned char *)page_address(page), 4590 skb_headlen(frag_skb)); 4591 return head_frag; 4592 } 4593 4594 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4595 netdev_features_t features, 4596 unsigned int offset) 4597 { 4598 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4599 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4600 unsigned int delta_truesize = 0; 4601 unsigned int delta_len = 0; 4602 struct sk_buff *tail = NULL; 4603 struct sk_buff *nskb, *tmp; 4604 int len_diff, err; 4605 4606 skb_push(skb, -skb_network_offset(skb) + offset); 4607 4608 /* Ensure the head is writeable before touching the shared info */ 4609 err = skb_unclone(skb, GFP_ATOMIC); 4610 if (err) 4611 goto err_linearize; 4612 4613 skb_shinfo(skb)->frag_list = NULL; 4614 4615 while (list_skb) { 4616 nskb = list_skb; 4617 list_skb = list_skb->next; 4618 4619 err = 0; 4620 delta_truesize += nskb->truesize; 4621 if (skb_shared(nskb)) { 4622 tmp = skb_clone(nskb, GFP_ATOMIC); 4623 if (tmp) { 4624 consume_skb(nskb); 4625 nskb = tmp; 4626 err = skb_unclone(nskb, GFP_ATOMIC); 4627 } else { 4628 err = -ENOMEM; 4629 } 4630 } 4631 4632 if (!tail) 4633 skb->next = nskb; 4634 else 4635 tail->next = nskb; 4636 4637 if (unlikely(err)) { 4638 nskb->next = list_skb; 4639 goto err_linearize; 4640 } 4641 4642 tail = nskb; 4643 4644 delta_len += nskb->len; 4645 4646 skb_push(nskb, -skb_network_offset(nskb) + offset); 4647 4648 skb_release_head_state(nskb); 4649 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4650 __copy_skb_header(nskb, skb); 4651 4652 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4653 nskb->transport_header += len_diff; 4654 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4655 nskb->data - tnl_hlen, 4656 offset + tnl_hlen); 4657 4658 if (skb_needs_linearize(nskb, features) && 4659 __skb_linearize(nskb)) 4660 goto err_linearize; 4661 } 4662 4663 skb->truesize = skb->truesize - delta_truesize; 4664 skb->data_len = skb->data_len - delta_len; 4665 skb->len = skb->len - delta_len; 4666 4667 skb_gso_reset(skb); 4668 4669 skb->prev = tail; 4670 4671 if (skb_needs_linearize(skb, features) && 4672 __skb_linearize(skb)) 4673 goto err_linearize; 4674 4675 skb_get(skb); 4676 4677 return skb; 4678 4679 err_linearize: 4680 kfree_skb_list(skb->next); 4681 skb->next = NULL; 4682 return ERR_PTR(-ENOMEM); 4683 } 4684 EXPORT_SYMBOL_GPL(skb_segment_list); 4685 4686 /** 4687 * skb_segment - Perform protocol segmentation on skb. 4688 * @head_skb: buffer to segment 4689 * @features: features for the output path (see dev->features) 4690 * 4691 * This function performs segmentation on the given skb. It returns 4692 * a pointer to the first in a list of new skbs for the segments. 4693 * In case of error it returns ERR_PTR(err). 4694 */ 4695 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4696 netdev_features_t features) 4697 { 4698 struct sk_buff *segs = NULL; 4699 struct sk_buff *tail = NULL; 4700 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4701 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4702 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4703 unsigned int offset = doffset; 4704 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4705 unsigned int partial_segs = 0; 4706 unsigned int headroom; 4707 unsigned int len = head_skb->len; 4708 struct sk_buff *frag_skb; 4709 skb_frag_t *frag; 4710 __be16 proto; 4711 bool csum, sg; 4712 int err = -ENOMEM; 4713 int i = 0; 4714 int nfrags, pos; 4715 4716 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4717 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4718 struct sk_buff *check_skb; 4719 4720 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4721 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4722 /* gso_size is untrusted, and we have a frag_list with 4723 * a linear non head_frag item. 4724 * 4725 * If head_skb's headlen does not fit requested gso_size, 4726 * it means that the frag_list members do NOT terminate 4727 * on exact gso_size boundaries. Hence we cannot perform 4728 * skb_frag_t page sharing. Therefore we must fallback to 4729 * copying the frag_list skbs; we do so by disabling SG. 4730 */ 4731 features &= ~NETIF_F_SG; 4732 break; 4733 } 4734 } 4735 } 4736 4737 __skb_push(head_skb, doffset); 4738 proto = skb_network_protocol(head_skb, NULL); 4739 if (unlikely(!proto)) 4740 return ERR_PTR(-EINVAL); 4741 4742 sg = !!(features & NETIF_F_SG); 4743 csum = !!can_checksum_protocol(features, proto); 4744 4745 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4746 if (!(features & NETIF_F_GSO_PARTIAL)) { 4747 struct sk_buff *iter; 4748 unsigned int frag_len; 4749 4750 if (!list_skb || 4751 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4752 goto normal; 4753 4754 /* If we get here then all the required 4755 * GSO features except frag_list are supported. 4756 * Try to split the SKB to multiple GSO SKBs 4757 * with no frag_list. 4758 * Currently we can do that only when the buffers don't 4759 * have a linear part and all the buffers except 4760 * the last are of the same length. 4761 */ 4762 frag_len = list_skb->len; 4763 skb_walk_frags(head_skb, iter) { 4764 if (frag_len != iter->len && iter->next) 4765 goto normal; 4766 if (skb_headlen(iter) && !iter->head_frag) 4767 goto normal; 4768 4769 len -= iter->len; 4770 } 4771 4772 if (len != frag_len) 4773 goto normal; 4774 } 4775 4776 /* GSO partial only requires that we trim off any excess that 4777 * doesn't fit into an MSS sized block, so take care of that 4778 * now. 4779 * Cap len to not accidentally hit GSO_BY_FRAGS. 4780 */ 4781 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4782 if (partial_segs > 1) 4783 mss *= partial_segs; 4784 else 4785 partial_segs = 0; 4786 } 4787 4788 normal: 4789 headroom = skb_headroom(head_skb); 4790 pos = skb_headlen(head_skb); 4791 4792 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4793 return ERR_PTR(-ENOMEM); 4794 4795 nfrags = skb_shinfo(head_skb)->nr_frags; 4796 frag = skb_shinfo(head_skb)->frags; 4797 frag_skb = head_skb; 4798 4799 do { 4800 struct sk_buff *nskb; 4801 skb_frag_t *nskb_frag; 4802 int hsize; 4803 int size; 4804 4805 if (unlikely(mss == GSO_BY_FRAGS)) { 4806 len = list_skb->len; 4807 } else { 4808 len = head_skb->len - offset; 4809 if (len > mss) 4810 len = mss; 4811 } 4812 4813 hsize = skb_headlen(head_skb) - offset; 4814 4815 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4816 (skb_headlen(list_skb) == len || sg)) { 4817 BUG_ON(skb_headlen(list_skb) > len); 4818 4819 nskb = skb_clone(list_skb, GFP_ATOMIC); 4820 if (unlikely(!nskb)) 4821 goto err; 4822 4823 i = 0; 4824 nfrags = skb_shinfo(list_skb)->nr_frags; 4825 frag = skb_shinfo(list_skb)->frags; 4826 frag_skb = list_skb; 4827 pos += skb_headlen(list_skb); 4828 4829 while (pos < offset + len) { 4830 BUG_ON(i >= nfrags); 4831 4832 size = skb_frag_size(frag); 4833 if (pos + size > offset + len) 4834 break; 4835 4836 i++; 4837 pos += size; 4838 frag++; 4839 } 4840 4841 list_skb = list_skb->next; 4842 4843 if (unlikely(pskb_trim(nskb, len))) { 4844 kfree_skb(nskb); 4845 goto err; 4846 } 4847 4848 hsize = skb_end_offset(nskb); 4849 if (skb_cow_head(nskb, doffset + headroom)) { 4850 kfree_skb(nskb); 4851 goto err; 4852 } 4853 4854 nskb->truesize += skb_end_offset(nskb) - hsize; 4855 skb_release_head_state(nskb); 4856 __skb_push(nskb, doffset); 4857 } else { 4858 if (hsize < 0) 4859 hsize = 0; 4860 if (hsize > len || !sg) 4861 hsize = len; 4862 4863 nskb = __alloc_skb(hsize + doffset + headroom, 4864 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4865 NUMA_NO_NODE); 4866 4867 if (unlikely(!nskb)) 4868 goto err; 4869 4870 skb_reserve(nskb, headroom); 4871 __skb_put(nskb, doffset); 4872 } 4873 4874 if (segs) 4875 tail->next = nskb; 4876 else 4877 segs = nskb; 4878 tail = nskb; 4879 4880 __copy_skb_header(nskb, head_skb); 4881 4882 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4883 skb_reset_mac_len(nskb); 4884 4885 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4886 nskb->data - tnl_hlen, 4887 doffset + tnl_hlen); 4888 4889 if (nskb->len == len + doffset) 4890 goto perform_csum_check; 4891 4892 if (!sg) { 4893 if (!csum) { 4894 if (!nskb->remcsum_offload) 4895 nskb->ip_summed = CHECKSUM_NONE; 4896 SKB_GSO_CB(nskb)->csum = 4897 skb_copy_and_csum_bits(head_skb, offset, 4898 skb_put(nskb, 4899 len), 4900 len); 4901 SKB_GSO_CB(nskb)->csum_start = 4902 skb_headroom(nskb) + doffset; 4903 } else { 4904 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4905 goto err; 4906 } 4907 continue; 4908 } 4909 4910 nskb_frag = skb_shinfo(nskb)->frags; 4911 4912 skb_copy_from_linear_data_offset(head_skb, offset, 4913 skb_put(nskb, hsize), hsize); 4914 4915 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4916 SKBFL_SHARED_FRAG; 4917 4918 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4919 goto err; 4920 4921 while (pos < offset + len) { 4922 if (i >= nfrags) { 4923 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4924 skb_zerocopy_clone(nskb, list_skb, 4925 GFP_ATOMIC)) 4926 goto err; 4927 4928 i = 0; 4929 nfrags = skb_shinfo(list_skb)->nr_frags; 4930 frag = skb_shinfo(list_skb)->frags; 4931 frag_skb = list_skb; 4932 if (!skb_headlen(list_skb)) { 4933 BUG_ON(!nfrags); 4934 } else { 4935 BUG_ON(!list_skb->head_frag); 4936 4937 /* to make room for head_frag. */ 4938 i--; 4939 frag--; 4940 } 4941 4942 list_skb = list_skb->next; 4943 } 4944 4945 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4946 MAX_SKB_FRAGS)) { 4947 net_warn_ratelimited( 4948 "skb_segment: too many frags: %u %u\n", 4949 pos, mss); 4950 err = -EINVAL; 4951 goto err; 4952 } 4953 4954 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4955 __skb_frag_ref(nskb_frag); 4956 size = skb_frag_size(nskb_frag); 4957 4958 if (pos < offset) { 4959 skb_frag_off_add(nskb_frag, offset - pos); 4960 skb_frag_size_sub(nskb_frag, offset - pos); 4961 } 4962 4963 skb_shinfo(nskb)->nr_frags++; 4964 4965 if (pos + size <= offset + len) { 4966 i++; 4967 frag++; 4968 pos += size; 4969 } else { 4970 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4971 goto skip_fraglist; 4972 } 4973 4974 nskb_frag++; 4975 } 4976 4977 skip_fraglist: 4978 nskb->data_len = len - hsize; 4979 nskb->len += nskb->data_len; 4980 nskb->truesize += nskb->data_len; 4981 4982 perform_csum_check: 4983 if (!csum) { 4984 if (skb_has_shared_frag(nskb) && 4985 __skb_linearize(nskb)) 4986 goto err; 4987 4988 if (!nskb->remcsum_offload) 4989 nskb->ip_summed = CHECKSUM_NONE; 4990 SKB_GSO_CB(nskb)->csum = 4991 skb_checksum(nskb, doffset, 4992 nskb->len - doffset, 0); 4993 SKB_GSO_CB(nskb)->csum_start = 4994 skb_headroom(nskb) + doffset; 4995 } 4996 } while ((offset += len) < head_skb->len); 4997 4998 /* Some callers want to get the end of the list. 4999 * Put it in segs->prev to avoid walking the list. 5000 * (see validate_xmit_skb_list() for example) 5001 */ 5002 segs->prev = tail; 5003 5004 if (partial_segs) { 5005 struct sk_buff *iter; 5006 int type = skb_shinfo(head_skb)->gso_type; 5007 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 5008 5009 /* Update type to add partial and then remove dodgy if set */ 5010 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 5011 type &= ~SKB_GSO_DODGY; 5012 5013 /* Update GSO info and prepare to start updating headers on 5014 * our way back down the stack of protocols. 5015 */ 5016 for (iter = segs; iter; iter = iter->next) { 5017 skb_shinfo(iter)->gso_size = gso_size; 5018 skb_shinfo(iter)->gso_segs = partial_segs; 5019 skb_shinfo(iter)->gso_type = type; 5020 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 5021 } 5022 5023 if (tail->len - doffset <= gso_size) 5024 skb_shinfo(tail)->gso_size = 0; 5025 else if (tail != segs) 5026 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 5027 } 5028 5029 /* Following permits correct backpressure, for protocols 5030 * using skb_set_owner_w(). 5031 * Idea is to tranfert ownership from head_skb to last segment. 5032 */ 5033 if (head_skb->destructor == sock_wfree) { 5034 swap(tail->truesize, head_skb->truesize); 5035 swap(tail->destructor, head_skb->destructor); 5036 swap(tail->sk, head_skb->sk); 5037 } 5038 return segs; 5039 5040 err: 5041 kfree_skb_list(segs); 5042 return ERR_PTR(err); 5043 } 5044 EXPORT_SYMBOL_GPL(skb_segment); 5045 5046 #ifdef CONFIG_SKB_EXTENSIONS 5047 #define SKB_EXT_ALIGN_VALUE 8 5048 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 5049 5050 static const u8 skb_ext_type_len[] = { 5051 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 5052 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 5053 #endif 5054 #ifdef CONFIG_XFRM 5055 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 5056 #endif 5057 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 5058 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 5059 #endif 5060 #if IS_ENABLED(CONFIG_MPTCP) 5061 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 5062 #endif 5063 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 5064 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 5065 #endif 5066 #if IS_ENABLED(CONFIG_INET_PSP) 5067 [SKB_EXT_PSP] = SKB_EXT_CHUNKSIZEOF(struct psp_skb_ext), 5068 #endif 5069 }; 5070 5071 static __always_inline unsigned int skb_ext_total_length(void) 5072 { 5073 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 5074 int i; 5075 5076 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 5077 l += skb_ext_type_len[i]; 5078 5079 return l; 5080 } 5081 5082 static void skb_extensions_init(void) 5083 { 5084 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 5085 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 5086 BUILD_BUG_ON(skb_ext_total_length() > 255); 5087 #endif 5088 5089 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 5090 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 5091 0, 5092 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5093 NULL); 5094 } 5095 #else 5096 static void skb_extensions_init(void) {} 5097 #endif 5098 5099 /* The SKB kmem_cache slab is critical for network performance. Never 5100 * merge/alias the slab with similar sized objects. This avoids fragmentation 5101 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 5102 */ 5103 #ifndef CONFIG_SLUB_TINY 5104 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 5105 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 5106 #define FLAG_SKB_NO_MERGE 0 5107 #endif 5108 5109 void __init skb_init(void) 5110 { 5111 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 5112 sizeof(struct sk_buff), 5113 0, 5114 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 5115 FLAG_SKB_NO_MERGE, 5116 offsetof(struct sk_buff, cb), 5117 sizeof_field(struct sk_buff, cb), 5118 NULL); 5119 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 5120 sizeof(struct sk_buff_fclones), 5121 0, 5122 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5123 NULL); 5124 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 5125 * struct skb_shared_info is located at the end of skb->head, 5126 * and should not be copied to/from user. 5127 */ 5128 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 5129 SKB_SMALL_HEAD_CACHE_SIZE, 5130 0, 5131 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 5132 0, 5133 SKB_SMALL_HEAD_HEADROOM, 5134 NULL); 5135 skb_extensions_init(); 5136 } 5137 5138 static int 5139 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 5140 unsigned int recursion_level) 5141 { 5142 int start = skb_headlen(skb); 5143 int i, copy = start - offset; 5144 struct sk_buff *frag_iter; 5145 int elt = 0; 5146 5147 if (unlikely(recursion_level >= 24)) 5148 return -EMSGSIZE; 5149 5150 if (copy > 0) { 5151 if (copy > len) 5152 copy = len; 5153 sg_set_buf(sg, skb->data + offset, copy); 5154 elt++; 5155 if ((len -= copy) == 0) 5156 return elt; 5157 offset += copy; 5158 } 5159 5160 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5161 int end; 5162 5163 WARN_ON(start > offset + len); 5164 5165 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5166 if ((copy = end - offset) > 0) { 5167 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5168 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5169 return -EMSGSIZE; 5170 5171 if (copy > len) 5172 copy = len; 5173 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5174 skb_frag_off(frag) + offset - start); 5175 elt++; 5176 if (!(len -= copy)) 5177 return elt; 5178 offset += copy; 5179 } 5180 start = end; 5181 } 5182 5183 skb_walk_frags(skb, frag_iter) { 5184 int end, ret; 5185 5186 WARN_ON(start > offset + len); 5187 5188 end = start + frag_iter->len; 5189 if ((copy = end - offset) > 0) { 5190 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5191 return -EMSGSIZE; 5192 5193 if (copy > len) 5194 copy = len; 5195 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5196 copy, recursion_level + 1); 5197 if (unlikely(ret < 0)) 5198 return ret; 5199 elt += ret; 5200 if ((len -= copy) == 0) 5201 return elt; 5202 offset += copy; 5203 } 5204 start = end; 5205 } 5206 BUG_ON(len); 5207 return elt; 5208 } 5209 5210 /** 5211 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5212 * @skb: Socket buffer containing the buffers to be mapped 5213 * @sg: The scatter-gather list to map into 5214 * @offset: The offset into the buffer's contents to start mapping 5215 * @len: Length of buffer space to be mapped 5216 * 5217 * Fill the specified scatter-gather list with mappings/pointers into a 5218 * region of the buffer space attached to a socket buffer. Returns either 5219 * the number of scatterlist items used, or -EMSGSIZE if the contents 5220 * could not fit. 5221 */ 5222 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5223 { 5224 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5225 5226 if (nsg <= 0) 5227 return nsg; 5228 5229 sg_mark_end(&sg[nsg - 1]); 5230 5231 return nsg; 5232 } 5233 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5234 5235 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5236 * sglist without mark the sg which contain last skb data as the end. 5237 * So the caller can mannipulate sg list as will when padding new data after 5238 * the first call without calling sg_unmark_end to expend sg list. 5239 * 5240 * Scenario to use skb_to_sgvec_nomark: 5241 * 1. sg_init_table 5242 * 2. skb_to_sgvec_nomark(payload1) 5243 * 3. skb_to_sgvec_nomark(payload2) 5244 * 5245 * This is equivalent to: 5246 * 1. sg_init_table 5247 * 2. skb_to_sgvec(payload1) 5248 * 3. sg_unmark_end 5249 * 4. skb_to_sgvec(payload2) 5250 * 5251 * When mapping multiple payload conditionally, skb_to_sgvec_nomark 5252 * is more preferable. 5253 */ 5254 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5255 int offset, int len) 5256 { 5257 return __skb_to_sgvec(skb, sg, offset, len, 0); 5258 } 5259 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5260 5261 5262 5263 /** 5264 * skb_cow_data - Check that a socket buffer's data buffers are writable 5265 * @skb: The socket buffer to check. 5266 * @tailbits: Amount of trailing space to be added 5267 * @trailer: Returned pointer to the skb where the @tailbits space begins 5268 * 5269 * Make sure that the data buffers attached to a socket buffer are 5270 * writable. If they are not, private copies are made of the data buffers 5271 * and the socket buffer is set to use these instead. 5272 * 5273 * If @tailbits is given, make sure that there is space to write @tailbits 5274 * bytes of data beyond current end of socket buffer. @trailer will be 5275 * set to point to the skb in which this space begins. 5276 * 5277 * The number of scatterlist elements required to completely map the 5278 * COW'd and extended socket buffer will be returned. 5279 */ 5280 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5281 { 5282 int copyflag; 5283 int elt; 5284 struct sk_buff *skb1, **skb_p; 5285 5286 /* If skb is cloned or its head is paged, reallocate 5287 * head pulling out all the pages (pages are considered not writable 5288 * at the moment even if they are anonymous). 5289 */ 5290 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5291 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5292 return -ENOMEM; 5293 5294 /* Easy case. Most of packets will go this way. */ 5295 if (!skb_has_frag_list(skb)) { 5296 /* A little of trouble, not enough of space for trailer. 5297 * This should not happen, when stack is tuned to generate 5298 * good frames. OK, on miss we reallocate and reserve even more 5299 * space, 128 bytes is fair. */ 5300 5301 if (skb_tailroom(skb) < tailbits && 5302 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5303 return -ENOMEM; 5304 5305 /* Voila! */ 5306 *trailer = skb; 5307 return 1; 5308 } 5309 5310 /* Misery. We are in troubles, going to mincer fragments... */ 5311 5312 elt = 1; 5313 skb_p = &skb_shinfo(skb)->frag_list; 5314 copyflag = 0; 5315 5316 while ((skb1 = *skb_p) != NULL) { 5317 int ntail = 0; 5318 5319 /* The fragment is partially pulled by someone, 5320 * this can happen on input. Copy it and everything 5321 * after it. */ 5322 5323 if (skb_shared(skb1)) 5324 copyflag = 1; 5325 5326 /* If the skb is the last, worry about trailer. */ 5327 5328 if (skb1->next == NULL && tailbits) { 5329 if (skb_shinfo(skb1)->nr_frags || 5330 skb_has_frag_list(skb1) || 5331 skb_tailroom(skb1) < tailbits) 5332 ntail = tailbits + 128; 5333 } 5334 5335 if (copyflag || 5336 skb_cloned(skb1) || 5337 ntail || 5338 skb_shinfo(skb1)->nr_frags || 5339 skb_has_frag_list(skb1)) { 5340 struct sk_buff *skb2; 5341 5342 /* Fuck, we are miserable poor guys... */ 5343 if (ntail == 0) 5344 skb2 = skb_copy(skb1, GFP_ATOMIC); 5345 else 5346 skb2 = skb_copy_expand(skb1, 5347 skb_headroom(skb1), 5348 ntail, 5349 GFP_ATOMIC); 5350 if (unlikely(skb2 == NULL)) 5351 return -ENOMEM; 5352 5353 if (skb1->sk) 5354 skb_set_owner_w(skb2, skb1->sk); 5355 5356 /* Looking around. Are we still alive? 5357 * OK, link new skb, drop old one */ 5358 5359 skb2->next = skb1->next; 5360 *skb_p = skb2; 5361 kfree_skb(skb1); 5362 skb1 = skb2; 5363 } 5364 elt++; 5365 *trailer = skb1; 5366 skb_p = &skb1->next; 5367 } 5368 5369 return elt; 5370 } 5371 EXPORT_SYMBOL_GPL(skb_cow_data); 5372 5373 static void sock_rmem_free(struct sk_buff *skb) 5374 { 5375 struct sock *sk = skb->sk; 5376 5377 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5378 } 5379 5380 static void skb_set_err_queue(struct sk_buff *skb) 5381 { 5382 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5383 * So, it is safe to (mis)use it to mark skbs on the error queue. 5384 */ 5385 skb->pkt_type = PACKET_OUTGOING; 5386 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5387 } 5388 5389 /* 5390 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5391 */ 5392 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5393 { 5394 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5395 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5396 return -ENOMEM; 5397 5398 skb_orphan(skb); 5399 skb->sk = sk; 5400 skb->destructor = sock_rmem_free; 5401 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5402 skb_set_err_queue(skb); 5403 5404 /* before exiting rcu section, make sure dst is refcounted */ 5405 skb_dst_force(skb); 5406 5407 skb_queue_tail(&sk->sk_error_queue, skb); 5408 if (!sock_flag(sk, SOCK_DEAD)) 5409 sk_error_report(sk); 5410 return 0; 5411 } 5412 EXPORT_SYMBOL(sock_queue_err_skb); 5413 5414 static bool is_icmp_err_skb(const struct sk_buff *skb) 5415 { 5416 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5417 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5418 } 5419 5420 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5421 { 5422 struct sk_buff_head *q = &sk->sk_error_queue; 5423 struct sk_buff *skb, *skb_next = NULL; 5424 bool icmp_next = false; 5425 unsigned long flags; 5426 5427 if (skb_queue_empty_lockless(q)) 5428 return NULL; 5429 5430 spin_lock_irqsave(&q->lock, flags); 5431 skb = __skb_dequeue(q); 5432 if (skb && (skb_next = skb_peek(q))) { 5433 icmp_next = is_icmp_err_skb(skb_next); 5434 if (icmp_next) 5435 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5436 } 5437 spin_unlock_irqrestore(&q->lock, flags); 5438 5439 if (is_icmp_err_skb(skb) && !icmp_next) 5440 sk->sk_err = 0; 5441 5442 if (skb_next) 5443 sk_error_report(sk); 5444 5445 return skb; 5446 } 5447 EXPORT_SYMBOL(sock_dequeue_err_skb); 5448 5449 /** 5450 * skb_clone_sk - create clone of skb, and take reference to socket 5451 * @skb: the skb to clone 5452 * 5453 * This function creates a clone of a buffer that holds a reference on 5454 * sk_refcnt. Buffers created via this function are meant to be 5455 * returned using sock_queue_err_skb, or free via kfree_skb. 5456 * 5457 * When passing buffers allocated with this function to sock_queue_err_skb 5458 * it is necessary to wrap the call with sock_hold/sock_put in order to 5459 * prevent the socket from being released prior to being enqueued on 5460 * the sk_error_queue. 5461 */ 5462 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5463 { 5464 struct sock *sk = skb->sk; 5465 struct sk_buff *clone; 5466 5467 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5468 return NULL; 5469 5470 clone = skb_clone(skb, GFP_ATOMIC); 5471 if (!clone) { 5472 sock_put(sk); 5473 return NULL; 5474 } 5475 5476 clone->sk = sk; 5477 clone->destructor = sock_efree; 5478 5479 return clone; 5480 } 5481 EXPORT_SYMBOL(skb_clone_sk); 5482 5483 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5484 struct sock *sk, 5485 int tstype, 5486 bool opt_stats) 5487 { 5488 struct sock_exterr_skb *serr; 5489 int err; 5490 5491 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5492 5493 serr = SKB_EXT_ERR(skb); 5494 memset(serr, 0, sizeof(*serr)); 5495 serr->ee.ee_errno = ENOMSG; 5496 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5497 serr->ee.ee_info = tstype; 5498 serr->opt_stats = opt_stats; 5499 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5500 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5501 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5502 if (sk_is_tcp(sk)) 5503 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5504 } 5505 5506 err = sock_queue_err_skb(sk, skb); 5507 5508 if (err) 5509 kfree_skb(skb); 5510 } 5511 5512 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5513 { 5514 bool ret; 5515 5516 if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data))) 5517 return true; 5518 5519 read_lock_bh(&sk->sk_callback_lock); 5520 ret = sk->sk_socket && sk->sk_socket->file && 5521 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5522 read_unlock_bh(&sk->sk_callback_lock); 5523 return ret; 5524 } 5525 5526 void skb_complete_tx_timestamp(struct sk_buff *skb, 5527 struct skb_shared_hwtstamps *hwtstamps) 5528 { 5529 struct sock *sk = skb->sk; 5530 5531 if (!skb_may_tx_timestamp(sk, false)) 5532 goto err; 5533 5534 /* Take a reference to prevent skb_orphan() from freeing the socket, 5535 * but only if the socket refcount is not zero. 5536 */ 5537 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5538 *skb_hwtstamps(skb) = *hwtstamps; 5539 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5540 sock_put(sk); 5541 return; 5542 } 5543 5544 err: 5545 kfree_skb(skb); 5546 } 5547 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5548 5549 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb, 5550 struct skb_shared_hwtstamps *hwtstamps, 5551 int tstype) 5552 { 5553 switch (tstype) { 5554 case SCM_TSTAMP_SCHED: 5555 return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP; 5556 case SCM_TSTAMP_SND: 5557 return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF : 5558 SKBTX_SW_TSTAMP); 5559 case SCM_TSTAMP_ACK: 5560 return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK; 5561 case SCM_TSTAMP_COMPLETION: 5562 return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP; 5563 } 5564 5565 return false; 5566 } 5567 5568 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb, 5569 struct skb_shared_hwtstamps *hwtstamps, 5570 struct sock *sk, 5571 int tstype) 5572 { 5573 int op; 5574 5575 switch (tstype) { 5576 case SCM_TSTAMP_SCHED: 5577 op = BPF_SOCK_OPS_TSTAMP_SCHED_CB; 5578 break; 5579 case SCM_TSTAMP_SND: 5580 if (hwtstamps) { 5581 op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB; 5582 *skb_hwtstamps(skb) = *hwtstamps; 5583 } else { 5584 op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB; 5585 } 5586 break; 5587 case SCM_TSTAMP_ACK: 5588 op = BPF_SOCK_OPS_TSTAMP_ACK_CB; 5589 break; 5590 default: 5591 return; 5592 } 5593 5594 bpf_skops_tx_timestamping(sk, skb, op); 5595 } 5596 5597 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5598 const struct sk_buff *ack_skb, 5599 struct skb_shared_hwtstamps *hwtstamps, 5600 struct sock *sk, int tstype) 5601 { 5602 struct sk_buff *skb; 5603 bool tsonly, opt_stats = false; 5604 u32 tsflags; 5605 5606 if (!sk) 5607 return; 5608 5609 if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF) 5610 skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps, 5611 sk, tstype); 5612 5613 if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype)) 5614 return; 5615 5616 tsflags = READ_ONCE(sk->sk_tsflags); 5617 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5618 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5619 return; 5620 5621 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5622 if (!skb_may_tx_timestamp(sk, tsonly)) 5623 return; 5624 5625 if (tsonly) { 5626 #ifdef CONFIG_INET 5627 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5628 sk_is_tcp(sk)) { 5629 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5630 ack_skb); 5631 opt_stats = true; 5632 } else 5633 #endif 5634 skb = alloc_skb(0, GFP_ATOMIC); 5635 } else { 5636 skb = skb_clone(orig_skb, GFP_ATOMIC); 5637 5638 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5639 kfree_skb(skb); 5640 return; 5641 } 5642 } 5643 if (!skb) 5644 return; 5645 5646 if (tsonly) { 5647 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5648 SKBTX_ANY_TSTAMP; 5649 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5650 } 5651 5652 if (hwtstamps) 5653 *skb_hwtstamps(skb) = *hwtstamps; 5654 else 5655 __net_timestamp(skb); 5656 5657 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5658 } 5659 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5660 5661 void skb_tstamp_tx(struct sk_buff *orig_skb, 5662 struct skb_shared_hwtstamps *hwtstamps) 5663 { 5664 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5665 SCM_TSTAMP_SND); 5666 } 5667 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5668 5669 #ifdef CONFIG_WIRELESS 5670 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5671 { 5672 struct sock *sk = skb->sk; 5673 struct sock_exterr_skb *serr; 5674 int err = 1; 5675 5676 skb->wifi_acked_valid = 1; 5677 skb->wifi_acked = acked; 5678 5679 serr = SKB_EXT_ERR(skb); 5680 memset(serr, 0, sizeof(*serr)); 5681 serr->ee.ee_errno = ENOMSG; 5682 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5683 5684 /* Take a reference to prevent skb_orphan() from freeing the socket, 5685 * but only if the socket refcount is not zero. 5686 */ 5687 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5688 err = sock_queue_err_skb(sk, skb); 5689 sock_put(sk); 5690 } 5691 if (err) 5692 kfree_skb(skb); 5693 } 5694 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5695 #endif /* CONFIG_WIRELESS */ 5696 5697 /** 5698 * skb_partial_csum_set - set up and verify partial csum values for packet 5699 * @skb: the skb to set 5700 * @start: the number of bytes after skb->data to start checksumming. 5701 * @off: the offset from start to place the checksum. 5702 * 5703 * For untrusted partially-checksummed packets, we need to make sure the values 5704 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5705 * 5706 * This function checks and sets those values and skb->ip_summed: if this 5707 * returns false you should drop the packet. 5708 */ 5709 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5710 { 5711 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5712 u32 csum_start = skb_headroom(skb) + (u32)start; 5713 5714 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5715 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5716 start, off, skb_headroom(skb), skb_headlen(skb)); 5717 return false; 5718 } 5719 skb->ip_summed = CHECKSUM_PARTIAL; 5720 skb->csum_start = csum_start; 5721 skb->csum_offset = off; 5722 skb->transport_header = csum_start; 5723 return true; 5724 } 5725 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5726 5727 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5728 unsigned int max) 5729 { 5730 if (skb_headlen(skb) >= len) 5731 return 0; 5732 5733 /* If we need to pullup then pullup to the max, so we 5734 * won't need to do it again. 5735 */ 5736 if (max > skb->len) 5737 max = skb->len; 5738 5739 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5740 return -ENOMEM; 5741 5742 if (skb_headlen(skb) < len) 5743 return -EPROTO; 5744 5745 return 0; 5746 } 5747 5748 #define MAX_TCP_HDR_LEN (15 * 4) 5749 5750 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5751 typeof(IPPROTO_IP) proto, 5752 unsigned int off) 5753 { 5754 int err; 5755 5756 switch (proto) { 5757 case IPPROTO_TCP: 5758 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5759 off + MAX_TCP_HDR_LEN); 5760 if (!err && !skb_partial_csum_set(skb, off, 5761 offsetof(struct tcphdr, 5762 check))) 5763 err = -EPROTO; 5764 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5765 5766 case IPPROTO_UDP: 5767 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5768 off + sizeof(struct udphdr)); 5769 if (!err && !skb_partial_csum_set(skb, off, 5770 offsetof(struct udphdr, 5771 check))) 5772 err = -EPROTO; 5773 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5774 } 5775 5776 return ERR_PTR(-EPROTO); 5777 } 5778 5779 /* This value should be large enough to cover a tagged ethernet header plus 5780 * maximally sized IP and TCP or UDP headers. 5781 */ 5782 #define MAX_IP_HDR_LEN 128 5783 5784 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5785 { 5786 unsigned int off; 5787 bool fragment; 5788 __sum16 *csum; 5789 int err; 5790 5791 fragment = false; 5792 5793 err = skb_maybe_pull_tail(skb, 5794 sizeof(struct iphdr), 5795 MAX_IP_HDR_LEN); 5796 if (err < 0) 5797 goto out; 5798 5799 if (ip_is_fragment(ip_hdr(skb))) 5800 fragment = true; 5801 5802 off = ip_hdrlen(skb); 5803 5804 err = -EPROTO; 5805 5806 if (fragment) 5807 goto out; 5808 5809 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5810 if (IS_ERR(csum)) 5811 return PTR_ERR(csum); 5812 5813 if (recalculate) 5814 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5815 ip_hdr(skb)->daddr, 5816 skb->len - off, 5817 ip_hdr(skb)->protocol, 0); 5818 err = 0; 5819 5820 out: 5821 return err; 5822 } 5823 5824 /* This value should be large enough to cover a tagged ethernet header plus 5825 * an IPv6 header, all options, and a maximal TCP or UDP header. 5826 */ 5827 #define MAX_IPV6_HDR_LEN 256 5828 5829 #define OPT_HDR(type, skb, off) \ 5830 (type *)(skb_network_header(skb) + (off)) 5831 5832 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5833 { 5834 int err; 5835 u8 nexthdr; 5836 unsigned int off; 5837 unsigned int len; 5838 bool fragment; 5839 bool done; 5840 __sum16 *csum; 5841 5842 fragment = false; 5843 done = false; 5844 5845 off = sizeof(struct ipv6hdr); 5846 5847 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5848 if (err < 0) 5849 goto out; 5850 5851 nexthdr = ipv6_hdr(skb)->nexthdr; 5852 5853 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5854 while (off <= len && !done) { 5855 switch (nexthdr) { 5856 case IPPROTO_DSTOPTS: 5857 case IPPROTO_HOPOPTS: 5858 case IPPROTO_ROUTING: { 5859 struct ipv6_opt_hdr *hp; 5860 5861 err = skb_maybe_pull_tail(skb, 5862 off + 5863 sizeof(struct ipv6_opt_hdr), 5864 MAX_IPV6_HDR_LEN); 5865 if (err < 0) 5866 goto out; 5867 5868 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5869 nexthdr = hp->nexthdr; 5870 off += ipv6_optlen(hp); 5871 break; 5872 } 5873 case IPPROTO_AH: { 5874 struct ip_auth_hdr *hp; 5875 5876 err = skb_maybe_pull_tail(skb, 5877 off + 5878 sizeof(struct ip_auth_hdr), 5879 MAX_IPV6_HDR_LEN); 5880 if (err < 0) 5881 goto out; 5882 5883 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5884 nexthdr = hp->nexthdr; 5885 off += ipv6_authlen(hp); 5886 break; 5887 } 5888 case IPPROTO_FRAGMENT: { 5889 struct frag_hdr *hp; 5890 5891 err = skb_maybe_pull_tail(skb, 5892 off + 5893 sizeof(struct frag_hdr), 5894 MAX_IPV6_HDR_LEN); 5895 if (err < 0) 5896 goto out; 5897 5898 hp = OPT_HDR(struct frag_hdr, skb, off); 5899 5900 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5901 fragment = true; 5902 5903 nexthdr = hp->nexthdr; 5904 off += sizeof(struct frag_hdr); 5905 break; 5906 } 5907 default: 5908 done = true; 5909 break; 5910 } 5911 } 5912 5913 err = -EPROTO; 5914 5915 if (!done || fragment) 5916 goto out; 5917 5918 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5919 if (IS_ERR(csum)) 5920 return PTR_ERR(csum); 5921 5922 if (recalculate) 5923 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5924 &ipv6_hdr(skb)->daddr, 5925 skb->len - off, nexthdr, 0); 5926 err = 0; 5927 5928 out: 5929 return err; 5930 } 5931 5932 /** 5933 * skb_checksum_setup - set up partial checksum offset 5934 * @skb: the skb to set up 5935 * @recalculate: if true the pseudo-header checksum will be recalculated 5936 */ 5937 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5938 { 5939 int err; 5940 5941 switch (skb->protocol) { 5942 case htons(ETH_P_IP): 5943 err = skb_checksum_setup_ipv4(skb, recalculate); 5944 break; 5945 5946 case htons(ETH_P_IPV6): 5947 err = skb_checksum_setup_ipv6(skb, recalculate); 5948 break; 5949 5950 default: 5951 err = -EPROTO; 5952 break; 5953 } 5954 5955 return err; 5956 } 5957 EXPORT_SYMBOL(skb_checksum_setup); 5958 5959 /** 5960 * skb_checksum_maybe_trim - maybe trims the given skb 5961 * @skb: the skb to check 5962 * @transport_len: the data length beyond the network header 5963 * 5964 * Checks whether the given skb has data beyond the given transport length. 5965 * If so, returns a cloned skb trimmed to this transport length. 5966 * Otherwise returns the provided skb. Returns NULL in error cases 5967 * (e.g. transport_len exceeds skb length or out-of-memory). 5968 * 5969 * Caller needs to set the skb transport header and free any returned skb if it 5970 * differs from the provided skb. 5971 */ 5972 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5973 unsigned int transport_len) 5974 { 5975 struct sk_buff *skb_chk; 5976 unsigned int len = skb_transport_offset(skb) + transport_len; 5977 int ret; 5978 5979 if (skb->len < len) 5980 return NULL; 5981 else if (skb->len == len) 5982 return skb; 5983 5984 skb_chk = skb_clone(skb, GFP_ATOMIC); 5985 if (!skb_chk) 5986 return NULL; 5987 5988 ret = pskb_trim_rcsum(skb_chk, len); 5989 if (ret) { 5990 kfree_skb(skb_chk); 5991 return NULL; 5992 } 5993 5994 return skb_chk; 5995 } 5996 5997 /** 5998 * skb_checksum_trimmed - validate checksum of an skb 5999 * @skb: the skb to check 6000 * @transport_len: the data length beyond the network header 6001 * @skb_chkf: checksum function to use 6002 * 6003 * Applies the given checksum function skb_chkf to the provided skb. 6004 * Returns a checked and maybe trimmed skb. Returns NULL on error. 6005 * 6006 * If the skb has data beyond the given transport length, then a 6007 * trimmed & cloned skb is checked and returned. 6008 * 6009 * Caller needs to set the skb transport header and free any returned skb if it 6010 * differs from the provided skb. 6011 */ 6012 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 6013 unsigned int transport_len, 6014 __sum16(*skb_chkf)(struct sk_buff *skb)) 6015 { 6016 struct sk_buff *skb_chk; 6017 unsigned int offset = skb_transport_offset(skb); 6018 __sum16 ret; 6019 6020 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 6021 if (!skb_chk) 6022 goto err; 6023 6024 if (!pskb_may_pull(skb_chk, offset)) 6025 goto err; 6026 6027 skb_pull_rcsum(skb_chk, offset); 6028 ret = skb_chkf(skb_chk); 6029 skb_push_rcsum(skb_chk, offset); 6030 6031 if (ret) 6032 goto err; 6033 6034 return skb_chk; 6035 6036 err: 6037 if (skb_chk && skb_chk != skb) 6038 kfree_skb(skb_chk); 6039 6040 return NULL; 6041 6042 } 6043 EXPORT_SYMBOL(skb_checksum_trimmed); 6044 6045 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 6046 { 6047 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 6048 skb->dev->name); 6049 } 6050 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 6051 6052 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 6053 { 6054 if (head_stolen) { 6055 skb_release_head_state(skb); 6056 kmem_cache_free(net_hotdata.skbuff_cache, skb); 6057 } else { 6058 __kfree_skb(skb); 6059 } 6060 } 6061 EXPORT_SYMBOL(kfree_skb_partial); 6062 6063 /** 6064 * skb_try_coalesce - try to merge skb to prior one 6065 * @to: prior buffer 6066 * @from: buffer to add 6067 * @fragstolen: pointer to boolean 6068 * @delta_truesize: how much more was allocated than was requested 6069 */ 6070 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 6071 bool *fragstolen, int *delta_truesize) 6072 { 6073 struct skb_shared_info *to_shinfo, *from_shinfo; 6074 int i, delta, len = from->len; 6075 6076 *fragstolen = false; 6077 6078 if (skb_cloned(to)) 6079 return false; 6080 6081 /* In general, avoid mixing page_pool and non-page_pool allocated 6082 * pages within the same SKB. In theory we could take full 6083 * references if @from is cloned and !@to->pp_recycle but its 6084 * tricky (due to potential race with the clone disappearing) and 6085 * rare, so not worth dealing with. 6086 */ 6087 if (to->pp_recycle != from->pp_recycle) 6088 return false; 6089 6090 if (skb_frags_readable(from) != skb_frags_readable(to)) 6091 return false; 6092 6093 if (len <= skb_tailroom(to) && skb_frags_readable(from)) { 6094 if (len) 6095 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 6096 *delta_truesize = 0; 6097 return true; 6098 } 6099 6100 to_shinfo = skb_shinfo(to); 6101 from_shinfo = skb_shinfo(from); 6102 if (to_shinfo->frag_list || from_shinfo->frag_list) 6103 return false; 6104 if (skb_zcopy(to) || skb_zcopy(from)) 6105 return false; 6106 6107 if (skb_headlen(from) != 0) { 6108 struct page *page; 6109 unsigned int offset; 6110 6111 if (to_shinfo->nr_frags + 6112 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 6113 return false; 6114 6115 if (skb_head_is_locked(from)) 6116 return false; 6117 6118 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 6119 6120 page = virt_to_head_page(from->head); 6121 offset = from->data - (unsigned char *)page_address(page); 6122 6123 skb_fill_page_desc(to, to_shinfo->nr_frags, 6124 page, offset, skb_headlen(from)); 6125 *fragstolen = true; 6126 } else { 6127 if (to_shinfo->nr_frags + 6128 from_shinfo->nr_frags > MAX_SKB_FRAGS) 6129 return false; 6130 6131 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 6132 } 6133 6134 WARN_ON_ONCE(delta < len); 6135 6136 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 6137 from_shinfo->frags, 6138 from_shinfo->nr_frags * sizeof(skb_frag_t)); 6139 to_shinfo->nr_frags += from_shinfo->nr_frags; 6140 6141 if (!skb_cloned(from)) 6142 from_shinfo->nr_frags = 0; 6143 6144 /* if the skb is not cloned this does nothing 6145 * since we set nr_frags to 0. 6146 */ 6147 if (skb_pp_frag_ref(from)) { 6148 for (i = 0; i < from_shinfo->nr_frags; i++) 6149 __skb_frag_ref(&from_shinfo->frags[i]); 6150 } 6151 6152 to->truesize += delta; 6153 to->len += len; 6154 to->data_len += len; 6155 6156 *delta_truesize = delta; 6157 return true; 6158 } 6159 EXPORT_SYMBOL(skb_try_coalesce); 6160 6161 /** 6162 * skb_scrub_packet - scrub an skb 6163 * 6164 * @skb: buffer to clean 6165 * @xnet: packet is crossing netns 6166 * 6167 * skb_scrub_packet can be used after encapsulating or decapsulating a packet 6168 * into/from a tunnel. Some information have to be cleared during these 6169 * operations. 6170 * skb_scrub_packet can also be used to clean a skb before injecting it in 6171 * another namespace (@xnet == true). We have to clear all information in the 6172 * skb that could impact namespace isolation. 6173 */ 6174 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 6175 { 6176 skb->pkt_type = PACKET_HOST; 6177 skb->skb_iif = 0; 6178 skb->ignore_df = 0; 6179 skb_dst_drop(skb); 6180 skb_ext_reset(skb); 6181 nf_reset_ct(skb); 6182 nf_reset_trace(skb); 6183 6184 #ifdef CONFIG_NET_SWITCHDEV 6185 skb->offload_fwd_mark = 0; 6186 skb->offload_l3_fwd_mark = 0; 6187 #endif 6188 ipvs_reset(skb); 6189 6190 if (!xnet) 6191 return; 6192 6193 skb->mark = 0; 6194 skb_clear_tstamp(skb); 6195 } 6196 EXPORT_SYMBOL_GPL(skb_scrub_packet); 6197 6198 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 6199 { 6200 int mac_len, meta_len; 6201 void *meta; 6202 6203 if (skb_cow(skb, skb_headroom(skb)) < 0) { 6204 kfree_skb(skb); 6205 return NULL; 6206 } 6207 6208 mac_len = skb->data - skb_mac_header(skb); 6209 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6210 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6211 mac_len - VLAN_HLEN - ETH_TLEN); 6212 } 6213 6214 meta_len = skb_metadata_len(skb); 6215 if (meta_len) { 6216 meta = skb_metadata_end(skb) - meta_len; 6217 memmove(meta + VLAN_HLEN, meta, meta_len); 6218 } 6219 6220 skb->mac_header += VLAN_HLEN; 6221 return skb; 6222 } 6223 6224 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6225 { 6226 struct vlan_hdr *vhdr; 6227 u16 vlan_tci; 6228 6229 if (unlikely(skb_vlan_tag_present(skb))) { 6230 /* vlan_tci is already set-up so leave this for another time */ 6231 return skb; 6232 } 6233 6234 skb = skb_share_check(skb, GFP_ATOMIC); 6235 if (unlikely(!skb)) 6236 goto err_free; 6237 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6238 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6239 goto err_free; 6240 6241 vhdr = (struct vlan_hdr *)skb->data; 6242 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6243 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6244 6245 skb_pull_rcsum(skb, VLAN_HLEN); 6246 vlan_set_encap_proto(skb, vhdr); 6247 6248 skb = skb_reorder_vlan_header(skb); 6249 if (unlikely(!skb)) 6250 goto err_free; 6251 6252 skb_reset_network_header(skb); 6253 if (!skb_transport_header_was_set(skb)) 6254 skb_reset_transport_header(skb); 6255 skb_reset_mac_len(skb); 6256 6257 return skb; 6258 6259 err_free: 6260 kfree_skb(skb); 6261 return NULL; 6262 } 6263 EXPORT_SYMBOL(skb_vlan_untag); 6264 6265 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6266 { 6267 if (!pskb_may_pull(skb, write_len)) 6268 return -ENOMEM; 6269 6270 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6271 return 0; 6272 6273 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6274 } 6275 EXPORT_SYMBOL(skb_ensure_writable); 6276 6277 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6278 { 6279 int needed_headroom = dev->needed_headroom; 6280 int needed_tailroom = dev->needed_tailroom; 6281 6282 /* For tail taggers, we need to pad short frames ourselves, to ensure 6283 * that the tail tag does not fail at its role of being at the end of 6284 * the packet, once the conduit interface pads the frame. Account for 6285 * that pad length here, and pad later. 6286 */ 6287 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6288 needed_tailroom += ETH_ZLEN - skb->len; 6289 /* skb_headroom() returns unsigned int... */ 6290 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6291 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6292 6293 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6294 /* No reallocation needed, yay! */ 6295 return 0; 6296 6297 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6298 GFP_ATOMIC); 6299 } 6300 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6301 6302 /* remove VLAN header from packet and update csum accordingly. 6303 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6304 */ 6305 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6306 { 6307 int offset = skb->data - skb_mac_header(skb); 6308 int err; 6309 6310 if (WARN_ONCE(offset, 6311 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6312 offset)) { 6313 return -EINVAL; 6314 } 6315 6316 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6317 if (unlikely(err)) 6318 return err; 6319 6320 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6321 6322 vlan_remove_tag(skb, vlan_tci); 6323 6324 skb->mac_header += VLAN_HLEN; 6325 6326 if (skb_network_offset(skb) < ETH_HLEN) 6327 skb_set_network_header(skb, ETH_HLEN); 6328 6329 skb_reset_mac_len(skb); 6330 6331 return err; 6332 } 6333 EXPORT_SYMBOL(__skb_vlan_pop); 6334 6335 /* Pop a vlan tag either from hwaccel or from payload. 6336 * Expects skb->data at mac header. 6337 */ 6338 int skb_vlan_pop(struct sk_buff *skb) 6339 { 6340 u16 vlan_tci; 6341 __be16 vlan_proto; 6342 int err; 6343 6344 if (likely(skb_vlan_tag_present(skb))) { 6345 __vlan_hwaccel_clear_tag(skb); 6346 } else { 6347 if (unlikely(!eth_type_vlan(skb->protocol))) 6348 return 0; 6349 6350 err = __skb_vlan_pop(skb, &vlan_tci); 6351 if (err) 6352 return err; 6353 } 6354 /* move next vlan tag to hw accel tag */ 6355 if (likely(!eth_type_vlan(skb->protocol))) 6356 return 0; 6357 6358 vlan_proto = skb->protocol; 6359 err = __skb_vlan_pop(skb, &vlan_tci); 6360 if (unlikely(err)) 6361 return err; 6362 6363 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6364 return 0; 6365 } 6366 EXPORT_SYMBOL(skb_vlan_pop); 6367 6368 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6369 * Expects skb->data at mac header. 6370 */ 6371 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6372 { 6373 if (skb_vlan_tag_present(skb)) { 6374 int offset = skb->data - skb_mac_header(skb); 6375 int err; 6376 6377 if (WARN_ONCE(offset, 6378 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6379 offset)) { 6380 return -EINVAL; 6381 } 6382 6383 err = __vlan_insert_tag(skb, skb->vlan_proto, 6384 skb_vlan_tag_get(skb)); 6385 if (err) 6386 return err; 6387 6388 skb->protocol = skb->vlan_proto; 6389 skb->network_header -= VLAN_HLEN; 6390 6391 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6392 } 6393 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6394 return 0; 6395 } 6396 EXPORT_SYMBOL(skb_vlan_push); 6397 6398 /** 6399 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6400 * 6401 * @skb: Socket buffer to modify 6402 * 6403 * Drop the Ethernet header of @skb. 6404 * 6405 * Expects that skb->data points to the mac header and that no VLAN tags are 6406 * present. 6407 * 6408 * Returns 0 on success, -errno otherwise. 6409 */ 6410 int skb_eth_pop(struct sk_buff *skb) 6411 { 6412 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6413 skb_network_offset(skb) < ETH_HLEN) 6414 return -EPROTO; 6415 6416 skb_pull_rcsum(skb, ETH_HLEN); 6417 skb_reset_mac_header(skb); 6418 skb_reset_mac_len(skb); 6419 6420 return 0; 6421 } 6422 EXPORT_SYMBOL(skb_eth_pop); 6423 6424 /** 6425 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6426 * 6427 * @skb: Socket buffer to modify 6428 * @dst: Destination MAC address of the new header 6429 * @src: Source MAC address of the new header 6430 * 6431 * Prepend @skb with a new Ethernet header. 6432 * 6433 * Expects that skb->data points to the mac header, which must be empty. 6434 * 6435 * Returns 0 on success, -errno otherwise. 6436 */ 6437 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6438 const unsigned char *src) 6439 { 6440 struct ethhdr *eth; 6441 int err; 6442 6443 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6444 return -EPROTO; 6445 6446 err = skb_cow_head(skb, sizeof(*eth)); 6447 if (err < 0) 6448 return err; 6449 6450 skb_push(skb, sizeof(*eth)); 6451 skb_reset_mac_header(skb); 6452 skb_reset_mac_len(skb); 6453 6454 eth = eth_hdr(skb); 6455 ether_addr_copy(eth->h_dest, dst); 6456 ether_addr_copy(eth->h_source, src); 6457 eth->h_proto = skb->protocol; 6458 6459 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6460 6461 return 0; 6462 } 6463 EXPORT_SYMBOL(skb_eth_push); 6464 6465 /* Update the ethertype of hdr and the skb csum value if required. */ 6466 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6467 __be16 ethertype) 6468 { 6469 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6470 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6471 6472 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6473 } 6474 6475 hdr->h_proto = ethertype; 6476 } 6477 6478 /** 6479 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6480 * the packet 6481 * 6482 * @skb: buffer 6483 * @mpls_lse: MPLS label stack entry to push 6484 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6485 * @mac_len: length of the MAC header 6486 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6487 * ethernet 6488 * 6489 * Expects skb->data at mac header. 6490 * 6491 * Returns 0 on success, -errno otherwise. 6492 */ 6493 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6494 int mac_len, bool ethernet) 6495 { 6496 struct mpls_shim_hdr *lse; 6497 int err; 6498 6499 if (unlikely(!eth_p_mpls(mpls_proto))) 6500 return -EINVAL; 6501 6502 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6503 if (skb->encapsulation) 6504 return -EINVAL; 6505 6506 err = skb_cow_head(skb, MPLS_HLEN); 6507 if (unlikely(err)) 6508 return err; 6509 6510 if (!skb->inner_protocol) { 6511 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6512 skb_set_inner_protocol(skb, skb->protocol); 6513 } 6514 6515 skb_push(skb, MPLS_HLEN); 6516 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6517 mac_len); 6518 skb_reset_mac_header(skb); 6519 skb_set_network_header(skb, mac_len); 6520 skb_reset_mac_len(skb); 6521 6522 lse = mpls_hdr(skb); 6523 lse->label_stack_entry = mpls_lse; 6524 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6525 6526 if (ethernet && mac_len >= ETH_HLEN) 6527 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6528 skb->protocol = mpls_proto; 6529 6530 return 0; 6531 } 6532 EXPORT_SYMBOL_GPL(skb_mpls_push); 6533 6534 /** 6535 * skb_mpls_pop() - pop the outermost MPLS header 6536 * 6537 * @skb: buffer 6538 * @next_proto: ethertype of header after popped MPLS header 6539 * @mac_len: length of the MAC header 6540 * @ethernet: flag to indicate if the packet is ethernet 6541 * 6542 * Expects skb->data at mac header. 6543 * 6544 * Returns 0 on success, -errno otherwise. 6545 */ 6546 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6547 bool ethernet) 6548 { 6549 int err; 6550 6551 if (unlikely(!eth_p_mpls(skb->protocol))) 6552 return 0; 6553 6554 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6555 if (unlikely(err)) 6556 return err; 6557 6558 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6559 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6560 mac_len); 6561 6562 __skb_pull(skb, MPLS_HLEN); 6563 skb_reset_mac_header(skb); 6564 skb_set_network_header(skb, mac_len); 6565 6566 if (ethernet && mac_len >= ETH_HLEN) { 6567 struct ethhdr *hdr; 6568 6569 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6570 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6571 skb_mod_eth_type(skb, hdr, next_proto); 6572 } 6573 skb->protocol = next_proto; 6574 6575 return 0; 6576 } 6577 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6578 6579 /** 6580 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6581 * 6582 * @skb: buffer 6583 * @mpls_lse: new MPLS label stack entry to update to 6584 * 6585 * Expects skb->data at mac header. 6586 * 6587 * Returns 0 on success, -errno otherwise. 6588 */ 6589 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6590 { 6591 int err; 6592 6593 if (unlikely(!eth_p_mpls(skb->protocol))) 6594 return -EINVAL; 6595 6596 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6597 if (unlikely(err)) 6598 return err; 6599 6600 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6601 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6602 6603 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6604 } 6605 6606 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6607 6608 return 0; 6609 } 6610 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6611 6612 /** 6613 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6614 * 6615 * @skb: buffer 6616 * 6617 * Expects skb->data at mac header. 6618 * 6619 * Returns 0 on success, -errno otherwise. 6620 */ 6621 int skb_mpls_dec_ttl(struct sk_buff *skb) 6622 { 6623 u32 lse; 6624 u8 ttl; 6625 6626 if (unlikely(!eth_p_mpls(skb->protocol))) 6627 return -EINVAL; 6628 6629 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6630 return -ENOMEM; 6631 6632 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6633 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6634 if (!--ttl) 6635 return -EINVAL; 6636 6637 lse &= ~MPLS_LS_TTL_MASK; 6638 lse |= ttl << MPLS_LS_TTL_SHIFT; 6639 6640 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6641 } 6642 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6643 6644 /** 6645 * alloc_skb_with_frags - allocate skb with page frags 6646 * 6647 * @header_len: size of linear part 6648 * @data_len: needed length in frags 6649 * @order: max page order desired. 6650 * @errcode: pointer to error code if any 6651 * @gfp_mask: allocation mask 6652 * 6653 * This can be used to allocate a paged skb, given a maximal order for frags. 6654 */ 6655 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6656 unsigned long data_len, 6657 int order, 6658 int *errcode, 6659 gfp_t gfp_mask) 6660 { 6661 unsigned long chunk; 6662 struct sk_buff *skb; 6663 struct page *page; 6664 int nr_frags = 0; 6665 6666 *errcode = -EMSGSIZE; 6667 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6668 return NULL; 6669 6670 *errcode = -ENOBUFS; 6671 skb = alloc_skb(header_len, gfp_mask); 6672 if (!skb) 6673 return NULL; 6674 6675 while (data_len) { 6676 if (nr_frags == MAX_SKB_FRAGS) 6677 goto failure; 6678 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6679 order--; 6680 6681 if (order) { 6682 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6683 __GFP_COMP | 6684 __GFP_NOWARN, 6685 order); 6686 if (!page) { 6687 order--; 6688 continue; 6689 } 6690 } else { 6691 page = alloc_page(gfp_mask); 6692 if (!page) 6693 goto failure; 6694 } 6695 chunk = min_t(unsigned long, data_len, 6696 PAGE_SIZE << order); 6697 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6698 nr_frags++; 6699 skb->truesize += (PAGE_SIZE << order); 6700 data_len -= chunk; 6701 } 6702 return skb; 6703 6704 failure: 6705 kfree_skb(skb); 6706 return NULL; 6707 } 6708 EXPORT_SYMBOL(alloc_skb_with_frags); 6709 6710 /* carve out the first off bytes from skb when off < headlen */ 6711 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6712 const int headlen, gfp_t gfp_mask) 6713 { 6714 int i; 6715 unsigned int size = skb_end_offset(skb); 6716 int new_hlen = headlen - off; 6717 u8 *data; 6718 6719 if (skb_pfmemalloc(skb)) 6720 gfp_mask |= __GFP_MEMALLOC; 6721 6722 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6723 if (!data) 6724 return -ENOMEM; 6725 size = SKB_WITH_OVERHEAD(size); 6726 6727 /* Copy real data, and all frags */ 6728 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6729 skb->len -= off; 6730 6731 memcpy((struct skb_shared_info *)(data + size), 6732 skb_shinfo(skb), 6733 offsetof(struct skb_shared_info, 6734 frags[skb_shinfo(skb)->nr_frags])); 6735 if (skb_cloned(skb)) { 6736 /* drop the old head gracefully */ 6737 if (skb_orphan_frags(skb, gfp_mask)) { 6738 skb_kfree_head(data, size); 6739 return -ENOMEM; 6740 } 6741 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6742 skb_frag_ref(skb, i); 6743 if (skb_has_frag_list(skb)) 6744 skb_clone_fraglist(skb); 6745 skb_release_data(skb, SKB_CONSUMED); 6746 } else { 6747 /* we can reuse existing recount- all we did was 6748 * relocate values 6749 */ 6750 skb_free_head(skb); 6751 } 6752 6753 skb->head = data; 6754 skb->data = data; 6755 skb->head_frag = 0; 6756 skb_set_end_offset(skb, size); 6757 skb_set_tail_pointer(skb, skb_headlen(skb)); 6758 skb_headers_offset_update(skb, 0); 6759 skb->cloned = 0; 6760 skb->hdr_len = 0; 6761 skb->nohdr = 0; 6762 atomic_set(&skb_shinfo(skb)->dataref, 1); 6763 6764 return 0; 6765 } 6766 6767 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6768 6769 /* carve out the first eat bytes from skb's frag_list. May recurse into 6770 * pskb_carve() 6771 */ 6772 static int pskb_carve_frag_list(struct skb_shared_info *shinfo, int eat, 6773 gfp_t gfp_mask) 6774 { 6775 struct sk_buff *list = shinfo->frag_list; 6776 struct sk_buff *clone = NULL; 6777 struct sk_buff *insp = NULL; 6778 6779 do { 6780 if (!list) { 6781 pr_err("Not enough bytes to eat. Want %d\n", eat); 6782 return -EFAULT; 6783 } 6784 if (list->len <= eat) { 6785 /* Eaten as whole. */ 6786 eat -= list->len; 6787 list = list->next; 6788 insp = list; 6789 } else { 6790 /* Eaten partially. */ 6791 if (skb_shared(list)) { 6792 clone = skb_clone(list, gfp_mask); 6793 if (!clone) 6794 return -ENOMEM; 6795 insp = list->next; 6796 list = clone; 6797 } else { 6798 /* This may be pulled without problems. */ 6799 insp = list; 6800 } 6801 if (pskb_carve(list, eat, gfp_mask) < 0) { 6802 kfree_skb(clone); 6803 return -ENOMEM; 6804 } 6805 break; 6806 } 6807 } while (eat); 6808 6809 /* Free pulled out fragments. */ 6810 while ((list = shinfo->frag_list) != insp) { 6811 shinfo->frag_list = list->next; 6812 consume_skb(list); 6813 } 6814 /* And insert new clone at head. */ 6815 if (clone) { 6816 clone->next = list; 6817 shinfo->frag_list = clone; 6818 } 6819 return 0; 6820 } 6821 6822 /* carve off first len bytes from skb. Split line (off) is in the 6823 * non-linear part of skb 6824 */ 6825 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6826 int pos, gfp_t gfp_mask) 6827 { 6828 int i, k = 0; 6829 unsigned int size = skb_end_offset(skb); 6830 u8 *data; 6831 const int nfrags = skb_shinfo(skb)->nr_frags; 6832 struct skb_shared_info *shinfo; 6833 6834 if (skb_pfmemalloc(skb)) 6835 gfp_mask |= __GFP_MEMALLOC; 6836 6837 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6838 if (!data) 6839 return -ENOMEM; 6840 size = SKB_WITH_OVERHEAD(size); 6841 6842 memcpy((struct skb_shared_info *)(data + size), 6843 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6844 if (skb_orphan_frags(skb, gfp_mask)) { 6845 skb_kfree_head(data, size); 6846 return -ENOMEM; 6847 } 6848 shinfo = (struct skb_shared_info *)(data + size); 6849 for (i = 0; i < nfrags; i++) { 6850 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6851 6852 if (pos + fsize > off) { 6853 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6854 6855 if (pos < off) { 6856 /* Split frag. 6857 * We have two variants in this case: 6858 * 1. Move all the frag to the second 6859 * part, if it is possible. F.e. 6860 * this approach is mandatory for TUX, 6861 * where splitting is expensive. 6862 * 2. Split is accurately. We make this. 6863 */ 6864 skb_frag_off_add(&shinfo->frags[0], off - pos); 6865 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6866 } 6867 skb_frag_ref(skb, i); 6868 k++; 6869 } 6870 pos += fsize; 6871 } 6872 shinfo->nr_frags = k; 6873 if (skb_has_frag_list(skb)) 6874 skb_clone_fraglist(skb); 6875 6876 /* split line is in frag list */ 6877 if (k == 0 && pskb_carve_frag_list(shinfo, off - pos, gfp_mask)) { 6878 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6879 if (skb_has_frag_list(skb)) 6880 kfree_skb_list(skb_shinfo(skb)->frag_list); 6881 skb_kfree_head(data, size); 6882 return -ENOMEM; 6883 } 6884 skb_release_data(skb, SKB_CONSUMED); 6885 6886 skb->head = data; 6887 skb->head_frag = 0; 6888 skb->data = data; 6889 skb_set_end_offset(skb, size); 6890 skb_reset_tail_pointer(skb); 6891 skb_headers_offset_update(skb, 0); 6892 skb->cloned = 0; 6893 skb->hdr_len = 0; 6894 skb->nohdr = 0; 6895 skb->len -= off; 6896 skb->data_len = skb->len; 6897 atomic_set(&skb_shinfo(skb)->dataref, 1); 6898 return 0; 6899 } 6900 6901 /* remove len bytes from the beginning of the skb */ 6902 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6903 { 6904 int headlen = skb_headlen(skb); 6905 6906 if (len < headlen) 6907 return pskb_carve_inside_header(skb, len, headlen, gfp); 6908 else 6909 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6910 } 6911 6912 /* Extract to_copy bytes starting at off from skb, and return this in 6913 * a new skb 6914 */ 6915 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6916 int to_copy, gfp_t gfp) 6917 { 6918 struct sk_buff *clone = skb_clone(skb, gfp); 6919 6920 if (!clone) 6921 return NULL; 6922 6923 if (pskb_carve(clone, off, gfp) < 0 || 6924 pskb_trim(clone, to_copy)) { 6925 kfree_skb(clone); 6926 return NULL; 6927 } 6928 return clone; 6929 } 6930 EXPORT_SYMBOL(pskb_extract); 6931 6932 /** 6933 * skb_condense - try to get rid of fragments/frag_list if possible 6934 * @skb: buffer 6935 * 6936 * Can be used to save memory before skb is added to a busy queue. 6937 * If packet has bytes in frags and enough tail room in skb->head, 6938 * pull all of them, so that we can free the frags right now and adjust 6939 * truesize. 6940 * Notes: 6941 * We do not reallocate skb->head thus can not fail. 6942 * Caller must re-evaluate skb->truesize if needed. 6943 */ 6944 void skb_condense(struct sk_buff *skb) 6945 { 6946 if (skb->data_len) { 6947 if (skb->data_len > skb->end - skb->tail || 6948 skb_cloned(skb) || !skb_frags_readable(skb)) 6949 return; 6950 6951 /* Nice, we can free page frag(s) right now */ 6952 __pskb_pull_tail(skb, skb->data_len); 6953 } 6954 /* At this point, skb->truesize might be over estimated, 6955 * because skb had a fragment, and fragments do not tell 6956 * their truesize. 6957 * When we pulled its content into skb->head, fragment 6958 * was freed, but __pskb_pull_tail() could not possibly 6959 * adjust skb->truesize, not knowing the frag truesize. 6960 */ 6961 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6962 } 6963 EXPORT_SYMBOL(skb_condense); 6964 6965 #ifdef CONFIG_SKB_EXTENSIONS 6966 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6967 { 6968 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6969 } 6970 6971 /** 6972 * __skb_ext_alloc - allocate a new skb extensions storage 6973 * 6974 * @flags: See kmalloc(). 6975 * 6976 * Returns the newly allocated pointer. The pointer can later attached to a 6977 * skb via __skb_ext_set(). 6978 * Note: caller must handle the skb_ext as an opaque data. 6979 */ 6980 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6981 { 6982 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6983 6984 if (new) { 6985 memset(new->offset, 0, sizeof(new->offset)); 6986 refcount_set(&new->refcnt, 1); 6987 } 6988 6989 return new; 6990 } 6991 6992 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6993 unsigned int old_active) 6994 { 6995 struct skb_ext *new; 6996 6997 if (refcount_read(&old->refcnt) == 1) 6998 return old; 6999 7000 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 7001 if (!new) 7002 return NULL; 7003 7004 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 7005 refcount_set(&new->refcnt, 1); 7006 7007 #ifdef CONFIG_XFRM 7008 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 7009 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 7010 unsigned int i; 7011 7012 for (i = 0; i < sp->len; i++) 7013 xfrm_state_hold(sp->xvec[i]); 7014 } 7015 #endif 7016 #ifdef CONFIG_MCTP_FLOWS 7017 if (old_active & (1 << SKB_EXT_MCTP)) { 7018 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 7019 7020 if (flow->key) 7021 refcount_inc(&flow->key->refs); 7022 } 7023 #endif 7024 __skb_ext_put(old); 7025 return new; 7026 } 7027 7028 /** 7029 * __skb_ext_set - attach the specified extension storage to this skb 7030 * @skb: buffer 7031 * @id: extension id 7032 * @ext: extension storage previously allocated via __skb_ext_alloc() 7033 * 7034 * Existing extensions, if any, are cleared. 7035 * 7036 * Returns the pointer to the extension. 7037 */ 7038 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 7039 struct skb_ext *ext) 7040 { 7041 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 7042 7043 skb_ext_put(skb); 7044 newlen = newoff + skb_ext_type_len[id]; 7045 ext->chunks = newlen; 7046 ext->offset[id] = newoff; 7047 skb->extensions = ext; 7048 skb->active_extensions = 1 << id; 7049 return skb_ext_get_ptr(ext, id); 7050 } 7051 EXPORT_SYMBOL_NS_GPL(__skb_ext_set, "NETDEV_INTERNAL"); 7052 7053 /** 7054 * skb_ext_add - allocate space for given extension, COW if needed 7055 * @skb: buffer 7056 * @id: extension to allocate space for 7057 * 7058 * Allocates enough space for the given extension. 7059 * If the extension is already present, a pointer to that extension 7060 * is returned. 7061 * 7062 * If the skb was cloned, COW applies and the returned memory can be 7063 * modified without changing the extension space of clones buffers. 7064 * 7065 * Returns pointer to the extension or NULL on allocation failure. 7066 */ 7067 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 7068 { 7069 struct skb_ext *new, *old = NULL; 7070 unsigned int newlen, newoff; 7071 7072 if (skb->active_extensions) { 7073 old = skb->extensions; 7074 7075 new = skb_ext_maybe_cow(old, skb->active_extensions); 7076 if (!new) 7077 return NULL; 7078 7079 if (__skb_ext_exist(new, id)) 7080 goto set_active; 7081 7082 newoff = new->chunks; 7083 } else { 7084 newoff = SKB_EXT_CHUNKSIZEOF(*new); 7085 7086 new = __skb_ext_alloc(GFP_ATOMIC); 7087 if (!new) 7088 return NULL; 7089 } 7090 7091 newlen = newoff + skb_ext_type_len[id]; 7092 new->chunks = newlen; 7093 new->offset[id] = newoff; 7094 set_active: 7095 skb->slow_gro = 1; 7096 skb->extensions = new; 7097 skb->active_extensions |= 1 << id; 7098 return skb_ext_get_ptr(new, id); 7099 } 7100 EXPORT_SYMBOL(skb_ext_add); 7101 7102 #ifdef CONFIG_XFRM 7103 static void skb_ext_put_sp(struct sec_path *sp) 7104 { 7105 unsigned int i; 7106 7107 for (i = 0; i < sp->len; i++) 7108 xfrm_state_put(sp->xvec[i]); 7109 } 7110 #endif 7111 7112 #ifdef CONFIG_MCTP_FLOWS 7113 static void skb_ext_put_mctp(struct mctp_flow *flow) 7114 { 7115 if (flow->key) 7116 mctp_key_unref(flow->key); 7117 } 7118 #endif 7119 7120 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 7121 { 7122 struct skb_ext *ext = skb->extensions; 7123 7124 skb->active_extensions &= ~(1 << id); 7125 if (skb->active_extensions == 0) { 7126 skb->extensions = NULL; 7127 __skb_ext_put(ext); 7128 #ifdef CONFIG_XFRM 7129 } else if (id == SKB_EXT_SEC_PATH && 7130 refcount_read(&ext->refcnt) == 1) { 7131 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 7132 7133 skb_ext_put_sp(sp); 7134 sp->len = 0; 7135 #endif 7136 } 7137 } 7138 EXPORT_SYMBOL(__skb_ext_del); 7139 7140 void __skb_ext_put(struct skb_ext *ext) 7141 { 7142 /* If this is last clone, nothing can increment 7143 * it after check passes. Avoids one atomic op. 7144 */ 7145 if (refcount_read(&ext->refcnt) == 1) 7146 goto free_now; 7147 7148 if (!refcount_dec_and_test(&ext->refcnt)) 7149 return; 7150 free_now: 7151 #ifdef CONFIG_XFRM 7152 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 7153 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 7154 #endif 7155 #ifdef CONFIG_MCTP_FLOWS 7156 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 7157 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 7158 #endif 7159 7160 kmem_cache_free(skbuff_ext_cache, ext); 7161 } 7162 EXPORT_SYMBOL(__skb_ext_put); 7163 #endif /* CONFIG_SKB_EXTENSIONS */ 7164 7165 static void kfree_skb_napi_cache(struct sk_buff *skb) 7166 { 7167 /* if SKB is a clone, don't handle this case */ 7168 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 7169 __kfree_skb(skb); 7170 return; 7171 } 7172 7173 local_bh_disable(); 7174 __napi_kfree_skb(skb, SKB_CONSUMED); 7175 local_bh_enable(); 7176 } 7177 7178 /** 7179 * skb_attempt_defer_free - queue skb for remote freeing 7180 * @skb: buffer 7181 * 7182 * Put @skb in a per-cpu list, using the cpu which 7183 * allocated the skb/pages to reduce false sharing 7184 * and memory zone spinlock contention. 7185 */ 7186 void skb_attempt_defer_free(struct sk_buff *skb) 7187 { 7188 struct skb_defer_node *sdn; 7189 unsigned long defer_count; 7190 int cpu = skb->alloc_cpu; 7191 unsigned int defer_max; 7192 bool kick; 7193 7194 if (cpu == raw_smp_processor_id() || 7195 WARN_ON_ONCE(cpu >= nr_cpu_ids) || 7196 !cpu_online(cpu)) { 7197 nodefer: kfree_skb_napi_cache(skb); 7198 return; 7199 } 7200 7201 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 7202 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 7203 7204 sdn = per_cpu_ptr(net_hotdata.skb_defer_nodes, cpu) + numa_node_id(); 7205 7206 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max); 7207 defer_count = atomic_long_inc_return(&sdn->defer_count); 7208 7209 if (defer_count >= defer_max) 7210 goto nodefer; 7211 7212 llist_add(&skb->ll_node, &sdn->defer_list); 7213 7214 /* Send an IPI every time queue reaches half capacity. */ 7215 kick = (defer_count - 1) == (defer_max >> 1); 7216 7217 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7218 * if we are unlucky enough (this seems very unlikely). 7219 */ 7220 if (unlikely(kick)) 7221 kick_defer_list_purge(cpu); 7222 } 7223 7224 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7225 size_t offset, size_t len) 7226 { 7227 const char *kaddr; 7228 __wsum csum; 7229 7230 kaddr = kmap_local_page(page); 7231 csum = csum_partial(kaddr + offset, len, 0); 7232 kunmap_local(kaddr); 7233 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7234 } 7235 7236 /** 7237 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7238 * @skb: The buffer to add pages to 7239 * @iter: Iterator representing the pages to be added 7240 * @maxsize: Maximum amount of pages to be added 7241 * 7242 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7243 * extracts pages from an iterator and adds them to the socket buffer if 7244 * possible, copying them to fragments if not possible (such as if they're slab 7245 * pages). 7246 * 7247 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7248 * insufficient space in the buffer to transfer anything. 7249 */ 7250 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7251 ssize_t maxsize) 7252 { 7253 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags); 7254 struct page *pages[8], **ppages = pages; 7255 ssize_t spliced = 0, ret = 0; 7256 unsigned int i; 7257 7258 while (iter->count > 0) { 7259 ssize_t space, nr, len; 7260 size_t off; 7261 7262 ret = -EMSGSIZE; 7263 space = frag_limit - skb_shinfo(skb)->nr_frags; 7264 if (space < 0) 7265 break; 7266 7267 /* We might be able to coalesce without increasing nr_frags */ 7268 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7269 7270 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7271 if (len <= 0) { 7272 ret = len ?: -EIO; 7273 break; 7274 } 7275 7276 i = 0; 7277 do { 7278 struct page *page = pages[i++]; 7279 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7280 7281 ret = -EIO; 7282 if (WARN_ON_ONCE(!sendpage_ok(page))) 7283 goto out; 7284 7285 ret = skb_append_pagefrags(skb, page, off, part, 7286 frag_limit); 7287 if (ret < 0) { 7288 iov_iter_revert(iter, len); 7289 goto out; 7290 } 7291 7292 if (skb->ip_summed == CHECKSUM_NONE) 7293 skb_splice_csum_page(skb, page, off, part); 7294 7295 off = 0; 7296 spliced += part; 7297 maxsize -= part; 7298 len -= part; 7299 } while (len > 0); 7300 7301 if (maxsize <= 0) 7302 break; 7303 } 7304 7305 out: 7306 skb_len_add(skb, spliced); 7307 return spliced ?: ret; 7308 } 7309 EXPORT_SYMBOL(skb_splice_from_iter); 7310 7311 static __always_inline 7312 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7313 size_t len, void *to, void *priv2) 7314 { 7315 __wsum *csum = priv2; 7316 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7317 7318 *csum = csum_block_add(*csum, next, progress); 7319 return 0; 7320 } 7321 7322 static __always_inline 7323 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7324 size_t len, void *to, void *priv2) 7325 { 7326 __wsum next, *csum = priv2; 7327 7328 next = csum_and_copy_from_user(iter_from, to + progress, len); 7329 *csum = csum_block_add(*csum, next, progress); 7330 return next ? 0 : len; 7331 } 7332 7333 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7334 __wsum *csum, struct iov_iter *i) 7335 { 7336 size_t copied; 7337 7338 if (WARN_ON_ONCE(!i->data_source)) 7339 return false; 7340 copied = iterate_and_advance2(i, bytes, addr, csum, 7341 copy_from_user_iter_csum, 7342 memcpy_from_iter_csum); 7343 if (likely(copied == bytes)) 7344 return true; 7345 iov_iter_revert(i, copied); 7346 return false; 7347 } 7348 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7349 7350 void get_netmem(netmem_ref netmem) 7351 { 7352 struct net_iov *niov; 7353 7354 if (netmem_is_net_iov(netmem)) { 7355 niov = netmem_to_net_iov(netmem); 7356 if (net_is_devmem_iov(niov)) 7357 net_devmem_get_net_iov(netmem_to_net_iov(netmem)); 7358 return; 7359 } 7360 get_page(netmem_to_page(netmem)); 7361 } 7362 EXPORT_SYMBOL(get_netmem); 7363 7364 void put_netmem(netmem_ref netmem) 7365 { 7366 struct net_iov *niov; 7367 7368 if (netmem_is_net_iov(netmem)) { 7369 niov = netmem_to_net_iov(netmem); 7370 if (net_is_devmem_iov(niov)) 7371 net_devmem_put_net_iov(netmem_to_net_iov(netmem)); 7372 return; 7373 } 7374 7375 put_page(netmem_to_page(netmem)); 7376 } 7377 EXPORT_SYMBOL(put_netmem); 7378