1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (C) 2023 Intel Corporation */
3
4 #ifndef _IDPF_TXRX_H_
5 #define _IDPF_TXRX_H_
6
7 #include <linux/dim.h>
8
9 #include <net/libeth/cache.h>
10 #include <net/tcp.h>
11 #include <net/netdev_queues.h>
12
13 #include "idpf_lan_txrx.h"
14 #include "virtchnl2_lan_desc.h"
15
16 #define IDPF_LARGE_MAX_Q 256
17 #define IDPF_MAX_Q 16
18 #define IDPF_MIN_Q 2
19 /* Mailbox Queue */
20 #define IDPF_MAX_MBXQ 1
21
22 #define IDPF_MIN_TXQ_DESC 64
23 #define IDPF_MIN_RXQ_DESC 64
24 #define IDPF_MIN_TXQ_COMPLQ_DESC 256
25 #define IDPF_MAX_QIDS 256
26
27 /* Number of descriptors in a queue should be a multiple of 32. RX queue
28 * descriptors alone should be a multiple of IDPF_REQ_RXQ_DESC_MULTIPLE
29 * to achieve BufQ descriptors aligned to 32
30 */
31 #define IDPF_REQ_DESC_MULTIPLE 32
32 #define IDPF_REQ_RXQ_DESC_MULTIPLE (IDPF_MAX_BUFQS_PER_RXQ_GRP * 32)
33 #define IDPF_MIN_TX_DESC_NEEDED (MAX_SKB_FRAGS + 6)
34 #define IDPF_TX_WAKE_THRESH ((u16)IDPF_MIN_TX_DESC_NEEDED * 2)
35
36 #define IDPF_MAX_DESCS 8160
37 #define IDPF_MAX_TXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_DESC_MULTIPLE)
38 #define IDPF_MAX_RXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_RXQ_DESC_MULTIPLE)
39 #define MIN_SUPPORT_TXDID (\
40 VIRTCHNL2_TXDID_FLEX_FLOW_SCHED |\
41 VIRTCHNL2_TXDID_FLEX_TSO_CTX)
42
43 #define IDPF_DFLT_SINGLEQ_TX_Q_GROUPS 1
44 #define IDPF_DFLT_SINGLEQ_RX_Q_GROUPS 1
45 #define IDPF_DFLT_SINGLEQ_TXQ_PER_GROUP 4
46 #define IDPF_DFLT_SINGLEQ_RXQ_PER_GROUP 4
47
48 #define IDPF_COMPLQ_PER_GROUP 1
49 #define IDPF_SINGLE_BUFQ_PER_RXQ_GRP 1
50 #define IDPF_MAX_BUFQS_PER_RXQ_GRP 2
51 #define IDPF_BUFQ2_ENA 1
52 #define IDPF_NUMQ_PER_CHUNK 1
53
54 #define IDPF_DFLT_SPLITQ_TXQ_PER_GROUP 1
55 #define IDPF_DFLT_SPLITQ_RXQ_PER_GROUP 1
56
57 /* Default vector sharing */
58 #define IDPF_MBX_Q_VEC 1
59 #define IDPF_MIN_Q_VEC 1
60
61 #define IDPF_DFLT_TX_Q_DESC_COUNT 512
62 #define IDPF_DFLT_TX_COMPLQ_DESC_COUNT 512
63 #define IDPF_DFLT_RX_Q_DESC_COUNT 512
64
65 /* IMPORTANT: We absolutely _cannot_ have more buffers in the system than a
66 * given RX completion queue has descriptors. This includes _ALL_ buffer
67 * queues. E.g.: If you have two buffer queues of 512 descriptors and buffers,
68 * you have a total of 1024 buffers so your RX queue _must_ have at least that
69 * many descriptors. This macro divides a given number of RX descriptors by
70 * number of buffer queues to calculate how many descriptors each buffer queue
71 * can have without overrunning the RX queue.
72 *
73 * If you give hardware more buffers than completion descriptors what will
74 * happen is that if hardware gets a chance to post more than ring wrap of
75 * descriptors before SW gets an interrupt and overwrites SW head, the gen bit
76 * in the descriptor will be wrong. Any overwritten descriptors' buffers will
77 * be gone forever and SW has no reasonable way to tell that this has happened.
78 * From SW perspective, when we finally get an interrupt, it looks like we're
79 * still waiting for descriptor to be done, stalling forever.
80 */
81 #define IDPF_RX_BUFQ_DESC_COUNT(RXD, NUM_BUFQ) ((RXD) / (NUM_BUFQ))
82
83 #define IDPF_RX_BUFQ_WORKING_SET(rxq) ((rxq)->desc_count - 1)
84
85 #define IDPF_RX_BUMP_NTC(rxq, ntc) \
86 do { \
87 if (unlikely(++(ntc) == (rxq)->desc_count)) { \
88 ntc = 0; \
89 idpf_queue_change(GEN_CHK, rxq); \
90 } \
91 } while (0)
92
93 #define IDPF_SINGLEQ_BUMP_RING_IDX(q, idx) \
94 do { \
95 if (unlikely(++(idx) == (q)->desc_count)) \
96 idx = 0; \
97 } while (0)
98
99 #define IDPF_RX_BUF_STRIDE 32
100 #define IDPF_RX_BUF_POST_STRIDE 16
101 #define IDPF_LOW_WATERMARK 64
102
103 #define IDPF_TX_TSO_MIN_MSS 88
104
105 /* Minimum number of descriptors between 2 descriptors with the RE bit set;
106 * only relevant in flow scheduling mode
107 */
108 #define IDPF_TX_SPLITQ_RE_MIN_GAP 64
109
110 #define IDPF_RX_BI_GEN_M BIT(16)
111 #define IDPF_RX_BI_BUFID_M GENMASK(15, 0)
112
113 #define IDPF_RXD_EOF_SPLITQ VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_EOF_M
114 #define IDPF_RXD_EOF_SINGLEQ VIRTCHNL2_RX_BASE_DESC_STATUS_EOF_M
115
116 #define IDPF_DESC_UNUSED(txq) \
117 ((((txq)->next_to_clean > (txq)->next_to_use) ? 0 : (txq)->desc_count) + \
118 (txq)->next_to_clean - (txq)->next_to_use - 1)
119
120 #define IDPF_TX_BUF_RSV_UNUSED(txq) ((txq)->stash->buf_stack.top)
121 #define IDPF_TX_BUF_RSV_LOW(txq) (IDPF_TX_BUF_RSV_UNUSED(txq) < \
122 (txq)->desc_count >> 2)
123
124 #define IDPF_TX_COMPLQ_OVERFLOW_THRESH(txcq) ((txcq)->desc_count >> 1)
125 /* Determine the absolute number of completions pending, i.e. the number of
126 * completions that are expected to arrive on the TX completion queue.
127 */
128 #define IDPF_TX_COMPLQ_PENDING(txq) \
129 (((txq)->num_completions_pending >= (txq)->complq->num_completions ? \
130 0 : U32_MAX) + \
131 (txq)->num_completions_pending - (txq)->complq->num_completions)
132
133 #define IDPF_TX_SPLITQ_COMPL_TAG_WIDTH 16
134 /* Adjust the generation for the completion tag and wrap if necessary */
135 #define IDPF_TX_ADJ_COMPL_TAG_GEN(txq) \
136 ((++(txq)->compl_tag_cur_gen) >= (txq)->compl_tag_gen_max ? \
137 0 : (txq)->compl_tag_cur_gen)
138
139 #define IDPF_TXD_LAST_DESC_CMD (IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS)
140
141 #define IDPF_TX_FLAGS_TSO BIT(0)
142 #define IDPF_TX_FLAGS_IPV4 BIT(1)
143 #define IDPF_TX_FLAGS_IPV6 BIT(2)
144 #define IDPF_TX_FLAGS_TUNNEL BIT(3)
145 #define IDPF_TX_FLAGS_TSYN BIT(4)
146
147 union idpf_tx_flex_desc {
148 struct idpf_flex_tx_desc q; /* queue based scheduling */
149 struct idpf_flex_tx_sched_desc flow; /* flow based scheduling */
150 };
151
152 #define idpf_tx_buf libeth_sqe
153
154 /**
155 * struct idpf_buf_lifo - LIFO for managing OOO completions
156 * @top: Used to know how many buffers are left
157 * @size: Total size of LIFO
158 * @bufs: Backing array
159 */
160 struct idpf_buf_lifo {
161 u16 top;
162 u16 size;
163 struct idpf_tx_stash **bufs;
164 };
165
166 /**
167 * struct idpf_tx_offload_params - Offload parameters for a given packet
168 * @tx_flags: Feature flags enabled for this packet
169 * @hdr_offsets: Offset parameter for single queue model
170 * @cd_tunneling: Type of tunneling enabled for single queue model
171 * @tso_len: Total length of payload to segment
172 * @mss: Segment size
173 * @tso_segs: Number of segments to be sent
174 * @tso_hdr_len: Length of headers to be duplicated
175 * @td_cmd: Command field to be inserted into descriptor
176 */
177 struct idpf_tx_offload_params {
178 u32 tx_flags;
179
180 u32 hdr_offsets;
181 u32 cd_tunneling;
182
183 u32 tso_len;
184 u16 mss;
185 u16 tso_segs;
186 u16 tso_hdr_len;
187
188 u16 td_cmd;
189 };
190
191 /**
192 * struct idpf_tx_splitq_params
193 * @dtype: General descriptor info
194 * @eop_cmd: Type of EOP
195 * @compl_tag: Associated tag for completion
196 * @td_tag: Descriptor tunneling tag
197 * @offload: Offload parameters
198 */
199 struct idpf_tx_splitq_params {
200 enum idpf_tx_desc_dtype_value dtype;
201 u16 eop_cmd;
202 union {
203 u16 compl_tag;
204 u16 td_tag;
205 };
206
207 struct idpf_tx_offload_params offload;
208 };
209
210 enum idpf_tx_ctx_desc_eipt_offload {
211 IDPF_TX_CTX_EXT_IP_NONE = 0x0,
212 IDPF_TX_CTX_EXT_IP_IPV6 = 0x1,
213 IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM = 0x2,
214 IDPF_TX_CTX_EXT_IP_IPV4 = 0x3
215 };
216
217 #define IDPF_TX_COMPLQ_CLEAN_BUDGET 256
218 #define IDPF_TX_MIN_PKT_LEN 17
219 #define IDPF_TX_DESCS_FOR_SKB_DATA_PTR 1
220 #define IDPF_TX_DESCS_PER_CACHE_LINE (L1_CACHE_BYTES / \
221 sizeof(struct idpf_flex_tx_desc))
222 #define IDPF_TX_DESCS_FOR_CTX 1
223 /* TX descriptors needed, worst case */
224 #define IDPF_TX_DESC_NEEDED (MAX_SKB_FRAGS + IDPF_TX_DESCS_FOR_CTX + \
225 IDPF_TX_DESCS_PER_CACHE_LINE + \
226 IDPF_TX_DESCS_FOR_SKB_DATA_PTR)
227
228 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
229 * In order to align with the read requests we will align the value to
230 * the nearest 4K which represents our maximum read request size.
231 */
232 #define IDPF_TX_MAX_READ_REQ_SIZE SZ_4K
233 #define IDPF_TX_MAX_DESC_DATA (SZ_16K - 1)
234 #define IDPF_TX_MAX_DESC_DATA_ALIGNED \
235 ALIGN_DOWN(IDPF_TX_MAX_DESC_DATA, IDPF_TX_MAX_READ_REQ_SIZE)
236
237 #define idpf_rx_buf libeth_fqe
238
239 #define IDPF_RX_MAX_PTYPE_PROTO_IDS 32
240 #define IDPF_RX_MAX_PTYPE_SZ (sizeof(struct virtchnl2_ptype) + \
241 (sizeof(u16) * IDPF_RX_MAX_PTYPE_PROTO_IDS))
242 #define IDPF_RX_PTYPE_HDR_SZ sizeof(struct virtchnl2_get_ptype_info)
243 #define IDPF_RX_MAX_PTYPES_PER_BUF \
244 DIV_ROUND_DOWN_ULL((IDPF_CTLQ_MAX_BUF_LEN - IDPF_RX_PTYPE_HDR_SZ), \
245 IDPF_RX_MAX_PTYPE_SZ)
246
247 #define IDPF_GET_PTYPE_SIZE(p) struct_size((p), proto_id, (p)->proto_id_count)
248
249 #define IDPF_TUN_IP_GRE (\
250 IDPF_PTYPE_TUNNEL_IP |\
251 IDPF_PTYPE_TUNNEL_IP_GRENAT)
252
253 #define IDPF_TUN_IP_GRE_MAC (\
254 IDPF_TUN_IP_GRE |\
255 IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC)
256
257 #define IDPF_RX_MAX_PTYPE 1024
258 #define IDPF_RX_MAX_BASE_PTYPE 256
259 #define IDPF_INVALID_PTYPE_ID 0xFFFF
260
261 enum idpf_tunnel_state {
262 IDPF_PTYPE_TUNNEL_IP = BIT(0),
263 IDPF_PTYPE_TUNNEL_IP_GRENAT = BIT(1),
264 IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC = BIT(2),
265 };
266
267 struct idpf_ptype_state {
268 bool outer_ip:1;
269 bool outer_frag:1;
270 u8 tunnel_state:6;
271 };
272
273 /**
274 * enum idpf_queue_flags_t
275 * @__IDPF_Q_GEN_CHK: Queues operating in splitq mode use a generation bit to
276 * identify new descriptor writebacks on the ring. HW sets
277 * the gen bit to 1 on the first writeback of any given
278 * descriptor. After the ring wraps, HW sets the gen bit of
279 * those descriptors to 0, and continues flipping
280 * 0->1 or 1->0 on each ring wrap. SW maintains its own
281 * gen bit to know what value will indicate writebacks on
282 * the next pass around the ring. E.g. it is initialized
283 * to 1 and knows that reading a gen bit of 1 in any
284 * descriptor on the initial pass of the ring indicates a
285 * writeback. It also flips on every ring wrap.
286 * @__IDPF_Q_RFL_GEN_CHK: Refill queues are SW only, so Q_GEN acts as the HW
287 * bit and Q_RFL_GEN is the SW bit.
288 * @__IDPF_Q_FLOW_SCH_EN: Enable flow scheduling
289 * @__IDPF_Q_SW_MARKER: Used to indicate TX queue marker completions
290 * @__IDPF_Q_POLL_MODE: Enable poll mode
291 * @__IDPF_Q_CRC_EN: enable CRC offload in singleq mode
292 * @__IDPF_Q_HSPLIT_EN: enable header split on Rx (splitq)
293 * @__IDPF_Q_PTP: indicates whether the Rx timestamping is enabled for the
294 * queue
295 * @__IDPF_Q_FLAGS_NBITS: Must be last
296 */
297 enum idpf_queue_flags_t {
298 __IDPF_Q_GEN_CHK,
299 __IDPF_Q_RFL_GEN_CHK,
300 __IDPF_Q_FLOW_SCH_EN,
301 __IDPF_Q_SW_MARKER,
302 __IDPF_Q_POLL_MODE,
303 __IDPF_Q_CRC_EN,
304 __IDPF_Q_HSPLIT_EN,
305 __IDPF_Q_PTP,
306
307 __IDPF_Q_FLAGS_NBITS,
308 };
309
310 #define idpf_queue_set(f, q) __set_bit(__IDPF_Q_##f, (q)->flags)
311 #define idpf_queue_clear(f, q) __clear_bit(__IDPF_Q_##f, (q)->flags)
312 #define idpf_queue_change(f, q) __change_bit(__IDPF_Q_##f, (q)->flags)
313 #define idpf_queue_has(f, q) test_bit(__IDPF_Q_##f, (q)->flags)
314
315 #define idpf_queue_has_clear(f, q) \
316 __test_and_clear_bit(__IDPF_Q_##f, (q)->flags)
317 #define idpf_queue_assign(f, q, v) \
318 __assign_bit(__IDPF_Q_##f, (q)->flags, v)
319
320 /**
321 * struct idpf_vec_regs
322 * @dyn_ctl_reg: Dynamic control interrupt register offset
323 * @itrn_reg: Interrupt Throttling Rate register offset
324 * @itrn_index_spacing: Register spacing between ITR registers of the same
325 * vector
326 */
327 struct idpf_vec_regs {
328 u32 dyn_ctl_reg;
329 u32 itrn_reg;
330 u32 itrn_index_spacing;
331 };
332
333 /**
334 * struct idpf_intr_reg
335 * @dyn_ctl: Dynamic control interrupt register
336 * @dyn_ctl_intena_m: Mask for dyn_ctl interrupt enable
337 * @dyn_ctl_intena_msk_m: Mask for dyn_ctl interrupt enable mask
338 * @dyn_ctl_itridx_s: Register bit offset for ITR index
339 * @dyn_ctl_itridx_m: Mask for ITR index
340 * @dyn_ctl_intrvl_s: Register bit offset for ITR interval
341 * @dyn_ctl_wb_on_itr_m: Mask for WB on ITR feature
342 * @dyn_ctl_sw_itridx_ena_m: Mask for SW ITR index
343 * @dyn_ctl_swint_trig_m: Mask for dyn_ctl SW triggered interrupt enable
344 * @rx_itr: RX ITR register
345 * @tx_itr: TX ITR register
346 * @icr_ena: Interrupt cause register offset
347 * @icr_ena_ctlq_m: Mask for ICR
348 */
349 struct idpf_intr_reg {
350 void __iomem *dyn_ctl;
351 u32 dyn_ctl_intena_m;
352 u32 dyn_ctl_intena_msk_m;
353 u32 dyn_ctl_itridx_s;
354 u32 dyn_ctl_itridx_m;
355 u32 dyn_ctl_intrvl_s;
356 u32 dyn_ctl_wb_on_itr_m;
357 u32 dyn_ctl_sw_itridx_ena_m;
358 u32 dyn_ctl_swint_trig_m;
359 void __iomem *rx_itr;
360 void __iomem *tx_itr;
361 void __iomem *icr_ena;
362 u32 icr_ena_ctlq_m;
363 };
364
365 /**
366 * struct idpf_q_vector
367 * @vport: Vport back pointer
368 * @num_rxq: Number of RX queues
369 * @num_txq: Number of TX queues
370 * @num_bufq: Number of buffer queues
371 * @num_complq: number of completion queues
372 * @rx: Array of RX queues to service
373 * @tx: Array of TX queues to service
374 * @bufq: Array of buffer queues to service
375 * @complq: array of completion queues
376 * @intr_reg: See struct idpf_intr_reg
377 * @napi: napi handler
378 * @total_events: Number of interrupts processed
379 * @wb_on_itr: whether WB on ITR is enabled
380 * @tx_dim: Data for TX net_dim algorithm
381 * @tx_itr_value: TX interrupt throttling rate
382 * @tx_intr_mode: Dynamic ITR or not
383 * @tx_itr_idx: TX ITR index
384 * @rx_dim: Data for RX net_dim algorithm
385 * @rx_itr_value: RX interrupt throttling rate
386 * @rx_intr_mode: Dynamic ITR or not
387 * @rx_itr_idx: RX ITR index
388 * @v_idx: Vector index
389 */
390 struct idpf_q_vector {
391 __cacheline_group_begin_aligned(read_mostly);
392 struct idpf_vport *vport;
393
394 u16 num_rxq;
395 u16 num_txq;
396 u16 num_bufq;
397 u16 num_complq;
398 struct idpf_rx_queue **rx;
399 struct idpf_tx_queue **tx;
400 struct idpf_buf_queue **bufq;
401 struct idpf_compl_queue **complq;
402
403 struct idpf_intr_reg intr_reg;
404 __cacheline_group_end_aligned(read_mostly);
405
406 __cacheline_group_begin_aligned(read_write);
407 struct napi_struct napi;
408 u16 total_events;
409 bool wb_on_itr;
410
411 struct dim tx_dim;
412 u16 tx_itr_value;
413 bool tx_intr_mode;
414 u32 tx_itr_idx;
415
416 struct dim rx_dim;
417 u16 rx_itr_value;
418 bool rx_intr_mode;
419 u32 rx_itr_idx;
420 __cacheline_group_end_aligned(read_write);
421
422 __cacheline_group_begin_aligned(cold);
423 u16 v_idx;
424
425 __cacheline_group_end_aligned(cold);
426 };
427 libeth_cacheline_set_assert(struct idpf_q_vector, 120,
428 24 + sizeof(struct napi_struct) +
429 2 * sizeof(struct dim),
430 8);
431
432 struct idpf_rx_queue_stats {
433 u64_stats_t packets;
434 u64_stats_t bytes;
435 u64_stats_t rsc_pkts;
436 u64_stats_t hw_csum_err;
437 u64_stats_t hsplit_pkts;
438 u64_stats_t hsplit_buf_ovf;
439 u64_stats_t bad_descs;
440 };
441
442 struct idpf_tx_queue_stats {
443 u64_stats_t packets;
444 u64_stats_t bytes;
445 u64_stats_t lso_pkts;
446 u64_stats_t linearize;
447 u64_stats_t q_busy;
448 u64_stats_t skb_drops;
449 u64_stats_t dma_map_errs;
450 u64_stats_t tstamp_skipped;
451 };
452
453 #define IDPF_ITR_DYNAMIC 1
454 #define IDPF_ITR_MAX 0x1FE0
455 #define IDPF_ITR_20K 0x0032
456 #define IDPF_ITR_GRAN_S 1 /* Assume ITR granularity is 2us */
457 #define IDPF_ITR_MASK 0x1FFE /* ITR register value alignment mask */
458 #define ITR_REG_ALIGN(setting) ((setting) & IDPF_ITR_MASK)
459 #define IDPF_ITR_IS_DYNAMIC(itr_mode) (itr_mode)
460 #define IDPF_ITR_TX_DEF IDPF_ITR_20K
461 #define IDPF_ITR_RX_DEF IDPF_ITR_20K
462 /* Index used for 'SW ITR' update in DYN_CTL register */
463 #define IDPF_SW_ITR_UPDATE_IDX 2
464 /* Index used for 'No ITR' update in DYN_CTL register */
465 #define IDPF_NO_ITR_UPDATE_IDX 3
466 #define IDPF_ITR_IDX_SPACING(spacing, dflt) (spacing ? spacing : dflt)
467 #define IDPF_DIM_DEFAULT_PROFILE_IX 1
468
469 /**
470 * struct idpf_txq_stash - Tx buffer stash for Flow-based scheduling mode
471 * @buf_stack: Stack of empty buffers to store buffer info for out of order
472 * buffer completions. See struct idpf_buf_lifo
473 * @sched_buf_hash: Hash table to store buffers
474 */
475 struct idpf_txq_stash {
476 struct idpf_buf_lifo buf_stack;
477 DECLARE_HASHTABLE(sched_buf_hash, 12);
478 } ____cacheline_aligned;
479
480 /**
481 * struct idpf_rx_queue - software structure representing a receive queue
482 * @rx: universal receive descriptor array
483 * @single_buf: buffer descriptor array in singleq
484 * @desc_ring: virtual descriptor ring address
485 * @bufq_sets: Pointer to the array of buffer queues in splitq mode
486 * @napi: NAPI instance corresponding to this queue (splitq)
487 * @rx_buf: See struct &libeth_fqe
488 * @pp: Page pool pointer in singleq mode
489 * @netdev: &net_device corresponding to this queue
490 * @tail: Tail offset. Used for both queue models single and split.
491 * @flags: See enum idpf_queue_flags_t
492 * @idx: For RX queue, it is used to index to total RX queue across groups and
493 * used for skb reporting.
494 * @desc_count: Number of descriptors
495 * @rxdids: Supported RX descriptor ids
496 * @rx_ptype_lkup: LUT of Rx ptypes
497 * @next_to_use: Next descriptor to use
498 * @next_to_clean: Next descriptor to clean
499 * @next_to_alloc: RX buffer to allocate at
500 * @skb: Pointer to the skb
501 * @truesize: data buffer truesize in singleq
502 * @cached_phc_time: Cached PHC time for the Rx queue
503 * @stats_sync: See struct u64_stats_sync
504 * @q_stats: See union idpf_rx_queue_stats
505 * @q_id: Queue id
506 * @size: Length of descriptor ring in bytes
507 * @dma: Physical address of ring
508 * @q_vector: Backreference to associated vector
509 * @rx_buffer_low_watermark: RX buffer low watermark
510 * @rx_hbuf_size: Header buffer size
511 * @rx_buf_size: Buffer size
512 * @rx_max_pkt_size: RX max packet size
513 */
514 struct idpf_rx_queue {
515 __cacheline_group_begin_aligned(read_mostly);
516 union {
517 union virtchnl2_rx_desc *rx;
518 struct virtchnl2_singleq_rx_buf_desc *single_buf;
519
520 void *desc_ring;
521 };
522 union {
523 struct {
524 struct idpf_bufq_set *bufq_sets;
525 struct napi_struct *napi;
526 };
527 struct {
528 struct libeth_fqe *rx_buf;
529 struct page_pool *pp;
530 };
531 };
532 struct net_device *netdev;
533 void __iomem *tail;
534
535 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
536 u16 idx;
537 u16 desc_count;
538
539 u32 rxdids;
540 const struct libeth_rx_pt *rx_ptype_lkup;
541 __cacheline_group_end_aligned(read_mostly);
542
543 __cacheline_group_begin_aligned(read_write);
544 u16 next_to_use;
545 u16 next_to_clean;
546 u16 next_to_alloc;
547
548 struct sk_buff *skb;
549 u32 truesize;
550 u64 cached_phc_time;
551
552 struct u64_stats_sync stats_sync;
553 struct idpf_rx_queue_stats q_stats;
554 __cacheline_group_end_aligned(read_write);
555
556 __cacheline_group_begin_aligned(cold);
557 u32 q_id;
558 u32 size;
559 dma_addr_t dma;
560
561 struct idpf_q_vector *q_vector;
562
563 u16 rx_buffer_low_watermark;
564 u16 rx_hbuf_size;
565 u16 rx_buf_size;
566 u16 rx_max_pkt_size;
567 __cacheline_group_end_aligned(cold);
568 };
569 libeth_cacheline_set_assert(struct idpf_rx_queue, 64,
570 88 + sizeof(struct u64_stats_sync),
571 32);
572
573 /**
574 * struct idpf_tx_queue - software structure representing a transmit queue
575 * @base_tx: base Tx descriptor array
576 * @base_ctx: base Tx context descriptor array
577 * @flex_tx: flex Tx descriptor array
578 * @flex_ctx: flex Tx context descriptor array
579 * @desc_ring: virtual descriptor ring address
580 * @tx_buf: See struct idpf_tx_buf
581 * @txq_grp: See struct idpf_txq_group
582 * @dev: Device back pointer for DMA mapping
583 * @tail: Tail offset. Used for both queue models single and split
584 * @flags: See enum idpf_queue_flags_t
585 * @idx: For TX queue, it is used as index to map between TX queue group and
586 * hot path TX pointers stored in vport. Used in both singleq/splitq.
587 * @desc_count: Number of descriptors
588 * @tx_min_pkt_len: Min supported packet length
589 * @compl_tag_gen_s: Completion tag generation bit
590 * The format of the completion tag will change based on the TXQ
591 * descriptor ring size so that we can maintain roughly the same level
592 * of "uniqueness" across all descriptor sizes. For example, if the
593 * TXQ descriptor ring size is 64 (the minimum size supported), the
594 * completion tag will be formatted as below:
595 * 15 6 5 0
596 * --------------------------------
597 * | GEN=0-1023 |IDX = 0-63|
598 * --------------------------------
599 *
600 * This gives us 64*1024 = 65536 possible unique values. Similarly, if
601 * the TXQ descriptor ring size is 8160 (the maximum size supported),
602 * the completion tag will be formatted as below:
603 * 15 13 12 0
604 * --------------------------------
605 * |GEN | IDX = 0-8159 |
606 * --------------------------------
607 *
608 * This gives us 8*8160 = 65280 possible unique values.
609 * @netdev: &net_device corresponding to this queue
610 * @next_to_use: Next descriptor to use
611 * @next_to_clean: Next descriptor to clean
612 * @cleaned_bytes: Splitq only, TXQ only: When a TX completion is received on
613 * the TX completion queue, it can be for any TXQ associated
614 * with that completion queue. This means we can clean up to
615 * N TXQs during a single call to clean the completion queue.
616 * cleaned_bytes|pkts tracks the clean stats per TXQ during
617 * that single call to clean the completion queue. By doing so,
618 * we can update BQL with aggregate cleaned stats for each TXQ
619 * only once at the end of the cleaning routine.
620 * @clean_budget: singleq only, queue cleaning budget
621 * @cleaned_pkts: Number of packets cleaned for the above said case
622 * @tx_max_bufs: Max buffers that can be transmitted with scatter-gather
623 * @stash: Tx buffer stash for Flow-based scheduling mode
624 * @compl_tag_bufid_m: Completion tag buffer id mask
625 * @compl_tag_cur_gen: Used to keep track of current completion tag generation
626 * @compl_tag_gen_max: To determine when compl_tag_cur_gen should be reset
627 * @cached_tstamp_caps: Tx timestamp capabilities negotiated with the CP
628 * @tstamp_task: Work that handles Tx timestamp read
629 * @stats_sync: See struct u64_stats_sync
630 * @q_stats: See union idpf_tx_queue_stats
631 * @q_id: Queue id
632 * @size: Length of descriptor ring in bytes
633 * @dma: Physical address of ring
634 * @q_vector: Backreference to associated vector
635 */
636 struct idpf_tx_queue {
637 __cacheline_group_begin_aligned(read_mostly);
638 union {
639 struct idpf_base_tx_desc *base_tx;
640 struct idpf_base_tx_ctx_desc *base_ctx;
641 union idpf_tx_flex_desc *flex_tx;
642 union idpf_flex_tx_ctx_desc *flex_ctx;
643
644 void *desc_ring;
645 };
646 struct libeth_sqe *tx_buf;
647 struct idpf_txq_group *txq_grp;
648 struct device *dev;
649 void __iomem *tail;
650
651 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
652 u16 idx;
653 u16 desc_count;
654
655 u16 tx_min_pkt_len;
656 u16 compl_tag_gen_s;
657
658 struct net_device *netdev;
659 __cacheline_group_end_aligned(read_mostly);
660
661 __cacheline_group_begin_aligned(read_write);
662 u16 next_to_use;
663 u16 next_to_clean;
664
665 union {
666 u32 cleaned_bytes;
667 u32 clean_budget;
668 };
669 u16 cleaned_pkts;
670
671 u16 tx_max_bufs;
672 struct idpf_txq_stash *stash;
673
674 u16 compl_tag_bufid_m;
675 u16 compl_tag_cur_gen;
676 u16 compl_tag_gen_max;
677
678 struct idpf_ptp_vport_tx_tstamp_caps *cached_tstamp_caps;
679 struct work_struct *tstamp_task;
680
681 struct u64_stats_sync stats_sync;
682 struct idpf_tx_queue_stats q_stats;
683 __cacheline_group_end_aligned(read_write);
684
685 __cacheline_group_begin_aligned(cold);
686 u32 q_id;
687 u32 size;
688 dma_addr_t dma;
689
690 struct idpf_q_vector *q_vector;
691 __cacheline_group_end_aligned(cold);
692 };
693 libeth_cacheline_set_assert(struct idpf_tx_queue, 64,
694 112 + sizeof(struct u64_stats_sync),
695 24);
696
697 /**
698 * struct idpf_buf_queue - software structure representing a buffer queue
699 * @split_buf: buffer descriptor array
700 * @hdr_buf: &libeth_fqe for header buffers
701 * @hdr_pp: &page_pool for header buffers
702 * @buf: &libeth_fqe for data buffers
703 * @pp: &page_pool for data buffers
704 * @tail: Tail offset
705 * @flags: See enum idpf_queue_flags_t
706 * @desc_count: Number of descriptors
707 * @next_to_use: Next descriptor to use
708 * @next_to_clean: Next descriptor to clean
709 * @next_to_alloc: RX buffer to allocate at
710 * @hdr_truesize: truesize for buffer headers
711 * @truesize: truesize for data buffers
712 * @q_id: Queue id
713 * @size: Length of descriptor ring in bytes
714 * @dma: Physical address of ring
715 * @q_vector: Backreference to associated vector
716 * @rx_buffer_low_watermark: RX buffer low watermark
717 * @rx_hbuf_size: Header buffer size
718 * @rx_buf_size: Buffer size
719 */
720 struct idpf_buf_queue {
721 __cacheline_group_begin_aligned(read_mostly);
722 struct virtchnl2_splitq_rx_buf_desc *split_buf;
723 struct libeth_fqe *hdr_buf;
724 struct page_pool *hdr_pp;
725 struct libeth_fqe *buf;
726 struct page_pool *pp;
727 void __iomem *tail;
728
729 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
730 u32 desc_count;
731 __cacheline_group_end_aligned(read_mostly);
732
733 __cacheline_group_begin_aligned(read_write);
734 u32 next_to_use;
735 u32 next_to_clean;
736 u32 next_to_alloc;
737
738 u32 hdr_truesize;
739 u32 truesize;
740 __cacheline_group_end_aligned(read_write);
741
742 __cacheline_group_begin_aligned(cold);
743 u32 q_id;
744 u32 size;
745 dma_addr_t dma;
746
747 struct idpf_q_vector *q_vector;
748
749 u16 rx_buffer_low_watermark;
750 u16 rx_hbuf_size;
751 u16 rx_buf_size;
752 __cacheline_group_end_aligned(cold);
753 };
754 libeth_cacheline_set_assert(struct idpf_buf_queue, 64, 24, 32);
755
756 /**
757 * struct idpf_compl_queue - software structure representing a completion queue
758 * @comp: completion descriptor array
759 * @txq_grp: See struct idpf_txq_group
760 * @flags: See enum idpf_queue_flags_t
761 * @desc_count: Number of descriptors
762 * @clean_budget: queue cleaning budget
763 * @netdev: &net_device corresponding to this queue
764 * @next_to_use: Next descriptor to use. Relevant in both split & single txq
765 * and bufq.
766 * @next_to_clean: Next descriptor to clean
767 * @num_completions: Only relevant for TX completion queue. It tracks the
768 * number of completions received to compare against the
769 * number of completions pending, as accumulated by the
770 * TX queues.
771 * @q_id: Queue id
772 * @size: Length of descriptor ring in bytes
773 * @dma: Physical address of ring
774 * @q_vector: Backreference to associated vector
775 */
776 struct idpf_compl_queue {
777 __cacheline_group_begin_aligned(read_mostly);
778 struct idpf_splitq_tx_compl_desc *comp;
779 struct idpf_txq_group *txq_grp;
780
781 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
782 u32 desc_count;
783
784 u32 clean_budget;
785 struct net_device *netdev;
786 __cacheline_group_end_aligned(read_mostly);
787
788 __cacheline_group_begin_aligned(read_write);
789 u32 next_to_use;
790 u32 next_to_clean;
791
792 aligned_u64 num_completions;
793 __cacheline_group_end_aligned(read_write);
794
795 __cacheline_group_begin_aligned(cold);
796 u32 q_id;
797 u32 size;
798 dma_addr_t dma;
799
800 struct idpf_q_vector *q_vector;
801 __cacheline_group_end_aligned(cold);
802 };
803 libeth_cacheline_set_assert(struct idpf_compl_queue, 40, 16, 24);
804
805 /**
806 * struct idpf_sw_queue
807 * @ring: Pointer to the ring
808 * @flags: See enum idpf_queue_flags_t
809 * @desc_count: Descriptor count
810 * @next_to_use: Buffer to allocate at
811 * @next_to_clean: Next descriptor to clean
812 *
813 * Software queues are used in splitq mode to manage buffers between rxq
814 * producer and the bufq consumer. These are required in order to maintain a
815 * lockless buffer management system and are strictly software only constructs.
816 */
817 struct idpf_sw_queue {
818 __cacheline_group_begin_aligned(read_mostly);
819 u32 *ring;
820
821 DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
822 u32 desc_count;
823 __cacheline_group_end_aligned(read_mostly);
824
825 __cacheline_group_begin_aligned(read_write);
826 u32 next_to_use;
827 u32 next_to_clean;
828 __cacheline_group_end_aligned(read_write);
829 };
830 libeth_cacheline_group_assert(struct idpf_sw_queue, read_mostly, 24);
831 libeth_cacheline_group_assert(struct idpf_sw_queue, read_write, 8);
832 libeth_cacheline_struct_assert(struct idpf_sw_queue, 24, 8);
833
834 /**
835 * struct idpf_rxq_set
836 * @rxq: RX queue
837 * @refillq: pointers to refill queues
838 *
839 * Splitq only. idpf_rxq_set associates an rxq with at an array of refillqs.
840 * Each rxq needs a refillq to return used buffers back to the respective bufq.
841 * Bufqs then clean these refillqs for buffers to give to hardware.
842 */
843 struct idpf_rxq_set {
844 struct idpf_rx_queue rxq;
845 struct idpf_sw_queue *refillq[IDPF_MAX_BUFQS_PER_RXQ_GRP];
846 };
847
848 /**
849 * struct idpf_bufq_set
850 * @bufq: Buffer queue
851 * @num_refillqs: Number of refill queues. This is always equal to num_rxq_sets
852 * in idpf_rxq_group.
853 * @refillqs: Pointer to refill queues array.
854 *
855 * Splitq only. idpf_bufq_set associates a bufq to an array of refillqs.
856 * In this bufq_set, there will be one refillq for each rxq in this rxq_group.
857 * Used buffers received by rxqs will be put on refillqs which bufqs will
858 * clean to return new buffers back to hardware.
859 *
860 * Buffers needed by some number of rxqs associated in this rxq_group are
861 * managed by at most two bufqs (depending on performance configuration).
862 */
863 struct idpf_bufq_set {
864 struct idpf_buf_queue bufq;
865 int num_refillqs;
866 struct idpf_sw_queue *refillqs;
867 };
868
869 /**
870 * struct idpf_rxq_group
871 * @vport: Vport back pointer
872 * @singleq: Struct with single queue related members
873 * @singleq.num_rxq: Number of RX queues associated
874 * @singleq.rxqs: Array of RX queue pointers
875 * @splitq: Struct with split queue related members
876 * @splitq.num_rxq_sets: Number of RX queue sets
877 * @splitq.rxq_sets: Array of RX queue sets
878 * @splitq.bufq_sets: Buffer queue set pointer
879 *
880 * In singleq mode, an rxq_group is simply an array of rxqs. In splitq, a
881 * rxq_group contains all the rxqs, bufqs and refillqs needed to
882 * manage buffers in splitq mode.
883 */
884 struct idpf_rxq_group {
885 struct idpf_vport *vport;
886
887 union {
888 struct {
889 u16 num_rxq;
890 struct idpf_rx_queue *rxqs[IDPF_LARGE_MAX_Q];
891 } singleq;
892 struct {
893 u16 num_rxq_sets;
894 struct idpf_rxq_set *rxq_sets[IDPF_LARGE_MAX_Q];
895 struct idpf_bufq_set *bufq_sets;
896 } splitq;
897 };
898 };
899
900 /**
901 * struct idpf_txq_group
902 * @vport: Vport back pointer
903 * @num_txq: Number of TX queues associated
904 * @txqs: Array of TX queue pointers
905 * @stashes: array of OOO stashes for the queues
906 * @complq: Associated completion queue pointer, split queue only
907 * @num_completions_pending: Total number of completions pending for the
908 * completion queue, acculumated for all TX queues
909 * associated with that completion queue.
910 *
911 * Between singleq and splitq, a txq_group is largely the same except for the
912 * complq. In splitq a single complq is responsible for handling completions
913 * for some number of txqs associated in this txq_group.
914 */
915 struct idpf_txq_group {
916 struct idpf_vport *vport;
917
918 u16 num_txq;
919 struct idpf_tx_queue *txqs[IDPF_LARGE_MAX_Q];
920 struct idpf_txq_stash *stashes;
921
922 struct idpf_compl_queue *complq;
923
924 aligned_u64 num_completions_pending;
925 };
926
idpf_q_vector_to_mem(const struct idpf_q_vector * q_vector)927 static inline int idpf_q_vector_to_mem(const struct idpf_q_vector *q_vector)
928 {
929 u32 cpu;
930
931 if (!q_vector)
932 return NUMA_NO_NODE;
933
934 cpu = cpumask_first(&q_vector->napi.config->affinity_mask);
935
936 return cpu < nr_cpu_ids ? cpu_to_mem(cpu) : NUMA_NO_NODE;
937 }
938
939 /**
940 * idpf_size_to_txd_count - Get number of descriptors needed for large Tx frag
941 * @size: transmit request size in bytes
942 *
943 * In the case where a large frag (>= 16K) needs to be split across multiple
944 * descriptors, we need to assume that we can have no more than 12K of data
945 * per descriptor due to hardware alignment restrictions (4K alignment).
946 */
idpf_size_to_txd_count(unsigned int size)947 static inline u32 idpf_size_to_txd_count(unsigned int size)
948 {
949 return DIV_ROUND_UP(size, IDPF_TX_MAX_DESC_DATA_ALIGNED);
950 }
951
952 /**
953 * idpf_tx_singleq_build_ctob - populate command tag offset and size
954 * @td_cmd: Command to be filled in desc
955 * @td_offset: Offset to be filled in desc
956 * @size: Size of the buffer
957 * @td_tag: td tag to be filled
958 *
959 * Returns the 64 bit value populated with the input parameters
960 */
idpf_tx_singleq_build_ctob(u64 td_cmd,u64 td_offset,unsigned int size,u64 td_tag)961 static inline __le64 idpf_tx_singleq_build_ctob(u64 td_cmd, u64 td_offset,
962 unsigned int size, u64 td_tag)
963 {
964 return cpu_to_le64(IDPF_TX_DESC_DTYPE_DATA |
965 (td_cmd << IDPF_TXD_QW1_CMD_S) |
966 (td_offset << IDPF_TXD_QW1_OFFSET_S) |
967 ((u64)size << IDPF_TXD_QW1_TX_BUF_SZ_S) |
968 (td_tag << IDPF_TXD_QW1_L2TAG1_S));
969 }
970
971 void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc,
972 struct idpf_tx_splitq_params *params,
973 u16 td_cmd, u16 size);
974 void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc,
975 struct idpf_tx_splitq_params *params,
976 u16 td_cmd, u16 size);
977 /**
978 * idpf_tx_splitq_build_desc - determine which type of data descriptor to build
979 * @desc: descriptor to populate
980 * @params: pointer to tx params struct
981 * @td_cmd: command to be filled in desc
982 * @size: size of buffer
983 */
idpf_tx_splitq_build_desc(union idpf_tx_flex_desc * desc,struct idpf_tx_splitq_params * params,u16 td_cmd,u16 size)984 static inline void idpf_tx_splitq_build_desc(union idpf_tx_flex_desc *desc,
985 struct idpf_tx_splitq_params *params,
986 u16 td_cmd, u16 size)
987 {
988 if (params->dtype == IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2)
989 idpf_tx_splitq_build_ctb(desc, params, td_cmd, size);
990 else
991 idpf_tx_splitq_build_flow_desc(desc, params, td_cmd, size);
992 }
993
994 /**
995 * idpf_vport_intr_set_wb_on_itr - enable descriptor writeback on disabled interrupts
996 * @q_vector: pointer to queue vector struct
997 */
idpf_vport_intr_set_wb_on_itr(struct idpf_q_vector * q_vector)998 static inline void idpf_vport_intr_set_wb_on_itr(struct idpf_q_vector *q_vector)
999 {
1000 struct idpf_intr_reg *reg;
1001
1002 if (q_vector->wb_on_itr)
1003 return;
1004
1005 q_vector->wb_on_itr = true;
1006 reg = &q_vector->intr_reg;
1007
1008 writel(reg->dyn_ctl_wb_on_itr_m | reg->dyn_ctl_intena_msk_m |
1009 (IDPF_NO_ITR_UPDATE_IDX << reg->dyn_ctl_itridx_s),
1010 reg->dyn_ctl);
1011 }
1012
1013 int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget);
1014 void idpf_vport_init_num_qs(struct idpf_vport *vport,
1015 struct virtchnl2_create_vport *vport_msg);
1016 void idpf_vport_calc_num_q_desc(struct idpf_vport *vport);
1017 int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_index,
1018 struct virtchnl2_create_vport *vport_msg,
1019 struct idpf_vport_max_q *max_q);
1020 void idpf_vport_calc_num_q_groups(struct idpf_vport *vport);
1021 int idpf_vport_queues_alloc(struct idpf_vport *vport);
1022 void idpf_vport_queues_rel(struct idpf_vport *vport);
1023 void idpf_vport_intr_rel(struct idpf_vport *vport);
1024 int idpf_vport_intr_alloc(struct idpf_vport *vport);
1025 void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector);
1026 void idpf_vport_intr_deinit(struct idpf_vport *vport);
1027 int idpf_vport_intr_init(struct idpf_vport *vport);
1028 void idpf_vport_intr_ena(struct idpf_vport *vport);
1029 int idpf_config_rss(struct idpf_vport *vport);
1030 int idpf_init_rss(struct idpf_vport *vport);
1031 void idpf_deinit_rss(struct idpf_vport *vport);
1032 int idpf_rx_bufs_init_all(struct idpf_vport *vport);
1033 void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb,
1034 unsigned int size);
1035 struct sk_buff *idpf_rx_build_skb(const struct libeth_fqe *buf, u32 size);
1036 void idpf_tx_buf_hw_update(struct idpf_tx_queue *tx_q, u32 val,
1037 bool xmit_more);
1038 unsigned int idpf_size_to_txd_count(unsigned int size);
1039 netdev_tx_t idpf_tx_drop_skb(struct idpf_tx_queue *tx_q, struct sk_buff *skb);
1040 void idpf_tx_dma_map_error(struct idpf_tx_queue *txq, struct sk_buff *skb,
1041 struct idpf_tx_buf *first, u16 ring_idx);
1042 unsigned int idpf_tx_desc_count_required(struct idpf_tx_queue *txq,
1043 struct sk_buff *skb);
1044 void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue);
1045 netdev_tx_t idpf_tx_singleq_frame(struct sk_buff *skb,
1046 struct idpf_tx_queue *tx_q);
1047 netdev_tx_t idpf_tx_start(struct sk_buff *skb, struct net_device *netdev);
1048 bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_rx_queue *rxq,
1049 u16 cleaned_count);
1050 int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off);
1051
1052 #endif /* !_IDPF_TXRX_H_ */
1053