1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72
73 /*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79 /* This is the per-socket lock. The spinlock provides a synchronization
80 * between user contexts and software interrupt processing, whereas the
81 * mini-semaphore synchronizes multiple users amongst themselves.
82 */
83 typedef struct {
84 spinlock_t slock;
85 int owned;
86 wait_queue_head_t wq;
87 /*
88 * We express the mutex-alike socket_lock semantics
89 * to the lock validator by explicitly managing
90 * the slock as a lock variant (in addition to
91 * the slock itself):
92 */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 struct lockdep_map dep_map;
95 #endif
96 } socket_lock_t;
97
98 struct sock;
99 struct proto;
100 struct net;
101
102 typedef __u32 __bitwise __portpair;
103 typedef __u64 __bitwise __addrpair;
104
105 /**
106 * struct sock_common - minimal network layer representation of sockets
107 * @skc_daddr: Foreign IPv4 addr
108 * @skc_rcv_saddr: Bound local IPv4 addr
109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110 * @skc_hash: hash value used with various protocol lookup tables
111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
112 * @skc_dport: placeholder for inet_dport/tw_dport
113 * @skc_num: placeholder for inet_num/tw_num
114 * @skc_portpair: __u32 union of @skc_dport & @skc_num
115 * @skc_family: network address family
116 * @skc_state: Connection state
117 * @skc_reuse: %SO_REUSEADDR setting
118 * @skc_reuseport: %SO_REUSEPORT setting
119 * @skc_ipv6only: socket is IPV6 only
120 * @skc_net_refcnt: socket is using net ref counting
121 * @skc_bound_dev_if: bound device index if != 0
122 * @skc_bind_node: bind hash linkage for various protocol lookup tables
123 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124 * @skc_prot: protocol handlers inside a network family
125 * @skc_net: reference to the network namespace of this socket
126 * @skc_v6_daddr: IPV6 destination address
127 * @skc_v6_rcv_saddr: IPV6 source address
128 * @skc_cookie: socket's cookie value
129 * @skc_node: main hash linkage for various protocol lookup tables
130 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131 * @skc_tx_queue_mapping: tx queue number for this connection
132 * @skc_rx_queue_mapping: rx queue number for this connection
133 * @skc_flags: place holder for sk_flags
134 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136 * @skc_listener: connection request listener socket (aka rsk_listener)
137 * [union with @skc_flags]
138 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139 * [union with @skc_flags]
140 * @skc_incoming_cpu: record/match cpu processing incoming packets
141 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142 * [union with @skc_incoming_cpu]
143 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144 * [union with @skc_incoming_cpu]
145 * @skc_refcnt: reference count
146 *
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
149 */
150 struct sock_common {
151 union {
152 __addrpair skc_addrpair;
153 struct {
154 __be32 skc_daddr;
155 __be32 skc_rcv_saddr;
156 };
157 };
158 union {
159 unsigned int skc_hash;
160 __u16 skc_u16hashes[2];
161 };
162 /* skc_dport && skc_num must be grouped as well */
163 union {
164 __portpair skc_portpair;
165 struct {
166 __be16 skc_dport;
167 __u16 skc_num;
168 };
169 };
170
171 unsigned short skc_family;
172 volatile unsigned char skc_state;
173 unsigned char skc_reuse:4;
174 unsigned char skc_reuseport:1;
175 unsigned char skc_ipv6only:1;
176 unsigned char skc_net_refcnt:1;
177 int skc_bound_dev_if;
178 union {
179 struct hlist_node skc_bind_node;
180 struct hlist_node skc_portaddr_node;
181 };
182 struct proto *skc_prot;
183 possible_net_t skc_net;
184
185 #if IS_ENABLED(CONFIG_IPV6)
186 struct in6_addr skc_v6_daddr;
187 struct in6_addr skc_v6_rcv_saddr;
188 #endif
189
190 atomic64_t skc_cookie;
191
192 /* following fields are padding to force
193 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194 * assuming IPV6 is enabled. We use this padding differently
195 * for different kind of 'sockets'
196 */
197 union {
198 unsigned long skc_flags;
199 struct sock *skc_listener; /* request_sock */
200 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201 };
202 /*
203 * fields between dontcopy_begin/dontcopy_end
204 * are not copied in sock_copy()
205 */
206 /* private: */
207 int skc_dontcopy_begin[0];
208 /* public: */
209 union {
210 struct hlist_node skc_node;
211 struct hlist_nulls_node skc_nulls_node;
212 };
213 unsigned short skc_tx_queue_mapping;
214 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215 unsigned short skc_rx_queue_mapping;
216 #endif
217 union {
218 int skc_incoming_cpu;
219 u32 skc_rcv_wnd;
220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
221 };
222
223 refcount_t skc_refcnt;
224 /* private: */
225 int skc_dontcopy_end[0];
226 union {
227 u32 skc_rxhash;
228 u32 skc_window_clamp;
229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 };
231 /* public: */
232 };
233
234 struct bpf_local_storage;
235 struct sk_filter;
236
237 /**
238 * struct sock - network layer representation of sockets
239 * @__sk_common: shared layout with inet_timewait_sock
240 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242 * @sk_lock: synchronizer
243 * @sk_kern_sock: True if sock is using kernel lock classes
244 * @sk_rcvbuf: size of receive buffer in bytes
245 * @sk_wq: sock wait queue and async head
246 * @sk_rx_dst: receive input route used by early demux
247 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
249 * @sk_dst_cache: destination cache
250 * @sk_dst_pending_confirm: need to confirm neighbour
251 * @sk_policy: flow policy
252 * @sk_receive_queue: incoming packets
253 * @sk_wmem_alloc: transmit queue bytes committed
254 * @sk_tsq_flags: TCP Small Queues flags
255 * @sk_write_queue: Packet sending queue
256 * @sk_omem_alloc: "o" is "option" or "other"
257 * @sk_wmem_queued: persistent queue size
258 * @sk_forward_alloc: space allocated forward
259 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
260 * @sk_napi_id: id of the last napi context to receive data for sk
261 * @sk_ll_usec: usecs to busypoll when there is no data
262 * @sk_allocation: allocation mode
263 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
265 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266 * @sk_sndbuf: size of send buffer in bytes
267 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268 * @sk_no_check_rx: allow zero checksum in RX packets
269 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272 * @sk_gso_max_size: Maximum GSO segment size to build
273 * @sk_gso_max_segs: Maximum number of GSO segments
274 * @sk_pacing_shift: scaling factor for TCP Small Queues
275 * @sk_lingertime: %SO_LINGER l_linger setting
276 * @sk_backlog: always used with the per-socket spinlock held
277 * @sk_callback_lock: used with the callbacks in the end of this struct
278 * @sk_error_queue: rarely used
279 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280 * IPV6_ADDRFORM for instance)
281 * @sk_err: last error
282 * @sk_err_soft: errors that don't cause failure but are the cause of a
283 * persistent failure not just 'timed out'
284 * @sk_drops: raw/udp drops counter
285 * @sk_ack_backlog: current listen backlog
286 * @sk_max_ack_backlog: listen backlog set in listen()
287 * @sk_uid: user id of owner
288 * @sk_ino: inode number (zero if orphaned)
289 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
290 * @sk_busy_poll_budget: napi processing budget when busypolling
291 * @sk_priority: %SO_PRIORITY setting
292 * @sk_type: socket type (%SOCK_STREAM, etc)
293 * @sk_protocol: which protocol this socket belongs in this network family
294 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
295 * @sk_peer_pid: &struct pid for this socket's peer
296 * @sk_peer_cred: %SO_PEERCRED setting
297 * @sk_rcvlowat: %SO_RCVLOWAT setting
298 * @sk_rcvtimeo: %SO_RCVTIMEO setting
299 * @sk_sndtimeo: %SO_SNDTIMEO setting
300 * @sk_txhash: computed flow hash for use on transmit
301 * @sk_txrehash: enable TX hash rethink
302 * @sk_filter: socket filtering instructions
303 * @sk_timer: sock cleanup timer
304 * @sk_stamp: time stamp of last packet received
305 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
306 * @sk_tsflags: SO_TIMESTAMPING flags
307 * @sk_bpf_cb_flags: used in bpf_setsockopt()
308 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
309 * Sockets that can be used under memory reclaim should
310 * set this to false.
311 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
312 * for timestamping
313 * @sk_tskey: counter to disambiguate concurrent tstamp requests
314 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
315 * @sk_socket: Identd and reporting IO signals
316 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
317 * @sk_frag: cached page frag
318 * @sk_peek_off: current peek_offset value
319 * @sk_send_head: front of stuff to transmit
320 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
321 * @sk_security: used by security modules
322 * @sk_mark: generic packet mark
323 * @sk_cgrp_data: cgroup data for this cgroup
324 * @sk_memcg: this socket's memory cgroup association
325 * @sk_write_pending: a write to stream socket waits to start
326 * @sk_disconnects: number of disconnect operations performed on this sock
327 * @sk_state_change: callback to indicate change in the state of the sock
328 * @sk_data_ready: callback to indicate there is data to be processed
329 * @sk_write_space: callback to indicate there is bf sending space available
330 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
331 * @sk_backlog_rcv: callback to process the backlog
332 * @sk_validate_xmit_skb: ptr to an optional validate function
333 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
334 * @sk_reuseport_cb: reuseport group container
335 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
336 * @sk_rcu: used during RCU grace period
337 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
338 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
339 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
340 * @sk_txtime_unused: unused txtime flags
341 * @sk_scm_recv_flags: all flags used by scm_recv()
342 * @sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS
343 * @sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY
344 * @sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD
345 * @sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS
346 * @sk_scm_unused: unused flags for scm_recv()
347 * @ns_tracker: tracker for netns reference
348 * @sk_user_frags: xarray of pages the user is holding a reference on.
349 * @sk_owner: reference to the real owner of the socket that calls
350 * sock_lock_init_class_and_name().
351 */
352 struct sock {
353 /*
354 * Now struct inet_timewait_sock also uses sock_common, so please just
355 * don't add nothing before this first member (__sk_common) --acme
356 */
357 struct sock_common __sk_common;
358 #define sk_node __sk_common.skc_node
359 #define sk_nulls_node __sk_common.skc_nulls_node
360 #define sk_refcnt __sk_common.skc_refcnt
361 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
362 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
363 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
364 #endif
365
366 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
367 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
368 #define sk_hash __sk_common.skc_hash
369 #define sk_portpair __sk_common.skc_portpair
370 #define sk_num __sk_common.skc_num
371 #define sk_dport __sk_common.skc_dport
372 #define sk_addrpair __sk_common.skc_addrpair
373 #define sk_daddr __sk_common.skc_daddr
374 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
375 #define sk_family __sk_common.skc_family
376 #define sk_state __sk_common.skc_state
377 #define sk_reuse __sk_common.skc_reuse
378 #define sk_reuseport __sk_common.skc_reuseport
379 #define sk_ipv6only __sk_common.skc_ipv6only
380 #define sk_net_refcnt __sk_common.skc_net_refcnt
381 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
382 #define sk_bind_node __sk_common.skc_bind_node
383 #define sk_prot __sk_common.skc_prot
384 #define sk_net __sk_common.skc_net
385 #define sk_v6_daddr __sk_common.skc_v6_daddr
386 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
387 #define sk_cookie __sk_common.skc_cookie
388 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
389 #define sk_flags __sk_common.skc_flags
390 #define sk_rxhash __sk_common.skc_rxhash
391
392 __cacheline_group_begin(sock_write_rx);
393
394 atomic_t sk_drops;
395 __s32 sk_peek_off;
396 struct sk_buff_head sk_error_queue;
397 struct sk_buff_head sk_receive_queue;
398 /*
399 * The backlog queue is special, it is always used with
400 * the per-socket spinlock held and requires low latency
401 * access. Therefore we special case it's implementation.
402 * Note : rmem_alloc is in this structure to fill a hole
403 * on 64bit arches, not because its logically part of
404 * backlog.
405 */
406 struct {
407 atomic_t rmem_alloc;
408 int len;
409 struct sk_buff *head;
410 struct sk_buff *tail;
411 } sk_backlog;
412 #define sk_rmem_alloc sk_backlog.rmem_alloc
413
414 __cacheline_group_end(sock_write_rx);
415
416 __cacheline_group_begin(sock_read_rx);
417 /* early demux fields */
418 struct dst_entry __rcu *sk_rx_dst;
419 int sk_rx_dst_ifindex;
420 u32 sk_rx_dst_cookie;
421
422 #ifdef CONFIG_NET_RX_BUSY_POLL
423 unsigned int sk_ll_usec;
424 unsigned int sk_napi_id;
425 u16 sk_busy_poll_budget;
426 u8 sk_prefer_busy_poll;
427 #endif
428 u8 sk_userlocks;
429 int sk_rcvbuf;
430
431 struct sk_filter __rcu *sk_filter;
432 union {
433 struct socket_wq __rcu *sk_wq;
434 /* private: */
435 struct socket_wq *sk_wq_raw;
436 /* public: */
437 };
438
439 void (*sk_data_ready)(struct sock *sk);
440 long sk_rcvtimeo;
441 int sk_rcvlowat;
442 __cacheline_group_end(sock_read_rx);
443
444 __cacheline_group_begin(sock_read_rxtx);
445 int sk_err;
446 struct socket *sk_socket;
447 struct mem_cgroup *sk_memcg;
448 #ifdef CONFIG_XFRM
449 struct xfrm_policy __rcu *sk_policy[2];
450 #endif
451 __cacheline_group_end(sock_read_rxtx);
452
453 __cacheline_group_begin(sock_write_rxtx);
454 socket_lock_t sk_lock;
455 u32 sk_reserved_mem;
456 int sk_forward_alloc;
457 u32 sk_tsflags;
458 __cacheline_group_end(sock_write_rxtx);
459
460 __cacheline_group_begin(sock_write_tx);
461 int sk_write_pending;
462 atomic_t sk_omem_alloc;
463 int sk_sndbuf;
464
465 int sk_wmem_queued;
466 refcount_t sk_wmem_alloc;
467 unsigned long sk_tsq_flags;
468 union {
469 struct sk_buff *sk_send_head;
470 struct rb_root tcp_rtx_queue;
471 };
472 struct sk_buff_head sk_write_queue;
473 u32 sk_dst_pending_confirm;
474 u32 sk_pacing_status; /* see enum sk_pacing */
475 struct page_frag sk_frag;
476 struct timer_list sk_timer;
477
478 unsigned long sk_pacing_rate; /* bytes per second */
479 atomic_t sk_zckey;
480 atomic_t sk_tskey;
481 __cacheline_group_end(sock_write_tx);
482
483 __cacheline_group_begin(sock_read_tx);
484 unsigned long sk_max_pacing_rate;
485 long sk_sndtimeo;
486 u32 sk_priority;
487 u32 sk_mark;
488 struct dst_entry __rcu *sk_dst_cache;
489 netdev_features_t sk_route_caps;
490 #ifdef CONFIG_SOCK_VALIDATE_XMIT
491 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
492 struct net_device *dev,
493 struct sk_buff *skb);
494 #endif
495 u16 sk_gso_type;
496 u16 sk_gso_max_segs;
497 unsigned int sk_gso_max_size;
498 gfp_t sk_allocation;
499 u32 sk_txhash;
500 u8 sk_pacing_shift;
501 bool sk_use_task_frag;
502 __cacheline_group_end(sock_read_tx);
503
504 /*
505 * Because of non atomicity rules, all
506 * changes are protected by socket lock.
507 */
508 u8 sk_gso_disabled : 1,
509 sk_kern_sock : 1,
510 sk_no_check_tx : 1,
511 sk_no_check_rx : 1;
512 u8 sk_shutdown;
513 u16 sk_type;
514 u16 sk_protocol;
515 unsigned long sk_lingertime;
516 struct proto *sk_prot_creator;
517 rwlock_t sk_callback_lock;
518 int sk_err_soft;
519 u32 sk_ack_backlog;
520 u32 sk_max_ack_backlog;
521 kuid_t sk_uid;
522 unsigned long sk_ino;
523 spinlock_t sk_peer_lock;
524 int sk_bind_phc;
525 struct pid *sk_peer_pid;
526 const struct cred *sk_peer_cred;
527
528 ktime_t sk_stamp;
529 #if BITS_PER_LONG==32
530 seqlock_t sk_stamp_seq;
531 #endif
532 int sk_disconnects;
533
534 union {
535 u8 sk_txrehash;
536 u8 sk_scm_recv_flags;
537 struct {
538 u8 sk_scm_credentials : 1,
539 sk_scm_security : 1,
540 sk_scm_pidfd : 1,
541 sk_scm_rights : 1,
542 sk_scm_unused : 4;
543 };
544 };
545 u8 sk_clockid;
546 u8 sk_txtime_deadline_mode : 1,
547 sk_txtime_report_errors : 1,
548 sk_txtime_unused : 6;
549 #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG))
550 u8 sk_bpf_cb_flags;
551
552 void *sk_user_data;
553 #ifdef CONFIG_SECURITY
554 void *sk_security;
555 #endif
556 struct sock_cgroup_data sk_cgrp_data;
557 void (*sk_state_change)(struct sock *sk);
558 void (*sk_write_space)(struct sock *sk);
559 void (*sk_error_report)(struct sock *sk);
560 int (*sk_backlog_rcv)(struct sock *sk,
561 struct sk_buff *skb);
562 void (*sk_destruct)(struct sock *sk);
563 struct sock_reuseport __rcu *sk_reuseport_cb;
564 #ifdef CONFIG_BPF_SYSCALL
565 struct bpf_local_storage __rcu *sk_bpf_storage;
566 #endif
567 struct rcu_head sk_rcu;
568 netns_tracker ns_tracker;
569 struct xarray sk_user_frags;
570
571 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
572 struct module *sk_owner;
573 #endif
574 };
575
576 struct sock_bh_locked {
577 struct sock *sock;
578 local_lock_t bh_lock;
579 };
580
581 enum sk_pacing {
582 SK_PACING_NONE = 0,
583 SK_PACING_NEEDED = 1,
584 SK_PACING_FQ = 2,
585 };
586
587 /* flag bits in sk_user_data
588 *
589 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
590 * not be suitable for copying when cloning the socket. For instance,
591 * it can point to a reference counted object. sk_user_data bottom
592 * bit is set if pointer must not be copied.
593 *
594 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
595 * managed/owned by a BPF reuseport array. This bit should be set
596 * when sk_user_data's sk is added to the bpf's reuseport_array.
597 *
598 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
599 * sk_user_data points to psock type. This bit should be set
600 * when sk_user_data is assigned to a psock object.
601 */
602 #define SK_USER_DATA_NOCOPY 1UL
603 #define SK_USER_DATA_BPF 2UL
604 #define SK_USER_DATA_PSOCK 4UL
605 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
606 SK_USER_DATA_PSOCK)
607
608 /**
609 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
610 * @sk: socket
611 */
sk_user_data_is_nocopy(const struct sock * sk)612 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
613 {
614 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
615 }
616
617 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
618
619 /**
620 * __locked_read_sk_user_data_with_flags - return the pointer
621 * only if argument flags all has been set in sk_user_data. Otherwise
622 * return NULL
623 *
624 * @sk: socket
625 * @flags: flag bits
626 *
627 * The caller must be holding sk->sk_callback_lock.
628 */
629 static inline void *
__locked_read_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)630 __locked_read_sk_user_data_with_flags(const struct sock *sk,
631 uintptr_t flags)
632 {
633 uintptr_t sk_user_data =
634 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
635 lockdep_is_held(&sk->sk_callback_lock));
636
637 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
638
639 if ((sk_user_data & flags) == flags)
640 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
641 return NULL;
642 }
643
644 /**
645 * __rcu_dereference_sk_user_data_with_flags - return the pointer
646 * only if argument flags all has been set in sk_user_data. Otherwise
647 * return NULL
648 *
649 * @sk: socket
650 * @flags: flag bits
651 */
652 static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)653 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
654 uintptr_t flags)
655 {
656 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
657
658 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
659
660 if ((sk_user_data & flags) == flags)
661 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
662 return NULL;
663 }
664
665 #define rcu_dereference_sk_user_data(sk) \
666 __rcu_dereference_sk_user_data_with_flags(sk, 0)
667 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
668 ({ \
669 uintptr_t __tmp1 = (uintptr_t)(ptr), \
670 __tmp2 = (uintptr_t)(flags); \
671 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
672 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
673 rcu_assign_pointer(__sk_user_data((sk)), \
674 __tmp1 | __tmp2); \
675 })
676 #define rcu_assign_sk_user_data(sk, ptr) \
677 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
678
679 static inline
sock_net(const struct sock * sk)680 struct net *sock_net(const struct sock *sk)
681 {
682 return read_pnet(&sk->sk_net);
683 }
684
685 static inline
sock_net_set(struct sock * sk,struct net * net)686 void sock_net_set(struct sock *sk, struct net *net)
687 {
688 write_pnet(&sk->sk_net, net);
689 }
690
691 /*
692 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
693 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
694 * on a socket means that the socket will reuse everybody else's port
695 * without looking at the other's sk_reuse value.
696 */
697
698 #define SK_NO_REUSE 0
699 #define SK_CAN_REUSE 1
700 #define SK_FORCE_REUSE 2
701
702 int sk_set_peek_off(struct sock *sk, int val);
703
sk_peek_offset(const struct sock * sk,int flags)704 static inline int sk_peek_offset(const struct sock *sk, int flags)
705 {
706 if (unlikely(flags & MSG_PEEK)) {
707 return READ_ONCE(sk->sk_peek_off);
708 }
709
710 return 0;
711 }
712
sk_peek_offset_bwd(struct sock * sk,int val)713 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
714 {
715 s32 off = READ_ONCE(sk->sk_peek_off);
716
717 if (unlikely(off >= 0)) {
718 off = max_t(s32, off - val, 0);
719 WRITE_ONCE(sk->sk_peek_off, off);
720 }
721 }
722
sk_peek_offset_fwd(struct sock * sk,int val)723 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
724 {
725 sk_peek_offset_bwd(sk, -val);
726 }
727
728 /*
729 * Hashed lists helper routines
730 */
sk_entry(const struct hlist_node * node)731 static inline struct sock *sk_entry(const struct hlist_node *node)
732 {
733 return hlist_entry(node, struct sock, sk_node);
734 }
735
__sk_head(const struct hlist_head * head)736 static inline struct sock *__sk_head(const struct hlist_head *head)
737 {
738 return hlist_entry(head->first, struct sock, sk_node);
739 }
740
sk_head(const struct hlist_head * head)741 static inline struct sock *sk_head(const struct hlist_head *head)
742 {
743 return hlist_empty(head) ? NULL : __sk_head(head);
744 }
745
__sk_nulls_head(const struct hlist_nulls_head * head)746 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
747 {
748 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
749 }
750
sk_nulls_head(const struct hlist_nulls_head * head)751 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
752 {
753 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
754 }
755
sk_next(const struct sock * sk)756 static inline struct sock *sk_next(const struct sock *sk)
757 {
758 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
759 }
760
sk_nulls_next(const struct sock * sk)761 static inline struct sock *sk_nulls_next(const struct sock *sk)
762 {
763 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
764 hlist_nulls_entry(sk->sk_nulls_node.next,
765 struct sock, sk_nulls_node) :
766 NULL;
767 }
768
sk_unhashed(const struct sock * sk)769 static inline bool sk_unhashed(const struct sock *sk)
770 {
771 return hlist_unhashed(&sk->sk_node);
772 }
773
sk_hashed(const struct sock * sk)774 static inline bool sk_hashed(const struct sock *sk)
775 {
776 return !sk_unhashed(sk);
777 }
778
sk_node_init(struct hlist_node * node)779 static inline void sk_node_init(struct hlist_node *node)
780 {
781 node->pprev = NULL;
782 }
783
__sk_del_node(struct sock * sk)784 static inline void __sk_del_node(struct sock *sk)
785 {
786 __hlist_del(&sk->sk_node);
787 }
788
789 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)790 static inline bool __sk_del_node_init(struct sock *sk)
791 {
792 if (sk_hashed(sk)) {
793 __sk_del_node(sk);
794 sk_node_init(&sk->sk_node);
795 return true;
796 }
797 return false;
798 }
799
800 /* Grab socket reference count. This operation is valid only
801 when sk is ALREADY grabbed f.e. it is found in hash table
802 or a list and the lookup is made under lock preventing hash table
803 modifications.
804 */
805
sock_hold(struct sock * sk)806 static __always_inline void sock_hold(struct sock *sk)
807 {
808 refcount_inc(&sk->sk_refcnt);
809 }
810
811 /* Ungrab socket in the context, which assumes that socket refcnt
812 cannot hit zero, f.e. it is true in context of any socketcall.
813 */
__sock_put(struct sock * sk)814 static __always_inline void __sock_put(struct sock *sk)
815 {
816 refcount_dec(&sk->sk_refcnt);
817 }
818
sk_del_node_init(struct sock * sk)819 static inline bool sk_del_node_init(struct sock *sk)
820 {
821 bool rc = __sk_del_node_init(sk);
822
823 if (rc) {
824 /* paranoid for a while -acme */
825 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
826 __sock_put(sk);
827 }
828 return rc;
829 }
830 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
831
__sk_nulls_del_node_init_rcu(struct sock * sk)832 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
833 {
834 if (sk_hashed(sk)) {
835 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
836 return true;
837 }
838 return false;
839 }
840
sk_nulls_del_node_init_rcu(struct sock * sk)841 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
842 {
843 bool rc = __sk_nulls_del_node_init_rcu(sk);
844
845 if (rc) {
846 /* paranoid for a while -acme */
847 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
848 __sock_put(sk);
849 }
850 return rc;
851 }
852
__sk_add_node(struct sock * sk,struct hlist_head * list)853 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
854 {
855 hlist_add_head(&sk->sk_node, list);
856 }
857
sk_add_node(struct sock * sk,struct hlist_head * list)858 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
859 {
860 sock_hold(sk);
861 __sk_add_node(sk, list);
862 }
863
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)864 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
865 {
866 sock_hold(sk);
867 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
868 sk->sk_family == AF_INET6)
869 hlist_add_tail_rcu(&sk->sk_node, list);
870 else
871 hlist_add_head_rcu(&sk->sk_node, list);
872 }
873
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)874 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
875 {
876 sock_hold(sk);
877 hlist_add_tail_rcu(&sk->sk_node, list);
878 }
879
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)880 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
881 {
882 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
883 }
884
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)885 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
886 {
887 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
888 }
889
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)890 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
891 {
892 sock_hold(sk);
893 __sk_nulls_add_node_rcu(sk, list);
894 }
895
__sk_del_bind_node(struct sock * sk)896 static inline void __sk_del_bind_node(struct sock *sk)
897 {
898 __hlist_del(&sk->sk_bind_node);
899 }
900
sk_add_bind_node(struct sock * sk,struct hlist_head * list)901 static inline void sk_add_bind_node(struct sock *sk,
902 struct hlist_head *list)
903 {
904 hlist_add_head(&sk->sk_bind_node, list);
905 }
906
907 #define sk_for_each(__sk, list) \
908 hlist_for_each_entry(__sk, list, sk_node)
909 #define sk_for_each_rcu(__sk, list) \
910 hlist_for_each_entry_rcu(__sk, list, sk_node)
911 #define sk_nulls_for_each(__sk, node, list) \
912 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
913 #define sk_nulls_for_each_rcu(__sk, node, list) \
914 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
915 #define sk_for_each_from(__sk) \
916 hlist_for_each_entry_from(__sk, sk_node)
917 #define sk_nulls_for_each_from(__sk, node) \
918 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
919 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
920 #define sk_for_each_safe(__sk, tmp, list) \
921 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
922 #define sk_for_each_bound(__sk, list) \
923 hlist_for_each_entry(__sk, list, sk_bind_node)
924 #define sk_for_each_bound_safe(__sk, tmp, list) \
925 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node)
926
927 /**
928 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
929 * @tpos: the type * to use as a loop cursor.
930 * @pos: the &struct hlist_node to use as a loop cursor.
931 * @head: the head for your list.
932 * @offset: offset of hlist_node within the struct.
933 *
934 */
935 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
936 for (pos = rcu_dereference(hlist_first_rcu(head)); \
937 pos != NULL && \
938 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
939 pos = rcu_dereference(hlist_next_rcu(pos)))
940
sk_user_ns(const struct sock * sk)941 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
942 {
943 /* Careful only use this in a context where these parameters
944 * can not change and must all be valid, such as recvmsg from
945 * userspace.
946 */
947 return sk->sk_socket->file->f_cred->user_ns;
948 }
949
950 /* Sock flags */
951 enum sock_flags {
952 SOCK_DEAD,
953 SOCK_DONE,
954 SOCK_URGINLINE,
955 SOCK_KEEPOPEN,
956 SOCK_LINGER,
957 SOCK_DESTROY,
958 SOCK_BROADCAST,
959 SOCK_TIMESTAMP,
960 SOCK_ZAPPED,
961 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
962 SOCK_DBG, /* %SO_DEBUG setting */
963 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
964 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
965 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
966 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
967 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
968 SOCK_FASYNC, /* fasync() active */
969 SOCK_RXQ_OVFL,
970 SOCK_ZEROCOPY, /* buffers from userspace */
971 SOCK_WIFI_STATUS, /* push wifi status to userspace */
972 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
973 * Will use last 4 bytes of packet sent from
974 * user-space instead.
975 */
976 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
977 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
978 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
979 SOCK_TXTIME,
980 SOCK_XDP, /* XDP is attached */
981 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
982 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
983 SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */
984 SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */
985 };
986
987 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
988 /*
989 * The highest bit of sk_tsflags is reserved for kernel-internal
990 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that
991 * SOF_TIMESTAMPING* values do not reach this reserved area
992 */
993 #define SOCKCM_FLAG_TS_OPT_ID BIT(31)
994
sock_copy_flags(struct sock * nsk,const struct sock * osk)995 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
996 {
997 nsk->sk_flags = osk->sk_flags;
998 }
999
sock_set_flag(struct sock * sk,enum sock_flags flag)1000 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
1001 {
1002 __set_bit(flag, &sk->sk_flags);
1003 }
1004
sock_reset_flag(struct sock * sk,enum sock_flags flag)1005 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
1006 {
1007 __clear_bit(flag, &sk->sk_flags);
1008 }
1009
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)1010 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
1011 int valbool)
1012 {
1013 if (valbool)
1014 sock_set_flag(sk, bit);
1015 else
1016 sock_reset_flag(sk, bit);
1017 }
1018
sock_flag(const struct sock * sk,enum sock_flags flag)1019 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
1020 {
1021 return test_bit(flag, &sk->sk_flags);
1022 }
1023
1024 #ifdef CONFIG_NET
1025 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)1026 static inline int sk_memalloc_socks(void)
1027 {
1028 return static_branch_unlikely(&memalloc_socks_key);
1029 }
1030
1031 void __receive_sock(struct file *file);
1032 #else
1033
sk_memalloc_socks(void)1034 static inline int sk_memalloc_socks(void)
1035 {
1036 return 0;
1037 }
1038
__receive_sock(struct file * file)1039 static inline void __receive_sock(struct file *file)
1040 { }
1041 #endif
1042
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)1043 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1044 {
1045 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1046 }
1047
sk_acceptq_removed(struct sock * sk)1048 static inline void sk_acceptq_removed(struct sock *sk)
1049 {
1050 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1051 }
1052
sk_acceptq_added(struct sock * sk)1053 static inline void sk_acceptq_added(struct sock *sk)
1054 {
1055 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1056 }
1057
1058 /* Note: If you think the test should be:
1059 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1060 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1061 */
sk_acceptq_is_full(const struct sock * sk)1062 static inline bool sk_acceptq_is_full(const struct sock *sk)
1063 {
1064 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1065 }
1066
1067 /*
1068 * Compute minimal free write space needed to queue new packets.
1069 */
sk_stream_min_wspace(const struct sock * sk)1070 static inline int sk_stream_min_wspace(const struct sock *sk)
1071 {
1072 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1073 }
1074
sk_stream_wspace(const struct sock * sk)1075 static inline int sk_stream_wspace(const struct sock *sk)
1076 {
1077 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1078 }
1079
sk_wmem_queued_add(struct sock * sk,int val)1080 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1081 {
1082 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1083 }
1084
sk_forward_alloc_add(struct sock * sk,int val)1085 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1086 {
1087 /* Paired with lockless reads of sk->sk_forward_alloc */
1088 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1089 }
1090
1091 void sk_stream_write_space(struct sock *sk);
1092
1093 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)1094 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1095 {
1096 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1097 skb_dst_force(skb);
1098
1099 if (!sk->sk_backlog.tail)
1100 WRITE_ONCE(sk->sk_backlog.head, skb);
1101 else
1102 sk->sk_backlog.tail->next = skb;
1103
1104 WRITE_ONCE(sk->sk_backlog.tail, skb);
1105 skb->next = NULL;
1106 }
1107
1108 /*
1109 * Take into account size of receive queue and backlog queue
1110 * Do not take into account this skb truesize,
1111 * to allow even a single big packet to come.
1112 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1113 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1114 {
1115 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1116
1117 return qsize > limit;
1118 }
1119
1120 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1121 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1122 unsigned int limit)
1123 {
1124 if (sk_rcvqueues_full(sk, limit))
1125 return -ENOBUFS;
1126
1127 /*
1128 * If the skb was allocated from pfmemalloc reserves, only
1129 * allow SOCK_MEMALLOC sockets to use it as this socket is
1130 * helping free memory
1131 */
1132 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1133 return -ENOMEM;
1134
1135 __sk_add_backlog(sk, skb);
1136 sk->sk_backlog.len += skb->truesize;
1137 return 0;
1138 }
1139
1140 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1141
1142 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1143 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1144
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1145 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1146 {
1147 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1148 return __sk_backlog_rcv(sk, skb);
1149
1150 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1151 tcp_v6_do_rcv,
1152 tcp_v4_do_rcv,
1153 sk, skb);
1154 }
1155
sk_incoming_cpu_update(struct sock * sk)1156 static inline void sk_incoming_cpu_update(struct sock *sk)
1157 {
1158 int cpu = raw_smp_processor_id();
1159
1160 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1161 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1162 }
1163
1164
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1165 static inline void sock_rps_save_rxhash(struct sock *sk,
1166 const struct sk_buff *skb)
1167 {
1168 #ifdef CONFIG_RPS
1169 /* The following WRITE_ONCE() is paired with the READ_ONCE()
1170 * here, and another one in sock_rps_record_flow().
1171 */
1172 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1173 WRITE_ONCE(sk->sk_rxhash, skb->hash);
1174 #endif
1175 }
1176
sock_rps_reset_rxhash(struct sock * sk)1177 static inline void sock_rps_reset_rxhash(struct sock *sk)
1178 {
1179 #ifdef CONFIG_RPS
1180 /* Paired with READ_ONCE() in sock_rps_record_flow() */
1181 WRITE_ONCE(sk->sk_rxhash, 0);
1182 #endif
1183 }
1184
1185 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1186 ({ int __rc, __dis = __sk->sk_disconnects; \
1187 release_sock(__sk); \
1188 __rc = __condition; \
1189 if (!__rc) { \
1190 *(__timeo) = wait_woken(__wait, \
1191 TASK_INTERRUPTIBLE, \
1192 *(__timeo)); \
1193 } \
1194 sched_annotate_sleep(); \
1195 lock_sock(__sk); \
1196 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1197 __rc; \
1198 })
1199
1200 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1201 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1202 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1203 int sk_stream_error(struct sock *sk, int flags, int err);
1204 void sk_stream_kill_queues(struct sock *sk);
1205 void sk_set_memalloc(struct sock *sk);
1206 void sk_clear_memalloc(struct sock *sk);
1207
1208 void __sk_flush_backlog(struct sock *sk);
1209
sk_flush_backlog(struct sock * sk)1210 static inline bool sk_flush_backlog(struct sock *sk)
1211 {
1212 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1213 __sk_flush_backlog(sk);
1214 return true;
1215 }
1216 return false;
1217 }
1218
1219 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1220
1221 struct request_sock_ops;
1222 struct timewait_sock_ops;
1223 struct inet_hashinfo;
1224 struct raw_hashinfo;
1225 struct smc_hashinfo;
1226 struct module;
1227 struct sk_psock;
1228
1229 /*
1230 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1231 * un-modified. Special care is taken when initializing object to zero.
1232 */
sk_prot_clear_nulls(struct sock * sk,int size)1233 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1234 {
1235 if (offsetof(struct sock, sk_node.next) != 0)
1236 memset(sk, 0, offsetof(struct sock, sk_node.next));
1237 memset(&sk->sk_node.pprev, 0,
1238 size - offsetof(struct sock, sk_node.pprev));
1239 }
1240
1241 struct proto_accept_arg {
1242 int flags;
1243 int err;
1244 int is_empty;
1245 bool kern;
1246 };
1247
1248 /* Networking protocol blocks we attach to sockets.
1249 * socket layer -> transport layer interface
1250 */
1251 struct proto {
1252 void (*close)(struct sock *sk,
1253 long timeout);
1254 int (*pre_connect)(struct sock *sk,
1255 struct sockaddr *uaddr,
1256 int addr_len);
1257 int (*connect)(struct sock *sk,
1258 struct sockaddr *uaddr,
1259 int addr_len);
1260 int (*disconnect)(struct sock *sk, int flags);
1261
1262 struct sock * (*accept)(struct sock *sk,
1263 struct proto_accept_arg *arg);
1264
1265 int (*ioctl)(struct sock *sk, int cmd,
1266 int *karg);
1267 int (*init)(struct sock *sk);
1268 void (*destroy)(struct sock *sk);
1269 void (*shutdown)(struct sock *sk, int how);
1270 int (*setsockopt)(struct sock *sk, int level,
1271 int optname, sockptr_t optval,
1272 unsigned int optlen);
1273 int (*getsockopt)(struct sock *sk, int level,
1274 int optname, char __user *optval,
1275 int __user *option);
1276 void (*keepalive)(struct sock *sk, int valbool);
1277 #ifdef CONFIG_COMPAT
1278 int (*compat_ioctl)(struct sock *sk,
1279 unsigned int cmd, unsigned long arg);
1280 #endif
1281 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1282 size_t len);
1283 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1284 size_t len, int flags, int *addr_len);
1285 void (*splice_eof)(struct socket *sock);
1286 int (*bind)(struct sock *sk,
1287 struct sockaddr *addr, int addr_len);
1288 int (*bind_add)(struct sock *sk,
1289 struct sockaddr *addr, int addr_len);
1290
1291 int (*backlog_rcv) (struct sock *sk,
1292 struct sk_buff *skb);
1293 bool (*bpf_bypass_getsockopt)(int level,
1294 int optname);
1295
1296 void (*release_cb)(struct sock *sk);
1297
1298 /* Keeping track of sk's, looking them up, and port selection methods. */
1299 int (*hash)(struct sock *sk);
1300 void (*unhash)(struct sock *sk);
1301 void (*rehash)(struct sock *sk);
1302 int (*get_port)(struct sock *sk, unsigned short snum);
1303 void (*put_port)(struct sock *sk);
1304 #ifdef CONFIG_BPF_SYSCALL
1305 int (*psock_update_sk_prot)(struct sock *sk,
1306 struct sk_psock *psock,
1307 bool restore);
1308 #endif
1309
1310 /* Keeping track of sockets in use */
1311 #ifdef CONFIG_PROC_FS
1312 unsigned int inuse_idx;
1313 #endif
1314
1315 bool (*stream_memory_free)(const struct sock *sk, int wake);
1316 bool (*sock_is_readable)(struct sock *sk);
1317 /* Memory pressure */
1318 void (*enter_memory_pressure)(struct sock *sk);
1319 void (*leave_memory_pressure)(struct sock *sk);
1320 atomic_long_t *memory_allocated; /* Current allocated memory. */
1321 int __percpu *per_cpu_fw_alloc;
1322 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1323
1324 /*
1325 * Pressure flag: try to collapse.
1326 * Technical note: it is used by multiple contexts non atomically.
1327 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1328 * All the __sk_mem_schedule() is of this nature: accounting
1329 * is strict, actions are advisory and have some latency.
1330 */
1331 unsigned long *memory_pressure;
1332 long *sysctl_mem;
1333
1334 int *sysctl_wmem;
1335 int *sysctl_rmem;
1336 u32 sysctl_wmem_offset;
1337 u32 sysctl_rmem_offset;
1338
1339 int max_header;
1340 bool no_autobind;
1341
1342 struct kmem_cache *slab;
1343 unsigned int obj_size;
1344 unsigned int ipv6_pinfo_offset;
1345 slab_flags_t slab_flags;
1346 unsigned int useroffset; /* Usercopy region offset */
1347 unsigned int usersize; /* Usercopy region size */
1348
1349 unsigned int __percpu *orphan_count;
1350
1351 struct request_sock_ops *rsk_prot;
1352 struct timewait_sock_ops *twsk_prot;
1353
1354 union {
1355 struct inet_hashinfo *hashinfo;
1356 struct udp_table *udp_table;
1357 struct raw_hashinfo *raw_hash;
1358 struct smc_hashinfo *smc_hash;
1359 } h;
1360
1361 struct module *owner;
1362
1363 char name[32];
1364
1365 struct list_head node;
1366 int (*diag_destroy)(struct sock *sk, int err);
1367 } __randomize_layout;
1368
1369 int proto_register(struct proto *prot, int alloc_slab);
1370 void proto_unregister(struct proto *prot);
1371 int sock_load_diag_module(int family, int protocol);
1372
1373 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1374
__sk_stream_memory_free(const struct sock * sk,int wake)1375 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1376 {
1377 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1378 return false;
1379
1380 return sk->sk_prot->stream_memory_free ?
1381 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1382 tcp_stream_memory_free, sk, wake) : true;
1383 }
1384
sk_stream_memory_free(const struct sock * sk)1385 static inline bool sk_stream_memory_free(const struct sock *sk)
1386 {
1387 return __sk_stream_memory_free(sk, 0);
1388 }
1389
__sk_stream_is_writeable(const struct sock * sk,int wake)1390 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1391 {
1392 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1393 __sk_stream_memory_free(sk, wake);
1394 }
1395
sk_stream_is_writeable(const struct sock * sk)1396 static inline bool sk_stream_is_writeable(const struct sock *sk)
1397 {
1398 return __sk_stream_is_writeable(sk, 0);
1399 }
1400
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1401 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1402 struct cgroup *ancestor)
1403 {
1404 #ifdef CONFIG_SOCK_CGROUP_DATA
1405 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1406 ancestor);
1407 #else
1408 return -ENOTSUPP;
1409 #endif
1410 }
1411
1412 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1413
sk_sockets_allocated_dec(struct sock * sk)1414 static inline void sk_sockets_allocated_dec(struct sock *sk)
1415 {
1416 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1417 SK_ALLOC_PERCPU_COUNTER_BATCH);
1418 }
1419
sk_sockets_allocated_inc(struct sock * sk)1420 static inline void sk_sockets_allocated_inc(struct sock *sk)
1421 {
1422 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1423 SK_ALLOC_PERCPU_COUNTER_BATCH);
1424 }
1425
1426 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1427 sk_sockets_allocated_read_positive(struct sock *sk)
1428 {
1429 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1430 }
1431
1432 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1433 proto_sockets_allocated_sum_positive(struct proto *prot)
1434 {
1435 return percpu_counter_sum_positive(prot->sockets_allocated);
1436 }
1437
1438 #ifdef CONFIG_PROC_FS
1439 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
1440 struct prot_inuse {
1441 int all;
1442 int val[PROTO_INUSE_NR];
1443 };
1444
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1445 static inline void sock_prot_inuse_add(const struct net *net,
1446 const struct proto *prot, int val)
1447 {
1448 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1449 }
1450
sock_inuse_add(const struct net * net,int val)1451 static inline void sock_inuse_add(const struct net *net, int val)
1452 {
1453 this_cpu_add(net->core.prot_inuse->all, val);
1454 }
1455
1456 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1457 int sock_inuse_get(struct net *net);
1458 #else
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1459 static inline void sock_prot_inuse_add(const struct net *net,
1460 const struct proto *prot, int val)
1461 {
1462 }
1463
sock_inuse_add(const struct net * net,int val)1464 static inline void sock_inuse_add(const struct net *net, int val)
1465 {
1466 }
1467 #endif
1468
1469
1470 /* With per-bucket locks this operation is not-atomic, so that
1471 * this version is not worse.
1472 */
__sk_prot_rehash(struct sock * sk)1473 static inline int __sk_prot_rehash(struct sock *sk)
1474 {
1475 sk->sk_prot->unhash(sk);
1476 return sk->sk_prot->hash(sk);
1477 }
1478
1479 /* About 10 seconds */
1480 #define SOCK_DESTROY_TIME (10*HZ)
1481
1482 /* Sockets 0-1023 can't be bound to unless you are superuser */
1483 #define PROT_SOCK 1024
1484
1485 #define SHUTDOWN_MASK 3
1486 #define RCV_SHUTDOWN 1
1487 #define SEND_SHUTDOWN 2
1488
1489 #define SOCK_BINDADDR_LOCK 4
1490 #define SOCK_BINDPORT_LOCK 8
1491
1492 struct socket_alloc {
1493 struct socket socket;
1494 struct inode vfs_inode;
1495 };
1496
SOCKET_I(struct inode * inode)1497 static inline struct socket *SOCKET_I(struct inode *inode)
1498 {
1499 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1500 }
1501
SOCK_INODE(struct socket * socket)1502 static inline struct inode *SOCK_INODE(struct socket *socket)
1503 {
1504 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1505 }
1506
1507 /*
1508 * Functions for memory accounting
1509 */
1510 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1511 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1512 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1513 void __sk_mem_reclaim(struct sock *sk, int amount);
1514
1515 #define SK_MEM_SEND 0
1516 #define SK_MEM_RECV 1
1517
1518 /* sysctl_mem values are in pages */
sk_prot_mem_limits(const struct sock * sk,int index)1519 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1520 {
1521 return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1522 }
1523
sk_mem_pages(int amt)1524 static inline int sk_mem_pages(int amt)
1525 {
1526 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1527 }
1528
sk_has_account(struct sock * sk)1529 static inline bool sk_has_account(struct sock *sk)
1530 {
1531 /* return true if protocol supports memory accounting */
1532 return !!sk->sk_prot->memory_allocated;
1533 }
1534
sk_wmem_schedule(struct sock * sk,int size)1535 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1536 {
1537 int delta;
1538
1539 if (!sk_has_account(sk))
1540 return true;
1541 delta = size - sk->sk_forward_alloc;
1542 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1543 }
1544
1545 static inline bool
__sk_rmem_schedule(struct sock * sk,int size,bool pfmemalloc)1546 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc)
1547 {
1548 int delta;
1549
1550 if (!sk_has_account(sk))
1551 return true;
1552 delta = size - sk->sk_forward_alloc;
1553 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1554 pfmemalloc;
1555 }
1556
1557 static inline bool
sk_rmem_schedule(struct sock * sk,const struct sk_buff * skb,int size)1558 sk_rmem_schedule(struct sock *sk, const struct sk_buff *skb, int size)
1559 {
1560 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb));
1561 }
1562
sk_unused_reserved_mem(const struct sock * sk)1563 static inline int sk_unused_reserved_mem(const struct sock *sk)
1564 {
1565 int unused_mem;
1566
1567 if (likely(!sk->sk_reserved_mem))
1568 return 0;
1569
1570 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1571 atomic_read(&sk->sk_rmem_alloc);
1572
1573 return unused_mem > 0 ? unused_mem : 0;
1574 }
1575
sk_mem_reclaim(struct sock * sk)1576 static inline void sk_mem_reclaim(struct sock *sk)
1577 {
1578 int reclaimable;
1579
1580 if (!sk_has_account(sk))
1581 return;
1582
1583 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1584
1585 if (reclaimable >= (int)PAGE_SIZE)
1586 __sk_mem_reclaim(sk, reclaimable);
1587 }
1588
sk_mem_reclaim_final(struct sock * sk)1589 static inline void sk_mem_reclaim_final(struct sock *sk)
1590 {
1591 sk->sk_reserved_mem = 0;
1592 sk_mem_reclaim(sk);
1593 }
1594
sk_mem_charge(struct sock * sk,int size)1595 static inline void sk_mem_charge(struct sock *sk, int size)
1596 {
1597 if (!sk_has_account(sk))
1598 return;
1599 sk_forward_alloc_add(sk, -size);
1600 }
1601
sk_mem_uncharge(struct sock * sk,int size)1602 static inline void sk_mem_uncharge(struct sock *sk, int size)
1603 {
1604 if (!sk_has_account(sk))
1605 return;
1606 sk_forward_alloc_add(sk, size);
1607 sk_mem_reclaim(sk);
1608 }
1609
1610 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
sk_owner_set(struct sock * sk,struct module * owner)1611 static inline void sk_owner_set(struct sock *sk, struct module *owner)
1612 {
1613 __module_get(owner);
1614 sk->sk_owner = owner;
1615 }
1616
sk_owner_clear(struct sock * sk)1617 static inline void sk_owner_clear(struct sock *sk)
1618 {
1619 sk->sk_owner = NULL;
1620 }
1621
sk_owner_put(struct sock * sk)1622 static inline void sk_owner_put(struct sock *sk)
1623 {
1624 module_put(sk->sk_owner);
1625 }
1626 #else
sk_owner_set(struct sock * sk,struct module * owner)1627 static inline void sk_owner_set(struct sock *sk, struct module *owner)
1628 {
1629 }
1630
sk_owner_clear(struct sock * sk)1631 static inline void sk_owner_clear(struct sock *sk)
1632 {
1633 }
1634
sk_owner_put(struct sock * sk)1635 static inline void sk_owner_put(struct sock *sk)
1636 {
1637 }
1638 #endif
1639 /*
1640 * Macro so as to not evaluate some arguments when
1641 * lockdep is not enabled.
1642 *
1643 * Mark both the sk_lock and the sk_lock.slock as a
1644 * per-address-family lock class.
1645 */
1646 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1647 do { \
1648 sk_owner_set(sk, THIS_MODULE); \
1649 sk->sk_lock.owned = 0; \
1650 init_waitqueue_head(&sk->sk_lock.wq); \
1651 spin_lock_init(&(sk)->sk_lock.slock); \
1652 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1653 sizeof((sk)->sk_lock)); \
1654 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1655 (skey), (sname)); \
1656 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1657 } while (0)
1658
lockdep_sock_is_held(const struct sock * sk)1659 static inline bool lockdep_sock_is_held(const struct sock *sk)
1660 {
1661 return lockdep_is_held(&sk->sk_lock) ||
1662 lockdep_is_held(&sk->sk_lock.slock);
1663 }
1664
1665 void lock_sock_nested(struct sock *sk, int subclass);
1666
lock_sock(struct sock * sk)1667 static inline void lock_sock(struct sock *sk)
1668 {
1669 lock_sock_nested(sk, 0);
1670 }
1671
1672 void __lock_sock(struct sock *sk);
1673 void __release_sock(struct sock *sk);
1674 void release_sock(struct sock *sk);
1675
1676 /* BH context may only use the following locking interface. */
1677 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1678 #define bh_lock_sock_nested(__sk) \
1679 spin_lock_nested(&((__sk)->sk_lock.slock), \
1680 SINGLE_DEPTH_NESTING)
1681 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1682
1683 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1684
1685 /**
1686 * lock_sock_fast - fast version of lock_sock
1687 * @sk: socket
1688 *
1689 * This version should be used for very small section, where process won't block
1690 * return false if fast path is taken:
1691 *
1692 * sk_lock.slock locked, owned = 0, BH disabled
1693 *
1694 * return true if slow path is taken:
1695 *
1696 * sk_lock.slock unlocked, owned = 1, BH enabled
1697 */
lock_sock_fast(struct sock * sk)1698 static inline bool lock_sock_fast(struct sock *sk)
1699 {
1700 /* The sk_lock has mutex_lock() semantics here. */
1701 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1702
1703 return __lock_sock_fast(sk);
1704 }
1705
1706 /* fast socket lock variant for caller already holding a [different] socket lock */
lock_sock_fast_nested(struct sock * sk)1707 static inline bool lock_sock_fast_nested(struct sock *sk)
1708 {
1709 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1710
1711 return __lock_sock_fast(sk);
1712 }
1713
1714 /**
1715 * unlock_sock_fast - complement of lock_sock_fast
1716 * @sk: socket
1717 * @slow: slow mode
1718 *
1719 * fast unlock socket for user context.
1720 * If slow mode is on, we call regular release_sock()
1721 */
unlock_sock_fast(struct sock * sk,bool slow)1722 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1723 __releases(&sk->sk_lock.slock)
1724 {
1725 if (slow) {
1726 release_sock(sk);
1727 __release(&sk->sk_lock.slock);
1728 } else {
1729 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1730 spin_unlock_bh(&sk->sk_lock.slock);
1731 }
1732 }
1733
1734 void sockopt_lock_sock(struct sock *sk);
1735 void sockopt_release_sock(struct sock *sk);
1736 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1737 bool sockopt_capable(int cap);
1738
1739 /* Used by processes to "lock" a socket state, so that
1740 * interrupts and bottom half handlers won't change it
1741 * from under us. It essentially blocks any incoming
1742 * packets, so that we won't get any new data or any
1743 * packets that change the state of the socket.
1744 *
1745 * While locked, BH processing will add new packets to
1746 * the backlog queue. This queue is processed by the
1747 * owner of the socket lock right before it is released.
1748 *
1749 * Since ~2.3.5 it is also exclusive sleep lock serializing
1750 * accesses from user process context.
1751 */
1752
sock_owned_by_me(const struct sock * sk)1753 static inline void sock_owned_by_me(const struct sock *sk)
1754 {
1755 #ifdef CONFIG_LOCKDEP
1756 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1757 #endif
1758 }
1759
sock_not_owned_by_me(const struct sock * sk)1760 static inline void sock_not_owned_by_me(const struct sock *sk)
1761 {
1762 #ifdef CONFIG_LOCKDEP
1763 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1764 #endif
1765 }
1766
sock_owned_by_user(const struct sock * sk)1767 static inline bool sock_owned_by_user(const struct sock *sk)
1768 {
1769 sock_owned_by_me(sk);
1770 return sk->sk_lock.owned;
1771 }
1772
sock_owned_by_user_nocheck(const struct sock * sk)1773 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1774 {
1775 return sk->sk_lock.owned;
1776 }
1777
sock_release_ownership(struct sock * sk)1778 static inline void sock_release_ownership(struct sock *sk)
1779 {
1780 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1781 sk->sk_lock.owned = 0;
1782
1783 /* The sk_lock has mutex_unlock() semantics: */
1784 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1785 }
1786
1787 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1788 static inline bool sock_allow_reclassification(const struct sock *csk)
1789 {
1790 struct sock *sk = (struct sock *)csk;
1791
1792 return !sock_owned_by_user_nocheck(sk) &&
1793 !spin_is_locked(&sk->sk_lock.slock);
1794 }
1795
1796 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1797 struct proto *prot, int kern);
1798 void sk_free(struct sock *sk);
1799 void sk_net_refcnt_upgrade(struct sock *sk);
1800 void sk_destruct(struct sock *sk);
1801 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1802
1803 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1804 gfp_t priority);
1805 void __sock_wfree(struct sk_buff *skb);
1806 void sock_wfree(struct sk_buff *skb);
1807 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1808 gfp_t priority);
1809 void skb_orphan_partial(struct sk_buff *skb);
1810 void sock_rfree(struct sk_buff *skb);
1811 void sock_efree(struct sk_buff *skb);
1812 #ifdef CONFIG_INET
1813 void sock_edemux(struct sk_buff *skb);
1814 void sock_pfree(struct sk_buff *skb);
1815
skb_set_owner_edemux(struct sk_buff * skb,struct sock * sk)1816 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk)
1817 {
1818 skb_orphan(skb);
1819 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1820 skb->sk = sk;
1821 skb->destructor = sock_edemux;
1822 }
1823 }
1824 #else
1825 #define sock_edemux sock_efree
1826 #endif
1827
1828 int sk_setsockopt(struct sock *sk, int level, int optname,
1829 sockptr_t optval, unsigned int optlen);
1830 int sock_setsockopt(struct socket *sock, int level, int op,
1831 sockptr_t optval, unsigned int optlen);
1832 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1833 int optname, sockptr_t optval, int optlen);
1834 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1835 int optname, sockptr_t optval, sockptr_t optlen);
1836
1837 int sk_getsockopt(struct sock *sk, int level, int optname,
1838 sockptr_t optval, sockptr_t optlen);
1839 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1840 bool timeval, bool time32);
1841 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1842 unsigned long data_len, int noblock,
1843 int *errcode, int max_page_order);
1844
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1845 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1846 unsigned long size,
1847 int noblock, int *errcode)
1848 {
1849 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1850 }
1851
1852 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1853 void *sock_kmemdup(struct sock *sk, const void *src,
1854 int size, gfp_t priority);
1855 void sock_kfree_s(struct sock *sk, void *mem, int size);
1856 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1857 void sk_send_sigurg(struct sock *sk);
1858
sock_replace_proto(struct sock * sk,struct proto * proto)1859 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1860 {
1861 if (sk->sk_socket)
1862 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1863 WRITE_ONCE(sk->sk_prot, proto);
1864 }
1865
1866 struct sockcm_cookie {
1867 u64 transmit_time;
1868 u32 mark;
1869 u32 tsflags;
1870 u32 ts_opt_id;
1871 u32 priority;
1872 u32 dmabuf_id;
1873 };
1874
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1875 static inline void sockcm_init(struct sockcm_cookie *sockc,
1876 const struct sock *sk)
1877 {
1878 *sockc = (struct sockcm_cookie) {
1879 .mark = READ_ONCE(sk->sk_mark),
1880 .tsflags = READ_ONCE(sk->sk_tsflags),
1881 .priority = READ_ONCE(sk->sk_priority),
1882 };
1883 }
1884
1885 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1886 struct sockcm_cookie *sockc);
1887 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1888 struct sockcm_cookie *sockc);
1889
1890 /*
1891 * Functions to fill in entries in struct proto_ops when a protocol
1892 * does not implement a particular function.
1893 */
1894 int sock_no_bind(struct socket *, struct sockaddr *, int);
1895 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1896 int sock_no_socketpair(struct socket *, struct socket *);
1897 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
1898 int sock_no_getname(struct socket *, struct sockaddr *, int);
1899 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1900 int sock_no_listen(struct socket *, int);
1901 int sock_no_shutdown(struct socket *, int);
1902 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1903 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1904 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1905 int sock_no_mmap(struct file *file, struct socket *sock,
1906 struct vm_area_struct *vma);
1907
1908 /*
1909 * Functions to fill in entries in struct proto_ops when a protocol
1910 * uses the inet style.
1911 */
1912 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1913 char __user *optval, int __user *optlen);
1914 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1915 int flags);
1916 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1917 sockptr_t optval, unsigned int optlen);
1918
1919 void sk_common_release(struct sock *sk);
1920
1921 /*
1922 * Default socket callbacks and setup code
1923 */
1924
1925 /* Initialise core socket variables using an explicit uid. */
1926 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1927
1928 /* Initialise core socket variables.
1929 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1930 */
1931 void sock_init_data(struct socket *sock, struct sock *sk);
1932
1933 /*
1934 * Socket reference counting postulates.
1935 *
1936 * * Each user of socket SHOULD hold a reference count.
1937 * * Each access point to socket (an hash table bucket, reference from a list,
1938 * running timer, skb in flight MUST hold a reference count.
1939 * * When reference count hits 0, it means it will never increase back.
1940 * * When reference count hits 0, it means that no references from
1941 * outside exist to this socket and current process on current CPU
1942 * is last user and may/should destroy this socket.
1943 * * sk_free is called from any context: process, BH, IRQ. When
1944 * it is called, socket has no references from outside -> sk_free
1945 * may release descendant resources allocated by the socket, but
1946 * to the time when it is called, socket is NOT referenced by any
1947 * hash tables, lists etc.
1948 * * Packets, delivered from outside (from network or from another process)
1949 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1950 * when they sit in queue. Otherwise, packets will leak to hole, when
1951 * socket is looked up by one cpu and unhasing is made by another CPU.
1952 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1953 * (leak to backlog). Packet socket does all the processing inside
1954 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1955 * use separate SMP lock, so that they are prone too.
1956 */
1957
1958 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1959 static inline void sock_put(struct sock *sk)
1960 {
1961 if (refcount_dec_and_test(&sk->sk_refcnt))
1962 sk_free(sk);
1963 }
1964 /* Generic version of sock_put(), dealing with all sockets
1965 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1966 */
1967 void sock_gen_put(struct sock *sk);
1968
1969 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1970 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1971 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1972 const int nested)
1973 {
1974 return __sk_receive_skb(sk, skb, nested, 1, true);
1975 }
1976
sk_tx_queue_set(struct sock * sk,int tx_queue)1977 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1978 {
1979 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1980 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1981 return;
1982 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1983 * other WRITE_ONCE() because socket lock might be not held.
1984 */
1985 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1986 }
1987
1988 #define NO_QUEUE_MAPPING USHRT_MAX
1989
sk_tx_queue_clear(struct sock * sk)1990 static inline void sk_tx_queue_clear(struct sock *sk)
1991 {
1992 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1993 * other WRITE_ONCE() because socket lock might be not held.
1994 */
1995 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1996 }
1997
sk_tx_queue_get(const struct sock * sk)1998 static inline int sk_tx_queue_get(const struct sock *sk)
1999 {
2000 if (sk) {
2001 /* Paired with WRITE_ONCE() in sk_tx_queue_clear()
2002 * and sk_tx_queue_set().
2003 */
2004 int val = READ_ONCE(sk->sk_tx_queue_mapping);
2005
2006 if (val != NO_QUEUE_MAPPING)
2007 return val;
2008 }
2009 return -1;
2010 }
2011
__sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb,bool force_set)2012 static inline void __sk_rx_queue_set(struct sock *sk,
2013 const struct sk_buff *skb,
2014 bool force_set)
2015 {
2016 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2017 if (skb_rx_queue_recorded(skb)) {
2018 u16 rx_queue = skb_get_rx_queue(skb);
2019
2020 if (force_set ||
2021 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2022 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2023 }
2024 #endif
2025 }
2026
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)2027 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2028 {
2029 __sk_rx_queue_set(sk, skb, true);
2030 }
2031
sk_rx_queue_update(struct sock * sk,const struct sk_buff * skb)2032 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2033 {
2034 __sk_rx_queue_set(sk, skb, false);
2035 }
2036
sk_rx_queue_clear(struct sock * sk)2037 static inline void sk_rx_queue_clear(struct sock *sk)
2038 {
2039 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2040 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2041 #endif
2042 }
2043
sk_rx_queue_get(const struct sock * sk)2044 static inline int sk_rx_queue_get(const struct sock *sk)
2045 {
2046 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2047 if (sk) {
2048 int res = READ_ONCE(sk->sk_rx_queue_mapping);
2049
2050 if (res != NO_QUEUE_MAPPING)
2051 return res;
2052 }
2053 #endif
2054
2055 return -1;
2056 }
2057
sk_set_socket(struct sock * sk,struct socket * sock)2058 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2059 {
2060 sk->sk_socket = sock;
2061 if (sock) {
2062 WRITE_ONCE(sk->sk_uid, SOCK_INODE(sock)->i_uid);
2063 WRITE_ONCE(sk->sk_ino, SOCK_INODE(sock)->i_ino);
2064 }
2065 }
2066
sk_sleep(struct sock * sk)2067 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2068 {
2069 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2070 return &rcu_dereference_raw(sk->sk_wq)->wait;
2071 }
2072 /* Detach socket from process context.
2073 * Announce socket dead, detach it from wait queue and inode.
2074 * Note that parent inode held reference count on this struct sock,
2075 * we do not release it in this function, because protocol
2076 * probably wants some additional cleanups or even continuing
2077 * to work with this socket (TCP).
2078 */
sock_orphan(struct sock * sk)2079 static inline void sock_orphan(struct sock *sk)
2080 {
2081 write_lock_bh(&sk->sk_callback_lock);
2082 sock_set_flag(sk, SOCK_DEAD);
2083 sk_set_socket(sk, NULL);
2084 sk->sk_wq = NULL;
2085 /* Note: sk_uid is unchanged. */
2086 WRITE_ONCE(sk->sk_ino, 0);
2087 write_unlock_bh(&sk->sk_callback_lock);
2088 }
2089
sock_graft(struct sock * sk,struct socket * parent)2090 static inline void sock_graft(struct sock *sk, struct socket *parent)
2091 {
2092 WARN_ON(parent->sk);
2093 write_lock_bh(&sk->sk_callback_lock);
2094 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2095 parent->sk = sk;
2096 sk_set_socket(sk, parent);
2097 security_sock_graft(sk, parent);
2098 write_unlock_bh(&sk->sk_callback_lock);
2099 }
2100
sock_i_ino(const struct sock * sk)2101 static inline unsigned long sock_i_ino(const struct sock *sk)
2102 {
2103 /* Paired with WRITE_ONCE() in sock_graft() and sock_orphan() */
2104 return READ_ONCE(sk->sk_ino);
2105 }
2106
sk_uid(const struct sock * sk)2107 static inline kuid_t sk_uid(const struct sock *sk)
2108 {
2109 /* Paired with WRITE_ONCE() in sockfs_setattr() */
2110 return READ_ONCE(sk->sk_uid);
2111 }
2112
sock_net_uid(const struct net * net,const struct sock * sk)2113 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2114 {
2115 return sk ? sk_uid(sk) : make_kuid(net->user_ns, 0);
2116 }
2117
net_tx_rndhash(void)2118 static inline u32 net_tx_rndhash(void)
2119 {
2120 u32 v = get_random_u32();
2121
2122 return v ?: 1;
2123 }
2124
sk_set_txhash(struct sock * sk)2125 static inline void sk_set_txhash(struct sock *sk)
2126 {
2127 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2128 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2129 }
2130
sk_rethink_txhash(struct sock * sk)2131 static inline bool sk_rethink_txhash(struct sock *sk)
2132 {
2133 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2134 sk_set_txhash(sk);
2135 return true;
2136 }
2137 return false;
2138 }
2139
2140 static inline struct dst_entry *
__sk_dst_get(const struct sock * sk)2141 __sk_dst_get(const struct sock *sk)
2142 {
2143 return rcu_dereference_check(sk->sk_dst_cache,
2144 lockdep_sock_is_held(sk));
2145 }
2146
2147 static inline struct dst_entry *
sk_dst_get(const struct sock * sk)2148 sk_dst_get(const struct sock *sk)
2149 {
2150 struct dst_entry *dst;
2151
2152 rcu_read_lock();
2153 dst = rcu_dereference(sk->sk_dst_cache);
2154 if (dst && !rcuref_get(&dst->__rcuref))
2155 dst = NULL;
2156 rcu_read_unlock();
2157 return dst;
2158 }
2159
__dst_negative_advice(struct sock * sk)2160 static inline void __dst_negative_advice(struct sock *sk)
2161 {
2162 struct dst_entry *dst = __sk_dst_get(sk);
2163
2164 if (dst && dst->ops->negative_advice)
2165 dst->ops->negative_advice(sk, dst);
2166 }
2167
dst_negative_advice(struct sock * sk)2168 static inline void dst_negative_advice(struct sock *sk)
2169 {
2170 sk_rethink_txhash(sk);
2171 __dst_negative_advice(sk);
2172 }
2173
2174 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2175 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2176 {
2177 struct dst_entry *old_dst;
2178
2179 sk_tx_queue_clear(sk);
2180 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2181 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2182 lockdep_sock_is_held(sk));
2183 rcu_assign_pointer(sk->sk_dst_cache, dst);
2184 dst_release(old_dst);
2185 }
2186
2187 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2188 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2189 {
2190 struct dst_entry *old_dst;
2191
2192 sk_tx_queue_clear(sk);
2193 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2194 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst)));
2195 dst_release(old_dst);
2196 }
2197
2198 static inline void
__sk_dst_reset(struct sock * sk)2199 __sk_dst_reset(struct sock *sk)
2200 {
2201 __sk_dst_set(sk, NULL);
2202 }
2203
2204 static inline void
sk_dst_reset(struct sock * sk)2205 sk_dst_reset(struct sock *sk)
2206 {
2207 sk_dst_set(sk, NULL);
2208 }
2209
2210 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2211
2212 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2213
sk_dst_confirm(struct sock * sk)2214 static inline void sk_dst_confirm(struct sock *sk)
2215 {
2216 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2217 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2218 }
2219
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2220 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2221 {
2222 if (skb_get_dst_pending_confirm(skb)) {
2223 struct sock *sk = skb->sk;
2224
2225 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2226 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2227 neigh_confirm(n);
2228 }
2229 }
2230
2231 bool sk_mc_loop(const struct sock *sk);
2232
sk_can_gso(const struct sock * sk)2233 static inline bool sk_can_gso(const struct sock *sk)
2234 {
2235 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2236 }
2237
2238 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2239
sk_gso_disable(struct sock * sk)2240 static inline void sk_gso_disable(struct sock *sk)
2241 {
2242 sk->sk_gso_disabled = 1;
2243 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2244 }
2245
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2246 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2247 struct iov_iter *from, char *to,
2248 int copy, int offset)
2249 {
2250 if (skb->ip_summed == CHECKSUM_NONE) {
2251 __wsum csum = 0;
2252 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2253 return -EFAULT;
2254 skb->csum = csum_block_add(skb->csum, csum, offset);
2255 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2256 if (!copy_from_iter_full_nocache(to, copy, from))
2257 return -EFAULT;
2258 } else if (!copy_from_iter_full(to, copy, from))
2259 return -EFAULT;
2260
2261 return 0;
2262 }
2263
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2264 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2265 struct iov_iter *from, int copy)
2266 {
2267 int err, offset = skb->len;
2268
2269 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2270 copy, offset);
2271 if (err)
2272 __skb_trim(skb, offset);
2273
2274 return err;
2275 }
2276
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2277 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2278 struct sk_buff *skb,
2279 struct page *page,
2280 int off, int copy)
2281 {
2282 int err;
2283
2284 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2285 copy, skb->len);
2286 if (err)
2287 return err;
2288
2289 skb_len_add(skb, copy);
2290 sk_wmem_queued_add(sk, copy);
2291 sk_mem_charge(sk, copy);
2292 return 0;
2293 }
2294
2295 /**
2296 * sk_wmem_alloc_get - returns write allocations
2297 * @sk: socket
2298 *
2299 * Return: sk_wmem_alloc minus initial offset of one
2300 */
sk_wmem_alloc_get(const struct sock * sk)2301 static inline int sk_wmem_alloc_get(const struct sock *sk)
2302 {
2303 return refcount_read(&sk->sk_wmem_alloc) - 1;
2304 }
2305
2306 /**
2307 * sk_rmem_alloc_get - returns read allocations
2308 * @sk: socket
2309 *
2310 * Return: sk_rmem_alloc
2311 */
sk_rmem_alloc_get(const struct sock * sk)2312 static inline int sk_rmem_alloc_get(const struct sock *sk)
2313 {
2314 return atomic_read(&sk->sk_rmem_alloc);
2315 }
2316
2317 /**
2318 * sk_has_allocations - check if allocations are outstanding
2319 * @sk: socket
2320 *
2321 * Return: true if socket has write or read allocations
2322 */
sk_has_allocations(const struct sock * sk)2323 static inline bool sk_has_allocations(const struct sock *sk)
2324 {
2325 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2326 }
2327
2328 /**
2329 * skwq_has_sleeper - check if there are any waiting processes
2330 * @wq: struct socket_wq
2331 *
2332 * Return: true if socket_wq has waiting processes
2333 *
2334 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2335 * barrier call. They were added due to the race found within the tcp code.
2336 *
2337 * Consider following tcp code paths::
2338 *
2339 * CPU1 CPU2
2340 * sys_select receive packet
2341 * ... ...
2342 * __add_wait_queue update tp->rcv_nxt
2343 * ... ...
2344 * tp->rcv_nxt check sock_def_readable
2345 * ... {
2346 * schedule rcu_read_lock();
2347 * wq = rcu_dereference(sk->sk_wq);
2348 * if (wq && waitqueue_active(&wq->wait))
2349 * wake_up_interruptible(&wq->wait)
2350 * ...
2351 * }
2352 *
2353 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2354 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2355 * could then endup calling schedule and sleep forever if there are no more
2356 * data on the socket.
2357 *
2358 */
skwq_has_sleeper(struct socket_wq * wq)2359 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2360 {
2361 return wq && wq_has_sleeper(&wq->wait);
2362 }
2363
2364 /**
2365 * sock_poll_wait - wrapper for the poll_wait call.
2366 * @filp: file
2367 * @sock: socket to wait on
2368 * @p: poll_table
2369 *
2370 * See the comments in the wq_has_sleeper function.
2371 */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2372 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2373 poll_table *p)
2374 {
2375 /* Provides a barrier we need to be sure we are in sync
2376 * with the socket flags modification.
2377 *
2378 * This memory barrier is paired in the wq_has_sleeper.
2379 */
2380 poll_wait(filp, &sock->wq.wait, p);
2381 }
2382
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2383 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2384 {
2385 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2386 u32 txhash = READ_ONCE(sk->sk_txhash);
2387
2388 if (txhash) {
2389 skb->l4_hash = 1;
2390 skb->hash = txhash;
2391 }
2392 }
2393
2394 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2395
2396 /*
2397 * Queue a received datagram if it will fit. Stream and sequenced
2398 * protocols can't normally use this as they need to fit buffers in
2399 * and play with them.
2400 *
2401 * Inlined as it's very short and called for pretty much every
2402 * packet ever received.
2403 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2404 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2405 {
2406 skb_orphan(skb);
2407 skb->sk = sk;
2408 skb->destructor = sock_rfree;
2409 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2410 sk_mem_charge(sk, skb->truesize);
2411 }
2412
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2413 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2414 {
2415 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2416 skb_orphan(skb);
2417 skb->destructor = sock_efree;
2418 skb->sk = sk;
2419 return true;
2420 }
2421 return false;
2422 }
2423
skb_clone_and_charge_r(struct sk_buff * skb,struct sock * sk)2424 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2425 {
2426 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2427 if (skb) {
2428 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2429 skb_set_owner_r(skb, sk);
2430 return skb;
2431 }
2432 __kfree_skb(skb);
2433 }
2434 return NULL;
2435 }
2436
skb_prepare_for_gro(struct sk_buff * skb)2437 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2438 {
2439 if (skb->destructor != sock_wfree) {
2440 skb_orphan(skb);
2441 return;
2442 }
2443 skb->slow_gro = 1;
2444 }
2445
2446 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2447 unsigned long expires);
2448
2449 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2450
2451 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2452
2453 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2454 struct sk_buff *skb, unsigned int flags,
2455 void (*destructor)(struct sock *sk,
2456 struct sk_buff *skb));
2457 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2458
2459 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2460 enum skb_drop_reason *reason);
2461
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2462 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2463 {
2464 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2465 }
2466
2467 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2468 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2469
2470 /*
2471 * Recover an error report and clear atomically
2472 */
2473
sock_error(struct sock * sk)2474 static inline int sock_error(struct sock *sk)
2475 {
2476 int err;
2477
2478 /* Avoid an atomic operation for the common case.
2479 * This is racy since another cpu/thread can change sk_err under us.
2480 */
2481 if (likely(data_race(!sk->sk_err)))
2482 return 0;
2483
2484 err = xchg(&sk->sk_err, 0);
2485 return -err;
2486 }
2487
2488 void sk_error_report(struct sock *sk);
2489
sock_wspace(struct sock * sk)2490 static inline unsigned long sock_wspace(struct sock *sk)
2491 {
2492 int amt = 0;
2493
2494 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2495 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2496 if (amt < 0)
2497 amt = 0;
2498 }
2499 return amt;
2500 }
2501
2502 /* Note:
2503 * We use sk->sk_wq_raw, from contexts knowing this
2504 * pointer is not NULL and cannot disappear/change.
2505 */
sk_set_bit(int nr,struct sock * sk)2506 static inline void sk_set_bit(int nr, struct sock *sk)
2507 {
2508 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2509 !sock_flag(sk, SOCK_FASYNC))
2510 return;
2511
2512 set_bit(nr, &sk->sk_wq_raw->flags);
2513 }
2514
sk_clear_bit(int nr,struct sock * sk)2515 static inline void sk_clear_bit(int nr, struct sock *sk)
2516 {
2517 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2518 !sock_flag(sk, SOCK_FASYNC))
2519 return;
2520
2521 clear_bit(nr, &sk->sk_wq_raw->flags);
2522 }
2523
sk_wake_async(const struct sock * sk,int how,int band)2524 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2525 {
2526 if (sock_flag(sk, SOCK_FASYNC)) {
2527 rcu_read_lock();
2528 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2529 rcu_read_unlock();
2530 }
2531 }
2532
sk_wake_async_rcu(const struct sock * sk,int how,int band)2533 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
2534 {
2535 if (unlikely(sock_flag(sk, SOCK_FASYNC)))
2536 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2537 }
2538
2539 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2540 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2541 * Note: for send buffers, TCP works better if we can build two skbs at
2542 * minimum.
2543 */
2544 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2545
2546 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2547 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2548
sk_stream_moderate_sndbuf(struct sock * sk)2549 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2550 {
2551 u32 val;
2552
2553 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2554 return;
2555
2556 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2557 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2558
2559 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2560 }
2561
2562 /**
2563 * sk_page_frag - return an appropriate page_frag
2564 * @sk: socket
2565 *
2566 * Use the per task page_frag instead of the per socket one for
2567 * optimization when we know that we're in process context and own
2568 * everything that's associated with %current.
2569 *
2570 * Both direct reclaim and page faults can nest inside other
2571 * socket operations and end up recursing into sk_page_frag()
2572 * while it's already in use: explicitly avoid task page_frag
2573 * when users disable sk_use_task_frag.
2574 *
2575 * Return: a per task page_frag if context allows that,
2576 * otherwise a per socket one.
2577 */
sk_page_frag(struct sock * sk)2578 static inline struct page_frag *sk_page_frag(struct sock *sk)
2579 {
2580 if (sk->sk_use_task_frag)
2581 return ¤t->task_frag;
2582
2583 return &sk->sk_frag;
2584 }
2585
2586 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2587
2588 /*
2589 * Default write policy as shown to user space via poll/select/SIGIO
2590 */
sock_writeable(const struct sock * sk)2591 static inline bool sock_writeable(const struct sock *sk)
2592 {
2593 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2594 }
2595
gfp_any(void)2596 static inline gfp_t gfp_any(void)
2597 {
2598 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2599 }
2600
gfp_memcg_charge(void)2601 static inline gfp_t gfp_memcg_charge(void)
2602 {
2603 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2604 }
2605
sock_rcvtimeo(const struct sock * sk,bool noblock)2606 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2607 {
2608 return noblock ? 0 : READ_ONCE(sk->sk_rcvtimeo);
2609 }
2610
sock_sndtimeo(const struct sock * sk,bool noblock)2611 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2612 {
2613 return noblock ? 0 : READ_ONCE(sk->sk_sndtimeo);
2614 }
2615
sock_rcvlowat(const struct sock * sk,int waitall,int len)2616 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2617 {
2618 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2619
2620 return v ?: 1;
2621 }
2622
2623 /* Alas, with timeout socket operations are not restartable.
2624 * Compare this to poll().
2625 */
sock_intr_errno(long timeo)2626 static inline int sock_intr_errno(long timeo)
2627 {
2628 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2629 }
2630
2631 struct sock_skb_cb {
2632 u32 dropcount;
2633 };
2634
2635 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2636 * using skb->cb[] would keep using it directly and utilize its
2637 * alignment guarantee.
2638 */
2639 #define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \
2640 sizeof(struct sock_skb_cb))
2641
2642 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2643 SOCK_SKB_CB_OFFSET))
2644
2645 #define sock_skb_cb_check_size(size) \
2646 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2647
2648 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2649 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2650 {
2651 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2652 atomic_read(&sk->sk_drops) : 0;
2653 }
2654
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2655 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2656 {
2657 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2658
2659 atomic_add(segs, &sk->sk_drops);
2660 }
2661
sock_read_timestamp(struct sock * sk)2662 static inline ktime_t sock_read_timestamp(struct sock *sk)
2663 {
2664 #if BITS_PER_LONG==32
2665 unsigned int seq;
2666 ktime_t kt;
2667
2668 do {
2669 seq = read_seqbegin(&sk->sk_stamp_seq);
2670 kt = sk->sk_stamp;
2671 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2672
2673 return kt;
2674 #else
2675 return READ_ONCE(sk->sk_stamp);
2676 #endif
2677 }
2678
sock_write_timestamp(struct sock * sk,ktime_t kt)2679 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2680 {
2681 #if BITS_PER_LONG==32
2682 write_seqlock(&sk->sk_stamp_seq);
2683 sk->sk_stamp = kt;
2684 write_sequnlock(&sk->sk_stamp_seq);
2685 #else
2686 WRITE_ONCE(sk->sk_stamp, kt);
2687 #endif
2688 }
2689
2690 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2691 struct sk_buff *skb);
2692 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2693 struct sk_buff *skb);
2694
2695 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk);
2696 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk,
2697 struct timespec64 *ts);
2698
2699 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2700 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2701 {
2702 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2703 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2704 ktime_t kt = skb->tstamp;
2705 /*
2706 * generate control messages if
2707 * - receive time stamping in software requested
2708 * - software time stamp available and wanted
2709 * - hardware time stamps available and wanted
2710 */
2711 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2712 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2713 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2714 (hwtstamps->hwtstamp &&
2715 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2716 __sock_recv_timestamp(msg, sk, skb);
2717 else
2718 sock_write_timestamp(sk, kt);
2719
2720 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2721 __sock_recv_wifi_status(msg, sk, skb);
2722 }
2723
2724 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2725 struct sk_buff *skb);
2726
2727 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2728 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2729 struct sk_buff *skb)
2730 {
2731 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2732 (1UL << SOCK_RCVTSTAMP) | \
2733 (1UL << SOCK_RCVMARK) | \
2734 (1UL << SOCK_RCVPRIORITY) | \
2735 (1UL << SOCK_TIMESTAMPING_ANY))
2736 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2737 SOF_TIMESTAMPING_RAW_HARDWARE)
2738
2739 if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS)
2740 __sock_recv_cmsgs(msg, sk, skb);
2741 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2742 sock_write_timestamp(sk, skb->tstamp);
2743 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2744 sock_write_timestamp(sk, 0);
2745 }
2746
2747 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags);
2748
2749 /**
2750 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2751 * @sk: socket sending this packet
2752 * @sockc: pointer to socket cmsg cookie to get timestamping info
2753 * @tx_flags: completed with instructions for time stamping
2754 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2755 *
2756 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2757 */
_sock_tx_timestamp(struct sock * sk,const struct sockcm_cookie * sockc,__u8 * tx_flags,__u32 * tskey)2758 static inline void _sock_tx_timestamp(struct sock *sk,
2759 const struct sockcm_cookie *sockc,
2760 __u8 *tx_flags, __u32 *tskey)
2761 {
2762 __u32 tsflags = sockc->tsflags;
2763
2764 if (unlikely(tsflags)) {
2765 __sock_tx_timestamp(tsflags, tx_flags);
2766 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2767 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) {
2768 if (tsflags & SOCKCM_FLAG_TS_OPT_ID)
2769 *tskey = sockc->ts_opt_id;
2770 else
2771 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2772 }
2773 }
2774 }
2775
sock_tx_timestamp(struct sock * sk,const struct sockcm_cookie * sockc,__u8 * tx_flags)2776 static inline void sock_tx_timestamp(struct sock *sk,
2777 const struct sockcm_cookie *sockc,
2778 __u8 *tx_flags)
2779 {
2780 _sock_tx_timestamp(sk, sockc, tx_flags, NULL);
2781 }
2782
skb_setup_tx_timestamp(struct sk_buff * skb,const struct sockcm_cookie * sockc)2783 static inline void skb_setup_tx_timestamp(struct sk_buff *skb,
2784 const struct sockcm_cookie *sockc)
2785 {
2786 _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags,
2787 &skb_shinfo(skb)->tskey);
2788 }
2789
sk_is_inet(const struct sock * sk)2790 static inline bool sk_is_inet(const struct sock *sk)
2791 {
2792 int family = READ_ONCE(sk->sk_family);
2793
2794 return family == AF_INET || family == AF_INET6;
2795 }
2796
sk_is_tcp(const struct sock * sk)2797 static inline bool sk_is_tcp(const struct sock *sk)
2798 {
2799 return sk_is_inet(sk) &&
2800 sk->sk_type == SOCK_STREAM &&
2801 sk->sk_protocol == IPPROTO_TCP;
2802 }
2803
sk_is_udp(const struct sock * sk)2804 static inline bool sk_is_udp(const struct sock *sk)
2805 {
2806 return sk_is_inet(sk) &&
2807 sk->sk_type == SOCK_DGRAM &&
2808 sk->sk_protocol == IPPROTO_UDP;
2809 }
2810
sk_is_unix(const struct sock * sk)2811 static inline bool sk_is_unix(const struct sock *sk)
2812 {
2813 return sk->sk_family == AF_UNIX;
2814 }
2815
sk_is_stream_unix(const struct sock * sk)2816 static inline bool sk_is_stream_unix(const struct sock *sk)
2817 {
2818 return sk_is_unix(sk) && sk->sk_type == SOCK_STREAM;
2819 }
2820
sk_is_vsock(const struct sock * sk)2821 static inline bool sk_is_vsock(const struct sock *sk)
2822 {
2823 return sk->sk_family == AF_VSOCK;
2824 }
2825
sk_may_scm_recv(const struct sock * sk)2826 static inline bool sk_may_scm_recv(const struct sock *sk)
2827 {
2828 return (IS_ENABLED(CONFIG_UNIX) && sk->sk_family == AF_UNIX) ||
2829 sk->sk_family == AF_NETLINK ||
2830 (IS_ENABLED(CONFIG_BT) && sk->sk_family == AF_BLUETOOTH);
2831 }
2832
2833 /**
2834 * sk_eat_skb - Release a skb if it is no longer needed
2835 * @sk: socket to eat this skb from
2836 * @skb: socket buffer to eat
2837 *
2838 * This routine must be called with interrupts disabled or with the socket
2839 * locked so that the sk_buff queue operation is ok.
2840 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2841 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2842 {
2843 __skb_unlink(skb, &sk->sk_receive_queue);
2844 __kfree_skb(skb);
2845 }
2846
2847 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2848 skb_sk_is_prefetched(struct sk_buff *skb)
2849 {
2850 #ifdef CONFIG_INET
2851 return skb->destructor == sock_pfree;
2852 #else
2853 return false;
2854 #endif /* CONFIG_INET */
2855 }
2856
2857 /* This helper checks if a socket is a full socket,
2858 * ie _not_ a timewait or request socket.
2859 */
sk_fullsock(const struct sock * sk)2860 static inline bool sk_fullsock(const struct sock *sk)
2861 {
2862 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2863 }
2864
2865 static inline bool
sk_is_refcounted(struct sock * sk)2866 sk_is_refcounted(struct sock *sk)
2867 {
2868 /* Only full sockets have sk->sk_flags. */
2869 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2870 }
2871
2872 static inline bool
sk_requests_wifi_status(struct sock * sk)2873 sk_requests_wifi_status(struct sock *sk)
2874 {
2875 return sk && sk_fullsock(sk) && sock_flag(sk, SOCK_WIFI_STATUS);
2876 }
2877
2878 /* Checks if this SKB belongs to an HW offloaded socket
2879 * and whether any SW fallbacks are required based on dev.
2880 * Check decrypted mark in case skb_orphan() cleared socket.
2881 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2882 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2883 struct net_device *dev)
2884 {
2885 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2886 struct sock *sk = skb->sk;
2887
2888 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2889 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2890 } else if (unlikely(skb_is_decrypted(skb))) {
2891 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2892 kfree_skb(skb);
2893 skb = NULL;
2894 }
2895 #endif
2896
2897 return skb;
2898 }
2899
2900 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2901 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2902 */
sk_listener(const struct sock * sk)2903 static inline bool sk_listener(const struct sock *sk)
2904 {
2905 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2906 }
2907
2908 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT
2909 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE)
2910 * TCP RST and ACK can be attached to TIME_WAIT.
2911 */
sk_listener_or_tw(const struct sock * sk)2912 static inline bool sk_listener_or_tw(const struct sock *sk)
2913 {
2914 return (1 << READ_ONCE(sk->sk_state)) &
2915 (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT);
2916 }
2917
2918 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2919 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2920 int type);
2921
2922 bool sk_ns_capable(const struct sock *sk,
2923 struct user_namespace *user_ns, int cap);
2924 bool sk_capable(const struct sock *sk, int cap);
2925 bool sk_net_capable(const struct sock *sk, int cap);
2926
2927 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2928
2929 /* Take into consideration the size of the struct sk_buff overhead in the
2930 * determination of these values, since that is non-constant across
2931 * platforms. This makes socket queueing behavior and performance
2932 * not depend upon such differences.
2933 */
2934 #define _SK_MEM_PACKETS 256
2935 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2936 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2937 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2938
2939 extern __u32 sysctl_wmem_max;
2940 extern __u32 sysctl_rmem_max;
2941
2942 extern __u32 sysctl_wmem_default;
2943 extern __u32 sysctl_rmem_default;
2944
2945 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2946 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2947
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2948 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2949 {
2950 /* Does this proto have per netns sysctl_wmem ? */
2951 if (proto->sysctl_wmem_offset)
2952 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2953
2954 return READ_ONCE(*proto->sysctl_wmem);
2955 }
2956
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2957 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2958 {
2959 /* Does this proto have per netns sysctl_rmem ? */
2960 if (proto->sysctl_rmem_offset)
2961 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2962
2963 return READ_ONCE(*proto->sysctl_rmem);
2964 }
2965
2966 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2967 * Some wifi drivers need to tweak it to get more chunks.
2968 * They can use this helper from their ndo_start_xmit()
2969 */
sk_pacing_shift_update(struct sock * sk,int val)2970 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2971 {
2972 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2973 return;
2974 WRITE_ONCE(sk->sk_pacing_shift, val);
2975 }
2976
2977 /* if a socket is bound to a device, check that the given device
2978 * index is either the same or that the socket is bound to an L3
2979 * master device and the given device index is also enslaved to
2980 * that L3 master
2981 */
sk_dev_equal_l3scope(struct sock * sk,int dif)2982 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2983 {
2984 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2985 int mdif;
2986
2987 if (!bound_dev_if || bound_dev_if == dif)
2988 return true;
2989
2990 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2991 if (mdif && mdif == bound_dev_if)
2992 return true;
2993
2994 return false;
2995 }
2996
2997 void sock_def_readable(struct sock *sk);
2998
2999 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
3000 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
3001 int sock_set_timestamping(struct sock *sk, int optname,
3002 struct so_timestamping timestamping);
3003
3004 #if defined(CONFIG_CGROUP_BPF)
3005 void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op);
3006 #else
bpf_skops_tx_timestamping(struct sock * sk,struct sk_buff * skb,int op)3007 static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op)
3008 {
3009 }
3010 #endif
3011 void sock_no_linger(struct sock *sk);
3012 void sock_set_keepalive(struct sock *sk);
3013 void sock_set_priority(struct sock *sk, u32 priority);
3014 void sock_set_rcvbuf(struct sock *sk, int val);
3015 void sock_set_mark(struct sock *sk, u32 val);
3016 void sock_set_reuseaddr(struct sock *sk);
3017 void sock_set_reuseport(struct sock *sk);
3018 void sock_set_sndtimeo(struct sock *sk, s64 secs);
3019
3020 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
3021
3022 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
3023 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
3024 sockptr_t optval, int optlen, bool old_timeval);
3025
3026 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
3027 void __user *arg, void *karg, size_t size);
3028 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
sk_is_readable(struct sock * sk)3029 static inline bool sk_is_readable(struct sock *sk)
3030 {
3031 const struct proto *prot = READ_ONCE(sk->sk_prot);
3032
3033 if (prot->sock_is_readable)
3034 return prot->sock_is_readable(sk);
3035
3036 return false;
3037 }
3038 #endif /* _SOCK_H */
3039