1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 #include <linux/crc32.h>
68
69 #include <net/protocol.h>
70 #include <net/dst.h>
71 #include <net/sock.h>
72 #include <net/checksum.h>
73 #include <net/gro.h>
74 #include <net/gso.h>
75 #include <net/hotdata.h>
76 #include <net/ip6_checksum.h>
77 #include <net/xfrm.h>
78 #include <net/mpls.h>
79 #include <net/mptcp.h>
80 #include <net/mctp.h>
81 #include <net/page_pool/helpers.h>
82 #include <net/dropreason.h>
83
84 #include <linux/uaccess.h>
85 #include <trace/events/skb.h>
86 #include <linux/highmem.h>
87 #include <linux/capability.h>
88 #include <linux/user_namespace.h>
89 #include <linux/indirect_call_wrapper.h>
90 #include <linux/textsearch.h>
91
92 #include "dev.h"
93 #include "devmem.h"
94 #include "netmem_priv.h"
95 #include "sock_destructor.h"
96
97 #ifdef CONFIG_SKB_EXTENSIONS
98 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
99 #endif
100
101 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN)
102 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \
103 GRO_MAX_HEAD_PAD))
104
105 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
106 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
107 * size, and we can differentiate heads from skb_small_head_cache
108 * vs system slabs by looking at their size (skb_end_offset()).
109 */
110 #define SKB_SMALL_HEAD_CACHE_SIZE \
111 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \
112 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \
113 SKB_SMALL_HEAD_SIZE)
114
115 #define SKB_SMALL_HEAD_HEADROOM \
116 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
117
118 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
119 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
120 * netmem is a page.
121 */
122 static_assert(offsetof(struct bio_vec, bv_page) ==
123 offsetof(skb_frag_t, netmem));
124 static_assert(sizeof_field(struct bio_vec, bv_page) ==
125 sizeof_field(skb_frag_t, netmem));
126
127 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
128 static_assert(sizeof_field(struct bio_vec, bv_len) ==
129 sizeof_field(skb_frag_t, len));
130
131 static_assert(offsetof(struct bio_vec, bv_offset) ==
132 offsetof(skb_frag_t, offset));
133 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
134 sizeof_field(skb_frag_t, offset));
135
136 #undef FN
137 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
138 static const char * const drop_reasons[] = {
139 [SKB_CONSUMED] = "CONSUMED",
140 DEFINE_DROP_REASON(FN, FN)
141 };
142
143 static const struct drop_reason_list drop_reasons_core = {
144 .reasons = drop_reasons,
145 .n_reasons = ARRAY_SIZE(drop_reasons),
146 };
147
148 const struct drop_reason_list __rcu *
149 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
150 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
151 };
152 EXPORT_SYMBOL(drop_reasons_by_subsys);
153
154 /**
155 * drop_reasons_register_subsys - register another drop reason subsystem
156 * @subsys: the subsystem to register, must not be the core
157 * @list: the list of drop reasons within the subsystem, must point to
158 * a statically initialized list
159 */
drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,const struct drop_reason_list * list)160 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
161 const struct drop_reason_list *list)
162 {
163 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
164 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
165 "invalid subsystem %d\n", subsys))
166 return;
167
168 /* must point to statically allocated memory, so INIT is OK */
169 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
170 }
171 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
172
173 /**
174 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
175 * @subsys: the subsystem to remove, must not be the core
176 *
177 * Note: This will synchronize_rcu() to ensure no users when it returns.
178 */
drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)179 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
180 {
181 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
182 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
183 "invalid subsystem %d\n", subsys))
184 return;
185
186 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
187
188 synchronize_rcu();
189 }
190 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
191
192 /**
193 * skb_panic - private function for out-of-line support
194 * @skb: buffer
195 * @sz: size
196 * @addr: address
197 * @msg: skb_over_panic or skb_under_panic
198 *
199 * Out-of-line support for skb_put() and skb_push().
200 * Called via the wrapper skb_over_panic() or skb_under_panic().
201 * Keep out of line to prevent kernel bloat.
202 * __builtin_return_address is not used because it is not always reliable.
203 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])204 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
205 const char msg[])
206 {
207 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
208 msg, addr, skb->len, sz, skb->head, skb->data,
209 (unsigned long)skb->tail, (unsigned long)skb->end,
210 skb->dev ? skb->dev->name : "<NULL>");
211 BUG();
212 }
213
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)214 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
215 {
216 skb_panic(skb, sz, addr, __func__);
217 }
218
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)219 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
220 {
221 skb_panic(skb, sz, addr, __func__);
222 }
223
224 #define NAPI_SKB_CACHE_SIZE 64
225 #define NAPI_SKB_CACHE_BULK 16
226 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
227
228 struct napi_alloc_cache {
229 local_lock_t bh_lock;
230 struct page_frag_cache page;
231 unsigned int skb_count;
232 void *skb_cache[NAPI_SKB_CACHE_SIZE];
233 };
234
235 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
236 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
237 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
238 };
239
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)240 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
241 {
242 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
243 void *data;
244
245 fragsz = SKB_DATA_ALIGN(fragsz);
246
247 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
248 data = __page_frag_alloc_align(&nc->page, fragsz,
249 GFP_ATOMIC | __GFP_NOWARN, align_mask);
250 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
251 return data;
252
253 }
254 EXPORT_SYMBOL(__napi_alloc_frag_align);
255
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)256 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
257 {
258 void *data;
259
260 if (in_hardirq() || irqs_disabled()) {
261 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
262
263 fragsz = SKB_DATA_ALIGN(fragsz);
264 data = __page_frag_alloc_align(nc, fragsz,
265 GFP_ATOMIC | __GFP_NOWARN,
266 align_mask);
267 } else {
268 local_bh_disable();
269 data = __napi_alloc_frag_align(fragsz, align_mask);
270 local_bh_enable();
271 }
272 return data;
273 }
274 EXPORT_SYMBOL(__netdev_alloc_frag_align);
275
napi_skb_cache_get(void)276 static struct sk_buff *napi_skb_cache_get(void)
277 {
278 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
279 struct sk_buff *skb;
280
281 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
282 if (unlikely(!nc->skb_count)) {
283 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
284 GFP_ATOMIC | __GFP_NOWARN,
285 NAPI_SKB_CACHE_BULK,
286 nc->skb_cache);
287 if (unlikely(!nc->skb_count)) {
288 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
289 return NULL;
290 }
291 }
292
293 skb = nc->skb_cache[--nc->skb_count];
294 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
295 kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
296
297 return skb;
298 }
299
300 /**
301 * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache
302 * @skbs: pointer to an at least @n-sized array to fill with skb pointers
303 * @n: number of entries to provide
304 *
305 * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes
306 * the pointers into the provided array @skbs. If there are less entries
307 * available, tries to replenish the cache and bulk-allocates the diff from
308 * the MM layer if needed.
309 * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are
310 * ready for {,__}build_skb_around() and don't have any data buffers attached.
311 * Must be called *only* from the BH context.
312 *
313 * Return: number of successfully allocated skbs (@n if no actual allocation
314 * needed or kmem_cache_alloc_bulk() didn't fail).
315 */
napi_skb_cache_get_bulk(void ** skbs,u32 n)316 u32 napi_skb_cache_get_bulk(void **skbs, u32 n)
317 {
318 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
319 u32 bulk, total = n;
320
321 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
322
323 if (nc->skb_count >= n)
324 goto get;
325
326 /* No enough cached skbs. Try refilling the cache first */
327 bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK);
328 nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
329 GFP_ATOMIC | __GFP_NOWARN, bulk,
330 &nc->skb_cache[nc->skb_count]);
331 if (likely(nc->skb_count >= n))
332 goto get;
333
334 /* Still not enough. Bulk-allocate the missing part directly, zeroed */
335 n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
336 GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN,
337 n - nc->skb_count, &skbs[nc->skb_count]);
338 if (likely(nc->skb_count >= n))
339 goto get;
340
341 /* kmem_cache didn't allocate the number we need, limit the output */
342 total -= n - nc->skb_count;
343 n = nc->skb_count;
344
345 get:
346 for (u32 base = nc->skb_count - n, i = 0; i < n; i++) {
347 u32 cache_size = kmem_cache_size(net_hotdata.skbuff_cache);
348
349 skbs[i] = nc->skb_cache[base + i];
350
351 kasan_mempool_unpoison_object(skbs[i], cache_size);
352 memset(skbs[i], 0, offsetof(struct sk_buff, tail));
353 }
354
355 nc->skb_count -= n;
356 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
357
358 return total;
359 }
360 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk);
361
__finalize_skb_around(struct sk_buff * skb,void * data,unsigned int size)362 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
363 unsigned int size)
364 {
365 struct skb_shared_info *shinfo;
366
367 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
368
369 /* Assumes caller memset cleared SKB */
370 skb->truesize = SKB_TRUESIZE(size);
371 refcount_set(&skb->users, 1);
372 skb->head = data;
373 skb->data = data;
374 skb_reset_tail_pointer(skb);
375 skb_set_end_offset(skb, size);
376 skb->mac_header = (typeof(skb->mac_header))~0U;
377 skb->transport_header = (typeof(skb->transport_header))~0U;
378 skb->alloc_cpu = raw_smp_processor_id();
379 /* make sure we initialize shinfo sequentially */
380 shinfo = skb_shinfo(skb);
381 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
382 atomic_set(&shinfo->dataref, 1);
383
384 skb_set_kcov_handle(skb, kcov_common_handle());
385 }
386
__slab_build_skb(struct sk_buff * skb,void * data,unsigned int * size)387 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
388 unsigned int *size)
389 {
390 void *resized;
391
392 /* Must find the allocation size (and grow it to match). */
393 *size = ksize(data);
394 /* krealloc() will immediately return "data" when
395 * "ksize(data)" is requested: it is the existing upper
396 * bounds. As a result, GFP_ATOMIC will be ignored. Note
397 * that this "new" pointer needs to be passed back to the
398 * caller for use so the __alloc_size hinting will be
399 * tracked correctly.
400 */
401 resized = krealloc(data, *size, GFP_ATOMIC);
402 WARN_ON_ONCE(resized != data);
403 return resized;
404 }
405
406 /* build_skb() variant which can operate on slab buffers.
407 * Note that this should be used sparingly as slab buffers
408 * cannot be combined efficiently by GRO!
409 */
slab_build_skb(void * data)410 struct sk_buff *slab_build_skb(void *data)
411 {
412 struct sk_buff *skb;
413 unsigned int size;
414
415 skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
416 GFP_ATOMIC | __GFP_NOWARN);
417 if (unlikely(!skb))
418 return NULL;
419
420 memset(skb, 0, offsetof(struct sk_buff, tail));
421 data = __slab_build_skb(skb, data, &size);
422 __finalize_skb_around(skb, data, size);
423
424 return skb;
425 }
426 EXPORT_SYMBOL(slab_build_skb);
427
428 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)429 static void __build_skb_around(struct sk_buff *skb, void *data,
430 unsigned int frag_size)
431 {
432 unsigned int size = frag_size;
433
434 /* frag_size == 0 is considered deprecated now. Callers
435 * using slab buffer should use slab_build_skb() instead.
436 */
437 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
438 data = __slab_build_skb(skb, data, &size);
439
440 __finalize_skb_around(skb, data, size);
441 }
442
443 /**
444 * __build_skb - build a network buffer
445 * @data: data buffer provided by caller
446 * @frag_size: size of data (must not be 0)
447 *
448 * Allocate a new &sk_buff. Caller provides space holding head and
449 * skb_shared_info. @data must have been allocated from the page
450 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
451 * allocation is deprecated, and callers should use slab_build_skb()
452 * instead.)
453 * The return is the new skb buffer.
454 * On a failure the return is %NULL, and @data is not freed.
455 * Notes :
456 * Before IO, driver allocates only data buffer where NIC put incoming frame
457 * Driver should add room at head (NET_SKB_PAD) and
458 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
459 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
460 * before giving packet to stack.
461 * RX rings only contains data buffers, not full skbs.
462 */
__build_skb(void * data,unsigned int frag_size)463 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
464 {
465 struct sk_buff *skb;
466
467 skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
468 GFP_ATOMIC | __GFP_NOWARN);
469 if (unlikely(!skb))
470 return NULL;
471
472 memset(skb, 0, offsetof(struct sk_buff, tail));
473 __build_skb_around(skb, data, frag_size);
474
475 return skb;
476 }
477
478 /* build_skb() is wrapper over __build_skb(), that specifically
479 * takes care of skb->head and skb->pfmemalloc
480 */
build_skb(void * data,unsigned int frag_size)481 struct sk_buff *build_skb(void *data, unsigned int frag_size)
482 {
483 struct sk_buff *skb = __build_skb(data, frag_size);
484
485 if (likely(skb && frag_size)) {
486 skb->head_frag = 1;
487 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
488 }
489 return skb;
490 }
491 EXPORT_SYMBOL(build_skb);
492
493 /**
494 * build_skb_around - build a network buffer around provided skb
495 * @skb: sk_buff provide by caller, must be memset cleared
496 * @data: data buffer provided by caller
497 * @frag_size: size of data
498 */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)499 struct sk_buff *build_skb_around(struct sk_buff *skb,
500 void *data, unsigned int frag_size)
501 {
502 if (unlikely(!skb))
503 return NULL;
504
505 __build_skb_around(skb, data, frag_size);
506
507 if (frag_size) {
508 skb->head_frag = 1;
509 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
510 }
511 return skb;
512 }
513 EXPORT_SYMBOL(build_skb_around);
514
515 /**
516 * __napi_build_skb - build a network buffer
517 * @data: data buffer provided by caller
518 * @frag_size: size of data
519 *
520 * Version of __build_skb() that uses NAPI percpu caches to obtain
521 * skbuff_head instead of inplace allocation.
522 *
523 * Returns a new &sk_buff on success, %NULL on allocation failure.
524 */
__napi_build_skb(void * data,unsigned int frag_size)525 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
526 {
527 struct sk_buff *skb;
528
529 skb = napi_skb_cache_get();
530 if (unlikely(!skb))
531 return NULL;
532
533 memset(skb, 0, offsetof(struct sk_buff, tail));
534 __build_skb_around(skb, data, frag_size);
535
536 return skb;
537 }
538
539 /**
540 * napi_build_skb - build a network buffer
541 * @data: data buffer provided by caller
542 * @frag_size: size of data
543 *
544 * Version of __napi_build_skb() that takes care of skb->head_frag
545 * and skb->pfmemalloc when the data is a page or page fragment.
546 *
547 * Returns a new &sk_buff on success, %NULL on allocation failure.
548 */
napi_build_skb(void * data,unsigned int frag_size)549 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
550 {
551 struct sk_buff *skb = __napi_build_skb(data, frag_size);
552
553 if (likely(skb) && frag_size) {
554 skb->head_frag = 1;
555 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
556 }
557
558 return skb;
559 }
560 EXPORT_SYMBOL(napi_build_skb);
561
562 /*
563 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
564 * the caller if emergency pfmemalloc reserves are being used. If it is and
565 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
566 * may be used. Otherwise, the packet data may be discarded until enough
567 * memory is free
568 */
kmalloc_reserve(unsigned int * size,gfp_t flags,int node,bool * pfmemalloc)569 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
570 bool *pfmemalloc)
571 {
572 bool ret_pfmemalloc = false;
573 size_t obj_size;
574 void *obj;
575
576 obj_size = SKB_HEAD_ALIGN(*size);
577 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
578 !(flags & KMALLOC_NOT_NORMAL_BITS)) {
579 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
580 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
581 node);
582 *size = SKB_SMALL_HEAD_CACHE_SIZE;
583 if (obj || !(gfp_pfmemalloc_allowed(flags)))
584 goto out;
585 /* Try again but now we are using pfmemalloc reserves */
586 ret_pfmemalloc = true;
587 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
588 goto out;
589 }
590
591 obj_size = kmalloc_size_roundup(obj_size);
592 /* The following cast might truncate high-order bits of obj_size, this
593 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
594 */
595 *size = (unsigned int)obj_size;
596
597 /*
598 * Try a regular allocation, when that fails and we're not entitled
599 * to the reserves, fail.
600 */
601 obj = kmalloc_node_track_caller(obj_size,
602 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
603 node);
604 if (obj || !(gfp_pfmemalloc_allowed(flags)))
605 goto out;
606
607 /* Try again but now we are using pfmemalloc reserves */
608 ret_pfmemalloc = true;
609 obj = kmalloc_node_track_caller(obj_size, flags, node);
610
611 out:
612 if (pfmemalloc)
613 *pfmemalloc = ret_pfmemalloc;
614
615 return obj;
616 }
617
618 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
619 * 'private' fields and also do memory statistics to find all the
620 * [BEEP] leaks.
621 *
622 */
623
624 /**
625 * __alloc_skb - allocate a network buffer
626 * @size: size to allocate
627 * @gfp_mask: allocation mask
628 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
629 * instead of head cache and allocate a cloned (child) skb.
630 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
631 * allocations in case the data is required for writeback
632 * @node: numa node to allocate memory on
633 *
634 * Allocate a new &sk_buff. The returned buffer has no headroom and a
635 * tail room of at least size bytes. The object has a reference count
636 * of one. The return is the buffer. On a failure the return is %NULL.
637 *
638 * Buffers may only be allocated from interrupts using a @gfp_mask of
639 * %GFP_ATOMIC.
640 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)641 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
642 int flags, int node)
643 {
644 struct kmem_cache *cache;
645 struct sk_buff *skb;
646 bool pfmemalloc;
647 u8 *data;
648
649 cache = (flags & SKB_ALLOC_FCLONE)
650 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
651
652 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
653 gfp_mask |= __GFP_MEMALLOC;
654
655 /* Get the HEAD */
656 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
657 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
658 skb = napi_skb_cache_get();
659 else
660 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
661 if (unlikely(!skb))
662 return NULL;
663 prefetchw(skb);
664
665 /* We do our best to align skb_shared_info on a separate cache
666 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
667 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
668 * Both skb->head and skb_shared_info are cache line aligned.
669 */
670 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
671 if (unlikely(!data))
672 goto nodata;
673 /* kmalloc_size_roundup() might give us more room than requested.
674 * Put skb_shared_info exactly at the end of allocated zone,
675 * to allow max possible filling before reallocation.
676 */
677 prefetchw(data + SKB_WITH_OVERHEAD(size));
678
679 /*
680 * Only clear those fields we need to clear, not those that we will
681 * actually initialise below. Hence, don't put any more fields after
682 * the tail pointer in struct sk_buff!
683 */
684 memset(skb, 0, offsetof(struct sk_buff, tail));
685 __build_skb_around(skb, data, size);
686 skb->pfmemalloc = pfmemalloc;
687
688 if (flags & SKB_ALLOC_FCLONE) {
689 struct sk_buff_fclones *fclones;
690
691 fclones = container_of(skb, struct sk_buff_fclones, skb1);
692
693 skb->fclone = SKB_FCLONE_ORIG;
694 refcount_set(&fclones->fclone_ref, 1);
695 }
696
697 return skb;
698
699 nodata:
700 kmem_cache_free(cache, skb);
701 return NULL;
702 }
703 EXPORT_SYMBOL(__alloc_skb);
704
705 /**
706 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
707 * @dev: network device to receive on
708 * @len: length to allocate
709 * @gfp_mask: get_free_pages mask, passed to alloc_skb
710 *
711 * Allocate a new &sk_buff and assign it a usage count of one. The
712 * buffer has NET_SKB_PAD headroom built in. Users should allocate
713 * the headroom they think they need without accounting for the
714 * built in space. The built in space is used for optimisations.
715 *
716 * %NULL is returned if there is no free memory.
717 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)718 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
719 gfp_t gfp_mask)
720 {
721 struct page_frag_cache *nc;
722 struct sk_buff *skb;
723 bool pfmemalloc;
724 void *data;
725
726 len += NET_SKB_PAD;
727
728 /* If requested length is either too small or too big,
729 * we use kmalloc() for skb->head allocation.
730 */
731 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
732 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
733 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
734 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
735 if (!skb)
736 goto skb_fail;
737 goto skb_success;
738 }
739
740 len = SKB_HEAD_ALIGN(len);
741
742 if (sk_memalloc_socks())
743 gfp_mask |= __GFP_MEMALLOC;
744
745 if (in_hardirq() || irqs_disabled()) {
746 nc = this_cpu_ptr(&netdev_alloc_cache);
747 data = page_frag_alloc(nc, len, gfp_mask);
748 pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
749 } else {
750 local_bh_disable();
751 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
752
753 nc = this_cpu_ptr(&napi_alloc_cache.page);
754 data = page_frag_alloc(nc, len, gfp_mask);
755 pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
756
757 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
758 local_bh_enable();
759 }
760
761 if (unlikely(!data))
762 return NULL;
763
764 skb = __build_skb(data, len);
765 if (unlikely(!skb)) {
766 skb_free_frag(data);
767 return NULL;
768 }
769
770 if (pfmemalloc)
771 skb->pfmemalloc = 1;
772 skb->head_frag = 1;
773
774 skb_success:
775 skb_reserve(skb, NET_SKB_PAD);
776 skb->dev = dev;
777
778 skb_fail:
779 return skb;
780 }
781 EXPORT_SYMBOL(__netdev_alloc_skb);
782
783 /**
784 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
785 * @napi: napi instance this buffer was allocated for
786 * @len: length to allocate
787 *
788 * Allocate a new sk_buff for use in NAPI receive. This buffer will
789 * attempt to allocate the head from a special reserved region used
790 * only for NAPI Rx allocation. By doing this we can save several
791 * CPU cycles by avoiding having to disable and re-enable IRQs.
792 *
793 * %NULL is returned if there is no free memory.
794 */
napi_alloc_skb(struct napi_struct * napi,unsigned int len)795 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
796 {
797 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
798 struct napi_alloc_cache *nc;
799 struct sk_buff *skb;
800 bool pfmemalloc;
801 void *data;
802
803 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
804 len += NET_SKB_PAD + NET_IP_ALIGN;
805
806 /* If requested length is either too small or too big,
807 * we use kmalloc() for skb->head allocation.
808 */
809 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
810 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
811 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
812 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
813 NUMA_NO_NODE);
814 if (!skb)
815 goto skb_fail;
816 goto skb_success;
817 }
818
819 len = SKB_HEAD_ALIGN(len);
820
821 if (sk_memalloc_socks())
822 gfp_mask |= __GFP_MEMALLOC;
823
824 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
825 nc = this_cpu_ptr(&napi_alloc_cache);
826
827 data = page_frag_alloc(&nc->page, len, gfp_mask);
828 pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page);
829 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
830
831 if (unlikely(!data))
832 return NULL;
833
834 skb = __napi_build_skb(data, len);
835 if (unlikely(!skb)) {
836 skb_free_frag(data);
837 return NULL;
838 }
839
840 if (pfmemalloc)
841 skb->pfmemalloc = 1;
842 skb->head_frag = 1;
843
844 skb_success:
845 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
846 skb->dev = napi->dev;
847
848 skb_fail:
849 return skb;
850 }
851 EXPORT_SYMBOL(napi_alloc_skb);
852
skb_add_rx_frag_netmem(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size,unsigned int truesize)853 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
854 int off, int size, unsigned int truesize)
855 {
856 DEBUG_NET_WARN_ON_ONCE(size > truesize);
857
858 skb_fill_netmem_desc(skb, i, netmem, off, size);
859 skb->len += size;
860 skb->data_len += size;
861 skb->truesize += truesize;
862 }
863 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
864
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)865 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
866 unsigned int truesize)
867 {
868 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
869
870 DEBUG_NET_WARN_ON_ONCE(size > truesize);
871
872 skb_frag_size_add(frag, size);
873 skb->len += size;
874 skb->data_len += size;
875 skb->truesize += truesize;
876 }
877 EXPORT_SYMBOL(skb_coalesce_rx_frag);
878
skb_drop_list(struct sk_buff ** listp)879 static void skb_drop_list(struct sk_buff **listp)
880 {
881 kfree_skb_list(*listp);
882 *listp = NULL;
883 }
884
skb_drop_fraglist(struct sk_buff * skb)885 static inline void skb_drop_fraglist(struct sk_buff *skb)
886 {
887 skb_drop_list(&skb_shinfo(skb)->frag_list);
888 }
889
skb_clone_fraglist(struct sk_buff * skb)890 static void skb_clone_fraglist(struct sk_buff *skb)
891 {
892 struct sk_buff *list;
893
894 skb_walk_frags(skb, list)
895 skb_get(list);
896 }
897
skb_pp_cow_data(struct page_pool * pool,struct sk_buff ** pskb,unsigned int headroom)898 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
899 unsigned int headroom)
900 {
901 #if IS_ENABLED(CONFIG_PAGE_POOL)
902 u32 size, truesize, len, max_head_size, off;
903 struct sk_buff *skb = *pskb, *nskb;
904 int err, i, head_off;
905 void *data;
906
907 /* XDP does not support fraglist so we need to linearize
908 * the skb.
909 */
910 if (skb_has_frag_list(skb))
911 return -EOPNOTSUPP;
912
913 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
914 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
915 return -ENOMEM;
916
917 size = min_t(u32, skb->len, max_head_size);
918 truesize = SKB_HEAD_ALIGN(size) + headroom;
919 data = page_pool_dev_alloc_va(pool, &truesize);
920 if (!data)
921 return -ENOMEM;
922
923 nskb = napi_build_skb(data, truesize);
924 if (!nskb) {
925 page_pool_free_va(pool, data, true);
926 return -ENOMEM;
927 }
928
929 skb_reserve(nskb, headroom);
930 skb_copy_header(nskb, skb);
931 skb_mark_for_recycle(nskb);
932
933 err = skb_copy_bits(skb, 0, nskb->data, size);
934 if (err) {
935 consume_skb(nskb);
936 return err;
937 }
938 skb_put(nskb, size);
939
940 head_off = skb_headroom(nskb) - skb_headroom(skb);
941 skb_headers_offset_update(nskb, head_off);
942
943 off = size;
944 len = skb->len - off;
945 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
946 struct page *page;
947 u32 page_off;
948
949 size = min_t(u32, len, PAGE_SIZE);
950 truesize = size;
951
952 page = page_pool_dev_alloc(pool, &page_off, &truesize);
953 if (!page) {
954 consume_skb(nskb);
955 return -ENOMEM;
956 }
957
958 skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
959 err = skb_copy_bits(skb, off, page_address(page) + page_off,
960 size);
961 if (err) {
962 consume_skb(nskb);
963 return err;
964 }
965
966 len -= size;
967 off += size;
968 }
969
970 consume_skb(skb);
971 *pskb = nskb;
972
973 return 0;
974 #else
975 return -EOPNOTSUPP;
976 #endif
977 }
978 EXPORT_SYMBOL(skb_pp_cow_data);
979
skb_cow_data_for_xdp(struct page_pool * pool,struct sk_buff ** pskb,const struct bpf_prog * prog)980 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
981 const struct bpf_prog *prog)
982 {
983 if (!prog->aux->xdp_has_frags)
984 return -EINVAL;
985
986 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
987 }
988 EXPORT_SYMBOL(skb_cow_data_for_xdp);
989
990 #if IS_ENABLED(CONFIG_PAGE_POOL)
napi_pp_put_page(netmem_ref netmem)991 bool napi_pp_put_page(netmem_ref netmem)
992 {
993 netmem = netmem_compound_head(netmem);
994
995 if (unlikely(!netmem_is_pp(netmem)))
996 return false;
997
998 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false);
999
1000 return true;
1001 }
1002 EXPORT_SYMBOL(napi_pp_put_page);
1003 #endif
1004
skb_pp_recycle(struct sk_buff * skb,void * data)1005 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1006 {
1007 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1008 return false;
1009 return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
1010 }
1011
1012 /**
1013 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1014 * @skb: page pool aware skb
1015 *
1016 * Increase the fragment reference count (pp_ref_count) of a skb. This is
1017 * intended to gain fragment references only for page pool aware skbs,
1018 * i.e. when skb->pp_recycle is true, and not for fragments in a
1019 * non-pp-recycling skb. It has a fallback to increase references on normal
1020 * pages, as page pool aware skbs may also have normal page fragments.
1021 */
skb_pp_frag_ref(struct sk_buff * skb)1022 static int skb_pp_frag_ref(struct sk_buff *skb)
1023 {
1024 struct skb_shared_info *shinfo;
1025 netmem_ref head_netmem;
1026 int i;
1027
1028 if (!skb->pp_recycle)
1029 return -EINVAL;
1030
1031 shinfo = skb_shinfo(skb);
1032
1033 for (i = 0; i < shinfo->nr_frags; i++) {
1034 head_netmem = netmem_compound_head(shinfo->frags[i].netmem);
1035 if (likely(netmem_is_pp(head_netmem)))
1036 page_pool_ref_netmem(head_netmem);
1037 else
1038 page_ref_inc(netmem_to_page(head_netmem));
1039 }
1040 return 0;
1041 }
1042
skb_kfree_head(void * head,unsigned int end_offset)1043 static void skb_kfree_head(void *head, unsigned int end_offset)
1044 {
1045 if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1046 kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1047 else
1048 kfree(head);
1049 }
1050
skb_free_head(struct sk_buff * skb)1051 static void skb_free_head(struct sk_buff *skb)
1052 {
1053 unsigned char *head = skb->head;
1054
1055 if (skb->head_frag) {
1056 if (skb_pp_recycle(skb, head))
1057 return;
1058 skb_free_frag(head);
1059 } else {
1060 skb_kfree_head(head, skb_end_offset(skb));
1061 }
1062 }
1063
skb_release_data(struct sk_buff * skb,enum skb_drop_reason reason)1064 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1065 {
1066 struct skb_shared_info *shinfo = skb_shinfo(skb);
1067 int i;
1068
1069 if (!skb_data_unref(skb, shinfo))
1070 goto exit;
1071
1072 if (skb_zcopy(skb)) {
1073 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1074
1075 skb_zcopy_clear(skb, true);
1076 if (skip_unref)
1077 goto free_head;
1078 }
1079
1080 for (i = 0; i < shinfo->nr_frags; i++)
1081 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1082
1083 free_head:
1084 if (shinfo->frag_list)
1085 kfree_skb_list_reason(shinfo->frag_list, reason);
1086
1087 skb_free_head(skb);
1088 exit:
1089 /* When we clone an SKB we copy the reycling bit. The pp_recycle
1090 * bit is only set on the head though, so in order to avoid races
1091 * while trying to recycle fragments on __skb_frag_unref() we need
1092 * to make one SKB responsible for triggering the recycle path.
1093 * So disable the recycling bit if an SKB is cloned and we have
1094 * additional references to the fragmented part of the SKB.
1095 * Eventually the last SKB will have the recycling bit set and it's
1096 * dataref set to 0, which will trigger the recycling
1097 */
1098 skb->pp_recycle = 0;
1099 }
1100
1101 /*
1102 * Free an skbuff by memory without cleaning the state.
1103 */
kfree_skbmem(struct sk_buff * skb)1104 static void kfree_skbmem(struct sk_buff *skb)
1105 {
1106 struct sk_buff_fclones *fclones;
1107
1108 switch (skb->fclone) {
1109 case SKB_FCLONE_UNAVAILABLE:
1110 kmem_cache_free(net_hotdata.skbuff_cache, skb);
1111 return;
1112
1113 case SKB_FCLONE_ORIG:
1114 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1115
1116 /* We usually free the clone (TX completion) before original skb
1117 * This test would have no chance to be true for the clone,
1118 * while here, branch prediction will be good.
1119 */
1120 if (refcount_read(&fclones->fclone_ref) == 1)
1121 goto fastpath;
1122 break;
1123
1124 default: /* SKB_FCLONE_CLONE */
1125 fclones = container_of(skb, struct sk_buff_fclones, skb2);
1126 break;
1127 }
1128 if (!refcount_dec_and_test(&fclones->fclone_ref))
1129 return;
1130 fastpath:
1131 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1132 }
1133
skb_release_head_state(struct sk_buff * skb)1134 void skb_release_head_state(struct sk_buff *skb)
1135 {
1136 skb_dst_drop(skb);
1137 if (skb->destructor) {
1138 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1139 skb->destructor(skb);
1140 }
1141 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1142 nf_conntrack_put(skb_nfct(skb));
1143 #endif
1144 skb_ext_put(skb);
1145 }
1146
1147 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb,enum skb_drop_reason reason)1148 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1149 {
1150 skb_release_head_state(skb);
1151 if (likely(skb->head))
1152 skb_release_data(skb, reason);
1153 }
1154
1155 /**
1156 * __kfree_skb - private function
1157 * @skb: buffer
1158 *
1159 * Free an sk_buff. Release anything attached to the buffer.
1160 * Clean the state. This is an internal helper function. Users should
1161 * always call kfree_skb
1162 */
1163
__kfree_skb(struct sk_buff * skb)1164 void __kfree_skb(struct sk_buff *skb)
1165 {
1166 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1167 kfree_skbmem(skb);
1168 }
1169 EXPORT_SYMBOL(__kfree_skb);
1170
1171 static __always_inline
__sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1172 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1173 enum skb_drop_reason reason)
1174 {
1175 if (unlikely(!skb_unref(skb)))
1176 return false;
1177
1178 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1179 u32_get_bits(reason,
1180 SKB_DROP_REASON_SUBSYS_MASK) >=
1181 SKB_DROP_REASON_SUBSYS_NUM);
1182
1183 if (reason == SKB_CONSUMED)
1184 trace_consume_skb(skb, __builtin_return_address(0));
1185 else
1186 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1187 return true;
1188 }
1189
1190 /**
1191 * sk_skb_reason_drop - free an sk_buff with special reason
1192 * @sk: the socket to receive @skb, or NULL if not applicable
1193 * @skb: buffer to free
1194 * @reason: reason why this skb is dropped
1195 *
1196 * Drop a reference to the buffer and free it if the usage count has hit
1197 * zero. Meanwhile, pass the receiving socket and drop reason to
1198 * 'kfree_skb' tracepoint.
1199 */
1200 void __fix_address
sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1201 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1202 {
1203 if (__sk_skb_reason_drop(sk, skb, reason))
1204 __kfree_skb(skb);
1205 }
1206 EXPORT_SYMBOL(sk_skb_reason_drop);
1207
1208 #define KFREE_SKB_BULK_SIZE 16
1209
1210 struct skb_free_array {
1211 unsigned int skb_count;
1212 void *skb_array[KFREE_SKB_BULK_SIZE];
1213 };
1214
kfree_skb_add_bulk(struct sk_buff * skb,struct skb_free_array * sa,enum skb_drop_reason reason)1215 static void kfree_skb_add_bulk(struct sk_buff *skb,
1216 struct skb_free_array *sa,
1217 enum skb_drop_reason reason)
1218 {
1219 /* if SKB is a clone, don't handle this case */
1220 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1221 __kfree_skb(skb);
1222 return;
1223 }
1224
1225 skb_release_all(skb, reason);
1226 sa->skb_array[sa->skb_count++] = skb;
1227
1228 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1229 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1230 sa->skb_array);
1231 sa->skb_count = 0;
1232 }
1233 }
1234
1235 void __fix_address
kfree_skb_list_reason(struct sk_buff * segs,enum skb_drop_reason reason)1236 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1237 {
1238 struct skb_free_array sa;
1239
1240 sa.skb_count = 0;
1241
1242 while (segs) {
1243 struct sk_buff *next = segs->next;
1244
1245 if (__sk_skb_reason_drop(NULL, segs, reason)) {
1246 skb_poison_list(segs);
1247 kfree_skb_add_bulk(segs, &sa, reason);
1248 }
1249
1250 segs = next;
1251 }
1252
1253 if (sa.skb_count)
1254 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1255 }
1256 EXPORT_SYMBOL(kfree_skb_list_reason);
1257
1258 /* Dump skb information and contents.
1259 *
1260 * Must only be called from net_ratelimit()-ed paths.
1261 *
1262 * Dumps whole packets if full_pkt, only headers otherwise.
1263 */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)1264 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1265 {
1266 struct skb_shared_info *sh = skb_shinfo(skb);
1267 struct net_device *dev = skb->dev;
1268 struct sock *sk = skb->sk;
1269 struct sk_buff *list_skb;
1270 bool has_mac, has_trans;
1271 int headroom, tailroom;
1272 int i, len, seg_len;
1273
1274 if (full_pkt)
1275 len = skb->len;
1276 else
1277 len = min_t(int, skb->len, MAX_HEADER + 128);
1278
1279 headroom = skb_headroom(skb);
1280 tailroom = skb_tailroom(skb);
1281
1282 has_mac = skb_mac_header_was_set(skb);
1283 has_trans = skb_transport_header_was_set(skb);
1284
1285 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1286 "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1287 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1288 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1289 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1290 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1291 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1292 level, skb->len, headroom, skb_headlen(skb), tailroom,
1293 has_mac ? skb->mac_header : -1,
1294 has_mac ? skb_mac_header_len(skb) : -1,
1295 skb->mac_len,
1296 skb->network_header,
1297 has_trans ? skb_network_header_len(skb) : -1,
1298 has_trans ? skb->transport_header : -1,
1299 sh->tx_flags, sh->nr_frags,
1300 sh->gso_size, sh->gso_type, sh->gso_segs,
1301 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1302 skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1303 skb->hash, skb->sw_hash, skb->l4_hash,
1304 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1305 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1306 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1307 skb->inner_network_header, skb->inner_transport_header);
1308
1309 if (dev)
1310 printk("%sdev name=%s feat=%pNF\n",
1311 level, dev->name, &dev->features);
1312 if (sk)
1313 printk("%ssk family=%hu type=%u proto=%u\n",
1314 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1315
1316 if (full_pkt && headroom)
1317 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1318 16, 1, skb->head, headroom, false);
1319
1320 seg_len = min_t(int, skb_headlen(skb), len);
1321 if (seg_len)
1322 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1323 16, 1, skb->data, seg_len, false);
1324 len -= seg_len;
1325
1326 if (full_pkt && tailroom)
1327 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1328 16, 1, skb_tail_pointer(skb), tailroom, false);
1329
1330 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1331 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1332 u32 p_off, p_len, copied;
1333 struct page *p;
1334 u8 *vaddr;
1335
1336 if (skb_frag_is_net_iov(frag)) {
1337 printk("%sskb frag %d: not readable\n", level, i);
1338 len -= skb_frag_size(frag);
1339 if (!len)
1340 break;
1341 continue;
1342 }
1343
1344 skb_frag_foreach_page(frag, skb_frag_off(frag),
1345 skb_frag_size(frag), p, p_off, p_len,
1346 copied) {
1347 seg_len = min_t(int, p_len, len);
1348 vaddr = kmap_atomic(p);
1349 print_hex_dump(level, "skb frag: ",
1350 DUMP_PREFIX_OFFSET,
1351 16, 1, vaddr + p_off, seg_len, false);
1352 kunmap_atomic(vaddr);
1353 len -= seg_len;
1354 if (!len)
1355 break;
1356 }
1357 }
1358
1359 if (full_pkt && skb_has_frag_list(skb)) {
1360 printk("skb fraglist:\n");
1361 skb_walk_frags(skb, list_skb)
1362 skb_dump(level, list_skb, true);
1363 }
1364 }
1365 EXPORT_SYMBOL(skb_dump);
1366
1367 /**
1368 * skb_tx_error - report an sk_buff xmit error
1369 * @skb: buffer that triggered an error
1370 *
1371 * Report xmit error if a device callback is tracking this skb.
1372 * skb must be freed afterwards.
1373 */
skb_tx_error(struct sk_buff * skb)1374 void skb_tx_error(struct sk_buff *skb)
1375 {
1376 if (skb) {
1377 skb_zcopy_downgrade_managed(skb);
1378 skb_zcopy_clear(skb, true);
1379 }
1380 }
1381 EXPORT_SYMBOL(skb_tx_error);
1382
1383 #ifdef CONFIG_TRACEPOINTS
1384 /**
1385 * consume_skb - free an skbuff
1386 * @skb: buffer to free
1387 *
1388 * Drop a ref to the buffer and free it if the usage count has hit zero
1389 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1390 * is being dropped after a failure and notes that
1391 */
consume_skb(struct sk_buff * skb)1392 void consume_skb(struct sk_buff *skb)
1393 {
1394 if (!skb_unref(skb))
1395 return;
1396
1397 trace_consume_skb(skb, __builtin_return_address(0));
1398 __kfree_skb(skb);
1399 }
1400 EXPORT_SYMBOL(consume_skb);
1401 #endif
1402
1403 /**
1404 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1405 * @skb: buffer to free
1406 *
1407 * Alike consume_skb(), but this variant assumes that this is the last
1408 * skb reference and all the head states have been already dropped
1409 */
__consume_stateless_skb(struct sk_buff * skb)1410 void __consume_stateless_skb(struct sk_buff *skb)
1411 {
1412 trace_consume_skb(skb, __builtin_return_address(0));
1413 skb_release_data(skb, SKB_CONSUMED);
1414 kfree_skbmem(skb);
1415 }
1416
napi_skb_cache_put(struct sk_buff * skb)1417 static void napi_skb_cache_put(struct sk_buff *skb)
1418 {
1419 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1420 u32 i;
1421
1422 if (!kasan_mempool_poison_object(skb))
1423 return;
1424
1425 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1426 nc->skb_cache[nc->skb_count++] = skb;
1427
1428 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1429 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1430 kasan_mempool_unpoison_object(nc->skb_cache[i],
1431 kmem_cache_size(net_hotdata.skbuff_cache));
1432
1433 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1434 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1435 nc->skb_count = NAPI_SKB_CACHE_HALF;
1436 }
1437 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1438 }
1439
__napi_kfree_skb(struct sk_buff * skb,enum skb_drop_reason reason)1440 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1441 {
1442 skb_release_all(skb, reason);
1443 napi_skb_cache_put(skb);
1444 }
1445
napi_skb_free_stolen_head(struct sk_buff * skb)1446 void napi_skb_free_stolen_head(struct sk_buff *skb)
1447 {
1448 if (unlikely(skb->slow_gro)) {
1449 nf_reset_ct(skb);
1450 skb_dst_drop(skb);
1451 skb_ext_put(skb);
1452 skb_orphan(skb);
1453 skb->slow_gro = 0;
1454 }
1455 napi_skb_cache_put(skb);
1456 }
1457
napi_consume_skb(struct sk_buff * skb,int budget)1458 void napi_consume_skb(struct sk_buff *skb, int budget)
1459 {
1460 /* Zero budget indicate non-NAPI context called us, like netpoll */
1461 if (unlikely(!budget)) {
1462 dev_consume_skb_any(skb);
1463 return;
1464 }
1465
1466 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1467
1468 if (!skb_unref(skb))
1469 return;
1470
1471 /* if reaching here SKB is ready to free */
1472 trace_consume_skb(skb, __builtin_return_address(0));
1473
1474 /* if SKB is a clone, don't handle this case */
1475 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1476 __kfree_skb(skb);
1477 return;
1478 }
1479
1480 skb_release_all(skb, SKB_CONSUMED);
1481 napi_skb_cache_put(skb);
1482 }
1483 EXPORT_SYMBOL(napi_consume_skb);
1484
1485 /* Make sure a field is contained by headers group */
1486 #define CHECK_SKB_FIELD(field) \
1487 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1488 offsetof(struct sk_buff, headers.field)); \
1489
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1490 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1491 {
1492 new->tstamp = old->tstamp;
1493 /* We do not copy old->sk */
1494 new->dev = old->dev;
1495 memcpy(new->cb, old->cb, sizeof(old->cb));
1496 skb_dst_copy(new, old);
1497 __skb_ext_copy(new, old);
1498 __nf_copy(new, old, false);
1499
1500 /* Note : this field could be in the headers group.
1501 * It is not yet because we do not want to have a 16 bit hole
1502 */
1503 new->queue_mapping = old->queue_mapping;
1504
1505 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1506 CHECK_SKB_FIELD(protocol);
1507 CHECK_SKB_FIELD(csum);
1508 CHECK_SKB_FIELD(hash);
1509 CHECK_SKB_FIELD(priority);
1510 CHECK_SKB_FIELD(skb_iif);
1511 CHECK_SKB_FIELD(vlan_proto);
1512 CHECK_SKB_FIELD(vlan_tci);
1513 CHECK_SKB_FIELD(transport_header);
1514 CHECK_SKB_FIELD(network_header);
1515 CHECK_SKB_FIELD(mac_header);
1516 CHECK_SKB_FIELD(inner_protocol);
1517 CHECK_SKB_FIELD(inner_transport_header);
1518 CHECK_SKB_FIELD(inner_network_header);
1519 CHECK_SKB_FIELD(inner_mac_header);
1520 CHECK_SKB_FIELD(mark);
1521 #ifdef CONFIG_NETWORK_SECMARK
1522 CHECK_SKB_FIELD(secmark);
1523 #endif
1524 #ifdef CONFIG_NET_RX_BUSY_POLL
1525 CHECK_SKB_FIELD(napi_id);
1526 #endif
1527 CHECK_SKB_FIELD(alloc_cpu);
1528 #ifdef CONFIG_XPS
1529 CHECK_SKB_FIELD(sender_cpu);
1530 #endif
1531 #ifdef CONFIG_NET_SCHED
1532 CHECK_SKB_FIELD(tc_index);
1533 #endif
1534
1535 }
1536
1537 /*
1538 * You should not add any new code to this function. Add it to
1539 * __copy_skb_header above instead.
1540 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1541 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1542 {
1543 #define C(x) n->x = skb->x
1544
1545 n->next = n->prev = NULL;
1546 n->sk = NULL;
1547 __copy_skb_header(n, skb);
1548
1549 C(len);
1550 C(data_len);
1551 C(mac_len);
1552 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1553 n->cloned = 1;
1554 n->nohdr = 0;
1555 n->peeked = 0;
1556 C(pfmemalloc);
1557 C(pp_recycle);
1558 n->destructor = NULL;
1559 C(tail);
1560 C(end);
1561 C(head);
1562 C(head_frag);
1563 C(data);
1564 C(truesize);
1565 refcount_set(&n->users, 1);
1566
1567 atomic_inc(&(skb_shinfo(skb)->dataref));
1568 skb->cloned = 1;
1569
1570 return n;
1571 #undef C
1572 }
1573
1574 /**
1575 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1576 * @first: first sk_buff of the msg
1577 */
alloc_skb_for_msg(struct sk_buff * first)1578 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1579 {
1580 struct sk_buff *n;
1581
1582 n = alloc_skb(0, GFP_ATOMIC);
1583 if (!n)
1584 return NULL;
1585
1586 n->len = first->len;
1587 n->data_len = first->len;
1588 n->truesize = first->truesize;
1589
1590 skb_shinfo(n)->frag_list = first;
1591
1592 __copy_skb_header(n, first);
1593 n->destructor = NULL;
1594
1595 return n;
1596 }
1597 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1598
1599 /**
1600 * skb_morph - morph one skb into another
1601 * @dst: the skb to receive the contents
1602 * @src: the skb to supply the contents
1603 *
1604 * This is identical to skb_clone except that the target skb is
1605 * supplied by the user.
1606 *
1607 * The target skb is returned upon exit.
1608 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1609 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1610 {
1611 skb_release_all(dst, SKB_CONSUMED);
1612 return __skb_clone(dst, src);
1613 }
1614 EXPORT_SYMBOL_GPL(skb_morph);
1615
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1616 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1617 {
1618 unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1619 struct user_struct *user;
1620
1621 if (capable(CAP_IPC_LOCK) || !size)
1622 return 0;
1623
1624 rlim = rlimit(RLIMIT_MEMLOCK);
1625 if (rlim == RLIM_INFINITY)
1626 return 0;
1627
1628 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1629 max_pg = rlim >> PAGE_SHIFT;
1630 user = mmp->user ? : current_user();
1631
1632 old_pg = atomic_long_read(&user->locked_vm);
1633 do {
1634 new_pg = old_pg + num_pg;
1635 if (new_pg > max_pg)
1636 return -ENOBUFS;
1637 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1638
1639 if (!mmp->user) {
1640 mmp->user = get_uid(user);
1641 mmp->num_pg = num_pg;
1642 } else {
1643 mmp->num_pg += num_pg;
1644 }
1645
1646 return 0;
1647 }
1648 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1649
mm_unaccount_pinned_pages(struct mmpin * mmp)1650 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1651 {
1652 if (mmp->user) {
1653 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1654 free_uid(mmp->user);
1655 }
1656 }
1657 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1658
msg_zerocopy_alloc(struct sock * sk,size_t size,bool devmem)1659 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size,
1660 bool devmem)
1661 {
1662 struct ubuf_info_msgzc *uarg;
1663 struct sk_buff *skb;
1664
1665 WARN_ON_ONCE(!in_task());
1666
1667 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1668 if (!skb)
1669 return NULL;
1670
1671 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1672 uarg = (void *)skb->cb;
1673 uarg->mmp.user = NULL;
1674
1675 if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) {
1676 kfree_skb(skb);
1677 return NULL;
1678 }
1679
1680 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1681 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1682 uarg->len = 1;
1683 uarg->bytelen = size;
1684 uarg->zerocopy = 1;
1685 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1686 refcount_set(&uarg->ubuf.refcnt, 1);
1687 sock_hold(sk);
1688
1689 return &uarg->ubuf;
1690 }
1691
skb_from_uarg(struct ubuf_info_msgzc * uarg)1692 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1693 {
1694 return container_of((void *)uarg, struct sk_buff, cb);
1695 }
1696
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg,bool devmem)1697 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1698 struct ubuf_info *uarg, bool devmem)
1699 {
1700 if (uarg) {
1701 struct ubuf_info_msgzc *uarg_zc;
1702 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1703 u32 bytelen, next;
1704
1705 /* there might be non MSG_ZEROCOPY users */
1706 if (uarg->ops != &msg_zerocopy_ubuf_ops)
1707 return NULL;
1708
1709 /* realloc only when socket is locked (TCP, UDP cork),
1710 * so uarg->len and sk_zckey access is serialized
1711 */
1712 if (!sock_owned_by_user(sk)) {
1713 WARN_ON_ONCE(1);
1714 return NULL;
1715 }
1716
1717 uarg_zc = uarg_to_msgzc(uarg);
1718 bytelen = uarg_zc->bytelen + size;
1719 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1720 /* TCP can create new skb to attach new uarg */
1721 if (sk->sk_type == SOCK_STREAM)
1722 goto new_alloc;
1723 return NULL;
1724 }
1725
1726 next = (u32)atomic_read(&sk->sk_zckey);
1727 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1728 if (likely(!devmem) &&
1729 mm_account_pinned_pages(&uarg_zc->mmp, size))
1730 return NULL;
1731 uarg_zc->len++;
1732 uarg_zc->bytelen = bytelen;
1733 atomic_set(&sk->sk_zckey, ++next);
1734
1735 /* no extra ref when appending to datagram (MSG_MORE) */
1736 if (sk->sk_type == SOCK_STREAM)
1737 net_zcopy_get(uarg);
1738
1739 return uarg;
1740 }
1741 }
1742
1743 new_alloc:
1744 return msg_zerocopy_alloc(sk, size, devmem);
1745 }
1746 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1747
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1748 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1749 {
1750 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1751 u32 old_lo, old_hi;
1752 u64 sum_len;
1753
1754 old_lo = serr->ee.ee_info;
1755 old_hi = serr->ee.ee_data;
1756 sum_len = old_hi - old_lo + 1ULL + len;
1757
1758 if (sum_len >= (1ULL << 32))
1759 return false;
1760
1761 if (lo != old_hi + 1)
1762 return false;
1763
1764 serr->ee.ee_data += len;
1765 return true;
1766 }
1767
__msg_zerocopy_callback(struct ubuf_info_msgzc * uarg)1768 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1769 {
1770 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1771 struct sock_exterr_skb *serr;
1772 struct sock *sk = skb->sk;
1773 struct sk_buff_head *q;
1774 unsigned long flags;
1775 bool is_zerocopy;
1776 u32 lo, hi;
1777 u16 len;
1778
1779 mm_unaccount_pinned_pages(&uarg->mmp);
1780
1781 /* if !len, there was only 1 call, and it was aborted
1782 * so do not queue a completion notification
1783 */
1784 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1785 goto release;
1786
1787 len = uarg->len;
1788 lo = uarg->id;
1789 hi = uarg->id + len - 1;
1790 is_zerocopy = uarg->zerocopy;
1791
1792 serr = SKB_EXT_ERR(skb);
1793 memset(serr, 0, sizeof(*serr));
1794 serr->ee.ee_errno = 0;
1795 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1796 serr->ee.ee_data = hi;
1797 serr->ee.ee_info = lo;
1798 if (!is_zerocopy)
1799 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1800
1801 q = &sk->sk_error_queue;
1802 spin_lock_irqsave(&q->lock, flags);
1803 tail = skb_peek_tail(q);
1804 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1805 !skb_zerocopy_notify_extend(tail, lo, len)) {
1806 __skb_queue_tail(q, skb);
1807 skb = NULL;
1808 }
1809 spin_unlock_irqrestore(&q->lock, flags);
1810
1811 sk_error_report(sk);
1812
1813 release:
1814 consume_skb(skb);
1815 sock_put(sk);
1816 }
1817
msg_zerocopy_complete(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1818 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1819 bool success)
1820 {
1821 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1822
1823 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1824
1825 if (refcount_dec_and_test(&uarg->refcnt))
1826 __msg_zerocopy_callback(uarg_zc);
1827 }
1828
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1829 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1830 {
1831 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1832
1833 atomic_dec(&sk->sk_zckey);
1834 uarg_to_msgzc(uarg)->len--;
1835
1836 if (have_uref)
1837 msg_zerocopy_complete(NULL, uarg, true);
1838 }
1839 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1840
1841 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1842 .complete = msg_zerocopy_complete,
1843 };
1844 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1845
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg,struct net_devmem_dmabuf_binding * binding)1846 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1847 struct msghdr *msg, int len,
1848 struct ubuf_info *uarg,
1849 struct net_devmem_dmabuf_binding *binding)
1850 {
1851 int err, orig_len = skb->len;
1852
1853 if (uarg->ops->link_skb) {
1854 err = uarg->ops->link_skb(skb, uarg);
1855 if (err)
1856 return err;
1857 } else {
1858 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1859
1860 /* An skb can only point to one uarg. This edge case happens
1861 * when TCP appends to an skb, but zerocopy_realloc triggered
1862 * a new alloc.
1863 */
1864 if (orig_uarg && uarg != orig_uarg)
1865 return -EEXIST;
1866 }
1867
1868 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len,
1869 binding);
1870 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1871 struct sock *save_sk = skb->sk;
1872
1873 /* Streams do not free skb on error. Reset to prev state. */
1874 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1875 skb->sk = sk;
1876 ___pskb_trim(skb, orig_len);
1877 skb->sk = save_sk;
1878 return err;
1879 }
1880
1881 skb_zcopy_set(skb, uarg, NULL);
1882 return skb->len - orig_len;
1883 }
1884 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1885
__skb_zcopy_downgrade_managed(struct sk_buff * skb)1886 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1887 {
1888 int i;
1889
1890 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1891 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1892 skb_frag_ref(skb, i);
1893 }
1894 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1895
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1896 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1897 gfp_t gfp_mask)
1898 {
1899 if (skb_zcopy(orig)) {
1900 if (skb_zcopy(nskb)) {
1901 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1902 if (!gfp_mask) {
1903 WARN_ON_ONCE(1);
1904 return -ENOMEM;
1905 }
1906 if (skb_uarg(nskb) == skb_uarg(orig))
1907 return 0;
1908 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1909 return -EIO;
1910 }
1911 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1912 }
1913 return 0;
1914 }
1915
1916 /**
1917 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1918 * @skb: the skb to modify
1919 * @gfp_mask: allocation priority
1920 *
1921 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1922 * It will copy all frags into kernel and drop the reference
1923 * to userspace pages.
1924 *
1925 * If this function is called from an interrupt gfp_mask() must be
1926 * %GFP_ATOMIC.
1927 *
1928 * Returns 0 on success or a negative error code on failure
1929 * to allocate kernel memory to copy to.
1930 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1931 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1932 {
1933 int num_frags = skb_shinfo(skb)->nr_frags;
1934 struct page *page, *head = NULL;
1935 int i, order, psize, new_frags;
1936 u32 d_off;
1937
1938 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1939 return -EINVAL;
1940
1941 if (!skb_frags_readable(skb))
1942 return -EFAULT;
1943
1944 if (!num_frags)
1945 goto release;
1946
1947 /* We might have to allocate high order pages, so compute what minimum
1948 * page order is needed.
1949 */
1950 order = 0;
1951 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1952 order++;
1953 psize = (PAGE_SIZE << order);
1954
1955 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1956 for (i = 0; i < new_frags; i++) {
1957 page = alloc_pages(gfp_mask | __GFP_COMP, order);
1958 if (!page) {
1959 while (head) {
1960 struct page *next = (struct page *)page_private(head);
1961 put_page(head);
1962 head = next;
1963 }
1964 return -ENOMEM;
1965 }
1966 set_page_private(page, (unsigned long)head);
1967 head = page;
1968 }
1969
1970 page = head;
1971 d_off = 0;
1972 for (i = 0; i < num_frags; i++) {
1973 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1974 u32 p_off, p_len, copied;
1975 struct page *p;
1976 u8 *vaddr;
1977
1978 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1979 p, p_off, p_len, copied) {
1980 u32 copy, done = 0;
1981 vaddr = kmap_atomic(p);
1982
1983 while (done < p_len) {
1984 if (d_off == psize) {
1985 d_off = 0;
1986 page = (struct page *)page_private(page);
1987 }
1988 copy = min_t(u32, psize - d_off, p_len - done);
1989 memcpy(page_address(page) + d_off,
1990 vaddr + p_off + done, copy);
1991 done += copy;
1992 d_off += copy;
1993 }
1994 kunmap_atomic(vaddr);
1995 }
1996 }
1997
1998 /* skb frags release userspace buffers */
1999 for (i = 0; i < num_frags; i++)
2000 skb_frag_unref(skb, i);
2001
2002 /* skb frags point to kernel buffers */
2003 for (i = 0; i < new_frags - 1; i++) {
2004 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2005 head = (struct page *)page_private(head);
2006 }
2007 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2008 d_off);
2009 skb_shinfo(skb)->nr_frags = new_frags;
2010
2011 release:
2012 skb_zcopy_clear(skb, false);
2013 return 0;
2014 }
2015 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2016
2017 /**
2018 * skb_clone - duplicate an sk_buff
2019 * @skb: buffer to clone
2020 * @gfp_mask: allocation priority
2021 *
2022 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
2023 * copies share the same packet data but not structure. The new
2024 * buffer has a reference count of 1. If the allocation fails the
2025 * function returns %NULL otherwise the new buffer is returned.
2026 *
2027 * If this function is called from an interrupt gfp_mask() must be
2028 * %GFP_ATOMIC.
2029 */
2030
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)2031 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2032 {
2033 struct sk_buff_fclones *fclones = container_of(skb,
2034 struct sk_buff_fclones,
2035 skb1);
2036 struct sk_buff *n;
2037
2038 if (skb_orphan_frags(skb, gfp_mask))
2039 return NULL;
2040
2041 if (skb->fclone == SKB_FCLONE_ORIG &&
2042 refcount_read(&fclones->fclone_ref) == 1) {
2043 n = &fclones->skb2;
2044 refcount_set(&fclones->fclone_ref, 2);
2045 n->fclone = SKB_FCLONE_CLONE;
2046 } else {
2047 if (skb_pfmemalloc(skb))
2048 gfp_mask |= __GFP_MEMALLOC;
2049
2050 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2051 if (!n)
2052 return NULL;
2053
2054 n->fclone = SKB_FCLONE_UNAVAILABLE;
2055 }
2056
2057 return __skb_clone(n, skb);
2058 }
2059 EXPORT_SYMBOL(skb_clone);
2060
skb_headers_offset_update(struct sk_buff * skb,int off)2061 void skb_headers_offset_update(struct sk_buff *skb, int off)
2062 {
2063 /* Only adjust this if it actually is csum_start rather than csum */
2064 if (skb->ip_summed == CHECKSUM_PARTIAL)
2065 skb->csum_start += off;
2066 /* {transport,network,mac}_header and tail are relative to skb->head */
2067 skb->transport_header += off;
2068 skb->network_header += off;
2069 if (skb_mac_header_was_set(skb))
2070 skb->mac_header += off;
2071 skb->inner_transport_header += off;
2072 skb->inner_network_header += off;
2073 skb->inner_mac_header += off;
2074 }
2075 EXPORT_SYMBOL(skb_headers_offset_update);
2076
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)2077 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2078 {
2079 __copy_skb_header(new, old);
2080
2081 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2082 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2083 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2084 }
2085 EXPORT_SYMBOL(skb_copy_header);
2086
skb_alloc_rx_flag(const struct sk_buff * skb)2087 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2088 {
2089 if (skb_pfmemalloc(skb))
2090 return SKB_ALLOC_RX;
2091 return 0;
2092 }
2093
2094 /**
2095 * skb_copy - create private copy of an sk_buff
2096 * @skb: buffer to copy
2097 * @gfp_mask: allocation priority
2098 *
2099 * Make a copy of both an &sk_buff and its data. This is used when the
2100 * caller wishes to modify the data and needs a private copy of the
2101 * data to alter. Returns %NULL on failure or the pointer to the buffer
2102 * on success. The returned buffer has a reference count of 1.
2103 *
2104 * As by-product this function converts non-linear &sk_buff to linear
2105 * one, so that &sk_buff becomes completely private and caller is allowed
2106 * to modify all the data of returned buffer. This means that this
2107 * function is not recommended for use in circumstances when only
2108 * header is going to be modified. Use pskb_copy() instead.
2109 */
2110
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)2111 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2112 {
2113 struct sk_buff *n;
2114 unsigned int size;
2115 int headerlen;
2116
2117 if (!skb_frags_readable(skb))
2118 return NULL;
2119
2120 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2121 return NULL;
2122
2123 headerlen = skb_headroom(skb);
2124 size = skb_end_offset(skb) + skb->data_len;
2125 n = __alloc_skb(size, gfp_mask,
2126 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2127 if (!n)
2128 return NULL;
2129
2130 /* Set the data pointer */
2131 skb_reserve(n, headerlen);
2132 /* Set the tail pointer and length */
2133 skb_put(n, skb->len);
2134
2135 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2136
2137 skb_copy_header(n, skb);
2138 return n;
2139 }
2140 EXPORT_SYMBOL(skb_copy);
2141
2142 /**
2143 * __pskb_copy_fclone - create copy of an sk_buff with private head.
2144 * @skb: buffer to copy
2145 * @headroom: headroom of new skb
2146 * @gfp_mask: allocation priority
2147 * @fclone: if true allocate the copy of the skb from the fclone
2148 * cache instead of the head cache; it is recommended to set this
2149 * to true for the cases where the copy will likely be cloned
2150 *
2151 * Make a copy of both an &sk_buff and part of its data, located
2152 * in header. Fragmented data remain shared. This is used when
2153 * the caller wishes to modify only header of &sk_buff and needs
2154 * private copy of the header to alter. Returns %NULL on failure
2155 * or the pointer to the buffer on success.
2156 * The returned buffer has a reference count of 1.
2157 */
2158
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)2159 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2160 gfp_t gfp_mask, bool fclone)
2161 {
2162 unsigned int size = skb_headlen(skb) + headroom;
2163 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2164 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2165
2166 if (!n)
2167 goto out;
2168
2169 /* Set the data pointer */
2170 skb_reserve(n, headroom);
2171 /* Set the tail pointer and length */
2172 skb_put(n, skb_headlen(skb));
2173 /* Copy the bytes */
2174 skb_copy_from_linear_data(skb, n->data, n->len);
2175
2176 n->truesize += skb->data_len;
2177 n->data_len = skb->data_len;
2178 n->len = skb->len;
2179
2180 if (skb_shinfo(skb)->nr_frags) {
2181 int i;
2182
2183 if (skb_orphan_frags(skb, gfp_mask) ||
2184 skb_zerocopy_clone(n, skb, gfp_mask)) {
2185 kfree_skb(n);
2186 n = NULL;
2187 goto out;
2188 }
2189 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2190 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2191 skb_frag_ref(skb, i);
2192 }
2193 skb_shinfo(n)->nr_frags = i;
2194 }
2195
2196 if (skb_has_frag_list(skb)) {
2197 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2198 skb_clone_fraglist(n);
2199 }
2200
2201 skb_copy_header(n, skb);
2202 out:
2203 return n;
2204 }
2205 EXPORT_SYMBOL(__pskb_copy_fclone);
2206
2207 /**
2208 * pskb_expand_head - reallocate header of &sk_buff
2209 * @skb: buffer to reallocate
2210 * @nhead: room to add at head
2211 * @ntail: room to add at tail
2212 * @gfp_mask: allocation priority
2213 *
2214 * Expands (or creates identical copy, if @nhead and @ntail are zero)
2215 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2216 * reference count of 1. Returns zero in the case of success or error,
2217 * if expansion failed. In the last case, &sk_buff is not changed.
2218 *
2219 * All the pointers pointing into skb header may change and must be
2220 * reloaded after call to this function.
2221 */
2222
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)2223 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2224 gfp_t gfp_mask)
2225 {
2226 unsigned int osize = skb_end_offset(skb);
2227 unsigned int size = osize + nhead + ntail;
2228 long off;
2229 u8 *data;
2230 int i;
2231
2232 BUG_ON(nhead < 0);
2233
2234 BUG_ON(skb_shared(skb));
2235
2236 skb_zcopy_downgrade_managed(skb);
2237
2238 if (skb_pfmemalloc(skb))
2239 gfp_mask |= __GFP_MEMALLOC;
2240
2241 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2242 if (!data)
2243 goto nodata;
2244 size = SKB_WITH_OVERHEAD(size);
2245
2246 /* Copy only real data... and, alas, header. This should be
2247 * optimized for the cases when header is void.
2248 */
2249 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2250
2251 memcpy((struct skb_shared_info *)(data + size),
2252 skb_shinfo(skb),
2253 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2254
2255 /*
2256 * if shinfo is shared we must drop the old head gracefully, but if it
2257 * is not we can just drop the old head and let the existing refcount
2258 * be since all we did is relocate the values
2259 */
2260 if (skb_cloned(skb)) {
2261 if (skb_orphan_frags(skb, gfp_mask))
2262 goto nofrags;
2263 if (skb_zcopy(skb))
2264 refcount_inc(&skb_uarg(skb)->refcnt);
2265 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2266 skb_frag_ref(skb, i);
2267
2268 if (skb_has_frag_list(skb))
2269 skb_clone_fraglist(skb);
2270
2271 skb_release_data(skb, SKB_CONSUMED);
2272 } else {
2273 skb_free_head(skb);
2274 }
2275 off = (data + nhead) - skb->head;
2276
2277 skb->head = data;
2278 skb->head_frag = 0;
2279 skb->data += off;
2280
2281 skb_set_end_offset(skb, size);
2282 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2283 off = nhead;
2284 #endif
2285 skb->tail += off;
2286 skb_headers_offset_update(skb, nhead);
2287 skb->cloned = 0;
2288 skb->hdr_len = 0;
2289 skb->nohdr = 0;
2290 atomic_set(&skb_shinfo(skb)->dataref, 1);
2291
2292 skb_metadata_clear(skb);
2293
2294 /* It is not generally safe to change skb->truesize.
2295 * For the moment, we really care of rx path, or
2296 * when skb is orphaned (not attached to a socket).
2297 */
2298 if (!skb->sk || skb->destructor == sock_edemux)
2299 skb->truesize += size - osize;
2300
2301 return 0;
2302
2303 nofrags:
2304 skb_kfree_head(data, size);
2305 nodata:
2306 return -ENOMEM;
2307 }
2308 EXPORT_SYMBOL(pskb_expand_head);
2309
2310 /* Make private copy of skb with writable head and some headroom */
2311
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)2312 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2313 {
2314 struct sk_buff *skb2;
2315 int delta = headroom - skb_headroom(skb);
2316
2317 if (delta <= 0)
2318 skb2 = pskb_copy(skb, GFP_ATOMIC);
2319 else {
2320 skb2 = skb_clone(skb, GFP_ATOMIC);
2321 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2322 GFP_ATOMIC)) {
2323 kfree_skb(skb2);
2324 skb2 = NULL;
2325 }
2326 }
2327 return skb2;
2328 }
2329 EXPORT_SYMBOL(skb_realloc_headroom);
2330
2331 /* Note: We plan to rework this in linux-6.4 */
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2332 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2333 {
2334 unsigned int saved_end_offset, saved_truesize;
2335 struct skb_shared_info *shinfo;
2336 int res;
2337
2338 saved_end_offset = skb_end_offset(skb);
2339 saved_truesize = skb->truesize;
2340
2341 res = pskb_expand_head(skb, 0, 0, pri);
2342 if (res)
2343 return res;
2344
2345 skb->truesize = saved_truesize;
2346
2347 if (likely(skb_end_offset(skb) == saved_end_offset))
2348 return 0;
2349
2350 /* We can not change skb->end if the original or new value
2351 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2352 */
2353 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2354 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2355 /* We think this path should not be taken.
2356 * Add a temporary trace to warn us just in case.
2357 */
2358 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2359 saved_end_offset, skb_end_offset(skb));
2360 WARN_ON_ONCE(1);
2361 return 0;
2362 }
2363
2364 shinfo = skb_shinfo(skb);
2365
2366 /* We are about to change back skb->end,
2367 * we need to move skb_shinfo() to its new location.
2368 */
2369 memmove(skb->head + saved_end_offset,
2370 shinfo,
2371 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2372
2373 skb_set_end_offset(skb, saved_end_offset);
2374
2375 return 0;
2376 }
2377
2378 /**
2379 * skb_expand_head - reallocate header of &sk_buff
2380 * @skb: buffer to reallocate
2381 * @headroom: needed headroom
2382 *
2383 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2384 * if possible; copies skb->sk to new skb as needed
2385 * and frees original skb in case of failures.
2386 *
2387 * It expect increased headroom and generates warning otherwise.
2388 */
2389
skb_expand_head(struct sk_buff * skb,unsigned int headroom)2390 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2391 {
2392 int delta = headroom - skb_headroom(skb);
2393 int osize = skb_end_offset(skb);
2394 struct sock *sk = skb->sk;
2395
2396 if (WARN_ONCE(delta <= 0,
2397 "%s is expecting an increase in the headroom", __func__))
2398 return skb;
2399
2400 delta = SKB_DATA_ALIGN(delta);
2401 /* pskb_expand_head() might crash, if skb is shared. */
2402 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2403 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2404
2405 if (unlikely(!nskb))
2406 goto fail;
2407
2408 if (sk)
2409 skb_set_owner_w(nskb, sk);
2410 consume_skb(skb);
2411 skb = nskb;
2412 }
2413 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2414 goto fail;
2415
2416 if (sk && is_skb_wmem(skb)) {
2417 delta = skb_end_offset(skb) - osize;
2418 refcount_add(delta, &sk->sk_wmem_alloc);
2419 skb->truesize += delta;
2420 }
2421 return skb;
2422
2423 fail:
2424 kfree_skb(skb);
2425 return NULL;
2426 }
2427 EXPORT_SYMBOL(skb_expand_head);
2428
2429 /**
2430 * skb_copy_expand - copy and expand sk_buff
2431 * @skb: buffer to copy
2432 * @newheadroom: new free bytes at head
2433 * @newtailroom: new free bytes at tail
2434 * @gfp_mask: allocation priority
2435 *
2436 * Make a copy of both an &sk_buff and its data and while doing so
2437 * allocate additional space.
2438 *
2439 * This is used when the caller wishes to modify the data and needs a
2440 * private copy of the data to alter as well as more space for new fields.
2441 * Returns %NULL on failure or the pointer to the buffer
2442 * on success. The returned buffer has a reference count of 1.
2443 *
2444 * You must pass %GFP_ATOMIC as the allocation priority if this function
2445 * is called from an interrupt.
2446 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)2447 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2448 int newheadroom, int newtailroom,
2449 gfp_t gfp_mask)
2450 {
2451 /*
2452 * Allocate the copy buffer
2453 */
2454 int head_copy_len, head_copy_off;
2455 struct sk_buff *n;
2456 int oldheadroom;
2457
2458 if (!skb_frags_readable(skb))
2459 return NULL;
2460
2461 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2462 return NULL;
2463
2464 oldheadroom = skb_headroom(skb);
2465 n = __alloc_skb(newheadroom + skb->len + newtailroom,
2466 gfp_mask, skb_alloc_rx_flag(skb),
2467 NUMA_NO_NODE);
2468 if (!n)
2469 return NULL;
2470
2471 skb_reserve(n, newheadroom);
2472
2473 /* Set the tail pointer and length */
2474 skb_put(n, skb->len);
2475
2476 head_copy_len = oldheadroom;
2477 head_copy_off = 0;
2478 if (newheadroom <= head_copy_len)
2479 head_copy_len = newheadroom;
2480 else
2481 head_copy_off = newheadroom - head_copy_len;
2482
2483 /* Copy the linear header and data. */
2484 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2485 skb->len + head_copy_len));
2486
2487 skb_copy_header(n, skb);
2488
2489 skb_headers_offset_update(n, newheadroom - oldheadroom);
2490
2491 return n;
2492 }
2493 EXPORT_SYMBOL(skb_copy_expand);
2494
2495 /**
2496 * __skb_pad - zero pad the tail of an skb
2497 * @skb: buffer to pad
2498 * @pad: space to pad
2499 * @free_on_error: free buffer on error
2500 *
2501 * Ensure that a buffer is followed by a padding area that is zero
2502 * filled. Used by network drivers which may DMA or transfer data
2503 * beyond the buffer end onto the wire.
2504 *
2505 * May return error in out of memory cases. The skb is freed on error
2506 * if @free_on_error is true.
2507 */
2508
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)2509 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2510 {
2511 int err;
2512 int ntail;
2513
2514 /* If the skbuff is non linear tailroom is always zero.. */
2515 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2516 memset(skb->data+skb->len, 0, pad);
2517 return 0;
2518 }
2519
2520 ntail = skb->data_len + pad - (skb->end - skb->tail);
2521 if (likely(skb_cloned(skb) || ntail > 0)) {
2522 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2523 if (unlikely(err))
2524 goto free_skb;
2525 }
2526
2527 /* FIXME: The use of this function with non-linear skb's really needs
2528 * to be audited.
2529 */
2530 err = skb_linearize(skb);
2531 if (unlikely(err))
2532 goto free_skb;
2533
2534 memset(skb->data + skb->len, 0, pad);
2535 return 0;
2536
2537 free_skb:
2538 if (free_on_error)
2539 kfree_skb(skb);
2540 return err;
2541 }
2542 EXPORT_SYMBOL(__skb_pad);
2543
2544 /**
2545 * pskb_put - add data to the tail of a potentially fragmented buffer
2546 * @skb: start of the buffer to use
2547 * @tail: tail fragment of the buffer to use
2548 * @len: amount of data to add
2549 *
2550 * This function extends the used data area of the potentially
2551 * fragmented buffer. @tail must be the last fragment of @skb -- or
2552 * @skb itself. If this would exceed the total buffer size the kernel
2553 * will panic. A pointer to the first byte of the extra data is
2554 * returned.
2555 */
2556
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)2557 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2558 {
2559 if (tail != skb) {
2560 skb->data_len += len;
2561 skb->len += len;
2562 }
2563 return skb_put(tail, len);
2564 }
2565 EXPORT_SYMBOL_GPL(pskb_put);
2566
2567 /**
2568 * skb_put - add data to a buffer
2569 * @skb: buffer to use
2570 * @len: amount of data to add
2571 *
2572 * This function extends the used data area of the buffer. If this would
2573 * exceed the total buffer size the kernel will panic. A pointer to the
2574 * first byte of the extra data is returned.
2575 */
skb_put(struct sk_buff * skb,unsigned int len)2576 void *skb_put(struct sk_buff *skb, unsigned int len)
2577 {
2578 void *tmp = skb_tail_pointer(skb);
2579 SKB_LINEAR_ASSERT(skb);
2580 skb->tail += len;
2581 skb->len += len;
2582 if (unlikely(skb->tail > skb->end))
2583 skb_over_panic(skb, len, __builtin_return_address(0));
2584 return tmp;
2585 }
2586 EXPORT_SYMBOL(skb_put);
2587
2588 /**
2589 * skb_push - add data to the start of a buffer
2590 * @skb: buffer to use
2591 * @len: amount of data to add
2592 *
2593 * This function extends the used data area of the buffer at the buffer
2594 * start. If this would exceed the total buffer headroom the kernel will
2595 * panic. A pointer to the first byte of the extra data is returned.
2596 */
skb_push(struct sk_buff * skb,unsigned int len)2597 void *skb_push(struct sk_buff *skb, unsigned int len)
2598 {
2599 skb->data -= len;
2600 skb->len += len;
2601 if (unlikely(skb->data < skb->head))
2602 skb_under_panic(skb, len, __builtin_return_address(0));
2603 return skb->data;
2604 }
2605 EXPORT_SYMBOL(skb_push);
2606
2607 /**
2608 * skb_pull - remove data from the start of a buffer
2609 * @skb: buffer to use
2610 * @len: amount of data to remove
2611 *
2612 * This function removes data from the start of a buffer, returning
2613 * the memory to the headroom. A pointer to the next data in the buffer
2614 * is returned. Once the data has been pulled future pushes will overwrite
2615 * the old data.
2616 */
skb_pull(struct sk_buff * skb,unsigned int len)2617 void *skb_pull(struct sk_buff *skb, unsigned int len)
2618 {
2619 return skb_pull_inline(skb, len);
2620 }
2621 EXPORT_SYMBOL(skb_pull);
2622
2623 /**
2624 * skb_pull_data - remove data from the start of a buffer returning its
2625 * original position.
2626 * @skb: buffer to use
2627 * @len: amount of data to remove
2628 *
2629 * This function removes data from the start of a buffer, returning
2630 * the memory to the headroom. A pointer to the original data in the buffer
2631 * is returned after checking if there is enough data to pull. Once the
2632 * data has been pulled future pushes will overwrite the old data.
2633 */
skb_pull_data(struct sk_buff * skb,size_t len)2634 void *skb_pull_data(struct sk_buff *skb, size_t len)
2635 {
2636 void *data = skb->data;
2637
2638 if (skb->len < len)
2639 return NULL;
2640
2641 skb_pull(skb, len);
2642
2643 return data;
2644 }
2645 EXPORT_SYMBOL(skb_pull_data);
2646
2647 /**
2648 * skb_trim - remove end from a buffer
2649 * @skb: buffer to alter
2650 * @len: new length
2651 *
2652 * Cut the length of a buffer down by removing data from the tail. If
2653 * the buffer is already under the length specified it is not modified.
2654 * The skb must be linear.
2655 */
skb_trim(struct sk_buff * skb,unsigned int len)2656 void skb_trim(struct sk_buff *skb, unsigned int len)
2657 {
2658 if (skb->len > len)
2659 __skb_trim(skb, len);
2660 }
2661 EXPORT_SYMBOL(skb_trim);
2662
2663 /* Trims skb to length len. It can change skb pointers.
2664 */
2665
___pskb_trim(struct sk_buff * skb,unsigned int len)2666 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2667 {
2668 struct sk_buff **fragp;
2669 struct sk_buff *frag;
2670 int offset = skb_headlen(skb);
2671 int nfrags = skb_shinfo(skb)->nr_frags;
2672 int i;
2673 int err;
2674
2675 if (skb_cloned(skb) &&
2676 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2677 return err;
2678
2679 i = 0;
2680 if (offset >= len)
2681 goto drop_pages;
2682
2683 for (; i < nfrags; i++) {
2684 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2685
2686 if (end < len) {
2687 offset = end;
2688 continue;
2689 }
2690
2691 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2692
2693 drop_pages:
2694 skb_shinfo(skb)->nr_frags = i;
2695
2696 for (; i < nfrags; i++)
2697 skb_frag_unref(skb, i);
2698
2699 if (skb_has_frag_list(skb))
2700 skb_drop_fraglist(skb);
2701 goto done;
2702 }
2703
2704 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2705 fragp = &frag->next) {
2706 int end = offset + frag->len;
2707
2708 if (skb_shared(frag)) {
2709 struct sk_buff *nfrag;
2710
2711 nfrag = skb_clone(frag, GFP_ATOMIC);
2712 if (unlikely(!nfrag))
2713 return -ENOMEM;
2714
2715 nfrag->next = frag->next;
2716 consume_skb(frag);
2717 frag = nfrag;
2718 *fragp = frag;
2719 }
2720
2721 if (end < len) {
2722 offset = end;
2723 continue;
2724 }
2725
2726 if (end > len &&
2727 unlikely((err = pskb_trim(frag, len - offset))))
2728 return err;
2729
2730 if (frag->next)
2731 skb_drop_list(&frag->next);
2732 break;
2733 }
2734
2735 done:
2736 if (len > skb_headlen(skb)) {
2737 skb->data_len -= skb->len - len;
2738 skb->len = len;
2739 } else {
2740 skb->len = len;
2741 skb->data_len = 0;
2742 skb_set_tail_pointer(skb, len);
2743 }
2744
2745 if (!skb->sk || skb->destructor == sock_edemux)
2746 skb_condense(skb);
2747 return 0;
2748 }
2749 EXPORT_SYMBOL(___pskb_trim);
2750
2751 /* Note : use pskb_trim_rcsum() instead of calling this directly
2752 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2753 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2754 {
2755 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2756 int delta = skb->len - len;
2757
2758 skb->csum = csum_block_sub(skb->csum,
2759 skb_checksum(skb, len, delta, 0),
2760 len);
2761 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2762 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2763 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2764
2765 if (offset + sizeof(__sum16) > hdlen)
2766 return -EINVAL;
2767 }
2768 return __pskb_trim(skb, len);
2769 }
2770 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2771
2772 /**
2773 * __pskb_pull_tail - advance tail of skb header
2774 * @skb: buffer to reallocate
2775 * @delta: number of bytes to advance tail
2776 *
2777 * The function makes a sense only on a fragmented &sk_buff,
2778 * it expands header moving its tail forward and copying necessary
2779 * data from fragmented part.
2780 *
2781 * &sk_buff MUST have reference count of 1.
2782 *
2783 * Returns %NULL (and &sk_buff does not change) if pull failed
2784 * or value of new tail of skb in the case of success.
2785 *
2786 * All the pointers pointing into skb header may change and must be
2787 * reloaded after call to this function.
2788 */
2789
2790 /* Moves tail of skb head forward, copying data from fragmented part,
2791 * when it is necessary.
2792 * 1. It may fail due to malloc failure.
2793 * 2. It may change skb pointers.
2794 *
2795 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2796 */
__pskb_pull_tail(struct sk_buff * skb,int delta)2797 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2798 {
2799 /* If skb has not enough free space at tail, get new one
2800 * plus 128 bytes for future expansions. If we have enough
2801 * room at tail, reallocate without expansion only if skb is cloned.
2802 */
2803 int i, k, eat = (skb->tail + delta) - skb->end;
2804
2805 if (!skb_frags_readable(skb))
2806 return NULL;
2807
2808 if (eat > 0 || skb_cloned(skb)) {
2809 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2810 GFP_ATOMIC))
2811 return NULL;
2812 }
2813
2814 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2815 skb_tail_pointer(skb), delta));
2816
2817 /* Optimization: no fragments, no reasons to preestimate
2818 * size of pulled pages. Superb.
2819 */
2820 if (!skb_has_frag_list(skb))
2821 goto pull_pages;
2822
2823 /* Estimate size of pulled pages. */
2824 eat = delta;
2825 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2826 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2827
2828 if (size >= eat)
2829 goto pull_pages;
2830 eat -= size;
2831 }
2832
2833 /* If we need update frag list, we are in troubles.
2834 * Certainly, it is possible to add an offset to skb data,
2835 * but taking into account that pulling is expected to
2836 * be very rare operation, it is worth to fight against
2837 * further bloating skb head and crucify ourselves here instead.
2838 * Pure masohism, indeed. 8)8)
2839 */
2840 if (eat) {
2841 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2842 struct sk_buff *clone = NULL;
2843 struct sk_buff *insp = NULL;
2844
2845 do {
2846 if (list->len <= eat) {
2847 /* Eaten as whole. */
2848 eat -= list->len;
2849 list = list->next;
2850 insp = list;
2851 } else {
2852 /* Eaten partially. */
2853 if (skb_is_gso(skb) && !list->head_frag &&
2854 skb_headlen(list))
2855 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2856
2857 if (skb_shared(list)) {
2858 /* Sucks! We need to fork list. :-( */
2859 clone = skb_clone(list, GFP_ATOMIC);
2860 if (!clone)
2861 return NULL;
2862 insp = list->next;
2863 list = clone;
2864 } else {
2865 /* This may be pulled without
2866 * problems. */
2867 insp = list;
2868 }
2869 if (!pskb_pull(list, eat)) {
2870 kfree_skb(clone);
2871 return NULL;
2872 }
2873 break;
2874 }
2875 } while (eat);
2876
2877 /* Free pulled out fragments. */
2878 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2879 skb_shinfo(skb)->frag_list = list->next;
2880 consume_skb(list);
2881 }
2882 /* And insert new clone at head. */
2883 if (clone) {
2884 clone->next = list;
2885 skb_shinfo(skb)->frag_list = clone;
2886 }
2887 }
2888 /* Success! Now we may commit changes to skb data. */
2889
2890 pull_pages:
2891 eat = delta;
2892 k = 0;
2893 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2894 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2895
2896 if (size <= eat) {
2897 skb_frag_unref(skb, i);
2898 eat -= size;
2899 } else {
2900 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2901
2902 *frag = skb_shinfo(skb)->frags[i];
2903 if (eat) {
2904 skb_frag_off_add(frag, eat);
2905 skb_frag_size_sub(frag, eat);
2906 if (!i)
2907 goto end;
2908 eat = 0;
2909 }
2910 k++;
2911 }
2912 }
2913 skb_shinfo(skb)->nr_frags = k;
2914
2915 end:
2916 skb->tail += delta;
2917 skb->data_len -= delta;
2918
2919 if (!skb->data_len)
2920 skb_zcopy_clear(skb, false);
2921
2922 return skb_tail_pointer(skb);
2923 }
2924 EXPORT_SYMBOL(__pskb_pull_tail);
2925
2926 /**
2927 * skb_copy_bits - copy bits from skb to kernel buffer
2928 * @skb: source skb
2929 * @offset: offset in source
2930 * @to: destination buffer
2931 * @len: number of bytes to copy
2932 *
2933 * Copy the specified number of bytes from the source skb to the
2934 * destination buffer.
2935 *
2936 * CAUTION ! :
2937 * If its prototype is ever changed,
2938 * check arch/{*}/net/{*}.S files,
2939 * since it is called from BPF assembly code.
2940 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2941 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2942 {
2943 int start = skb_headlen(skb);
2944 struct sk_buff *frag_iter;
2945 int i, copy;
2946
2947 if (offset > (int)skb->len - len)
2948 goto fault;
2949
2950 /* Copy header. */
2951 if ((copy = start - offset) > 0) {
2952 if (copy > len)
2953 copy = len;
2954 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2955 if ((len -= copy) == 0)
2956 return 0;
2957 offset += copy;
2958 to += copy;
2959 }
2960
2961 if (!skb_frags_readable(skb))
2962 goto fault;
2963
2964 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2965 int end;
2966 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2967
2968 WARN_ON(start > offset + len);
2969
2970 end = start + skb_frag_size(f);
2971 if ((copy = end - offset) > 0) {
2972 u32 p_off, p_len, copied;
2973 struct page *p;
2974 u8 *vaddr;
2975
2976 if (copy > len)
2977 copy = len;
2978
2979 skb_frag_foreach_page(f,
2980 skb_frag_off(f) + offset - start,
2981 copy, p, p_off, p_len, copied) {
2982 vaddr = kmap_atomic(p);
2983 memcpy(to + copied, vaddr + p_off, p_len);
2984 kunmap_atomic(vaddr);
2985 }
2986
2987 if ((len -= copy) == 0)
2988 return 0;
2989 offset += copy;
2990 to += copy;
2991 }
2992 start = end;
2993 }
2994
2995 skb_walk_frags(skb, frag_iter) {
2996 int end;
2997
2998 WARN_ON(start > offset + len);
2999
3000 end = start + frag_iter->len;
3001 if ((copy = end - offset) > 0) {
3002 if (copy > len)
3003 copy = len;
3004 if (skb_copy_bits(frag_iter, offset - start, to, copy))
3005 goto fault;
3006 if ((len -= copy) == 0)
3007 return 0;
3008 offset += copy;
3009 to += copy;
3010 }
3011 start = end;
3012 }
3013
3014 if (!len)
3015 return 0;
3016
3017 fault:
3018 return -EFAULT;
3019 }
3020 EXPORT_SYMBOL(skb_copy_bits);
3021
3022 /*
3023 * Callback from splice_to_pipe(), if we need to release some pages
3024 * at the end of the spd in case we error'ed out in filling the pipe.
3025 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)3026 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3027 {
3028 put_page(spd->pages[i]);
3029 }
3030
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)3031 static struct page *linear_to_page(struct page *page, unsigned int *len,
3032 unsigned int *offset,
3033 struct sock *sk)
3034 {
3035 struct page_frag *pfrag = sk_page_frag(sk);
3036
3037 if (!sk_page_frag_refill(sk, pfrag))
3038 return NULL;
3039
3040 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3041
3042 memcpy(page_address(pfrag->page) + pfrag->offset,
3043 page_address(page) + *offset, *len);
3044 *offset = pfrag->offset;
3045 pfrag->offset += *len;
3046
3047 return pfrag->page;
3048 }
3049
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)3050 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3051 struct page *page,
3052 unsigned int offset)
3053 {
3054 return spd->nr_pages &&
3055 spd->pages[spd->nr_pages - 1] == page &&
3056 (spd->partial[spd->nr_pages - 1].offset +
3057 spd->partial[spd->nr_pages - 1].len == offset);
3058 }
3059
3060 /*
3061 * Fill page/offset/length into spd, if it can hold more pages.
3062 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)3063 static bool spd_fill_page(struct splice_pipe_desc *spd,
3064 struct pipe_inode_info *pipe, struct page *page,
3065 unsigned int *len, unsigned int offset,
3066 bool linear,
3067 struct sock *sk)
3068 {
3069 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3070 return true;
3071
3072 if (linear) {
3073 page = linear_to_page(page, len, &offset, sk);
3074 if (!page)
3075 return true;
3076 }
3077 if (spd_can_coalesce(spd, page, offset)) {
3078 spd->partial[spd->nr_pages - 1].len += *len;
3079 return false;
3080 }
3081 get_page(page);
3082 spd->pages[spd->nr_pages] = page;
3083 spd->partial[spd->nr_pages].len = *len;
3084 spd->partial[spd->nr_pages].offset = offset;
3085 spd->nr_pages++;
3086
3087 return false;
3088 }
3089
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)3090 static bool __splice_segment(struct page *page, unsigned int poff,
3091 unsigned int plen, unsigned int *off,
3092 unsigned int *len,
3093 struct splice_pipe_desc *spd, bool linear,
3094 struct sock *sk,
3095 struct pipe_inode_info *pipe)
3096 {
3097 if (!*len)
3098 return true;
3099
3100 /* skip this segment if already processed */
3101 if (*off >= plen) {
3102 *off -= plen;
3103 return false;
3104 }
3105
3106 /* ignore any bits we already processed */
3107 poff += *off;
3108 plen -= *off;
3109 *off = 0;
3110
3111 do {
3112 unsigned int flen = min(*len, plen);
3113
3114 if (spd_fill_page(spd, pipe, page, &flen, poff,
3115 linear, sk))
3116 return true;
3117 poff += flen;
3118 plen -= flen;
3119 *len -= flen;
3120 } while (*len && plen);
3121
3122 return false;
3123 }
3124
3125 /*
3126 * Map linear and fragment data from the skb to spd. It reports true if the
3127 * pipe is full or if we already spliced the requested length.
3128 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)3129 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3130 unsigned int *offset, unsigned int *len,
3131 struct splice_pipe_desc *spd, struct sock *sk)
3132 {
3133 int seg;
3134 struct sk_buff *iter;
3135
3136 /* map the linear part :
3137 * If skb->head_frag is set, this 'linear' part is backed by a
3138 * fragment, and if the head is not shared with any clones then
3139 * we can avoid a copy since we own the head portion of this page.
3140 */
3141 if (__splice_segment(virt_to_page(skb->data),
3142 (unsigned long) skb->data & (PAGE_SIZE - 1),
3143 skb_headlen(skb),
3144 offset, len, spd,
3145 skb_head_is_locked(skb),
3146 sk, pipe))
3147 return true;
3148
3149 /*
3150 * then map the fragments
3151 */
3152 if (!skb_frags_readable(skb))
3153 return false;
3154
3155 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3156 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3157
3158 if (WARN_ON_ONCE(!skb_frag_page(f)))
3159 return false;
3160
3161 if (__splice_segment(skb_frag_page(f),
3162 skb_frag_off(f), skb_frag_size(f),
3163 offset, len, spd, false, sk, pipe))
3164 return true;
3165 }
3166
3167 skb_walk_frags(skb, iter) {
3168 if (*offset >= iter->len) {
3169 *offset -= iter->len;
3170 continue;
3171 }
3172 /* __skb_splice_bits() only fails if the output has no room
3173 * left, so no point in going over the frag_list for the error
3174 * case.
3175 */
3176 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3177 return true;
3178 }
3179
3180 return false;
3181 }
3182
3183 /*
3184 * Map data from the skb to a pipe. Should handle both the linear part,
3185 * the fragments, and the frag list.
3186 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)3187 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3188 struct pipe_inode_info *pipe, unsigned int tlen,
3189 unsigned int flags)
3190 {
3191 struct partial_page partial[MAX_SKB_FRAGS];
3192 struct page *pages[MAX_SKB_FRAGS];
3193 struct splice_pipe_desc spd = {
3194 .pages = pages,
3195 .partial = partial,
3196 .nr_pages_max = MAX_SKB_FRAGS,
3197 .ops = &nosteal_pipe_buf_ops,
3198 .spd_release = sock_spd_release,
3199 };
3200 int ret = 0;
3201
3202 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3203
3204 if (spd.nr_pages)
3205 ret = splice_to_pipe(pipe, &spd);
3206
3207 return ret;
3208 }
3209 EXPORT_SYMBOL_GPL(skb_splice_bits);
3210
sendmsg_locked(struct sock * sk,struct msghdr * msg)3211 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3212 {
3213 struct socket *sock = sk->sk_socket;
3214 size_t size = msg_data_left(msg);
3215
3216 if (!sock)
3217 return -EINVAL;
3218
3219 if (!sock->ops->sendmsg_locked)
3220 return sock_no_sendmsg_locked(sk, msg, size);
3221
3222 return sock->ops->sendmsg_locked(sk, msg, size);
3223 }
3224
sendmsg_unlocked(struct sock * sk,struct msghdr * msg)3225 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3226 {
3227 struct socket *sock = sk->sk_socket;
3228
3229 if (!sock)
3230 return -EINVAL;
3231 return sock_sendmsg(sock, msg);
3232 }
3233
3234 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg,int flags)3235 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3236 int len, sendmsg_func sendmsg, int flags)
3237 {
3238 unsigned int orig_len = len;
3239 struct sk_buff *head = skb;
3240 unsigned short fragidx;
3241 int slen, ret;
3242
3243 do_frag_list:
3244
3245 /* Deal with head data */
3246 while (offset < skb_headlen(skb) && len) {
3247 struct kvec kv;
3248 struct msghdr msg;
3249
3250 slen = min_t(int, len, skb_headlen(skb) - offset);
3251 kv.iov_base = skb->data + offset;
3252 kv.iov_len = slen;
3253 memset(&msg, 0, sizeof(msg));
3254 msg.msg_flags = MSG_DONTWAIT | flags;
3255
3256 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3257 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3258 sendmsg_unlocked, sk, &msg);
3259 if (ret <= 0)
3260 goto error;
3261
3262 offset += ret;
3263 len -= ret;
3264 }
3265
3266 /* All the data was skb head? */
3267 if (!len)
3268 goto out;
3269
3270 /* Make offset relative to start of frags */
3271 offset -= skb_headlen(skb);
3272
3273 /* Find where we are in frag list */
3274 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3275 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3276
3277 if (offset < skb_frag_size(frag))
3278 break;
3279
3280 offset -= skb_frag_size(frag);
3281 }
3282
3283 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3284 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3285
3286 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3287
3288 while (slen) {
3289 struct bio_vec bvec;
3290 struct msghdr msg = {
3291 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT |
3292 flags,
3293 };
3294
3295 bvec_set_page(&bvec, skb_frag_page(frag), slen,
3296 skb_frag_off(frag) + offset);
3297 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3298 slen);
3299
3300 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3301 sendmsg_unlocked, sk, &msg);
3302 if (ret <= 0)
3303 goto error;
3304
3305 len -= ret;
3306 offset += ret;
3307 slen -= ret;
3308 }
3309
3310 offset = 0;
3311 }
3312
3313 if (len) {
3314 /* Process any frag lists */
3315
3316 if (skb == head) {
3317 if (skb_has_frag_list(skb)) {
3318 skb = skb_shinfo(skb)->frag_list;
3319 goto do_frag_list;
3320 }
3321 } else if (skb->next) {
3322 skb = skb->next;
3323 goto do_frag_list;
3324 }
3325 }
3326
3327 out:
3328 return orig_len - len;
3329
3330 error:
3331 return orig_len == len ? ret : orig_len - len;
3332 }
3333
3334 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)3335 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3336 int len)
3337 {
3338 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0);
3339 }
3340 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3341
skb_send_sock_locked_with_flags(struct sock * sk,struct sk_buff * skb,int offset,int len,int flags)3342 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb,
3343 int offset, int len, int flags)
3344 {
3345 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags);
3346 }
3347 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags);
3348
3349 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)3350 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3351 {
3352 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0);
3353 }
3354
3355 /**
3356 * skb_store_bits - store bits from kernel buffer to skb
3357 * @skb: destination buffer
3358 * @offset: offset in destination
3359 * @from: source buffer
3360 * @len: number of bytes to copy
3361 *
3362 * Copy the specified number of bytes from the source buffer to the
3363 * destination skb. This function handles all the messy bits of
3364 * traversing fragment lists and such.
3365 */
3366
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)3367 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3368 {
3369 int start = skb_headlen(skb);
3370 struct sk_buff *frag_iter;
3371 int i, copy;
3372
3373 if (offset > (int)skb->len - len)
3374 goto fault;
3375
3376 if ((copy = start - offset) > 0) {
3377 if (copy > len)
3378 copy = len;
3379 skb_copy_to_linear_data_offset(skb, offset, from, copy);
3380 if ((len -= copy) == 0)
3381 return 0;
3382 offset += copy;
3383 from += copy;
3384 }
3385
3386 if (!skb_frags_readable(skb))
3387 goto fault;
3388
3389 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3390 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3391 int end;
3392
3393 WARN_ON(start > offset + len);
3394
3395 end = start + skb_frag_size(frag);
3396 if ((copy = end - offset) > 0) {
3397 u32 p_off, p_len, copied;
3398 struct page *p;
3399 u8 *vaddr;
3400
3401 if (copy > len)
3402 copy = len;
3403
3404 skb_frag_foreach_page(frag,
3405 skb_frag_off(frag) + offset - start,
3406 copy, p, p_off, p_len, copied) {
3407 vaddr = kmap_atomic(p);
3408 memcpy(vaddr + p_off, from + copied, p_len);
3409 kunmap_atomic(vaddr);
3410 }
3411
3412 if ((len -= copy) == 0)
3413 return 0;
3414 offset += copy;
3415 from += copy;
3416 }
3417 start = end;
3418 }
3419
3420 skb_walk_frags(skb, frag_iter) {
3421 int end;
3422
3423 WARN_ON(start > offset + len);
3424
3425 end = start + frag_iter->len;
3426 if ((copy = end - offset) > 0) {
3427 if (copy > len)
3428 copy = len;
3429 if (skb_store_bits(frag_iter, offset - start,
3430 from, copy))
3431 goto fault;
3432 if ((len -= copy) == 0)
3433 return 0;
3434 offset += copy;
3435 from += copy;
3436 }
3437 start = end;
3438 }
3439 if (!len)
3440 return 0;
3441
3442 fault:
3443 return -EFAULT;
3444 }
3445 EXPORT_SYMBOL(skb_store_bits);
3446
3447 /* Checksum skb data. */
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)3448 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum)
3449 {
3450 int start = skb_headlen(skb);
3451 int i, copy = start - offset;
3452 struct sk_buff *frag_iter;
3453 int pos = 0;
3454
3455 /* Checksum header. */
3456 if (copy > 0) {
3457 if (copy > len)
3458 copy = len;
3459 csum = csum_partial(skb->data + offset, copy, csum);
3460 if ((len -= copy) == 0)
3461 return csum;
3462 offset += copy;
3463 pos = copy;
3464 }
3465
3466 if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3467 return 0;
3468
3469 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3470 int end;
3471 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3472
3473 WARN_ON(start > offset + len);
3474
3475 end = start + skb_frag_size(frag);
3476 if ((copy = end - offset) > 0) {
3477 u32 p_off, p_len, copied;
3478 struct page *p;
3479 __wsum csum2;
3480 u8 *vaddr;
3481
3482 if (copy > len)
3483 copy = len;
3484
3485 skb_frag_foreach_page(frag,
3486 skb_frag_off(frag) + offset - start,
3487 copy, p, p_off, p_len, copied) {
3488 vaddr = kmap_atomic(p);
3489 csum2 = csum_partial(vaddr + p_off, p_len, 0);
3490 kunmap_atomic(vaddr);
3491 csum = csum_block_add(csum, csum2, pos);
3492 pos += p_len;
3493 }
3494
3495 if (!(len -= copy))
3496 return csum;
3497 offset += copy;
3498 }
3499 start = end;
3500 }
3501
3502 skb_walk_frags(skb, frag_iter) {
3503 int end;
3504
3505 WARN_ON(start > offset + len);
3506
3507 end = start + frag_iter->len;
3508 if ((copy = end - offset) > 0) {
3509 __wsum csum2;
3510 if (copy > len)
3511 copy = len;
3512 csum2 = skb_checksum(frag_iter, offset - start, copy,
3513 0);
3514 csum = csum_block_add(csum, csum2, pos);
3515 if ((len -= copy) == 0)
3516 return csum;
3517 offset += copy;
3518 pos += copy;
3519 }
3520 start = end;
3521 }
3522 BUG_ON(len);
3523
3524 return csum;
3525 }
3526 EXPORT_SYMBOL(skb_checksum);
3527
3528 /* Both of above in one bottle. */
3529
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)3530 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3531 u8 *to, int len)
3532 {
3533 int start = skb_headlen(skb);
3534 int i, copy = start - offset;
3535 struct sk_buff *frag_iter;
3536 int pos = 0;
3537 __wsum csum = 0;
3538
3539 /* Copy header. */
3540 if (copy > 0) {
3541 if (copy > len)
3542 copy = len;
3543 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3544 copy);
3545 if ((len -= copy) == 0)
3546 return csum;
3547 offset += copy;
3548 to += copy;
3549 pos = copy;
3550 }
3551
3552 if (!skb_frags_readable(skb))
3553 return 0;
3554
3555 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3556 int end;
3557
3558 WARN_ON(start > offset + len);
3559
3560 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3561 if ((copy = end - offset) > 0) {
3562 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3563 u32 p_off, p_len, copied;
3564 struct page *p;
3565 __wsum csum2;
3566 u8 *vaddr;
3567
3568 if (copy > len)
3569 copy = len;
3570
3571 skb_frag_foreach_page(frag,
3572 skb_frag_off(frag) + offset - start,
3573 copy, p, p_off, p_len, copied) {
3574 vaddr = kmap_atomic(p);
3575 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3576 to + copied,
3577 p_len);
3578 kunmap_atomic(vaddr);
3579 csum = csum_block_add(csum, csum2, pos);
3580 pos += p_len;
3581 }
3582
3583 if (!(len -= copy))
3584 return csum;
3585 offset += copy;
3586 to += copy;
3587 }
3588 start = end;
3589 }
3590
3591 skb_walk_frags(skb, frag_iter) {
3592 __wsum csum2;
3593 int end;
3594
3595 WARN_ON(start > offset + len);
3596
3597 end = start + frag_iter->len;
3598 if ((copy = end - offset) > 0) {
3599 if (copy > len)
3600 copy = len;
3601 csum2 = skb_copy_and_csum_bits(frag_iter,
3602 offset - start,
3603 to, copy);
3604 csum = csum_block_add(csum, csum2, pos);
3605 if ((len -= copy) == 0)
3606 return csum;
3607 offset += copy;
3608 to += copy;
3609 pos += copy;
3610 }
3611 start = end;
3612 }
3613 BUG_ON(len);
3614 return csum;
3615 }
3616 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3617
3618 #ifdef CONFIG_NET_CRC32C
skb_crc32c(const struct sk_buff * skb,int offset,int len,u32 crc)3619 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc)
3620 {
3621 int start = skb_headlen(skb);
3622 int i, copy = start - offset;
3623 struct sk_buff *frag_iter;
3624
3625 if (copy > 0) {
3626 copy = min(copy, len);
3627 crc = crc32c(crc, skb->data + offset, copy);
3628 len -= copy;
3629 if (len == 0)
3630 return crc;
3631 offset += copy;
3632 }
3633
3634 if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3635 return 0;
3636
3637 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3638 int end;
3639 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3640
3641 WARN_ON(start > offset + len);
3642
3643 end = start + skb_frag_size(frag);
3644 copy = end - offset;
3645 if (copy > 0) {
3646 u32 p_off, p_len, copied;
3647 struct page *p;
3648 u8 *vaddr;
3649
3650 copy = min(copy, len);
3651 skb_frag_foreach_page(frag,
3652 skb_frag_off(frag) + offset - start,
3653 copy, p, p_off, p_len, copied) {
3654 vaddr = kmap_atomic(p);
3655 crc = crc32c(crc, vaddr + p_off, p_len);
3656 kunmap_atomic(vaddr);
3657 }
3658 len -= copy;
3659 if (len == 0)
3660 return crc;
3661 offset += copy;
3662 }
3663 start = end;
3664 }
3665
3666 skb_walk_frags(skb, frag_iter) {
3667 int end;
3668
3669 WARN_ON(start > offset + len);
3670
3671 end = start + frag_iter->len;
3672 copy = end - offset;
3673 if (copy > 0) {
3674 copy = min(copy, len);
3675 crc = skb_crc32c(frag_iter, offset - start, copy, crc);
3676 len -= copy;
3677 if (len == 0)
3678 return crc;
3679 offset += copy;
3680 }
3681 start = end;
3682 }
3683 BUG_ON(len);
3684
3685 return crc;
3686 }
3687 EXPORT_SYMBOL(skb_crc32c);
3688 #endif /* CONFIG_NET_CRC32C */
3689
__skb_checksum_complete_head(struct sk_buff * skb,int len)3690 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3691 {
3692 __sum16 sum;
3693
3694 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3695 /* See comments in __skb_checksum_complete(). */
3696 if (likely(!sum)) {
3697 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3698 !skb->csum_complete_sw)
3699 netdev_rx_csum_fault(skb->dev, skb);
3700 }
3701 if (!skb_shared(skb))
3702 skb->csum_valid = !sum;
3703 return sum;
3704 }
3705 EXPORT_SYMBOL(__skb_checksum_complete_head);
3706
3707 /* This function assumes skb->csum already holds pseudo header's checksum,
3708 * which has been changed from the hardware checksum, for example, by
3709 * __skb_checksum_validate_complete(). And, the original skb->csum must
3710 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3711 *
3712 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3713 * zero. The new checksum is stored back into skb->csum unless the skb is
3714 * shared.
3715 */
__skb_checksum_complete(struct sk_buff * skb)3716 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3717 {
3718 __wsum csum;
3719 __sum16 sum;
3720
3721 csum = skb_checksum(skb, 0, skb->len, 0);
3722
3723 sum = csum_fold(csum_add(skb->csum, csum));
3724 /* This check is inverted, because we already knew the hardware
3725 * checksum is invalid before calling this function. So, if the
3726 * re-computed checksum is valid instead, then we have a mismatch
3727 * between the original skb->csum and skb_checksum(). This means either
3728 * the original hardware checksum is incorrect or we screw up skb->csum
3729 * when moving skb->data around.
3730 */
3731 if (likely(!sum)) {
3732 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3733 !skb->csum_complete_sw)
3734 netdev_rx_csum_fault(skb->dev, skb);
3735 }
3736
3737 if (!skb_shared(skb)) {
3738 /* Save full packet checksum */
3739 skb->csum = csum;
3740 skb->ip_summed = CHECKSUM_COMPLETE;
3741 skb->csum_complete_sw = 1;
3742 skb->csum_valid = !sum;
3743 }
3744
3745 return sum;
3746 }
3747 EXPORT_SYMBOL(__skb_checksum_complete);
3748
3749 /**
3750 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3751 * @from: source buffer
3752 *
3753 * Calculates the amount of linear headroom needed in the 'to' skb passed
3754 * into skb_zerocopy().
3755 */
3756 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3757 skb_zerocopy_headlen(const struct sk_buff *from)
3758 {
3759 unsigned int hlen = 0;
3760
3761 if (!from->head_frag ||
3762 skb_headlen(from) < L1_CACHE_BYTES ||
3763 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3764 hlen = skb_headlen(from);
3765 if (!hlen)
3766 hlen = from->len;
3767 }
3768
3769 if (skb_has_frag_list(from))
3770 hlen = from->len;
3771
3772 return hlen;
3773 }
3774 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3775
3776 /**
3777 * skb_zerocopy - Zero copy skb to skb
3778 * @to: destination buffer
3779 * @from: source buffer
3780 * @len: number of bytes to copy from source buffer
3781 * @hlen: size of linear headroom in destination buffer
3782 *
3783 * Copies up to `len` bytes from `from` to `to` by creating references
3784 * to the frags in the source buffer.
3785 *
3786 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3787 * headroom in the `to` buffer.
3788 *
3789 * Return value:
3790 * 0: everything is OK
3791 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3792 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3793 */
3794 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3795 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3796 {
3797 int i, j = 0;
3798 int plen = 0; /* length of skb->head fragment */
3799 int ret;
3800 struct page *page;
3801 unsigned int offset;
3802
3803 BUG_ON(!from->head_frag && !hlen);
3804
3805 /* dont bother with small payloads */
3806 if (len <= skb_tailroom(to))
3807 return skb_copy_bits(from, 0, skb_put(to, len), len);
3808
3809 if (hlen) {
3810 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3811 if (unlikely(ret))
3812 return ret;
3813 len -= hlen;
3814 } else {
3815 plen = min_t(int, skb_headlen(from), len);
3816 if (plen) {
3817 page = virt_to_head_page(from->head);
3818 offset = from->data - (unsigned char *)page_address(page);
3819 __skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3820 offset, plen);
3821 get_page(page);
3822 j = 1;
3823 len -= plen;
3824 }
3825 }
3826
3827 skb_len_add(to, len + plen);
3828
3829 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3830 skb_tx_error(from);
3831 return -ENOMEM;
3832 }
3833 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3834
3835 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3836 int size;
3837
3838 if (!len)
3839 break;
3840 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3841 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3842 len);
3843 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3844 len -= size;
3845 skb_frag_ref(to, j);
3846 j++;
3847 }
3848 skb_shinfo(to)->nr_frags = j;
3849
3850 return 0;
3851 }
3852 EXPORT_SYMBOL_GPL(skb_zerocopy);
3853
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3854 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3855 {
3856 __wsum csum;
3857 long csstart;
3858
3859 if (skb->ip_summed == CHECKSUM_PARTIAL)
3860 csstart = skb_checksum_start_offset(skb);
3861 else
3862 csstart = skb_headlen(skb);
3863
3864 BUG_ON(csstart > skb_headlen(skb));
3865
3866 skb_copy_from_linear_data(skb, to, csstart);
3867
3868 csum = 0;
3869 if (csstart != skb->len)
3870 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3871 skb->len - csstart);
3872
3873 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3874 long csstuff = csstart + skb->csum_offset;
3875
3876 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3877 }
3878 }
3879 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3880
3881 /**
3882 * skb_dequeue - remove from the head of the queue
3883 * @list: list to dequeue from
3884 *
3885 * Remove the head of the list. The list lock is taken so the function
3886 * may be used safely with other locking list functions. The head item is
3887 * returned or %NULL if the list is empty.
3888 */
3889
skb_dequeue(struct sk_buff_head * list)3890 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3891 {
3892 unsigned long flags;
3893 struct sk_buff *result;
3894
3895 spin_lock_irqsave(&list->lock, flags);
3896 result = __skb_dequeue(list);
3897 spin_unlock_irqrestore(&list->lock, flags);
3898 return result;
3899 }
3900 EXPORT_SYMBOL(skb_dequeue);
3901
3902 /**
3903 * skb_dequeue_tail - remove from the tail of the queue
3904 * @list: list to dequeue from
3905 *
3906 * Remove the tail of the list. The list lock is taken so the function
3907 * may be used safely with other locking list functions. The tail item is
3908 * returned or %NULL if the list is empty.
3909 */
skb_dequeue_tail(struct sk_buff_head * list)3910 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3911 {
3912 unsigned long flags;
3913 struct sk_buff *result;
3914
3915 spin_lock_irqsave(&list->lock, flags);
3916 result = __skb_dequeue_tail(list);
3917 spin_unlock_irqrestore(&list->lock, flags);
3918 return result;
3919 }
3920 EXPORT_SYMBOL(skb_dequeue_tail);
3921
3922 /**
3923 * skb_queue_purge_reason - empty a list
3924 * @list: list to empty
3925 * @reason: drop reason
3926 *
3927 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3928 * the list and one reference dropped. This function takes the list
3929 * lock and is atomic with respect to other list locking functions.
3930 */
skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3931 void skb_queue_purge_reason(struct sk_buff_head *list,
3932 enum skb_drop_reason reason)
3933 {
3934 struct sk_buff_head tmp;
3935 unsigned long flags;
3936
3937 if (skb_queue_empty_lockless(list))
3938 return;
3939
3940 __skb_queue_head_init(&tmp);
3941
3942 spin_lock_irqsave(&list->lock, flags);
3943 skb_queue_splice_init(list, &tmp);
3944 spin_unlock_irqrestore(&list->lock, flags);
3945
3946 __skb_queue_purge_reason(&tmp, reason);
3947 }
3948 EXPORT_SYMBOL(skb_queue_purge_reason);
3949
3950 /**
3951 * skb_rbtree_purge - empty a skb rbtree
3952 * @root: root of the rbtree to empty
3953 * Return value: the sum of truesizes of all purged skbs.
3954 *
3955 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3956 * the list and one reference dropped. This function does not take
3957 * any lock. Synchronization should be handled by the caller (e.g., TCP
3958 * out-of-order queue is protected by the socket lock).
3959 */
skb_rbtree_purge(struct rb_root * root)3960 unsigned int skb_rbtree_purge(struct rb_root *root)
3961 {
3962 struct rb_node *p = rb_first(root);
3963 unsigned int sum = 0;
3964
3965 while (p) {
3966 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3967
3968 p = rb_next(p);
3969 rb_erase(&skb->rbnode, root);
3970 sum += skb->truesize;
3971 kfree_skb(skb);
3972 }
3973 return sum;
3974 }
3975
skb_errqueue_purge(struct sk_buff_head * list)3976 void skb_errqueue_purge(struct sk_buff_head *list)
3977 {
3978 struct sk_buff *skb, *next;
3979 struct sk_buff_head kill;
3980 unsigned long flags;
3981
3982 __skb_queue_head_init(&kill);
3983
3984 spin_lock_irqsave(&list->lock, flags);
3985 skb_queue_walk_safe(list, skb, next) {
3986 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3987 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3988 continue;
3989 __skb_unlink(skb, list);
3990 __skb_queue_tail(&kill, skb);
3991 }
3992 spin_unlock_irqrestore(&list->lock, flags);
3993 __skb_queue_purge(&kill);
3994 }
3995 EXPORT_SYMBOL(skb_errqueue_purge);
3996
3997 /**
3998 * skb_queue_head - queue a buffer at the list head
3999 * @list: list to use
4000 * @newsk: buffer to queue
4001 *
4002 * Queue a buffer at the start of the list. This function takes the
4003 * list lock and can be used safely with other locking &sk_buff functions
4004 * safely.
4005 *
4006 * A buffer cannot be placed on two lists at the same time.
4007 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)4008 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
4009 {
4010 unsigned long flags;
4011
4012 spin_lock_irqsave(&list->lock, flags);
4013 __skb_queue_head(list, newsk);
4014 spin_unlock_irqrestore(&list->lock, flags);
4015 }
4016 EXPORT_SYMBOL(skb_queue_head);
4017
4018 /**
4019 * skb_queue_tail - queue a buffer at the list tail
4020 * @list: list to use
4021 * @newsk: buffer to queue
4022 *
4023 * Queue a buffer at the tail of the list. This function takes the
4024 * list lock and can be used safely with other locking &sk_buff functions
4025 * safely.
4026 *
4027 * A buffer cannot be placed on two lists at the same time.
4028 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)4029 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
4030 {
4031 unsigned long flags;
4032
4033 spin_lock_irqsave(&list->lock, flags);
4034 __skb_queue_tail(list, newsk);
4035 spin_unlock_irqrestore(&list->lock, flags);
4036 }
4037 EXPORT_SYMBOL(skb_queue_tail);
4038
4039 /**
4040 * skb_unlink - remove a buffer from a list
4041 * @skb: buffer to remove
4042 * @list: list to use
4043 *
4044 * Remove a packet from a list. The list locks are taken and this
4045 * function is atomic with respect to other list locked calls
4046 *
4047 * You must know what list the SKB is on.
4048 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)4049 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4050 {
4051 unsigned long flags;
4052
4053 spin_lock_irqsave(&list->lock, flags);
4054 __skb_unlink(skb, list);
4055 spin_unlock_irqrestore(&list->lock, flags);
4056 }
4057 EXPORT_SYMBOL(skb_unlink);
4058
4059 /**
4060 * skb_append - append a buffer
4061 * @old: buffer to insert after
4062 * @newsk: buffer to insert
4063 * @list: list to use
4064 *
4065 * Place a packet after a given packet in a list. The list locks are taken
4066 * and this function is atomic with respect to other list locked calls.
4067 * A buffer cannot be placed on two lists at the same time.
4068 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)4069 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4070 {
4071 unsigned long flags;
4072
4073 spin_lock_irqsave(&list->lock, flags);
4074 __skb_queue_after(list, old, newsk);
4075 spin_unlock_irqrestore(&list->lock, flags);
4076 }
4077 EXPORT_SYMBOL(skb_append);
4078
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)4079 static inline void skb_split_inside_header(struct sk_buff *skb,
4080 struct sk_buff* skb1,
4081 const u32 len, const int pos)
4082 {
4083 int i;
4084
4085 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4086 pos - len);
4087 /* And move data appendix as is. */
4088 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4089 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4090
4091 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4092 skb1->unreadable = skb->unreadable;
4093 skb_shinfo(skb)->nr_frags = 0;
4094 skb1->data_len = skb->data_len;
4095 skb1->len += skb1->data_len;
4096 skb->data_len = 0;
4097 skb->len = len;
4098 skb_set_tail_pointer(skb, len);
4099 }
4100
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)4101 static inline void skb_split_no_header(struct sk_buff *skb,
4102 struct sk_buff* skb1,
4103 const u32 len, int pos)
4104 {
4105 int i, k = 0;
4106 const int nfrags = skb_shinfo(skb)->nr_frags;
4107
4108 skb_shinfo(skb)->nr_frags = 0;
4109 skb1->len = skb1->data_len = skb->len - len;
4110 skb->len = len;
4111 skb->data_len = len - pos;
4112
4113 for (i = 0; i < nfrags; i++) {
4114 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4115
4116 if (pos + size > len) {
4117 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4118
4119 if (pos < len) {
4120 /* Split frag.
4121 * We have two variants in this case:
4122 * 1. Move all the frag to the second
4123 * part, if it is possible. F.e.
4124 * this approach is mandatory for TUX,
4125 * where splitting is expensive.
4126 * 2. Split is accurately. We make this.
4127 */
4128 skb_frag_ref(skb, i);
4129 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4130 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4131 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4132 skb_shinfo(skb)->nr_frags++;
4133 }
4134 k++;
4135 } else
4136 skb_shinfo(skb)->nr_frags++;
4137 pos += size;
4138 }
4139 skb_shinfo(skb1)->nr_frags = k;
4140
4141 skb1->unreadable = skb->unreadable;
4142 }
4143
4144 /**
4145 * skb_split - Split fragmented skb to two parts at length len.
4146 * @skb: the buffer to split
4147 * @skb1: the buffer to receive the second part
4148 * @len: new length for skb
4149 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)4150 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4151 {
4152 int pos = skb_headlen(skb);
4153 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4154
4155 skb_zcopy_downgrade_managed(skb);
4156
4157 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4158 skb_zerocopy_clone(skb1, skb, 0);
4159 if (len < pos) /* Split line is inside header. */
4160 skb_split_inside_header(skb, skb1, len, pos);
4161 else /* Second chunk has no header, nothing to copy. */
4162 skb_split_no_header(skb, skb1, len, pos);
4163 }
4164 EXPORT_SYMBOL(skb_split);
4165
4166 /* Shifting from/to a cloned skb is a no-go.
4167 *
4168 * Caller cannot keep skb_shinfo related pointers past calling here!
4169 */
skb_prepare_for_shift(struct sk_buff * skb)4170 static int skb_prepare_for_shift(struct sk_buff *skb)
4171 {
4172 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4173 }
4174
4175 /**
4176 * skb_shift - Shifts paged data partially from skb to another
4177 * @tgt: buffer into which tail data gets added
4178 * @skb: buffer from which the paged data comes from
4179 * @shiftlen: shift up to this many bytes
4180 *
4181 * Attempts to shift up to shiftlen worth of bytes, which may be less than
4182 * the length of the skb, from skb to tgt. Returns number bytes shifted.
4183 * It's up to caller to free skb if everything was shifted.
4184 *
4185 * If @tgt runs out of frags, the whole operation is aborted.
4186 *
4187 * Skb cannot include anything else but paged data while tgt is allowed
4188 * to have non-paged data as well.
4189 *
4190 * TODO: full sized shift could be optimized but that would need
4191 * specialized skb free'er to handle frags without up-to-date nr_frags.
4192 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)4193 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4194 {
4195 int from, to, merge, todo;
4196 skb_frag_t *fragfrom, *fragto;
4197
4198 BUG_ON(shiftlen > skb->len);
4199
4200 if (skb_headlen(skb))
4201 return 0;
4202 if (skb_zcopy(tgt) || skb_zcopy(skb))
4203 return 0;
4204
4205 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4206 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4207
4208 todo = shiftlen;
4209 from = 0;
4210 to = skb_shinfo(tgt)->nr_frags;
4211 fragfrom = &skb_shinfo(skb)->frags[from];
4212
4213 /* Actual merge is delayed until the point when we know we can
4214 * commit all, so that we don't have to undo partial changes
4215 */
4216 if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4217 skb_frag_off(fragfrom))) {
4218 merge = -1;
4219 } else {
4220 merge = to - 1;
4221
4222 todo -= skb_frag_size(fragfrom);
4223 if (todo < 0) {
4224 if (skb_prepare_for_shift(skb) ||
4225 skb_prepare_for_shift(tgt))
4226 return 0;
4227
4228 /* All previous frag pointers might be stale! */
4229 fragfrom = &skb_shinfo(skb)->frags[from];
4230 fragto = &skb_shinfo(tgt)->frags[merge];
4231
4232 skb_frag_size_add(fragto, shiftlen);
4233 skb_frag_size_sub(fragfrom, shiftlen);
4234 skb_frag_off_add(fragfrom, shiftlen);
4235
4236 goto onlymerged;
4237 }
4238
4239 from++;
4240 }
4241
4242 /* Skip full, not-fitting skb to avoid expensive operations */
4243 if ((shiftlen == skb->len) &&
4244 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4245 return 0;
4246
4247 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4248 return 0;
4249
4250 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4251 if (to == MAX_SKB_FRAGS)
4252 return 0;
4253
4254 fragfrom = &skb_shinfo(skb)->frags[from];
4255 fragto = &skb_shinfo(tgt)->frags[to];
4256
4257 if (todo >= skb_frag_size(fragfrom)) {
4258 *fragto = *fragfrom;
4259 todo -= skb_frag_size(fragfrom);
4260 from++;
4261 to++;
4262
4263 } else {
4264 __skb_frag_ref(fragfrom);
4265 skb_frag_page_copy(fragto, fragfrom);
4266 skb_frag_off_copy(fragto, fragfrom);
4267 skb_frag_size_set(fragto, todo);
4268
4269 skb_frag_off_add(fragfrom, todo);
4270 skb_frag_size_sub(fragfrom, todo);
4271 todo = 0;
4272
4273 to++;
4274 break;
4275 }
4276 }
4277
4278 /* Ready to "commit" this state change to tgt */
4279 skb_shinfo(tgt)->nr_frags = to;
4280
4281 if (merge >= 0) {
4282 fragfrom = &skb_shinfo(skb)->frags[0];
4283 fragto = &skb_shinfo(tgt)->frags[merge];
4284
4285 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4286 __skb_frag_unref(fragfrom, skb->pp_recycle);
4287 }
4288
4289 /* Reposition in the original skb */
4290 to = 0;
4291 while (from < skb_shinfo(skb)->nr_frags)
4292 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4293 skb_shinfo(skb)->nr_frags = to;
4294
4295 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4296
4297 onlymerged:
4298 /* Most likely the tgt won't ever need its checksum anymore, skb on
4299 * the other hand might need it if it needs to be resent
4300 */
4301 tgt->ip_summed = CHECKSUM_PARTIAL;
4302 skb->ip_summed = CHECKSUM_PARTIAL;
4303
4304 skb_len_add(skb, -shiftlen);
4305 skb_len_add(tgt, shiftlen);
4306
4307 return shiftlen;
4308 }
4309
4310 /**
4311 * skb_prepare_seq_read - Prepare a sequential read of skb data
4312 * @skb: the buffer to read
4313 * @from: lower offset of data to be read
4314 * @to: upper offset of data to be read
4315 * @st: state variable
4316 *
4317 * Initializes the specified state variable. Must be called before
4318 * invoking skb_seq_read() for the first time.
4319 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)4320 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4321 unsigned int to, struct skb_seq_state *st)
4322 {
4323 st->lower_offset = from;
4324 st->upper_offset = to;
4325 st->root_skb = st->cur_skb = skb;
4326 st->frag_idx = st->stepped_offset = 0;
4327 st->frag_data = NULL;
4328 st->frag_off = 0;
4329 }
4330 EXPORT_SYMBOL(skb_prepare_seq_read);
4331
4332 /**
4333 * skb_seq_read - Sequentially read skb data
4334 * @consumed: number of bytes consumed by the caller so far
4335 * @data: destination pointer for data to be returned
4336 * @st: state variable
4337 *
4338 * Reads a block of skb data at @consumed relative to the
4339 * lower offset specified to skb_prepare_seq_read(). Assigns
4340 * the head of the data block to @data and returns the length
4341 * of the block or 0 if the end of the skb data or the upper
4342 * offset has been reached.
4343 *
4344 * The caller is not required to consume all of the data
4345 * returned, i.e. @consumed is typically set to the number
4346 * of bytes already consumed and the next call to
4347 * skb_seq_read() will return the remaining part of the block.
4348 *
4349 * Note 1: The size of each block of data returned can be arbitrary,
4350 * this limitation is the cost for zerocopy sequential
4351 * reads of potentially non linear data.
4352 *
4353 * Note 2: Fragment lists within fragments are not implemented
4354 * at the moment, state->root_skb could be replaced with
4355 * a stack for this purpose.
4356 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)4357 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4358 struct skb_seq_state *st)
4359 {
4360 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4361 skb_frag_t *frag;
4362
4363 if (unlikely(abs_offset >= st->upper_offset)) {
4364 if (st->frag_data) {
4365 kunmap_atomic(st->frag_data);
4366 st->frag_data = NULL;
4367 }
4368 return 0;
4369 }
4370
4371 next_skb:
4372 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4373
4374 if (abs_offset < block_limit && !st->frag_data) {
4375 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4376 return block_limit - abs_offset;
4377 }
4378
4379 if (!skb_frags_readable(st->cur_skb))
4380 return 0;
4381
4382 if (st->frag_idx == 0 && !st->frag_data)
4383 st->stepped_offset += skb_headlen(st->cur_skb);
4384
4385 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4386 unsigned int pg_idx, pg_off, pg_sz;
4387
4388 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4389
4390 pg_idx = 0;
4391 pg_off = skb_frag_off(frag);
4392 pg_sz = skb_frag_size(frag);
4393
4394 if (skb_frag_must_loop(skb_frag_page(frag))) {
4395 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4396 pg_off = offset_in_page(pg_off + st->frag_off);
4397 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4398 PAGE_SIZE - pg_off);
4399 }
4400
4401 block_limit = pg_sz + st->stepped_offset;
4402 if (abs_offset < block_limit) {
4403 if (!st->frag_data)
4404 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4405
4406 *data = (u8 *)st->frag_data + pg_off +
4407 (abs_offset - st->stepped_offset);
4408
4409 return block_limit - abs_offset;
4410 }
4411
4412 if (st->frag_data) {
4413 kunmap_atomic(st->frag_data);
4414 st->frag_data = NULL;
4415 }
4416
4417 st->stepped_offset += pg_sz;
4418 st->frag_off += pg_sz;
4419 if (st->frag_off == skb_frag_size(frag)) {
4420 st->frag_off = 0;
4421 st->frag_idx++;
4422 }
4423 }
4424
4425 if (st->frag_data) {
4426 kunmap_atomic(st->frag_data);
4427 st->frag_data = NULL;
4428 }
4429
4430 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4431 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4432 st->frag_idx = 0;
4433 goto next_skb;
4434 } else if (st->cur_skb->next) {
4435 st->cur_skb = st->cur_skb->next;
4436 st->frag_idx = 0;
4437 goto next_skb;
4438 }
4439
4440 return 0;
4441 }
4442 EXPORT_SYMBOL(skb_seq_read);
4443
4444 /**
4445 * skb_abort_seq_read - Abort a sequential read of skb data
4446 * @st: state variable
4447 *
4448 * Must be called if skb_seq_read() was not called until it
4449 * returned 0.
4450 */
skb_abort_seq_read(struct skb_seq_state * st)4451 void skb_abort_seq_read(struct skb_seq_state *st)
4452 {
4453 if (st->frag_data)
4454 kunmap_atomic(st->frag_data);
4455 }
4456 EXPORT_SYMBOL(skb_abort_seq_read);
4457
4458 /**
4459 * skb_copy_seq_read() - copy from a skb_seq_state to a buffer
4460 * @st: source skb_seq_state
4461 * @offset: offset in source
4462 * @to: destination buffer
4463 * @len: number of bytes to copy
4464 *
4465 * Copy @len bytes from @offset bytes into the source @st to the destination
4466 * buffer @to. `offset` should increase (or be unchanged) with each subsequent
4467 * call to this function. If offset needs to decrease from the previous use `st`
4468 * should be reset first.
4469 *
4470 * Return: 0 on success or -EINVAL if the copy ended early
4471 */
skb_copy_seq_read(struct skb_seq_state * st,int offset,void * to,int len)4472 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len)
4473 {
4474 const u8 *data;
4475 u32 sqlen;
4476
4477 for (;;) {
4478 sqlen = skb_seq_read(offset, &data, st);
4479 if (sqlen == 0)
4480 return -EINVAL;
4481 if (sqlen >= len) {
4482 memcpy(to, data, len);
4483 return 0;
4484 }
4485 memcpy(to, data, sqlen);
4486 to += sqlen;
4487 offset += sqlen;
4488 len -= sqlen;
4489 }
4490 }
4491 EXPORT_SYMBOL(skb_copy_seq_read);
4492
4493 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
4494
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)4495 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4496 struct ts_config *conf,
4497 struct ts_state *state)
4498 {
4499 return skb_seq_read(offset, text, TS_SKB_CB(state));
4500 }
4501
skb_ts_finish(struct ts_config * conf,struct ts_state * state)4502 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4503 {
4504 skb_abort_seq_read(TS_SKB_CB(state));
4505 }
4506
4507 /**
4508 * skb_find_text - Find a text pattern in skb data
4509 * @skb: the buffer to look in
4510 * @from: search offset
4511 * @to: search limit
4512 * @config: textsearch configuration
4513 *
4514 * Finds a pattern in the skb data according to the specified
4515 * textsearch configuration. Use textsearch_next() to retrieve
4516 * subsequent occurrences of the pattern. Returns the offset
4517 * to the first occurrence or UINT_MAX if no match was found.
4518 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)4519 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4520 unsigned int to, struct ts_config *config)
4521 {
4522 unsigned int patlen = config->ops->get_pattern_len(config);
4523 struct ts_state state;
4524 unsigned int ret;
4525
4526 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4527
4528 config->get_next_block = skb_ts_get_next_block;
4529 config->finish = skb_ts_finish;
4530
4531 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4532
4533 ret = textsearch_find(config, &state);
4534 return (ret + patlen <= to - from ? ret : UINT_MAX);
4535 }
4536 EXPORT_SYMBOL(skb_find_text);
4537
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size,size_t max_frags)4538 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4539 int offset, size_t size, size_t max_frags)
4540 {
4541 int i = skb_shinfo(skb)->nr_frags;
4542
4543 if (skb_can_coalesce(skb, i, page, offset)) {
4544 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4545 } else if (i < max_frags) {
4546 skb_zcopy_downgrade_managed(skb);
4547 get_page(page);
4548 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4549 } else {
4550 return -EMSGSIZE;
4551 }
4552
4553 return 0;
4554 }
4555 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4556
4557 /**
4558 * skb_pull_rcsum - pull skb and update receive checksum
4559 * @skb: buffer to update
4560 * @len: length of data pulled
4561 *
4562 * This function performs an skb_pull on the packet and updates
4563 * the CHECKSUM_COMPLETE checksum. It should be used on
4564 * receive path processing instead of skb_pull unless you know
4565 * that the checksum difference is zero (e.g., a valid IP header)
4566 * or you are setting ip_summed to CHECKSUM_NONE.
4567 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)4568 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4569 {
4570 unsigned char *data = skb->data;
4571
4572 BUG_ON(len > skb->len);
4573 __skb_pull(skb, len);
4574 skb_postpull_rcsum(skb, data, len);
4575 return skb->data;
4576 }
4577 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4578
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)4579 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4580 {
4581 skb_frag_t head_frag;
4582 struct page *page;
4583
4584 page = virt_to_head_page(frag_skb->head);
4585 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4586 (unsigned char *)page_address(page),
4587 skb_headlen(frag_skb));
4588 return head_frag;
4589 }
4590
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)4591 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4592 netdev_features_t features,
4593 unsigned int offset)
4594 {
4595 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4596 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4597 unsigned int delta_truesize = 0;
4598 unsigned int delta_len = 0;
4599 struct sk_buff *tail = NULL;
4600 struct sk_buff *nskb, *tmp;
4601 int len_diff, err;
4602
4603 skb_push(skb, -skb_network_offset(skb) + offset);
4604
4605 /* Ensure the head is writeable before touching the shared info */
4606 err = skb_unclone(skb, GFP_ATOMIC);
4607 if (err)
4608 goto err_linearize;
4609
4610 skb_shinfo(skb)->frag_list = NULL;
4611
4612 while (list_skb) {
4613 nskb = list_skb;
4614 list_skb = list_skb->next;
4615
4616 err = 0;
4617 delta_truesize += nskb->truesize;
4618 if (skb_shared(nskb)) {
4619 tmp = skb_clone(nskb, GFP_ATOMIC);
4620 if (tmp) {
4621 consume_skb(nskb);
4622 nskb = tmp;
4623 err = skb_unclone(nskb, GFP_ATOMIC);
4624 } else {
4625 err = -ENOMEM;
4626 }
4627 }
4628
4629 if (!tail)
4630 skb->next = nskb;
4631 else
4632 tail->next = nskb;
4633
4634 if (unlikely(err)) {
4635 nskb->next = list_skb;
4636 goto err_linearize;
4637 }
4638
4639 tail = nskb;
4640
4641 delta_len += nskb->len;
4642
4643 skb_push(nskb, -skb_network_offset(nskb) + offset);
4644
4645 skb_release_head_state(nskb);
4646 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4647 __copy_skb_header(nskb, skb);
4648
4649 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4650 nskb->transport_header += len_diff;
4651 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4652 nskb->data - tnl_hlen,
4653 offset + tnl_hlen);
4654
4655 if (skb_needs_linearize(nskb, features) &&
4656 __skb_linearize(nskb))
4657 goto err_linearize;
4658 }
4659
4660 skb->truesize = skb->truesize - delta_truesize;
4661 skb->data_len = skb->data_len - delta_len;
4662 skb->len = skb->len - delta_len;
4663
4664 skb_gso_reset(skb);
4665
4666 skb->prev = tail;
4667
4668 if (skb_needs_linearize(skb, features) &&
4669 __skb_linearize(skb))
4670 goto err_linearize;
4671
4672 skb_get(skb);
4673
4674 return skb;
4675
4676 err_linearize:
4677 kfree_skb_list(skb->next);
4678 skb->next = NULL;
4679 return ERR_PTR(-ENOMEM);
4680 }
4681 EXPORT_SYMBOL_GPL(skb_segment_list);
4682
4683 /**
4684 * skb_segment - Perform protocol segmentation on skb.
4685 * @head_skb: buffer to segment
4686 * @features: features for the output path (see dev->features)
4687 *
4688 * This function performs segmentation on the given skb. It returns
4689 * a pointer to the first in a list of new skbs for the segments.
4690 * In case of error it returns ERR_PTR(err).
4691 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)4692 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4693 netdev_features_t features)
4694 {
4695 struct sk_buff *segs = NULL;
4696 struct sk_buff *tail = NULL;
4697 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4698 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4699 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4700 unsigned int offset = doffset;
4701 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4702 unsigned int partial_segs = 0;
4703 unsigned int headroom;
4704 unsigned int len = head_skb->len;
4705 struct sk_buff *frag_skb;
4706 skb_frag_t *frag;
4707 __be16 proto;
4708 bool csum, sg;
4709 int err = -ENOMEM;
4710 int i = 0;
4711 int nfrags, pos;
4712
4713 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4714 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4715 struct sk_buff *check_skb;
4716
4717 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4718 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4719 /* gso_size is untrusted, and we have a frag_list with
4720 * a linear non head_frag item.
4721 *
4722 * If head_skb's headlen does not fit requested gso_size,
4723 * it means that the frag_list members do NOT terminate
4724 * on exact gso_size boundaries. Hence we cannot perform
4725 * skb_frag_t page sharing. Therefore we must fallback to
4726 * copying the frag_list skbs; we do so by disabling SG.
4727 */
4728 features &= ~NETIF_F_SG;
4729 break;
4730 }
4731 }
4732 }
4733
4734 __skb_push(head_skb, doffset);
4735 proto = skb_network_protocol(head_skb, NULL);
4736 if (unlikely(!proto))
4737 return ERR_PTR(-EINVAL);
4738
4739 sg = !!(features & NETIF_F_SG);
4740 csum = !!can_checksum_protocol(features, proto);
4741
4742 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4743 if (!(features & NETIF_F_GSO_PARTIAL)) {
4744 struct sk_buff *iter;
4745 unsigned int frag_len;
4746
4747 if (!list_skb ||
4748 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4749 goto normal;
4750
4751 /* If we get here then all the required
4752 * GSO features except frag_list are supported.
4753 * Try to split the SKB to multiple GSO SKBs
4754 * with no frag_list.
4755 * Currently we can do that only when the buffers don't
4756 * have a linear part and all the buffers except
4757 * the last are of the same length.
4758 */
4759 frag_len = list_skb->len;
4760 skb_walk_frags(head_skb, iter) {
4761 if (frag_len != iter->len && iter->next)
4762 goto normal;
4763 if (skb_headlen(iter) && !iter->head_frag)
4764 goto normal;
4765
4766 len -= iter->len;
4767 }
4768
4769 if (len != frag_len)
4770 goto normal;
4771 }
4772
4773 /* GSO partial only requires that we trim off any excess that
4774 * doesn't fit into an MSS sized block, so take care of that
4775 * now.
4776 * Cap len to not accidentally hit GSO_BY_FRAGS.
4777 */
4778 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4779 if (partial_segs > 1)
4780 mss *= partial_segs;
4781 else
4782 partial_segs = 0;
4783 }
4784
4785 normal:
4786 headroom = skb_headroom(head_skb);
4787 pos = skb_headlen(head_skb);
4788
4789 if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4790 return ERR_PTR(-ENOMEM);
4791
4792 nfrags = skb_shinfo(head_skb)->nr_frags;
4793 frag = skb_shinfo(head_skb)->frags;
4794 frag_skb = head_skb;
4795
4796 do {
4797 struct sk_buff *nskb;
4798 skb_frag_t *nskb_frag;
4799 int hsize;
4800 int size;
4801
4802 if (unlikely(mss == GSO_BY_FRAGS)) {
4803 len = list_skb->len;
4804 } else {
4805 len = head_skb->len - offset;
4806 if (len > mss)
4807 len = mss;
4808 }
4809
4810 hsize = skb_headlen(head_skb) - offset;
4811
4812 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4813 (skb_headlen(list_skb) == len || sg)) {
4814 BUG_ON(skb_headlen(list_skb) > len);
4815
4816 nskb = skb_clone(list_skb, GFP_ATOMIC);
4817 if (unlikely(!nskb))
4818 goto err;
4819
4820 i = 0;
4821 nfrags = skb_shinfo(list_skb)->nr_frags;
4822 frag = skb_shinfo(list_skb)->frags;
4823 frag_skb = list_skb;
4824 pos += skb_headlen(list_skb);
4825
4826 while (pos < offset + len) {
4827 BUG_ON(i >= nfrags);
4828
4829 size = skb_frag_size(frag);
4830 if (pos + size > offset + len)
4831 break;
4832
4833 i++;
4834 pos += size;
4835 frag++;
4836 }
4837
4838 list_skb = list_skb->next;
4839
4840 if (unlikely(pskb_trim(nskb, len))) {
4841 kfree_skb(nskb);
4842 goto err;
4843 }
4844
4845 hsize = skb_end_offset(nskb);
4846 if (skb_cow_head(nskb, doffset + headroom)) {
4847 kfree_skb(nskb);
4848 goto err;
4849 }
4850
4851 nskb->truesize += skb_end_offset(nskb) - hsize;
4852 skb_release_head_state(nskb);
4853 __skb_push(nskb, doffset);
4854 } else {
4855 if (hsize < 0)
4856 hsize = 0;
4857 if (hsize > len || !sg)
4858 hsize = len;
4859
4860 nskb = __alloc_skb(hsize + doffset + headroom,
4861 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4862 NUMA_NO_NODE);
4863
4864 if (unlikely(!nskb))
4865 goto err;
4866
4867 skb_reserve(nskb, headroom);
4868 __skb_put(nskb, doffset);
4869 }
4870
4871 if (segs)
4872 tail->next = nskb;
4873 else
4874 segs = nskb;
4875 tail = nskb;
4876
4877 __copy_skb_header(nskb, head_skb);
4878
4879 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4880 skb_reset_mac_len(nskb);
4881
4882 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4883 nskb->data - tnl_hlen,
4884 doffset + tnl_hlen);
4885
4886 if (nskb->len == len + doffset)
4887 goto perform_csum_check;
4888
4889 if (!sg) {
4890 if (!csum) {
4891 if (!nskb->remcsum_offload)
4892 nskb->ip_summed = CHECKSUM_NONE;
4893 SKB_GSO_CB(nskb)->csum =
4894 skb_copy_and_csum_bits(head_skb, offset,
4895 skb_put(nskb,
4896 len),
4897 len);
4898 SKB_GSO_CB(nskb)->csum_start =
4899 skb_headroom(nskb) + doffset;
4900 } else {
4901 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4902 goto err;
4903 }
4904 continue;
4905 }
4906
4907 nskb_frag = skb_shinfo(nskb)->frags;
4908
4909 skb_copy_from_linear_data_offset(head_skb, offset,
4910 skb_put(nskb, hsize), hsize);
4911
4912 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4913 SKBFL_SHARED_FRAG;
4914
4915 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4916 goto err;
4917
4918 while (pos < offset + len) {
4919 if (i >= nfrags) {
4920 if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4921 skb_zerocopy_clone(nskb, list_skb,
4922 GFP_ATOMIC))
4923 goto err;
4924
4925 i = 0;
4926 nfrags = skb_shinfo(list_skb)->nr_frags;
4927 frag = skb_shinfo(list_skb)->frags;
4928 frag_skb = list_skb;
4929 if (!skb_headlen(list_skb)) {
4930 BUG_ON(!nfrags);
4931 } else {
4932 BUG_ON(!list_skb->head_frag);
4933
4934 /* to make room for head_frag. */
4935 i--;
4936 frag--;
4937 }
4938
4939 list_skb = list_skb->next;
4940 }
4941
4942 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4943 MAX_SKB_FRAGS)) {
4944 net_warn_ratelimited(
4945 "skb_segment: too many frags: %u %u\n",
4946 pos, mss);
4947 err = -EINVAL;
4948 goto err;
4949 }
4950
4951 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4952 __skb_frag_ref(nskb_frag);
4953 size = skb_frag_size(nskb_frag);
4954
4955 if (pos < offset) {
4956 skb_frag_off_add(nskb_frag, offset - pos);
4957 skb_frag_size_sub(nskb_frag, offset - pos);
4958 }
4959
4960 skb_shinfo(nskb)->nr_frags++;
4961
4962 if (pos + size <= offset + len) {
4963 i++;
4964 frag++;
4965 pos += size;
4966 } else {
4967 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4968 goto skip_fraglist;
4969 }
4970
4971 nskb_frag++;
4972 }
4973
4974 skip_fraglist:
4975 nskb->data_len = len - hsize;
4976 nskb->len += nskb->data_len;
4977 nskb->truesize += nskb->data_len;
4978
4979 perform_csum_check:
4980 if (!csum) {
4981 if (skb_has_shared_frag(nskb) &&
4982 __skb_linearize(nskb))
4983 goto err;
4984
4985 if (!nskb->remcsum_offload)
4986 nskb->ip_summed = CHECKSUM_NONE;
4987 SKB_GSO_CB(nskb)->csum =
4988 skb_checksum(nskb, doffset,
4989 nskb->len - doffset, 0);
4990 SKB_GSO_CB(nskb)->csum_start =
4991 skb_headroom(nskb) + doffset;
4992 }
4993 } while ((offset += len) < head_skb->len);
4994
4995 /* Some callers want to get the end of the list.
4996 * Put it in segs->prev to avoid walking the list.
4997 * (see validate_xmit_skb_list() for example)
4998 */
4999 segs->prev = tail;
5000
5001 if (partial_segs) {
5002 struct sk_buff *iter;
5003 int type = skb_shinfo(head_skb)->gso_type;
5004 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
5005
5006 /* Update type to add partial and then remove dodgy if set */
5007 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
5008 type &= ~SKB_GSO_DODGY;
5009
5010 /* Update GSO info and prepare to start updating headers on
5011 * our way back down the stack of protocols.
5012 */
5013 for (iter = segs; iter; iter = iter->next) {
5014 skb_shinfo(iter)->gso_size = gso_size;
5015 skb_shinfo(iter)->gso_segs = partial_segs;
5016 skb_shinfo(iter)->gso_type = type;
5017 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
5018 }
5019
5020 if (tail->len - doffset <= gso_size)
5021 skb_shinfo(tail)->gso_size = 0;
5022 else if (tail != segs)
5023 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
5024 }
5025
5026 /* Following permits correct backpressure, for protocols
5027 * using skb_set_owner_w().
5028 * Idea is to tranfert ownership from head_skb to last segment.
5029 */
5030 if (head_skb->destructor == sock_wfree) {
5031 swap(tail->truesize, head_skb->truesize);
5032 swap(tail->destructor, head_skb->destructor);
5033 swap(tail->sk, head_skb->sk);
5034 }
5035 return segs;
5036
5037 err:
5038 kfree_skb_list(segs);
5039 return ERR_PTR(err);
5040 }
5041 EXPORT_SYMBOL_GPL(skb_segment);
5042
5043 #ifdef CONFIG_SKB_EXTENSIONS
5044 #define SKB_EXT_ALIGN_VALUE 8
5045 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
5046
5047 static const u8 skb_ext_type_len[] = {
5048 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
5049 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
5050 #endif
5051 #ifdef CONFIG_XFRM
5052 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
5053 #endif
5054 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5055 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
5056 #endif
5057 #if IS_ENABLED(CONFIG_MPTCP)
5058 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
5059 #endif
5060 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
5061 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
5062 #endif
5063 };
5064
skb_ext_total_length(void)5065 static __always_inline unsigned int skb_ext_total_length(void)
5066 {
5067 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
5068 int i;
5069
5070 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
5071 l += skb_ext_type_len[i];
5072
5073 return l;
5074 }
5075
skb_extensions_init(void)5076 static void skb_extensions_init(void)
5077 {
5078 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
5079 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
5080 BUILD_BUG_ON(skb_ext_total_length() > 255);
5081 #endif
5082
5083 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5084 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5085 0,
5086 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5087 NULL);
5088 }
5089 #else
skb_extensions_init(void)5090 static void skb_extensions_init(void) {}
5091 #endif
5092
5093 /* The SKB kmem_cache slab is critical for network performance. Never
5094 * merge/alias the slab with similar sized objects. This avoids fragmentation
5095 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5096 */
5097 #ifndef CONFIG_SLUB_TINY
5098 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE
5099 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5100 #define FLAG_SKB_NO_MERGE 0
5101 #endif
5102
skb_init(void)5103 void __init skb_init(void)
5104 {
5105 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5106 sizeof(struct sk_buff),
5107 0,
5108 SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5109 FLAG_SKB_NO_MERGE,
5110 offsetof(struct sk_buff, cb),
5111 sizeof_field(struct sk_buff, cb),
5112 NULL);
5113 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5114 sizeof(struct sk_buff_fclones),
5115 0,
5116 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5117 NULL);
5118 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5119 * struct skb_shared_info is located at the end of skb->head,
5120 * and should not be copied to/from user.
5121 */
5122 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5123 SKB_SMALL_HEAD_CACHE_SIZE,
5124 0,
5125 SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5126 0,
5127 SKB_SMALL_HEAD_HEADROOM,
5128 NULL);
5129 skb_extensions_init();
5130 }
5131
5132 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)5133 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5134 unsigned int recursion_level)
5135 {
5136 int start = skb_headlen(skb);
5137 int i, copy = start - offset;
5138 struct sk_buff *frag_iter;
5139 int elt = 0;
5140
5141 if (unlikely(recursion_level >= 24))
5142 return -EMSGSIZE;
5143
5144 if (copy > 0) {
5145 if (copy > len)
5146 copy = len;
5147 sg_set_buf(sg, skb->data + offset, copy);
5148 elt++;
5149 if ((len -= copy) == 0)
5150 return elt;
5151 offset += copy;
5152 }
5153
5154 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5155 int end;
5156
5157 WARN_ON(start > offset + len);
5158
5159 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5160 if ((copy = end - offset) > 0) {
5161 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5162 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5163 return -EMSGSIZE;
5164
5165 if (copy > len)
5166 copy = len;
5167 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5168 skb_frag_off(frag) + offset - start);
5169 elt++;
5170 if (!(len -= copy))
5171 return elt;
5172 offset += copy;
5173 }
5174 start = end;
5175 }
5176
5177 skb_walk_frags(skb, frag_iter) {
5178 int end, ret;
5179
5180 WARN_ON(start > offset + len);
5181
5182 end = start + frag_iter->len;
5183 if ((copy = end - offset) > 0) {
5184 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5185 return -EMSGSIZE;
5186
5187 if (copy > len)
5188 copy = len;
5189 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5190 copy, recursion_level + 1);
5191 if (unlikely(ret < 0))
5192 return ret;
5193 elt += ret;
5194 if ((len -= copy) == 0)
5195 return elt;
5196 offset += copy;
5197 }
5198 start = end;
5199 }
5200 BUG_ON(len);
5201 return elt;
5202 }
5203
5204 /**
5205 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5206 * @skb: Socket buffer containing the buffers to be mapped
5207 * @sg: The scatter-gather list to map into
5208 * @offset: The offset into the buffer's contents to start mapping
5209 * @len: Length of buffer space to be mapped
5210 *
5211 * Fill the specified scatter-gather list with mappings/pointers into a
5212 * region of the buffer space attached to a socket buffer. Returns either
5213 * the number of scatterlist items used, or -EMSGSIZE if the contents
5214 * could not fit.
5215 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5216 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5217 {
5218 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5219
5220 if (nsg <= 0)
5221 return nsg;
5222
5223 sg_mark_end(&sg[nsg - 1]);
5224
5225 return nsg;
5226 }
5227 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5228
5229 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5230 * sglist without mark the sg which contain last skb data as the end.
5231 * So the caller can mannipulate sg list as will when padding new data after
5232 * the first call without calling sg_unmark_end to expend sg list.
5233 *
5234 * Scenario to use skb_to_sgvec_nomark:
5235 * 1. sg_init_table
5236 * 2. skb_to_sgvec_nomark(payload1)
5237 * 3. skb_to_sgvec_nomark(payload2)
5238 *
5239 * This is equivalent to:
5240 * 1. sg_init_table
5241 * 2. skb_to_sgvec(payload1)
5242 * 3. sg_unmark_end
5243 * 4. skb_to_sgvec(payload2)
5244 *
5245 * When mapping multiple payload conditionally, skb_to_sgvec_nomark
5246 * is more preferable.
5247 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5248 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5249 int offset, int len)
5250 {
5251 return __skb_to_sgvec(skb, sg, offset, len, 0);
5252 }
5253 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5254
5255
5256
5257 /**
5258 * skb_cow_data - Check that a socket buffer's data buffers are writable
5259 * @skb: The socket buffer to check.
5260 * @tailbits: Amount of trailing space to be added
5261 * @trailer: Returned pointer to the skb where the @tailbits space begins
5262 *
5263 * Make sure that the data buffers attached to a socket buffer are
5264 * writable. If they are not, private copies are made of the data buffers
5265 * and the socket buffer is set to use these instead.
5266 *
5267 * If @tailbits is given, make sure that there is space to write @tailbits
5268 * bytes of data beyond current end of socket buffer. @trailer will be
5269 * set to point to the skb in which this space begins.
5270 *
5271 * The number of scatterlist elements required to completely map the
5272 * COW'd and extended socket buffer will be returned.
5273 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)5274 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5275 {
5276 int copyflag;
5277 int elt;
5278 struct sk_buff *skb1, **skb_p;
5279
5280 /* If skb is cloned or its head is paged, reallocate
5281 * head pulling out all the pages (pages are considered not writable
5282 * at the moment even if they are anonymous).
5283 */
5284 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5285 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5286 return -ENOMEM;
5287
5288 /* Easy case. Most of packets will go this way. */
5289 if (!skb_has_frag_list(skb)) {
5290 /* A little of trouble, not enough of space for trailer.
5291 * This should not happen, when stack is tuned to generate
5292 * good frames. OK, on miss we reallocate and reserve even more
5293 * space, 128 bytes is fair. */
5294
5295 if (skb_tailroom(skb) < tailbits &&
5296 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5297 return -ENOMEM;
5298
5299 /* Voila! */
5300 *trailer = skb;
5301 return 1;
5302 }
5303
5304 /* Misery. We are in troubles, going to mincer fragments... */
5305
5306 elt = 1;
5307 skb_p = &skb_shinfo(skb)->frag_list;
5308 copyflag = 0;
5309
5310 while ((skb1 = *skb_p) != NULL) {
5311 int ntail = 0;
5312
5313 /* The fragment is partially pulled by someone,
5314 * this can happen on input. Copy it and everything
5315 * after it. */
5316
5317 if (skb_shared(skb1))
5318 copyflag = 1;
5319
5320 /* If the skb is the last, worry about trailer. */
5321
5322 if (skb1->next == NULL && tailbits) {
5323 if (skb_shinfo(skb1)->nr_frags ||
5324 skb_has_frag_list(skb1) ||
5325 skb_tailroom(skb1) < tailbits)
5326 ntail = tailbits + 128;
5327 }
5328
5329 if (copyflag ||
5330 skb_cloned(skb1) ||
5331 ntail ||
5332 skb_shinfo(skb1)->nr_frags ||
5333 skb_has_frag_list(skb1)) {
5334 struct sk_buff *skb2;
5335
5336 /* Fuck, we are miserable poor guys... */
5337 if (ntail == 0)
5338 skb2 = skb_copy(skb1, GFP_ATOMIC);
5339 else
5340 skb2 = skb_copy_expand(skb1,
5341 skb_headroom(skb1),
5342 ntail,
5343 GFP_ATOMIC);
5344 if (unlikely(skb2 == NULL))
5345 return -ENOMEM;
5346
5347 if (skb1->sk)
5348 skb_set_owner_w(skb2, skb1->sk);
5349
5350 /* Looking around. Are we still alive?
5351 * OK, link new skb, drop old one */
5352
5353 skb2->next = skb1->next;
5354 *skb_p = skb2;
5355 kfree_skb(skb1);
5356 skb1 = skb2;
5357 }
5358 elt++;
5359 *trailer = skb1;
5360 skb_p = &skb1->next;
5361 }
5362
5363 return elt;
5364 }
5365 EXPORT_SYMBOL_GPL(skb_cow_data);
5366
sock_rmem_free(struct sk_buff * skb)5367 static void sock_rmem_free(struct sk_buff *skb)
5368 {
5369 struct sock *sk = skb->sk;
5370
5371 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5372 }
5373
skb_set_err_queue(struct sk_buff * skb)5374 static void skb_set_err_queue(struct sk_buff *skb)
5375 {
5376 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5377 * So, it is safe to (mis)use it to mark skbs on the error queue.
5378 */
5379 skb->pkt_type = PACKET_OUTGOING;
5380 BUILD_BUG_ON(PACKET_OUTGOING == 0);
5381 }
5382
5383 /*
5384 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5385 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)5386 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5387 {
5388 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5389 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5390 return -ENOMEM;
5391
5392 skb_orphan(skb);
5393 skb->sk = sk;
5394 skb->destructor = sock_rmem_free;
5395 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5396 skb_set_err_queue(skb);
5397
5398 /* before exiting rcu section, make sure dst is refcounted */
5399 skb_dst_force(skb);
5400
5401 skb_queue_tail(&sk->sk_error_queue, skb);
5402 if (!sock_flag(sk, SOCK_DEAD))
5403 sk_error_report(sk);
5404 return 0;
5405 }
5406 EXPORT_SYMBOL(sock_queue_err_skb);
5407
is_icmp_err_skb(const struct sk_buff * skb)5408 static bool is_icmp_err_skb(const struct sk_buff *skb)
5409 {
5410 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5411 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5412 }
5413
sock_dequeue_err_skb(struct sock * sk)5414 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5415 {
5416 struct sk_buff_head *q = &sk->sk_error_queue;
5417 struct sk_buff *skb, *skb_next = NULL;
5418 bool icmp_next = false;
5419 unsigned long flags;
5420
5421 if (skb_queue_empty_lockless(q))
5422 return NULL;
5423
5424 spin_lock_irqsave(&q->lock, flags);
5425 skb = __skb_dequeue(q);
5426 if (skb && (skb_next = skb_peek(q))) {
5427 icmp_next = is_icmp_err_skb(skb_next);
5428 if (icmp_next)
5429 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5430 }
5431 spin_unlock_irqrestore(&q->lock, flags);
5432
5433 if (is_icmp_err_skb(skb) && !icmp_next)
5434 sk->sk_err = 0;
5435
5436 if (skb_next)
5437 sk_error_report(sk);
5438
5439 return skb;
5440 }
5441 EXPORT_SYMBOL(sock_dequeue_err_skb);
5442
5443 /**
5444 * skb_clone_sk - create clone of skb, and take reference to socket
5445 * @skb: the skb to clone
5446 *
5447 * This function creates a clone of a buffer that holds a reference on
5448 * sk_refcnt. Buffers created via this function are meant to be
5449 * returned using sock_queue_err_skb, or free via kfree_skb.
5450 *
5451 * When passing buffers allocated with this function to sock_queue_err_skb
5452 * it is necessary to wrap the call with sock_hold/sock_put in order to
5453 * prevent the socket from being released prior to being enqueued on
5454 * the sk_error_queue.
5455 */
skb_clone_sk(struct sk_buff * skb)5456 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5457 {
5458 struct sock *sk = skb->sk;
5459 struct sk_buff *clone;
5460
5461 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5462 return NULL;
5463
5464 clone = skb_clone(skb, GFP_ATOMIC);
5465 if (!clone) {
5466 sock_put(sk);
5467 return NULL;
5468 }
5469
5470 clone->sk = sk;
5471 clone->destructor = sock_efree;
5472
5473 return clone;
5474 }
5475 EXPORT_SYMBOL(skb_clone_sk);
5476
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)5477 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5478 struct sock *sk,
5479 int tstype,
5480 bool opt_stats)
5481 {
5482 struct sock_exterr_skb *serr;
5483 int err;
5484
5485 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5486
5487 serr = SKB_EXT_ERR(skb);
5488 memset(serr, 0, sizeof(*serr));
5489 serr->ee.ee_errno = ENOMSG;
5490 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5491 serr->ee.ee_info = tstype;
5492 serr->opt_stats = opt_stats;
5493 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5494 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5495 serr->ee.ee_data = skb_shinfo(skb)->tskey;
5496 if (sk_is_tcp(sk))
5497 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5498 }
5499
5500 err = sock_queue_err_skb(sk, skb);
5501
5502 if (err)
5503 kfree_skb(skb);
5504 }
5505
skb_may_tx_timestamp(struct sock * sk,bool tsonly)5506 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5507 {
5508 bool ret;
5509
5510 if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data)))
5511 return true;
5512
5513 read_lock_bh(&sk->sk_callback_lock);
5514 ret = sk->sk_socket && sk->sk_socket->file &&
5515 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5516 read_unlock_bh(&sk->sk_callback_lock);
5517 return ret;
5518 }
5519
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)5520 void skb_complete_tx_timestamp(struct sk_buff *skb,
5521 struct skb_shared_hwtstamps *hwtstamps)
5522 {
5523 struct sock *sk = skb->sk;
5524
5525 if (!skb_may_tx_timestamp(sk, false))
5526 goto err;
5527
5528 /* Take a reference to prevent skb_orphan() from freeing the socket,
5529 * but only if the socket refcount is not zero.
5530 */
5531 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5532 *skb_hwtstamps(skb) = *hwtstamps;
5533 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5534 sock_put(sk);
5535 return;
5536 }
5537
5538 err:
5539 kfree_skb(skb);
5540 }
5541 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5542
skb_tstamp_tx_report_so_timestamping(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps,int tstype)5543 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb,
5544 struct skb_shared_hwtstamps *hwtstamps,
5545 int tstype)
5546 {
5547 switch (tstype) {
5548 case SCM_TSTAMP_SCHED:
5549 return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP;
5550 case SCM_TSTAMP_SND:
5551 return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF :
5552 SKBTX_SW_TSTAMP);
5553 case SCM_TSTAMP_ACK:
5554 return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK;
5555 case SCM_TSTAMP_COMPLETION:
5556 return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP;
5557 }
5558
5559 return false;
5560 }
5561
skb_tstamp_tx_report_bpf_timestamping(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5562 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb,
5563 struct skb_shared_hwtstamps *hwtstamps,
5564 struct sock *sk,
5565 int tstype)
5566 {
5567 int op;
5568
5569 switch (tstype) {
5570 case SCM_TSTAMP_SCHED:
5571 op = BPF_SOCK_OPS_TSTAMP_SCHED_CB;
5572 break;
5573 case SCM_TSTAMP_SND:
5574 if (hwtstamps) {
5575 op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB;
5576 *skb_hwtstamps(skb) = *hwtstamps;
5577 } else {
5578 op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB;
5579 }
5580 break;
5581 case SCM_TSTAMP_ACK:
5582 op = BPF_SOCK_OPS_TSTAMP_ACK_CB;
5583 break;
5584 default:
5585 return;
5586 }
5587
5588 bpf_skops_tx_timestamping(sk, skb, op);
5589 }
5590
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5591 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5592 const struct sk_buff *ack_skb,
5593 struct skb_shared_hwtstamps *hwtstamps,
5594 struct sock *sk, int tstype)
5595 {
5596 struct sk_buff *skb;
5597 bool tsonly, opt_stats = false;
5598 u32 tsflags;
5599
5600 if (!sk)
5601 return;
5602
5603 if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF)
5604 skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps,
5605 sk, tstype);
5606
5607 if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype))
5608 return;
5609
5610 tsflags = READ_ONCE(sk->sk_tsflags);
5611 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5612 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5613 return;
5614
5615 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5616 if (!skb_may_tx_timestamp(sk, tsonly))
5617 return;
5618
5619 if (tsonly) {
5620 #ifdef CONFIG_INET
5621 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5622 sk_is_tcp(sk)) {
5623 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5624 ack_skb);
5625 opt_stats = true;
5626 } else
5627 #endif
5628 skb = alloc_skb(0, GFP_ATOMIC);
5629 } else {
5630 skb = skb_clone(orig_skb, GFP_ATOMIC);
5631
5632 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5633 kfree_skb(skb);
5634 return;
5635 }
5636 }
5637 if (!skb)
5638 return;
5639
5640 if (tsonly) {
5641 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5642 SKBTX_ANY_TSTAMP;
5643 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5644 }
5645
5646 if (hwtstamps)
5647 *skb_hwtstamps(skb) = *hwtstamps;
5648 else
5649 __net_timestamp(skb);
5650
5651 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5652 }
5653 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5654
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)5655 void skb_tstamp_tx(struct sk_buff *orig_skb,
5656 struct skb_shared_hwtstamps *hwtstamps)
5657 {
5658 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5659 SCM_TSTAMP_SND);
5660 }
5661 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5662
5663 #ifdef CONFIG_WIRELESS
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)5664 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5665 {
5666 struct sock *sk = skb->sk;
5667 struct sock_exterr_skb *serr;
5668 int err = 1;
5669
5670 skb->wifi_acked_valid = 1;
5671 skb->wifi_acked = acked;
5672
5673 serr = SKB_EXT_ERR(skb);
5674 memset(serr, 0, sizeof(*serr));
5675 serr->ee.ee_errno = ENOMSG;
5676 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5677
5678 /* Take a reference to prevent skb_orphan() from freeing the socket,
5679 * but only if the socket refcount is not zero.
5680 */
5681 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5682 err = sock_queue_err_skb(sk, skb);
5683 sock_put(sk);
5684 }
5685 if (err)
5686 kfree_skb(skb);
5687 }
5688 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5689 #endif /* CONFIG_WIRELESS */
5690
5691 /**
5692 * skb_partial_csum_set - set up and verify partial csum values for packet
5693 * @skb: the skb to set
5694 * @start: the number of bytes after skb->data to start checksumming.
5695 * @off: the offset from start to place the checksum.
5696 *
5697 * For untrusted partially-checksummed packets, we need to make sure the values
5698 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5699 *
5700 * This function checks and sets those values and skb->ip_summed: if this
5701 * returns false you should drop the packet.
5702 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)5703 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5704 {
5705 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5706 u32 csum_start = skb_headroom(skb) + (u32)start;
5707
5708 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5709 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5710 start, off, skb_headroom(skb), skb_headlen(skb));
5711 return false;
5712 }
5713 skb->ip_summed = CHECKSUM_PARTIAL;
5714 skb->csum_start = csum_start;
5715 skb->csum_offset = off;
5716 skb->transport_header = csum_start;
5717 return true;
5718 }
5719 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5720
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5721 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5722 unsigned int max)
5723 {
5724 if (skb_headlen(skb) >= len)
5725 return 0;
5726
5727 /* If we need to pullup then pullup to the max, so we
5728 * won't need to do it again.
5729 */
5730 if (max > skb->len)
5731 max = skb->len;
5732
5733 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5734 return -ENOMEM;
5735
5736 if (skb_headlen(skb) < len)
5737 return -EPROTO;
5738
5739 return 0;
5740 }
5741
5742 #define MAX_TCP_HDR_LEN (15 * 4)
5743
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)5744 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5745 typeof(IPPROTO_IP) proto,
5746 unsigned int off)
5747 {
5748 int err;
5749
5750 switch (proto) {
5751 case IPPROTO_TCP:
5752 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5753 off + MAX_TCP_HDR_LEN);
5754 if (!err && !skb_partial_csum_set(skb, off,
5755 offsetof(struct tcphdr,
5756 check)))
5757 err = -EPROTO;
5758 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5759
5760 case IPPROTO_UDP:
5761 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5762 off + sizeof(struct udphdr));
5763 if (!err && !skb_partial_csum_set(skb, off,
5764 offsetof(struct udphdr,
5765 check)))
5766 err = -EPROTO;
5767 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5768 }
5769
5770 return ERR_PTR(-EPROTO);
5771 }
5772
5773 /* This value should be large enough to cover a tagged ethernet header plus
5774 * maximally sized IP and TCP or UDP headers.
5775 */
5776 #define MAX_IP_HDR_LEN 128
5777
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5778 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5779 {
5780 unsigned int off;
5781 bool fragment;
5782 __sum16 *csum;
5783 int err;
5784
5785 fragment = false;
5786
5787 err = skb_maybe_pull_tail(skb,
5788 sizeof(struct iphdr),
5789 MAX_IP_HDR_LEN);
5790 if (err < 0)
5791 goto out;
5792
5793 if (ip_is_fragment(ip_hdr(skb)))
5794 fragment = true;
5795
5796 off = ip_hdrlen(skb);
5797
5798 err = -EPROTO;
5799
5800 if (fragment)
5801 goto out;
5802
5803 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5804 if (IS_ERR(csum))
5805 return PTR_ERR(csum);
5806
5807 if (recalculate)
5808 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5809 ip_hdr(skb)->daddr,
5810 skb->len - off,
5811 ip_hdr(skb)->protocol, 0);
5812 err = 0;
5813
5814 out:
5815 return err;
5816 }
5817
5818 /* This value should be large enough to cover a tagged ethernet header plus
5819 * an IPv6 header, all options, and a maximal TCP or UDP header.
5820 */
5821 #define MAX_IPV6_HDR_LEN 256
5822
5823 #define OPT_HDR(type, skb, off) \
5824 (type *)(skb_network_header(skb) + (off))
5825
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5826 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5827 {
5828 int err;
5829 u8 nexthdr;
5830 unsigned int off;
5831 unsigned int len;
5832 bool fragment;
5833 bool done;
5834 __sum16 *csum;
5835
5836 fragment = false;
5837 done = false;
5838
5839 off = sizeof(struct ipv6hdr);
5840
5841 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5842 if (err < 0)
5843 goto out;
5844
5845 nexthdr = ipv6_hdr(skb)->nexthdr;
5846
5847 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5848 while (off <= len && !done) {
5849 switch (nexthdr) {
5850 case IPPROTO_DSTOPTS:
5851 case IPPROTO_HOPOPTS:
5852 case IPPROTO_ROUTING: {
5853 struct ipv6_opt_hdr *hp;
5854
5855 err = skb_maybe_pull_tail(skb,
5856 off +
5857 sizeof(struct ipv6_opt_hdr),
5858 MAX_IPV6_HDR_LEN);
5859 if (err < 0)
5860 goto out;
5861
5862 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5863 nexthdr = hp->nexthdr;
5864 off += ipv6_optlen(hp);
5865 break;
5866 }
5867 case IPPROTO_AH: {
5868 struct ip_auth_hdr *hp;
5869
5870 err = skb_maybe_pull_tail(skb,
5871 off +
5872 sizeof(struct ip_auth_hdr),
5873 MAX_IPV6_HDR_LEN);
5874 if (err < 0)
5875 goto out;
5876
5877 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5878 nexthdr = hp->nexthdr;
5879 off += ipv6_authlen(hp);
5880 break;
5881 }
5882 case IPPROTO_FRAGMENT: {
5883 struct frag_hdr *hp;
5884
5885 err = skb_maybe_pull_tail(skb,
5886 off +
5887 sizeof(struct frag_hdr),
5888 MAX_IPV6_HDR_LEN);
5889 if (err < 0)
5890 goto out;
5891
5892 hp = OPT_HDR(struct frag_hdr, skb, off);
5893
5894 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5895 fragment = true;
5896
5897 nexthdr = hp->nexthdr;
5898 off += sizeof(struct frag_hdr);
5899 break;
5900 }
5901 default:
5902 done = true;
5903 break;
5904 }
5905 }
5906
5907 err = -EPROTO;
5908
5909 if (!done || fragment)
5910 goto out;
5911
5912 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5913 if (IS_ERR(csum))
5914 return PTR_ERR(csum);
5915
5916 if (recalculate)
5917 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5918 &ipv6_hdr(skb)->daddr,
5919 skb->len - off, nexthdr, 0);
5920 err = 0;
5921
5922 out:
5923 return err;
5924 }
5925
5926 /**
5927 * skb_checksum_setup - set up partial checksum offset
5928 * @skb: the skb to set up
5929 * @recalculate: if true the pseudo-header checksum will be recalculated
5930 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5931 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5932 {
5933 int err;
5934
5935 switch (skb->protocol) {
5936 case htons(ETH_P_IP):
5937 err = skb_checksum_setup_ipv4(skb, recalculate);
5938 break;
5939
5940 case htons(ETH_P_IPV6):
5941 err = skb_checksum_setup_ipv6(skb, recalculate);
5942 break;
5943
5944 default:
5945 err = -EPROTO;
5946 break;
5947 }
5948
5949 return err;
5950 }
5951 EXPORT_SYMBOL(skb_checksum_setup);
5952
5953 /**
5954 * skb_checksum_maybe_trim - maybe trims the given skb
5955 * @skb: the skb to check
5956 * @transport_len: the data length beyond the network header
5957 *
5958 * Checks whether the given skb has data beyond the given transport length.
5959 * If so, returns a cloned skb trimmed to this transport length.
5960 * Otherwise returns the provided skb. Returns NULL in error cases
5961 * (e.g. transport_len exceeds skb length or out-of-memory).
5962 *
5963 * Caller needs to set the skb transport header and free any returned skb if it
5964 * differs from the provided skb.
5965 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5966 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5967 unsigned int transport_len)
5968 {
5969 struct sk_buff *skb_chk;
5970 unsigned int len = skb_transport_offset(skb) + transport_len;
5971 int ret;
5972
5973 if (skb->len < len)
5974 return NULL;
5975 else if (skb->len == len)
5976 return skb;
5977
5978 skb_chk = skb_clone(skb, GFP_ATOMIC);
5979 if (!skb_chk)
5980 return NULL;
5981
5982 ret = pskb_trim_rcsum(skb_chk, len);
5983 if (ret) {
5984 kfree_skb(skb_chk);
5985 return NULL;
5986 }
5987
5988 return skb_chk;
5989 }
5990
5991 /**
5992 * skb_checksum_trimmed - validate checksum of an skb
5993 * @skb: the skb to check
5994 * @transport_len: the data length beyond the network header
5995 * @skb_chkf: checksum function to use
5996 *
5997 * Applies the given checksum function skb_chkf to the provided skb.
5998 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5999 *
6000 * If the skb has data beyond the given transport length, then a
6001 * trimmed & cloned skb is checked and returned.
6002 *
6003 * Caller needs to set the skb transport header and free any returned skb if it
6004 * differs from the provided skb.
6005 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))6006 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
6007 unsigned int transport_len,
6008 __sum16(*skb_chkf)(struct sk_buff *skb))
6009 {
6010 struct sk_buff *skb_chk;
6011 unsigned int offset = skb_transport_offset(skb);
6012 __sum16 ret;
6013
6014 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
6015 if (!skb_chk)
6016 goto err;
6017
6018 if (!pskb_may_pull(skb_chk, offset))
6019 goto err;
6020
6021 skb_pull_rcsum(skb_chk, offset);
6022 ret = skb_chkf(skb_chk);
6023 skb_push_rcsum(skb_chk, offset);
6024
6025 if (ret)
6026 goto err;
6027
6028 return skb_chk;
6029
6030 err:
6031 if (skb_chk && skb_chk != skb)
6032 kfree_skb(skb_chk);
6033
6034 return NULL;
6035
6036 }
6037 EXPORT_SYMBOL(skb_checksum_trimmed);
6038
__skb_warn_lro_forwarding(const struct sk_buff * skb)6039 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
6040 {
6041 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
6042 skb->dev->name);
6043 }
6044 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
6045
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)6046 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
6047 {
6048 if (head_stolen) {
6049 skb_release_head_state(skb);
6050 kmem_cache_free(net_hotdata.skbuff_cache, skb);
6051 } else {
6052 __kfree_skb(skb);
6053 }
6054 }
6055 EXPORT_SYMBOL(kfree_skb_partial);
6056
6057 /**
6058 * skb_try_coalesce - try to merge skb to prior one
6059 * @to: prior buffer
6060 * @from: buffer to add
6061 * @fragstolen: pointer to boolean
6062 * @delta_truesize: how much more was allocated than was requested
6063 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)6064 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
6065 bool *fragstolen, int *delta_truesize)
6066 {
6067 struct skb_shared_info *to_shinfo, *from_shinfo;
6068 int i, delta, len = from->len;
6069
6070 *fragstolen = false;
6071
6072 if (skb_cloned(to))
6073 return false;
6074
6075 /* In general, avoid mixing page_pool and non-page_pool allocated
6076 * pages within the same SKB. In theory we could take full
6077 * references if @from is cloned and !@to->pp_recycle but its
6078 * tricky (due to potential race with the clone disappearing) and
6079 * rare, so not worth dealing with.
6080 */
6081 if (to->pp_recycle != from->pp_recycle)
6082 return false;
6083
6084 if (skb_frags_readable(from) != skb_frags_readable(to))
6085 return false;
6086
6087 if (len <= skb_tailroom(to) && skb_frags_readable(from)) {
6088 if (len)
6089 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
6090 *delta_truesize = 0;
6091 return true;
6092 }
6093
6094 to_shinfo = skb_shinfo(to);
6095 from_shinfo = skb_shinfo(from);
6096 if (to_shinfo->frag_list || from_shinfo->frag_list)
6097 return false;
6098 if (skb_zcopy(to) || skb_zcopy(from))
6099 return false;
6100
6101 if (skb_headlen(from) != 0) {
6102 struct page *page;
6103 unsigned int offset;
6104
6105 if (to_shinfo->nr_frags +
6106 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
6107 return false;
6108
6109 if (skb_head_is_locked(from))
6110 return false;
6111
6112 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
6113
6114 page = virt_to_head_page(from->head);
6115 offset = from->data - (unsigned char *)page_address(page);
6116
6117 skb_fill_page_desc(to, to_shinfo->nr_frags,
6118 page, offset, skb_headlen(from));
6119 *fragstolen = true;
6120 } else {
6121 if (to_shinfo->nr_frags +
6122 from_shinfo->nr_frags > MAX_SKB_FRAGS)
6123 return false;
6124
6125 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
6126 }
6127
6128 WARN_ON_ONCE(delta < len);
6129
6130 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
6131 from_shinfo->frags,
6132 from_shinfo->nr_frags * sizeof(skb_frag_t));
6133 to_shinfo->nr_frags += from_shinfo->nr_frags;
6134
6135 if (!skb_cloned(from))
6136 from_shinfo->nr_frags = 0;
6137
6138 /* if the skb is not cloned this does nothing
6139 * since we set nr_frags to 0.
6140 */
6141 if (skb_pp_frag_ref(from)) {
6142 for (i = 0; i < from_shinfo->nr_frags; i++)
6143 __skb_frag_ref(&from_shinfo->frags[i]);
6144 }
6145
6146 to->truesize += delta;
6147 to->len += len;
6148 to->data_len += len;
6149
6150 *delta_truesize = delta;
6151 return true;
6152 }
6153 EXPORT_SYMBOL(skb_try_coalesce);
6154
6155 /**
6156 * skb_scrub_packet - scrub an skb
6157 *
6158 * @skb: buffer to clean
6159 * @xnet: packet is crossing netns
6160 *
6161 * skb_scrub_packet can be used after encapsulating or decapsulating a packet
6162 * into/from a tunnel. Some information have to be cleared during these
6163 * operations.
6164 * skb_scrub_packet can also be used to clean a skb before injecting it in
6165 * another namespace (@xnet == true). We have to clear all information in the
6166 * skb that could impact namespace isolation.
6167 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)6168 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6169 {
6170 skb->pkt_type = PACKET_HOST;
6171 skb->skb_iif = 0;
6172 skb->ignore_df = 0;
6173 skb_dst_drop(skb);
6174 skb_ext_reset(skb);
6175 nf_reset_ct(skb);
6176 nf_reset_trace(skb);
6177
6178 #ifdef CONFIG_NET_SWITCHDEV
6179 skb->offload_fwd_mark = 0;
6180 skb->offload_l3_fwd_mark = 0;
6181 #endif
6182 ipvs_reset(skb);
6183
6184 if (!xnet)
6185 return;
6186
6187 skb->mark = 0;
6188 skb_clear_tstamp(skb);
6189 }
6190 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6191
skb_reorder_vlan_header(struct sk_buff * skb)6192 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6193 {
6194 int mac_len, meta_len;
6195 void *meta;
6196
6197 if (skb_cow(skb, skb_headroom(skb)) < 0) {
6198 kfree_skb(skb);
6199 return NULL;
6200 }
6201
6202 mac_len = skb->data - skb_mac_header(skb);
6203 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6204 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6205 mac_len - VLAN_HLEN - ETH_TLEN);
6206 }
6207
6208 meta_len = skb_metadata_len(skb);
6209 if (meta_len) {
6210 meta = skb_metadata_end(skb) - meta_len;
6211 memmove(meta + VLAN_HLEN, meta, meta_len);
6212 }
6213
6214 skb->mac_header += VLAN_HLEN;
6215 return skb;
6216 }
6217
skb_vlan_untag(struct sk_buff * skb)6218 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6219 {
6220 struct vlan_hdr *vhdr;
6221 u16 vlan_tci;
6222
6223 if (unlikely(skb_vlan_tag_present(skb))) {
6224 /* vlan_tci is already set-up so leave this for another time */
6225 return skb;
6226 }
6227
6228 skb = skb_share_check(skb, GFP_ATOMIC);
6229 if (unlikely(!skb))
6230 goto err_free;
6231 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6232 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6233 goto err_free;
6234
6235 vhdr = (struct vlan_hdr *)skb->data;
6236 vlan_tci = ntohs(vhdr->h_vlan_TCI);
6237 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6238
6239 skb_pull_rcsum(skb, VLAN_HLEN);
6240 vlan_set_encap_proto(skb, vhdr);
6241
6242 skb = skb_reorder_vlan_header(skb);
6243 if (unlikely(!skb))
6244 goto err_free;
6245
6246 skb_reset_network_header(skb);
6247 if (!skb_transport_header_was_set(skb))
6248 skb_reset_transport_header(skb);
6249 skb_reset_mac_len(skb);
6250
6251 return skb;
6252
6253 err_free:
6254 kfree_skb(skb);
6255 return NULL;
6256 }
6257 EXPORT_SYMBOL(skb_vlan_untag);
6258
skb_ensure_writable(struct sk_buff * skb,unsigned int write_len)6259 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6260 {
6261 if (!pskb_may_pull(skb, write_len))
6262 return -ENOMEM;
6263
6264 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6265 return 0;
6266
6267 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6268 }
6269 EXPORT_SYMBOL(skb_ensure_writable);
6270
skb_ensure_writable_head_tail(struct sk_buff * skb,struct net_device * dev)6271 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6272 {
6273 int needed_headroom = dev->needed_headroom;
6274 int needed_tailroom = dev->needed_tailroom;
6275
6276 /* For tail taggers, we need to pad short frames ourselves, to ensure
6277 * that the tail tag does not fail at its role of being at the end of
6278 * the packet, once the conduit interface pads the frame. Account for
6279 * that pad length here, and pad later.
6280 */
6281 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6282 needed_tailroom += ETH_ZLEN - skb->len;
6283 /* skb_headroom() returns unsigned int... */
6284 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6285 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6286
6287 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6288 /* No reallocation needed, yay! */
6289 return 0;
6290
6291 return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6292 GFP_ATOMIC);
6293 }
6294 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6295
6296 /* remove VLAN header from packet and update csum accordingly.
6297 * expects a non skb_vlan_tag_present skb with a vlan tag payload
6298 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)6299 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6300 {
6301 int offset = skb->data - skb_mac_header(skb);
6302 int err;
6303
6304 if (WARN_ONCE(offset,
6305 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6306 offset)) {
6307 return -EINVAL;
6308 }
6309
6310 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6311 if (unlikely(err))
6312 return err;
6313
6314 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6315
6316 vlan_remove_tag(skb, vlan_tci);
6317
6318 skb->mac_header += VLAN_HLEN;
6319
6320 if (skb_network_offset(skb) < ETH_HLEN)
6321 skb_set_network_header(skb, ETH_HLEN);
6322
6323 skb_reset_mac_len(skb);
6324
6325 return err;
6326 }
6327 EXPORT_SYMBOL(__skb_vlan_pop);
6328
6329 /* Pop a vlan tag either from hwaccel or from payload.
6330 * Expects skb->data at mac header.
6331 */
skb_vlan_pop(struct sk_buff * skb)6332 int skb_vlan_pop(struct sk_buff *skb)
6333 {
6334 u16 vlan_tci;
6335 __be16 vlan_proto;
6336 int err;
6337
6338 if (likely(skb_vlan_tag_present(skb))) {
6339 __vlan_hwaccel_clear_tag(skb);
6340 } else {
6341 if (unlikely(!eth_type_vlan(skb->protocol)))
6342 return 0;
6343
6344 err = __skb_vlan_pop(skb, &vlan_tci);
6345 if (err)
6346 return err;
6347 }
6348 /* move next vlan tag to hw accel tag */
6349 if (likely(!eth_type_vlan(skb->protocol)))
6350 return 0;
6351
6352 vlan_proto = skb->protocol;
6353 err = __skb_vlan_pop(skb, &vlan_tci);
6354 if (unlikely(err))
6355 return err;
6356
6357 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6358 return 0;
6359 }
6360 EXPORT_SYMBOL(skb_vlan_pop);
6361
6362 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6363 * Expects skb->data at mac header.
6364 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)6365 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6366 {
6367 if (skb_vlan_tag_present(skb)) {
6368 int offset = skb->data - skb_mac_header(skb);
6369 int err;
6370
6371 if (WARN_ONCE(offset,
6372 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6373 offset)) {
6374 return -EINVAL;
6375 }
6376
6377 err = __vlan_insert_tag(skb, skb->vlan_proto,
6378 skb_vlan_tag_get(skb));
6379 if (err)
6380 return err;
6381
6382 skb->protocol = skb->vlan_proto;
6383 skb->network_header -= VLAN_HLEN;
6384
6385 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6386 }
6387 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6388 return 0;
6389 }
6390 EXPORT_SYMBOL(skb_vlan_push);
6391
6392 /**
6393 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6394 *
6395 * @skb: Socket buffer to modify
6396 *
6397 * Drop the Ethernet header of @skb.
6398 *
6399 * Expects that skb->data points to the mac header and that no VLAN tags are
6400 * present.
6401 *
6402 * Returns 0 on success, -errno otherwise.
6403 */
skb_eth_pop(struct sk_buff * skb)6404 int skb_eth_pop(struct sk_buff *skb)
6405 {
6406 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6407 skb_network_offset(skb) < ETH_HLEN)
6408 return -EPROTO;
6409
6410 skb_pull_rcsum(skb, ETH_HLEN);
6411 skb_reset_mac_header(skb);
6412 skb_reset_mac_len(skb);
6413
6414 return 0;
6415 }
6416 EXPORT_SYMBOL(skb_eth_pop);
6417
6418 /**
6419 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6420 *
6421 * @skb: Socket buffer to modify
6422 * @dst: Destination MAC address of the new header
6423 * @src: Source MAC address of the new header
6424 *
6425 * Prepend @skb with a new Ethernet header.
6426 *
6427 * Expects that skb->data points to the mac header, which must be empty.
6428 *
6429 * Returns 0 on success, -errno otherwise.
6430 */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)6431 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6432 const unsigned char *src)
6433 {
6434 struct ethhdr *eth;
6435 int err;
6436
6437 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6438 return -EPROTO;
6439
6440 err = skb_cow_head(skb, sizeof(*eth));
6441 if (err < 0)
6442 return err;
6443
6444 skb_push(skb, sizeof(*eth));
6445 skb_reset_mac_header(skb);
6446 skb_reset_mac_len(skb);
6447
6448 eth = eth_hdr(skb);
6449 ether_addr_copy(eth->h_dest, dst);
6450 ether_addr_copy(eth->h_source, src);
6451 eth->h_proto = skb->protocol;
6452
6453 skb_postpush_rcsum(skb, eth, sizeof(*eth));
6454
6455 return 0;
6456 }
6457 EXPORT_SYMBOL(skb_eth_push);
6458
6459 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)6460 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6461 __be16 ethertype)
6462 {
6463 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6464 __be16 diff[] = { ~hdr->h_proto, ethertype };
6465
6466 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6467 }
6468
6469 hdr->h_proto = ethertype;
6470 }
6471
6472 /**
6473 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6474 * the packet
6475 *
6476 * @skb: buffer
6477 * @mpls_lse: MPLS label stack entry to push
6478 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6479 * @mac_len: length of the MAC header
6480 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6481 * ethernet
6482 *
6483 * Expects skb->data at mac header.
6484 *
6485 * Returns 0 on success, -errno otherwise.
6486 */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)6487 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6488 int mac_len, bool ethernet)
6489 {
6490 struct mpls_shim_hdr *lse;
6491 int err;
6492
6493 if (unlikely(!eth_p_mpls(mpls_proto)))
6494 return -EINVAL;
6495
6496 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6497 if (skb->encapsulation)
6498 return -EINVAL;
6499
6500 err = skb_cow_head(skb, MPLS_HLEN);
6501 if (unlikely(err))
6502 return err;
6503
6504 if (!skb->inner_protocol) {
6505 skb_set_inner_network_header(skb, skb_network_offset(skb));
6506 skb_set_inner_protocol(skb, skb->protocol);
6507 }
6508
6509 skb_push(skb, MPLS_HLEN);
6510 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6511 mac_len);
6512 skb_reset_mac_header(skb);
6513 skb_set_network_header(skb, mac_len);
6514 skb_reset_mac_len(skb);
6515
6516 lse = mpls_hdr(skb);
6517 lse->label_stack_entry = mpls_lse;
6518 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6519
6520 if (ethernet && mac_len >= ETH_HLEN)
6521 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6522 skb->protocol = mpls_proto;
6523
6524 return 0;
6525 }
6526 EXPORT_SYMBOL_GPL(skb_mpls_push);
6527
6528 /**
6529 * skb_mpls_pop() - pop the outermost MPLS header
6530 *
6531 * @skb: buffer
6532 * @next_proto: ethertype of header after popped MPLS header
6533 * @mac_len: length of the MAC header
6534 * @ethernet: flag to indicate if the packet is ethernet
6535 *
6536 * Expects skb->data at mac header.
6537 *
6538 * Returns 0 on success, -errno otherwise.
6539 */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)6540 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6541 bool ethernet)
6542 {
6543 int err;
6544
6545 if (unlikely(!eth_p_mpls(skb->protocol)))
6546 return 0;
6547
6548 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6549 if (unlikely(err))
6550 return err;
6551
6552 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6553 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6554 mac_len);
6555
6556 __skb_pull(skb, MPLS_HLEN);
6557 skb_reset_mac_header(skb);
6558 skb_set_network_header(skb, mac_len);
6559
6560 if (ethernet && mac_len >= ETH_HLEN) {
6561 struct ethhdr *hdr;
6562
6563 /* use mpls_hdr() to get ethertype to account for VLANs. */
6564 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6565 skb_mod_eth_type(skb, hdr, next_proto);
6566 }
6567 skb->protocol = next_proto;
6568
6569 return 0;
6570 }
6571 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6572
6573 /**
6574 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6575 *
6576 * @skb: buffer
6577 * @mpls_lse: new MPLS label stack entry to update to
6578 *
6579 * Expects skb->data at mac header.
6580 *
6581 * Returns 0 on success, -errno otherwise.
6582 */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)6583 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6584 {
6585 int err;
6586
6587 if (unlikely(!eth_p_mpls(skb->protocol)))
6588 return -EINVAL;
6589
6590 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6591 if (unlikely(err))
6592 return err;
6593
6594 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6595 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6596
6597 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6598 }
6599
6600 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6601
6602 return 0;
6603 }
6604 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6605
6606 /**
6607 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6608 *
6609 * @skb: buffer
6610 *
6611 * Expects skb->data at mac header.
6612 *
6613 * Returns 0 on success, -errno otherwise.
6614 */
skb_mpls_dec_ttl(struct sk_buff * skb)6615 int skb_mpls_dec_ttl(struct sk_buff *skb)
6616 {
6617 u32 lse;
6618 u8 ttl;
6619
6620 if (unlikely(!eth_p_mpls(skb->protocol)))
6621 return -EINVAL;
6622
6623 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6624 return -ENOMEM;
6625
6626 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6627 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6628 if (!--ttl)
6629 return -EINVAL;
6630
6631 lse &= ~MPLS_LS_TTL_MASK;
6632 lse |= ttl << MPLS_LS_TTL_SHIFT;
6633
6634 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6635 }
6636 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6637
6638 /**
6639 * alloc_skb_with_frags - allocate skb with page frags
6640 *
6641 * @header_len: size of linear part
6642 * @data_len: needed length in frags
6643 * @order: max page order desired.
6644 * @errcode: pointer to error code if any
6645 * @gfp_mask: allocation mask
6646 *
6647 * This can be used to allocate a paged skb, given a maximal order for frags.
6648 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int order,int * errcode,gfp_t gfp_mask)6649 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6650 unsigned long data_len,
6651 int order,
6652 int *errcode,
6653 gfp_t gfp_mask)
6654 {
6655 unsigned long chunk;
6656 struct sk_buff *skb;
6657 struct page *page;
6658 int nr_frags = 0;
6659
6660 *errcode = -EMSGSIZE;
6661 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6662 return NULL;
6663
6664 *errcode = -ENOBUFS;
6665 skb = alloc_skb(header_len, gfp_mask);
6666 if (!skb)
6667 return NULL;
6668
6669 while (data_len) {
6670 if (nr_frags == MAX_SKB_FRAGS - 1)
6671 goto failure;
6672 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6673 order--;
6674
6675 if (order) {
6676 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6677 __GFP_COMP |
6678 __GFP_NOWARN,
6679 order);
6680 if (!page) {
6681 order--;
6682 continue;
6683 }
6684 } else {
6685 page = alloc_page(gfp_mask);
6686 if (!page)
6687 goto failure;
6688 }
6689 chunk = min_t(unsigned long, data_len,
6690 PAGE_SIZE << order);
6691 skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6692 nr_frags++;
6693 skb->truesize += (PAGE_SIZE << order);
6694 data_len -= chunk;
6695 }
6696 return skb;
6697
6698 failure:
6699 kfree_skb(skb);
6700 return NULL;
6701 }
6702 EXPORT_SYMBOL(alloc_skb_with_frags);
6703
6704 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6705 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6706 const int headlen, gfp_t gfp_mask)
6707 {
6708 int i;
6709 unsigned int size = skb_end_offset(skb);
6710 int new_hlen = headlen - off;
6711 u8 *data;
6712
6713 if (skb_pfmemalloc(skb))
6714 gfp_mask |= __GFP_MEMALLOC;
6715
6716 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6717 if (!data)
6718 return -ENOMEM;
6719 size = SKB_WITH_OVERHEAD(size);
6720
6721 /* Copy real data, and all frags */
6722 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6723 skb->len -= off;
6724
6725 memcpy((struct skb_shared_info *)(data + size),
6726 skb_shinfo(skb),
6727 offsetof(struct skb_shared_info,
6728 frags[skb_shinfo(skb)->nr_frags]));
6729 if (skb_cloned(skb)) {
6730 /* drop the old head gracefully */
6731 if (skb_orphan_frags(skb, gfp_mask)) {
6732 skb_kfree_head(data, size);
6733 return -ENOMEM;
6734 }
6735 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6736 skb_frag_ref(skb, i);
6737 if (skb_has_frag_list(skb))
6738 skb_clone_fraglist(skb);
6739 skb_release_data(skb, SKB_CONSUMED);
6740 } else {
6741 /* we can reuse existing recount- all we did was
6742 * relocate values
6743 */
6744 skb_free_head(skb);
6745 }
6746
6747 skb->head = data;
6748 skb->data = data;
6749 skb->head_frag = 0;
6750 skb_set_end_offset(skb, size);
6751 skb_set_tail_pointer(skb, skb_headlen(skb));
6752 skb_headers_offset_update(skb, 0);
6753 skb->cloned = 0;
6754 skb->hdr_len = 0;
6755 skb->nohdr = 0;
6756 atomic_set(&skb_shinfo(skb)->dataref, 1);
6757
6758 return 0;
6759 }
6760
6761 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6762
6763 /* carve out the first eat bytes from skb's frag_list. May recurse into
6764 * pskb_carve()
6765 */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6766 static int pskb_carve_frag_list(struct sk_buff *skb,
6767 struct skb_shared_info *shinfo, int eat,
6768 gfp_t gfp_mask)
6769 {
6770 struct sk_buff *list = shinfo->frag_list;
6771 struct sk_buff *clone = NULL;
6772 struct sk_buff *insp = NULL;
6773
6774 do {
6775 if (!list) {
6776 pr_err("Not enough bytes to eat. Want %d\n", eat);
6777 return -EFAULT;
6778 }
6779 if (list->len <= eat) {
6780 /* Eaten as whole. */
6781 eat -= list->len;
6782 list = list->next;
6783 insp = list;
6784 } else {
6785 /* Eaten partially. */
6786 if (skb_shared(list)) {
6787 clone = skb_clone(list, gfp_mask);
6788 if (!clone)
6789 return -ENOMEM;
6790 insp = list->next;
6791 list = clone;
6792 } else {
6793 /* This may be pulled without problems. */
6794 insp = list;
6795 }
6796 if (pskb_carve(list, eat, gfp_mask) < 0) {
6797 kfree_skb(clone);
6798 return -ENOMEM;
6799 }
6800 break;
6801 }
6802 } while (eat);
6803
6804 /* Free pulled out fragments. */
6805 while ((list = shinfo->frag_list) != insp) {
6806 shinfo->frag_list = list->next;
6807 consume_skb(list);
6808 }
6809 /* And insert new clone at head. */
6810 if (clone) {
6811 clone->next = list;
6812 shinfo->frag_list = clone;
6813 }
6814 return 0;
6815 }
6816
6817 /* carve off first len bytes from skb. Split line (off) is in the
6818 * non-linear part of skb
6819 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6820 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6821 int pos, gfp_t gfp_mask)
6822 {
6823 int i, k = 0;
6824 unsigned int size = skb_end_offset(skb);
6825 u8 *data;
6826 const int nfrags = skb_shinfo(skb)->nr_frags;
6827 struct skb_shared_info *shinfo;
6828
6829 if (skb_pfmemalloc(skb))
6830 gfp_mask |= __GFP_MEMALLOC;
6831
6832 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6833 if (!data)
6834 return -ENOMEM;
6835 size = SKB_WITH_OVERHEAD(size);
6836
6837 memcpy((struct skb_shared_info *)(data + size),
6838 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6839 if (skb_orphan_frags(skb, gfp_mask)) {
6840 skb_kfree_head(data, size);
6841 return -ENOMEM;
6842 }
6843 shinfo = (struct skb_shared_info *)(data + size);
6844 for (i = 0; i < nfrags; i++) {
6845 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6846
6847 if (pos + fsize > off) {
6848 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6849
6850 if (pos < off) {
6851 /* Split frag.
6852 * We have two variants in this case:
6853 * 1. Move all the frag to the second
6854 * part, if it is possible. F.e.
6855 * this approach is mandatory for TUX,
6856 * where splitting is expensive.
6857 * 2. Split is accurately. We make this.
6858 */
6859 skb_frag_off_add(&shinfo->frags[0], off - pos);
6860 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6861 }
6862 skb_frag_ref(skb, i);
6863 k++;
6864 }
6865 pos += fsize;
6866 }
6867 shinfo->nr_frags = k;
6868 if (skb_has_frag_list(skb))
6869 skb_clone_fraglist(skb);
6870
6871 /* split line is in frag list */
6872 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6873 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6874 if (skb_has_frag_list(skb))
6875 kfree_skb_list(skb_shinfo(skb)->frag_list);
6876 skb_kfree_head(data, size);
6877 return -ENOMEM;
6878 }
6879 skb_release_data(skb, SKB_CONSUMED);
6880
6881 skb->head = data;
6882 skb->head_frag = 0;
6883 skb->data = data;
6884 skb_set_end_offset(skb, size);
6885 skb_reset_tail_pointer(skb);
6886 skb_headers_offset_update(skb, 0);
6887 skb->cloned = 0;
6888 skb->hdr_len = 0;
6889 skb->nohdr = 0;
6890 skb->len -= off;
6891 skb->data_len = skb->len;
6892 atomic_set(&skb_shinfo(skb)->dataref, 1);
6893 return 0;
6894 }
6895
6896 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6897 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6898 {
6899 int headlen = skb_headlen(skb);
6900
6901 if (len < headlen)
6902 return pskb_carve_inside_header(skb, len, headlen, gfp);
6903 else
6904 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6905 }
6906
6907 /* Extract to_copy bytes starting at off from skb, and return this in
6908 * a new skb
6909 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6910 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6911 int to_copy, gfp_t gfp)
6912 {
6913 struct sk_buff *clone = skb_clone(skb, gfp);
6914
6915 if (!clone)
6916 return NULL;
6917
6918 if (pskb_carve(clone, off, gfp) < 0 ||
6919 pskb_trim(clone, to_copy)) {
6920 kfree_skb(clone);
6921 return NULL;
6922 }
6923 return clone;
6924 }
6925 EXPORT_SYMBOL(pskb_extract);
6926
6927 /**
6928 * skb_condense - try to get rid of fragments/frag_list if possible
6929 * @skb: buffer
6930 *
6931 * Can be used to save memory before skb is added to a busy queue.
6932 * If packet has bytes in frags and enough tail room in skb->head,
6933 * pull all of them, so that we can free the frags right now and adjust
6934 * truesize.
6935 * Notes:
6936 * We do not reallocate skb->head thus can not fail.
6937 * Caller must re-evaluate skb->truesize if needed.
6938 */
skb_condense(struct sk_buff * skb)6939 void skb_condense(struct sk_buff *skb)
6940 {
6941 if (skb->data_len) {
6942 if (skb->data_len > skb->end - skb->tail ||
6943 skb_cloned(skb) || !skb_frags_readable(skb))
6944 return;
6945
6946 /* Nice, we can free page frag(s) right now */
6947 __pskb_pull_tail(skb, skb->data_len);
6948 }
6949 /* At this point, skb->truesize might be over estimated,
6950 * because skb had a fragment, and fragments do not tell
6951 * their truesize.
6952 * When we pulled its content into skb->head, fragment
6953 * was freed, but __pskb_pull_tail() could not possibly
6954 * adjust skb->truesize, not knowing the frag truesize.
6955 */
6956 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6957 }
6958 EXPORT_SYMBOL(skb_condense);
6959
6960 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6961 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6962 {
6963 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6964 }
6965
6966 /**
6967 * __skb_ext_alloc - allocate a new skb extensions storage
6968 *
6969 * @flags: See kmalloc().
6970 *
6971 * Returns the newly allocated pointer. The pointer can later attached to a
6972 * skb via __skb_ext_set().
6973 * Note: caller must handle the skb_ext as an opaque data.
6974 */
__skb_ext_alloc(gfp_t flags)6975 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6976 {
6977 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6978
6979 if (new) {
6980 memset(new->offset, 0, sizeof(new->offset));
6981 refcount_set(&new->refcnt, 1);
6982 }
6983
6984 return new;
6985 }
6986
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6987 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6988 unsigned int old_active)
6989 {
6990 struct skb_ext *new;
6991
6992 if (refcount_read(&old->refcnt) == 1)
6993 return old;
6994
6995 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6996 if (!new)
6997 return NULL;
6998
6999 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
7000 refcount_set(&new->refcnt, 1);
7001
7002 #ifdef CONFIG_XFRM
7003 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
7004 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
7005 unsigned int i;
7006
7007 for (i = 0; i < sp->len; i++)
7008 xfrm_state_hold(sp->xvec[i]);
7009 }
7010 #endif
7011 #ifdef CONFIG_MCTP_FLOWS
7012 if (old_active & (1 << SKB_EXT_MCTP)) {
7013 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
7014
7015 if (flow->key)
7016 refcount_inc(&flow->key->refs);
7017 }
7018 #endif
7019 __skb_ext_put(old);
7020 return new;
7021 }
7022
7023 /**
7024 * __skb_ext_set - attach the specified extension storage to this skb
7025 * @skb: buffer
7026 * @id: extension id
7027 * @ext: extension storage previously allocated via __skb_ext_alloc()
7028 *
7029 * Existing extensions, if any, are cleared.
7030 *
7031 * Returns the pointer to the extension.
7032 */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)7033 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
7034 struct skb_ext *ext)
7035 {
7036 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
7037
7038 skb_ext_put(skb);
7039 newlen = newoff + skb_ext_type_len[id];
7040 ext->chunks = newlen;
7041 ext->offset[id] = newoff;
7042 skb->extensions = ext;
7043 skb->active_extensions = 1 << id;
7044 return skb_ext_get_ptr(ext, id);
7045 }
7046
7047 /**
7048 * skb_ext_add - allocate space for given extension, COW if needed
7049 * @skb: buffer
7050 * @id: extension to allocate space for
7051 *
7052 * Allocates enough space for the given extension.
7053 * If the extension is already present, a pointer to that extension
7054 * is returned.
7055 *
7056 * If the skb was cloned, COW applies and the returned memory can be
7057 * modified without changing the extension space of clones buffers.
7058 *
7059 * Returns pointer to the extension or NULL on allocation failure.
7060 */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)7061 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
7062 {
7063 struct skb_ext *new, *old = NULL;
7064 unsigned int newlen, newoff;
7065
7066 if (skb->active_extensions) {
7067 old = skb->extensions;
7068
7069 new = skb_ext_maybe_cow(old, skb->active_extensions);
7070 if (!new)
7071 return NULL;
7072
7073 if (__skb_ext_exist(new, id))
7074 goto set_active;
7075
7076 newoff = new->chunks;
7077 } else {
7078 newoff = SKB_EXT_CHUNKSIZEOF(*new);
7079
7080 new = __skb_ext_alloc(GFP_ATOMIC);
7081 if (!new)
7082 return NULL;
7083 }
7084
7085 newlen = newoff + skb_ext_type_len[id];
7086 new->chunks = newlen;
7087 new->offset[id] = newoff;
7088 set_active:
7089 skb->slow_gro = 1;
7090 skb->extensions = new;
7091 skb->active_extensions |= 1 << id;
7092 return skb_ext_get_ptr(new, id);
7093 }
7094 EXPORT_SYMBOL(skb_ext_add);
7095
7096 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)7097 static void skb_ext_put_sp(struct sec_path *sp)
7098 {
7099 unsigned int i;
7100
7101 for (i = 0; i < sp->len; i++)
7102 xfrm_state_put(sp->xvec[i]);
7103 }
7104 #endif
7105
7106 #ifdef CONFIG_MCTP_FLOWS
skb_ext_put_mctp(struct mctp_flow * flow)7107 static void skb_ext_put_mctp(struct mctp_flow *flow)
7108 {
7109 if (flow->key)
7110 mctp_key_unref(flow->key);
7111 }
7112 #endif
7113
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)7114 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
7115 {
7116 struct skb_ext *ext = skb->extensions;
7117
7118 skb->active_extensions &= ~(1 << id);
7119 if (skb->active_extensions == 0) {
7120 skb->extensions = NULL;
7121 __skb_ext_put(ext);
7122 #ifdef CONFIG_XFRM
7123 } else if (id == SKB_EXT_SEC_PATH &&
7124 refcount_read(&ext->refcnt) == 1) {
7125 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
7126
7127 skb_ext_put_sp(sp);
7128 sp->len = 0;
7129 #endif
7130 }
7131 }
7132 EXPORT_SYMBOL(__skb_ext_del);
7133
__skb_ext_put(struct skb_ext * ext)7134 void __skb_ext_put(struct skb_ext *ext)
7135 {
7136 /* If this is last clone, nothing can increment
7137 * it after check passes. Avoids one atomic op.
7138 */
7139 if (refcount_read(&ext->refcnt) == 1)
7140 goto free_now;
7141
7142 if (!refcount_dec_and_test(&ext->refcnt))
7143 return;
7144 free_now:
7145 #ifdef CONFIG_XFRM
7146 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7147 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7148 #endif
7149 #ifdef CONFIG_MCTP_FLOWS
7150 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7151 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7152 #endif
7153
7154 kmem_cache_free(skbuff_ext_cache, ext);
7155 }
7156 EXPORT_SYMBOL(__skb_ext_put);
7157 #endif /* CONFIG_SKB_EXTENSIONS */
7158
kfree_skb_napi_cache(struct sk_buff * skb)7159 static void kfree_skb_napi_cache(struct sk_buff *skb)
7160 {
7161 /* if SKB is a clone, don't handle this case */
7162 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7163 __kfree_skb(skb);
7164 return;
7165 }
7166
7167 local_bh_disable();
7168 __napi_kfree_skb(skb, SKB_CONSUMED);
7169 local_bh_enable();
7170 }
7171
7172 /**
7173 * skb_attempt_defer_free - queue skb for remote freeing
7174 * @skb: buffer
7175 *
7176 * Put @skb in a per-cpu list, using the cpu which
7177 * allocated the skb/pages to reduce false sharing
7178 * and memory zone spinlock contention.
7179 */
skb_attempt_defer_free(struct sk_buff * skb)7180 void skb_attempt_defer_free(struct sk_buff *skb)
7181 {
7182 int cpu = skb->alloc_cpu;
7183 struct softnet_data *sd;
7184 unsigned int defer_max;
7185 bool kick;
7186
7187 if (cpu == raw_smp_processor_id() ||
7188 WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7189 !cpu_online(cpu)) {
7190 nodefer: kfree_skb_napi_cache(skb);
7191 return;
7192 }
7193
7194 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7195 DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7196
7197 sd = &per_cpu(softnet_data, cpu);
7198 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7199 if (READ_ONCE(sd->defer_count) >= defer_max)
7200 goto nodefer;
7201
7202 spin_lock_bh(&sd->defer_lock);
7203 /* Send an IPI every time queue reaches half capacity. */
7204 kick = sd->defer_count == (defer_max >> 1);
7205 /* Paired with the READ_ONCE() few lines above */
7206 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7207
7208 skb->next = sd->defer_list;
7209 /* Paired with READ_ONCE() in skb_defer_free_flush() */
7210 WRITE_ONCE(sd->defer_list, skb);
7211 spin_unlock_bh(&sd->defer_lock);
7212
7213 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7214 * if we are unlucky enough (this seems very unlikely).
7215 */
7216 if (unlikely(kick))
7217 kick_defer_list_purge(sd, cpu);
7218 }
7219
skb_splice_csum_page(struct sk_buff * skb,struct page * page,size_t offset,size_t len)7220 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7221 size_t offset, size_t len)
7222 {
7223 const char *kaddr;
7224 __wsum csum;
7225
7226 kaddr = kmap_local_page(page);
7227 csum = csum_partial(kaddr + offset, len, 0);
7228 kunmap_local(kaddr);
7229 skb->csum = csum_block_add(skb->csum, csum, skb->len);
7230 }
7231
7232 /**
7233 * skb_splice_from_iter - Splice (or copy) pages to skbuff
7234 * @skb: The buffer to add pages to
7235 * @iter: Iterator representing the pages to be added
7236 * @maxsize: Maximum amount of pages to be added
7237 * @gfp: Allocation flags
7238 *
7239 * This is a common helper function for supporting MSG_SPLICE_PAGES. It
7240 * extracts pages from an iterator and adds them to the socket buffer if
7241 * possible, copying them to fragments if not possible (such as if they're slab
7242 * pages).
7243 *
7244 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7245 * insufficient space in the buffer to transfer anything.
7246 */
skb_splice_from_iter(struct sk_buff * skb,struct iov_iter * iter,ssize_t maxsize,gfp_t gfp)7247 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7248 ssize_t maxsize, gfp_t gfp)
7249 {
7250 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7251 struct page *pages[8], **ppages = pages;
7252 ssize_t spliced = 0, ret = 0;
7253 unsigned int i;
7254
7255 while (iter->count > 0) {
7256 ssize_t space, nr, len;
7257 size_t off;
7258
7259 ret = -EMSGSIZE;
7260 space = frag_limit - skb_shinfo(skb)->nr_frags;
7261 if (space < 0)
7262 break;
7263
7264 /* We might be able to coalesce without increasing nr_frags */
7265 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7266
7267 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7268 if (len <= 0) {
7269 ret = len ?: -EIO;
7270 break;
7271 }
7272
7273 i = 0;
7274 do {
7275 struct page *page = pages[i++];
7276 size_t part = min_t(size_t, PAGE_SIZE - off, len);
7277
7278 ret = -EIO;
7279 if (WARN_ON_ONCE(!sendpage_ok(page)))
7280 goto out;
7281
7282 ret = skb_append_pagefrags(skb, page, off, part,
7283 frag_limit);
7284 if (ret < 0) {
7285 iov_iter_revert(iter, len);
7286 goto out;
7287 }
7288
7289 if (skb->ip_summed == CHECKSUM_NONE)
7290 skb_splice_csum_page(skb, page, off, part);
7291
7292 off = 0;
7293 spliced += part;
7294 maxsize -= part;
7295 len -= part;
7296 } while (len > 0);
7297
7298 if (maxsize <= 0)
7299 break;
7300 }
7301
7302 out:
7303 skb_len_add(skb, spliced);
7304 return spliced ?: ret;
7305 }
7306 EXPORT_SYMBOL(skb_splice_from_iter);
7307
7308 static __always_inline
memcpy_from_iter_csum(void * iter_from,size_t progress,size_t len,void * to,void * priv2)7309 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7310 size_t len, void *to, void *priv2)
7311 {
7312 __wsum *csum = priv2;
7313 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7314
7315 *csum = csum_block_add(*csum, next, progress);
7316 return 0;
7317 }
7318
7319 static __always_inline
copy_from_user_iter_csum(void __user * iter_from,size_t progress,size_t len,void * to,void * priv2)7320 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7321 size_t len, void *to, void *priv2)
7322 {
7323 __wsum next, *csum = priv2;
7324
7325 next = csum_and_copy_from_user(iter_from, to + progress, len);
7326 *csum = csum_block_add(*csum, next, progress);
7327 return next ? 0 : len;
7328 }
7329
csum_and_copy_from_iter_full(void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)7330 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7331 __wsum *csum, struct iov_iter *i)
7332 {
7333 size_t copied;
7334
7335 if (WARN_ON_ONCE(!i->data_source))
7336 return false;
7337 copied = iterate_and_advance2(i, bytes, addr, csum,
7338 copy_from_user_iter_csum,
7339 memcpy_from_iter_csum);
7340 if (likely(copied == bytes))
7341 return true;
7342 iov_iter_revert(i, copied);
7343 return false;
7344 }
7345 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7346
get_netmem(netmem_ref netmem)7347 void get_netmem(netmem_ref netmem)
7348 {
7349 struct net_iov *niov;
7350
7351 if (netmem_is_net_iov(netmem)) {
7352 niov = netmem_to_net_iov(netmem);
7353 if (net_is_devmem_iov(niov))
7354 net_devmem_get_net_iov(netmem_to_net_iov(netmem));
7355 return;
7356 }
7357 get_page(netmem_to_page(netmem));
7358 }
7359 EXPORT_SYMBOL(get_netmem);
7360
put_netmem(netmem_ref netmem)7361 void put_netmem(netmem_ref netmem)
7362 {
7363 struct net_iov *niov;
7364
7365 if (netmem_is_net_iov(netmem)) {
7366 niov = netmem_to_net_iov(netmem);
7367 if (net_is_devmem_iov(niov))
7368 net_devmem_put_net_iov(netmem_to_net_iov(netmem));
7369 return;
7370 }
7371
7372 put_page(netmem_to_page(netmem));
7373 }
7374 EXPORT_SYMBOL(put_netmem);
7375