1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/rculist_nulls.h> 60 #include <linux/poll.h> 61 #include <linux/sockptr.h> 62 #include <linux/indirect_call_wrapper.h> 63 #include <linux/atomic.h> 64 #include <linux/refcount.h> 65 #include <linux/llist.h> 66 #include <net/dst.h> 67 #include <net/checksum.h> 68 #include <net/tcp_states.h> 69 #include <linux/net_tstamp.h> 70 #include <net/l3mdev.h> 71 #include <uapi/linux/socket.h> 72 73 /* 74 * This structure really needs to be cleaned up. 75 * Most of it is for TCP, and not used by any of 76 * the other protocols. 77 */ 78 79 /* This is the per-socket lock. The spinlock provides a synchronization 80 * between user contexts and software interrupt processing, whereas the 81 * mini-semaphore synchronizes multiple users amongst themselves. 82 */ 83 typedef struct { 84 spinlock_t slock; 85 int owned; 86 wait_queue_head_t wq; 87 /* 88 * We express the mutex-alike socket_lock semantics 89 * to the lock validator by explicitly managing 90 * the slock as a lock variant (in addition to 91 * the slock itself): 92 */ 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 struct lockdep_map dep_map; 95 #endif 96 } socket_lock_t; 97 98 struct sock; 99 struct proto; 100 struct net; 101 102 typedef __u32 __bitwise __portpair; 103 typedef __u64 __bitwise __addrpair; 104 105 /** 106 * struct sock_common - minimal network layer representation of sockets 107 * @skc_daddr: Foreign IPv4 addr 108 * @skc_rcv_saddr: Bound local IPv4 addr 109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 110 * @skc_hash: hash value used with various protocol lookup tables 111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 112 * @skc_dport: placeholder for inet_dport/tw_dport 113 * @skc_num: placeholder for inet_num/tw_num 114 * @skc_portpair: __u32 union of @skc_dport & @skc_num 115 * @skc_family: network address family 116 * @skc_state: Connection state 117 * @skc_reuse: %SO_REUSEADDR setting 118 * @skc_reuseport: %SO_REUSEPORT setting 119 * @skc_ipv6only: socket is IPV6 only 120 * @skc_net_refcnt: socket is using net ref counting 121 * @skc_bound_dev_if: bound device index if != 0 122 * @skc_bind_node: bind hash linkage for various protocol lookup tables 123 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 124 * @skc_prot: protocol handlers inside a network family 125 * @skc_net: reference to the network namespace of this socket 126 * @skc_v6_daddr: IPV6 destination address 127 * @skc_v6_rcv_saddr: IPV6 source address 128 * @skc_cookie: socket's cookie value 129 * @skc_node: main hash linkage for various protocol lookup tables 130 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 131 * @skc_tx_queue_mapping: tx queue number for this connection 132 * @skc_rx_queue_mapping: rx queue number for this connection 133 * @skc_flags: place holder for sk_flags 134 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 135 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 136 * @skc_listener: connection request listener socket (aka rsk_listener) 137 * [union with @skc_flags] 138 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 139 * [union with @skc_flags] 140 * @skc_incoming_cpu: record/match cpu processing incoming packets 141 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 142 * [union with @skc_incoming_cpu] 143 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 144 * [union with @skc_incoming_cpu] 145 * @skc_refcnt: reference count 146 * 147 * This is the minimal network layer representation of sockets, the header 148 * for struct sock and struct inet_timewait_sock. 149 */ 150 struct sock_common { 151 union { 152 __addrpair skc_addrpair; 153 struct { 154 __be32 skc_daddr; 155 __be32 skc_rcv_saddr; 156 }; 157 }; 158 union { 159 unsigned int skc_hash; 160 __u16 skc_u16hashes[2]; 161 }; 162 /* skc_dport && skc_num must be grouped as well */ 163 union { 164 __portpair skc_portpair; 165 struct { 166 __be16 skc_dport; 167 __u16 skc_num; 168 }; 169 }; 170 171 unsigned short skc_family; 172 volatile unsigned char skc_state; 173 unsigned char skc_reuse:4; 174 unsigned char skc_reuseport:1; 175 unsigned char skc_ipv6only:1; 176 unsigned char skc_net_refcnt:1; 177 int skc_bound_dev_if; 178 union { 179 struct hlist_node skc_bind_node; 180 struct hlist_node skc_portaddr_node; 181 }; 182 struct proto *skc_prot; 183 possible_net_t skc_net; 184 185 #if IS_ENABLED(CONFIG_IPV6) 186 struct in6_addr skc_v6_daddr; 187 struct in6_addr skc_v6_rcv_saddr; 188 #endif 189 190 atomic64_t skc_cookie; 191 192 /* following fields are padding to force 193 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 194 * assuming IPV6 is enabled. We use this padding differently 195 * for different kind of 'sockets' 196 */ 197 union { 198 unsigned long skc_flags; 199 struct sock *skc_listener; /* request_sock */ 200 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 201 }; 202 /* 203 * fields between dontcopy_begin/dontcopy_end 204 * are not copied in sock_copy() 205 */ 206 /* private: */ 207 int skc_dontcopy_begin[0]; 208 /* public: */ 209 union { 210 struct hlist_node skc_node; 211 struct hlist_nulls_node skc_nulls_node; 212 }; 213 unsigned short skc_tx_queue_mapping; 214 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 215 unsigned short skc_rx_queue_mapping; 216 #endif 217 union { 218 int skc_incoming_cpu; 219 u32 skc_rcv_wnd; 220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 221 }; 222 223 refcount_t skc_refcnt; 224 /* private: */ 225 int skc_dontcopy_end[0]; 226 union { 227 u32 skc_rxhash; 228 u32 skc_window_clamp; 229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 230 }; 231 /* public: */ 232 }; 233 234 struct bpf_local_storage; 235 struct sk_filter; 236 237 /** 238 * struct sock - network layer representation of sockets 239 * @__sk_common: shared layout with inet_timewait_sock 240 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 241 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 242 * @sk_lock: synchronizer 243 * @sk_kern_sock: True if sock is using kernel lock classes 244 * @sk_rcvbuf: size of receive buffer in bytes 245 * @sk_wq: sock wait queue and async head 246 * @sk_rx_dst: receive input route used by early demux 247 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst 248 * @sk_rx_dst_cookie: cookie for @sk_rx_dst 249 * @sk_dst_cache: destination cache 250 * @sk_dst_pending_confirm: need to confirm neighbour 251 * @sk_policy: flow policy 252 * @psp_assoc: PSP association, if socket is PSP-secured 253 * @sk_receive_queue: incoming packets 254 * @sk_wmem_alloc: transmit queue bytes committed 255 * @sk_tsq_flags: TCP Small Queues flags 256 * @sk_write_queue: Packet sending queue 257 * @sk_omem_alloc: "o" is "option" or "other" 258 * @sk_wmem_queued: persistent queue size 259 * @sk_forward_alloc: space allocated forward 260 * @sk_reserved_mem: space reserved and non-reclaimable for the socket 261 * @sk_napi_id: id of the last napi context to receive data for sk 262 * @sk_ll_usec: usecs to busypoll when there is no data 263 * @sk_allocation: allocation mode 264 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 265 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 266 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 267 * @sk_sndbuf: size of send buffer in bytes 268 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 269 * @sk_no_check_rx: allow zero checksum in RX packets 270 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 271 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden. 272 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 273 * @sk_gso_max_size: Maximum GSO segment size to build 274 * @sk_gso_max_segs: Maximum number of GSO segments 275 * @sk_pacing_shift: scaling factor for TCP Small Queues 276 * @sk_lingertime: %SO_LINGER l_linger setting 277 * @sk_backlog: always used with the per-socket spinlock held 278 * @sk_callback_lock: used with the callbacks in the end of this struct 279 * @sk_error_queue: rarely used 280 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 281 * IPV6_ADDRFORM for instance) 282 * @sk_err: last error 283 * @sk_err_soft: errors that don't cause failure but are the cause of a 284 * persistent failure not just 'timed out' 285 * @sk_drops: raw/udp drops counter 286 * @sk_drop_counters: optional pointer to numa_drop_counters 287 * @sk_ack_backlog: current listen backlog 288 * @sk_max_ack_backlog: listen backlog set in listen() 289 * @sk_uid: user id of owner 290 * @sk_ino: inode number (zero if orphaned) 291 * @sk_prefer_busy_poll: prefer busypolling over softirq processing 292 * @sk_busy_poll_budget: napi processing budget when busypolling 293 * @sk_priority: %SO_PRIORITY setting 294 * @sk_type: socket type (%SOCK_STREAM, etc) 295 * @sk_protocol: which protocol this socket belongs in this network family 296 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred 297 * @sk_peer_pid: &struct pid for this socket's peer 298 * @sk_peer_cred: %SO_PEERCRED setting 299 * @sk_rcvlowat: %SO_RCVLOWAT setting 300 * @sk_rcvtimeo: %SO_RCVTIMEO setting 301 * @sk_sndtimeo: %SO_SNDTIMEO setting 302 * @sk_txhash: computed flow hash for use on transmit 303 * @sk_txrehash: enable TX hash rethink 304 * @sk_filter: socket filtering instructions 305 * @sk_timer: sock cleanup timer 306 * @sk_stamp: time stamp of last packet received 307 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 308 * @sk_tsflags: SO_TIMESTAMPING flags 309 * @sk_bpf_cb_flags: used in bpf_setsockopt() 310 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag. 311 * Sockets that can be used under memory reclaim should 312 * set this to false. 313 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock 314 * for timestamping 315 * @sk_tskey: counter to disambiguate concurrent tstamp requests 316 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 317 * @sk_socket: Identd and reporting IO signals 318 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock. 319 * @sk_frag: cached page frag 320 * @sk_peek_off: current peek_offset value 321 * @sk_send_head: front of stuff to transmit 322 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 323 * @sk_security: used by security modules 324 * @sk_mark: generic packet mark 325 * @sk_cgrp_data: cgroup data for this cgroup 326 * @sk_memcg: this socket's memory cgroup association 327 * @sk_write_pending: a write to stream socket waits to start 328 * @sk_disconnects: number of disconnect operations performed on this sock 329 * @sk_state_change: callback to indicate change in the state of the sock 330 * @sk_data_ready: callback to indicate there is data to be processed 331 * @sk_write_space: callback to indicate there is bf sending space available 332 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 333 * @sk_backlog_rcv: callback to process the backlog 334 * @sk_validate_xmit_skb: ptr to an optional validate function 335 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 336 * @sk_reuseport_cb: reuseport group container 337 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 338 * @sk_rcu: used during RCU grace period 339 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 340 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 341 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 342 * @sk_txtime_unused: unused txtime flags 343 * @sk_scm_recv_flags: all flags used by scm_recv() 344 * @sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS 345 * @sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY 346 * @sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD 347 * @sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS 348 * @sk_scm_unused: unused flags for scm_recv() 349 * @ns_tracker: tracker for netns reference 350 * @sk_user_frags: xarray of pages the user is holding a reference on. 351 * @sk_owner: reference to the real owner of the socket that calls 352 * sock_lock_init_class_and_name(). 353 */ 354 struct sock { 355 /* 356 * Now struct inet_timewait_sock also uses sock_common, so please just 357 * don't add nothing before this first member (__sk_common) --acme 358 */ 359 struct sock_common __sk_common; 360 #define sk_node __sk_common.skc_node 361 #define sk_nulls_node __sk_common.skc_nulls_node 362 #define sk_refcnt __sk_common.skc_refcnt 363 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 364 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 365 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 366 #endif 367 368 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 369 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 370 #define sk_hash __sk_common.skc_hash 371 #define sk_portpair __sk_common.skc_portpair 372 #define sk_num __sk_common.skc_num 373 #define sk_dport __sk_common.skc_dport 374 #define sk_addrpair __sk_common.skc_addrpair 375 #define sk_daddr __sk_common.skc_daddr 376 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 377 #define sk_family __sk_common.skc_family 378 #define sk_state __sk_common.skc_state 379 #define sk_reuse __sk_common.skc_reuse 380 #define sk_reuseport __sk_common.skc_reuseport 381 #define sk_ipv6only __sk_common.skc_ipv6only 382 #define sk_net_refcnt __sk_common.skc_net_refcnt 383 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 384 #define sk_bind_node __sk_common.skc_bind_node 385 #define sk_prot __sk_common.skc_prot 386 #define sk_net __sk_common.skc_net 387 #define sk_v6_daddr __sk_common.skc_v6_daddr 388 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 389 #define sk_cookie __sk_common.skc_cookie 390 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 391 #define sk_flags __sk_common.skc_flags 392 #define sk_rxhash __sk_common.skc_rxhash 393 394 __cacheline_group_begin(sock_write_rx); 395 396 atomic_t sk_drops; 397 __s32 sk_peek_off; 398 struct sk_buff_head sk_error_queue; 399 struct sk_buff_head sk_receive_queue; 400 /* 401 * The backlog queue is special, it is always used with 402 * the per-socket spinlock held and requires low latency 403 * access. Therefore we special case it's implementation. 404 * Note : rmem_alloc is in this structure to fill a hole 405 * on 64bit arches, not because its logically part of 406 * backlog. 407 */ 408 struct { 409 atomic_t rmem_alloc; 410 int len; 411 struct sk_buff *head; 412 struct sk_buff *tail; 413 } sk_backlog; 414 #define sk_rmem_alloc sk_backlog.rmem_alloc 415 416 __cacheline_group_end(sock_write_rx); 417 418 __cacheline_group_begin(sock_read_rx); 419 /* early demux fields */ 420 struct dst_entry __rcu *sk_rx_dst; 421 int sk_rx_dst_ifindex; 422 u32 sk_rx_dst_cookie; 423 424 #ifdef CONFIG_NET_RX_BUSY_POLL 425 unsigned int sk_ll_usec; 426 unsigned int sk_napi_id; 427 u16 sk_busy_poll_budget; 428 u8 sk_prefer_busy_poll; 429 #endif 430 u8 sk_userlocks; 431 int sk_rcvbuf; 432 433 struct sk_filter __rcu *sk_filter; 434 union { 435 struct socket_wq __rcu *sk_wq; 436 /* private: */ 437 struct socket_wq *sk_wq_raw; 438 /* public: */ 439 }; 440 441 void (*sk_data_ready)(struct sock *sk); 442 long sk_rcvtimeo; 443 int sk_rcvlowat; 444 __cacheline_group_end(sock_read_rx); 445 446 __cacheline_group_begin(sock_read_rxtx); 447 int sk_err; 448 struct socket *sk_socket; 449 #ifdef CONFIG_MEMCG 450 struct mem_cgroup *sk_memcg; 451 #endif 452 #ifdef CONFIG_XFRM 453 struct xfrm_policy __rcu *sk_policy[2]; 454 #endif 455 #if IS_ENABLED(CONFIG_INET_PSP) 456 struct psp_assoc __rcu *psp_assoc; 457 #endif 458 __cacheline_group_end(sock_read_rxtx); 459 460 __cacheline_group_begin(sock_write_rxtx); 461 socket_lock_t sk_lock; 462 u32 sk_reserved_mem; 463 int sk_forward_alloc; 464 u32 sk_tsflags; 465 __cacheline_group_end(sock_write_rxtx); 466 467 __cacheline_group_begin(sock_write_tx); 468 int sk_write_pending; 469 atomic_t sk_omem_alloc; 470 int sk_err_soft; 471 472 int sk_wmem_queued; 473 refcount_t sk_wmem_alloc; 474 unsigned long sk_tsq_flags; 475 union { 476 struct sk_buff *sk_send_head; 477 struct rb_root tcp_rtx_queue; 478 }; 479 struct sk_buff_head sk_write_queue; 480 u32 sk_dst_pending_confirm; 481 u32 sk_pacing_status; /* see enum sk_pacing */ 482 struct page_frag sk_frag; 483 struct timer_list sk_timer; 484 485 unsigned long sk_pacing_rate; /* bytes per second */ 486 atomic_t sk_zckey; 487 atomic_t sk_tskey; 488 __cacheline_group_end(sock_write_tx); 489 490 __cacheline_group_begin(sock_read_tx); 491 unsigned long sk_max_pacing_rate; 492 long sk_sndtimeo; 493 u32 sk_priority; 494 u32 sk_mark; 495 kuid_t sk_uid; 496 u16 sk_protocol; 497 u16 sk_type; 498 struct dst_entry __rcu *sk_dst_cache; 499 netdev_features_t sk_route_caps; 500 #ifdef CONFIG_SOCK_VALIDATE_XMIT 501 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 502 struct net_device *dev, 503 struct sk_buff *skb); 504 #endif 505 u16 sk_gso_type; 506 u16 sk_gso_max_segs; 507 unsigned int sk_gso_max_size; 508 gfp_t sk_allocation; 509 u32 sk_txhash; 510 int sk_sndbuf; 511 u8 sk_pacing_shift; 512 bool sk_use_task_frag; 513 __cacheline_group_end(sock_read_tx); 514 515 /* 516 * Because of non atomicity rules, all 517 * changes are protected by socket lock. 518 */ 519 u8 sk_gso_disabled : 1, 520 sk_kern_sock : 1, 521 sk_no_check_tx : 1, 522 sk_no_check_rx : 1; 523 u8 sk_shutdown; 524 unsigned long sk_lingertime; 525 struct proto *sk_prot_creator; 526 rwlock_t sk_callback_lock; 527 u32 sk_ack_backlog; 528 u32 sk_max_ack_backlog; 529 unsigned long sk_ino; 530 spinlock_t sk_peer_lock; 531 int sk_bind_phc; 532 struct pid *sk_peer_pid; 533 const struct cred *sk_peer_cred; 534 535 ktime_t sk_stamp; 536 #if BITS_PER_LONG==32 537 seqlock_t sk_stamp_seq; 538 #endif 539 int sk_disconnects; 540 541 union { 542 u8 sk_txrehash; 543 u8 sk_scm_recv_flags; 544 struct { 545 u8 sk_scm_credentials : 1, 546 sk_scm_security : 1, 547 sk_scm_pidfd : 1, 548 sk_scm_rights : 1, 549 sk_scm_unused : 4; 550 }; 551 }; 552 u8 sk_clockid; 553 u8 sk_txtime_deadline_mode : 1, 554 sk_txtime_report_errors : 1, 555 sk_txtime_unused : 6; 556 #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG)) 557 u8 sk_bpf_cb_flags; 558 559 void *sk_user_data; 560 #ifdef CONFIG_SECURITY 561 void *sk_security; 562 #endif 563 struct sock_cgroup_data sk_cgrp_data; 564 void (*sk_state_change)(struct sock *sk); 565 void (*sk_write_space)(struct sock *sk); 566 void (*sk_error_report)(struct sock *sk); 567 int (*sk_backlog_rcv)(struct sock *sk, 568 struct sk_buff *skb); 569 void (*sk_destruct)(struct sock *sk); 570 struct sock_reuseport __rcu *sk_reuseport_cb; 571 #ifdef CONFIG_BPF_SYSCALL 572 struct bpf_local_storage __rcu *sk_bpf_storage; 573 #endif 574 struct numa_drop_counters *sk_drop_counters; 575 struct rcu_head sk_rcu; 576 netns_tracker ns_tracker; 577 struct xarray sk_user_frags; 578 579 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) 580 struct module *sk_owner; 581 #endif 582 }; 583 584 struct sock_bh_locked { 585 struct sock *sock; 586 local_lock_t bh_lock; 587 }; 588 589 enum sk_pacing { 590 SK_PACING_NONE = 0, 591 SK_PACING_NEEDED = 1, 592 SK_PACING_FQ = 2, 593 }; 594 595 /* flag bits in sk_user_data 596 * 597 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might 598 * not be suitable for copying when cloning the socket. For instance, 599 * it can point to a reference counted object. sk_user_data bottom 600 * bit is set if pointer must not be copied. 601 * 602 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is 603 * managed/owned by a BPF reuseport array. This bit should be set 604 * when sk_user_data's sk is added to the bpf's reuseport_array. 605 * 606 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in 607 * sk_user_data points to psock type. This bit should be set 608 * when sk_user_data is assigned to a psock object. 609 */ 610 #define SK_USER_DATA_NOCOPY 1UL 611 #define SK_USER_DATA_BPF 2UL 612 #define SK_USER_DATA_PSOCK 4UL 613 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\ 614 SK_USER_DATA_PSOCK) 615 616 /** 617 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 618 * @sk: socket 619 */ 620 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 621 { 622 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 623 } 624 625 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 626 627 /** 628 * __locked_read_sk_user_data_with_flags - return the pointer 629 * only if argument flags all has been set in sk_user_data. Otherwise 630 * return NULL 631 * 632 * @sk: socket 633 * @flags: flag bits 634 * 635 * The caller must be holding sk->sk_callback_lock. 636 */ 637 static inline void * 638 __locked_read_sk_user_data_with_flags(const struct sock *sk, 639 uintptr_t flags) 640 { 641 uintptr_t sk_user_data = 642 (uintptr_t)rcu_dereference_check(__sk_user_data(sk), 643 lockdep_is_held(&sk->sk_callback_lock)); 644 645 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 646 647 if ((sk_user_data & flags) == flags) 648 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 649 return NULL; 650 } 651 652 /** 653 * __rcu_dereference_sk_user_data_with_flags - return the pointer 654 * only if argument flags all has been set in sk_user_data. Otherwise 655 * return NULL 656 * 657 * @sk: socket 658 * @flags: flag bits 659 */ 660 static inline void * 661 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk, 662 uintptr_t flags) 663 { 664 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk)); 665 666 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 667 668 if ((sk_user_data & flags) == flags) 669 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 670 return NULL; 671 } 672 673 #define rcu_dereference_sk_user_data(sk) \ 674 __rcu_dereference_sk_user_data_with_flags(sk, 0) 675 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \ 676 ({ \ 677 uintptr_t __tmp1 = (uintptr_t)(ptr), \ 678 __tmp2 = (uintptr_t)(flags); \ 679 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \ 680 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \ 681 rcu_assign_pointer(__sk_user_data((sk)), \ 682 __tmp1 | __tmp2); \ 683 }) 684 #define rcu_assign_sk_user_data(sk, ptr) \ 685 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0) 686 687 static inline 688 struct net *sock_net(const struct sock *sk) 689 { 690 return read_pnet(&sk->sk_net); 691 } 692 693 static inline 694 void sock_net_set(struct sock *sk, struct net *net) 695 { 696 write_pnet(&sk->sk_net, net); 697 } 698 699 /* 700 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 701 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 702 * on a socket means that the socket will reuse everybody else's port 703 * without looking at the other's sk_reuse value. 704 */ 705 706 #define SK_NO_REUSE 0 707 #define SK_CAN_REUSE 1 708 #define SK_FORCE_REUSE 2 709 710 int sk_set_peek_off(struct sock *sk, int val); 711 712 static inline int sk_peek_offset(const struct sock *sk, int flags) 713 { 714 if (unlikely(flags & MSG_PEEK)) { 715 return READ_ONCE(sk->sk_peek_off); 716 } 717 718 return 0; 719 } 720 721 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 722 { 723 s32 off = READ_ONCE(sk->sk_peek_off); 724 725 if (unlikely(off >= 0)) { 726 off = max_t(s32, off - val, 0); 727 WRITE_ONCE(sk->sk_peek_off, off); 728 } 729 } 730 731 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 732 { 733 sk_peek_offset_bwd(sk, -val); 734 } 735 736 /* 737 * Hashed lists helper routines 738 */ 739 static inline struct sock *sk_entry(const struct hlist_node *node) 740 { 741 return hlist_entry(node, struct sock, sk_node); 742 } 743 744 static inline struct sock *__sk_head(const struct hlist_head *head) 745 { 746 return hlist_entry(head->first, struct sock, sk_node); 747 } 748 749 static inline struct sock *sk_head(const struct hlist_head *head) 750 { 751 return hlist_empty(head) ? NULL : __sk_head(head); 752 } 753 754 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 755 { 756 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 757 } 758 759 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 760 { 761 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 762 } 763 764 static inline struct sock *sk_next(const struct sock *sk) 765 { 766 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 767 } 768 769 static inline struct sock *sk_nulls_next(const struct sock *sk) 770 { 771 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 772 hlist_nulls_entry(sk->sk_nulls_node.next, 773 struct sock, sk_nulls_node) : 774 NULL; 775 } 776 777 static inline bool sk_unhashed(const struct sock *sk) 778 { 779 return hlist_unhashed(&sk->sk_node); 780 } 781 782 static inline bool sk_hashed(const struct sock *sk) 783 { 784 return !sk_unhashed(sk); 785 } 786 787 static inline void sk_node_init(struct hlist_node *node) 788 { 789 node->pprev = NULL; 790 } 791 792 static inline void __sk_del_node(struct sock *sk) 793 { 794 __hlist_del(&sk->sk_node); 795 } 796 797 /* NB: equivalent to hlist_del_init_rcu */ 798 static inline bool __sk_del_node_init(struct sock *sk) 799 { 800 if (sk_hashed(sk)) { 801 __sk_del_node(sk); 802 sk_node_init(&sk->sk_node); 803 return true; 804 } 805 return false; 806 } 807 808 /* Grab socket reference count. This operation is valid only 809 when sk is ALREADY grabbed f.e. it is found in hash table 810 or a list and the lookup is made under lock preventing hash table 811 modifications. 812 */ 813 814 static __always_inline void sock_hold(struct sock *sk) 815 { 816 refcount_inc(&sk->sk_refcnt); 817 } 818 819 /* Ungrab socket in the context, which assumes that socket refcnt 820 cannot hit zero, f.e. it is true in context of any socketcall. 821 */ 822 static __always_inline void __sock_put(struct sock *sk) 823 { 824 refcount_dec(&sk->sk_refcnt); 825 } 826 827 static inline bool sk_del_node_init(struct sock *sk) 828 { 829 bool rc = __sk_del_node_init(sk); 830 831 if (rc) { 832 /* paranoid for a while -acme */ 833 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 834 __sock_put(sk); 835 } 836 return rc; 837 } 838 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 839 840 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 841 { 842 if (sk_hashed(sk)) { 843 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 844 return true; 845 } 846 return false; 847 } 848 849 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 850 { 851 bool rc = __sk_nulls_del_node_init_rcu(sk); 852 853 if (rc) { 854 /* paranoid for a while -acme */ 855 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 856 __sock_put(sk); 857 } 858 return rc; 859 } 860 861 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 862 { 863 hlist_add_head(&sk->sk_node, list); 864 } 865 866 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 867 { 868 sock_hold(sk); 869 __sk_add_node(sk, list); 870 } 871 872 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 873 { 874 sock_hold(sk); 875 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 876 sk->sk_family == AF_INET6) 877 hlist_add_tail_rcu(&sk->sk_node, list); 878 else 879 hlist_add_head_rcu(&sk->sk_node, list); 880 } 881 882 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 883 { 884 sock_hold(sk); 885 hlist_add_tail_rcu(&sk->sk_node, list); 886 } 887 888 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 889 { 890 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 891 } 892 893 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 894 { 895 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 896 } 897 898 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 899 { 900 sock_hold(sk); 901 __sk_nulls_add_node_rcu(sk, list); 902 } 903 904 static inline void __sk_del_bind_node(struct sock *sk) 905 { 906 __hlist_del(&sk->sk_bind_node); 907 } 908 909 static inline void sk_add_bind_node(struct sock *sk, 910 struct hlist_head *list) 911 { 912 hlist_add_head(&sk->sk_bind_node, list); 913 } 914 915 #define sk_for_each(__sk, list) \ 916 hlist_for_each_entry(__sk, list, sk_node) 917 #define sk_for_each_rcu(__sk, list) \ 918 hlist_for_each_entry_rcu(__sk, list, sk_node) 919 #define sk_nulls_for_each(__sk, node, list) \ 920 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 921 #define sk_nulls_for_each_rcu(__sk, node, list) \ 922 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 923 #define sk_for_each_from(__sk) \ 924 hlist_for_each_entry_from(__sk, sk_node) 925 #define sk_nulls_for_each_from(__sk, node) \ 926 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 927 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 928 #define sk_for_each_safe(__sk, tmp, list) \ 929 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 930 #define sk_for_each_bound(__sk, list) \ 931 hlist_for_each_entry(__sk, list, sk_bind_node) 932 #define sk_for_each_bound_safe(__sk, tmp, list) \ 933 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node) 934 935 /** 936 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 937 * @tpos: the type * to use as a loop cursor. 938 * @pos: the &struct hlist_node to use as a loop cursor. 939 * @head: the head for your list. 940 * @offset: offset of hlist_node within the struct. 941 * 942 */ 943 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 944 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 945 pos != NULL && \ 946 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 947 pos = rcu_dereference(hlist_next_rcu(pos))) 948 949 static inline struct user_namespace *sk_user_ns(const struct sock *sk) 950 { 951 /* Careful only use this in a context where these parameters 952 * can not change and must all be valid, such as recvmsg from 953 * userspace. 954 */ 955 return sk->sk_socket->file->f_cred->user_ns; 956 } 957 958 /* Sock flags */ 959 enum sock_flags { 960 SOCK_DEAD, 961 SOCK_DONE, 962 SOCK_URGINLINE, 963 SOCK_KEEPOPEN, 964 SOCK_LINGER, 965 SOCK_DESTROY, 966 SOCK_BROADCAST, 967 SOCK_TIMESTAMP, 968 SOCK_ZAPPED, 969 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 970 SOCK_DBG, /* %SO_DEBUG setting */ 971 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 972 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 973 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 974 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 975 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 976 SOCK_FASYNC, /* fasync() active */ 977 SOCK_RXQ_OVFL, 978 SOCK_ZEROCOPY, /* buffers from userspace */ 979 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 980 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 981 * Will use last 4 bytes of packet sent from 982 * user-space instead. 983 */ 984 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 985 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 986 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 987 SOCK_TXTIME, 988 SOCK_XDP, /* XDP is attached */ 989 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 990 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */ 991 SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */ 992 SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */ 993 }; 994 995 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 996 /* 997 * The highest bit of sk_tsflags is reserved for kernel-internal 998 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that 999 * SOF_TIMESTAMPING* values do not reach this reserved area 1000 */ 1001 #define SOCKCM_FLAG_TS_OPT_ID BIT(31) 1002 1003 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk) 1004 { 1005 nsk->sk_flags = osk->sk_flags; 1006 } 1007 1008 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 1009 { 1010 __set_bit(flag, &sk->sk_flags); 1011 } 1012 1013 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 1014 { 1015 __clear_bit(flag, &sk->sk_flags); 1016 } 1017 1018 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 1019 int valbool) 1020 { 1021 if (valbool) 1022 sock_set_flag(sk, bit); 1023 else 1024 sock_reset_flag(sk, bit); 1025 } 1026 1027 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 1028 { 1029 return test_bit(flag, &sk->sk_flags); 1030 } 1031 1032 #ifdef CONFIG_NET 1033 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 1034 static inline int sk_memalloc_socks(void) 1035 { 1036 return static_branch_unlikely(&memalloc_socks_key); 1037 } 1038 1039 void __receive_sock(struct file *file); 1040 #else 1041 1042 static inline int sk_memalloc_socks(void) 1043 { 1044 return 0; 1045 } 1046 1047 static inline void __receive_sock(struct file *file) 1048 { } 1049 #endif 1050 1051 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 1052 { 1053 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 1054 } 1055 1056 static inline void sk_acceptq_removed(struct sock *sk) 1057 { 1058 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 1059 } 1060 1061 static inline void sk_acceptq_added(struct sock *sk) 1062 { 1063 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 1064 } 1065 1066 /* Note: If you think the test should be: 1067 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); 1068 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") 1069 */ 1070 static inline bool sk_acceptq_is_full(const struct sock *sk) 1071 { 1072 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 1073 } 1074 1075 /* 1076 * Compute minimal free write space needed to queue new packets. 1077 */ 1078 static inline int sk_stream_min_wspace(const struct sock *sk) 1079 { 1080 return READ_ONCE(sk->sk_wmem_queued) >> 1; 1081 } 1082 1083 static inline int sk_stream_wspace(const struct sock *sk) 1084 { 1085 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 1086 } 1087 1088 static inline void sk_wmem_queued_add(struct sock *sk, int val) 1089 { 1090 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 1091 } 1092 1093 static inline void sk_forward_alloc_add(struct sock *sk, int val) 1094 { 1095 /* Paired with lockless reads of sk->sk_forward_alloc */ 1096 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val); 1097 } 1098 1099 void sk_stream_write_space(struct sock *sk); 1100 1101 /* OOB backlog add */ 1102 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 1103 { 1104 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 1105 skb_dst_force(skb); 1106 1107 if (!sk->sk_backlog.tail) 1108 WRITE_ONCE(sk->sk_backlog.head, skb); 1109 else 1110 sk->sk_backlog.tail->next = skb; 1111 1112 WRITE_ONCE(sk->sk_backlog.tail, skb); 1113 skb->next = NULL; 1114 } 1115 1116 /* 1117 * Take into account size of receive queue and backlog queue 1118 * Do not take into account this skb truesize, 1119 * to allow even a single big packet to come. 1120 */ 1121 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 1122 { 1123 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 1124 1125 return qsize > limit; 1126 } 1127 1128 /* The per-socket spinlock must be held here. */ 1129 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 1130 unsigned int limit) 1131 { 1132 if (sk_rcvqueues_full(sk, limit)) 1133 return -ENOBUFS; 1134 1135 /* 1136 * If the skb was allocated from pfmemalloc reserves, only 1137 * allow SOCK_MEMALLOC sockets to use it as this socket is 1138 * helping free memory 1139 */ 1140 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 1141 return -ENOMEM; 1142 1143 __sk_add_backlog(sk, skb); 1144 sk->sk_backlog.len += skb->truesize; 1145 return 0; 1146 } 1147 1148 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 1149 1150 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)); 1151 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)); 1152 1153 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 1154 { 1155 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 1156 return __sk_backlog_rcv(sk, skb); 1157 1158 return INDIRECT_CALL_INET(sk->sk_backlog_rcv, 1159 tcp_v6_do_rcv, 1160 tcp_v4_do_rcv, 1161 sk, skb); 1162 } 1163 1164 static inline void sk_incoming_cpu_update(struct sock *sk) 1165 { 1166 int cpu = raw_smp_processor_id(); 1167 1168 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1169 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1170 } 1171 1172 1173 static inline void sock_rps_save_rxhash(struct sock *sk, 1174 const struct sk_buff *skb) 1175 { 1176 #ifdef CONFIG_RPS 1177 /* The following WRITE_ONCE() is paired with the READ_ONCE() 1178 * here, and another one in sock_rps_record_flow(). 1179 */ 1180 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash)) 1181 WRITE_ONCE(sk->sk_rxhash, skb->hash); 1182 #endif 1183 } 1184 1185 static inline void sock_rps_reset_rxhash(struct sock *sk) 1186 { 1187 #ifdef CONFIG_RPS 1188 /* Paired with READ_ONCE() in sock_rps_record_flow() */ 1189 WRITE_ONCE(sk->sk_rxhash, 0); 1190 #endif 1191 } 1192 1193 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1194 ({ int __rc, __dis = __sk->sk_disconnects; \ 1195 release_sock(__sk); \ 1196 __rc = __condition; \ 1197 if (!__rc) { \ 1198 *(__timeo) = wait_woken(__wait, \ 1199 TASK_INTERRUPTIBLE, \ 1200 *(__timeo)); \ 1201 } \ 1202 sched_annotate_sleep(); \ 1203 lock_sock(__sk); \ 1204 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \ 1205 __rc; \ 1206 }) 1207 1208 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1209 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1210 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1211 int sk_stream_error(struct sock *sk, int flags, int err); 1212 void sk_stream_kill_queues(struct sock *sk); 1213 void sk_set_memalloc(struct sock *sk); 1214 void sk_clear_memalloc(struct sock *sk); 1215 1216 void __sk_flush_backlog(struct sock *sk); 1217 1218 static inline bool sk_flush_backlog(struct sock *sk) 1219 { 1220 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1221 __sk_flush_backlog(sk); 1222 return true; 1223 } 1224 return false; 1225 } 1226 1227 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1228 1229 struct request_sock_ops; 1230 struct timewait_sock_ops; 1231 struct inet_hashinfo; 1232 struct raw_hashinfo; 1233 struct smc_hashinfo; 1234 struct module; 1235 struct sk_psock; 1236 1237 /* 1238 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1239 * un-modified. Special care is taken when initializing object to zero. 1240 */ 1241 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1242 { 1243 if (offsetof(struct sock, sk_node.next) != 0) 1244 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1245 memset(&sk->sk_node.pprev, 0, 1246 size - offsetof(struct sock, sk_node.pprev)); 1247 } 1248 1249 struct proto_accept_arg { 1250 int flags; 1251 int err; 1252 int is_empty; 1253 bool kern; 1254 }; 1255 1256 /* Networking protocol blocks we attach to sockets. 1257 * socket layer -> transport layer interface 1258 */ 1259 struct proto { 1260 void (*close)(struct sock *sk, 1261 long timeout); 1262 int (*pre_connect)(struct sock *sk, 1263 struct sockaddr *uaddr, 1264 int addr_len); 1265 int (*connect)(struct sock *sk, 1266 struct sockaddr *uaddr, 1267 int addr_len); 1268 int (*disconnect)(struct sock *sk, int flags); 1269 1270 struct sock * (*accept)(struct sock *sk, 1271 struct proto_accept_arg *arg); 1272 1273 int (*ioctl)(struct sock *sk, int cmd, 1274 int *karg); 1275 int (*init)(struct sock *sk); 1276 void (*destroy)(struct sock *sk); 1277 void (*shutdown)(struct sock *sk, int how); 1278 int (*setsockopt)(struct sock *sk, int level, 1279 int optname, sockptr_t optval, 1280 unsigned int optlen); 1281 int (*getsockopt)(struct sock *sk, int level, 1282 int optname, char __user *optval, 1283 int __user *option); 1284 void (*keepalive)(struct sock *sk, int valbool); 1285 #ifdef CONFIG_COMPAT 1286 int (*compat_ioctl)(struct sock *sk, 1287 unsigned int cmd, unsigned long arg); 1288 #endif 1289 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1290 size_t len); 1291 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1292 size_t len, int flags, int *addr_len); 1293 void (*splice_eof)(struct socket *sock); 1294 int (*bind)(struct sock *sk, 1295 struct sockaddr *addr, int addr_len); 1296 int (*bind_add)(struct sock *sk, 1297 struct sockaddr *addr, int addr_len); 1298 1299 int (*backlog_rcv) (struct sock *sk, 1300 struct sk_buff *skb); 1301 bool (*bpf_bypass_getsockopt)(int level, 1302 int optname); 1303 1304 void (*release_cb)(struct sock *sk); 1305 1306 /* Keeping track of sk's, looking them up, and port selection methods. */ 1307 int (*hash)(struct sock *sk); 1308 void (*unhash)(struct sock *sk); 1309 void (*rehash)(struct sock *sk); 1310 int (*get_port)(struct sock *sk, unsigned short snum); 1311 void (*put_port)(struct sock *sk); 1312 #ifdef CONFIG_BPF_SYSCALL 1313 int (*psock_update_sk_prot)(struct sock *sk, 1314 struct sk_psock *psock, 1315 bool restore); 1316 #endif 1317 1318 /* Keeping track of sockets in use */ 1319 #ifdef CONFIG_PROC_FS 1320 unsigned int inuse_idx; 1321 #endif 1322 1323 bool (*stream_memory_free)(const struct sock *sk, int wake); 1324 bool (*sock_is_readable)(struct sock *sk); 1325 /* Memory pressure */ 1326 void (*enter_memory_pressure)(struct sock *sk); 1327 void (*leave_memory_pressure)(struct sock *sk); 1328 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1329 int __percpu *per_cpu_fw_alloc; 1330 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1331 1332 /* 1333 * Pressure flag: try to collapse. 1334 * Technical note: it is used by multiple contexts non atomically. 1335 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes. 1336 * All the __sk_mem_schedule() is of this nature: accounting 1337 * is strict, actions are advisory and have some latency. 1338 */ 1339 unsigned long *memory_pressure; 1340 long *sysctl_mem; 1341 1342 int *sysctl_wmem; 1343 int *sysctl_rmem; 1344 u32 sysctl_wmem_offset; 1345 u32 sysctl_rmem_offset; 1346 1347 int max_header; 1348 bool no_autobind; 1349 1350 struct kmem_cache *slab; 1351 unsigned int obj_size; 1352 unsigned int ipv6_pinfo_offset; 1353 slab_flags_t slab_flags; 1354 unsigned int useroffset; /* Usercopy region offset */ 1355 unsigned int usersize; /* Usercopy region size */ 1356 1357 struct request_sock_ops *rsk_prot; 1358 struct timewait_sock_ops *twsk_prot; 1359 1360 union { 1361 struct inet_hashinfo *hashinfo; 1362 struct udp_table *udp_table; 1363 struct raw_hashinfo *raw_hash; 1364 struct smc_hashinfo *smc_hash; 1365 } h; 1366 1367 struct module *owner; 1368 1369 char name[32]; 1370 1371 struct list_head node; 1372 int (*diag_destroy)(struct sock *sk, int err); 1373 } __randomize_layout; 1374 1375 int proto_register(struct proto *prot, int alloc_slab); 1376 void proto_unregister(struct proto *prot); 1377 int sock_load_diag_module(int family, int protocol); 1378 1379 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); 1380 1381 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1382 { 1383 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1384 return false; 1385 1386 return sk->sk_prot->stream_memory_free ? 1387 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free, 1388 tcp_stream_memory_free, sk, wake) : true; 1389 } 1390 1391 static inline bool sk_stream_memory_free(const struct sock *sk) 1392 { 1393 return __sk_stream_memory_free(sk, 0); 1394 } 1395 1396 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1397 { 1398 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1399 __sk_stream_memory_free(sk, wake); 1400 } 1401 1402 static inline bool sk_stream_is_writeable(const struct sock *sk) 1403 { 1404 return __sk_stream_is_writeable(sk, 0); 1405 } 1406 1407 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1408 struct cgroup *ancestor) 1409 { 1410 #ifdef CONFIG_SOCK_CGROUP_DATA 1411 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1412 ancestor); 1413 #else 1414 return -ENOTSUPP; 1415 #endif 1416 } 1417 1418 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 1419 1420 static inline void sk_sockets_allocated_dec(struct sock *sk) 1421 { 1422 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1, 1423 SK_ALLOC_PERCPU_COUNTER_BATCH); 1424 } 1425 1426 static inline void sk_sockets_allocated_inc(struct sock *sk) 1427 { 1428 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1, 1429 SK_ALLOC_PERCPU_COUNTER_BATCH); 1430 } 1431 1432 static inline u64 1433 sk_sockets_allocated_read_positive(struct sock *sk) 1434 { 1435 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1436 } 1437 1438 static inline int 1439 proto_sockets_allocated_sum_positive(struct proto *prot) 1440 { 1441 return percpu_counter_sum_positive(prot->sockets_allocated); 1442 } 1443 1444 #ifdef CONFIG_PROC_FS 1445 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 1446 struct prot_inuse { 1447 int all; 1448 int val[PROTO_INUSE_NR]; 1449 }; 1450 1451 static inline void sock_prot_inuse_add(const struct net *net, 1452 const struct proto *prot, int val) 1453 { 1454 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 1455 } 1456 1457 static inline void sock_inuse_add(const struct net *net, int val) 1458 { 1459 this_cpu_add(net->core.prot_inuse->all, val); 1460 } 1461 1462 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1463 int sock_inuse_get(struct net *net); 1464 #else 1465 static inline void sock_prot_inuse_add(const struct net *net, 1466 const struct proto *prot, int val) 1467 { 1468 } 1469 1470 static inline void sock_inuse_add(const struct net *net, int val) 1471 { 1472 } 1473 #endif 1474 1475 1476 /* With per-bucket locks this operation is not-atomic, so that 1477 * this version is not worse. 1478 */ 1479 static inline int __sk_prot_rehash(struct sock *sk) 1480 { 1481 sk->sk_prot->unhash(sk); 1482 return sk->sk_prot->hash(sk); 1483 } 1484 1485 /* About 10 seconds */ 1486 #define SOCK_DESTROY_TIME (10*HZ) 1487 1488 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1489 #define PROT_SOCK 1024 1490 1491 #define SHUTDOWN_MASK 3 1492 #define RCV_SHUTDOWN 1 1493 #define SEND_SHUTDOWN 2 1494 1495 #define SOCK_BINDADDR_LOCK 4 1496 #define SOCK_BINDPORT_LOCK 8 1497 /** 1498 * define SOCK_CONNECT_BIND - &sock->sk_userlocks flag for auto-bind at connect() time 1499 */ 1500 #define SOCK_CONNECT_BIND 16 1501 1502 struct socket_alloc { 1503 struct socket socket; 1504 struct inode vfs_inode; 1505 }; 1506 1507 static inline struct socket *SOCKET_I(struct inode *inode) 1508 { 1509 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1510 } 1511 1512 static inline struct inode *SOCK_INODE(struct socket *socket) 1513 { 1514 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1515 } 1516 1517 /* 1518 * Functions for memory accounting 1519 */ 1520 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1521 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1522 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1523 void __sk_mem_reclaim(struct sock *sk, int amount); 1524 1525 #define SK_MEM_SEND 0 1526 #define SK_MEM_RECV 1 1527 1528 /* sysctl_mem values are in pages */ 1529 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1530 { 1531 return READ_ONCE(sk->sk_prot->sysctl_mem[index]); 1532 } 1533 1534 static inline int sk_mem_pages(int amt) 1535 { 1536 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT; 1537 } 1538 1539 static inline bool sk_has_account(struct sock *sk) 1540 { 1541 /* return true if protocol supports memory accounting */ 1542 return !!sk->sk_prot->memory_allocated; 1543 } 1544 1545 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1546 { 1547 int delta; 1548 1549 if (!sk_has_account(sk)) 1550 return true; 1551 delta = size - sk->sk_forward_alloc; 1552 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND); 1553 } 1554 1555 static inline bool 1556 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc) 1557 { 1558 int delta; 1559 1560 if (!sk_has_account(sk)) 1561 return true; 1562 delta = size - sk->sk_forward_alloc; 1563 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) || 1564 pfmemalloc; 1565 } 1566 1567 static inline bool 1568 sk_rmem_schedule(struct sock *sk, const struct sk_buff *skb, int size) 1569 { 1570 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb)); 1571 } 1572 1573 static inline int sk_unused_reserved_mem(const struct sock *sk) 1574 { 1575 int unused_mem; 1576 1577 if (likely(!sk->sk_reserved_mem)) 1578 return 0; 1579 1580 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued - 1581 atomic_read(&sk->sk_rmem_alloc); 1582 1583 return unused_mem > 0 ? unused_mem : 0; 1584 } 1585 1586 static inline void sk_mem_reclaim(struct sock *sk) 1587 { 1588 int reclaimable; 1589 1590 if (!sk_has_account(sk)) 1591 return; 1592 1593 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); 1594 1595 if (reclaimable >= (int)PAGE_SIZE) 1596 __sk_mem_reclaim(sk, reclaimable); 1597 } 1598 1599 static inline void sk_mem_reclaim_final(struct sock *sk) 1600 { 1601 sk->sk_reserved_mem = 0; 1602 sk_mem_reclaim(sk); 1603 } 1604 1605 static inline void sk_mem_charge(struct sock *sk, int size) 1606 { 1607 if (!sk_has_account(sk)) 1608 return; 1609 sk_forward_alloc_add(sk, -size); 1610 } 1611 1612 static inline void sk_mem_uncharge(struct sock *sk, int size) 1613 { 1614 if (!sk_has_account(sk)) 1615 return; 1616 sk_forward_alloc_add(sk, size); 1617 sk_mem_reclaim(sk); 1618 } 1619 1620 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) 1621 static inline void sk_owner_set(struct sock *sk, struct module *owner) 1622 { 1623 __module_get(owner); 1624 sk->sk_owner = owner; 1625 } 1626 1627 static inline void sk_owner_clear(struct sock *sk) 1628 { 1629 sk->sk_owner = NULL; 1630 } 1631 1632 static inline void sk_owner_put(struct sock *sk) 1633 { 1634 module_put(sk->sk_owner); 1635 } 1636 #else 1637 static inline void sk_owner_set(struct sock *sk, struct module *owner) 1638 { 1639 } 1640 1641 static inline void sk_owner_clear(struct sock *sk) 1642 { 1643 } 1644 1645 static inline void sk_owner_put(struct sock *sk) 1646 { 1647 } 1648 #endif 1649 /* 1650 * Macro so as to not evaluate some arguments when 1651 * lockdep is not enabled. 1652 * 1653 * Mark both the sk_lock and the sk_lock.slock as a 1654 * per-address-family lock class. 1655 */ 1656 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1657 do { \ 1658 sk_owner_set(sk, THIS_MODULE); \ 1659 sk->sk_lock.owned = 0; \ 1660 init_waitqueue_head(&sk->sk_lock.wq); \ 1661 spin_lock_init(&(sk)->sk_lock.slock); \ 1662 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1663 sizeof((sk)->sk_lock)); \ 1664 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1665 (skey), (sname)); \ 1666 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1667 } while (0) 1668 1669 static inline bool lockdep_sock_is_held(const struct sock *sk) 1670 { 1671 return lockdep_is_held(&sk->sk_lock) || 1672 lockdep_is_held(&sk->sk_lock.slock); 1673 } 1674 1675 void lock_sock_nested(struct sock *sk, int subclass); 1676 1677 static inline void lock_sock(struct sock *sk) 1678 { 1679 lock_sock_nested(sk, 0); 1680 } 1681 1682 void __lock_sock(struct sock *sk); 1683 void __release_sock(struct sock *sk); 1684 void release_sock(struct sock *sk); 1685 1686 /* BH context may only use the following locking interface. */ 1687 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1688 #define bh_lock_sock_nested(__sk) \ 1689 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1690 SINGLE_DEPTH_NESTING) 1691 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1692 1693 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); 1694 1695 /** 1696 * lock_sock_fast - fast version of lock_sock 1697 * @sk: socket 1698 * 1699 * This version should be used for very small section, where process won't block 1700 * return false if fast path is taken: 1701 * 1702 * sk_lock.slock locked, owned = 0, BH disabled 1703 * 1704 * return true if slow path is taken: 1705 * 1706 * sk_lock.slock unlocked, owned = 1, BH enabled 1707 */ 1708 static inline bool lock_sock_fast(struct sock *sk) 1709 { 1710 /* The sk_lock has mutex_lock() semantics here. */ 1711 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 1712 1713 return __lock_sock_fast(sk); 1714 } 1715 1716 /* fast socket lock variant for caller already holding a [different] socket lock */ 1717 static inline bool lock_sock_fast_nested(struct sock *sk) 1718 { 1719 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); 1720 1721 return __lock_sock_fast(sk); 1722 } 1723 1724 /** 1725 * unlock_sock_fast - complement of lock_sock_fast 1726 * @sk: socket 1727 * @slow: slow mode 1728 * 1729 * fast unlock socket for user context. 1730 * If slow mode is on, we call regular release_sock() 1731 */ 1732 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1733 __releases(&sk->sk_lock.slock) 1734 { 1735 if (slow) { 1736 release_sock(sk); 1737 __release(&sk->sk_lock.slock); 1738 } else { 1739 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1740 spin_unlock_bh(&sk->sk_lock.slock); 1741 } 1742 } 1743 1744 void sockopt_lock_sock(struct sock *sk); 1745 void sockopt_release_sock(struct sock *sk); 1746 bool sockopt_ns_capable(struct user_namespace *ns, int cap); 1747 bool sockopt_capable(int cap); 1748 1749 /* Used by processes to "lock" a socket state, so that 1750 * interrupts and bottom half handlers won't change it 1751 * from under us. It essentially blocks any incoming 1752 * packets, so that we won't get any new data or any 1753 * packets that change the state of the socket. 1754 * 1755 * While locked, BH processing will add new packets to 1756 * the backlog queue. This queue is processed by the 1757 * owner of the socket lock right before it is released. 1758 * 1759 * Since ~2.3.5 it is also exclusive sleep lock serializing 1760 * accesses from user process context. 1761 */ 1762 1763 static inline void sock_owned_by_me(const struct sock *sk) 1764 { 1765 #ifdef CONFIG_LOCKDEP 1766 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1767 #endif 1768 } 1769 1770 static inline void sock_not_owned_by_me(const struct sock *sk) 1771 { 1772 #ifdef CONFIG_LOCKDEP 1773 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks); 1774 #endif 1775 } 1776 1777 static inline bool sock_owned_by_user(const struct sock *sk) 1778 { 1779 sock_owned_by_me(sk); 1780 return sk->sk_lock.owned; 1781 } 1782 1783 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1784 { 1785 return sk->sk_lock.owned; 1786 } 1787 1788 static inline void sock_release_ownership(struct sock *sk) 1789 { 1790 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk)); 1791 sk->sk_lock.owned = 0; 1792 1793 /* The sk_lock has mutex_unlock() semantics: */ 1794 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1795 } 1796 1797 /* no reclassification while locks are held */ 1798 static inline bool sock_allow_reclassification(const struct sock *csk) 1799 { 1800 struct sock *sk = (struct sock *)csk; 1801 1802 return !sock_owned_by_user_nocheck(sk) && 1803 !spin_is_locked(&sk->sk_lock.slock); 1804 } 1805 1806 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1807 struct proto *prot, int kern); 1808 void sk_free(struct sock *sk); 1809 void sk_net_refcnt_upgrade(struct sock *sk); 1810 void sk_destruct(struct sock *sk); 1811 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1812 1813 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1814 gfp_t priority); 1815 void __sock_wfree(struct sk_buff *skb); 1816 void sock_wfree(struct sk_buff *skb); 1817 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1818 gfp_t priority); 1819 void skb_orphan_partial(struct sk_buff *skb); 1820 void sock_rfree(struct sk_buff *skb); 1821 void sock_efree(struct sk_buff *skb); 1822 #ifdef CONFIG_INET 1823 void sock_edemux(struct sk_buff *skb); 1824 void sock_pfree(struct sk_buff *skb); 1825 1826 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk) 1827 { 1828 skb_orphan(skb); 1829 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 1830 skb->sk = sk; 1831 skb->destructor = sock_edemux; 1832 } 1833 } 1834 #else 1835 #define sock_edemux sock_efree 1836 #endif 1837 1838 int sk_setsockopt(struct sock *sk, int level, int optname, 1839 sockptr_t optval, unsigned int optlen); 1840 int sock_setsockopt(struct socket *sock, int level, int op, 1841 sockptr_t optval, unsigned int optlen); 1842 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 1843 int optname, sockptr_t optval, int optlen); 1844 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 1845 int optname, sockptr_t optval, sockptr_t optlen); 1846 1847 int sk_getsockopt(struct sock *sk, int level, int optname, 1848 sockptr_t optval, sockptr_t optlen); 1849 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1850 bool timeval, bool time32); 1851 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1852 unsigned long data_len, int noblock, 1853 int *errcode, int max_page_order); 1854 1855 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk, 1856 unsigned long size, 1857 int noblock, int *errcode) 1858 { 1859 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 1860 } 1861 1862 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1863 void *sock_kmemdup(struct sock *sk, const void *src, 1864 int size, gfp_t priority); 1865 void sock_kfree_s(struct sock *sk, void *mem, int size); 1866 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1867 void sk_send_sigurg(struct sock *sk); 1868 1869 static inline void sock_replace_proto(struct sock *sk, struct proto *proto) 1870 { 1871 if (sk->sk_socket) 1872 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1873 WRITE_ONCE(sk->sk_prot, proto); 1874 } 1875 1876 struct sockcm_cookie { 1877 u64 transmit_time; 1878 u32 mark; 1879 u32 tsflags; 1880 u32 ts_opt_id; 1881 u32 priority; 1882 u32 dmabuf_id; 1883 }; 1884 1885 static inline void sockcm_init(struct sockcm_cookie *sockc, 1886 const struct sock *sk) 1887 { 1888 *sockc = (struct sockcm_cookie) { 1889 .mark = READ_ONCE(sk->sk_mark), 1890 .tsflags = READ_ONCE(sk->sk_tsflags), 1891 .priority = READ_ONCE(sk->sk_priority), 1892 }; 1893 } 1894 1895 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 1896 struct sockcm_cookie *sockc); 1897 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1898 struct sockcm_cookie *sockc); 1899 1900 /* 1901 * Functions to fill in entries in struct proto_ops when a protocol 1902 * does not implement a particular function. 1903 */ 1904 int sock_no_bind(struct socket *, struct sockaddr *, int); 1905 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1906 int sock_no_socketpair(struct socket *, struct socket *); 1907 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *); 1908 int sock_no_getname(struct socket *, struct sockaddr *, int); 1909 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1910 int sock_no_listen(struct socket *, int); 1911 int sock_no_shutdown(struct socket *, int); 1912 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1913 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1914 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1915 int sock_no_mmap(struct file *file, struct socket *sock, 1916 struct vm_area_struct *vma); 1917 1918 /* 1919 * Functions to fill in entries in struct proto_ops when a protocol 1920 * uses the inet style. 1921 */ 1922 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1923 char __user *optval, int __user *optlen); 1924 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1925 int flags); 1926 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1927 sockptr_t optval, unsigned int optlen); 1928 1929 void sk_common_release(struct sock *sk); 1930 1931 /* 1932 * Default socket callbacks and setup code 1933 */ 1934 1935 /* Initialise core socket variables using an explicit uid. */ 1936 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid); 1937 1938 /* Initialise core socket variables. 1939 * Assumes struct socket *sock is embedded in a struct socket_alloc. 1940 */ 1941 void sock_init_data(struct socket *sock, struct sock *sk); 1942 1943 /* 1944 * Socket reference counting postulates. 1945 * 1946 * * Each user of socket SHOULD hold a reference count. 1947 * * Each access point to socket (an hash table bucket, reference from a list, 1948 * running timer, skb in flight MUST hold a reference count. 1949 * * When reference count hits 0, it means it will never increase back. 1950 * * When reference count hits 0, it means that no references from 1951 * outside exist to this socket and current process on current CPU 1952 * is last user and may/should destroy this socket. 1953 * * sk_free is called from any context: process, BH, IRQ. When 1954 * it is called, socket has no references from outside -> sk_free 1955 * may release descendant resources allocated by the socket, but 1956 * to the time when it is called, socket is NOT referenced by any 1957 * hash tables, lists etc. 1958 * * Packets, delivered from outside (from network or from another process) 1959 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1960 * when they sit in queue. Otherwise, packets will leak to hole, when 1961 * socket is looked up by one cpu and unhasing is made by another CPU. 1962 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1963 * (leak to backlog). Packet socket does all the processing inside 1964 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1965 * use separate SMP lock, so that they are prone too. 1966 */ 1967 1968 /* Ungrab socket and destroy it, if it was the last reference. */ 1969 static inline void sock_put(struct sock *sk) 1970 { 1971 if (refcount_dec_and_test(&sk->sk_refcnt)) 1972 sk_free(sk); 1973 } 1974 /* Generic version of sock_put(), dealing with all sockets 1975 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1976 */ 1977 void sock_gen_put(struct sock *sk); 1978 1979 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1980 unsigned int trim_cap, bool refcounted); 1981 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1982 const int nested) 1983 { 1984 return __sk_receive_skb(sk, skb, nested, 1, true); 1985 } 1986 1987 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1988 { 1989 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1990 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1991 return; 1992 /* Paired with READ_ONCE() in sk_tx_queue_get() and 1993 * other WRITE_ONCE() because socket lock might be not held. 1994 */ 1995 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue); 1996 } 1997 1998 #define NO_QUEUE_MAPPING USHRT_MAX 1999 2000 static inline void sk_tx_queue_clear(struct sock *sk) 2001 { 2002 /* Paired with READ_ONCE() in sk_tx_queue_get() and 2003 * other WRITE_ONCE() because socket lock might be not held. 2004 */ 2005 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING); 2006 } 2007 2008 static inline int sk_tx_queue_get(const struct sock *sk) 2009 { 2010 if (sk) { 2011 /* Paired with WRITE_ONCE() in sk_tx_queue_clear() 2012 * and sk_tx_queue_set(). 2013 */ 2014 int val = READ_ONCE(sk->sk_tx_queue_mapping); 2015 2016 if (val != NO_QUEUE_MAPPING) 2017 return val; 2018 } 2019 return -1; 2020 } 2021 2022 static inline void __sk_rx_queue_set(struct sock *sk, 2023 const struct sk_buff *skb, 2024 bool force_set) 2025 { 2026 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2027 if (skb_rx_queue_recorded(skb)) { 2028 u16 rx_queue = skb_get_rx_queue(skb); 2029 2030 if (force_set || 2031 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue)) 2032 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue); 2033 } 2034 #endif 2035 } 2036 2037 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 2038 { 2039 __sk_rx_queue_set(sk, skb, true); 2040 } 2041 2042 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb) 2043 { 2044 __sk_rx_queue_set(sk, skb, false); 2045 } 2046 2047 static inline void sk_rx_queue_clear(struct sock *sk) 2048 { 2049 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2050 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING); 2051 #endif 2052 } 2053 2054 static inline int sk_rx_queue_get(const struct sock *sk) 2055 { 2056 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2057 if (sk) { 2058 int res = READ_ONCE(sk->sk_rx_queue_mapping); 2059 2060 if (res != NO_QUEUE_MAPPING) 2061 return res; 2062 } 2063 #endif 2064 2065 return -1; 2066 } 2067 2068 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 2069 { 2070 sk->sk_socket = sock; 2071 if (sock) { 2072 WRITE_ONCE(sk->sk_uid, SOCK_INODE(sock)->i_uid); 2073 WRITE_ONCE(sk->sk_ino, SOCK_INODE(sock)->i_ino); 2074 } else { 2075 /* Note: sk_uid is unchanged. */ 2076 WRITE_ONCE(sk->sk_ino, 0); 2077 } 2078 } 2079 2080 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 2081 { 2082 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 2083 return &rcu_dereference_raw(sk->sk_wq)->wait; 2084 } 2085 /* Detach socket from process context. 2086 * Announce socket dead, detach it from wait queue and inode. 2087 * Note that parent inode held reference count on this struct sock, 2088 * we do not release it in this function, because protocol 2089 * probably wants some additional cleanups or even continuing 2090 * to work with this socket (TCP). 2091 */ 2092 static inline void sock_orphan(struct sock *sk) 2093 { 2094 write_lock_bh(&sk->sk_callback_lock); 2095 sock_set_flag(sk, SOCK_DEAD); 2096 sk_set_socket(sk, NULL); 2097 sk->sk_wq = NULL; 2098 write_unlock_bh(&sk->sk_callback_lock); 2099 } 2100 2101 static inline void sock_graft(struct sock *sk, struct socket *parent) 2102 { 2103 WARN_ON(parent->sk); 2104 write_lock_bh(&sk->sk_callback_lock); 2105 rcu_assign_pointer(sk->sk_wq, &parent->wq); 2106 parent->sk = sk; 2107 sk_set_socket(sk, parent); 2108 security_sock_graft(sk, parent); 2109 write_unlock_bh(&sk->sk_callback_lock); 2110 } 2111 2112 static inline unsigned long sock_i_ino(const struct sock *sk) 2113 { 2114 /* Paired with WRITE_ONCE() in sock_graft() and sock_orphan() */ 2115 return READ_ONCE(sk->sk_ino); 2116 } 2117 2118 static inline kuid_t sk_uid(const struct sock *sk) 2119 { 2120 /* Paired with WRITE_ONCE() in sockfs_setattr() */ 2121 return READ_ONCE(sk->sk_uid); 2122 } 2123 2124 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 2125 { 2126 return sk ? sk_uid(sk) : make_kuid(net->user_ns, 0); 2127 } 2128 2129 static inline u32 net_tx_rndhash(void) 2130 { 2131 u32 v = get_random_u32(); 2132 2133 return v ?: 1; 2134 } 2135 2136 static inline void sk_set_txhash(struct sock *sk) 2137 { 2138 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ 2139 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); 2140 } 2141 2142 static inline bool sk_rethink_txhash(struct sock *sk) 2143 { 2144 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) { 2145 sk_set_txhash(sk); 2146 return true; 2147 } 2148 return false; 2149 } 2150 2151 static inline struct dst_entry * 2152 __sk_dst_get(const struct sock *sk) 2153 { 2154 return rcu_dereference_check(sk->sk_dst_cache, 2155 lockdep_sock_is_held(sk)); 2156 } 2157 2158 static inline struct dst_entry * 2159 sk_dst_get(const struct sock *sk) 2160 { 2161 struct dst_entry *dst; 2162 2163 rcu_read_lock(); 2164 dst = rcu_dereference(sk->sk_dst_cache); 2165 if (dst && !rcuref_get(&dst->__rcuref)) 2166 dst = NULL; 2167 rcu_read_unlock(); 2168 return dst; 2169 } 2170 2171 static inline void __dst_negative_advice(struct sock *sk) 2172 { 2173 struct dst_entry *dst = __sk_dst_get(sk); 2174 2175 if (dst && dst->ops->negative_advice) 2176 dst->ops->negative_advice(sk, dst); 2177 } 2178 2179 static inline void dst_negative_advice(struct sock *sk) 2180 { 2181 sk_rethink_txhash(sk); 2182 __dst_negative_advice(sk); 2183 } 2184 2185 static inline void 2186 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 2187 { 2188 struct dst_entry *old_dst; 2189 2190 sk_tx_queue_clear(sk); 2191 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2192 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 2193 lockdep_sock_is_held(sk)); 2194 rcu_assign_pointer(sk->sk_dst_cache, dst); 2195 dst_release(old_dst); 2196 } 2197 2198 static inline void 2199 sk_dst_set(struct sock *sk, struct dst_entry *dst) 2200 { 2201 struct dst_entry *old_dst; 2202 2203 sk_tx_queue_clear(sk); 2204 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2205 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst))); 2206 dst_release(old_dst); 2207 } 2208 2209 static inline void 2210 __sk_dst_reset(struct sock *sk) 2211 { 2212 __sk_dst_set(sk, NULL); 2213 } 2214 2215 static inline void 2216 sk_dst_reset(struct sock *sk) 2217 { 2218 sk_dst_set(sk, NULL); 2219 } 2220 2221 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 2222 2223 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 2224 2225 static inline void sk_dst_confirm(struct sock *sk) 2226 { 2227 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 2228 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 2229 } 2230 2231 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 2232 { 2233 if (skb_get_dst_pending_confirm(skb)) { 2234 struct sock *sk = skb->sk; 2235 2236 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2237 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2238 neigh_confirm(n); 2239 } 2240 } 2241 2242 bool sk_mc_loop(const struct sock *sk); 2243 2244 static inline bool sk_can_gso(const struct sock *sk) 2245 { 2246 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2247 } 2248 2249 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2250 2251 static inline void sk_gso_disable(struct sock *sk) 2252 { 2253 sk->sk_gso_disabled = 1; 2254 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2255 } 2256 2257 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2258 struct iov_iter *from, char *to, 2259 int copy, int offset) 2260 { 2261 if (skb->ip_summed == CHECKSUM_NONE) { 2262 __wsum csum = 0; 2263 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2264 return -EFAULT; 2265 skb->csum = csum_block_add(skb->csum, csum, offset); 2266 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2267 if (!copy_from_iter_full_nocache(to, copy, from)) 2268 return -EFAULT; 2269 } else if (!copy_from_iter_full(to, copy, from)) 2270 return -EFAULT; 2271 2272 return 0; 2273 } 2274 2275 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2276 struct iov_iter *from, int copy) 2277 { 2278 int err, offset = skb->len; 2279 2280 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2281 copy, offset); 2282 if (err) 2283 __skb_trim(skb, offset); 2284 2285 return err; 2286 } 2287 2288 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2289 struct sk_buff *skb, 2290 struct page *page, 2291 int off, int copy) 2292 { 2293 int err; 2294 2295 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2296 copy, skb->len); 2297 if (err) 2298 return err; 2299 2300 skb_len_add(skb, copy); 2301 sk_wmem_queued_add(sk, copy); 2302 sk_mem_charge(sk, copy); 2303 return 0; 2304 } 2305 2306 /** 2307 * sk_wmem_alloc_get - returns write allocations 2308 * @sk: socket 2309 * 2310 * Return: sk_wmem_alloc minus initial offset of one 2311 */ 2312 static inline int sk_wmem_alloc_get(const struct sock *sk) 2313 { 2314 return refcount_read(&sk->sk_wmem_alloc) - 1; 2315 } 2316 2317 /** 2318 * sk_rmem_alloc_get - returns read allocations 2319 * @sk: socket 2320 * 2321 * Return: sk_rmem_alloc 2322 */ 2323 static inline int sk_rmem_alloc_get(const struct sock *sk) 2324 { 2325 return atomic_read(&sk->sk_rmem_alloc); 2326 } 2327 2328 /** 2329 * sk_has_allocations - check if allocations are outstanding 2330 * @sk: socket 2331 * 2332 * Return: true if socket has write or read allocations 2333 */ 2334 static inline bool sk_has_allocations(const struct sock *sk) 2335 { 2336 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2337 } 2338 2339 /** 2340 * skwq_has_sleeper - check if there are any waiting processes 2341 * @wq: struct socket_wq 2342 * 2343 * Return: true if socket_wq has waiting processes 2344 * 2345 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2346 * barrier call. They were added due to the race found within the tcp code. 2347 * 2348 * Consider following tcp code paths:: 2349 * 2350 * CPU1 CPU2 2351 * sys_select receive packet 2352 * ... ... 2353 * __add_wait_queue update tp->rcv_nxt 2354 * ... ... 2355 * tp->rcv_nxt check sock_def_readable 2356 * ... { 2357 * schedule rcu_read_lock(); 2358 * wq = rcu_dereference(sk->sk_wq); 2359 * if (wq && waitqueue_active(&wq->wait)) 2360 * wake_up_interruptible(&wq->wait) 2361 * ... 2362 * } 2363 * 2364 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2365 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2366 * could then endup calling schedule and sleep forever if there are no more 2367 * data on the socket. 2368 * 2369 */ 2370 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2371 { 2372 return wq && wq_has_sleeper(&wq->wait); 2373 } 2374 2375 /** 2376 * sock_poll_wait - wrapper for the poll_wait call. 2377 * @filp: file 2378 * @sock: socket to wait on 2379 * @p: poll_table 2380 * 2381 * See the comments in the wq_has_sleeper function. 2382 */ 2383 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2384 poll_table *p) 2385 { 2386 /* Provides a barrier we need to be sure we are in sync 2387 * with the socket flags modification. 2388 * 2389 * This memory barrier is paired in the wq_has_sleeper. 2390 */ 2391 poll_wait(filp, &sock->wq.wait, p); 2392 } 2393 2394 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2395 { 2396 /* This pairs with WRITE_ONCE() in sk_set_txhash() */ 2397 u32 txhash = READ_ONCE(sk->sk_txhash); 2398 2399 if (txhash) { 2400 skb->l4_hash = 1; 2401 skb->hash = txhash; 2402 } 2403 } 2404 2405 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2406 2407 /* 2408 * Queue a received datagram if it will fit. Stream and sequenced 2409 * protocols can't normally use this as they need to fit buffers in 2410 * and play with them. 2411 * 2412 * Inlined as it's very short and called for pretty much every 2413 * packet ever received. 2414 */ 2415 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2416 { 2417 skb_orphan(skb); 2418 skb->sk = sk; 2419 skb->destructor = sock_rfree; 2420 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2421 sk_mem_charge(sk, skb->truesize); 2422 } 2423 2424 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) 2425 { 2426 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { 2427 skb_orphan(skb); 2428 skb->destructor = sock_efree; 2429 skb->sk = sk; 2430 return true; 2431 } 2432 return false; 2433 } 2434 2435 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk) 2436 { 2437 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC)); 2438 if (skb) { 2439 if (sk_rmem_schedule(sk, skb, skb->truesize)) { 2440 skb_set_owner_r(skb, sk); 2441 return skb; 2442 } 2443 __kfree_skb(skb); 2444 } 2445 return NULL; 2446 } 2447 2448 static inline void skb_prepare_for_gro(struct sk_buff *skb) 2449 { 2450 if (skb->destructor != sock_wfree) { 2451 skb_orphan(skb); 2452 return; 2453 } 2454 skb->slow_gro = 1; 2455 } 2456 2457 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2458 unsigned long expires); 2459 2460 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2461 2462 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); 2463 2464 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2465 struct sk_buff *skb, unsigned int flags, 2466 void (*destructor)(struct sock *sk, 2467 struct sk_buff *skb)); 2468 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2469 2470 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 2471 enum skb_drop_reason *reason); 2472 2473 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2474 { 2475 return sock_queue_rcv_skb_reason(sk, skb, NULL); 2476 } 2477 2478 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2479 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2480 2481 /* 2482 * Recover an error report and clear atomically 2483 */ 2484 2485 static inline int sock_error(struct sock *sk) 2486 { 2487 int err; 2488 2489 /* Avoid an atomic operation for the common case. 2490 * This is racy since another cpu/thread can change sk_err under us. 2491 */ 2492 if (likely(data_race(!sk->sk_err))) 2493 return 0; 2494 2495 err = xchg(&sk->sk_err, 0); 2496 return -err; 2497 } 2498 2499 void sk_error_report(struct sock *sk); 2500 2501 static inline unsigned long sock_wspace(struct sock *sk) 2502 { 2503 int amt = 0; 2504 2505 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2506 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2507 if (amt < 0) 2508 amt = 0; 2509 } 2510 return amt; 2511 } 2512 2513 /* Note: 2514 * We use sk->sk_wq_raw, from contexts knowing this 2515 * pointer is not NULL and cannot disappear/change. 2516 */ 2517 static inline void sk_set_bit(int nr, struct sock *sk) 2518 { 2519 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2520 !sock_flag(sk, SOCK_FASYNC)) 2521 return; 2522 2523 set_bit(nr, &sk->sk_wq_raw->flags); 2524 } 2525 2526 static inline void sk_clear_bit(int nr, struct sock *sk) 2527 { 2528 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2529 !sock_flag(sk, SOCK_FASYNC)) 2530 return; 2531 2532 clear_bit(nr, &sk->sk_wq_raw->flags); 2533 } 2534 2535 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2536 { 2537 if (sock_flag(sk, SOCK_FASYNC)) { 2538 rcu_read_lock(); 2539 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2540 rcu_read_unlock(); 2541 } 2542 } 2543 2544 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band) 2545 { 2546 if (unlikely(sock_flag(sk, SOCK_FASYNC))) 2547 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2548 } 2549 2550 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2551 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2552 * Note: for send buffers, TCP works better if we can build two skbs at 2553 * minimum. 2554 */ 2555 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2556 2557 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2558 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2559 2560 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2561 { 2562 u32 val; 2563 2564 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2565 return; 2566 2567 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2568 val = max_t(u32, val, sk_unused_reserved_mem(sk)); 2569 2570 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2571 } 2572 2573 /** 2574 * sk_page_frag - return an appropriate page_frag 2575 * @sk: socket 2576 * 2577 * Use the per task page_frag instead of the per socket one for 2578 * optimization when we know that we're in process context and own 2579 * everything that's associated with %current. 2580 * 2581 * Both direct reclaim and page faults can nest inside other 2582 * socket operations and end up recursing into sk_page_frag() 2583 * while it's already in use: explicitly avoid task page_frag 2584 * when users disable sk_use_task_frag. 2585 * 2586 * Return: a per task page_frag if context allows that, 2587 * otherwise a per socket one. 2588 */ 2589 static inline struct page_frag *sk_page_frag(struct sock *sk) 2590 { 2591 if (sk->sk_use_task_frag) 2592 return ¤t->task_frag; 2593 2594 return &sk->sk_frag; 2595 } 2596 2597 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2598 2599 /* 2600 * Default write policy as shown to user space via poll/select/SIGIO 2601 */ 2602 static inline bool sock_writeable(const struct sock *sk) 2603 { 2604 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2605 } 2606 2607 static inline gfp_t gfp_any(void) 2608 { 2609 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2610 } 2611 2612 static inline gfp_t gfp_memcg_charge(void) 2613 { 2614 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2615 } 2616 2617 #ifdef CONFIG_MEMCG 2618 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) 2619 { 2620 return sk->sk_memcg; 2621 } 2622 2623 static inline bool mem_cgroup_sk_enabled(const struct sock *sk) 2624 { 2625 return mem_cgroup_sockets_enabled && mem_cgroup_from_sk(sk); 2626 } 2627 2628 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) 2629 { 2630 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); 2631 2632 #ifdef CONFIG_MEMCG_V1 2633 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2634 return !!memcg->tcpmem_pressure; 2635 #endif /* CONFIG_MEMCG_V1 */ 2636 2637 do { 2638 if (time_before64(get_jiffies_64(), mem_cgroup_get_socket_pressure(memcg))) 2639 return true; 2640 } while ((memcg = parent_mem_cgroup(memcg))); 2641 2642 return false; 2643 } 2644 #else 2645 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) 2646 { 2647 return NULL; 2648 } 2649 2650 static inline bool mem_cgroup_sk_enabled(const struct sock *sk) 2651 { 2652 return false; 2653 } 2654 2655 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) 2656 { 2657 return false; 2658 } 2659 #endif 2660 2661 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2662 { 2663 return noblock ? 0 : READ_ONCE(sk->sk_rcvtimeo); 2664 } 2665 2666 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2667 { 2668 return noblock ? 0 : READ_ONCE(sk->sk_sndtimeo); 2669 } 2670 2671 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2672 { 2673 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2674 2675 return v ?: 1; 2676 } 2677 2678 /* Alas, with timeout socket operations are not restartable. 2679 * Compare this to poll(). 2680 */ 2681 static inline int sock_intr_errno(long timeo) 2682 { 2683 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2684 } 2685 2686 struct sock_skb_cb { 2687 u32 dropcount; 2688 }; 2689 2690 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2691 * using skb->cb[] would keep using it directly and utilize its 2692 * alignment guarantee. 2693 */ 2694 #define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \ 2695 sizeof(struct sock_skb_cb)) 2696 2697 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2698 SOCK_SKB_CB_OFFSET)) 2699 2700 #define sock_skb_cb_check_size(size) \ 2701 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2702 2703 static inline void sk_drops_add(struct sock *sk, int segs) 2704 { 2705 struct numa_drop_counters *ndc = sk->sk_drop_counters; 2706 2707 if (ndc) 2708 numa_drop_add(ndc, segs); 2709 else 2710 atomic_add(segs, &sk->sk_drops); 2711 } 2712 2713 static inline void sk_drops_inc(struct sock *sk) 2714 { 2715 sk_drops_add(sk, 1); 2716 } 2717 2718 static inline int sk_drops_read(const struct sock *sk) 2719 { 2720 const struct numa_drop_counters *ndc = sk->sk_drop_counters; 2721 2722 if (ndc) { 2723 DEBUG_NET_WARN_ON_ONCE(atomic_read(&sk->sk_drops)); 2724 return numa_drop_read(ndc); 2725 } 2726 return atomic_read(&sk->sk_drops); 2727 } 2728 2729 static inline void sk_drops_reset(struct sock *sk) 2730 { 2731 struct numa_drop_counters *ndc = sk->sk_drop_counters; 2732 2733 if (ndc) 2734 numa_drop_reset(ndc); 2735 atomic_set(&sk->sk_drops, 0); 2736 } 2737 2738 static inline void 2739 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2740 { 2741 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2742 sk_drops_read(sk) : 0; 2743 } 2744 2745 static inline void sk_drops_skbadd(struct sock *sk, const struct sk_buff *skb) 2746 { 2747 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2748 2749 sk_drops_add(sk, segs); 2750 } 2751 2752 static inline ktime_t sock_read_timestamp(struct sock *sk) 2753 { 2754 #if BITS_PER_LONG==32 2755 unsigned int seq; 2756 ktime_t kt; 2757 2758 do { 2759 seq = read_seqbegin(&sk->sk_stamp_seq); 2760 kt = sk->sk_stamp; 2761 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2762 2763 return kt; 2764 #else 2765 return READ_ONCE(sk->sk_stamp); 2766 #endif 2767 } 2768 2769 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2770 { 2771 #if BITS_PER_LONG==32 2772 write_seqlock(&sk->sk_stamp_seq); 2773 sk->sk_stamp = kt; 2774 write_sequnlock(&sk->sk_stamp_seq); 2775 #else 2776 WRITE_ONCE(sk->sk_stamp, kt); 2777 #endif 2778 } 2779 2780 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2781 struct sk_buff *skb); 2782 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2783 struct sk_buff *skb); 2784 2785 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk); 2786 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk, 2787 struct timespec64 *ts); 2788 2789 static inline void 2790 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2791 { 2792 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2793 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2794 ktime_t kt = skb->tstamp; 2795 /* 2796 * generate control messages if 2797 * - receive time stamping in software requested 2798 * - software time stamp available and wanted 2799 * - hardware time stamps available and wanted 2800 */ 2801 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2802 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2803 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2804 (hwtstamps->hwtstamp && 2805 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2806 __sock_recv_timestamp(msg, sk, skb); 2807 else 2808 sock_write_timestamp(sk, kt); 2809 2810 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb)) 2811 __sock_recv_wifi_status(msg, sk, skb); 2812 } 2813 2814 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2815 struct sk_buff *skb); 2816 2817 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2818 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2819 struct sk_buff *skb) 2820 { 2821 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \ 2822 (1UL << SOCK_RCVTSTAMP) | \ 2823 (1UL << SOCK_RCVMARK) | \ 2824 (1UL << SOCK_RCVPRIORITY) | \ 2825 (1UL << SOCK_TIMESTAMPING_ANY)) 2826 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2827 SOF_TIMESTAMPING_RAW_HARDWARE) 2828 2829 if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS) 2830 __sock_recv_cmsgs(msg, sk, skb); 2831 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2832 sock_write_timestamp(sk, skb->tstamp); 2833 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP)) 2834 sock_write_timestamp(sk, 0); 2835 } 2836 2837 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags); 2838 2839 /** 2840 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2841 * @sk: socket sending this packet 2842 * @sockc: pointer to socket cmsg cookie to get timestamping info 2843 * @tx_flags: completed with instructions for time stamping 2844 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2845 * 2846 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2847 */ 2848 static inline void _sock_tx_timestamp(struct sock *sk, 2849 const struct sockcm_cookie *sockc, 2850 __u8 *tx_flags, __u32 *tskey) 2851 { 2852 __u32 tsflags = sockc->tsflags; 2853 2854 if (unlikely(tsflags)) { 2855 __sock_tx_timestamp(tsflags, tx_flags); 2856 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2857 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) { 2858 if (tsflags & SOCKCM_FLAG_TS_OPT_ID) 2859 *tskey = sockc->ts_opt_id; 2860 else 2861 *tskey = atomic_inc_return(&sk->sk_tskey) - 1; 2862 } 2863 } 2864 } 2865 2866 static inline void sock_tx_timestamp(struct sock *sk, 2867 const struct sockcm_cookie *sockc, 2868 __u8 *tx_flags) 2869 { 2870 _sock_tx_timestamp(sk, sockc, tx_flags, NULL); 2871 } 2872 2873 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, 2874 const struct sockcm_cookie *sockc) 2875 { 2876 _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags, 2877 &skb_shinfo(skb)->tskey); 2878 } 2879 2880 static inline bool sk_is_inet(const struct sock *sk) 2881 { 2882 int family = READ_ONCE(sk->sk_family); 2883 2884 return family == AF_INET || family == AF_INET6; 2885 } 2886 2887 static inline bool sk_is_tcp(const struct sock *sk) 2888 { 2889 return sk_is_inet(sk) && 2890 sk->sk_type == SOCK_STREAM && 2891 sk->sk_protocol == IPPROTO_TCP; 2892 } 2893 2894 static inline bool sk_is_udp(const struct sock *sk) 2895 { 2896 return sk_is_inet(sk) && 2897 sk->sk_type == SOCK_DGRAM && 2898 sk->sk_protocol == IPPROTO_UDP; 2899 } 2900 2901 static inline bool sk_is_unix(const struct sock *sk) 2902 { 2903 return sk->sk_family == AF_UNIX; 2904 } 2905 2906 static inline bool sk_is_stream_unix(const struct sock *sk) 2907 { 2908 return sk_is_unix(sk) && sk->sk_type == SOCK_STREAM; 2909 } 2910 2911 static inline bool sk_is_vsock(const struct sock *sk) 2912 { 2913 return sk->sk_family == AF_VSOCK; 2914 } 2915 2916 static inline bool sk_may_scm_recv(const struct sock *sk) 2917 { 2918 return (IS_ENABLED(CONFIG_UNIX) && sk->sk_family == AF_UNIX) || 2919 sk->sk_family == AF_NETLINK || 2920 (IS_ENABLED(CONFIG_BT) && sk->sk_family == AF_BLUETOOTH); 2921 } 2922 2923 /** 2924 * sk_eat_skb - Release a skb if it is no longer needed 2925 * @sk: socket to eat this skb from 2926 * @skb: socket buffer to eat 2927 * 2928 * This routine must be called with interrupts disabled or with the socket 2929 * locked so that the sk_buff queue operation is ok. 2930 */ 2931 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2932 { 2933 __skb_unlink(skb, &sk->sk_receive_queue); 2934 __kfree_skb(skb); 2935 } 2936 2937 static inline bool 2938 skb_sk_is_prefetched(struct sk_buff *skb) 2939 { 2940 #ifdef CONFIG_INET 2941 return skb->destructor == sock_pfree; 2942 #else 2943 return false; 2944 #endif /* CONFIG_INET */ 2945 } 2946 2947 /* This helper checks if a socket is a full socket, 2948 * ie _not_ a timewait or request socket. 2949 */ 2950 static inline bool sk_fullsock(const struct sock *sk) 2951 { 2952 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2953 } 2954 2955 static inline bool 2956 sk_is_refcounted(struct sock *sk) 2957 { 2958 /* Only full sockets have sk->sk_flags. */ 2959 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2960 } 2961 2962 static inline bool 2963 sk_requests_wifi_status(struct sock *sk) 2964 { 2965 return sk && sk_fullsock(sk) && sock_flag(sk, SOCK_WIFI_STATUS); 2966 } 2967 2968 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2969 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2970 */ 2971 static inline bool sk_listener(const struct sock *sk) 2972 { 2973 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2974 } 2975 2976 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT 2977 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE) 2978 * TCP RST and ACK can be attached to TIME_WAIT. 2979 */ 2980 static inline bool sk_listener_or_tw(const struct sock *sk) 2981 { 2982 return (1 << READ_ONCE(sk->sk_state)) & 2983 (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT); 2984 } 2985 2986 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 2987 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2988 int type); 2989 2990 bool sk_ns_capable(const struct sock *sk, 2991 struct user_namespace *user_ns, int cap); 2992 bool sk_capable(const struct sock *sk, int cap); 2993 bool sk_net_capable(const struct sock *sk, int cap); 2994 2995 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2996 2997 /* Take into consideration the size of the struct sk_buff overhead in the 2998 * determination of these values, since that is non-constant across 2999 * platforms. This makes socket queueing behavior and performance 3000 * not depend upon such differences. 3001 */ 3002 #define _SK_MEM_PACKETS 256 3003 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 3004 #define SK_WMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 3005 #define SK_RMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 3006 3007 extern __u32 sysctl_wmem_max; 3008 extern __u32 sysctl_rmem_max; 3009 3010 extern __u32 sysctl_wmem_default; 3011 extern __u32 sysctl_rmem_default; 3012 3013 #define SKB_FRAG_PAGE_ORDER get_order(32768) 3014 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 3015 3016 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 3017 { 3018 /* Does this proto have per netns sysctl_wmem ? */ 3019 if (proto->sysctl_wmem_offset) 3020 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset)); 3021 3022 return READ_ONCE(*proto->sysctl_wmem); 3023 } 3024 3025 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 3026 { 3027 /* Does this proto have per netns sysctl_rmem ? */ 3028 if (proto->sysctl_rmem_offset) 3029 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset)); 3030 3031 return READ_ONCE(*proto->sysctl_rmem); 3032 } 3033 3034 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 3035 * Some wifi drivers need to tweak it to get more chunks. 3036 * They can use this helper from their ndo_start_xmit() 3037 */ 3038 static inline void sk_pacing_shift_update(struct sock *sk, int val) 3039 { 3040 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 3041 return; 3042 WRITE_ONCE(sk->sk_pacing_shift, val); 3043 } 3044 3045 /* if a socket is bound to a device, check that the given device 3046 * index is either the same or that the socket is bound to an L3 3047 * master device and the given device index is also enslaved to 3048 * that L3 master 3049 */ 3050 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 3051 { 3052 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 3053 int mdif; 3054 3055 if (!bound_dev_if || bound_dev_if == dif) 3056 return true; 3057 3058 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 3059 if (mdif && mdif == bound_dev_if) 3060 return true; 3061 3062 return false; 3063 } 3064 3065 void sock_def_readable(struct sock *sk); 3066 3067 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 3068 void sock_set_timestamp(struct sock *sk, int optname, bool valbool); 3069 int sock_set_timestamping(struct sock *sk, int optname, 3070 struct so_timestamping timestamping); 3071 3072 #if defined(CONFIG_CGROUP_BPF) 3073 void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op); 3074 #else 3075 static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op) 3076 { 3077 } 3078 #endif 3079 void sock_no_linger(struct sock *sk); 3080 void sock_set_keepalive(struct sock *sk); 3081 void sock_set_priority(struct sock *sk, u32 priority); 3082 void sock_set_rcvbuf(struct sock *sk, int val); 3083 void sock_set_mark(struct sock *sk, u32 val); 3084 void sock_set_reuseaddr(struct sock *sk); 3085 void sock_set_reuseport(struct sock *sk); 3086 void sock_set_sndtimeo(struct sock *sk, s64 secs); 3087 3088 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); 3089 3090 int sock_get_timeout(long timeo, void *optval, bool old_timeval); 3091 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 3092 sockptr_t optval, int optlen, bool old_timeval); 3093 3094 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 3095 void __user *arg, void *karg, size_t size); 3096 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg); 3097 static inline bool sk_is_readable(struct sock *sk) 3098 { 3099 const struct proto *prot = READ_ONCE(sk->sk_prot); 3100 3101 if (prot->sock_is_readable) 3102 return prot->sock_is_readable(sk); 3103 3104 return false; 3105 } 3106 #endif /* _SOCK_H */ 3107