1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <linux/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <net/netkit.h>
85 #include <linux/un.h>
86 #include <net/xdp_sock_drv.h>
87 #include <net/inet_dscp.h>
88
89 #include "dev.h"
90
91 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */
92 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check");
93
94 static const struct bpf_func_proto *
95 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
96
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)97 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
98 {
99 if (in_compat_syscall()) {
100 struct compat_sock_fprog f32;
101
102 if (len != sizeof(f32))
103 return -EINVAL;
104 if (copy_from_sockptr(&f32, src, sizeof(f32)))
105 return -EFAULT;
106 memset(dst, 0, sizeof(*dst));
107 dst->len = f32.len;
108 dst->filter = compat_ptr(f32.filter);
109 } else {
110 if (len != sizeof(*dst))
111 return -EINVAL;
112 if (copy_from_sockptr(dst, src, sizeof(*dst)))
113 return -EFAULT;
114 }
115
116 return 0;
117 }
118 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
119
120 /**
121 * sk_filter_trim_cap - run a packet through a socket filter
122 * @sk: sock associated with &sk_buff
123 * @skb: buffer to filter
124 * @cap: limit on how short the eBPF program may trim the packet
125 * @reason: record drop reason on errors (negative return value)
126 *
127 * Run the eBPF program and then cut skb->data to correct size returned by
128 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
129 * than pkt_len we keep whole skb->data. This is the socket level
130 * wrapper to bpf_prog_run. It returns 0 if the packet should
131 * be accepted or -EPERM if the packet should be tossed.
132 *
133 */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap,enum skb_drop_reason * reason)134 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb,
135 unsigned int cap, enum skb_drop_reason *reason)
136 {
137 int err;
138 struct sk_filter *filter;
139
140 /*
141 * If the skb was allocated from pfmemalloc reserves, only
142 * allow SOCK_MEMALLOC sockets to use it as this socket is
143 * helping free memory
144 */
145 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
146 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
147 *reason = SKB_DROP_REASON_PFMEMALLOC;
148 return -ENOMEM;
149 }
150 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
151 if (err) {
152 *reason = SKB_DROP_REASON_SOCKET_FILTER;
153 return err;
154 }
155
156 err = security_sock_rcv_skb(sk, skb);
157 if (err) {
158 *reason = SKB_DROP_REASON_SECURITY_HOOK;
159 return err;
160 }
161
162 rcu_read_lock();
163 filter = rcu_dereference(sk->sk_filter);
164 if (filter) {
165 struct sock *save_sk = skb->sk;
166 unsigned int pkt_len;
167
168 skb->sk = sk;
169 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
170 skb->sk = save_sk;
171 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
172 if (err)
173 *reason = SKB_DROP_REASON_SOCKET_FILTER;
174 }
175 rcu_read_unlock();
176
177 return err;
178 }
179 EXPORT_SYMBOL(sk_filter_trim_cap);
180
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)181 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
182 {
183 return skb_get_poff(skb);
184 }
185
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)186 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
187 {
188 struct nlattr *nla;
189
190 if (skb_is_nonlinear(skb))
191 return 0;
192
193 if (skb->len < sizeof(struct nlattr))
194 return 0;
195
196 if (a > skb->len - sizeof(struct nlattr))
197 return 0;
198
199 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
200 if (nla)
201 return (void *) nla - (void *) skb->data;
202
203 return 0;
204 }
205
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)206 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
207 {
208 struct nlattr *nla;
209
210 if (skb_is_nonlinear(skb))
211 return 0;
212
213 if (skb->len < sizeof(struct nlattr))
214 return 0;
215
216 if (a > skb->len - sizeof(struct nlattr))
217 return 0;
218
219 nla = (struct nlattr *) &skb->data[a];
220 if (!nla_ok(nla, skb->len - a))
221 return 0;
222
223 nla = nla_find_nested(nla, x);
224 if (nla)
225 return (void *) nla - (void *) skb->data;
226
227 return 0;
228 }
229
bpf_skb_load_helper_convert_offset(const struct sk_buff * skb,int offset)230 static int bpf_skb_load_helper_convert_offset(const struct sk_buff *skb, int offset)
231 {
232 if (likely(offset >= 0))
233 return offset;
234
235 if (offset >= SKF_NET_OFF)
236 return offset - SKF_NET_OFF + skb_network_offset(skb);
237
238 if (offset >= SKF_LL_OFF && skb_mac_header_was_set(skb))
239 return offset - SKF_LL_OFF + skb_mac_offset(skb);
240
241 return INT_MIN;
242 }
243
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)244 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
245 data, int, headlen, int, offset)
246 {
247 u8 tmp;
248 const int len = sizeof(tmp);
249
250 offset = bpf_skb_load_helper_convert_offset(skb, offset);
251 if (offset == INT_MIN)
252 return -EFAULT;
253
254 if (headlen - offset >= len)
255 return *(u8 *)(data + offset);
256 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
257 return tmp;
258 else
259 return -EFAULT;
260 }
261
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)262 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
263 int, offset)
264 {
265 return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
266 offset);
267 }
268
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)269 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
270 data, int, headlen, int, offset)
271 {
272 __be16 tmp;
273 const int len = sizeof(tmp);
274
275 offset = bpf_skb_load_helper_convert_offset(skb, offset);
276 if (offset == INT_MIN)
277 return -EFAULT;
278
279 if (headlen - offset >= len)
280 return get_unaligned_be16(data + offset);
281 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
282 return be16_to_cpu(tmp);
283 else
284 return -EFAULT;
285 }
286
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)287 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
288 int, offset)
289 {
290 return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
291 offset);
292 }
293
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)294 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
295 data, int, headlen, int, offset)
296 {
297 __be32 tmp;
298 const int len = sizeof(tmp);
299
300 offset = bpf_skb_load_helper_convert_offset(skb, offset);
301 if (offset == INT_MIN)
302 return -EFAULT;
303
304 if (headlen - offset >= len)
305 return get_unaligned_be32(data + offset);
306 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
307 return be32_to_cpu(tmp);
308 else
309 return -EFAULT;
310 }
311
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)312 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
313 int, offset)
314 {
315 return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
316 offset);
317 }
318
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)319 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
320 struct bpf_insn *insn_buf)
321 {
322 struct bpf_insn *insn = insn_buf;
323
324 switch (skb_field) {
325 case SKF_AD_MARK:
326 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
327
328 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
329 offsetof(struct sk_buff, mark));
330 break;
331
332 case SKF_AD_PKTTYPE:
333 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
334 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
335 #ifdef __BIG_ENDIAN_BITFIELD
336 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
337 #endif
338 break;
339
340 case SKF_AD_QUEUE:
341 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
342
343 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
344 offsetof(struct sk_buff, queue_mapping));
345 break;
346
347 case SKF_AD_VLAN_TAG:
348 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
349
350 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
351 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
352 offsetof(struct sk_buff, vlan_tci));
353 break;
354 case SKF_AD_VLAN_TAG_PRESENT:
355 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
356 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
357 offsetof(struct sk_buff, vlan_all));
358 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
359 *insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
360 break;
361 }
362
363 return insn - insn_buf;
364 }
365
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)366 static bool convert_bpf_extensions(struct sock_filter *fp,
367 struct bpf_insn **insnp)
368 {
369 struct bpf_insn *insn = *insnp;
370 u32 cnt;
371
372 switch (fp->k) {
373 case SKF_AD_OFF + SKF_AD_PROTOCOL:
374 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
375
376 /* A = *(u16 *) (CTX + offsetof(protocol)) */
377 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
378 offsetof(struct sk_buff, protocol));
379 /* A = ntohs(A) [emitting a nop or swap16] */
380 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
381 break;
382
383 case SKF_AD_OFF + SKF_AD_PKTTYPE:
384 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
385 insn += cnt - 1;
386 break;
387
388 case SKF_AD_OFF + SKF_AD_IFINDEX:
389 case SKF_AD_OFF + SKF_AD_HATYPE:
390 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
391 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
392
393 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
394 BPF_REG_TMP, BPF_REG_CTX,
395 offsetof(struct sk_buff, dev));
396 /* if (tmp != 0) goto pc + 1 */
397 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
398 *insn++ = BPF_EXIT_INSN();
399 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
400 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
401 offsetof(struct net_device, ifindex));
402 else
403 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
404 offsetof(struct net_device, type));
405 break;
406
407 case SKF_AD_OFF + SKF_AD_MARK:
408 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
409 insn += cnt - 1;
410 break;
411
412 case SKF_AD_OFF + SKF_AD_RXHASH:
413 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
414
415 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
416 offsetof(struct sk_buff, hash));
417 break;
418
419 case SKF_AD_OFF + SKF_AD_QUEUE:
420 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
421 insn += cnt - 1;
422 break;
423
424 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
425 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
426 BPF_REG_A, BPF_REG_CTX, insn);
427 insn += cnt - 1;
428 break;
429
430 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
431 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
432 BPF_REG_A, BPF_REG_CTX, insn);
433 insn += cnt - 1;
434 break;
435
436 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
437 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
438
439 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
440 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
441 offsetof(struct sk_buff, vlan_proto));
442 /* A = ntohs(A) [emitting a nop or swap16] */
443 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
444 break;
445
446 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
447 case SKF_AD_OFF + SKF_AD_NLATTR:
448 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
449 case SKF_AD_OFF + SKF_AD_CPU:
450 case SKF_AD_OFF + SKF_AD_RANDOM:
451 /* arg1 = CTX */
452 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
453 /* arg2 = A */
454 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
455 /* arg3 = X */
456 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
457 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
458 switch (fp->k) {
459 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
460 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
461 break;
462 case SKF_AD_OFF + SKF_AD_NLATTR:
463 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
464 break;
465 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
466 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
467 break;
468 case SKF_AD_OFF + SKF_AD_CPU:
469 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
470 break;
471 case SKF_AD_OFF + SKF_AD_RANDOM:
472 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
473 bpf_user_rnd_init_once();
474 break;
475 }
476 break;
477
478 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
479 /* A ^= X */
480 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
481 break;
482
483 default:
484 /* This is just a dummy call to avoid letting the compiler
485 * evict __bpf_call_base() as an optimization. Placed here
486 * where no-one bothers.
487 */
488 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
489 return false;
490 }
491
492 *insnp = insn;
493 return true;
494 }
495
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)496 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
497 {
498 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
499 int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
500 bool endian = BPF_SIZE(fp->code) == BPF_H ||
501 BPF_SIZE(fp->code) == BPF_W;
502 bool indirect = BPF_MODE(fp->code) == BPF_IND;
503 const int ip_align = NET_IP_ALIGN;
504 struct bpf_insn *insn = *insnp;
505 int offset = fp->k;
506
507 if (!indirect &&
508 ((unaligned_ok && offset >= 0) ||
509 (!unaligned_ok && offset >= 0 &&
510 offset + ip_align >= 0 &&
511 offset + ip_align % size == 0))) {
512 bool ldx_off_ok = offset <= S16_MAX;
513
514 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
515 if (offset)
516 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
517 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
518 size, 2 + endian + (!ldx_off_ok * 2));
519 if (ldx_off_ok) {
520 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
521 BPF_REG_D, offset);
522 } else {
523 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
524 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
525 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
526 BPF_REG_TMP, 0);
527 }
528 if (endian)
529 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
530 *insn++ = BPF_JMP_A(8);
531 }
532
533 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
534 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
535 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
536 if (!indirect) {
537 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
538 } else {
539 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
540 if (fp->k)
541 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
542 }
543
544 switch (BPF_SIZE(fp->code)) {
545 case BPF_B:
546 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
547 break;
548 case BPF_H:
549 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
550 break;
551 case BPF_W:
552 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
553 break;
554 default:
555 return false;
556 }
557
558 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
559 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
560 *insn = BPF_EXIT_INSN();
561
562 *insnp = insn;
563 return true;
564 }
565
566 /**
567 * bpf_convert_filter - convert filter program
568 * @prog: the user passed filter program
569 * @len: the length of the user passed filter program
570 * @new_prog: allocated 'struct bpf_prog' or NULL
571 * @new_len: pointer to store length of converted program
572 * @seen_ld_abs: bool whether we've seen ld_abs/ind
573 *
574 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
575 * style extended BPF (eBPF).
576 * Conversion workflow:
577 *
578 * 1) First pass for calculating the new program length:
579 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
580 *
581 * 2) 2nd pass to remap in two passes: 1st pass finds new
582 * jump offsets, 2nd pass remapping:
583 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
584 */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)585 static int bpf_convert_filter(struct sock_filter *prog, int len,
586 struct bpf_prog *new_prog, int *new_len,
587 bool *seen_ld_abs)
588 {
589 int new_flen = 0, pass = 0, target, i, stack_off;
590 struct bpf_insn *new_insn, *first_insn = NULL;
591 struct sock_filter *fp;
592 int *addrs = NULL;
593 u8 bpf_src;
594
595 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
596 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
597
598 if (len <= 0 || len > BPF_MAXINSNS)
599 return -EINVAL;
600
601 if (new_prog) {
602 first_insn = new_prog->insnsi;
603 addrs = kcalloc(len, sizeof(*addrs),
604 GFP_KERNEL | __GFP_NOWARN);
605 if (!addrs)
606 return -ENOMEM;
607 }
608
609 do_pass:
610 new_insn = first_insn;
611 fp = prog;
612
613 /* Classic BPF related prologue emission. */
614 if (new_prog) {
615 /* Classic BPF expects A and X to be reset first. These need
616 * to be guaranteed to be the first two instructions.
617 */
618 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
619 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
620
621 /* All programs must keep CTX in callee saved BPF_REG_CTX.
622 * In eBPF case it's done by the compiler, here we need to
623 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
624 */
625 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
626 if (*seen_ld_abs) {
627 /* For packet access in classic BPF, cache skb->data
628 * in callee-saved BPF R8 and skb->len - skb->data_len
629 * (headlen) in BPF R9. Since classic BPF is read-only
630 * on CTX, we only need to cache it once.
631 */
632 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
633 BPF_REG_D, BPF_REG_CTX,
634 offsetof(struct sk_buff, data));
635 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
636 offsetof(struct sk_buff, len));
637 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
638 offsetof(struct sk_buff, data_len));
639 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
640 }
641 } else {
642 new_insn += 3;
643 }
644
645 for (i = 0; i < len; fp++, i++) {
646 struct bpf_insn tmp_insns[32] = { };
647 struct bpf_insn *insn = tmp_insns;
648
649 if (addrs)
650 addrs[i] = new_insn - first_insn;
651
652 switch (fp->code) {
653 /* All arithmetic insns and skb loads map as-is. */
654 case BPF_ALU | BPF_ADD | BPF_X:
655 case BPF_ALU | BPF_ADD | BPF_K:
656 case BPF_ALU | BPF_SUB | BPF_X:
657 case BPF_ALU | BPF_SUB | BPF_K:
658 case BPF_ALU | BPF_AND | BPF_X:
659 case BPF_ALU | BPF_AND | BPF_K:
660 case BPF_ALU | BPF_OR | BPF_X:
661 case BPF_ALU | BPF_OR | BPF_K:
662 case BPF_ALU | BPF_LSH | BPF_X:
663 case BPF_ALU | BPF_LSH | BPF_K:
664 case BPF_ALU | BPF_RSH | BPF_X:
665 case BPF_ALU | BPF_RSH | BPF_K:
666 case BPF_ALU | BPF_XOR | BPF_X:
667 case BPF_ALU | BPF_XOR | BPF_K:
668 case BPF_ALU | BPF_MUL | BPF_X:
669 case BPF_ALU | BPF_MUL | BPF_K:
670 case BPF_ALU | BPF_DIV | BPF_X:
671 case BPF_ALU | BPF_DIV | BPF_K:
672 case BPF_ALU | BPF_MOD | BPF_X:
673 case BPF_ALU | BPF_MOD | BPF_K:
674 case BPF_ALU | BPF_NEG:
675 case BPF_LD | BPF_ABS | BPF_W:
676 case BPF_LD | BPF_ABS | BPF_H:
677 case BPF_LD | BPF_ABS | BPF_B:
678 case BPF_LD | BPF_IND | BPF_W:
679 case BPF_LD | BPF_IND | BPF_H:
680 case BPF_LD | BPF_IND | BPF_B:
681 /* Check for overloaded BPF extension and
682 * directly convert it if found, otherwise
683 * just move on with mapping.
684 */
685 if (BPF_CLASS(fp->code) == BPF_LD &&
686 BPF_MODE(fp->code) == BPF_ABS &&
687 convert_bpf_extensions(fp, &insn))
688 break;
689 if (BPF_CLASS(fp->code) == BPF_LD &&
690 convert_bpf_ld_abs(fp, &insn)) {
691 *seen_ld_abs = true;
692 break;
693 }
694
695 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
696 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
697 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
698 /* Error with exception code on div/mod by 0.
699 * For cBPF programs, this was always return 0.
700 */
701 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
702 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
703 *insn++ = BPF_EXIT_INSN();
704 }
705
706 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
707 break;
708
709 /* Jump transformation cannot use BPF block macros
710 * everywhere as offset calculation and target updates
711 * require a bit more work than the rest, i.e. jump
712 * opcodes map as-is, but offsets need adjustment.
713 */
714
715 #define BPF_EMIT_JMP \
716 do { \
717 const s32 off_min = S16_MIN, off_max = S16_MAX; \
718 s32 off; \
719 \
720 if (target >= len || target < 0) \
721 goto err; \
722 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
723 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
724 off -= insn - tmp_insns; \
725 /* Reject anything not fitting into insn->off. */ \
726 if (off < off_min || off > off_max) \
727 goto err; \
728 insn->off = off; \
729 } while (0)
730
731 case BPF_JMP | BPF_JA:
732 target = i + fp->k + 1;
733 insn->code = fp->code;
734 BPF_EMIT_JMP;
735 break;
736
737 case BPF_JMP | BPF_JEQ | BPF_K:
738 case BPF_JMP | BPF_JEQ | BPF_X:
739 case BPF_JMP | BPF_JSET | BPF_K:
740 case BPF_JMP | BPF_JSET | BPF_X:
741 case BPF_JMP | BPF_JGT | BPF_K:
742 case BPF_JMP | BPF_JGT | BPF_X:
743 case BPF_JMP | BPF_JGE | BPF_K:
744 case BPF_JMP | BPF_JGE | BPF_X:
745 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
746 /* BPF immediates are signed, zero extend
747 * immediate into tmp register and use it
748 * in compare insn.
749 */
750 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
751
752 insn->dst_reg = BPF_REG_A;
753 insn->src_reg = BPF_REG_TMP;
754 bpf_src = BPF_X;
755 } else {
756 insn->dst_reg = BPF_REG_A;
757 insn->imm = fp->k;
758 bpf_src = BPF_SRC(fp->code);
759 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
760 }
761
762 /* Common case where 'jump_false' is next insn. */
763 if (fp->jf == 0) {
764 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765 target = i + fp->jt + 1;
766 BPF_EMIT_JMP;
767 break;
768 }
769
770 /* Convert some jumps when 'jump_true' is next insn. */
771 if (fp->jt == 0) {
772 switch (BPF_OP(fp->code)) {
773 case BPF_JEQ:
774 insn->code = BPF_JMP | BPF_JNE | bpf_src;
775 break;
776 case BPF_JGT:
777 insn->code = BPF_JMP | BPF_JLE | bpf_src;
778 break;
779 case BPF_JGE:
780 insn->code = BPF_JMP | BPF_JLT | bpf_src;
781 break;
782 default:
783 goto jmp_rest;
784 }
785
786 target = i + fp->jf + 1;
787 BPF_EMIT_JMP;
788 break;
789 }
790 jmp_rest:
791 /* Other jumps are mapped into two insns: Jxx and JA. */
792 target = i + fp->jt + 1;
793 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
794 BPF_EMIT_JMP;
795 insn++;
796
797 insn->code = BPF_JMP | BPF_JA;
798 target = i + fp->jf + 1;
799 BPF_EMIT_JMP;
800 break;
801
802 /* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
803 case BPF_LDX | BPF_MSH | BPF_B: {
804 struct sock_filter tmp = {
805 .code = BPF_LD | BPF_ABS | BPF_B,
806 .k = fp->k,
807 };
808
809 *seen_ld_abs = true;
810
811 /* X = A */
812 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
813 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
814 convert_bpf_ld_abs(&tmp, &insn);
815 insn++;
816 /* A &= 0xf */
817 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
818 /* A <<= 2 */
819 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
820 /* tmp = X */
821 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
822 /* X = A */
823 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824 /* A = tmp */
825 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
826 break;
827 }
828 /* RET_K is remapped into 2 insns. RET_A case doesn't need an
829 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
830 */
831 case BPF_RET | BPF_A:
832 case BPF_RET | BPF_K:
833 if (BPF_RVAL(fp->code) == BPF_K)
834 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
835 0, fp->k);
836 *insn = BPF_EXIT_INSN();
837 break;
838
839 /* Store to stack. */
840 case BPF_ST:
841 case BPF_STX:
842 stack_off = fp->k * 4 + 4;
843 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
844 BPF_ST ? BPF_REG_A : BPF_REG_X,
845 -stack_off);
846 /* check_load_and_stores() verifies that classic BPF can
847 * load from stack only after write, so tracking
848 * stack_depth for ST|STX insns is enough
849 */
850 if (new_prog && new_prog->aux->stack_depth < stack_off)
851 new_prog->aux->stack_depth = stack_off;
852 break;
853
854 /* Load from stack. */
855 case BPF_LD | BPF_MEM:
856 case BPF_LDX | BPF_MEM:
857 stack_off = fp->k * 4 + 4;
858 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
859 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
860 -stack_off);
861 break;
862
863 /* A = K or X = K */
864 case BPF_LD | BPF_IMM:
865 case BPF_LDX | BPF_IMM:
866 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
867 BPF_REG_A : BPF_REG_X, fp->k);
868 break;
869
870 /* X = A */
871 case BPF_MISC | BPF_TAX:
872 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
873 break;
874
875 /* A = X */
876 case BPF_MISC | BPF_TXA:
877 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
878 break;
879
880 /* A = skb->len or X = skb->len */
881 case BPF_LD | BPF_W | BPF_LEN:
882 case BPF_LDX | BPF_W | BPF_LEN:
883 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
884 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
885 offsetof(struct sk_buff, len));
886 break;
887
888 /* Access seccomp_data fields. */
889 case BPF_LDX | BPF_ABS | BPF_W:
890 /* A = *(u32 *) (ctx + K) */
891 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
892 break;
893
894 /* Unknown instruction. */
895 default:
896 goto err;
897 }
898
899 insn++;
900 if (new_prog)
901 memcpy(new_insn, tmp_insns,
902 sizeof(*insn) * (insn - tmp_insns));
903 new_insn += insn - tmp_insns;
904 }
905
906 if (!new_prog) {
907 /* Only calculating new length. */
908 *new_len = new_insn - first_insn;
909 if (*seen_ld_abs)
910 *new_len += 4; /* Prologue bits. */
911 return 0;
912 }
913
914 pass++;
915 if (new_flen != new_insn - first_insn) {
916 new_flen = new_insn - first_insn;
917 if (pass > 2)
918 goto err;
919 goto do_pass;
920 }
921
922 kfree(addrs);
923 BUG_ON(*new_len != new_flen);
924 return 0;
925 err:
926 kfree(addrs);
927 return -EINVAL;
928 }
929
930 /* Security:
931 *
932 * As we dont want to clear mem[] array for each packet going through
933 * __bpf_prog_run(), we check that filter loaded by user never try to read
934 * a cell if not previously written, and we check all branches to be sure
935 * a malicious user doesn't try to abuse us.
936 */
check_load_and_stores(const struct sock_filter * filter,int flen)937 static int check_load_and_stores(const struct sock_filter *filter, int flen)
938 {
939 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
940 int pc, ret = 0;
941
942 BUILD_BUG_ON(BPF_MEMWORDS > 16);
943
944 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
945 if (!masks)
946 return -ENOMEM;
947
948 memset(masks, 0xff, flen * sizeof(*masks));
949
950 for (pc = 0; pc < flen; pc++) {
951 memvalid &= masks[pc];
952
953 switch (filter[pc].code) {
954 case BPF_ST:
955 case BPF_STX:
956 memvalid |= (1 << filter[pc].k);
957 break;
958 case BPF_LD | BPF_MEM:
959 case BPF_LDX | BPF_MEM:
960 if (!(memvalid & (1 << filter[pc].k))) {
961 ret = -EINVAL;
962 goto error;
963 }
964 break;
965 case BPF_JMP | BPF_JA:
966 /* A jump must set masks on target */
967 masks[pc + 1 + filter[pc].k] &= memvalid;
968 memvalid = ~0;
969 break;
970 case BPF_JMP | BPF_JEQ | BPF_K:
971 case BPF_JMP | BPF_JEQ | BPF_X:
972 case BPF_JMP | BPF_JGE | BPF_K:
973 case BPF_JMP | BPF_JGE | BPF_X:
974 case BPF_JMP | BPF_JGT | BPF_K:
975 case BPF_JMP | BPF_JGT | BPF_X:
976 case BPF_JMP | BPF_JSET | BPF_K:
977 case BPF_JMP | BPF_JSET | BPF_X:
978 /* A jump must set masks on targets */
979 masks[pc + 1 + filter[pc].jt] &= memvalid;
980 masks[pc + 1 + filter[pc].jf] &= memvalid;
981 memvalid = ~0;
982 break;
983 }
984 }
985 error:
986 kfree(masks);
987 return ret;
988 }
989
chk_code_allowed(u16 code_to_probe)990 static bool chk_code_allowed(u16 code_to_probe)
991 {
992 static const bool codes[] = {
993 /* 32 bit ALU operations */
994 [BPF_ALU | BPF_ADD | BPF_K] = true,
995 [BPF_ALU | BPF_ADD | BPF_X] = true,
996 [BPF_ALU | BPF_SUB | BPF_K] = true,
997 [BPF_ALU | BPF_SUB | BPF_X] = true,
998 [BPF_ALU | BPF_MUL | BPF_K] = true,
999 [BPF_ALU | BPF_MUL | BPF_X] = true,
1000 [BPF_ALU | BPF_DIV | BPF_K] = true,
1001 [BPF_ALU | BPF_DIV | BPF_X] = true,
1002 [BPF_ALU | BPF_MOD | BPF_K] = true,
1003 [BPF_ALU | BPF_MOD | BPF_X] = true,
1004 [BPF_ALU | BPF_AND | BPF_K] = true,
1005 [BPF_ALU | BPF_AND | BPF_X] = true,
1006 [BPF_ALU | BPF_OR | BPF_K] = true,
1007 [BPF_ALU | BPF_OR | BPF_X] = true,
1008 [BPF_ALU | BPF_XOR | BPF_K] = true,
1009 [BPF_ALU | BPF_XOR | BPF_X] = true,
1010 [BPF_ALU | BPF_LSH | BPF_K] = true,
1011 [BPF_ALU | BPF_LSH | BPF_X] = true,
1012 [BPF_ALU | BPF_RSH | BPF_K] = true,
1013 [BPF_ALU | BPF_RSH | BPF_X] = true,
1014 [BPF_ALU | BPF_NEG] = true,
1015 /* Load instructions */
1016 [BPF_LD | BPF_W | BPF_ABS] = true,
1017 [BPF_LD | BPF_H | BPF_ABS] = true,
1018 [BPF_LD | BPF_B | BPF_ABS] = true,
1019 [BPF_LD | BPF_W | BPF_LEN] = true,
1020 [BPF_LD | BPF_W | BPF_IND] = true,
1021 [BPF_LD | BPF_H | BPF_IND] = true,
1022 [BPF_LD | BPF_B | BPF_IND] = true,
1023 [BPF_LD | BPF_IMM] = true,
1024 [BPF_LD | BPF_MEM] = true,
1025 [BPF_LDX | BPF_W | BPF_LEN] = true,
1026 [BPF_LDX | BPF_B | BPF_MSH] = true,
1027 [BPF_LDX | BPF_IMM] = true,
1028 [BPF_LDX | BPF_MEM] = true,
1029 /* Store instructions */
1030 [BPF_ST] = true,
1031 [BPF_STX] = true,
1032 /* Misc instructions */
1033 [BPF_MISC | BPF_TAX] = true,
1034 [BPF_MISC | BPF_TXA] = true,
1035 /* Return instructions */
1036 [BPF_RET | BPF_K] = true,
1037 [BPF_RET | BPF_A] = true,
1038 /* Jump instructions */
1039 [BPF_JMP | BPF_JA] = true,
1040 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1041 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1042 [BPF_JMP | BPF_JGE | BPF_K] = true,
1043 [BPF_JMP | BPF_JGE | BPF_X] = true,
1044 [BPF_JMP | BPF_JGT | BPF_K] = true,
1045 [BPF_JMP | BPF_JGT | BPF_X] = true,
1046 [BPF_JMP | BPF_JSET | BPF_K] = true,
1047 [BPF_JMP | BPF_JSET | BPF_X] = true,
1048 };
1049
1050 if (code_to_probe >= ARRAY_SIZE(codes))
1051 return false;
1052
1053 return codes[code_to_probe];
1054 }
1055
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1056 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1057 unsigned int flen)
1058 {
1059 if (filter == NULL)
1060 return false;
1061 if (flen == 0 || flen > BPF_MAXINSNS)
1062 return false;
1063
1064 return true;
1065 }
1066
1067 /**
1068 * bpf_check_classic - verify socket filter code
1069 * @filter: filter to verify
1070 * @flen: length of filter
1071 *
1072 * Check the user's filter code. If we let some ugly
1073 * filter code slip through kaboom! The filter must contain
1074 * no references or jumps that are out of range, no illegal
1075 * instructions, and must end with a RET instruction.
1076 *
1077 * All jumps are forward as they are not signed.
1078 *
1079 * Returns 0 if the rule set is legal or -EINVAL if not.
1080 */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1081 static int bpf_check_classic(const struct sock_filter *filter,
1082 unsigned int flen)
1083 {
1084 bool anc_found;
1085 int pc;
1086
1087 /* Check the filter code now */
1088 for (pc = 0; pc < flen; pc++) {
1089 const struct sock_filter *ftest = &filter[pc];
1090
1091 /* May we actually operate on this code? */
1092 if (!chk_code_allowed(ftest->code))
1093 return -EINVAL;
1094
1095 /* Some instructions need special checks */
1096 switch (ftest->code) {
1097 case BPF_ALU | BPF_DIV | BPF_K:
1098 case BPF_ALU | BPF_MOD | BPF_K:
1099 /* Check for division by zero */
1100 if (ftest->k == 0)
1101 return -EINVAL;
1102 break;
1103 case BPF_ALU | BPF_LSH | BPF_K:
1104 case BPF_ALU | BPF_RSH | BPF_K:
1105 if (ftest->k >= 32)
1106 return -EINVAL;
1107 break;
1108 case BPF_LD | BPF_MEM:
1109 case BPF_LDX | BPF_MEM:
1110 case BPF_ST:
1111 case BPF_STX:
1112 /* Check for invalid memory addresses */
1113 if (ftest->k >= BPF_MEMWORDS)
1114 return -EINVAL;
1115 break;
1116 case BPF_JMP | BPF_JA:
1117 /* Note, the large ftest->k might cause loops.
1118 * Compare this with conditional jumps below,
1119 * where offsets are limited. --ANK (981016)
1120 */
1121 if (ftest->k >= (unsigned int)(flen - pc - 1))
1122 return -EINVAL;
1123 break;
1124 case BPF_JMP | BPF_JEQ | BPF_K:
1125 case BPF_JMP | BPF_JEQ | BPF_X:
1126 case BPF_JMP | BPF_JGE | BPF_K:
1127 case BPF_JMP | BPF_JGE | BPF_X:
1128 case BPF_JMP | BPF_JGT | BPF_K:
1129 case BPF_JMP | BPF_JGT | BPF_X:
1130 case BPF_JMP | BPF_JSET | BPF_K:
1131 case BPF_JMP | BPF_JSET | BPF_X:
1132 /* Both conditionals must be safe */
1133 if (pc + ftest->jt + 1 >= flen ||
1134 pc + ftest->jf + 1 >= flen)
1135 return -EINVAL;
1136 break;
1137 case BPF_LD | BPF_W | BPF_ABS:
1138 case BPF_LD | BPF_H | BPF_ABS:
1139 case BPF_LD | BPF_B | BPF_ABS:
1140 anc_found = false;
1141 if (bpf_anc_helper(ftest) & BPF_ANC)
1142 anc_found = true;
1143 /* Ancillary operation unknown or unsupported */
1144 if (anc_found == false && ftest->k >= SKF_AD_OFF)
1145 return -EINVAL;
1146 }
1147 }
1148
1149 /* Last instruction must be a RET code */
1150 switch (filter[flen - 1].code) {
1151 case BPF_RET | BPF_K:
1152 case BPF_RET | BPF_A:
1153 return check_load_and_stores(filter, flen);
1154 }
1155
1156 return -EINVAL;
1157 }
1158
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1159 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1160 const struct sock_fprog *fprog)
1161 {
1162 unsigned int fsize = bpf_classic_proglen(fprog);
1163 struct sock_fprog_kern *fkprog;
1164
1165 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1166 if (!fp->orig_prog)
1167 return -ENOMEM;
1168
1169 fkprog = fp->orig_prog;
1170 fkprog->len = fprog->len;
1171
1172 fkprog->filter = kmemdup(fp->insns, fsize,
1173 GFP_KERNEL | __GFP_NOWARN);
1174 if (!fkprog->filter) {
1175 kfree(fp->orig_prog);
1176 return -ENOMEM;
1177 }
1178
1179 return 0;
1180 }
1181
bpf_release_orig_filter(struct bpf_prog * fp)1182 static void bpf_release_orig_filter(struct bpf_prog *fp)
1183 {
1184 struct sock_fprog_kern *fprog = fp->orig_prog;
1185
1186 if (fprog) {
1187 kfree(fprog->filter);
1188 kfree(fprog);
1189 }
1190 }
1191
__bpf_prog_release(struct bpf_prog * prog)1192 static void __bpf_prog_release(struct bpf_prog *prog)
1193 {
1194 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1195 bpf_prog_put(prog);
1196 } else {
1197 bpf_release_orig_filter(prog);
1198 bpf_prog_free(prog);
1199 }
1200 }
1201
__sk_filter_release(struct sk_filter * fp)1202 static void __sk_filter_release(struct sk_filter *fp)
1203 {
1204 __bpf_prog_release(fp->prog);
1205 kfree(fp);
1206 }
1207
1208 /**
1209 * sk_filter_release_rcu - Release a socket filter by rcu_head
1210 * @rcu: rcu_head that contains the sk_filter to free
1211 */
sk_filter_release_rcu(struct rcu_head * rcu)1212 static void sk_filter_release_rcu(struct rcu_head *rcu)
1213 {
1214 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1215
1216 __sk_filter_release(fp);
1217 }
1218
1219 /**
1220 * sk_filter_release - release a socket filter
1221 * @fp: filter to remove
1222 *
1223 * Remove a filter from a socket and release its resources.
1224 */
sk_filter_release(struct sk_filter * fp)1225 static void sk_filter_release(struct sk_filter *fp)
1226 {
1227 if (refcount_dec_and_test(&fp->refcnt))
1228 call_rcu(&fp->rcu, sk_filter_release_rcu);
1229 }
1230
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1231 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1232 {
1233 u32 filter_size = bpf_prog_size(fp->prog->len);
1234
1235 atomic_sub(filter_size, &sk->sk_omem_alloc);
1236 sk_filter_release(fp);
1237 }
1238
1239 /* try to charge the socket memory if there is space available
1240 * return true on success
1241 */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1242 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1243 {
1244 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1245 u32 filter_size = bpf_prog_size(fp->prog->len);
1246
1247 /* same check as in sock_kmalloc() */
1248 if (filter_size <= optmem_max &&
1249 atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1250 atomic_add(filter_size, &sk->sk_omem_alloc);
1251 return true;
1252 }
1253 return false;
1254 }
1255
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1256 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1257 {
1258 if (!refcount_inc_not_zero(&fp->refcnt))
1259 return false;
1260
1261 if (!__sk_filter_charge(sk, fp)) {
1262 sk_filter_release(fp);
1263 return false;
1264 }
1265 return true;
1266 }
1267
bpf_migrate_filter(struct bpf_prog * fp)1268 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1269 {
1270 struct sock_filter *old_prog;
1271 struct bpf_prog *old_fp;
1272 int err, new_len, old_len = fp->len;
1273 bool seen_ld_abs = false;
1274
1275 /* We are free to overwrite insns et al right here as it won't be used at
1276 * this point in time anymore internally after the migration to the eBPF
1277 * instruction representation.
1278 */
1279 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1280 sizeof(struct bpf_insn));
1281
1282 /* Conversion cannot happen on overlapping memory areas,
1283 * so we need to keep the user BPF around until the 2nd
1284 * pass. At this time, the user BPF is stored in fp->insns.
1285 */
1286 old_prog = kmemdup_array(fp->insns, old_len, sizeof(struct sock_filter),
1287 GFP_KERNEL | __GFP_NOWARN);
1288 if (!old_prog) {
1289 err = -ENOMEM;
1290 goto out_err;
1291 }
1292
1293 /* 1st pass: calculate the new program length. */
1294 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1295 &seen_ld_abs);
1296 if (err)
1297 goto out_err_free;
1298
1299 /* Expand fp for appending the new filter representation. */
1300 old_fp = fp;
1301 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1302 if (!fp) {
1303 /* The old_fp is still around in case we couldn't
1304 * allocate new memory, so uncharge on that one.
1305 */
1306 fp = old_fp;
1307 err = -ENOMEM;
1308 goto out_err_free;
1309 }
1310
1311 fp->len = new_len;
1312
1313 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1314 err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1315 &seen_ld_abs);
1316 if (err)
1317 /* 2nd bpf_convert_filter() can fail only if it fails
1318 * to allocate memory, remapping must succeed. Note,
1319 * that at this time old_fp has already been released
1320 * by krealloc().
1321 */
1322 goto out_err_free;
1323
1324 fp = bpf_prog_select_runtime(fp, &err);
1325 if (err)
1326 goto out_err_free;
1327
1328 kfree(old_prog);
1329 return fp;
1330
1331 out_err_free:
1332 kfree(old_prog);
1333 out_err:
1334 __bpf_prog_release(fp);
1335 return ERR_PTR(err);
1336 }
1337
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1338 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1339 bpf_aux_classic_check_t trans)
1340 {
1341 int err;
1342
1343 fp->bpf_func = NULL;
1344 fp->jited = 0;
1345
1346 err = bpf_check_classic(fp->insns, fp->len);
1347 if (err) {
1348 __bpf_prog_release(fp);
1349 return ERR_PTR(err);
1350 }
1351
1352 /* There might be additional checks and transformations
1353 * needed on classic filters, f.e. in case of seccomp.
1354 */
1355 if (trans) {
1356 err = trans(fp->insns, fp->len);
1357 if (err) {
1358 __bpf_prog_release(fp);
1359 return ERR_PTR(err);
1360 }
1361 }
1362
1363 /* Probe if we can JIT compile the filter and if so, do
1364 * the compilation of the filter.
1365 */
1366 bpf_jit_compile(fp);
1367
1368 /* JIT compiler couldn't process this filter, so do the eBPF translation
1369 * for the optimized interpreter.
1370 */
1371 if (!fp->jited)
1372 fp = bpf_migrate_filter(fp);
1373
1374 return fp;
1375 }
1376
1377 /**
1378 * bpf_prog_create - create an unattached filter
1379 * @pfp: the unattached filter that is created
1380 * @fprog: the filter program
1381 *
1382 * Create a filter independent of any socket. We first run some
1383 * sanity checks on it to make sure it does not explode on us later.
1384 * If an error occurs or there is insufficient memory for the filter
1385 * a negative errno code is returned. On success the return is zero.
1386 */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1387 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1388 {
1389 unsigned int fsize = bpf_classic_proglen(fprog);
1390 struct bpf_prog *fp;
1391
1392 /* Make sure new filter is there and in the right amounts. */
1393 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1394 return -EINVAL;
1395
1396 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1397 if (!fp)
1398 return -ENOMEM;
1399
1400 memcpy(fp->insns, fprog->filter, fsize);
1401
1402 fp->len = fprog->len;
1403 /* Since unattached filters are not copied back to user
1404 * space through sk_get_filter(), we do not need to hold
1405 * a copy here, and can spare us the work.
1406 */
1407 fp->orig_prog = NULL;
1408
1409 /* bpf_prepare_filter() already takes care of freeing
1410 * memory in case something goes wrong.
1411 */
1412 fp = bpf_prepare_filter(fp, NULL);
1413 if (IS_ERR(fp))
1414 return PTR_ERR(fp);
1415
1416 *pfp = fp;
1417 return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(bpf_prog_create);
1420
1421 /**
1422 * bpf_prog_create_from_user - create an unattached filter from user buffer
1423 * @pfp: the unattached filter that is created
1424 * @fprog: the filter program
1425 * @trans: post-classic verifier transformation handler
1426 * @save_orig: save classic BPF program
1427 *
1428 * This function effectively does the same as bpf_prog_create(), only
1429 * that it builds up its insns buffer from user space provided buffer.
1430 * It also allows for passing a bpf_aux_classic_check_t handler.
1431 */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1432 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1433 bpf_aux_classic_check_t trans, bool save_orig)
1434 {
1435 unsigned int fsize = bpf_classic_proglen(fprog);
1436 struct bpf_prog *fp;
1437 int err;
1438
1439 /* Make sure new filter is there and in the right amounts. */
1440 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1441 return -EINVAL;
1442
1443 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1444 if (!fp)
1445 return -ENOMEM;
1446
1447 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1448 __bpf_prog_free(fp);
1449 return -EFAULT;
1450 }
1451
1452 fp->len = fprog->len;
1453 fp->orig_prog = NULL;
1454
1455 if (save_orig) {
1456 err = bpf_prog_store_orig_filter(fp, fprog);
1457 if (err) {
1458 __bpf_prog_free(fp);
1459 return -ENOMEM;
1460 }
1461 }
1462
1463 /* bpf_prepare_filter() already takes care of freeing
1464 * memory in case something goes wrong.
1465 */
1466 fp = bpf_prepare_filter(fp, trans);
1467 if (IS_ERR(fp))
1468 return PTR_ERR(fp);
1469
1470 *pfp = fp;
1471 return 0;
1472 }
1473 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1474
bpf_prog_destroy(struct bpf_prog * fp)1475 void bpf_prog_destroy(struct bpf_prog *fp)
1476 {
1477 __bpf_prog_release(fp);
1478 }
1479 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1480
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1481 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1482 {
1483 struct sk_filter *fp, *old_fp;
1484
1485 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1486 if (!fp)
1487 return -ENOMEM;
1488
1489 fp->prog = prog;
1490
1491 if (!__sk_filter_charge(sk, fp)) {
1492 kfree(fp);
1493 return -ENOMEM;
1494 }
1495 refcount_set(&fp->refcnt, 1);
1496
1497 old_fp = rcu_dereference_protected(sk->sk_filter,
1498 lockdep_sock_is_held(sk));
1499 rcu_assign_pointer(sk->sk_filter, fp);
1500
1501 if (old_fp)
1502 sk_filter_uncharge(sk, old_fp);
1503
1504 return 0;
1505 }
1506
1507 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1508 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1509 {
1510 unsigned int fsize = bpf_classic_proglen(fprog);
1511 struct bpf_prog *prog;
1512 int err;
1513
1514 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1515 return ERR_PTR(-EPERM);
1516
1517 /* Make sure new filter is there and in the right amounts. */
1518 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1519 return ERR_PTR(-EINVAL);
1520
1521 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1522 if (!prog)
1523 return ERR_PTR(-ENOMEM);
1524
1525 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1526 __bpf_prog_free(prog);
1527 return ERR_PTR(-EFAULT);
1528 }
1529
1530 prog->len = fprog->len;
1531
1532 err = bpf_prog_store_orig_filter(prog, fprog);
1533 if (err) {
1534 __bpf_prog_free(prog);
1535 return ERR_PTR(-ENOMEM);
1536 }
1537
1538 /* bpf_prepare_filter() already takes care of freeing
1539 * memory in case something goes wrong.
1540 */
1541 return bpf_prepare_filter(prog, NULL);
1542 }
1543
1544 /**
1545 * sk_attach_filter - attach a socket filter
1546 * @fprog: the filter program
1547 * @sk: the socket to use
1548 *
1549 * Attach the user's filter code. We first run some sanity checks on
1550 * it to make sure it does not explode on us later. If an error
1551 * occurs or there is insufficient memory for the filter a negative
1552 * errno code is returned. On success the return is zero.
1553 */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1554 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1555 {
1556 struct bpf_prog *prog = __get_filter(fprog, sk);
1557 int err;
1558
1559 if (IS_ERR(prog))
1560 return PTR_ERR(prog);
1561
1562 err = __sk_attach_prog(prog, sk);
1563 if (err < 0) {
1564 __bpf_prog_release(prog);
1565 return err;
1566 }
1567
1568 return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(sk_attach_filter);
1571
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1572 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1573 {
1574 struct bpf_prog *prog = __get_filter(fprog, sk);
1575 int err, optmem_max;
1576
1577 if (IS_ERR(prog))
1578 return PTR_ERR(prog);
1579
1580 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1581 if (bpf_prog_size(prog->len) > optmem_max)
1582 err = -ENOMEM;
1583 else
1584 err = reuseport_attach_prog(sk, prog);
1585
1586 if (err)
1587 __bpf_prog_release(prog);
1588
1589 return err;
1590 }
1591
__get_bpf(u32 ufd,struct sock * sk)1592 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1593 {
1594 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1595 return ERR_PTR(-EPERM);
1596
1597 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1598 }
1599
sk_attach_bpf(u32 ufd,struct sock * sk)1600 int sk_attach_bpf(u32 ufd, struct sock *sk)
1601 {
1602 struct bpf_prog *prog = __get_bpf(ufd, sk);
1603 int err;
1604
1605 if (IS_ERR(prog))
1606 return PTR_ERR(prog);
1607
1608 err = __sk_attach_prog(prog, sk);
1609 if (err < 0) {
1610 bpf_prog_put(prog);
1611 return err;
1612 }
1613
1614 return 0;
1615 }
1616
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1617 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1618 {
1619 struct bpf_prog *prog;
1620 int err, optmem_max;
1621
1622 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1623 return -EPERM;
1624
1625 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1626 if (PTR_ERR(prog) == -EINVAL)
1627 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1628 if (IS_ERR(prog))
1629 return PTR_ERR(prog);
1630
1631 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1632 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1633 * bpf prog (e.g. sockmap). It depends on the
1634 * limitation imposed by bpf_prog_load().
1635 * Hence, sysctl_optmem_max is not checked.
1636 */
1637 if ((sk->sk_type != SOCK_STREAM &&
1638 sk->sk_type != SOCK_DGRAM) ||
1639 (sk->sk_protocol != IPPROTO_UDP &&
1640 sk->sk_protocol != IPPROTO_TCP) ||
1641 (sk->sk_family != AF_INET &&
1642 sk->sk_family != AF_INET6)) {
1643 err = -ENOTSUPP;
1644 goto err_prog_put;
1645 }
1646 } else {
1647 /* BPF_PROG_TYPE_SOCKET_FILTER */
1648 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1649 if (bpf_prog_size(prog->len) > optmem_max) {
1650 err = -ENOMEM;
1651 goto err_prog_put;
1652 }
1653 }
1654
1655 err = reuseport_attach_prog(sk, prog);
1656 err_prog_put:
1657 if (err)
1658 bpf_prog_put(prog);
1659
1660 return err;
1661 }
1662
sk_reuseport_prog_free(struct bpf_prog * prog)1663 void sk_reuseport_prog_free(struct bpf_prog *prog)
1664 {
1665 if (!prog)
1666 return;
1667
1668 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1669 bpf_prog_put(prog);
1670 else
1671 bpf_prog_destroy(prog);
1672 }
1673
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1674 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1675 unsigned int write_len)
1676 {
1677 #ifdef CONFIG_DEBUG_NET
1678 /* Avoid a splat in pskb_may_pull_reason() */
1679 if (write_len > INT_MAX)
1680 return -EINVAL;
1681 #endif
1682 return skb_ensure_writable(skb, write_len);
1683 }
1684
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1685 static inline int bpf_try_make_writable(struct sk_buff *skb,
1686 unsigned int write_len)
1687 {
1688 int err = __bpf_try_make_writable(skb, write_len);
1689
1690 bpf_compute_data_pointers(skb);
1691 return err;
1692 }
1693
bpf_try_make_head_writable(struct sk_buff * skb)1694 static int bpf_try_make_head_writable(struct sk_buff *skb)
1695 {
1696 return bpf_try_make_writable(skb, skb_headlen(skb));
1697 }
1698
bpf_push_mac_rcsum(struct sk_buff * skb)1699 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1700 {
1701 if (skb_at_tc_ingress(skb))
1702 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1703 }
1704
bpf_pull_mac_rcsum(struct sk_buff * skb)1705 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1706 {
1707 if (skb_at_tc_ingress(skb))
1708 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1709 }
1710
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1711 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1712 const void *, from, u32, len, u64, flags)
1713 {
1714 void *ptr;
1715
1716 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1717 return -EINVAL;
1718 if (unlikely(offset > INT_MAX))
1719 return -EFAULT;
1720 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1721 return -EFAULT;
1722
1723 ptr = skb->data + offset;
1724 if (flags & BPF_F_RECOMPUTE_CSUM)
1725 __skb_postpull_rcsum(skb, ptr, len, offset);
1726
1727 memcpy(ptr, from, len);
1728
1729 if (flags & BPF_F_RECOMPUTE_CSUM)
1730 __skb_postpush_rcsum(skb, ptr, len, offset);
1731 if (flags & BPF_F_INVALIDATE_HASH)
1732 skb_clear_hash(skb);
1733
1734 return 0;
1735 }
1736
1737 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1738 .func = bpf_skb_store_bytes,
1739 .gpl_only = false,
1740 .ret_type = RET_INTEGER,
1741 .arg1_type = ARG_PTR_TO_CTX,
1742 .arg2_type = ARG_ANYTHING,
1743 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1744 .arg4_type = ARG_CONST_SIZE,
1745 .arg5_type = ARG_ANYTHING,
1746 };
1747
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1748 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1749 u32 len, u64 flags)
1750 {
1751 return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1752 }
1753
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1754 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1755 void *, to, u32, len)
1756 {
1757 void *ptr;
1758
1759 if (unlikely(offset > INT_MAX))
1760 goto err_clear;
1761
1762 ptr = skb_header_pointer(skb, offset, len, to);
1763 if (unlikely(!ptr))
1764 goto err_clear;
1765 if (ptr != to)
1766 memcpy(to, ptr, len);
1767
1768 return 0;
1769 err_clear:
1770 memset(to, 0, len);
1771 return -EFAULT;
1772 }
1773
1774 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1775 .func = bpf_skb_load_bytes,
1776 .gpl_only = false,
1777 .ret_type = RET_INTEGER,
1778 .arg1_type = ARG_PTR_TO_CTX,
1779 .arg2_type = ARG_ANYTHING,
1780 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1781 .arg4_type = ARG_CONST_SIZE,
1782 };
1783
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1784 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1785 {
1786 return ____bpf_skb_load_bytes(skb, offset, to, len);
1787 }
1788
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1789 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1790 const struct bpf_flow_dissector *, ctx, u32, offset,
1791 void *, to, u32, len)
1792 {
1793 void *ptr;
1794
1795 if (unlikely(offset > 0xffff))
1796 goto err_clear;
1797
1798 if (unlikely(!ctx->skb))
1799 goto err_clear;
1800
1801 ptr = skb_header_pointer(ctx->skb, offset, len, to);
1802 if (unlikely(!ptr))
1803 goto err_clear;
1804 if (ptr != to)
1805 memcpy(to, ptr, len);
1806
1807 return 0;
1808 err_clear:
1809 memset(to, 0, len);
1810 return -EFAULT;
1811 }
1812
1813 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1814 .func = bpf_flow_dissector_load_bytes,
1815 .gpl_only = false,
1816 .ret_type = RET_INTEGER,
1817 .arg1_type = ARG_PTR_TO_CTX,
1818 .arg2_type = ARG_ANYTHING,
1819 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1820 .arg4_type = ARG_CONST_SIZE,
1821 };
1822
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1823 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1824 u32, offset, void *, to, u32, len, u32, start_header)
1825 {
1826 u8 *end = skb_tail_pointer(skb);
1827 u8 *start, *ptr;
1828
1829 if (unlikely(offset > 0xffff))
1830 goto err_clear;
1831
1832 switch (start_header) {
1833 case BPF_HDR_START_MAC:
1834 if (unlikely(!skb_mac_header_was_set(skb)))
1835 goto err_clear;
1836 start = skb_mac_header(skb);
1837 break;
1838 case BPF_HDR_START_NET:
1839 start = skb_network_header(skb);
1840 break;
1841 default:
1842 goto err_clear;
1843 }
1844
1845 ptr = start + offset;
1846
1847 if (likely(ptr + len <= end)) {
1848 memcpy(to, ptr, len);
1849 return 0;
1850 }
1851
1852 err_clear:
1853 memset(to, 0, len);
1854 return -EFAULT;
1855 }
1856
1857 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1858 .func = bpf_skb_load_bytes_relative,
1859 .gpl_only = false,
1860 .ret_type = RET_INTEGER,
1861 .arg1_type = ARG_PTR_TO_CTX,
1862 .arg2_type = ARG_ANYTHING,
1863 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1864 .arg4_type = ARG_CONST_SIZE,
1865 .arg5_type = ARG_ANYTHING,
1866 };
1867
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1868 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1869 {
1870 /* Idea is the following: should the needed direct read/write
1871 * test fail during runtime, we can pull in more data and redo
1872 * again, since implicitly, we invalidate previous checks here.
1873 *
1874 * Or, since we know how much we need to make read/writeable,
1875 * this can be done once at the program beginning for direct
1876 * access case. By this we overcome limitations of only current
1877 * headroom being accessible.
1878 */
1879 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1880 }
1881
1882 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1883 .func = bpf_skb_pull_data,
1884 .gpl_only = false,
1885 .ret_type = RET_INTEGER,
1886 .arg1_type = ARG_PTR_TO_CTX,
1887 .arg2_type = ARG_ANYTHING,
1888 };
1889
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1890 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1891 {
1892 return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1893 }
1894
1895 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1896 .func = bpf_sk_fullsock,
1897 .gpl_only = false,
1898 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
1899 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
1900 };
1901
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1902 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1903 unsigned int write_len)
1904 {
1905 return __bpf_try_make_writable(skb, write_len);
1906 }
1907
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1908 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1909 {
1910 /* Idea is the following: should the needed direct read/write
1911 * test fail during runtime, we can pull in more data and redo
1912 * again, since implicitly, we invalidate previous checks here.
1913 *
1914 * Or, since we know how much we need to make read/writeable,
1915 * this can be done once at the program beginning for direct
1916 * access case. By this we overcome limitations of only current
1917 * headroom being accessible.
1918 */
1919 return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1920 }
1921
1922 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1923 .func = sk_skb_pull_data,
1924 .gpl_only = false,
1925 .ret_type = RET_INTEGER,
1926 .arg1_type = ARG_PTR_TO_CTX,
1927 .arg2_type = ARG_ANYTHING,
1928 };
1929
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1930 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1931 u64, from, u64, to, u64, flags)
1932 {
1933 __sum16 *ptr;
1934
1935 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1936 return -EINVAL;
1937 if (unlikely(offset > 0xffff || offset & 1))
1938 return -EFAULT;
1939 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1940 return -EFAULT;
1941
1942 ptr = (__sum16 *)(skb->data + offset);
1943 switch (flags & BPF_F_HDR_FIELD_MASK) {
1944 case 0:
1945 if (unlikely(from != 0))
1946 return -EINVAL;
1947
1948 csum_replace_by_diff(ptr, to);
1949 break;
1950 case 2:
1951 csum_replace2(ptr, from, to);
1952 break;
1953 case 4:
1954 csum_replace4(ptr, from, to);
1955 break;
1956 default:
1957 return -EINVAL;
1958 }
1959
1960 return 0;
1961 }
1962
1963 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1964 .func = bpf_l3_csum_replace,
1965 .gpl_only = false,
1966 .ret_type = RET_INTEGER,
1967 .arg1_type = ARG_PTR_TO_CTX,
1968 .arg2_type = ARG_ANYTHING,
1969 .arg3_type = ARG_ANYTHING,
1970 .arg4_type = ARG_ANYTHING,
1971 .arg5_type = ARG_ANYTHING,
1972 };
1973
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1974 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1975 u64, from, u64, to, u64, flags)
1976 {
1977 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1978 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1979 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1980 bool is_ipv6 = flags & BPF_F_IPV6;
1981 __sum16 *ptr;
1982
1983 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1984 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK | BPF_F_IPV6)))
1985 return -EINVAL;
1986 if (unlikely(offset > 0xffff || offset & 1))
1987 return -EFAULT;
1988 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1989 return -EFAULT;
1990
1991 ptr = (__sum16 *)(skb->data + offset);
1992 if (is_mmzero && !do_mforce && !*ptr)
1993 return 0;
1994
1995 switch (flags & BPF_F_HDR_FIELD_MASK) {
1996 case 0:
1997 if (unlikely(from != 0))
1998 return -EINVAL;
1999
2000 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo, is_ipv6);
2001 break;
2002 case 2:
2003 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
2004 break;
2005 case 4:
2006 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
2007 break;
2008 default:
2009 return -EINVAL;
2010 }
2011
2012 if (is_mmzero && !*ptr)
2013 *ptr = CSUM_MANGLED_0;
2014 return 0;
2015 }
2016
2017 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2018 .func = bpf_l4_csum_replace,
2019 .gpl_only = false,
2020 .ret_type = RET_INTEGER,
2021 .arg1_type = ARG_PTR_TO_CTX,
2022 .arg2_type = ARG_ANYTHING,
2023 .arg3_type = ARG_ANYTHING,
2024 .arg4_type = ARG_ANYTHING,
2025 .arg5_type = ARG_ANYTHING,
2026 };
2027
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2028 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2029 __be32 *, to, u32, to_size, __wsum, seed)
2030 {
2031 /* This is quite flexible, some examples:
2032 *
2033 * from_size == 0, to_size > 0, seed := csum --> pushing data
2034 * from_size > 0, to_size == 0, seed := csum --> pulling data
2035 * from_size > 0, to_size > 0, seed := 0 --> diffing data
2036 *
2037 * Even for diffing, from_size and to_size don't need to be equal.
2038 */
2039
2040 __wsum ret = seed;
2041
2042 if (from_size && to_size)
2043 ret = csum_sub(csum_partial(to, to_size, ret),
2044 csum_partial(from, from_size, 0));
2045 else if (to_size)
2046 ret = csum_partial(to, to_size, ret);
2047
2048 else if (from_size)
2049 ret = ~csum_partial(from, from_size, ~ret);
2050
2051 return csum_from32to16((__force unsigned int)ret);
2052 }
2053
2054 static const struct bpf_func_proto bpf_csum_diff_proto = {
2055 .func = bpf_csum_diff,
2056 .gpl_only = false,
2057 .pkt_access = true,
2058 .ret_type = RET_INTEGER,
2059 .arg1_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2060 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
2061 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2062 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
2063 .arg5_type = ARG_ANYTHING,
2064 };
2065
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2066 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2067 {
2068 /* The interface is to be used in combination with bpf_csum_diff()
2069 * for direct packet writes. csum rotation for alignment as well
2070 * as emulating csum_sub() can be done from the eBPF program.
2071 */
2072 if (skb->ip_summed == CHECKSUM_COMPLETE)
2073 return (skb->csum = csum_add(skb->csum, csum));
2074
2075 return -ENOTSUPP;
2076 }
2077
2078 static const struct bpf_func_proto bpf_csum_update_proto = {
2079 .func = bpf_csum_update,
2080 .gpl_only = false,
2081 .ret_type = RET_INTEGER,
2082 .arg1_type = ARG_PTR_TO_CTX,
2083 .arg2_type = ARG_ANYTHING,
2084 };
2085
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2086 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2087 {
2088 /* The interface is to be used in combination with bpf_skb_adjust_room()
2089 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2090 * is passed as flags, for example.
2091 */
2092 switch (level) {
2093 case BPF_CSUM_LEVEL_INC:
2094 __skb_incr_checksum_unnecessary(skb);
2095 break;
2096 case BPF_CSUM_LEVEL_DEC:
2097 __skb_decr_checksum_unnecessary(skb);
2098 break;
2099 case BPF_CSUM_LEVEL_RESET:
2100 __skb_reset_checksum_unnecessary(skb);
2101 break;
2102 case BPF_CSUM_LEVEL_QUERY:
2103 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2104 skb->csum_level : -EACCES;
2105 default:
2106 return -EINVAL;
2107 }
2108
2109 return 0;
2110 }
2111
2112 static const struct bpf_func_proto bpf_csum_level_proto = {
2113 .func = bpf_csum_level,
2114 .gpl_only = false,
2115 .ret_type = RET_INTEGER,
2116 .arg1_type = ARG_PTR_TO_CTX,
2117 .arg2_type = ARG_ANYTHING,
2118 };
2119
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2120 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2121 {
2122 return dev_forward_skb_nomtu(dev, skb);
2123 }
2124
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2125 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2126 struct sk_buff *skb)
2127 {
2128 int ret = ____dev_forward_skb(dev, skb, false);
2129
2130 if (likely(!ret)) {
2131 skb->dev = dev;
2132 ret = netif_rx(skb);
2133 }
2134
2135 return ret;
2136 }
2137
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2138 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2139 {
2140 int ret;
2141
2142 if (dev_xmit_recursion()) {
2143 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2144 kfree_skb(skb);
2145 return -ENETDOWN;
2146 }
2147
2148 skb->dev = dev;
2149 skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2150 skb_clear_tstamp(skb);
2151
2152 dev_xmit_recursion_inc();
2153 ret = dev_queue_xmit(skb);
2154 dev_xmit_recursion_dec();
2155
2156 return ret;
2157 }
2158
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2159 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2160 u32 flags)
2161 {
2162 unsigned int mlen = skb_network_offset(skb);
2163
2164 if (unlikely(skb->len <= mlen)) {
2165 kfree_skb(skb);
2166 return -ERANGE;
2167 }
2168
2169 if (mlen) {
2170 __skb_pull(skb, mlen);
2171
2172 /* At ingress, the mac header has already been pulled once.
2173 * At egress, skb_pospull_rcsum has to be done in case that
2174 * the skb is originated from ingress (i.e. a forwarded skb)
2175 * to ensure that rcsum starts at net header.
2176 */
2177 if (!skb_at_tc_ingress(skb))
2178 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2179 }
2180 skb_pop_mac_header(skb);
2181 skb_reset_mac_len(skb);
2182 return flags & BPF_F_INGRESS ?
2183 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2184 }
2185
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2186 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2187 u32 flags)
2188 {
2189 /* Verify that a link layer header is carried */
2190 if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2191 kfree_skb(skb);
2192 return -ERANGE;
2193 }
2194
2195 bpf_push_mac_rcsum(skb);
2196 return flags & BPF_F_INGRESS ?
2197 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2198 }
2199
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2200 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2201 u32 flags)
2202 {
2203 if (dev_is_mac_header_xmit(dev))
2204 return __bpf_redirect_common(skb, dev, flags);
2205 else
2206 return __bpf_redirect_no_mac(skb, dev, flags);
2207 }
2208
2209 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2210 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2211 struct net_device *dev, struct bpf_nh_params *nh)
2212 {
2213 u32 hh_len = LL_RESERVED_SPACE(dev);
2214 const struct in6_addr *nexthop;
2215 struct dst_entry *dst = NULL;
2216 struct neighbour *neigh;
2217
2218 if (dev_xmit_recursion()) {
2219 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2220 goto out_drop;
2221 }
2222
2223 skb->dev = dev;
2224 skb_clear_tstamp(skb);
2225
2226 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2227 skb = skb_expand_head(skb, hh_len);
2228 if (!skb)
2229 return -ENOMEM;
2230 }
2231
2232 rcu_read_lock();
2233 if (!nh) {
2234 dst = skb_dst(skb);
2235 nexthop = rt6_nexthop(dst_rt6_info(dst),
2236 &ipv6_hdr(skb)->daddr);
2237 } else {
2238 nexthop = &nh->ipv6_nh;
2239 }
2240 neigh = ip_neigh_gw6(dev, nexthop);
2241 if (likely(!IS_ERR(neigh))) {
2242 int ret;
2243
2244 sock_confirm_neigh(skb, neigh);
2245 local_bh_disable();
2246 dev_xmit_recursion_inc();
2247 ret = neigh_output(neigh, skb, false);
2248 dev_xmit_recursion_dec();
2249 local_bh_enable();
2250 rcu_read_unlock();
2251 return ret;
2252 }
2253 rcu_read_unlock();
2254 if (dst)
2255 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2256 out_drop:
2257 kfree_skb(skb);
2258 return -ENETDOWN;
2259 }
2260
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2261 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2262 struct bpf_nh_params *nh)
2263 {
2264 const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2265 struct net *net = dev_net(dev);
2266 int err, ret = NET_XMIT_DROP;
2267
2268 if (!nh) {
2269 struct dst_entry *dst;
2270 struct flowi6 fl6 = {
2271 .flowi6_flags = FLOWI_FLAG_ANYSRC,
2272 .flowi6_mark = skb->mark,
2273 .flowlabel = ip6_flowinfo(ip6h),
2274 .flowi6_oif = dev->ifindex,
2275 .flowi6_proto = ip6h->nexthdr,
2276 .daddr = ip6h->daddr,
2277 .saddr = ip6h->saddr,
2278 };
2279
2280 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2281 if (IS_ERR(dst))
2282 goto out_drop;
2283
2284 skb_dst_drop(skb);
2285 skb_dst_set(skb, dst);
2286 } else if (nh->nh_family != AF_INET6) {
2287 goto out_drop;
2288 }
2289
2290 err = bpf_out_neigh_v6(net, skb, dev, nh);
2291 if (unlikely(net_xmit_eval(err)))
2292 DEV_STATS_INC(dev, tx_errors);
2293 else
2294 ret = NET_XMIT_SUCCESS;
2295 goto out_xmit;
2296 out_drop:
2297 DEV_STATS_INC(dev, tx_errors);
2298 kfree_skb(skb);
2299 out_xmit:
2300 return ret;
2301 }
2302 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2303 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2304 struct bpf_nh_params *nh)
2305 {
2306 kfree_skb(skb);
2307 return NET_XMIT_DROP;
2308 }
2309 #endif /* CONFIG_IPV6 */
2310
2311 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2312 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2313 struct net_device *dev, struct bpf_nh_params *nh)
2314 {
2315 u32 hh_len = LL_RESERVED_SPACE(dev);
2316 struct neighbour *neigh;
2317 bool is_v6gw = false;
2318
2319 if (dev_xmit_recursion()) {
2320 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2321 goto out_drop;
2322 }
2323
2324 skb->dev = dev;
2325 skb_clear_tstamp(skb);
2326
2327 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2328 skb = skb_expand_head(skb, hh_len);
2329 if (!skb)
2330 return -ENOMEM;
2331 }
2332
2333 rcu_read_lock();
2334 if (!nh) {
2335 struct rtable *rt = skb_rtable(skb);
2336
2337 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2338 } else if (nh->nh_family == AF_INET6) {
2339 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2340 is_v6gw = true;
2341 } else if (nh->nh_family == AF_INET) {
2342 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2343 } else {
2344 rcu_read_unlock();
2345 goto out_drop;
2346 }
2347
2348 if (likely(!IS_ERR(neigh))) {
2349 int ret;
2350
2351 sock_confirm_neigh(skb, neigh);
2352 local_bh_disable();
2353 dev_xmit_recursion_inc();
2354 ret = neigh_output(neigh, skb, is_v6gw);
2355 dev_xmit_recursion_dec();
2356 local_bh_enable();
2357 rcu_read_unlock();
2358 return ret;
2359 }
2360 rcu_read_unlock();
2361 out_drop:
2362 kfree_skb(skb);
2363 return -ENETDOWN;
2364 }
2365
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2366 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2367 struct bpf_nh_params *nh)
2368 {
2369 const struct iphdr *ip4h = ip_hdr(skb);
2370 struct net *net = dev_net(dev);
2371 int err, ret = NET_XMIT_DROP;
2372
2373 if (!nh) {
2374 struct flowi4 fl4 = {
2375 .flowi4_flags = FLOWI_FLAG_ANYSRC,
2376 .flowi4_mark = skb->mark,
2377 .flowi4_dscp = ip4h_dscp(ip4h),
2378 .flowi4_oif = dev->ifindex,
2379 .flowi4_proto = ip4h->protocol,
2380 .daddr = ip4h->daddr,
2381 .saddr = ip4h->saddr,
2382 };
2383 struct rtable *rt;
2384
2385 rt = ip_route_output_flow(net, &fl4, NULL);
2386 if (IS_ERR(rt))
2387 goto out_drop;
2388 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2389 ip_rt_put(rt);
2390 goto out_drop;
2391 }
2392
2393 skb_dst_drop(skb);
2394 skb_dst_set(skb, &rt->dst);
2395 }
2396
2397 err = bpf_out_neigh_v4(net, skb, dev, nh);
2398 if (unlikely(net_xmit_eval(err)))
2399 DEV_STATS_INC(dev, tx_errors);
2400 else
2401 ret = NET_XMIT_SUCCESS;
2402 goto out_xmit;
2403 out_drop:
2404 DEV_STATS_INC(dev, tx_errors);
2405 kfree_skb(skb);
2406 out_xmit:
2407 return ret;
2408 }
2409 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2410 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2411 struct bpf_nh_params *nh)
2412 {
2413 kfree_skb(skb);
2414 return NET_XMIT_DROP;
2415 }
2416 #endif /* CONFIG_INET */
2417
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2418 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2419 struct bpf_nh_params *nh)
2420 {
2421 struct ethhdr *ethh = eth_hdr(skb);
2422
2423 if (unlikely(skb->mac_header >= skb->network_header))
2424 goto out;
2425 bpf_push_mac_rcsum(skb);
2426 if (is_multicast_ether_addr(ethh->h_dest))
2427 goto out;
2428
2429 skb_pull(skb, sizeof(*ethh));
2430 skb_unset_mac_header(skb);
2431 skb_reset_network_header(skb);
2432
2433 if (skb->protocol == htons(ETH_P_IP))
2434 return __bpf_redirect_neigh_v4(skb, dev, nh);
2435 else if (skb->protocol == htons(ETH_P_IPV6))
2436 return __bpf_redirect_neigh_v6(skb, dev, nh);
2437 out:
2438 kfree_skb(skb);
2439 return -ENOTSUPP;
2440 }
2441
2442 /* Internal, non-exposed redirect flags. */
2443 enum {
2444 BPF_F_NEIGH = (1ULL << 16),
2445 BPF_F_PEER = (1ULL << 17),
2446 BPF_F_NEXTHOP = (1ULL << 18),
2447 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2448 };
2449
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2450 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2451 {
2452 struct net_device *dev;
2453 struct sk_buff *clone;
2454 int ret;
2455
2456 BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2457
2458 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2459 return -EINVAL;
2460
2461 /* BPF test infra's convert___skb_to_skb() can create type-less
2462 * GSO packets. gso_features_check() will detect this as a bad
2463 * offload. However, lets not leak them out in the first place.
2464 */
2465 if (unlikely(skb_is_gso(skb) && !skb_shinfo(skb)->gso_type))
2466 return -EBADMSG;
2467
2468 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2469 if (unlikely(!dev))
2470 return -EINVAL;
2471
2472 clone = skb_clone(skb, GFP_ATOMIC);
2473 if (unlikely(!clone))
2474 return -ENOMEM;
2475
2476 /* For direct write, we need to keep the invariant that the skbs
2477 * we're dealing with need to be uncloned. Should uncloning fail
2478 * here, we need to free the just generated clone to unclone once
2479 * again.
2480 */
2481 ret = bpf_try_make_head_writable(skb);
2482 if (unlikely(ret)) {
2483 kfree_skb(clone);
2484 return -ENOMEM;
2485 }
2486
2487 return __bpf_redirect(clone, dev, flags);
2488 }
2489
2490 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2491 .func = bpf_clone_redirect,
2492 .gpl_only = false,
2493 .ret_type = RET_INTEGER,
2494 .arg1_type = ARG_PTR_TO_CTX,
2495 .arg2_type = ARG_ANYTHING,
2496 .arg3_type = ARG_ANYTHING,
2497 };
2498
skb_get_peer_dev(struct net_device * dev)2499 static struct net_device *skb_get_peer_dev(struct net_device *dev)
2500 {
2501 const struct net_device_ops *ops = dev->netdev_ops;
2502
2503 if (likely(ops->ndo_get_peer_dev))
2504 return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2505 netkit_peer_dev, dev);
2506 return NULL;
2507 }
2508
skb_do_redirect(struct sk_buff * skb)2509 int skb_do_redirect(struct sk_buff *skb)
2510 {
2511 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2512 struct net *net = dev_net(skb->dev);
2513 struct net_device *dev;
2514 u32 flags = ri->flags;
2515
2516 dev = dev_get_by_index_rcu(net, ri->tgt_index);
2517 ri->tgt_index = 0;
2518 ri->flags = 0;
2519 if (unlikely(!dev))
2520 goto out_drop;
2521 if (flags & BPF_F_PEER) {
2522 if (unlikely(!skb_at_tc_ingress(skb)))
2523 goto out_drop;
2524 dev = skb_get_peer_dev(dev);
2525 if (unlikely(!dev ||
2526 !(dev->flags & IFF_UP) ||
2527 net_eq(net, dev_net(dev))))
2528 goto out_drop;
2529 skb->dev = dev;
2530 dev_sw_netstats_rx_add(dev, skb->len);
2531 skb_scrub_packet(skb, false);
2532 return -EAGAIN;
2533 }
2534 return flags & BPF_F_NEIGH ?
2535 __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2536 &ri->nh : NULL) :
2537 __bpf_redirect(skb, dev, flags);
2538 out_drop:
2539 kfree_skb(skb);
2540 return -EINVAL;
2541 }
2542
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2543 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2544 {
2545 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2546
2547 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2548 return TC_ACT_SHOT;
2549
2550 ri->flags = flags;
2551 ri->tgt_index = ifindex;
2552
2553 return TC_ACT_REDIRECT;
2554 }
2555
2556 static const struct bpf_func_proto bpf_redirect_proto = {
2557 .func = bpf_redirect,
2558 .gpl_only = false,
2559 .ret_type = RET_INTEGER,
2560 .arg1_type = ARG_ANYTHING,
2561 .arg2_type = ARG_ANYTHING,
2562 };
2563
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2564 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2565 {
2566 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2567
2568 if (unlikely(flags))
2569 return TC_ACT_SHOT;
2570
2571 ri->flags = BPF_F_PEER;
2572 ri->tgt_index = ifindex;
2573
2574 return TC_ACT_REDIRECT;
2575 }
2576
2577 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2578 .func = bpf_redirect_peer,
2579 .gpl_only = false,
2580 .ret_type = RET_INTEGER,
2581 .arg1_type = ARG_ANYTHING,
2582 .arg2_type = ARG_ANYTHING,
2583 };
2584
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2585 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2586 int, plen, u64, flags)
2587 {
2588 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2589
2590 if (unlikely((plen && plen < sizeof(*params)) || flags))
2591 return TC_ACT_SHOT;
2592
2593 ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2594 ri->tgt_index = ifindex;
2595
2596 BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2597 if (plen)
2598 memcpy(&ri->nh, params, sizeof(ri->nh));
2599
2600 return TC_ACT_REDIRECT;
2601 }
2602
2603 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2604 .func = bpf_redirect_neigh,
2605 .gpl_only = false,
2606 .ret_type = RET_INTEGER,
2607 .arg1_type = ARG_ANYTHING,
2608 .arg2_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2609 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
2610 .arg4_type = ARG_ANYTHING,
2611 };
2612
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2613 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2614 {
2615 msg->apply_bytes = bytes;
2616 return 0;
2617 }
2618
2619 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2620 .func = bpf_msg_apply_bytes,
2621 .gpl_only = false,
2622 .ret_type = RET_INTEGER,
2623 .arg1_type = ARG_PTR_TO_CTX,
2624 .arg2_type = ARG_ANYTHING,
2625 };
2626
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2627 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2628 {
2629 msg->cork_bytes = bytes;
2630 return 0;
2631 }
2632
sk_msg_reset_curr(struct sk_msg * msg)2633 static void sk_msg_reset_curr(struct sk_msg *msg)
2634 {
2635 if (!msg->sg.size) {
2636 msg->sg.curr = msg->sg.start;
2637 msg->sg.copybreak = 0;
2638 } else {
2639 u32 i = msg->sg.end;
2640
2641 sk_msg_iter_var_prev(i);
2642 msg->sg.curr = i;
2643 msg->sg.copybreak = msg->sg.data[i].length;
2644 }
2645 }
2646
2647 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2648 .func = bpf_msg_cork_bytes,
2649 .gpl_only = false,
2650 .ret_type = RET_INTEGER,
2651 .arg1_type = ARG_PTR_TO_CTX,
2652 .arg2_type = ARG_ANYTHING,
2653 };
2654
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2655 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2656 u32, end, u64, flags)
2657 {
2658 u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2659 u32 first_sge, last_sge, i, shift, bytes_sg_total;
2660 struct scatterlist *sge;
2661 u8 *raw, *to, *from;
2662 struct page *page;
2663
2664 if (unlikely(flags || end <= start))
2665 return -EINVAL;
2666
2667 /* First find the starting scatterlist element */
2668 i = msg->sg.start;
2669 do {
2670 offset += len;
2671 len = sk_msg_elem(msg, i)->length;
2672 if (start < offset + len)
2673 break;
2674 sk_msg_iter_var_next(i);
2675 } while (i != msg->sg.end);
2676
2677 if (unlikely(start >= offset + len))
2678 return -EINVAL;
2679
2680 first_sge = i;
2681 /* The start may point into the sg element so we need to also
2682 * account for the headroom.
2683 */
2684 bytes_sg_total = start - offset + bytes;
2685 if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2686 goto out;
2687
2688 /* At this point we need to linearize multiple scatterlist
2689 * elements or a single shared page. Either way we need to
2690 * copy into a linear buffer exclusively owned by BPF. Then
2691 * place the buffer in the scatterlist and fixup the original
2692 * entries by removing the entries now in the linear buffer
2693 * and shifting the remaining entries. For now we do not try
2694 * to copy partial entries to avoid complexity of running out
2695 * of sg_entry slots. The downside is reading a single byte
2696 * will copy the entire sg entry.
2697 */
2698 do {
2699 copy += sk_msg_elem(msg, i)->length;
2700 sk_msg_iter_var_next(i);
2701 if (bytes_sg_total <= copy)
2702 break;
2703 } while (i != msg->sg.end);
2704 last_sge = i;
2705
2706 if (unlikely(bytes_sg_total > copy))
2707 return -EINVAL;
2708
2709 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2710 get_order(copy));
2711 if (unlikely(!page))
2712 return -ENOMEM;
2713
2714 raw = page_address(page);
2715 i = first_sge;
2716 do {
2717 sge = sk_msg_elem(msg, i);
2718 from = sg_virt(sge);
2719 len = sge->length;
2720 to = raw + poffset;
2721
2722 memcpy(to, from, len);
2723 poffset += len;
2724 sge->length = 0;
2725 put_page(sg_page(sge));
2726
2727 sk_msg_iter_var_next(i);
2728 } while (i != last_sge);
2729
2730 sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2731
2732 /* To repair sg ring we need to shift entries. If we only
2733 * had a single entry though we can just replace it and
2734 * be done. Otherwise walk the ring and shift the entries.
2735 */
2736 WARN_ON_ONCE(last_sge == first_sge);
2737 shift = last_sge > first_sge ?
2738 last_sge - first_sge - 1 :
2739 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2740 if (!shift)
2741 goto out;
2742
2743 i = first_sge;
2744 sk_msg_iter_var_next(i);
2745 do {
2746 u32 move_from;
2747
2748 if (i + shift >= NR_MSG_FRAG_IDS)
2749 move_from = i + shift - NR_MSG_FRAG_IDS;
2750 else
2751 move_from = i + shift;
2752 if (move_from == msg->sg.end)
2753 break;
2754
2755 msg->sg.data[i] = msg->sg.data[move_from];
2756 msg->sg.data[move_from].length = 0;
2757 msg->sg.data[move_from].page_link = 0;
2758 msg->sg.data[move_from].offset = 0;
2759 sk_msg_iter_var_next(i);
2760 } while (1);
2761
2762 msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2763 msg->sg.end - shift + NR_MSG_FRAG_IDS :
2764 msg->sg.end - shift;
2765 out:
2766 sk_msg_reset_curr(msg);
2767 msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2768 msg->data_end = msg->data + bytes;
2769 return 0;
2770 }
2771
2772 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2773 .func = bpf_msg_pull_data,
2774 .gpl_only = false,
2775 .ret_type = RET_INTEGER,
2776 .arg1_type = ARG_PTR_TO_CTX,
2777 .arg2_type = ARG_ANYTHING,
2778 .arg3_type = ARG_ANYTHING,
2779 .arg4_type = ARG_ANYTHING,
2780 };
2781
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2782 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2783 u32, len, u64, flags)
2784 {
2785 struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2786 u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2787 u8 *raw, *to, *from;
2788 struct page *page;
2789
2790 if (unlikely(flags))
2791 return -EINVAL;
2792
2793 if (unlikely(len == 0))
2794 return 0;
2795
2796 /* First find the starting scatterlist element */
2797 i = msg->sg.start;
2798 do {
2799 offset += l;
2800 l = sk_msg_elem(msg, i)->length;
2801
2802 if (start < offset + l)
2803 break;
2804 sk_msg_iter_var_next(i);
2805 } while (i != msg->sg.end);
2806
2807 if (start > offset + l)
2808 return -EINVAL;
2809
2810 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2811
2812 /* If no space available will fallback to copy, we need at
2813 * least one scatterlist elem available to push data into
2814 * when start aligns to the beginning of an element or two
2815 * when it falls inside an element. We handle the start equals
2816 * offset case because its the common case for inserting a
2817 * header.
2818 */
2819 if (!space || (space == 1 && start != offset))
2820 copy = msg->sg.data[i].length;
2821
2822 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2823 get_order(copy + len));
2824 if (unlikely(!page))
2825 return -ENOMEM;
2826
2827 if (copy) {
2828 int front, back;
2829
2830 raw = page_address(page);
2831
2832 if (i == msg->sg.end)
2833 sk_msg_iter_var_prev(i);
2834 psge = sk_msg_elem(msg, i);
2835 front = start - offset;
2836 back = psge->length - front;
2837 from = sg_virt(psge);
2838
2839 if (front)
2840 memcpy(raw, from, front);
2841
2842 if (back) {
2843 from += front;
2844 to = raw + front + len;
2845
2846 memcpy(to, from, back);
2847 }
2848
2849 put_page(sg_page(psge));
2850 new = i;
2851 goto place_new;
2852 }
2853
2854 if (start - offset) {
2855 if (i == msg->sg.end)
2856 sk_msg_iter_var_prev(i);
2857 psge = sk_msg_elem(msg, i);
2858 rsge = sk_msg_elem_cpy(msg, i);
2859
2860 psge->length = start - offset;
2861 rsge.length -= psge->length;
2862 rsge.offset += start;
2863
2864 sk_msg_iter_var_next(i);
2865 sg_unmark_end(psge);
2866 sg_unmark_end(&rsge);
2867 }
2868
2869 /* Slot(s) to place newly allocated data */
2870 sk_msg_iter_next(msg, end);
2871 new = i;
2872 sk_msg_iter_var_next(i);
2873
2874 if (i == msg->sg.end) {
2875 if (!rsge.length)
2876 goto place_new;
2877 sk_msg_iter_next(msg, end);
2878 goto place_new;
2879 }
2880
2881 /* Shift one or two slots as needed */
2882 sge = sk_msg_elem_cpy(msg, new);
2883 sg_unmark_end(&sge);
2884
2885 nsge = sk_msg_elem_cpy(msg, i);
2886 if (rsge.length) {
2887 sk_msg_iter_var_next(i);
2888 nnsge = sk_msg_elem_cpy(msg, i);
2889 sk_msg_iter_next(msg, end);
2890 }
2891
2892 while (i != msg->sg.end) {
2893 msg->sg.data[i] = sge;
2894 sge = nsge;
2895 sk_msg_iter_var_next(i);
2896 if (rsge.length) {
2897 nsge = nnsge;
2898 nnsge = sk_msg_elem_cpy(msg, i);
2899 } else {
2900 nsge = sk_msg_elem_cpy(msg, i);
2901 }
2902 }
2903
2904 place_new:
2905 /* Place newly allocated data buffer */
2906 sk_mem_charge(msg->sk, len);
2907 msg->sg.size += len;
2908 __clear_bit(new, msg->sg.copy);
2909 sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2910 if (rsge.length) {
2911 get_page(sg_page(&rsge));
2912 sk_msg_iter_var_next(new);
2913 msg->sg.data[new] = rsge;
2914 }
2915
2916 sk_msg_reset_curr(msg);
2917 sk_msg_compute_data_pointers(msg);
2918 return 0;
2919 }
2920
2921 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2922 .func = bpf_msg_push_data,
2923 .gpl_only = false,
2924 .ret_type = RET_INTEGER,
2925 .arg1_type = ARG_PTR_TO_CTX,
2926 .arg2_type = ARG_ANYTHING,
2927 .arg3_type = ARG_ANYTHING,
2928 .arg4_type = ARG_ANYTHING,
2929 };
2930
sk_msg_shift_left(struct sk_msg * msg,int i)2931 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2932 {
2933 struct scatterlist *sge = sk_msg_elem(msg, i);
2934 int prev;
2935
2936 put_page(sg_page(sge));
2937 do {
2938 prev = i;
2939 sk_msg_iter_var_next(i);
2940 msg->sg.data[prev] = msg->sg.data[i];
2941 } while (i != msg->sg.end);
2942
2943 sk_msg_iter_prev(msg, end);
2944 }
2945
sk_msg_shift_right(struct sk_msg * msg,int i)2946 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2947 {
2948 struct scatterlist tmp, sge;
2949
2950 sk_msg_iter_next(msg, end);
2951 sge = sk_msg_elem_cpy(msg, i);
2952 sk_msg_iter_var_next(i);
2953 tmp = sk_msg_elem_cpy(msg, i);
2954
2955 while (i != msg->sg.end) {
2956 msg->sg.data[i] = sge;
2957 sk_msg_iter_var_next(i);
2958 sge = tmp;
2959 tmp = sk_msg_elem_cpy(msg, i);
2960 }
2961 }
2962
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2963 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2964 u32, len, u64, flags)
2965 {
2966 u32 i = 0, l = 0, space, offset = 0;
2967 u64 last = start + len;
2968 int pop;
2969
2970 if (unlikely(flags))
2971 return -EINVAL;
2972
2973 if (unlikely(len == 0))
2974 return 0;
2975
2976 /* First find the starting scatterlist element */
2977 i = msg->sg.start;
2978 do {
2979 offset += l;
2980 l = sk_msg_elem(msg, i)->length;
2981
2982 if (start < offset + l)
2983 break;
2984 sk_msg_iter_var_next(i);
2985 } while (i != msg->sg.end);
2986
2987 /* Bounds checks: start and pop must be inside message */
2988 if (start >= offset + l || last > msg->sg.size)
2989 return -EINVAL;
2990
2991 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2992
2993 pop = len;
2994 /* --------------| offset
2995 * -| start |-------- len -------|
2996 *
2997 * |----- a ----|-------- pop -------|----- b ----|
2998 * |______________________________________________| length
2999 *
3000 *
3001 * a: region at front of scatter element to save
3002 * b: region at back of scatter element to save when length > A + pop
3003 * pop: region to pop from element, same as input 'pop' here will be
3004 * decremented below per iteration.
3005 *
3006 * Two top-level cases to handle when start != offset, first B is non
3007 * zero and second B is zero corresponding to when a pop includes more
3008 * than one element.
3009 *
3010 * Then if B is non-zero AND there is no space allocate space and
3011 * compact A, B regions into page. If there is space shift ring to
3012 * the right free'ing the next element in ring to place B, leaving
3013 * A untouched except to reduce length.
3014 */
3015 if (start != offset) {
3016 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
3017 int a = start - offset;
3018 int b = sge->length - pop - a;
3019
3020 sk_msg_iter_var_next(i);
3021
3022 if (b > 0) {
3023 if (space) {
3024 sge->length = a;
3025 sk_msg_shift_right(msg, i);
3026 nsge = sk_msg_elem(msg, i);
3027 get_page(sg_page(sge));
3028 sg_set_page(nsge,
3029 sg_page(sge),
3030 b, sge->offset + pop + a);
3031 } else {
3032 struct page *page, *orig;
3033 u8 *to, *from;
3034
3035 page = alloc_pages(__GFP_NOWARN |
3036 __GFP_COMP | GFP_ATOMIC,
3037 get_order(a + b));
3038 if (unlikely(!page))
3039 return -ENOMEM;
3040
3041 orig = sg_page(sge);
3042 from = sg_virt(sge);
3043 to = page_address(page);
3044 memcpy(to, from, a);
3045 memcpy(to + a, from + a + pop, b);
3046 sg_set_page(sge, page, a + b, 0);
3047 put_page(orig);
3048 }
3049 pop = 0;
3050 } else {
3051 pop -= (sge->length - a);
3052 sge->length = a;
3053 }
3054 }
3055
3056 /* From above the current layout _must_ be as follows,
3057 *
3058 * -| offset
3059 * -| start
3060 *
3061 * |---- pop ---|---------------- b ------------|
3062 * |____________________________________________| length
3063 *
3064 * Offset and start of the current msg elem are equal because in the
3065 * previous case we handled offset != start and either consumed the
3066 * entire element and advanced to the next element OR pop == 0.
3067 *
3068 * Two cases to handle here are first pop is less than the length
3069 * leaving some remainder b above. Simply adjust the element's layout
3070 * in this case. Or pop >= length of the element so that b = 0. In this
3071 * case advance to next element decrementing pop.
3072 */
3073 while (pop) {
3074 struct scatterlist *sge = sk_msg_elem(msg, i);
3075
3076 if (pop < sge->length) {
3077 sge->length -= pop;
3078 sge->offset += pop;
3079 pop = 0;
3080 } else {
3081 pop -= sge->length;
3082 sk_msg_shift_left(msg, i);
3083 }
3084 }
3085
3086 sk_mem_uncharge(msg->sk, len - pop);
3087 msg->sg.size -= (len - pop);
3088 sk_msg_reset_curr(msg);
3089 sk_msg_compute_data_pointers(msg);
3090 return 0;
3091 }
3092
3093 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3094 .func = bpf_msg_pop_data,
3095 .gpl_only = false,
3096 .ret_type = RET_INTEGER,
3097 .arg1_type = ARG_PTR_TO_CTX,
3098 .arg2_type = ARG_ANYTHING,
3099 .arg3_type = ARG_ANYTHING,
3100 .arg4_type = ARG_ANYTHING,
3101 };
3102
3103 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3104 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3105 {
3106 return __task_get_classid(current);
3107 }
3108
3109 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3110 .func = bpf_get_cgroup_classid_curr,
3111 .gpl_only = false,
3112 .ret_type = RET_INTEGER,
3113 };
3114
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3115 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3116 {
3117 struct sock *sk = skb_to_full_sk(skb);
3118
3119 if (!sk || !sk_fullsock(sk))
3120 return 0;
3121
3122 return sock_cgroup_classid(&sk->sk_cgrp_data);
3123 }
3124
3125 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3126 .func = bpf_skb_cgroup_classid,
3127 .gpl_only = false,
3128 .ret_type = RET_INTEGER,
3129 .arg1_type = ARG_PTR_TO_CTX,
3130 };
3131 #endif
3132
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3133 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3134 {
3135 return task_get_classid(skb);
3136 }
3137
3138 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3139 .func = bpf_get_cgroup_classid,
3140 .gpl_only = false,
3141 .ret_type = RET_INTEGER,
3142 .arg1_type = ARG_PTR_TO_CTX,
3143 };
3144
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3145 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3146 {
3147 return dst_tclassid(skb);
3148 }
3149
3150 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3151 .func = bpf_get_route_realm,
3152 .gpl_only = false,
3153 .ret_type = RET_INTEGER,
3154 .arg1_type = ARG_PTR_TO_CTX,
3155 };
3156
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3157 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3158 {
3159 /* If skb_clear_hash() was called due to mangling, we can
3160 * trigger SW recalculation here. Later access to hash
3161 * can then use the inline skb->hash via context directly
3162 * instead of calling this helper again.
3163 */
3164 return skb_get_hash(skb);
3165 }
3166
3167 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3168 .func = bpf_get_hash_recalc,
3169 .gpl_only = false,
3170 .ret_type = RET_INTEGER,
3171 .arg1_type = ARG_PTR_TO_CTX,
3172 };
3173
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3174 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3175 {
3176 /* After all direct packet write, this can be used once for
3177 * triggering a lazy recalc on next skb_get_hash() invocation.
3178 */
3179 skb_clear_hash(skb);
3180 return 0;
3181 }
3182
3183 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3184 .func = bpf_set_hash_invalid,
3185 .gpl_only = false,
3186 .ret_type = RET_INTEGER,
3187 .arg1_type = ARG_PTR_TO_CTX,
3188 };
3189
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3190 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3191 {
3192 /* Set user specified hash as L4(+), so that it gets returned
3193 * on skb_get_hash() call unless BPF prog later on triggers a
3194 * skb_clear_hash().
3195 */
3196 __skb_set_sw_hash(skb, hash, true);
3197 return 0;
3198 }
3199
3200 static const struct bpf_func_proto bpf_set_hash_proto = {
3201 .func = bpf_set_hash,
3202 .gpl_only = false,
3203 .ret_type = RET_INTEGER,
3204 .arg1_type = ARG_PTR_TO_CTX,
3205 .arg2_type = ARG_ANYTHING,
3206 };
3207
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3208 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3209 u16, vlan_tci)
3210 {
3211 int ret;
3212
3213 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3214 vlan_proto != htons(ETH_P_8021AD)))
3215 vlan_proto = htons(ETH_P_8021Q);
3216
3217 bpf_push_mac_rcsum(skb);
3218 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3219 bpf_pull_mac_rcsum(skb);
3220 skb_reset_mac_len(skb);
3221
3222 bpf_compute_data_pointers(skb);
3223 return ret;
3224 }
3225
3226 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3227 .func = bpf_skb_vlan_push,
3228 .gpl_only = false,
3229 .ret_type = RET_INTEGER,
3230 .arg1_type = ARG_PTR_TO_CTX,
3231 .arg2_type = ARG_ANYTHING,
3232 .arg3_type = ARG_ANYTHING,
3233 };
3234
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3235 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3236 {
3237 int ret;
3238
3239 bpf_push_mac_rcsum(skb);
3240 ret = skb_vlan_pop(skb);
3241 bpf_pull_mac_rcsum(skb);
3242
3243 bpf_compute_data_pointers(skb);
3244 return ret;
3245 }
3246
3247 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3248 .func = bpf_skb_vlan_pop,
3249 .gpl_only = false,
3250 .ret_type = RET_INTEGER,
3251 .arg1_type = ARG_PTR_TO_CTX,
3252 };
3253
bpf_skb_change_protocol(struct sk_buff * skb,u16 proto)3254 static void bpf_skb_change_protocol(struct sk_buff *skb, u16 proto)
3255 {
3256 skb->protocol = htons(proto);
3257 if (skb_valid_dst(skb))
3258 skb_dst_drop(skb);
3259 }
3260
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3261 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3262 {
3263 /* Caller already did skb_cow() with meta_len+len as headroom,
3264 * so no need to do it here.
3265 */
3266 skb_push(skb, len);
3267 skb_postpush_data_move(skb, len, off);
3268 memset(skb->data + off, 0, len);
3269
3270 /* No skb_postpush_rcsum(skb, skb->data + off, len)
3271 * needed here as it does not change the skb->csum
3272 * result for checksum complete when summing over
3273 * zeroed blocks.
3274 */
3275 return 0;
3276 }
3277
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3278 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3279 {
3280 void *old_data;
3281
3282 /* skb_ensure_writable() is not needed here, as we're
3283 * already working on an uncloned skb.
3284 */
3285 if (unlikely(!pskb_may_pull(skb, off + len)))
3286 return -ENOMEM;
3287
3288 old_data = skb->data;
3289 __skb_pull(skb, len);
3290 skb_postpull_rcsum(skb, old_data + off, len);
3291 skb_postpull_data_move(skb, len, off);
3292
3293 return 0;
3294 }
3295
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3296 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3297 {
3298 bool trans_same = skb->transport_header == skb->network_header;
3299 int ret;
3300
3301 /* There's no need for __skb_push()/__skb_pull() pair to
3302 * get to the start of the mac header as we're guaranteed
3303 * to always start from here under eBPF.
3304 */
3305 ret = bpf_skb_generic_push(skb, off, len);
3306 if (likely(!ret)) {
3307 skb->mac_header -= len;
3308 skb->network_header -= len;
3309 if (trans_same)
3310 skb->transport_header = skb->network_header;
3311 }
3312
3313 return ret;
3314 }
3315
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3316 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3317 {
3318 bool trans_same = skb->transport_header == skb->network_header;
3319 int ret;
3320
3321 /* Same here, __skb_push()/__skb_pull() pair not needed. */
3322 ret = bpf_skb_generic_pop(skb, off, len);
3323 if (likely(!ret)) {
3324 skb->mac_header += len;
3325 skb->network_header += len;
3326 if (trans_same)
3327 skb->transport_header = skb->network_header;
3328 }
3329
3330 return ret;
3331 }
3332
bpf_skb_proto_4_to_6(struct sk_buff * skb)3333 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3334 {
3335 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3336 const u8 meta_len = skb_metadata_len(skb);
3337 u32 off = skb_mac_header_len(skb);
3338 int ret;
3339
3340 ret = skb_cow(skb, meta_len + len_diff);
3341 if (unlikely(ret < 0))
3342 return ret;
3343
3344 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3345 if (unlikely(ret < 0))
3346 return ret;
3347
3348 if (skb_is_gso(skb)) {
3349 struct skb_shared_info *shinfo = skb_shinfo(skb);
3350
3351 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3352 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3353 shinfo->gso_type &= ~SKB_GSO_TCPV4;
3354 shinfo->gso_type |= SKB_GSO_TCPV6;
3355 }
3356 shinfo->gso_type |= SKB_GSO_DODGY;
3357 }
3358
3359 bpf_skb_change_protocol(skb, ETH_P_IPV6);
3360 skb_clear_hash(skb);
3361
3362 return 0;
3363 }
3364
bpf_skb_proto_6_to_4(struct sk_buff * skb)3365 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3366 {
3367 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3368 u32 off = skb_mac_header_len(skb);
3369 int ret;
3370
3371 ret = skb_unclone(skb, GFP_ATOMIC);
3372 if (unlikely(ret < 0))
3373 return ret;
3374
3375 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3376 if (unlikely(ret < 0))
3377 return ret;
3378
3379 if (skb_is_gso(skb)) {
3380 struct skb_shared_info *shinfo = skb_shinfo(skb);
3381
3382 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3383 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3384 shinfo->gso_type &= ~SKB_GSO_TCPV6;
3385 shinfo->gso_type |= SKB_GSO_TCPV4;
3386 }
3387 shinfo->gso_type |= SKB_GSO_DODGY;
3388 }
3389
3390 bpf_skb_change_protocol(skb, ETH_P_IP);
3391 skb_clear_hash(skb);
3392
3393 return 0;
3394 }
3395
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3396 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3397 {
3398 __be16 from_proto = skb->protocol;
3399
3400 if (from_proto == htons(ETH_P_IP) &&
3401 to_proto == htons(ETH_P_IPV6))
3402 return bpf_skb_proto_4_to_6(skb);
3403
3404 if (from_proto == htons(ETH_P_IPV6) &&
3405 to_proto == htons(ETH_P_IP))
3406 return bpf_skb_proto_6_to_4(skb);
3407
3408 return -ENOTSUPP;
3409 }
3410
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3411 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3412 u64, flags)
3413 {
3414 int ret;
3415
3416 if (unlikely(flags))
3417 return -EINVAL;
3418
3419 /* General idea is that this helper does the basic groundwork
3420 * needed for changing the protocol, and eBPF program fills the
3421 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3422 * and other helpers, rather than passing a raw buffer here.
3423 *
3424 * The rationale is to keep this minimal and without a need to
3425 * deal with raw packet data. F.e. even if we would pass buffers
3426 * here, the program still needs to call the bpf_lX_csum_replace()
3427 * helpers anyway. Plus, this way we keep also separation of
3428 * concerns, since f.e. bpf_skb_store_bytes() should only take
3429 * care of stores.
3430 *
3431 * Currently, additional options and extension header space are
3432 * not supported, but flags register is reserved so we can adapt
3433 * that. For offloads, we mark packet as dodgy, so that headers
3434 * need to be verified first.
3435 */
3436 ret = bpf_skb_proto_xlat(skb, proto);
3437 bpf_compute_data_pointers(skb);
3438 return ret;
3439 }
3440
3441 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3442 .func = bpf_skb_change_proto,
3443 .gpl_only = false,
3444 .ret_type = RET_INTEGER,
3445 .arg1_type = ARG_PTR_TO_CTX,
3446 .arg2_type = ARG_ANYTHING,
3447 .arg3_type = ARG_ANYTHING,
3448 };
3449
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3450 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3451 {
3452 /* We only allow a restricted subset to be changed for now. */
3453 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3454 !skb_pkt_type_ok(pkt_type)))
3455 return -EINVAL;
3456
3457 skb->pkt_type = pkt_type;
3458 return 0;
3459 }
3460
3461 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3462 .func = bpf_skb_change_type,
3463 .gpl_only = false,
3464 .ret_type = RET_INTEGER,
3465 .arg1_type = ARG_PTR_TO_CTX,
3466 .arg2_type = ARG_ANYTHING,
3467 };
3468
bpf_skb_net_base_len(const struct sk_buff * skb)3469 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3470 {
3471 switch (skb->protocol) {
3472 case htons(ETH_P_IP):
3473 return sizeof(struct iphdr);
3474 case htons(ETH_P_IPV6):
3475 return sizeof(struct ipv6hdr);
3476 default:
3477 return ~0U;
3478 }
3479 }
3480
3481 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3482 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3483
3484 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK (BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3485 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3486
3487 #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \
3488 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3489 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3490 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3491 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3492 BPF_F_ADJ_ROOM_ENCAP_L2( \
3493 BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3494 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3495
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3496 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3497 u64 flags)
3498 {
3499 u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3500 bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3501 u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3502 const u8 meta_len = skb_metadata_len(skb);
3503 unsigned int gso_type = SKB_GSO_DODGY;
3504 int ret;
3505
3506 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3507 /* udp gso_size delineates datagrams, only allow if fixed */
3508 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3509 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3510 return -ENOTSUPP;
3511 }
3512
3513 ret = skb_cow_head(skb, meta_len + len_diff);
3514 if (unlikely(ret < 0))
3515 return ret;
3516
3517 if (encap) {
3518 if (skb->protocol != htons(ETH_P_IP) &&
3519 skb->protocol != htons(ETH_P_IPV6))
3520 return -ENOTSUPP;
3521
3522 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3523 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3524 return -EINVAL;
3525
3526 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3527 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3528 return -EINVAL;
3529
3530 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3531 inner_mac_len < ETH_HLEN)
3532 return -EINVAL;
3533
3534 if (skb->encapsulation)
3535 return -EALREADY;
3536
3537 mac_len = skb->network_header - skb->mac_header;
3538 inner_net = skb->network_header;
3539 if (inner_mac_len > len_diff)
3540 return -EINVAL;
3541 inner_trans = skb->transport_header;
3542 }
3543
3544 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3545 if (unlikely(ret < 0))
3546 return ret;
3547
3548 if (encap) {
3549 skb->inner_mac_header = inner_net - inner_mac_len;
3550 skb->inner_network_header = inner_net;
3551 skb->inner_transport_header = inner_trans;
3552
3553 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3554 skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3555 else
3556 skb_set_inner_protocol(skb, skb->protocol);
3557
3558 skb->encapsulation = 1;
3559 skb_set_network_header(skb, mac_len);
3560
3561 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3562 gso_type |= SKB_GSO_UDP_TUNNEL;
3563 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3564 gso_type |= SKB_GSO_GRE;
3565 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3566 gso_type |= SKB_GSO_IPXIP6;
3567 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3568 gso_type |= SKB_GSO_IPXIP4;
3569
3570 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3571 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3572 int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3573 sizeof(struct ipv6hdr) :
3574 sizeof(struct iphdr);
3575
3576 skb_set_transport_header(skb, mac_len + nh_len);
3577 }
3578
3579 /* Match skb->protocol to new outer l3 protocol */
3580 if (skb->protocol == htons(ETH_P_IP) &&
3581 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3582 bpf_skb_change_protocol(skb, ETH_P_IPV6);
3583 else if (skb->protocol == htons(ETH_P_IPV6) &&
3584 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3585 bpf_skb_change_protocol(skb, ETH_P_IP);
3586 }
3587
3588 if (skb_is_gso(skb)) {
3589 struct skb_shared_info *shinfo = skb_shinfo(skb);
3590
3591 /* Header must be checked, and gso_segs recomputed. */
3592 shinfo->gso_type |= gso_type;
3593 shinfo->gso_segs = 0;
3594
3595 /* Due to header growth, MSS needs to be downgraded.
3596 * There is a BUG_ON() when segmenting the frag_list with
3597 * head_frag true, so linearize the skb after downgrading
3598 * the MSS.
3599 */
3600 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3601 skb_decrease_gso_size(shinfo, len_diff);
3602 if (shinfo->frag_list)
3603 return skb_linearize(skb);
3604 }
3605 }
3606
3607 return 0;
3608 }
3609
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3610 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3611 u64 flags)
3612 {
3613 int ret;
3614
3615 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3616 BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3617 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3618 return -EINVAL;
3619
3620 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3621 /* udp gso_size delineates datagrams, only allow if fixed */
3622 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3623 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3624 return -ENOTSUPP;
3625 }
3626
3627 ret = skb_unclone(skb, GFP_ATOMIC);
3628 if (unlikely(ret < 0))
3629 return ret;
3630
3631 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3632 if (unlikely(ret < 0))
3633 return ret;
3634
3635 /* Match skb->protocol to new outer l3 protocol */
3636 if (skb->protocol == htons(ETH_P_IP) &&
3637 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3638 bpf_skb_change_protocol(skb, ETH_P_IPV6);
3639 else if (skb->protocol == htons(ETH_P_IPV6) &&
3640 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3641 bpf_skb_change_protocol(skb, ETH_P_IP);
3642
3643 if (skb_is_gso(skb)) {
3644 struct skb_shared_info *shinfo = skb_shinfo(skb);
3645
3646 /* Due to header shrink, MSS can be upgraded. */
3647 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3648 skb_increase_gso_size(shinfo, len_diff);
3649
3650 /* Header must be checked, and gso_segs recomputed. */
3651 shinfo->gso_type |= SKB_GSO_DODGY;
3652 shinfo->gso_segs = 0;
3653 }
3654
3655 return 0;
3656 }
3657
3658 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3659
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3660 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3661 u32, mode, u64, flags)
3662 {
3663 u32 len_diff_abs = abs(len_diff);
3664 bool shrink = len_diff < 0;
3665 int ret = 0;
3666
3667 if (unlikely(flags || mode))
3668 return -EINVAL;
3669 if (unlikely(len_diff_abs > 0xfffU))
3670 return -EFAULT;
3671
3672 if (!shrink) {
3673 ret = skb_cow(skb, len_diff);
3674 if (unlikely(ret < 0))
3675 return ret;
3676 __skb_push(skb, len_diff_abs);
3677 memset(skb->data, 0, len_diff_abs);
3678 } else {
3679 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3680 return -ENOMEM;
3681 __skb_pull(skb, len_diff_abs);
3682 }
3683 if (tls_sw_has_ctx_rx(skb->sk)) {
3684 struct strp_msg *rxm = strp_msg(skb);
3685
3686 rxm->full_len += len_diff;
3687 }
3688 return ret;
3689 }
3690
3691 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3692 .func = sk_skb_adjust_room,
3693 .gpl_only = false,
3694 .ret_type = RET_INTEGER,
3695 .arg1_type = ARG_PTR_TO_CTX,
3696 .arg2_type = ARG_ANYTHING,
3697 .arg3_type = ARG_ANYTHING,
3698 .arg4_type = ARG_ANYTHING,
3699 };
3700
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3701 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3702 u32, mode, u64, flags)
3703 {
3704 u32 len_cur, len_diff_abs = abs(len_diff);
3705 u32 len_min = bpf_skb_net_base_len(skb);
3706 u32 len_max = BPF_SKB_MAX_LEN;
3707 __be16 proto = skb->protocol;
3708 bool shrink = len_diff < 0;
3709 u32 off;
3710 int ret;
3711
3712 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3713 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3714 return -EINVAL;
3715 if (unlikely(len_diff_abs > 0xfffU))
3716 return -EFAULT;
3717 if (unlikely(proto != htons(ETH_P_IP) &&
3718 proto != htons(ETH_P_IPV6)))
3719 return -ENOTSUPP;
3720
3721 off = skb_mac_header_len(skb);
3722 switch (mode) {
3723 case BPF_ADJ_ROOM_NET:
3724 off += bpf_skb_net_base_len(skb);
3725 break;
3726 case BPF_ADJ_ROOM_MAC:
3727 break;
3728 default:
3729 return -ENOTSUPP;
3730 }
3731
3732 if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3733 if (!shrink)
3734 return -EINVAL;
3735
3736 switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3737 case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3738 len_min = sizeof(struct iphdr);
3739 break;
3740 case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3741 len_min = sizeof(struct ipv6hdr);
3742 break;
3743 default:
3744 return -EINVAL;
3745 }
3746 }
3747
3748 len_cur = skb->len - skb_network_offset(skb);
3749 if ((shrink && (len_diff_abs >= len_cur ||
3750 len_cur - len_diff_abs < len_min)) ||
3751 (!shrink && (skb->len + len_diff_abs > len_max &&
3752 !skb_is_gso(skb))))
3753 return -ENOTSUPP;
3754
3755 ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3756 bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3757 if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3758 __skb_reset_checksum_unnecessary(skb);
3759
3760 bpf_compute_data_pointers(skb);
3761 return ret;
3762 }
3763
3764 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3765 .func = bpf_skb_adjust_room,
3766 .gpl_only = false,
3767 .ret_type = RET_INTEGER,
3768 .arg1_type = ARG_PTR_TO_CTX,
3769 .arg2_type = ARG_ANYTHING,
3770 .arg3_type = ARG_ANYTHING,
3771 .arg4_type = ARG_ANYTHING,
3772 };
3773
__bpf_skb_min_len(const struct sk_buff * skb)3774 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3775 {
3776 int offset = skb_network_offset(skb);
3777 u32 min_len = 0;
3778
3779 if (offset > 0)
3780 min_len = offset;
3781 if (skb_transport_header_was_set(skb)) {
3782 offset = skb_transport_offset(skb);
3783 if (offset > 0)
3784 min_len = offset;
3785 }
3786 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3787 offset = skb_checksum_start_offset(skb) +
3788 skb->csum_offset + sizeof(__sum16);
3789 if (offset > 0)
3790 min_len = offset;
3791 }
3792 return min_len;
3793 }
3794
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3795 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3796 {
3797 unsigned int old_len = skb->len;
3798 int ret;
3799
3800 ret = __skb_grow_rcsum(skb, new_len);
3801 if (!ret)
3802 memset(skb->data + old_len, 0, new_len - old_len);
3803 return ret;
3804 }
3805
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3806 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3807 {
3808 return __skb_trim_rcsum(skb, new_len);
3809 }
3810
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3811 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3812 u64 flags)
3813 {
3814 u32 max_len = BPF_SKB_MAX_LEN;
3815 u32 min_len = __bpf_skb_min_len(skb);
3816 int ret;
3817
3818 if (unlikely(flags || new_len > max_len || new_len < min_len))
3819 return -EINVAL;
3820 if (skb->encapsulation)
3821 return -ENOTSUPP;
3822
3823 /* The basic idea of this helper is that it's performing the
3824 * needed work to either grow or trim an skb, and eBPF program
3825 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3826 * bpf_lX_csum_replace() and others rather than passing a raw
3827 * buffer here. This one is a slow path helper and intended
3828 * for replies with control messages.
3829 *
3830 * Like in bpf_skb_change_proto(), we want to keep this rather
3831 * minimal and without protocol specifics so that we are able
3832 * to separate concerns as in bpf_skb_store_bytes() should only
3833 * be the one responsible for writing buffers.
3834 *
3835 * It's really expected to be a slow path operation here for
3836 * control message replies, so we're implicitly linearizing,
3837 * uncloning and drop offloads from the skb by this.
3838 */
3839 ret = __bpf_try_make_writable(skb, skb->len);
3840 if (!ret) {
3841 if (new_len > skb->len)
3842 ret = bpf_skb_grow_rcsum(skb, new_len);
3843 else if (new_len < skb->len)
3844 ret = bpf_skb_trim_rcsum(skb, new_len);
3845 if (!ret && skb_is_gso(skb))
3846 skb_gso_reset(skb);
3847 }
3848 return ret;
3849 }
3850
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3851 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3852 u64, flags)
3853 {
3854 int ret = __bpf_skb_change_tail(skb, new_len, flags);
3855
3856 bpf_compute_data_pointers(skb);
3857 return ret;
3858 }
3859
3860 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3861 .func = bpf_skb_change_tail,
3862 .gpl_only = false,
3863 .ret_type = RET_INTEGER,
3864 .arg1_type = ARG_PTR_TO_CTX,
3865 .arg2_type = ARG_ANYTHING,
3866 .arg3_type = ARG_ANYTHING,
3867 };
3868
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3869 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3870 u64, flags)
3871 {
3872 return __bpf_skb_change_tail(skb, new_len, flags);
3873 }
3874
3875 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3876 .func = sk_skb_change_tail,
3877 .gpl_only = false,
3878 .ret_type = RET_INTEGER,
3879 .arg1_type = ARG_PTR_TO_CTX,
3880 .arg2_type = ARG_ANYTHING,
3881 .arg3_type = ARG_ANYTHING,
3882 };
3883
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3884 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3885 u64 flags)
3886 {
3887 const u8 meta_len = skb_metadata_len(skb);
3888 u32 max_len = BPF_SKB_MAX_LEN;
3889 u32 new_len = skb->len + head_room;
3890 int ret;
3891
3892 if (unlikely(flags || (int)head_room < 0 ||
3893 (!skb_is_gso(skb) && new_len > max_len) ||
3894 new_len < skb->len))
3895 return -EINVAL;
3896
3897 ret = skb_cow(skb, meta_len + head_room);
3898 if (likely(!ret)) {
3899 /* Idea for this helper is that we currently only
3900 * allow to expand on mac header. This means that
3901 * skb->protocol network header, etc, stay as is.
3902 * Compared to bpf_skb_change_tail(), we're more
3903 * flexible due to not needing to linearize or
3904 * reset GSO. Intention for this helper is to be
3905 * used by an L3 skb that needs to push mac header
3906 * for redirection into L2 device.
3907 */
3908 __skb_push(skb, head_room);
3909 skb_postpush_data_move(skb, head_room, 0);
3910 memset(skb->data, 0, head_room);
3911 skb_reset_mac_header(skb);
3912 skb_reset_mac_len(skb);
3913 }
3914
3915 return ret;
3916 }
3917
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3918 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3919 u64, flags)
3920 {
3921 int ret = __bpf_skb_change_head(skb, head_room, flags);
3922
3923 bpf_compute_data_pointers(skb);
3924 return ret;
3925 }
3926
3927 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3928 .func = bpf_skb_change_head,
3929 .gpl_only = false,
3930 .ret_type = RET_INTEGER,
3931 .arg1_type = ARG_PTR_TO_CTX,
3932 .arg2_type = ARG_ANYTHING,
3933 .arg3_type = ARG_ANYTHING,
3934 };
3935
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3936 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3937 u64, flags)
3938 {
3939 return __bpf_skb_change_head(skb, head_room, flags);
3940 }
3941
3942 static const struct bpf_func_proto sk_skb_change_head_proto = {
3943 .func = sk_skb_change_head,
3944 .gpl_only = false,
3945 .ret_type = RET_INTEGER,
3946 .arg1_type = ARG_PTR_TO_CTX,
3947 .arg2_type = ARG_ANYTHING,
3948 .arg3_type = ARG_ANYTHING,
3949 };
3950
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3951 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3952 {
3953 return xdp_get_buff_len(xdp);
3954 }
3955
3956 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3957 .func = bpf_xdp_get_buff_len,
3958 .gpl_only = false,
3959 .ret_type = RET_INTEGER,
3960 .arg1_type = ARG_PTR_TO_CTX,
3961 };
3962
3963 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3964
3965 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3966 .func = bpf_xdp_get_buff_len,
3967 .gpl_only = false,
3968 .arg1_type = ARG_PTR_TO_BTF_ID,
3969 .arg1_btf_id = &bpf_xdp_get_buff_len_bpf_ids[0],
3970 };
3971
xdp_get_metalen(const struct xdp_buff * xdp)3972 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3973 {
3974 return xdp_data_meta_unsupported(xdp) ? 0 :
3975 xdp->data - xdp->data_meta;
3976 }
3977
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3978 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3979 {
3980 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3981 unsigned long metalen = xdp_get_metalen(xdp);
3982 void *data_start = xdp_frame_end + metalen;
3983 void *data = xdp->data + offset;
3984
3985 if (unlikely(data < data_start ||
3986 data > xdp->data_end - ETH_HLEN))
3987 return -EINVAL;
3988
3989 if (metalen)
3990 memmove(xdp->data_meta + offset,
3991 xdp->data_meta, metalen);
3992 xdp->data_meta += offset;
3993 xdp->data = data;
3994
3995 return 0;
3996 }
3997
3998 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3999 .func = bpf_xdp_adjust_head,
4000 .gpl_only = false,
4001 .ret_type = RET_INTEGER,
4002 .arg1_type = ARG_PTR_TO_CTX,
4003 .arg2_type = ARG_ANYTHING,
4004 };
4005
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)4006 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
4007 void *buf, unsigned long len, bool flush)
4008 {
4009 unsigned long ptr_len, ptr_off = 0;
4010 skb_frag_t *next_frag, *end_frag;
4011 struct skb_shared_info *sinfo;
4012 void *src, *dst;
4013 u8 *ptr_buf;
4014
4015 if (likely(xdp->data_end - xdp->data >= off + len)) {
4016 src = flush ? buf : xdp->data + off;
4017 dst = flush ? xdp->data + off : buf;
4018 memcpy(dst, src, len);
4019 return;
4020 }
4021
4022 sinfo = xdp_get_shared_info_from_buff(xdp);
4023 end_frag = &sinfo->frags[sinfo->nr_frags];
4024 next_frag = &sinfo->frags[0];
4025
4026 ptr_len = xdp->data_end - xdp->data;
4027 ptr_buf = xdp->data;
4028
4029 while (true) {
4030 if (off < ptr_off + ptr_len) {
4031 unsigned long copy_off = off - ptr_off;
4032 unsigned long copy_len = min(len, ptr_len - copy_off);
4033
4034 src = flush ? buf : ptr_buf + copy_off;
4035 dst = flush ? ptr_buf + copy_off : buf;
4036 memcpy(dst, src, copy_len);
4037
4038 off += copy_len;
4039 len -= copy_len;
4040 buf += copy_len;
4041 }
4042
4043 if (!len || next_frag == end_frag)
4044 break;
4045
4046 ptr_off += ptr_len;
4047 ptr_buf = skb_frag_address(next_frag);
4048 ptr_len = skb_frag_size(next_frag);
4049 next_frag++;
4050 }
4051 }
4052
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)4053 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4054 {
4055 u32 size = xdp->data_end - xdp->data;
4056 struct skb_shared_info *sinfo;
4057 void *addr = xdp->data;
4058 int i;
4059
4060 if (unlikely(offset > 0xffff || len > 0xffff))
4061 return ERR_PTR(-EFAULT);
4062
4063 if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4064 return ERR_PTR(-EINVAL);
4065
4066 if (likely(offset < size)) /* linear area */
4067 goto out;
4068
4069 sinfo = xdp_get_shared_info_from_buff(xdp);
4070 offset -= size;
4071 for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4072 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4073
4074 if (offset < frag_size) {
4075 addr = skb_frag_address(&sinfo->frags[i]);
4076 size = frag_size;
4077 break;
4078 }
4079 offset -= frag_size;
4080 }
4081 out:
4082 return offset + len <= size ? addr + offset : NULL;
4083 }
4084
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4085 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4086 void *, buf, u32, len)
4087 {
4088 void *ptr;
4089
4090 ptr = bpf_xdp_pointer(xdp, offset, len);
4091 if (IS_ERR(ptr))
4092 return PTR_ERR(ptr);
4093
4094 if (!ptr)
4095 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4096 else
4097 memcpy(buf, ptr, len);
4098
4099 return 0;
4100 }
4101
4102 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4103 .func = bpf_xdp_load_bytes,
4104 .gpl_only = false,
4105 .ret_type = RET_INTEGER,
4106 .arg1_type = ARG_PTR_TO_CTX,
4107 .arg2_type = ARG_ANYTHING,
4108 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4109 .arg4_type = ARG_CONST_SIZE,
4110 };
4111
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4112 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4113 {
4114 return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4115 }
4116
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4117 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4118 void *, buf, u32, len)
4119 {
4120 void *ptr;
4121
4122 ptr = bpf_xdp_pointer(xdp, offset, len);
4123 if (IS_ERR(ptr))
4124 return PTR_ERR(ptr);
4125
4126 if (!ptr)
4127 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4128 else
4129 memcpy(ptr, buf, len);
4130
4131 return 0;
4132 }
4133
4134 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4135 .func = bpf_xdp_store_bytes,
4136 .gpl_only = false,
4137 .ret_type = RET_INTEGER,
4138 .arg1_type = ARG_PTR_TO_CTX,
4139 .arg2_type = ARG_ANYTHING,
4140 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4141 .arg4_type = ARG_CONST_SIZE,
4142 };
4143
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4144 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4145 {
4146 return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4147 }
4148
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4149 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4150 {
4151 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4152 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4153 struct xdp_rxq_info *rxq = xdp->rxq;
4154 unsigned int tailroom;
4155
4156 if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4157 return -EOPNOTSUPP;
4158
4159 tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4160 if (unlikely(offset > tailroom))
4161 return -EINVAL;
4162
4163 memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4164 skb_frag_size_add(frag, offset);
4165 sinfo->xdp_frags_size += offset;
4166 if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4167 xsk_buff_get_tail(xdp)->data_end += offset;
4168
4169 return 0;
4170 }
4171
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,bool tail,bool release)4172 static struct xdp_buff *bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4173 bool tail, bool release)
4174 {
4175 struct xdp_buff *zc_frag = tail ? xsk_buff_get_tail(xdp) :
4176 xsk_buff_get_head(xdp);
4177
4178 if (release) {
4179 xsk_buff_del_frag(zc_frag);
4180 } else {
4181 if (tail)
4182 zc_frag->data_end -= shrink;
4183 else
4184 zc_frag->data += shrink;
4185 }
4186
4187 return zc_frag;
4188 }
4189
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink,bool tail)4190 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4191 int shrink, bool tail)
4192 {
4193 enum xdp_mem_type mem_type = xdp->rxq->mem.type;
4194 bool release = skb_frag_size(frag) == shrink;
4195 netmem_ref netmem = skb_frag_netmem(frag);
4196 struct xdp_buff *zc_frag = NULL;
4197
4198 if (mem_type == MEM_TYPE_XSK_BUFF_POOL) {
4199 netmem = 0;
4200 zc_frag = bpf_xdp_shrink_data_zc(xdp, shrink, tail, release);
4201 }
4202
4203 if (release) {
4204 __xdp_return(netmem, mem_type, false, zc_frag);
4205 } else {
4206 if (!tail)
4207 skb_frag_off_add(frag, shrink);
4208 skb_frag_size_sub(frag, shrink);
4209 }
4210
4211 return release;
4212 }
4213
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4214 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4215 {
4216 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4217 int i, n_frags_free = 0, len_free = 0;
4218
4219 if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4220 return -EINVAL;
4221
4222 for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4223 skb_frag_t *frag = &sinfo->frags[i];
4224 int shrink = min_t(int, offset, skb_frag_size(frag));
4225
4226 len_free += shrink;
4227 offset -= shrink;
4228 if (bpf_xdp_shrink_data(xdp, frag, shrink, true))
4229 n_frags_free++;
4230 }
4231 sinfo->nr_frags -= n_frags_free;
4232 sinfo->xdp_frags_size -= len_free;
4233
4234 if (unlikely(!sinfo->nr_frags)) {
4235 xdp_buff_clear_frags_flag(xdp);
4236 xdp_buff_clear_frag_pfmemalloc(xdp);
4237 xdp->data_end -= offset;
4238 }
4239
4240 return 0;
4241 }
4242
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4243 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4244 {
4245 void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4246 void *data_end = xdp->data_end + offset;
4247
4248 if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4249 if (offset < 0)
4250 return bpf_xdp_frags_shrink_tail(xdp, -offset);
4251
4252 return bpf_xdp_frags_increase_tail(xdp, offset);
4253 }
4254
4255 /* Notice that xdp_data_hard_end have reserved some tailroom */
4256 if (unlikely(data_end > data_hard_end))
4257 return -EINVAL;
4258
4259 if (unlikely(data_end < xdp->data + ETH_HLEN))
4260 return -EINVAL;
4261
4262 /* Clear memory area on grow, can contain uninit kernel memory */
4263 if (offset > 0)
4264 memset(xdp->data_end, 0, offset);
4265
4266 xdp->data_end = data_end;
4267
4268 return 0;
4269 }
4270
4271 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4272 .func = bpf_xdp_adjust_tail,
4273 .gpl_only = false,
4274 .ret_type = RET_INTEGER,
4275 .arg1_type = ARG_PTR_TO_CTX,
4276 .arg2_type = ARG_ANYTHING,
4277 };
4278
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4279 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4280 {
4281 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4282 void *meta = xdp->data_meta + offset;
4283 unsigned long metalen = xdp->data - meta;
4284
4285 if (xdp_data_meta_unsupported(xdp))
4286 return -ENOTSUPP;
4287 if (unlikely(meta < xdp_frame_end ||
4288 meta > xdp->data))
4289 return -EINVAL;
4290 if (unlikely(xdp_metalen_invalid(metalen)))
4291 return -EACCES;
4292
4293 xdp->data_meta = meta;
4294
4295 return 0;
4296 }
4297
4298 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4299 .func = bpf_xdp_adjust_meta,
4300 .gpl_only = false,
4301 .ret_type = RET_INTEGER,
4302 .arg1_type = ARG_PTR_TO_CTX,
4303 .arg2_type = ARG_ANYTHING,
4304 };
4305
4306 /**
4307 * DOC: xdp redirect
4308 *
4309 * XDP_REDIRECT works by a three-step process, implemented in the functions
4310 * below:
4311 *
4312 * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4313 * of the redirect and store it (along with some other metadata) in a per-CPU
4314 * struct bpf_redirect_info.
4315 *
4316 * 2. When the program returns the XDP_REDIRECT return code, the driver will
4317 * call xdp_do_redirect() which will use the information in struct
4318 * bpf_redirect_info to actually enqueue the frame into a map type-specific
4319 * bulk queue structure.
4320 *
4321 * 3. Before exiting its NAPI poll loop, the driver will call
4322 * xdp_do_flush(), which will flush all the different bulk queues,
4323 * thus completing the redirect. Note that xdp_do_flush() must be
4324 * called before napi_complete_done() in the driver, as the
4325 * XDP_REDIRECT logic relies on being inside a single NAPI instance
4326 * through to the xdp_do_flush() call for RCU protection of all
4327 * in-kernel data structures.
4328 */
4329 /*
4330 * Pointers to the map entries will be kept around for this whole sequence of
4331 * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4332 * the core code; instead, the RCU protection relies on everything happening
4333 * inside a single NAPI poll sequence, which means it's between a pair of calls
4334 * to local_bh_disable()/local_bh_enable().
4335 *
4336 * The map entries are marked as __rcu and the map code makes sure to
4337 * dereference those pointers with rcu_dereference_check() in a way that works
4338 * for both sections that to hold an rcu_read_lock() and sections that are
4339 * called from NAPI without a separate rcu_read_lock(). The code below does not
4340 * use RCU annotations, but relies on those in the map code.
4341 */
xdp_do_flush(void)4342 void xdp_do_flush(void)
4343 {
4344 struct list_head *lh_map, *lh_dev, *lh_xsk;
4345
4346 bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4347 if (lh_dev)
4348 __dev_flush(lh_dev);
4349 if (lh_map)
4350 __cpu_map_flush(lh_map);
4351 if (lh_xsk)
4352 __xsk_map_flush(lh_xsk);
4353 }
4354 EXPORT_SYMBOL_GPL(xdp_do_flush);
4355
4356 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
xdp_do_check_flushed(struct napi_struct * napi)4357 void xdp_do_check_flushed(struct napi_struct *napi)
4358 {
4359 struct list_head *lh_map, *lh_dev, *lh_xsk;
4360 bool missed = false;
4361
4362 bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4363 if (lh_dev) {
4364 __dev_flush(lh_dev);
4365 missed = true;
4366 }
4367 if (lh_map) {
4368 __cpu_map_flush(lh_map);
4369 missed = true;
4370 }
4371 if (lh_xsk) {
4372 __xsk_map_flush(lh_xsk);
4373 missed = true;
4374 }
4375
4376 WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4377 napi->poll);
4378 }
4379 #endif
4380
4381 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4382 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4383
xdp_master_redirect(struct xdp_buff * xdp)4384 u32 xdp_master_redirect(struct xdp_buff *xdp)
4385 {
4386 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4387 struct net_device *master, *slave;
4388
4389 master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4390 slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4391 if (slave && slave != xdp->rxq->dev) {
4392 /* The target device is different from the receiving device, so
4393 * redirect it to the new device.
4394 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4395 * drivers to unmap the packet from their rx ring.
4396 */
4397 ri->tgt_index = slave->ifindex;
4398 ri->map_id = INT_MAX;
4399 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4400 return XDP_REDIRECT;
4401 }
4402 return XDP_TX;
4403 }
4404 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4405
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,const struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4406 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4407 const struct net_device *dev,
4408 struct xdp_buff *xdp,
4409 const struct bpf_prog *xdp_prog)
4410 {
4411 enum bpf_map_type map_type = ri->map_type;
4412 void *fwd = ri->tgt_value;
4413 u32 map_id = ri->map_id;
4414 int err;
4415
4416 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4417 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4418
4419 err = __xsk_map_redirect(fwd, xdp);
4420 if (unlikely(err))
4421 goto err;
4422
4423 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4424 return 0;
4425 err:
4426 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4427 return err;
4428 }
4429
4430 static __always_inline int
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4431 __xdp_do_redirect_frame(struct bpf_redirect_info *ri, struct net_device *dev,
4432 struct xdp_frame *xdpf,
4433 const struct bpf_prog *xdp_prog)
4434 {
4435 enum bpf_map_type map_type = ri->map_type;
4436 void *fwd = ri->tgt_value;
4437 u32 map_id = ri->map_id;
4438 u32 flags = ri->flags;
4439 struct bpf_map *map;
4440 int err;
4441
4442 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4443 ri->flags = 0;
4444 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4445
4446 if (unlikely(!xdpf)) {
4447 err = -EOVERFLOW;
4448 goto err;
4449 }
4450
4451 switch (map_type) {
4452 case BPF_MAP_TYPE_DEVMAP:
4453 fallthrough;
4454 case BPF_MAP_TYPE_DEVMAP_HASH:
4455 if (unlikely(flags & BPF_F_BROADCAST)) {
4456 map = READ_ONCE(ri->map);
4457
4458 /* The map pointer is cleared when the map is being torn
4459 * down by dev_map_free()
4460 */
4461 if (unlikely(!map)) {
4462 err = -ENOENT;
4463 break;
4464 }
4465
4466 WRITE_ONCE(ri->map, NULL);
4467 err = dev_map_enqueue_multi(xdpf, dev, map,
4468 flags & BPF_F_EXCLUDE_INGRESS);
4469 } else {
4470 err = dev_map_enqueue(fwd, xdpf, dev);
4471 }
4472 break;
4473 case BPF_MAP_TYPE_CPUMAP:
4474 err = cpu_map_enqueue(fwd, xdpf, dev);
4475 break;
4476 case BPF_MAP_TYPE_UNSPEC:
4477 if (map_id == INT_MAX) {
4478 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4479 if (unlikely(!fwd)) {
4480 err = -EINVAL;
4481 break;
4482 }
4483 err = dev_xdp_enqueue(fwd, xdpf, dev);
4484 break;
4485 }
4486 fallthrough;
4487 default:
4488 err = -EBADRQC;
4489 }
4490
4491 if (unlikely(err))
4492 goto err;
4493
4494 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4495 return 0;
4496 err:
4497 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4498 return err;
4499 }
4500
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4501 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4502 const struct bpf_prog *xdp_prog)
4503 {
4504 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4505 enum bpf_map_type map_type = ri->map_type;
4506
4507 if (map_type == BPF_MAP_TYPE_XSKMAP)
4508 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4509
4510 return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4511 xdp_prog);
4512 }
4513 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4514
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4515 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4516 struct xdp_frame *xdpf,
4517 const struct bpf_prog *xdp_prog)
4518 {
4519 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4520 enum bpf_map_type map_type = ri->map_type;
4521
4522 if (map_type == BPF_MAP_TYPE_XSKMAP)
4523 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4524
4525 return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4526 }
4527 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4528
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4529 static int xdp_do_generic_redirect_map(struct net_device *dev,
4530 struct sk_buff *skb,
4531 struct xdp_buff *xdp,
4532 const struct bpf_prog *xdp_prog,
4533 void *fwd, enum bpf_map_type map_type,
4534 u32 map_id, u32 flags)
4535 {
4536 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4537 struct bpf_map *map;
4538 int err;
4539
4540 switch (map_type) {
4541 case BPF_MAP_TYPE_DEVMAP:
4542 fallthrough;
4543 case BPF_MAP_TYPE_DEVMAP_HASH:
4544 if (unlikely(flags & BPF_F_BROADCAST)) {
4545 map = READ_ONCE(ri->map);
4546
4547 /* The map pointer is cleared when the map is being torn
4548 * down by dev_map_free()
4549 */
4550 if (unlikely(!map)) {
4551 err = -ENOENT;
4552 break;
4553 }
4554
4555 WRITE_ONCE(ri->map, NULL);
4556 err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4557 flags & BPF_F_EXCLUDE_INGRESS);
4558 } else {
4559 err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4560 }
4561 if (unlikely(err))
4562 goto err;
4563 break;
4564 case BPF_MAP_TYPE_XSKMAP:
4565 err = xsk_generic_rcv(fwd, xdp);
4566 if (err)
4567 goto err;
4568 consume_skb(skb);
4569 break;
4570 case BPF_MAP_TYPE_CPUMAP:
4571 err = cpu_map_generic_redirect(fwd, skb);
4572 if (unlikely(err))
4573 goto err;
4574 break;
4575 default:
4576 err = -EBADRQC;
4577 goto err;
4578 }
4579
4580 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4581 return 0;
4582 err:
4583 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4584 return err;
4585 }
4586
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4587 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4588 struct xdp_buff *xdp,
4589 const struct bpf_prog *xdp_prog)
4590 {
4591 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4592 enum bpf_map_type map_type = ri->map_type;
4593 void *fwd = ri->tgt_value;
4594 u32 map_id = ri->map_id;
4595 u32 flags = ri->flags;
4596 int err;
4597
4598 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4599 ri->flags = 0;
4600 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4601
4602 if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4603 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4604 if (unlikely(!fwd)) {
4605 err = -EINVAL;
4606 goto err;
4607 }
4608
4609 err = xdp_ok_fwd_dev(fwd, skb->len);
4610 if (unlikely(err))
4611 goto err;
4612
4613 skb->dev = fwd;
4614 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4615 generic_xdp_tx(skb, xdp_prog);
4616 return 0;
4617 }
4618
4619 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4620 err:
4621 _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4622 return err;
4623 }
4624
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4625 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4626 {
4627 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4628
4629 if (unlikely(flags))
4630 return XDP_ABORTED;
4631
4632 /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4633 * by map_idr) is used for ifindex based XDP redirect.
4634 */
4635 ri->tgt_index = ifindex;
4636 ri->map_id = INT_MAX;
4637 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4638
4639 return XDP_REDIRECT;
4640 }
4641
4642 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4643 .func = bpf_xdp_redirect,
4644 .gpl_only = false,
4645 .ret_type = RET_INTEGER,
4646 .arg1_type = ARG_ANYTHING,
4647 .arg2_type = ARG_ANYTHING,
4648 };
4649
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4650 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4651 u64, flags)
4652 {
4653 return map->ops->map_redirect(map, key, flags);
4654 }
4655
4656 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4657 .func = bpf_xdp_redirect_map,
4658 .gpl_only = false,
4659 .ret_type = RET_INTEGER,
4660 .arg1_type = ARG_CONST_MAP_PTR,
4661 .arg2_type = ARG_ANYTHING,
4662 .arg3_type = ARG_ANYTHING,
4663 };
4664
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4665 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4666 unsigned long off, unsigned long len)
4667 {
4668 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4669
4670 if (unlikely(!ptr))
4671 return len;
4672 if (ptr != dst_buff)
4673 memcpy(dst_buff, ptr, len);
4674
4675 return 0;
4676 }
4677
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4678 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4679 u64, flags, void *, meta, u64, meta_size)
4680 {
4681 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4682
4683 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4684 return -EINVAL;
4685 if (unlikely(!skb || skb_size > skb->len))
4686 return -EFAULT;
4687
4688 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4689 bpf_skb_copy);
4690 }
4691
4692 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4693 .func = bpf_skb_event_output,
4694 .gpl_only = true,
4695 .ret_type = RET_INTEGER,
4696 .arg1_type = ARG_PTR_TO_CTX,
4697 .arg2_type = ARG_CONST_MAP_PTR,
4698 .arg3_type = ARG_ANYTHING,
4699 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4700 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4701 };
4702
4703 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4704
4705 const struct bpf_func_proto bpf_skb_output_proto = {
4706 .func = bpf_skb_event_output,
4707 .gpl_only = true,
4708 .ret_type = RET_INTEGER,
4709 .arg1_type = ARG_PTR_TO_BTF_ID,
4710 .arg1_btf_id = &bpf_skb_output_btf_ids[0],
4711 .arg2_type = ARG_CONST_MAP_PTR,
4712 .arg3_type = ARG_ANYTHING,
4713 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4714 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4715 };
4716
bpf_tunnel_key_af(u64 flags)4717 static unsigned short bpf_tunnel_key_af(u64 flags)
4718 {
4719 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4720 }
4721
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4722 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4723 u32, size, u64, flags)
4724 {
4725 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4726 u8 compat[sizeof(struct bpf_tunnel_key)];
4727 void *to_orig = to;
4728 int err;
4729
4730 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4731 BPF_F_TUNINFO_FLAGS)))) {
4732 err = -EINVAL;
4733 goto err_clear;
4734 }
4735 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4736 err = -EPROTO;
4737 goto err_clear;
4738 }
4739 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4740 err = -EINVAL;
4741 switch (size) {
4742 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4743 case offsetof(struct bpf_tunnel_key, tunnel_label):
4744 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4745 goto set_compat;
4746 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4747 /* Fixup deprecated structure layouts here, so we have
4748 * a common path later on.
4749 */
4750 if (ip_tunnel_info_af(info) != AF_INET)
4751 goto err_clear;
4752 set_compat:
4753 to = (struct bpf_tunnel_key *)compat;
4754 break;
4755 default:
4756 goto err_clear;
4757 }
4758 }
4759
4760 to->tunnel_id = be64_to_cpu(info->key.tun_id);
4761 to->tunnel_tos = info->key.tos;
4762 to->tunnel_ttl = info->key.ttl;
4763 if (flags & BPF_F_TUNINFO_FLAGS)
4764 to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags);
4765 else
4766 to->tunnel_ext = 0;
4767
4768 if (flags & BPF_F_TUNINFO_IPV6) {
4769 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4770 sizeof(to->remote_ipv6));
4771 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4772 sizeof(to->local_ipv6));
4773 to->tunnel_label = be32_to_cpu(info->key.label);
4774 } else {
4775 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4776 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4777 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4778 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4779 to->tunnel_label = 0;
4780 }
4781
4782 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4783 memcpy(to_orig, to, size);
4784
4785 return 0;
4786 err_clear:
4787 memset(to_orig, 0, size);
4788 return err;
4789 }
4790
4791 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4792 .func = bpf_skb_get_tunnel_key,
4793 .gpl_only = false,
4794 .ret_type = RET_INTEGER,
4795 .arg1_type = ARG_PTR_TO_CTX,
4796 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4797 .arg3_type = ARG_CONST_SIZE,
4798 .arg4_type = ARG_ANYTHING,
4799 };
4800
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4801 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4802 {
4803 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4804 int err;
4805
4806 if (unlikely(!info ||
4807 !ip_tunnel_is_options_present(info->key.tun_flags))) {
4808 err = -ENOENT;
4809 goto err_clear;
4810 }
4811 if (unlikely(size < info->options_len)) {
4812 err = -ENOMEM;
4813 goto err_clear;
4814 }
4815
4816 ip_tunnel_info_opts_get(to, info);
4817 if (size > info->options_len)
4818 memset(to + info->options_len, 0, size - info->options_len);
4819
4820 return info->options_len;
4821 err_clear:
4822 memset(to, 0, size);
4823 return err;
4824 }
4825
4826 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4827 .func = bpf_skb_get_tunnel_opt,
4828 .gpl_only = false,
4829 .ret_type = RET_INTEGER,
4830 .arg1_type = ARG_PTR_TO_CTX,
4831 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4832 .arg3_type = ARG_CONST_SIZE,
4833 };
4834
4835 static struct metadata_dst __percpu *md_dst;
4836
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4837 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4838 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4839 {
4840 struct metadata_dst *md = this_cpu_ptr(md_dst);
4841 u8 compat[sizeof(struct bpf_tunnel_key)];
4842 struct ip_tunnel_info *info;
4843
4844 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4845 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4846 BPF_F_NO_TUNNEL_KEY)))
4847 return -EINVAL;
4848 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4849 switch (size) {
4850 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4851 case offsetof(struct bpf_tunnel_key, tunnel_label):
4852 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4853 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4854 /* Fixup deprecated structure layouts here, so we have
4855 * a common path later on.
4856 */
4857 memcpy(compat, from, size);
4858 memset(compat + size, 0, sizeof(compat) - size);
4859 from = (const struct bpf_tunnel_key *) compat;
4860 break;
4861 default:
4862 return -EINVAL;
4863 }
4864 }
4865 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4866 from->tunnel_ext))
4867 return -EINVAL;
4868
4869 skb_dst_drop(skb);
4870 dst_hold((struct dst_entry *) md);
4871 skb_dst_set(skb, (struct dst_entry *) md);
4872
4873 info = &md->u.tun_info;
4874 memset(info, 0, sizeof(*info));
4875 info->mode = IP_TUNNEL_INFO_TX;
4876
4877 __set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags);
4878 __assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags,
4879 flags & BPF_F_DONT_FRAGMENT);
4880 __assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags,
4881 !(flags & BPF_F_ZERO_CSUM_TX));
4882 __assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags,
4883 flags & BPF_F_SEQ_NUMBER);
4884 __assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags,
4885 !(flags & BPF_F_NO_TUNNEL_KEY));
4886
4887 info->key.tun_id = cpu_to_be64(from->tunnel_id);
4888 info->key.tos = from->tunnel_tos;
4889 info->key.ttl = from->tunnel_ttl;
4890
4891 if (flags & BPF_F_TUNINFO_IPV6) {
4892 info->mode |= IP_TUNNEL_INFO_IPV6;
4893 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4894 sizeof(from->remote_ipv6));
4895 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4896 sizeof(from->local_ipv6));
4897 info->key.label = cpu_to_be32(from->tunnel_label) &
4898 IPV6_FLOWLABEL_MASK;
4899 } else {
4900 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4901 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4902 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4903 }
4904
4905 return 0;
4906 }
4907
4908 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4909 .func = bpf_skb_set_tunnel_key,
4910 .gpl_only = false,
4911 .ret_type = RET_INTEGER,
4912 .arg1_type = ARG_PTR_TO_CTX,
4913 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4914 .arg3_type = ARG_CONST_SIZE,
4915 .arg4_type = ARG_ANYTHING,
4916 };
4917
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4918 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4919 const u8 *, from, u32, size)
4920 {
4921 struct ip_tunnel_info *info = skb_tunnel_info(skb);
4922 const struct metadata_dst *md = this_cpu_ptr(md_dst);
4923 IP_TUNNEL_DECLARE_FLAGS(present) = { };
4924
4925 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4926 return -EINVAL;
4927 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4928 return -ENOMEM;
4929
4930 ip_tunnel_set_options_present(present);
4931 ip_tunnel_info_opts_set(info, from, size, present);
4932
4933 return 0;
4934 }
4935
4936 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4937 .func = bpf_skb_set_tunnel_opt,
4938 .gpl_only = false,
4939 .ret_type = RET_INTEGER,
4940 .arg1_type = ARG_PTR_TO_CTX,
4941 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4942 .arg3_type = ARG_CONST_SIZE,
4943 };
4944
4945 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4946 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4947 {
4948 if (!md_dst) {
4949 struct metadata_dst __percpu *tmp;
4950
4951 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4952 METADATA_IP_TUNNEL,
4953 GFP_KERNEL);
4954 if (!tmp)
4955 return NULL;
4956 if (cmpxchg(&md_dst, NULL, tmp))
4957 metadata_dst_free_percpu(tmp);
4958 }
4959
4960 switch (which) {
4961 case BPF_FUNC_skb_set_tunnel_key:
4962 return &bpf_skb_set_tunnel_key_proto;
4963 case BPF_FUNC_skb_set_tunnel_opt:
4964 return &bpf_skb_set_tunnel_opt_proto;
4965 default:
4966 return NULL;
4967 }
4968 }
4969
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4970 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4971 u32, idx)
4972 {
4973 struct bpf_array *array = container_of(map, struct bpf_array, map);
4974 struct cgroup *cgrp;
4975 struct sock *sk;
4976
4977 sk = skb_to_full_sk(skb);
4978 if (!sk || !sk_fullsock(sk))
4979 return -ENOENT;
4980 if (unlikely(idx >= array->map.max_entries))
4981 return -E2BIG;
4982
4983 cgrp = READ_ONCE(array->ptrs[idx]);
4984 if (unlikely(!cgrp))
4985 return -EAGAIN;
4986
4987 return sk_under_cgroup_hierarchy(sk, cgrp);
4988 }
4989
4990 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4991 .func = bpf_skb_under_cgroup,
4992 .gpl_only = false,
4993 .ret_type = RET_INTEGER,
4994 .arg1_type = ARG_PTR_TO_CTX,
4995 .arg2_type = ARG_CONST_MAP_PTR,
4996 .arg3_type = ARG_ANYTHING,
4997 };
4998
4999 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)5000 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
5001 {
5002 struct cgroup *cgrp;
5003
5004 sk = sk_to_full_sk(sk);
5005 if (!sk || !sk_fullsock(sk))
5006 return 0;
5007
5008 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
5009 return cgroup_id(cgrp);
5010 }
5011
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)5012 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
5013 {
5014 return __bpf_sk_cgroup_id(skb->sk);
5015 }
5016
5017 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
5018 .func = bpf_skb_cgroup_id,
5019 .gpl_only = false,
5020 .ret_type = RET_INTEGER,
5021 .arg1_type = ARG_PTR_TO_CTX,
5022 };
5023
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)5024 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
5025 int ancestor_level)
5026 {
5027 struct cgroup *ancestor;
5028 struct cgroup *cgrp;
5029
5030 sk = sk_to_full_sk(sk);
5031 if (!sk || !sk_fullsock(sk))
5032 return 0;
5033
5034 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
5035 ancestor = cgroup_ancestor(cgrp, ancestor_level);
5036 if (!ancestor)
5037 return 0;
5038
5039 return cgroup_id(ancestor);
5040 }
5041
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)5042 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
5043 ancestor_level)
5044 {
5045 return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
5046 }
5047
5048 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
5049 .func = bpf_skb_ancestor_cgroup_id,
5050 .gpl_only = false,
5051 .ret_type = RET_INTEGER,
5052 .arg1_type = ARG_PTR_TO_CTX,
5053 .arg2_type = ARG_ANYTHING,
5054 };
5055
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)5056 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
5057 {
5058 return __bpf_sk_cgroup_id(sk);
5059 }
5060
5061 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
5062 .func = bpf_sk_cgroup_id,
5063 .gpl_only = false,
5064 .ret_type = RET_INTEGER,
5065 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5066 };
5067
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)5068 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5069 {
5070 return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5071 }
5072
5073 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5074 .func = bpf_sk_ancestor_cgroup_id,
5075 .gpl_only = false,
5076 .ret_type = RET_INTEGER,
5077 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5078 .arg2_type = ARG_ANYTHING,
5079 };
5080 #endif
5081
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)5082 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5083 unsigned long off, unsigned long len)
5084 {
5085 struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5086
5087 bpf_xdp_copy_buf(xdp, off, dst, len, false);
5088 return 0;
5089 }
5090
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5091 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5092 u64, flags, void *, meta, u64, meta_size)
5093 {
5094 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5095
5096 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5097 return -EINVAL;
5098
5099 if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5100 return -EFAULT;
5101
5102 return bpf_event_output(map, flags, meta, meta_size, xdp,
5103 xdp_size, bpf_xdp_copy);
5104 }
5105
5106 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5107 .func = bpf_xdp_event_output,
5108 .gpl_only = true,
5109 .ret_type = RET_INTEGER,
5110 .arg1_type = ARG_PTR_TO_CTX,
5111 .arg2_type = ARG_CONST_MAP_PTR,
5112 .arg3_type = ARG_ANYTHING,
5113 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5114 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5115 };
5116
5117 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5118
5119 const struct bpf_func_proto bpf_xdp_output_proto = {
5120 .func = bpf_xdp_event_output,
5121 .gpl_only = true,
5122 .ret_type = RET_INTEGER,
5123 .arg1_type = ARG_PTR_TO_BTF_ID,
5124 .arg1_btf_id = &bpf_xdp_output_btf_ids[0],
5125 .arg2_type = ARG_CONST_MAP_PTR,
5126 .arg3_type = ARG_ANYTHING,
5127 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5128 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5129 };
5130
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5131 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5132 {
5133 return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5134 }
5135
5136 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5137 .func = bpf_get_socket_cookie,
5138 .gpl_only = false,
5139 .ret_type = RET_INTEGER,
5140 .arg1_type = ARG_PTR_TO_CTX,
5141 };
5142
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5143 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5144 {
5145 return __sock_gen_cookie(ctx->sk);
5146 }
5147
5148 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5149 .func = bpf_get_socket_cookie_sock_addr,
5150 .gpl_only = false,
5151 .ret_type = RET_INTEGER,
5152 .arg1_type = ARG_PTR_TO_CTX,
5153 };
5154
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5155 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5156 {
5157 return __sock_gen_cookie(ctx);
5158 }
5159
5160 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5161 .func = bpf_get_socket_cookie_sock,
5162 .gpl_only = false,
5163 .ret_type = RET_INTEGER,
5164 .arg1_type = ARG_PTR_TO_CTX,
5165 };
5166
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5167 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5168 {
5169 return sk ? sock_gen_cookie(sk) : 0;
5170 }
5171
5172 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5173 .func = bpf_get_socket_ptr_cookie,
5174 .gpl_only = false,
5175 .ret_type = RET_INTEGER,
5176 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5177 };
5178
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5179 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5180 {
5181 return __sock_gen_cookie(ctx->sk);
5182 }
5183
5184 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5185 .func = bpf_get_socket_cookie_sock_ops,
5186 .gpl_only = false,
5187 .ret_type = RET_INTEGER,
5188 .arg1_type = ARG_PTR_TO_CTX,
5189 };
5190
__bpf_get_netns_cookie(struct sock * sk)5191 static u64 __bpf_get_netns_cookie(struct sock *sk)
5192 {
5193 const struct net *net = sk ? sock_net(sk) : &init_net;
5194
5195 return net->net_cookie;
5196 }
5197
BPF_CALL_1(bpf_get_netns_cookie,struct sk_buff *,skb)5198 BPF_CALL_1(bpf_get_netns_cookie, struct sk_buff *, skb)
5199 {
5200 return __bpf_get_netns_cookie(skb && skb->sk ? skb->sk : NULL);
5201 }
5202
5203 static const struct bpf_func_proto bpf_get_netns_cookie_proto = {
5204 .func = bpf_get_netns_cookie,
5205 .ret_type = RET_INTEGER,
5206 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5207 };
5208
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5209 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5210 {
5211 return __bpf_get_netns_cookie(ctx);
5212 }
5213
5214 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5215 .func = bpf_get_netns_cookie_sock,
5216 .gpl_only = false,
5217 .ret_type = RET_INTEGER,
5218 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5219 };
5220
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5221 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5222 {
5223 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5224 }
5225
5226 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5227 .func = bpf_get_netns_cookie_sock_addr,
5228 .gpl_only = false,
5229 .ret_type = RET_INTEGER,
5230 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5231 };
5232
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5233 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5234 {
5235 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5236 }
5237
5238 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5239 .func = bpf_get_netns_cookie_sock_ops,
5240 .gpl_only = false,
5241 .ret_type = RET_INTEGER,
5242 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5243 };
5244
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5245 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5246 {
5247 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5248 }
5249
5250 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5251 .func = bpf_get_netns_cookie_sk_msg,
5252 .gpl_only = false,
5253 .ret_type = RET_INTEGER,
5254 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5255 };
5256
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5257 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5258 {
5259 struct sock *sk = sk_to_full_sk(skb->sk);
5260 kuid_t kuid;
5261
5262 if (!sk || !sk_fullsock(sk))
5263 return overflowuid;
5264 kuid = sock_net_uid(sock_net(sk), sk);
5265 return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5266 }
5267
5268 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5269 .func = bpf_get_socket_uid,
5270 .gpl_only = false,
5271 .ret_type = RET_INTEGER,
5272 .arg1_type = ARG_PTR_TO_CTX,
5273 };
5274
sk_bpf_set_get_cb_flags(struct sock * sk,char * optval,bool getopt)5275 static int sk_bpf_set_get_cb_flags(struct sock *sk, char *optval, bool getopt)
5276 {
5277 u32 sk_bpf_cb_flags;
5278
5279 if (getopt) {
5280 *(u32 *)optval = sk->sk_bpf_cb_flags;
5281 return 0;
5282 }
5283
5284 sk_bpf_cb_flags = *(u32 *)optval;
5285
5286 if (sk_bpf_cb_flags & ~SK_BPF_CB_MASK)
5287 return -EINVAL;
5288
5289 sk->sk_bpf_cb_flags = sk_bpf_cb_flags;
5290
5291 return 0;
5292 }
5293
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5294 static int sol_socket_sockopt(struct sock *sk, int optname,
5295 char *optval, int *optlen,
5296 bool getopt)
5297 {
5298 switch (optname) {
5299 case SO_REUSEADDR:
5300 case SO_SNDBUF:
5301 case SO_RCVBUF:
5302 case SO_KEEPALIVE:
5303 case SO_PRIORITY:
5304 case SO_REUSEPORT:
5305 case SO_RCVLOWAT:
5306 case SO_MARK:
5307 case SO_MAX_PACING_RATE:
5308 case SO_BINDTOIFINDEX:
5309 case SO_TXREHASH:
5310 case SK_BPF_CB_FLAGS:
5311 if (*optlen != sizeof(int))
5312 return -EINVAL;
5313 break;
5314 case SO_BINDTODEVICE:
5315 break;
5316 default:
5317 return -EINVAL;
5318 }
5319
5320 if (optname == SK_BPF_CB_FLAGS)
5321 return sk_bpf_set_get_cb_flags(sk, optval, getopt);
5322
5323 if (getopt) {
5324 if (optname == SO_BINDTODEVICE)
5325 return -EINVAL;
5326 return sk_getsockopt(sk, SOL_SOCKET, optname,
5327 KERNEL_SOCKPTR(optval),
5328 KERNEL_SOCKPTR(optlen));
5329 }
5330
5331 return sk_setsockopt(sk, SOL_SOCKET, optname,
5332 KERNEL_SOCKPTR(optval), *optlen);
5333 }
5334
bpf_sol_tcp_getsockopt(struct sock * sk,int optname,char * optval,int optlen)5335 static int bpf_sol_tcp_getsockopt(struct sock *sk, int optname,
5336 char *optval, int optlen)
5337 {
5338 if (optlen != sizeof(int))
5339 return -EINVAL;
5340
5341 switch (optname) {
5342 case TCP_BPF_SOCK_OPS_CB_FLAGS: {
5343 int cb_flags = tcp_sk(sk)->bpf_sock_ops_cb_flags;
5344
5345 memcpy(optval, &cb_flags, optlen);
5346 break;
5347 }
5348 case TCP_BPF_RTO_MIN: {
5349 int rto_min_us = jiffies_to_usecs(inet_csk(sk)->icsk_rto_min);
5350
5351 memcpy(optval, &rto_min_us, optlen);
5352 break;
5353 }
5354 case TCP_BPF_DELACK_MAX: {
5355 int delack_max_us = jiffies_to_usecs(inet_csk(sk)->icsk_delack_max);
5356
5357 memcpy(optval, &delack_max_us, optlen);
5358 break;
5359 }
5360 default:
5361 return -EINVAL;
5362 }
5363
5364 return 0;
5365 }
5366
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5367 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5368 char *optval, int optlen)
5369 {
5370 struct tcp_sock *tp = tcp_sk(sk);
5371 unsigned long timeout;
5372 int val;
5373
5374 if (optlen != sizeof(int))
5375 return -EINVAL;
5376
5377 val = *(int *)optval;
5378
5379 /* Only some options are supported */
5380 switch (optname) {
5381 case TCP_BPF_IW:
5382 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5383 return -EINVAL;
5384 tcp_snd_cwnd_set(tp, val);
5385 break;
5386 case TCP_BPF_SNDCWND_CLAMP:
5387 if (val <= 0)
5388 return -EINVAL;
5389 tp->snd_cwnd_clamp = val;
5390 tp->snd_ssthresh = val;
5391 break;
5392 case TCP_BPF_DELACK_MAX:
5393 timeout = usecs_to_jiffies(val);
5394 if (timeout > TCP_DELACK_MAX ||
5395 timeout < TCP_TIMEOUT_MIN)
5396 return -EINVAL;
5397 inet_csk(sk)->icsk_delack_max = timeout;
5398 break;
5399 case TCP_BPF_RTO_MIN:
5400 timeout = usecs_to_jiffies(val);
5401 if (timeout > TCP_RTO_MIN ||
5402 timeout < TCP_TIMEOUT_MIN)
5403 return -EINVAL;
5404 inet_csk(sk)->icsk_rto_min = timeout;
5405 break;
5406 case TCP_BPF_SOCK_OPS_CB_FLAGS:
5407 if (val & ~(BPF_SOCK_OPS_ALL_CB_FLAGS))
5408 return -EINVAL;
5409 tp->bpf_sock_ops_cb_flags = val;
5410 break;
5411 default:
5412 return -EINVAL;
5413 }
5414
5415 return 0;
5416 }
5417
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5418 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5419 int *optlen, bool getopt)
5420 {
5421 struct tcp_sock *tp;
5422 int ret;
5423
5424 if (*optlen < 2)
5425 return -EINVAL;
5426
5427 if (getopt) {
5428 if (!inet_csk(sk)->icsk_ca_ops)
5429 return -EINVAL;
5430 /* BPF expects NULL-terminated tcp-cc string */
5431 optval[--(*optlen)] = '\0';
5432 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5433 KERNEL_SOCKPTR(optval),
5434 KERNEL_SOCKPTR(optlen));
5435 }
5436
5437 /* "cdg" is the only cc that alloc a ptr
5438 * in inet_csk_ca area. The bpf-tcp-cc may
5439 * overwrite this ptr after switching to cdg.
5440 */
5441 if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5442 return -ENOTSUPP;
5443
5444 /* It stops this looping
5445 *
5446 * .init => bpf_setsockopt(tcp_cc) => .init =>
5447 * bpf_setsockopt(tcp_cc)" => .init => ....
5448 *
5449 * The second bpf_setsockopt(tcp_cc) is not allowed
5450 * in order to break the loop when both .init
5451 * are the same bpf prog.
5452 *
5453 * This applies even the second bpf_setsockopt(tcp_cc)
5454 * does not cause a loop. This limits only the first
5455 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5456 * pick a fallback cc (eg. peer does not support ECN)
5457 * and the second '.init' cannot fallback to
5458 * another.
5459 */
5460 tp = tcp_sk(sk);
5461 if (tp->bpf_chg_cc_inprogress)
5462 return -EBUSY;
5463
5464 tp->bpf_chg_cc_inprogress = 1;
5465 ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5466 KERNEL_SOCKPTR(optval), *optlen);
5467 tp->bpf_chg_cc_inprogress = 0;
5468 return ret;
5469 }
5470
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5471 static int sol_tcp_sockopt(struct sock *sk, int optname,
5472 char *optval, int *optlen,
5473 bool getopt)
5474 {
5475 if (sk->sk_protocol != IPPROTO_TCP)
5476 return -EINVAL;
5477
5478 switch (optname) {
5479 case TCP_NODELAY:
5480 case TCP_MAXSEG:
5481 case TCP_KEEPIDLE:
5482 case TCP_KEEPINTVL:
5483 case TCP_KEEPCNT:
5484 case TCP_SYNCNT:
5485 case TCP_WINDOW_CLAMP:
5486 case TCP_THIN_LINEAR_TIMEOUTS:
5487 case TCP_USER_TIMEOUT:
5488 case TCP_NOTSENT_LOWAT:
5489 case TCP_SAVE_SYN:
5490 case TCP_RTO_MAX_MS:
5491 if (*optlen != sizeof(int))
5492 return -EINVAL;
5493 break;
5494 case TCP_CONGESTION:
5495 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5496 case TCP_SAVED_SYN:
5497 if (*optlen < 1)
5498 return -EINVAL;
5499 break;
5500 default:
5501 if (getopt)
5502 return bpf_sol_tcp_getsockopt(sk, optname, optval, *optlen);
5503 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5504 }
5505
5506 if (getopt) {
5507 if (optname == TCP_SAVED_SYN) {
5508 struct tcp_sock *tp = tcp_sk(sk);
5509
5510 if (!tp->saved_syn ||
5511 *optlen > tcp_saved_syn_len(tp->saved_syn))
5512 return -EINVAL;
5513 memcpy(optval, tp->saved_syn->data, *optlen);
5514 /* It cannot free tp->saved_syn here because it
5515 * does not know if the user space still needs it.
5516 */
5517 return 0;
5518 }
5519
5520 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5521 KERNEL_SOCKPTR(optval),
5522 KERNEL_SOCKPTR(optlen));
5523 }
5524
5525 return do_tcp_setsockopt(sk, SOL_TCP, optname,
5526 KERNEL_SOCKPTR(optval), *optlen);
5527 }
5528
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5529 static int sol_ip_sockopt(struct sock *sk, int optname,
5530 char *optval, int *optlen,
5531 bool getopt)
5532 {
5533 if (sk->sk_family != AF_INET)
5534 return -EINVAL;
5535
5536 switch (optname) {
5537 case IP_TOS:
5538 if (*optlen != sizeof(int))
5539 return -EINVAL;
5540 break;
5541 default:
5542 return -EINVAL;
5543 }
5544
5545 if (getopt)
5546 return do_ip_getsockopt(sk, SOL_IP, optname,
5547 KERNEL_SOCKPTR(optval),
5548 KERNEL_SOCKPTR(optlen));
5549
5550 return do_ip_setsockopt(sk, SOL_IP, optname,
5551 KERNEL_SOCKPTR(optval), *optlen);
5552 }
5553
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5554 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5555 char *optval, int *optlen,
5556 bool getopt)
5557 {
5558 if (sk->sk_family != AF_INET6)
5559 return -EINVAL;
5560
5561 switch (optname) {
5562 case IPV6_TCLASS:
5563 case IPV6_AUTOFLOWLABEL:
5564 if (*optlen != sizeof(int))
5565 return -EINVAL;
5566 break;
5567 default:
5568 return -EINVAL;
5569 }
5570
5571 if (getopt)
5572 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5573 KERNEL_SOCKPTR(optval),
5574 KERNEL_SOCKPTR(optlen));
5575
5576 return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5577 KERNEL_SOCKPTR(optval), *optlen);
5578 }
5579
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5580 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5581 char *optval, int optlen)
5582 {
5583 if (!sk_fullsock(sk))
5584 return -EINVAL;
5585
5586 if (level == SOL_SOCKET)
5587 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5588 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5589 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5590 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5591 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5592 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5593 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5594
5595 return -EINVAL;
5596 }
5597
is_locked_tcp_sock_ops(struct bpf_sock_ops_kern * bpf_sock)5598 static bool is_locked_tcp_sock_ops(struct bpf_sock_ops_kern *bpf_sock)
5599 {
5600 return bpf_sock->op <= BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
5601 }
5602
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5603 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5604 char *optval, int optlen)
5605 {
5606 if (sk_fullsock(sk))
5607 sock_owned_by_me(sk);
5608 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5609 }
5610
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5611 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5612 char *optval, int optlen)
5613 {
5614 int err, saved_optlen = optlen;
5615
5616 if (!sk_fullsock(sk)) {
5617 err = -EINVAL;
5618 goto done;
5619 }
5620
5621 if (level == SOL_SOCKET)
5622 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5623 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5624 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5625 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5626 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5627 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5628 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5629 else
5630 err = -EINVAL;
5631
5632 done:
5633 if (err)
5634 optlen = 0;
5635 if (optlen < saved_optlen)
5636 memset(optval + optlen, 0, saved_optlen - optlen);
5637 return err;
5638 }
5639
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5640 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5641 char *optval, int optlen)
5642 {
5643 if (sk_fullsock(sk))
5644 sock_owned_by_me(sk);
5645 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5646 }
5647
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5648 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5649 int, optname, char *, optval, int, optlen)
5650 {
5651 return _bpf_setsockopt(sk, level, optname, optval, optlen);
5652 }
5653
5654 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5655 .func = bpf_sk_setsockopt,
5656 .gpl_only = false,
5657 .ret_type = RET_INTEGER,
5658 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5659 .arg2_type = ARG_ANYTHING,
5660 .arg3_type = ARG_ANYTHING,
5661 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5662 .arg5_type = ARG_CONST_SIZE,
5663 };
5664
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5665 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5666 int, optname, char *, optval, int, optlen)
5667 {
5668 return _bpf_getsockopt(sk, level, optname, optval, optlen);
5669 }
5670
5671 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5672 .func = bpf_sk_getsockopt,
5673 .gpl_only = false,
5674 .ret_type = RET_INTEGER,
5675 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5676 .arg2_type = ARG_ANYTHING,
5677 .arg3_type = ARG_ANYTHING,
5678 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5679 .arg5_type = ARG_CONST_SIZE,
5680 };
5681
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5682 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5683 int, optname, char *, optval, int, optlen)
5684 {
5685 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5686 }
5687
5688 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5689 .func = bpf_unlocked_sk_setsockopt,
5690 .gpl_only = false,
5691 .ret_type = RET_INTEGER,
5692 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5693 .arg2_type = ARG_ANYTHING,
5694 .arg3_type = ARG_ANYTHING,
5695 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5696 .arg5_type = ARG_CONST_SIZE,
5697 };
5698
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5699 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5700 int, optname, char *, optval, int, optlen)
5701 {
5702 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5703 }
5704
5705 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5706 .func = bpf_unlocked_sk_getsockopt,
5707 .gpl_only = false,
5708 .ret_type = RET_INTEGER,
5709 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5710 .arg2_type = ARG_ANYTHING,
5711 .arg3_type = ARG_ANYTHING,
5712 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5713 .arg5_type = ARG_CONST_SIZE,
5714 };
5715
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5716 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5717 int, level, int, optname, char *, optval, int, optlen)
5718 {
5719 return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5720 }
5721
5722 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5723 .func = bpf_sock_addr_setsockopt,
5724 .gpl_only = false,
5725 .ret_type = RET_INTEGER,
5726 .arg1_type = ARG_PTR_TO_CTX,
5727 .arg2_type = ARG_ANYTHING,
5728 .arg3_type = ARG_ANYTHING,
5729 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5730 .arg5_type = ARG_CONST_SIZE,
5731 };
5732
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5733 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5734 int, level, int, optname, char *, optval, int, optlen)
5735 {
5736 return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5737 }
5738
5739 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5740 .func = bpf_sock_addr_getsockopt,
5741 .gpl_only = false,
5742 .ret_type = RET_INTEGER,
5743 .arg1_type = ARG_PTR_TO_CTX,
5744 .arg2_type = ARG_ANYTHING,
5745 .arg3_type = ARG_ANYTHING,
5746 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5747 .arg5_type = ARG_CONST_SIZE,
5748 };
5749
sk_bpf_set_get_bypass_prot_mem(struct sock * sk,char * optval,int optlen,bool getopt)5750 static int sk_bpf_set_get_bypass_prot_mem(struct sock *sk,
5751 char *optval, int optlen,
5752 bool getopt)
5753 {
5754 int val;
5755
5756 if (optlen != sizeof(int))
5757 return -EINVAL;
5758
5759 if (!sk_has_account(sk))
5760 return -EOPNOTSUPP;
5761
5762 if (getopt) {
5763 *(int *)optval = sk->sk_bypass_prot_mem;
5764 return 0;
5765 }
5766
5767 val = *(int *)optval;
5768 if (val < 0 || val > 1)
5769 return -EINVAL;
5770
5771 sk->sk_bypass_prot_mem = val;
5772 return 0;
5773 }
5774
BPF_CALL_5(bpf_sock_create_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5775 BPF_CALL_5(bpf_sock_create_setsockopt, struct sock *, sk, int, level,
5776 int, optname, char *, optval, int, optlen)
5777 {
5778 if (level == SOL_SOCKET && optname == SK_BPF_BYPASS_PROT_MEM)
5779 return sk_bpf_set_get_bypass_prot_mem(sk, optval, optlen, false);
5780
5781 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5782 }
5783
5784 static const struct bpf_func_proto bpf_sock_create_setsockopt_proto = {
5785 .func = bpf_sock_create_setsockopt,
5786 .gpl_only = false,
5787 .ret_type = RET_INTEGER,
5788 .arg1_type = ARG_PTR_TO_CTX,
5789 .arg2_type = ARG_ANYTHING,
5790 .arg3_type = ARG_ANYTHING,
5791 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5792 .arg5_type = ARG_CONST_SIZE,
5793 };
5794
BPF_CALL_5(bpf_sock_create_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5795 BPF_CALL_5(bpf_sock_create_getsockopt, struct sock *, sk, int, level,
5796 int, optname, char *, optval, int, optlen)
5797 {
5798 if (level == SOL_SOCKET && optname == SK_BPF_BYPASS_PROT_MEM) {
5799 int err = sk_bpf_set_get_bypass_prot_mem(sk, optval, optlen, true);
5800
5801 if (err)
5802 memset(optval, 0, optlen);
5803
5804 return err;
5805 }
5806
5807 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5808 }
5809
5810 static const struct bpf_func_proto bpf_sock_create_getsockopt_proto = {
5811 .func = bpf_sock_create_getsockopt,
5812 .gpl_only = false,
5813 .ret_type = RET_INTEGER,
5814 .arg1_type = ARG_PTR_TO_CTX,
5815 .arg2_type = ARG_ANYTHING,
5816 .arg3_type = ARG_ANYTHING,
5817 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5818 .arg5_type = ARG_CONST_SIZE,
5819 };
5820
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5821 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5822 int, level, int, optname, char *, optval, int, optlen)
5823 {
5824 if (!is_locked_tcp_sock_ops(bpf_sock))
5825 return -EOPNOTSUPP;
5826
5827 return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5828 }
5829
5830 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5831 .func = bpf_sock_ops_setsockopt,
5832 .gpl_only = false,
5833 .ret_type = RET_INTEGER,
5834 .arg1_type = ARG_PTR_TO_CTX,
5835 .arg2_type = ARG_ANYTHING,
5836 .arg3_type = ARG_ANYTHING,
5837 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5838 .arg5_type = ARG_CONST_SIZE,
5839 };
5840
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5841 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5842 int optname, const u8 **start)
5843 {
5844 struct sk_buff *syn_skb = bpf_sock->syn_skb;
5845 const u8 *hdr_start;
5846 int ret;
5847
5848 if (syn_skb) {
5849 /* sk is a request_sock here */
5850
5851 if (optname == TCP_BPF_SYN) {
5852 hdr_start = syn_skb->data;
5853 ret = tcp_hdrlen(syn_skb);
5854 } else if (optname == TCP_BPF_SYN_IP) {
5855 hdr_start = skb_network_header(syn_skb);
5856 ret = skb_network_header_len(syn_skb) +
5857 tcp_hdrlen(syn_skb);
5858 } else {
5859 /* optname == TCP_BPF_SYN_MAC */
5860 hdr_start = skb_mac_header(syn_skb);
5861 ret = skb_mac_header_len(syn_skb) +
5862 skb_network_header_len(syn_skb) +
5863 tcp_hdrlen(syn_skb);
5864 }
5865 } else {
5866 struct sock *sk = bpf_sock->sk;
5867 struct saved_syn *saved_syn;
5868
5869 if (sk->sk_state == TCP_NEW_SYN_RECV)
5870 /* synack retransmit. bpf_sock->syn_skb will
5871 * not be available. It has to resort to
5872 * saved_syn (if it is saved).
5873 */
5874 saved_syn = inet_reqsk(sk)->saved_syn;
5875 else
5876 saved_syn = tcp_sk(sk)->saved_syn;
5877
5878 if (!saved_syn)
5879 return -ENOENT;
5880
5881 if (optname == TCP_BPF_SYN) {
5882 hdr_start = saved_syn->data +
5883 saved_syn->mac_hdrlen +
5884 saved_syn->network_hdrlen;
5885 ret = saved_syn->tcp_hdrlen;
5886 } else if (optname == TCP_BPF_SYN_IP) {
5887 hdr_start = saved_syn->data +
5888 saved_syn->mac_hdrlen;
5889 ret = saved_syn->network_hdrlen +
5890 saved_syn->tcp_hdrlen;
5891 } else {
5892 /* optname == TCP_BPF_SYN_MAC */
5893
5894 /* TCP_SAVE_SYN may not have saved the mac hdr */
5895 if (!saved_syn->mac_hdrlen)
5896 return -ENOENT;
5897
5898 hdr_start = saved_syn->data;
5899 ret = saved_syn->mac_hdrlen +
5900 saved_syn->network_hdrlen +
5901 saved_syn->tcp_hdrlen;
5902 }
5903 }
5904
5905 *start = hdr_start;
5906 return ret;
5907 }
5908
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5909 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5910 int, level, int, optname, char *, optval, int, optlen)
5911 {
5912 if (!is_locked_tcp_sock_ops(bpf_sock))
5913 return -EOPNOTSUPP;
5914
5915 if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5916 optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5917 int ret, copy_len = 0;
5918 const u8 *start;
5919
5920 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5921 if (ret > 0) {
5922 copy_len = ret;
5923 if (optlen < copy_len) {
5924 copy_len = optlen;
5925 ret = -ENOSPC;
5926 }
5927
5928 memcpy(optval, start, copy_len);
5929 }
5930
5931 /* Zero out unused buffer at the end */
5932 memset(optval + copy_len, 0, optlen - copy_len);
5933
5934 return ret;
5935 }
5936
5937 return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5938 }
5939
5940 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5941 .func = bpf_sock_ops_getsockopt,
5942 .gpl_only = false,
5943 .ret_type = RET_INTEGER,
5944 .arg1_type = ARG_PTR_TO_CTX,
5945 .arg2_type = ARG_ANYTHING,
5946 .arg3_type = ARG_ANYTHING,
5947 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5948 .arg5_type = ARG_CONST_SIZE,
5949 };
5950
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5951 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5952 int, argval)
5953 {
5954 struct sock *sk = bpf_sock->sk;
5955 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5956
5957 if (!is_locked_tcp_sock_ops(bpf_sock))
5958 return -EOPNOTSUPP;
5959
5960 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5961 return -EINVAL;
5962
5963 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5964
5965 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5966 }
5967
5968 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5969 .func = bpf_sock_ops_cb_flags_set,
5970 .gpl_only = false,
5971 .ret_type = RET_INTEGER,
5972 .arg1_type = ARG_PTR_TO_CTX,
5973 .arg2_type = ARG_ANYTHING,
5974 };
5975
5976 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5977 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5978
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5979 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5980 int, addr_len)
5981 {
5982 #ifdef CONFIG_INET
5983 struct sock *sk = ctx->sk;
5984 u32 flags = BIND_FROM_BPF;
5985 int err;
5986
5987 err = -EINVAL;
5988 if (addr_len < offsetofend(struct sockaddr, sa_family))
5989 return err;
5990 if (addr->sa_family == AF_INET) {
5991 if (addr_len < sizeof(struct sockaddr_in))
5992 return err;
5993 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5994 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5995 return __inet_bind(sk, (struct sockaddr_unsized *)addr, addr_len, flags);
5996 #if IS_ENABLED(CONFIG_IPV6)
5997 } else if (addr->sa_family == AF_INET6) {
5998 if (addr_len < SIN6_LEN_RFC2133)
5999 return err;
6000 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
6001 flags |= BIND_FORCE_ADDRESS_NO_PORT;
6002 /* ipv6_bpf_stub cannot be NULL, since it's called from
6003 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
6004 */
6005 return ipv6_bpf_stub->inet6_bind(sk, (struct sockaddr_unsized *)addr,
6006 addr_len, flags);
6007 #endif /* CONFIG_IPV6 */
6008 }
6009 #endif /* CONFIG_INET */
6010
6011 return -EAFNOSUPPORT;
6012 }
6013
6014 static const struct bpf_func_proto bpf_bind_proto = {
6015 .func = bpf_bind,
6016 .gpl_only = false,
6017 .ret_type = RET_INTEGER,
6018 .arg1_type = ARG_PTR_TO_CTX,
6019 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6020 .arg3_type = ARG_CONST_SIZE,
6021 };
6022
6023 #ifdef CONFIG_XFRM
6024
6025 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
6026 (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
6027
6028 struct metadata_dst __percpu *xfrm_bpf_md_dst;
6029 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
6030
6031 #endif
6032
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)6033 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
6034 struct bpf_xfrm_state *, to, u32, size, u64, flags)
6035 {
6036 const struct sec_path *sp = skb_sec_path(skb);
6037 const struct xfrm_state *x;
6038
6039 if (!sp || unlikely(index >= sp->len || flags))
6040 goto err_clear;
6041
6042 x = sp->xvec[index];
6043
6044 if (unlikely(size != sizeof(struct bpf_xfrm_state)))
6045 goto err_clear;
6046
6047 to->reqid = x->props.reqid;
6048 to->spi = x->id.spi;
6049 to->family = x->props.family;
6050 to->ext = 0;
6051
6052 if (to->family == AF_INET6) {
6053 memcpy(to->remote_ipv6, x->props.saddr.a6,
6054 sizeof(to->remote_ipv6));
6055 } else {
6056 to->remote_ipv4 = x->props.saddr.a4;
6057 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
6058 }
6059
6060 return 0;
6061 err_clear:
6062 memset(to, 0, size);
6063 return -EINVAL;
6064 }
6065
6066 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
6067 .func = bpf_skb_get_xfrm_state,
6068 .gpl_only = false,
6069 .ret_type = RET_INTEGER,
6070 .arg1_type = ARG_PTR_TO_CTX,
6071 .arg2_type = ARG_ANYTHING,
6072 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
6073 .arg4_type = ARG_CONST_SIZE,
6074 .arg5_type = ARG_ANYTHING,
6075 };
6076 #endif
6077
6078 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)6079 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
6080 {
6081 params->h_vlan_TCI = 0;
6082 params->h_vlan_proto = 0;
6083 if (mtu)
6084 params->mtu_result = mtu; /* union with tot_len */
6085
6086 return 0;
6087 }
6088 #endif
6089
6090 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6091 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6092 u32 flags, bool check_mtu)
6093 {
6094 struct fib_nh_common *nhc;
6095 struct in_device *in_dev;
6096 struct neighbour *neigh;
6097 struct net_device *dev;
6098 struct fib_result res;
6099 struct flowi4 fl4;
6100 u32 mtu = 0;
6101 int err;
6102
6103 dev = dev_get_by_index_rcu(net, params->ifindex);
6104 if (unlikely(!dev))
6105 return -ENODEV;
6106
6107 /* verify forwarding is enabled on this interface */
6108 in_dev = __in_dev_get_rcu(dev);
6109 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
6110 return BPF_FIB_LKUP_RET_FWD_DISABLED;
6111
6112 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6113 fl4.flowi4_iif = 1;
6114 fl4.flowi4_oif = params->ifindex;
6115 } else {
6116 fl4.flowi4_iif = params->ifindex;
6117 fl4.flowi4_oif = 0;
6118 }
6119 fl4.flowi4_dscp = inet_dsfield_to_dscp(params->tos);
6120 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
6121 fl4.flowi4_flags = 0;
6122
6123 fl4.flowi4_proto = params->l4_protocol;
6124 fl4.daddr = params->ipv4_dst;
6125 fl4.saddr = params->ipv4_src;
6126 fl4.fl4_sport = params->sport;
6127 fl4.fl4_dport = params->dport;
6128 fl4.flowi4_multipath_hash = 0;
6129
6130 if (flags & BPF_FIB_LOOKUP_DIRECT) {
6131 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6132 struct fib_table *tb;
6133
6134 if (flags & BPF_FIB_LOOKUP_TBID) {
6135 tbid = params->tbid;
6136 /* zero out for vlan output */
6137 params->tbid = 0;
6138 }
6139
6140 tb = fib_get_table(net, tbid);
6141 if (unlikely(!tb))
6142 return BPF_FIB_LKUP_RET_NOT_FWDED;
6143
6144 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
6145 } else {
6146 if (flags & BPF_FIB_LOOKUP_MARK)
6147 fl4.flowi4_mark = params->mark;
6148 else
6149 fl4.flowi4_mark = 0;
6150 fl4.flowi4_secid = 0;
6151 fl4.flowi4_tun_key.tun_id = 0;
6152 fl4.flowi4_uid = sock_net_uid(net, NULL);
6153
6154 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
6155 }
6156
6157 if (err) {
6158 /* map fib lookup errors to RTN_ type */
6159 if (err == -EINVAL)
6160 return BPF_FIB_LKUP_RET_BLACKHOLE;
6161 if (err == -EHOSTUNREACH)
6162 return BPF_FIB_LKUP_RET_UNREACHABLE;
6163 if (err == -EACCES)
6164 return BPF_FIB_LKUP_RET_PROHIBIT;
6165
6166 return BPF_FIB_LKUP_RET_NOT_FWDED;
6167 }
6168
6169 if (res.type != RTN_UNICAST)
6170 return BPF_FIB_LKUP_RET_NOT_FWDED;
6171
6172 if (fib_info_num_path(res.fi) > 1)
6173 fib_select_path(net, &res, &fl4, NULL);
6174
6175 if (check_mtu) {
6176 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
6177 if (params->tot_len > mtu) {
6178 params->mtu_result = mtu; /* union with tot_len */
6179 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6180 }
6181 }
6182
6183 nhc = res.nhc;
6184
6185 /* do not handle lwt encaps right now */
6186 if (nhc->nhc_lwtstate)
6187 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6188
6189 dev = nhc->nhc_dev;
6190
6191 params->rt_metric = res.fi->fib_priority;
6192 params->ifindex = dev->ifindex;
6193
6194 if (flags & BPF_FIB_LOOKUP_SRC)
6195 params->ipv4_src = fib_result_prefsrc(net, &res);
6196
6197 /* xdp and cls_bpf programs are run in RCU-bh so
6198 * rcu_read_lock_bh is not needed here
6199 */
6200 if (likely(nhc->nhc_gw_family != AF_INET6)) {
6201 if (nhc->nhc_gw_family)
6202 params->ipv4_dst = nhc->nhc_gw.ipv4;
6203 } else {
6204 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
6205
6206 params->family = AF_INET6;
6207 *dst = nhc->nhc_gw.ipv6;
6208 }
6209
6210 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6211 goto set_fwd_params;
6212
6213 if (likely(nhc->nhc_gw_family != AF_INET6))
6214 neigh = __ipv4_neigh_lookup_noref(dev,
6215 (__force u32)params->ipv4_dst);
6216 else
6217 neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
6218
6219 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6220 return BPF_FIB_LKUP_RET_NO_NEIGH;
6221 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6222 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6223
6224 set_fwd_params:
6225 return bpf_fib_set_fwd_params(params, mtu);
6226 }
6227 #endif
6228
6229 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6230 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6231 u32 flags, bool check_mtu)
6232 {
6233 struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6234 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6235 struct fib6_result res = {};
6236 struct neighbour *neigh;
6237 struct net_device *dev;
6238 struct inet6_dev *idev;
6239 struct flowi6 fl6;
6240 int strict = 0;
6241 int oif, err;
6242 u32 mtu = 0;
6243
6244 /* link local addresses are never forwarded */
6245 if (rt6_need_strict(dst) || rt6_need_strict(src))
6246 return BPF_FIB_LKUP_RET_NOT_FWDED;
6247
6248 dev = dev_get_by_index_rcu(net, params->ifindex);
6249 if (unlikely(!dev))
6250 return -ENODEV;
6251
6252 idev = __in6_dev_get_safely(dev);
6253 if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
6254 return BPF_FIB_LKUP_RET_FWD_DISABLED;
6255
6256 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6257 fl6.flowi6_iif = 1;
6258 oif = fl6.flowi6_oif = params->ifindex;
6259 } else {
6260 oif = fl6.flowi6_iif = params->ifindex;
6261 fl6.flowi6_oif = 0;
6262 strict = RT6_LOOKUP_F_HAS_SADDR;
6263 }
6264 fl6.flowlabel = params->flowinfo;
6265 fl6.flowi6_scope = 0;
6266 fl6.flowi6_flags = 0;
6267 fl6.mp_hash = 0;
6268
6269 fl6.flowi6_proto = params->l4_protocol;
6270 fl6.daddr = *dst;
6271 fl6.saddr = *src;
6272 fl6.fl6_sport = params->sport;
6273 fl6.fl6_dport = params->dport;
6274
6275 if (flags & BPF_FIB_LOOKUP_DIRECT) {
6276 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6277 struct fib6_table *tb;
6278
6279 if (flags & BPF_FIB_LOOKUP_TBID) {
6280 tbid = params->tbid;
6281 /* zero out for vlan output */
6282 params->tbid = 0;
6283 }
6284
6285 tb = ipv6_stub->fib6_get_table(net, tbid);
6286 if (unlikely(!tb))
6287 return BPF_FIB_LKUP_RET_NOT_FWDED;
6288
6289 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6290 strict);
6291 } else {
6292 if (flags & BPF_FIB_LOOKUP_MARK)
6293 fl6.flowi6_mark = params->mark;
6294 else
6295 fl6.flowi6_mark = 0;
6296 fl6.flowi6_secid = 0;
6297 fl6.flowi6_tun_key.tun_id = 0;
6298 fl6.flowi6_uid = sock_net_uid(net, NULL);
6299
6300 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6301 }
6302
6303 if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6304 res.f6i == net->ipv6.fib6_null_entry))
6305 return BPF_FIB_LKUP_RET_NOT_FWDED;
6306
6307 switch (res.fib6_type) {
6308 /* only unicast is forwarded */
6309 case RTN_UNICAST:
6310 break;
6311 case RTN_BLACKHOLE:
6312 return BPF_FIB_LKUP_RET_BLACKHOLE;
6313 case RTN_UNREACHABLE:
6314 return BPF_FIB_LKUP_RET_UNREACHABLE;
6315 case RTN_PROHIBIT:
6316 return BPF_FIB_LKUP_RET_PROHIBIT;
6317 default:
6318 return BPF_FIB_LKUP_RET_NOT_FWDED;
6319 }
6320
6321 ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6322 fl6.flowi6_oif != 0, NULL, strict);
6323
6324 if (check_mtu) {
6325 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6326 if (params->tot_len > mtu) {
6327 params->mtu_result = mtu; /* union with tot_len */
6328 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6329 }
6330 }
6331
6332 if (res.nh->fib_nh_lws)
6333 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6334
6335 if (res.nh->fib_nh_gw_family)
6336 *dst = res.nh->fib_nh_gw6;
6337
6338 dev = res.nh->fib_nh_dev;
6339 params->rt_metric = res.f6i->fib6_metric;
6340 params->ifindex = dev->ifindex;
6341
6342 if (flags & BPF_FIB_LOOKUP_SRC) {
6343 if (res.f6i->fib6_prefsrc.plen) {
6344 *src = res.f6i->fib6_prefsrc.addr;
6345 } else {
6346 err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6347 &fl6.daddr, 0,
6348 src);
6349 if (err)
6350 return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6351 }
6352 }
6353
6354 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6355 goto set_fwd_params;
6356
6357 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6358 * not needed here.
6359 */
6360 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6361 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6362 return BPF_FIB_LKUP_RET_NO_NEIGH;
6363 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6364 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6365
6366 set_fwd_params:
6367 return bpf_fib_set_fwd_params(params, mtu);
6368 }
6369 #endif
6370
6371 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6372 BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6373 BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK)
6374
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6375 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6376 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6377 {
6378 if (plen < sizeof(*params))
6379 return -EINVAL;
6380
6381 if (flags & ~BPF_FIB_LOOKUP_MASK)
6382 return -EINVAL;
6383
6384 switch (params->family) {
6385 #if IS_ENABLED(CONFIG_INET)
6386 case AF_INET:
6387 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6388 flags, true);
6389 #endif
6390 #if IS_ENABLED(CONFIG_IPV6)
6391 case AF_INET6:
6392 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6393 flags, true);
6394 #endif
6395 }
6396 return -EAFNOSUPPORT;
6397 }
6398
6399 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6400 .func = bpf_xdp_fib_lookup,
6401 .gpl_only = true,
6402 .ret_type = RET_INTEGER,
6403 .arg1_type = ARG_PTR_TO_CTX,
6404 .arg2_type = ARG_PTR_TO_MEM,
6405 .arg3_type = ARG_CONST_SIZE,
6406 .arg4_type = ARG_ANYTHING,
6407 };
6408
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6409 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6410 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6411 {
6412 struct net *net = dev_net(skb->dev);
6413 int rc = -EAFNOSUPPORT;
6414 bool check_mtu = false;
6415
6416 if (plen < sizeof(*params))
6417 return -EINVAL;
6418
6419 if (flags & ~BPF_FIB_LOOKUP_MASK)
6420 return -EINVAL;
6421
6422 if (params->tot_len)
6423 check_mtu = true;
6424
6425 switch (params->family) {
6426 #if IS_ENABLED(CONFIG_INET)
6427 case AF_INET:
6428 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6429 break;
6430 #endif
6431 #if IS_ENABLED(CONFIG_IPV6)
6432 case AF_INET6:
6433 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6434 break;
6435 #endif
6436 }
6437
6438 if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6439 struct net_device *dev;
6440
6441 /* When tot_len isn't provided by user, check skb
6442 * against MTU of FIB lookup resulting net_device
6443 */
6444 dev = dev_get_by_index_rcu(net, params->ifindex);
6445 if (!is_skb_forwardable(dev, skb))
6446 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6447
6448 params->mtu_result = dev->mtu; /* union with tot_len */
6449 }
6450
6451 return rc;
6452 }
6453
6454 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6455 .func = bpf_skb_fib_lookup,
6456 .gpl_only = true,
6457 .ret_type = RET_INTEGER,
6458 .arg1_type = ARG_PTR_TO_CTX,
6459 .arg2_type = ARG_PTR_TO_MEM,
6460 .arg3_type = ARG_CONST_SIZE,
6461 .arg4_type = ARG_ANYTHING,
6462 };
6463
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6464 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6465 u32 ifindex)
6466 {
6467 struct net *netns = dev_net(dev_curr);
6468
6469 /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6470 if (ifindex == 0)
6471 return dev_curr;
6472
6473 return dev_get_by_index_rcu(netns, ifindex);
6474 }
6475
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6476 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6477 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6478 {
6479 int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6480 struct net_device *dev = skb->dev;
6481 int mtu, dev_len, skb_len;
6482
6483 if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6484 return -EINVAL;
6485 if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6486 return -EINVAL;
6487
6488 dev = __dev_via_ifindex(dev, ifindex);
6489 if (unlikely(!dev))
6490 return -ENODEV;
6491
6492 mtu = READ_ONCE(dev->mtu);
6493 dev_len = mtu + dev->hard_header_len;
6494
6495 /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6496 skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6497
6498 skb_len += len_diff; /* minus result pass check */
6499 if (skb_len <= dev_len) {
6500 ret = BPF_MTU_CHK_RET_SUCCESS;
6501 goto out;
6502 }
6503 /* At this point, skb->len exceed MTU, but as it include length of all
6504 * segments, it can still be below MTU. The SKB can possibly get
6505 * re-segmented in transmit path (see validate_xmit_skb). Thus, user
6506 * must choose if segs are to be MTU checked.
6507 */
6508 if (skb_is_gso(skb)) {
6509 ret = BPF_MTU_CHK_RET_SUCCESS;
6510 if (flags & BPF_MTU_CHK_SEGS) {
6511 if (!skb_transport_header_was_set(skb))
6512 return -EINVAL;
6513 if (!skb_gso_validate_network_len(skb, mtu))
6514 ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6515 }
6516 }
6517 out:
6518 *mtu_len = mtu;
6519 return ret;
6520 }
6521
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6522 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6523 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6524 {
6525 struct net_device *dev = xdp->rxq->dev;
6526 int xdp_len = xdp->data_end - xdp->data;
6527 int ret = BPF_MTU_CHK_RET_SUCCESS;
6528 int mtu, dev_len;
6529
6530 /* XDP variant doesn't support multi-buffer segment check (yet) */
6531 if (unlikely(flags))
6532 return -EINVAL;
6533
6534 dev = __dev_via_ifindex(dev, ifindex);
6535 if (unlikely(!dev))
6536 return -ENODEV;
6537
6538 mtu = READ_ONCE(dev->mtu);
6539 dev_len = mtu + dev->hard_header_len;
6540
6541 /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6542 if (*mtu_len)
6543 xdp_len = *mtu_len + dev->hard_header_len;
6544
6545 xdp_len += len_diff; /* minus result pass check */
6546 if (xdp_len > dev_len)
6547 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6548
6549 *mtu_len = mtu;
6550 return ret;
6551 }
6552
6553 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6554 .func = bpf_skb_check_mtu,
6555 .gpl_only = true,
6556 .ret_type = RET_INTEGER,
6557 .arg1_type = ARG_PTR_TO_CTX,
6558 .arg2_type = ARG_ANYTHING,
6559 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6560 .arg3_size = sizeof(u32),
6561 .arg4_type = ARG_ANYTHING,
6562 .arg5_type = ARG_ANYTHING,
6563 };
6564
6565 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6566 .func = bpf_xdp_check_mtu,
6567 .gpl_only = true,
6568 .ret_type = RET_INTEGER,
6569 .arg1_type = ARG_PTR_TO_CTX,
6570 .arg2_type = ARG_ANYTHING,
6571 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6572 .arg3_size = sizeof(u32),
6573 .arg4_type = ARG_ANYTHING,
6574 .arg5_type = ARG_ANYTHING,
6575 };
6576
6577 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6578 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6579 {
6580 int err;
6581 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6582
6583 if (!seg6_validate_srh(srh, len, false))
6584 return -EINVAL;
6585
6586 switch (type) {
6587 case BPF_LWT_ENCAP_SEG6_INLINE:
6588 if (skb->protocol != htons(ETH_P_IPV6))
6589 return -EBADMSG;
6590
6591 err = seg6_do_srh_inline(skb, srh);
6592 break;
6593 case BPF_LWT_ENCAP_SEG6:
6594 skb_reset_inner_headers(skb);
6595 skb->encapsulation = 1;
6596 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6597 break;
6598 default:
6599 return -EINVAL;
6600 }
6601
6602 bpf_compute_data_pointers(skb);
6603 if (err)
6604 return err;
6605
6606 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6607
6608 return seg6_lookup_nexthop(skb, NULL, 0);
6609 }
6610 #endif /* CONFIG_IPV6_SEG6_BPF */
6611
6612 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6613 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6614 bool ingress)
6615 {
6616 return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6617 }
6618 #endif
6619
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6620 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6621 u32, len)
6622 {
6623 switch (type) {
6624 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6625 case BPF_LWT_ENCAP_SEG6:
6626 case BPF_LWT_ENCAP_SEG6_INLINE:
6627 return bpf_push_seg6_encap(skb, type, hdr, len);
6628 #endif
6629 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6630 case BPF_LWT_ENCAP_IP:
6631 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6632 #endif
6633 default:
6634 return -EINVAL;
6635 }
6636 }
6637
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6638 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6639 void *, hdr, u32, len)
6640 {
6641 switch (type) {
6642 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6643 case BPF_LWT_ENCAP_IP:
6644 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6645 #endif
6646 default:
6647 return -EINVAL;
6648 }
6649 }
6650
6651 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6652 .func = bpf_lwt_in_push_encap,
6653 .gpl_only = false,
6654 .ret_type = RET_INTEGER,
6655 .arg1_type = ARG_PTR_TO_CTX,
6656 .arg2_type = ARG_ANYTHING,
6657 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6658 .arg4_type = ARG_CONST_SIZE
6659 };
6660
6661 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6662 .func = bpf_lwt_xmit_push_encap,
6663 .gpl_only = false,
6664 .ret_type = RET_INTEGER,
6665 .arg1_type = ARG_PTR_TO_CTX,
6666 .arg2_type = ARG_ANYTHING,
6667 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6668 .arg4_type = ARG_CONST_SIZE
6669 };
6670
6671 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6672 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6673 const void *, from, u32, len)
6674 {
6675 struct seg6_bpf_srh_state *srh_state =
6676 this_cpu_ptr(&seg6_bpf_srh_states);
6677 struct ipv6_sr_hdr *srh = srh_state->srh;
6678 void *srh_tlvs, *srh_end, *ptr;
6679 int srhoff = 0;
6680
6681 lockdep_assert_held(&srh_state->bh_lock);
6682 if (srh == NULL)
6683 return -EINVAL;
6684
6685 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6686 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6687
6688 ptr = skb->data + offset;
6689 if (ptr >= srh_tlvs && ptr + len <= srh_end)
6690 srh_state->valid = false;
6691 else if (ptr < (void *)&srh->flags ||
6692 ptr + len > (void *)&srh->segments)
6693 return -EFAULT;
6694
6695 if (unlikely(bpf_try_make_writable(skb, offset + len)))
6696 return -EFAULT;
6697 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6698 return -EINVAL;
6699 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6700
6701 memcpy(skb->data + offset, from, len);
6702 return 0;
6703 }
6704
6705 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6706 .func = bpf_lwt_seg6_store_bytes,
6707 .gpl_only = false,
6708 .ret_type = RET_INTEGER,
6709 .arg1_type = ARG_PTR_TO_CTX,
6710 .arg2_type = ARG_ANYTHING,
6711 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6712 .arg4_type = ARG_CONST_SIZE
6713 };
6714
bpf_update_srh_state(struct sk_buff * skb)6715 static void bpf_update_srh_state(struct sk_buff *skb)
6716 {
6717 struct seg6_bpf_srh_state *srh_state =
6718 this_cpu_ptr(&seg6_bpf_srh_states);
6719 int srhoff = 0;
6720
6721 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6722 srh_state->srh = NULL;
6723 } else {
6724 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6725 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6726 srh_state->valid = true;
6727 }
6728 }
6729
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6730 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6731 u32, action, void *, param, u32, param_len)
6732 {
6733 struct seg6_bpf_srh_state *srh_state =
6734 this_cpu_ptr(&seg6_bpf_srh_states);
6735 int hdroff = 0;
6736 int err;
6737
6738 lockdep_assert_held(&srh_state->bh_lock);
6739 switch (action) {
6740 case SEG6_LOCAL_ACTION_END_X:
6741 if (!seg6_bpf_has_valid_srh(skb))
6742 return -EBADMSG;
6743 if (param_len != sizeof(struct in6_addr))
6744 return -EINVAL;
6745 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6746 case SEG6_LOCAL_ACTION_END_T:
6747 if (!seg6_bpf_has_valid_srh(skb))
6748 return -EBADMSG;
6749 if (param_len != sizeof(int))
6750 return -EINVAL;
6751 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6752 case SEG6_LOCAL_ACTION_END_DT6:
6753 if (!seg6_bpf_has_valid_srh(skb))
6754 return -EBADMSG;
6755 if (param_len != sizeof(int))
6756 return -EINVAL;
6757
6758 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6759 return -EBADMSG;
6760 if (!pskb_pull(skb, hdroff))
6761 return -EBADMSG;
6762
6763 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6764 skb_reset_network_header(skb);
6765 skb_reset_transport_header(skb);
6766 skb->encapsulation = 0;
6767
6768 bpf_compute_data_pointers(skb);
6769 bpf_update_srh_state(skb);
6770 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6771 case SEG6_LOCAL_ACTION_END_B6:
6772 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6773 return -EBADMSG;
6774 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6775 param, param_len);
6776 if (!err)
6777 bpf_update_srh_state(skb);
6778
6779 return err;
6780 case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6781 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6782 return -EBADMSG;
6783 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6784 param, param_len);
6785 if (!err)
6786 bpf_update_srh_state(skb);
6787
6788 return err;
6789 default:
6790 return -EINVAL;
6791 }
6792 }
6793
6794 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6795 .func = bpf_lwt_seg6_action,
6796 .gpl_only = false,
6797 .ret_type = RET_INTEGER,
6798 .arg1_type = ARG_PTR_TO_CTX,
6799 .arg2_type = ARG_ANYTHING,
6800 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6801 .arg4_type = ARG_CONST_SIZE
6802 };
6803
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6804 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6805 s32, len)
6806 {
6807 struct seg6_bpf_srh_state *srh_state =
6808 this_cpu_ptr(&seg6_bpf_srh_states);
6809 struct ipv6_sr_hdr *srh = srh_state->srh;
6810 void *srh_end, *srh_tlvs, *ptr;
6811 struct ipv6hdr *hdr;
6812 int srhoff = 0;
6813 int ret;
6814
6815 lockdep_assert_held(&srh_state->bh_lock);
6816 if (unlikely(srh == NULL))
6817 return -EINVAL;
6818
6819 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6820 ((srh->first_segment + 1) << 4));
6821 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6822 srh_state->hdrlen);
6823 ptr = skb->data + offset;
6824
6825 if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6826 return -EFAULT;
6827 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6828 return -EFAULT;
6829
6830 if (len > 0) {
6831 ret = skb_cow_head(skb, len);
6832 if (unlikely(ret < 0))
6833 return ret;
6834
6835 ret = bpf_skb_net_hdr_push(skb, offset, len);
6836 } else {
6837 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6838 }
6839
6840 bpf_compute_data_pointers(skb);
6841 if (unlikely(ret < 0))
6842 return ret;
6843
6844 hdr = (struct ipv6hdr *)skb->data;
6845 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6846
6847 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6848 return -EINVAL;
6849 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6850 srh_state->hdrlen += len;
6851 srh_state->valid = false;
6852 return 0;
6853 }
6854
6855 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6856 .func = bpf_lwt_seg6_adjust_srh,
6857 .gpl_only = false,
6858 .ret_type = RET_INTEGER,
6859 .arg1_type = ARG_PTR_TO_CTX,
6860 .arg2_type = ARG_ANYTHING,
6861 .arg3_type = ARG_ANYTHING,
6862 };
6863 #endif /* CONFIG_IPV6_SEG6_BPF */
6864
6865 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6866 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6867 int dif, int sdif, u8 family, u8 proto)
6868 {
6869 bool refcounted = false;
6870 struct sock *sk = NULL;
6871
6872 if (family == AF_INET) {
6873 __be32 src4 = tuple->ipv4.saddr;
6874 __be32 dst4 = tuple->ipv4.daddr;
6875
6876 if (proto == IPPROTO_TCP)
6877 sk = __inet_lookup(net, NULL, 0,
6878 src4, tuple->ipv4.sport,
6879 dst4, tuple->ipv4.dport,
6880 dif, sdif, &refcounted);
6881 else
6882 sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6883 dst4, tuple->ipv4.dport,
6884 dif, sdif, net->ipv4.udp_table, NULL);
6885 #if IS_ENABLED(CONFIG_IPV6)
6886 } else {
6887 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6888 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6889
6890 if (proto == IPPROTO_TCP)
6891 sk = __inet6_lookup(net, NULL, 0,
6892 src6, tuple->ipv6.sport,
6893 dst6, ntohs(tuple->ipv6.dport),
6894 dif, sdif, &refcounted);
6895 else if (likely(ipv6_bpf_stub))
6896 sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6897 src6, tuple->ipv6.sport,
6898 dst6, tuple->ipv6.dport,
6899 dif, sdif,
6900 net->ipv4.udp_table, NULL);
6901 #endif
6902 }
6903
6904 if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6905 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6906 sk = NULL;
6907 }
6908 return sk;
6909 }
6910
6911 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6912 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6913 */
6914 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6915 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6916 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6917 u64 flags, int sdif)
6918 {
6919 struct sock *sk = NULL;
6920 struct net *net;
6921 u8 family;
6922
6923 if (len == sizeof(tuple->ipv4))
6924 family = AF_INET;
6925 else if (len == sizeof(tuple->ipv6))
6926 family = AF_INET6;
6927 else
6928 return NULL;
6929
6930 if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6931 goto out;
6932
6933 if (sdif < 0) {
6934 if (family == AF_INET)
6935 sdif = inet_sdif(skb);
6936 else
6937 sdif = inet6_sdif(skb);
6938 }
6939
6940 if ((s32)netns_id < 0) {
6941 net = caller_net;
6942 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6943 } else {
6944 net = get_net_ns_by_id(caller_net, netns_id);
6945 if (unlikely(!net))
6946 goto out;
6947 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6948 put_net(net);
6949 }
6950
6951 out:
6952 return sk;
6953 }
6954
6955 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6956 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6957 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6958 u64 flags, int sdif)
6959 {
6960 struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6961 ifindex, proto, netns_id, flags,
6962 sdif);
6963
6964 if (sk) {
6965 struct sock *sk2 = sk_to_full_sk(sk);
6966
6967 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6968 * sock refcnt is decremented to prevent a request_sock leak.
6969 */
6970 if (sk2 != sk) {
6971 sock_gen_put(sk);
6972 /* Ensure there is no need to bump sk2 refcnt */
6973 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6974 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6975 return NULL;
6976 }
6977 sk = sk2;
6978 }
6979 }
6980
6981 return sk;
6982 }
6983
6984 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6985 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6986 u8 proto, u64 netns_id, u64 flags)
6987 {
6988 struct net *caller_net;
6989 int ifindex;
6990
6991 if (skb->dev) {
6992 caller_net = dev_net(skb->dev);
6993 ifindex = skb->dev->ifindex;
6994 } else {
6995 caller_net = sock_net(skb->sk);
6996 ifindex = 0;
6997 }
6998
6999 return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
7000 netns_id, flags, -1);
7001 }
7002
7003 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)7004 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
7005 u8 proto, u64 netns_id, u64 flags)
7006 {
7007 struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
7008 flags);
7009
7010 if (sk) {
7011 struct sock *sk2 = sk_to_full_sk(sk);
7012
7013 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
7014 * sock refcnt is decremented to prevent a request_sock leak.
7015 */
7016 if (sk2 != sk) {
7017 sock_gen_put(sk);
7018 /* Ensure there is no need to bump sk2 refcnt */
7019 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
7020 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
7021 return NULL;
7022 }
7023 sk = sk2;
7024 }
7025 }
7026
7027 return sk;
7028 }
7029
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7030 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
7031 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7032 {
7033 return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
7034 netns_id, flags);
7035 }
7036
7037 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
7038 .func = bpf_skc_lookup_tcp,
7039 .gpl_only = false,
7040 .pkt_access = true,
7041 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7042 .arg1_type = ARG_PTR_TO_CTX,
7043 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7044 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7045 .arg4_type = ARG_ANYTHING,
7046 .arg5_type = ARG_ANYTHING,
7047 };
7048
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7049 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
7050 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7051 {
7052 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
7053 netns_id, flags);
7054 }
7055
7056 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
7057 .func = bpf_sk_lookup_tcp,
7058 .gpl_only = false,
7059 .pkt_access = true,
7060 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7061 .arg1_type = ARG_PTR_TO_CTX,
7062 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7063 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7064 .arg4_type = ARG_ANYTHING,
7065 .arg5_type = ARG_ANYTHING,
7066 };
7067
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7068 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
7069 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7070 {
7071 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
7072 netns_id, flags);
7073 }
7074
7075 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
7076 .func = bpf_sk_lookup_udp,
7077 .gpl_only = false,
7078 .pkt_access = true,
7079 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7080 .arg1_type = ARG_PTR_TO_CTX,
7081 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7082 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7083 .arg4_type = ARG_ANYTHING,
7084 .arg5_type = ARG_ANYTHING,
7085 };
7086
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7087 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
7088 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7089 {
7090 struct net_device *dev = skb->dev;
7091 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7092 struct net *caller_net = dev_net(dev);
7093
7094 return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
7095 ifindex, IPPROTO_TCP, netns_id,
7096 flags, sdif);
7097 }
7098
7099 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
7100 .func = bpf_tc_skc_lookup_tcp,
7101 .gpl_only = false,
7102 .pkt_access = true,
7103 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7104 .arg1_type = ARG_PTR_TO_CTX,
7105 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7106 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7107 .arg4_type = ARG_ANYTHING,
7108 .arg5_type = ARG_ANYTHING,
7109 };
7110
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7111 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
7112 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7113 {
7114 struct net_device *dev = skb->dev;
7115 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7116 struct net *caller_net = dev_net(dev);
7117
7118 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7119 ifindex, IPPROTO_TCP, netns_id,
7120 flags, sdif);
7121 }
7122
7123 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
7124 .func = bpf_tc_sk_lookup_tcp,
7125 .gpl_only = false,
7126 .pkt_access = true,
7127 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7128 .arg1_type = ARG_PTR_TO_CTX,
7129 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7130 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7131 .arg4_type = ARG_ANYTHING,
7132 .arg5_type = ARG_ANYTHING,
7133 };
7134
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7135 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
7136 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7137 {
7138 struct net_device *dev = skb->dev;
7139 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7140 struct net *caller_net = dev_net(dev);
7141
7142 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7143 ifindex, IPPROTO_UDP, netns_id,
7144 flags, sdif);
7145 }
7146
7147 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
7148 .func = bpf_tc_sk_lookup_udp,
7149 .gpl_only = false,
7150 .pkt_access = true,
7151 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7152 .arg1_type = ARG_PTR_TO_CTX,
7153 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7154 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7155 .arg4_type = ARG_ANYTHING,
7156 .arg5_type = ARG_ANYTHING,
7157 };
7158
BPF_CALL_1(bpf_sk_release,struct sock *,sk)7159 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
7160 {
7161 if (sk && sk_is_refcounted(sk))
7162 sock_gen_put(sk);
7163 return 0;
7164 }
7165
7166 static const struct bpf_func_proto bpf_sk_release_proto = {
7167 .func = bpf_sk_release,
7168 .gpl_only = false,
7169 .ret_type = RET_INTEGER,
7170 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
7171 };
7172
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7173 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
7174 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7175 {
7176 struct net_device *dev = ctx->rxq->dev;
7177 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7178 struct net *caller_net = dev_net(dev);
7179
7180 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7181 ifindex, IPPROTO_UDP, netns_id,
7182 flags, sdif);
7183 }
7184
7185 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
7186 .func = bpf_xdp_sk_lookup_udp,
7187 .gpl_only = false,
7188 .pkt_access = true,
7189 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7190 .arg1_type = ARG_PTR_TO_CTX,
7191 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7192 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7193 .arg4_type = ARG_ANYTHING,
7194 .arg5_type = ARG_ANYTHING,
7195 };
7196
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7197 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
7198 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7199 {
7200 struct net_device *dev = ctx->rxq->dev;
7201 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7202 struct net *caller_net = dev_net(dev);
7203
7204 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
7205 ifindex, IPPROTO_TCP, netns_id,
7206 flags, sdif);
7207 }
7208
7209 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
7210 .func = bpf_xdp_skc_lookup_tcp,
7211 .gpl_only = false,
7212 .pkt_access = true,
7213 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7214 .arg1_type = ARG_PTR_TO_CTX,
7215 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7216 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7217 .arg4_type = ARG_ANYTHING,
7218 .arg5_type = ARG_ANYTHING,
7219 };
7220
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7221 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
7222 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7223 {
7224 struct net_device *dev = ctx->rxq->dev;
7225 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7226 struct net *caller_net = dev_net(dev);
7227
7228 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7229 ifindex, IPPROTO_TCP, netns_id,
7230 flags, sdif);
7231 }
7232
7233 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7234 .func = bpf_xdp_sk_lookup_tcp,
7235 .gpl_only = false,
7236 .pkt_access = true,
7237 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7238 .arg1_type = ARG_PTR_TO_CTX,
7239 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7240 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7241 .arg4_type = ARG_ANYTHING,
7242 .arg5_type = ARG_ANYTHING,
7243 };
7244
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7245 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7246 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7247 {
7248 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7249 sock_net(ctx->sk), 0,
7250 IPPROTO_TCP, netns_id, flags,
7251 -1);
7252 }
7253
7254 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7255 .func = bpf_sock_addr_skc_lookup_tcp,
7256 .gpl_only = false,
7257 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7258 .arg1_type = ARG_PTR_TO_CTX,
7259 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7260 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7261 .arg4_type = ARG_ANYTHING,
7262 .arg5_type = ARG_ANYTHING,
7263 };
7264
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7265 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7266 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7267 {
7268 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7269 sock_net(ctx->sk), 0, IPPROTO_TCP,
7270 netns_id, flags, -1);
7271 }
7272
7273 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7274 .func = bpf_sock_addr_sk_lookup_tcp,
7275 .gpl_only = false,
7276 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7277 .arg1_type = ARG_PTR_TO_CTX,
7278 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7279 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7280 .arg4_type = ARG_ANYTHING,
7281 .arg5_type = ARG_ANYTHING,
7282 };
7283
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7284 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7285 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7286 {
7287 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7288 sock_net(ctx->sk), 0, IPPROTO_UDP,
7289 netns_id, flags, -1);
7290 }
7291
7292 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7293 .func = bpf_sock_addr_sk_lookup_udp,
7294 .gpl_only = false,
7295 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7296 .arg1_type = ARG_PTR_TO_CTX,
7297 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7298 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7299 .arg4_type = ARG_ANYTHING,
7300 .arg5_type = ARG_ANYTHING,
7301 };
7302
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7303 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7304 struct bpf_insn_access_aux *info)
7305 {
7306 if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7307 icsk_retransmits))
7308 return false;
7309
7310 if (off % size != 0)
7311 return false;
7312
7313 switch (off) {
7314 case offsetof(struct bpf_tcp_sock, bytes_received):
7315 case offsetof(struct bpf_tcp_sock, bytes_acked):
7316 return size == sizeof(__u64);
7317 default:
7318 return size == sizeof(__u32);
7319 }
7320 }
7321
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7322 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7323 const struct bpf_insn *si,
7324 struct bpf_insn *insn_buf,
7325 struct bpf_prog *prog, u32 *target_size)
7326 {
7327 struct bpf_insn *insn = insn_buf;
7328
7329 #define BPF_TCP_SOCK_GET_COMMON(FIELD) \
7330 do { \
7331 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \
7332 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7333 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7334 si->dst_reg, si->src_reg, \
7335 offsetof(struct tcp_sock, FIELD)); \
7336 } while (0)
7337
7338 #define BPF_INET_SOCK_GET_COMMON(FIELD) \
7339 do { \
7340 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \
7341 FIELD) > \
7342 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7343 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
7344 struct inet_connection_sock, \
7345 FIELD), \
7346 si->dst_reg, si->src_reg, \
7347 offsetof( \
7348 struct inet_connection_sock, \
7349 FIELD)); \
7350 } while (0)
7351
7352 BTF_TYPE_EMIT(struct bpf_tcp_sock);
7353
7354 switch (si->off) {
7355 case offsetof(struct bpf_tcp_sock, rtt_min):
7356 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7357 sizeof(struct minmax));
7358 BUILD_BUG_ON(sizeof(struct minmax) <
7359 sizeof(struct minmax_sample));
7360
7361 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7362 offsetof(struct tcp_sock, rtt_min) +
7363 offsetof(struct minmax_sample, v));
7364 break;
7365 case offsetof(struct bpf_tcp_sock, snd_cwnd):
7366 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7367 break;
7368 case offsetof(struct bpf_tcp_sock, srtt_us):
7369 BPF_TCP_SOCK_GET_COMMON(srtt_us);
7370 break;
7371 case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7372 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7373 break;
7374 case offsetof(struct bpf_tcp_sock, rcv_nxt):
7375 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7376 break;
7377 case offsetof(struct bpf_tcp_sock, snd_nxt):
7378 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7379 break;
7380 case offsetof(struct bpf_tcp_sock, snd_una):
7381 BPF_TCP_SOCK_GET_COMMON(snd_una);
7382 break;
7383 case offsetof(struct bpf_tcp_sock, mss_cache):
7384 BPF_TCP_SOCK_GET_COMMON(mss_cache);
7385 break;
7386 case offsetof(struct bpf_tcp_sock, ecn_flags):
7387 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7388 break;
7389 case offsetof(struct bpf_tcp_sock, rate_delivered):
7390 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7391 break;
7392 case offsetof(struct bpf_tcp_sock, rate_interval_us):
7393 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7394 break;
7395 case offsetof(struct bpf_tcp_sock, packets_out):
7396 BPF_TCP_SOCK_GET_COMMON(packets_out);
7397 break;
7398 case offsetof(struct bpf_tcp_sock, retrans_out):
7399 BPF_TCP_SOCK_GET_COMMON(retrans_out);
7400 break;
7401 case offsetof(struct bpf_tcp_sock, total_retrans):
7402 BPF_TCP_SOCK_GET_COMMON(total_retrans);
7403 break;
7404 case offsetof(struct bpf_tcp_sock, segs_in):
7405 BPF_TCP_SOCK_GET_COMMON(segs_in);
7406 break;
7407 case offsetof(struct bpf_tcp_sock, data_segs_in):
7408 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7409 break;
7410 case offsetof(struct bpf_tcp_sock, segs_out):
7411 BPF_TCP_SOCK_GET_COMMON(segs_out);
7412 break;
7413 case offsetof(struct bpf_tcp_sock, data_segs_out):
7414 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7415 break;
7416 case offsetof(struct bpf_tcp_sock, lost_out):
7417 BPF_TCP_SOCK_GET_COMMON(lost_out);
7418 break;
7419 case offsetof(struct bpf_tcp_sock, sacked_out):
7420 BPF_TCP_SOCK_GET_COMMON(sacked_out);
7421 break;
7422 case offsetof(struct bpf_tcp_sock, bytes_received):
7423 BPF_TCP_SOCK_GET_COMMON(bytes_received);
7424 break;
7425 case offsetof(struct bpf_tcp_sock, bytes_acked):
7426 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7427 break;
7428 case offsetof(struct bpf_tcp_sock, dsack_dups):
7429 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7430 break;
7431 case offsetof(struct bpf_tcp_sock, delivered):
7432 BPF_TCP_SOCK_GET_COMMON(delivered);
7433 break;
7434 case offsetof(struct bpf_tcp_sock, delivered_ce):
7435 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7436 break;
7437 case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7438 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7439 break;
7440 }
7441
7442 return insn - insn_buf;
7443 }
7444
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7445 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7446 {
7447 if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7448 return (unsigned long)sk;
7449
7450 return (unsigned long)NULL;
7451 }
7452
7453 const struct bpf_func_proto bpf_tcp_sock_proto = {
7454 .func = bpf_tcp_sock,
7455 .gpl_only = false,
7456 .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL,
7457 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7458 };
7459
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7460 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7461 {
7462 sk = sk_to_full_sk(sk);
7463
7464 if (sk && sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7465 return (unsigned long)sk;
7466
7467 return (unsigned long)NULL;
7468 }
7469
7470 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7471 .func = bpf_get_listener_sock,
7472 .gpl_only = false,
7473 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7474 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7475 };
7476
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7477 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7478 {
7479 unsigned int iphdr_len;
7480
7481 switch (skb_protocol(skb, true)) {
7482 case cpu_to_be16(ETH_P_IP):
7483 iphdr_len = sizeof(struct iphdr);
7484 break;
7485 case cpu_to_be16(ETH_P_IPV6):
7486 iphdr_len = sizeof(struct ipv6hdr);
7487 break;
7488 default:
7489 return 0;
7490 }
7491
7492 if (skb_headlen(skb) < iphdr_len)
7493 return 0;
7494
7495 if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7496 return 0;
7497
7498 return INET_ECN_set_ce(skb);
7499 }
7500
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7501 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7502 struct bpf_insn_access_aux *info)
7503 {
7504 if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7505 return false;
7506
7507 if (off % size != 0)
7508 return false;
7509
7510 switch (off) {
7511 default:
7512 return size == sizeof(__u32);
7513 }
7514 }
7515
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7516 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7517 const struct bpf_insn *si,
7518 struct bpf_insn *insn_buf,
7519 struct bpf_prog *prog, u32 *target_size)
7520 {
7521 struct bpf_insn *insn = insn_buf;
7522
7523 #define BPF_XDP_SOCK_GET(FIELD) \
7524 do { \
7525 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \
7526 sizeof_field(struct bpf_xdp_sock, FIELD)); \
7527 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7528 si->dst_reg, si->src_reg, \
7529 offsetof(struct xdp_sock, FIELD)); \
7530 } while (0)
7531
7532 BTF_TYPE_EMIT(struct bpf_xdp_sock);
7533
7534 switch (si->off) {
7535 case offsetof(struct bpf_xdp_sock, queue_id):
7536 BPF_XDP_SOCK_GET(queue_id);
7537 break;
7538 }
7539
7540 return insn - insn_buf;
7541 }
7542
7543 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7544 .func = bpf_skb_ecn_set_ce,
7545 .gpl_only = false,
7546 .ret_type = RET_INTEGER,
7547 .arg1_type = ARG_PTR_TO_CTX,
7548 };
7549
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7550 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7551 struct tcphdr *, th, u32, th_len)
7552 {
7553 #ifdef CONFIG_SYN_COOKIES
7554 int ret;
7555
7556 if (unlikely(!sk || th_len < sizeof(*th)))
7557 return -EINVAL;
7558
7559 /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7560 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7561 return -EINVAL;
7562
7563 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7564 return -EINVAL;
7565
7566 if (!th->ack || th->rst || th->syn)
7567 return -ENOENT;
7568
7569 if (unlikely(iph_len < sizeof(struct iphdr)))
7570 return -EINVAL;
7571
7572 if (tcp_synq_no_recent_overflow(sk))
7573 return -ENOENT;
7574
7575 /* Both struct iphdr and struct ipv6hdr have the version field at the
7576 * same offset so we can cast to the shorter header (struct iphdr).
7577 */
7578 switch (((struct iphdr *)iph)->version) {
7579 case 4:
7580 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7581 return -EINVAL;
7582
7583 ret = __cookie_v4_check((struct iphdr *)iph, th);
7584 break;
7585
7586 #if IS_BUILTIN(CONFIG_IPV6)
7587 case 6:
7588 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7589 return -EINVAL;
7590
7591 if (sk->sk_family != AF_INET6)
7592 return -EINVAL;
7593
7594 ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7595 break;
7596 #endif /* CONFIG_IPV6 */
7597
7598 default:
7599 return -EPROTONOSUPPORT;
7600 }
7601
7602 if (ret > 0)
7603 return 0;
7604
7605 return -ENOENT;
7606 #else
7607 return -ENOTSUPP;
7608 #endif
7609 }
7610
7611 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7612 .func = bpf_tcp_check_syncookie,
7613 .gpl_only = true,
7614 .pkt_access = true,
7615 .ret_type = RET_INTEGER,
7616 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7617 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7618 .arg3_type = ARG_CONST_SIZE,
7619 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7620 .arg5_type = ARG_CONST_SIZE,
7621 };
7622
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7623 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7624 struct tcphdr *, th, u32, th_len)
7625 {
7626 #ifdef CONFIG_SYN_COOKIES
7627 u32 cookie;
7628 u16 mss;
7629
7630 if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7631 return -EINVAL;
7632
7633 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7634 return -EINVAL;
7635
7636 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7637 return -ENOENT;
7638
7639 if (!th->syn || th->ack || th->fin || th->rst)
7640 return -EINVAL;
7641
7642 if (unlikely(iph_len < sizeof(struct iphdr)))
7643 return -EINVAL;
7644
7645 /* Both struct iphdr and struct ipv6hdr have the version field at the
7646 * same offset so we can cast to the shorter header (struct iphdr).
7647 */
7648 switch (((struct iphdr *)iph)->version) {
7649 case 4:
7650 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7651 return -EINVAL;
7652
7653 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7654 break;
7655
7656 #if IS_BUILTIN(CONFIG_IPV6)
7657 case 6:
7658 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7659 return -EINVAL;
7660
7661 if (sk->sk_family != AF_INET6)
7662 return -EINVAL;
7663
7664 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7665 break;
7666 #endif /* CONFIG_IPV6 */
7667
7668 default:
7669 return -EPROTONOSUPPORT;
7670 }
7671 if (mss == 0)
7672 return -ENOENT;
7673
7674 return cookie | ((u64)mss << 32);
7675 #else
7676 return -EOPNOTSUPP;
7677 #endif /* CONFIG_SYN_COOKIES */
7678 }
7679
7680 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7681 .func = bpf_tcp_gen_syncookie,
7682 .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */
7683 .pkt_access = true,
7684 .ret_type = RET_INTEGER,
7685 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7686 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7687 .arg3_type = ARG_CONST_SIZE,
7688 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7689 .arg5_type = ARG_CONST_SIZE,
7690 };
7691
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7692 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7693 {
7694 if (!sk || flags != 0)
7695 return -EINVAL;
7696 if (!skb_at_tc_ingress(skb))
7697 return -EOPNOTSUPP;
7698 if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7699 return -ENETUNREACH;
7700 if (sk_unhashed(sk))
7701 return -EOPNOTSUPP;
7702 if (sk_is_refcounted(sk) &&
7703 unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7704 return -ENOENT;
7705
7706 skb_orphan(skb);
7707 skb->sk = sk;
7708 skb->destructor = sock_pfree;
7709
7710 return 0;
7711 }
7712
7713 static const struct bpf_func_proto bpf_sk_assign_proto = {
7714 .func = bpf_sk_assign,
7715 .gpl_only = false,
7716 .ret_type = RET_INTEGER,
7717 .arg1_type = ARG_PTR_TO_CTX,
7718 .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7719 .arg3_type = ARG_ANYTHING,
7720 };
7721
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7722 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7723 u8 search_kind, const u8 *magic,
7724 u8 magic_len, bool *eol)
7725 {
7726 u8 kind, kind_len;
7727
7728 *eol = false;
7729
7730 while (op < opend) {
7731 kind = op[0];
7732
7733 if (kind == TCPOPT_EOL) {
7734 *eol = true;
7735 return ERR_PTR(-ENOMSG);
7736 } else if (kind == TCPOPT_NOP) {
7737 op++;
7738 continue;
7739 }
7740
7741 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7742 /* Something is wrong in the received header.
7743 * Follow the TCP stack's tcp_parse_options()
7744 * and just bail here.
7745 */
7746 return ERR_PTR(-EFAULT);
7747
7748 kind_len = op[1];
7749 if (search_kind == kind) {
7750 if (!magic_len)
7751 return op;
7752
7753 if (magic_len > kind_len - 2)
7754 return ERR_PTR(-ENOMSG);
7755
7756 if (!memcmp(&op[2], magic, magic_len))
7757 return op;
7758 }
7759
7760 op += kind_len;
7761 }
7762
7763 return ERR_PTR(-ENOMSG);
7764 }
7765
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7766 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7767 void *, search_res, u32, len, u64, flags)
7768 {
7769 bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7770 const u8 *op, *opend, *magic, *search = search_res;
7771 u8 search_kind, search_len, copy_len, magic_len;
7772 int ret;
7773
7774 if (!is_locked_tcp_sock_ops(bpf_sock))
7775 return -EOPNOTSUPP;
7776
7777 /* 2 byte is the minimal option len except TCPOPT_NOP and
7778 * TCPOPT_EOL which are useless for the bpf prog to learn
7779 * and this helper disallow loading them also.
7780 */
7781 if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7782 return -EINVAL;
7783
7784 search_kind = search[0];
7785 search_len = search[1];
7786
7787 if (search_len > len || search_kind == TCPOPT_NOP ||
7788 search_kind == TCPOPT_EOL)
7789 return -EINVAL;
7790
7791 if (search_kind == TCPOPT_EXP || search_kind == 253) {
7792 /* 16 or 32 bit magic. +2 for kind and kind length */
7793 if (search_len != 4 && search_len != 6)
7794 return -EINVAL;
7795 magic = &search[2];
7796 magic_len = search_len - 2;
7797 } else {
7798 if (search_len)
7799 return -EINVAL;
7800 magic = NULL;
7801 magic_len = 0;
7802 }
7803
7804 if (load_syn) {
7805 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7806 if (ret < 0)
7807 return ret;
7808
7809 opend = op + ret;
7810 op += sizeof(struct tcphdr);
7811 } else {
7812 if (!bpf_sock->skb ||
7813 bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7814 /* This bpf_sock->op cannot call this helper */
7815 return -EPERM;
7816
7817 opend = bpf_sock->skb_data_end;
7818 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7819 }
7820
7821 op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7822 &eol);
7823 if (IS_ERR(op))
7824 return PTR_ERR(op);
7825
7826 copy_len = op[1];
7827 ret = copy_len;
7828 if (copy_len > len) {
7829 ret = -ENOSPC;
7830 copy_len = len;
7831 }
7832
7833 memcpy(search_res, op, copy_len);
7834 return ret;
7835 }
7836
7837 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7838 .func = bpf_sock_ops_load_hdr_opt,
7839 .gpl_only = false,
7840 .ret_type = RET_INTEGER,
7841 .arg1_type = ARG_PTR_TO_CTX,
7842 .arg2_type = ARG_PTR_TO_MEM | MEM_WRITE,
7843 .arg3_type = ARG_CONST_SIZE,
7844 .arg4_type = ARG_ANYTHING,
7845 };
7846
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7847 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7848 const void *, from, u32, len, u64, flags)
7849 {
7850 u8 new_kind, new_kind_len, magic_len = 0, *opend;
7851 const u8 *op, *new_op, *magic = NULL;
7852 struct sk_buff *skb;
7853 bool eol;
7854
7855 if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7856 return -EPERM;
7857
7858 if (len < 2 || flags)
7859 return -EINVAL;
7860
7861 new_op = from;
7862 new_kind = new_op[0];
7863 new_kind_len = new_op[1];
7864
7865 if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7866 new_kind == TCPOPT_EOL)
7867 return -EINVAL;
7868
7869 if (new_kind_len > bpf_sock->remaining_opt_len)
7870 return -ENOSPC;
7871
7872 /* 253 is another experimental kind */
7873 if (new_kind == TCPOPT_EXP || new_kind == 253) {
7874 if (new_kind_len < 4)
7875 return -EINVAL;
7876 /* Match for the 2 byte magic also.
7877 * RFC 6994: the magic could be 2 or 4 bytes.
7878 * Hence, matching by 2 byte only is on the
7879 * conservative side but it is the right
7880 * thing to do for the 'search-for-duplication'
7881 * purpose.
7882 */
7883 magic = &new_op[2];
7884 magic_len = 2;
7885 }
7886
7887 /* Check for duplication */
7888 skb = bpf_sock->skb;
7889 op = skb->data + sizeof(struct tcphdr);
7890 opend = bpf_sock->skb_data_end;
7891
7892 op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7893 &eol);
7894 if (!IS_ERR(op))
7895 return -EEXIST;
7896
7897 if (PTR_ERR(op) != -ENOMSG)
7898 return PTR_ERR(op);
7899
7900 if (eol)
7901 /* The option has been ended. Treat it as no more
7902 * header option can be written.
7903 */
7904 return -ENOSPC;
7905
7906 /* No duplication found. Store the header option. */
7907 memcpy(opend, from, new_kind_len);
7908
7909 bpf_sock->remaining_opt_len -= new_kind_len;
7910 bpf_sock->skb_data_end += new_kind_len;
7911
7912 return 0;
7913 }
7914
7915 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7916 .func = bpf_sock_ops_store_hdr_opt,
7917 .gpl_only = false,
7918 .ret_type = RET_INTEGER,
7919 .arg1_type = ARG_PTR_TO_CTX,
7920 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7921 .arg3_type = ARG_CONST_SIZE,
7922 .arg4_type = ARG_ANYTHING,
7923 };
7924
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7925 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7926 u32, len, u64, flags)
7927 {
7928 if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7929 return -EPERM;
7930
7931 if (flags || len < 2)
7932 return -EINVAL;
7933
7934 if (len > bpf_sock->remaining_opt_len)
7935 return -ENOSPC;
7936
7937 bpf_sock->remaining_opt_len -= len;
7938
7939 return 0;
7940 }
7941
7942 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7943 .func = bpf_sock_ops_reserve_hdr_opt,
7944 .gpl_only = false,
7945 .ret_type = RET_INTEGER,
7946 .arg1_type = ARG_PTR_TO_CTX,
7947 .arg2_type = ARG_ANYTHING,
7948 .arg3_type = ARG_ANYTHING,
7949 };
7950
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7951 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7952 u64, tstamp, u32, tstamp_type)
7953 {
7954 /* skb_clear_delivery_time() is done for inet protocol */
7955 if (skb->protocol != htons(ETH_P_IP) &&
7956 skb->protocol != htons(ETH_P_IPV6))
7957 return -EOPNOTSUPP;
7958
7959 switch (tstamp_type) {
7960 case BPF_SKB_CLOCK_REALTIME:
7961 skb->tstamp = tstamp;
7962 skb->tstamp_type = SKB_CLOCK_REALTIME;
7963 break;
7964 case BPF_SKB_CLOCK_MONOTONIC:
7965 if (!tstamp)
7966 return -EINVAL;
7967 skb->tstamp = tstamp;
7968 skb->tstamp_type = SKB_CLOCK_MONOTONIC;
7969 break;
7970 case BPF_SKB_CLOCK_TAI:
7971 if (!tstamp)
7972 return -EINVAL;
7973 skb->tstamp = tstamp;
7974 skb->tstamp_type = SKB_CLOCK_TAI;
7975 break;
7976 default:
7977 return -EINVAL;
7978 }
7979
7980 return 0;
7981 }
7982
7983 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7984 .func = bpf_skb_set_tstamp,
7985 .gpl_only = false,
7986 .ret_type = RET_INTEGER,
7987 .arg1_type = ARG_PTR_TO_CTX,
7988 .arg2_type = ARG_ANYTHING,
7989 .arg3_type = ARG_ANYTHING,
7990 };
7991
7992 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7993 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7994 struct tcphdr *, th, u32, th_len)
7995 {
7996 u32 cookie;
7997 u16 mss;
7998
7999 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
8000 return -EINVAL;
8001
8002 mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
8003 cookie = __cookie_v4_init_sequence(iph, th, &mss);
8004
8005 return cookie | ((u64)mss << 32);
8006 }
8007
8008 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
8009 .func = bpf_tcp_raw_gen_syncookie_ipv4,
8010 .gpl_only = true, /* __cookie_v4_init_sequence() is GPL */
8011 .pkt_access = true,
8012 .ret_type = RET_INTEGER,
8013 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
8014 .arg1_size = sizeof(struct iphdr),
8015 .arg2_type = ARG_PTR_TO_MEM,
8016 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
8017 };
8018
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)8019 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
8020 struct tcphdr *, th, u32, th_len)
8021 {
8022 #if IS_BUILTIN(CONFIG_IPV6)
8023 const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
8024 sizeof(struct ipv6hdr);
8025 u32 cookie;
8026 u16 mss;
8027
8028 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
8029 return -EINVAL;
8030
8031 mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
8032 cookie = __cookie_v6_init_sequence(iph, th, &mss);
8033
8034 return cookie | ((u64)mss << 32);
8035 #else
8036 return -EPROTONOSUPPORT;
8037 #endif
8038 }
8039
8040 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
8041 .func = bpf_tcp_raw_gen_syncookie_ipv6,
8042 .gpl_only = true, /* __cookie_v6_init_sequence() is GPL */
8043 .pkt_access = true,
8044 .ret_type = RET_INTEGER,
8045 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
8046 .arg1_size = sizeof(struct ipv6hdr),
8047 .arg2_type = ARG_PTR_TO_MEM,
8048 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
8049 };
8050
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)8051 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
8052 struct tcphdr *, th)
8053 {
8054 if (__cookie_v4_check(iph, th) > 0)
8055 return 0;
8056
8057 return -EACCES;
8058 }
8059
8060 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
8061 .func = bpf_tcp_raw_check_syncookie_ipv4,
8062 .gpl_only = true, /* __cookie_v4_check is GPL */
8063 .pkt_access = true,
8064 .ret_type = RET_INTEGER,
8065 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
8066 .arg1_size = sizeof(struct iphdr),
8067 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
8068 .arg2_size = sizeof(struct tcphdr),
8069 };
8070
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)8071 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
8072 struct tcphdr *, th)
8073 {
8074 #if IS_BUILTIN(CONFIG_IPV6)
8075 if (__cookie_v6_check(iph, th) > 0)
8076 return 0;
8077
8078 return -EACCES;
8079 #else
8080 return -EPROTONOSUPPORT;
8081 #endif
8082 }
8083
8084 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
8085 .func = bpf_tcp_raw_check_syncookie_ipv6,
8086 .gpl_only = true, /* __cookie_v6_check is GPL */
8087 .pkt_access = true,
8088 .ret_type = RET_INTEGER,
8089 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
8090 .arg1_size = sizeof(struct ipv6hdr),
8091 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
8092 .arg2_size = sizeof(struct tcphdr),
8093 };
8094 #endif /* CONFIG_SYN_COOKIES */
8095
8096 #endif /* CONFIG_INET */
8097
bpf_helper_changes_pkt_data(enum bpf_func_id func_id)8098 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
8099 {
8100 switch (func_id) {
8101 case BPF_FUNC_clone_redirect:
8102 case BPF_FUNC_l3_csum_replace:
8103 case BPF_FUNC_l4_csum_replace:
8104 case BPF_FUNC_lwt_push_encap:
8105 case BPF_FUNC_lwt_seg6_action:
8106 case BPF_FUNC_lwt_seg6_adjust_srh:
8107 case BPF_FUNC_lwt_seg6_store_bytes:
8108 case BPF_FUNC_msg_pop_data:
8109 case BPF_FUNC_msg_pull_data:
8110 case BPF_FUNC_msg_push_data:
8111 case BPF_FUNC_skb_adjust_room:
8112 case BPF_FUNC_skb_change_head:
8113 case BPF_FUNC_skb_change_proto:
8114 case BPF_FUNC_skb_change_tail:
8115 case BPF_FUNC_skb_pull_data:
8116 case BPF_FUNC_skb_store_bytes:
8117 case BPF_FUNC_skb_vlan_pop:
8118 case BPF_FUNC_skb_vlan_push:
8119 case BPF_FUNC_store_hdr_opt:
8120 case BPF_FUNC_xdp_adjust_head:
8121 case BPF_FUNC_xdp_adjust_meta:
8122 case BPF_FUNC_xdp_adjust_tail:
8123 /* tail-called program could call any of the above */
8124 case BPF_FUNC_tail_call:
8125 return true;
8126 default:
8127 return false;
8128 }
8129 }
8130
8131 const struct bpf_func_proto bpf_event_output_data_proto __weak;
8132 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
8133
8134 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8135 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8136 {
8137 const struct bpf_func_proto *func_proto;
8138
8139 func_proto = cgroup_common_func_proto(func_id, prog);
8140 if (func_proto)
8141 return func_proto;
8142
8143 switch (func_id) {
8144 case BPF_FUNC_get_socket_cookie:
8145 return &bpf_get_socket_cookie_sock_proto;
8146 case BPF_FUNC_get_netns_cookie:
8147 return &bpf_get_netns_cookie_sock_proto;
8148 case BPF_FUNC_perf_event_output:
8149 return &bpf_event_output_data_proto;
8150 case BPF_FUNC_sk_storage_get:
8151 return &bpf_sk_storage_get_cg_sock_proto;
8152 case BPF_FUNC_ktime_get_coarse_ns:
8153 return &bpf_ktime_get_coarse_ns_proto;
8154 case BPF_FUNC_setsockopt:
8155 switch (prog->expected_attach_type) {
8156 case BPF_CGROUP_INET_SOCK_CREATE:
8157 return &bpf_sock_create_setsockopt_proto;
8158 default:
8159 return NULL;
8160 }
8161 case BPF_FUNC_getsockopt:
8162 switch (prog->expected_attach_type) {
8163 case BPF_CGROUP_INET_SOCK_CREATE:
8164 return &bpf_sock_create_getsockopt_proto;
8165 default:
8166 return NULL;
8167 }
8168 default:
8169 return bpf_base_func_proto(func_id, prog);
8170 }
8171 }
8172
8173 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8174 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8175 {
8176 const struct bpf_func_proto *func_proto;
8177
8178 func_proto = cgroup_common_func_proto(func_id, prog);
8179 if (func_proto)
8180 return func_proto;
8181
8182 switch (func_id) {
8183 case BPF_FUNC_bind:
8184 switch (prog->expected_attach_type) {
8185 case BPF_CGROUP_INET4_CONNECT:
8186 case BPF_CGROUP_INET6_CONNECT:
8187 return &bpf_bind_proto;
8188 default:
8189 return NULL;
8190 }
8191 case BPF_FUNC_get_socket_cookie:
8192 return &bpf_get_socket_cookie_sock_addr_proto;
8193 case BPF_FUNC_get_netns_cookie:
8194 return &bpf_get_netns_cookie_sock_addr_proto;
8195 case BPF_FUNC_perf_event_output:
8196 return &bpf_event_output_data_proto;
8197 #ifdef CONFIG_INET
8198 case BPF_FUNC_sk_lookup_tcp:
8199 return &bpf_sock_addr_sk_lookup_tcp_proto;
8200 case BPF_FUNC_sk_lookup_udp:
8201 return &bpf_sock_addr_sk_lookup_udp_proto;
8202 case BPF_FUNC_sk_release:
8203 return &bpf_sk_release_proto;
8204 case BPF_FUNC_skc_lookup_tcp:
8205 return &bpf_sock_addr_skc_lookup_tcp_proto;
8206 #endif /* CONFIG_INET */
8207 case BPF_FUNC_sk_storage_get:
8208 return &bpf_sk_storage_get_proto;
8209 case BPF_FUNC_sk_storage_delete:
8210 return &bpf_sk_storage_delete_proto;
8211 case BPF_FUNC_setsockopt:
8212 switch (prog->expected_attach_type) {
8213 case BPF_CGROUP_INET4_BIND:
8214 case BPF_CGROUP_INET6_BIND:
8215 case BPF_CGROUP_INET4_CONNECT:
8216 case BPF_CGROUP_INET6_CONNECT:
8217 case BPF_CGROUP_UNIX_CONNECT:
8218 case BPF_CGROUP_UDP4_RECVMSG:
8219 case BPF_CGROUP_UDP6_RECVMSG:
8220 case BPF_CGROUP_UNIX_RECVMSG:
8221 case BPF_CGROUP_UDP4_SENDMSG:
8222 case BPF_CGROUP_UDP6_SENDMSG:
8223 case BPF_CGROUP_UNIX_SENDMSG:
8224 case BPF_CGROUP_INET4_GETPEERNAME:
8225 case BPF_CGROUP_INET6_GETPEERNAME:
8226 case BPF_CGROUP_UNIX_GETPEERNAME:
8227 case BPF_CGROUP_INET4_GETSOCKNAME:
8228 case BPF_CGROUP_INET6_GETSOCKNAME:
8229 case BPF_CGROUP_UNIX_GETSOCKNAME:
8230 return &bpf_sock_addr_setsockopt_proto;
8231 default:
8232 return NULL;
8233 }
8234 case BPF_FUNC_getsockopt:
8235 switch (prog->expected_attach_type) {
8236 case BPF_CGROUP_INET4_BIND:
8237 case BPF_CGROUP_INET6_BIND:
8238 case BPF_CGROUP_INET4_CONNECT:
8239 case BPF_CGROUP_INET6_CONNECT:
8240 case BPF_CGROUP_UNIX_CONNECT:
8241 case BPF_CGROUP_UDP4_RECVMSG:
8242 case BPF_CGROUP_UDP6_RECVMSG:
8243 case BPF_CGROUP_UNIX_RECVMSG:
8244 case BPF_CGROUP_UDP4_SENDMSG:
8245 case BPF_CGROUP_UDP6_SENDMSG:
8246 case BPF_CGROUP_UNIX_SENDMSG:
8247 case BPF_CGROUP_INET4_GETPEERNAME:
8248 case BPF_CGROUP_INET6_GETPEERNAME:
8249 case BPF_CGROUP_UNIX_GETPEERNAME:
8250 case BPF_CGROUP_INET4_GETSOCKNAME:
8251 case BPF_CGROUP_INET6_GETSOCKNAME:
8252 case BPF_CGROUP_UNIX_GETSOCKNAME:
8253 return &bpf_sock_addr_getsockopt_proto;
8254 default:
8255 return NULL;
8256 }
8257 default:
8258 return bpf_sk_base_func_proto(func_id, prog);
8259 }
8260 }
8261
8262 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8263 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8264 {
8265 switch (func_id) {
8266 case BPF_FUNC_skb_load_bytes:
8267 return &bpf_skb_load_bytes_proto;
8268 case BPF_FUNC_skb_load_bytes_relative:
8269 return &bpf_skb_load_bytes_relative_proto;
8270 case BPF_FUNC_get_socket_cookie:
8271 return &bpf_get_socket_cookie_proto;
8272 case BPF_FUNC_get_netns_cookie:
8273 return &bpf_get_netns_cookie_proto;
8274 case BPF_FUNC_get_socket_uid:
8275 return &bpf_get_socket_uid_proto;
8276 case BPF_FUNC_perf_event_output:
8277 return &bpf_skb_event_output_proto;
8278 default:
8279 return bpf_sk_base_func_proto(func_id, prog);
8280 }
8281 }
8282
8283 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8284 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8285
8286 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8287 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8288 {
8289 const struct bpf_func_proto *func_proto;
8290
8291 func_proto = cgroup_common_func_proto(func_id, prog);
8292 if (func_proto)
8293 return func_proto;
8294
8295 switch (func_id) {
8296 case BPF_FUNC_sk_fullsock:
8297 return &bpf_sk_fullsock_proto;
8298 case BPF_FUNC_sk_storage_get:
8299 return &bpf_sk_storage_get_proto;
8300 case BPF_FUNC_sk_storage_delete:
8301 return &bpf_sk_storage_delete_proto;
8302 case BPF_FUNC_perf_event_output:
8303 return &bpf_skb_event_output_proto;
8304 #ifdef CONFIG_SOCK_CGROUP_DATA
8305 case BPF_FUNC_skb_cgroup_id:
8306 return &bpf_skb_cgroup_id_proto;
8307 case BPF_FUNC_skb_ancestor_cgroup_id:
8308 return &bpf_skb_ancestor_cgroup_id_proto;
8309 case BPF_FUNC_sk_cgroup_id:
8310 return &bpf_sk_cgroup_id_proto;
8311 case BPF_FUNC_sk_ancestor_cgroup_id:
8312 return &bpf_sk_ancestor_cgroup_id_proto;
8313 #endif
8314 #ifdef CONFIG_INET
8315 case BPF_FUNC_sk_lookup_tcp:
8316 return &bpf_sk_lookup_tcp_proto;
8317 case BPF_FUNC_sk_lookup_udp:
8318 return &bpf_sk_lookup_udp_proto;
8319 case BPF_FUNC_sk_release:
8320 return &bpf_sk_release_proto;
8321 case BPF_FUNC_skc_lookup_tcp:
8322 return &bpf_skc_lookup_tcp_proto;
8323 case BPF_FUNC_tcp_sock:
8324 return &bpf_tcp_sock_proto;
8325 case BPF_FUNC_get_listener_sock:
8326 return &bpf_get_listener_sock_proto;
8327 case BPF_FUNC_skb_ecn_set_ce:
8328 return &bpf_skb_ecn_set_ce_proto;
8329 #endif
8330 default:
8331 return sk_filter_func_proto(func_id, prog);
8332 }
8333 }
8334
8335 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8336 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8337 {
8338 switch (func_id) {
8339 case BPF_FUNC_skb_store_bytes:
8340 return &bpf_skb_store_bytes_proto;
8341 case BPF_FUNC_skb_load_bytes:
8342 return &bpf_skb_load_bytes_proto;
8343 case BPF_FUNC_skb_load_bytes_relative:
8344 return &bpf_skb_load_bytes_relative_proto;
8345 case BPF_FUNC_skb_pull_data:
8346 return &bpf_skb_pull_data_proto;
8347 case BPF_FUNC_csum_diff:
8348 return &bpf_csum_diff_proto;
8349 case BPF_FUNC_csum_update:
8350 return &bpf_csum_update_proto;
8351 case BPF_FUNC_csum_level:
8352 return &bpf_csum_level_proto;
8353 case BPF_FUNC_l3_csum_replace:
8354 return &bpf_l3_csum_replace_proto;
8355 case BPF_FUNC_l4_csum_replace:
8356 return &bpf_l4_csum_replace_proto;
8357 case BPF_FUNC_clone_redirect:
8358 return &bpf_clone_redirect_proto;
8359 case BPF_FUNC_get_cgroup_classid:
8360 return &bpf_get_cgroup_classid_proto;
8361 case BPF_FUNC_skb_vlan_push:
8362 return &bpf_skb_vlan_push_proto;
8363 case BPF_FUNC_skb_vlan_pop:
8364 return &bpf_skb_vlan_pop_proto;
8365 case BPF_FUNC_skb_change_proto:
8366 return &bpf_skb_change_proto_proto;
8367 case BPF_FUNC_skb_change_type:
8368 return &bpf_skb_change_type_proto;
8369 case BPF_FUNC_skb_adjust_room:
8370 return &bpf_skb_adjust_room_proto;
8371 case BPF_FUNC_skb_change_tail:
8372 return &bpf_skb_change_tail_proto;
8373 case BPF_FUNC_skb_change_head:
8374 return &bpf_skb_change_head_proto;
8375 case BPF_FUNC_skb_get_tunnel_key:
8376 return &bpf_skb_get_tunnel_key_proto;
8377 case BPF_FUNC_skb_set_tunnel_key:
8378 return bpf_get_skb_set_tunnel_proto(func_id);
8379 case BPF_FUNC_skb_get_tunnel_opt:
8380 return &bpf_skb_get_tunnel_opt_proto;
8381 case BPF_FUNC_skb_set_tunnel_opt:
8382 return bpf_get_skb_set_tunnel_proto(func_id);
8383 case BPF_FUNC_redirect:
8384 return &bpf_redirect_proto;
8385 case BPF_FUNC_redirect_neigh:
8386 return &bpf_redirect_neigh_proto;
8387 case BPF_FUNC_redirect_peer:
8388 return &bpf_redirect_peer_proto;
8389 case BPF_FUNC_get_route_realm:
8390 return &bpf_get_route_realm_proto;
8391 case BPF_FUNC_get_hash_recalc:
8392 return &bpf_get_hash_recalc_proto;
8393 case BPF_FUNC_set_hash_invalid:
8394 return &bpf_set_hash_invalid_proto;
8395 case BPF_FUNC_set_hash:
8396 return &bpf_set_hash_proto;
8397 case BPF_FUNC_perf_event_output:
8398 return &bpf_skb_event_output_proto;
8399 case BPF_FUNC_get_smp_processor_id:
8400 return &bpf_get_smp_processor_id_proto;
8401 case BPF_FUNC_skb_under_cgroup:
8402 return &bpf_skb_under_cgroup_proto;
8403 case BPF_FUNC_get_socket_cookie:
8404 return &bpf_get_socket_cookie_proto;
8405 case BPF_FUNC_get_netns_cookie:
8406 return &bpf_get_netns_cookie_proto;
8407 case BPF_FUNC_get_socket_uid:
8408 return &bpf_get_socket_uid_proto;
8409 case BPF_FUNC_fib_lookup:
8410 return &bpf_skb_fib_lookup_proto;
8411 case BPF_FUNC_check_mtu:
8412 return &bpf_skb_check_mtu_proto;
8413 case BPF_FUNC_sk_fullsock:
8414 return &bpf_sk_fullsock_proto;
8415 case BPF_FUNC_sk_storage_get:
8416 return &bpf_sk_storage_get_proto;
8417 case BPF_FUNC_sk_storage_delete:
8418 return &bpf_sk_storage_delete_proto;
8419 #ifdef CONFIG_XFRM
8420 case BPF_FUNC_skb_get_xfrm_state:
8421 return &bpf_skb_get_xfrm_state_proto;
8422 #endif
8423 #ifdef CONFIG_CGROUP_NET_CLASSID
8424 case BPF_FUNC_skb_cgroup_classid:
8425 return &bpf_skb_cgroup_classid_proto;
8426 #endif
8427 #ifdef CONFIG_SOCK_CGROUP_DATA
8428 case BPF_FUNC_skb_cgroup_id:
8429 return &bpf_skb_cgroup_id_proto;
8430 case BPF_FUNC_skb_ancestor_cgroup_id:
8431 return &bpf_skb_ancestor_cgroup_id_proto;
8432 #endif
8433 #ifdef CONFIG_INET
8434 case BPF_FUNC_sk_lookup_tcp:
8435 return &bpf_tc_sk_lookup_tcp_proto;
8436 case BPF_FUNC_sk_lookup_udp:
8437 return &bpf_tc_sk_lookup_udp_proto;
8438 case BPF_FUNC_sk_release:
8439 return &bpf_sk_release_proto;
8440 case BPF_FUNC_tcp_sock:
8441 return &bpf_tcp_sock_proto;
8442 case BPF_FUNC_get_listener_sock:
8443 return &bpf_get_listener_sock_proto;
8444 case BPF_FUNC_skc_lookup_tcp:
8445 return &bpf_tc_skc_lookup_tcp_proto;
8446 case BPF_FUNC_tcp_check_syncookie:
8447 return &bpf_tcp_check_syncookie_proto;
8448 case BPF_FUNC_skb_ecn_set_ce:
8449 return &bpf_skb_ecn_set_ce_proto;
8450 case BPF_FUNC_tcp_gen_syncookie:
8451 return &bpf_tcp_gen_syncookie_proto;
8452 case BPF_FUNC_sk_assign:
8453 return &bpf_sk_assign_proto;
8454 case BPF_FUNC_skb_set_tstamp:
8455 return &bpf_skb_set_tstamp_proto;
8456 #ifdef CONFIG_SYN_COOKIES
8457 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8458 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8459 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8460 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8461 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8462 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8463 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8464 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8465 #endif
8466 #endif
8467 default:
8468 return bpf_sk_base_func_proto(func_id, prog);
8469 }
8470 }
8471
8472 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8473 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8474 {
8475 switch (func_id) {
8476 case BPF_FUNC_perf_event_output:
8477 return &bpf_xdp_event_output_proto;
8478 case BPF_FUNC_get_smp_processor_id:
8479 return &bpf_get_smp_processor_id_proto;
8480 case BPF_FUNC_csum_diff:
8481 return &bpf_csum_diff_proto;
8482 case BPF_FUNC_xdp_adjust_head:
8483 return &bpf_xdp_adjust_head_proto;
8484 case BPF_FUNC_xdp_adjust_meta:
8485 return &bpf_xdp_adjust_meta_proto;
8486 case BPF_FUNC_redirect:
8487 return &bpf_xdp_redirect_proto;
8488 case BPF_FUNC_redirect_map:
8489 return &bpf_xdp_redirect_map_proto;
8490 case BPF_FUNC_xdp_adjust_tail:
8491 return &bpf_xdp_adjust_tail_proto;
8492 case BPF_FUNC_xdp_get_buff_len:
8493 return &bpf_xdp_get_buff_len_proto;
8494 case BPF_FUNC_xdp_load_bytes:
8495 return &bpf_xdp_load_bytes_proto;
8496 case BPF_FUNC_xdp_store_bytes:
8497 return &bpf_xdp_store_bytes_proto;
8498 case BPF_FUNC_fib_lookup:
8499 return &bpf_xdp_fib_lookup_proto;
8500 case BPF_FUNC_check_mtu:
8501 return &bpf_xdp_check_mtu_proto;
8502 #ifdef CONFIG_INET
8503 case BPF_FUNC_sk_lookup_udp:
8504 return &bpf_xdp_sk_lookup_udp_proto;
8505 case BPF_FUNC_sk_lookup_tcp:
8506 return &bpf_xdp_sk_lookup_tcp_proto;
8507 case BPF_FUNC_sk_release:
8508 return &bpf_sk_release_proto;
8509 case BPF_FUNC_skc_lookup_tcp:
8510 return &bpf_xdp_skc_lookup_tcp_proto;
8511 case BPF_FUNC_tcp_check_syncookie:
8512 return &bpf_tcp_check_syncookie_proto;
8513 case BPF_FUNC_tcp_gen_syncookie:
8514 return &bpf_tcp_gen_syncookie_proto;
8515 #ifdef CONFIG_SYN_COOKIES
8516 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8517 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8518 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8519 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8520 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8521 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8522 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8523 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8524 #endif
8525 #endif
8526 default:
8527 return bpf_sk_base_func_proto(func_id, prog);
8528 }
8529
8530 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8531 /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8532 * kfuncs are defined in two different modules, and we want to be able
8533 * to use them interchangeably with the same BTF type ID. Because modules
8534 * can't de-duplicate BTF IDs between each other, we need the type to be
8535 * referenced in the vmlinux BTF or the verifier will get confused about
8536 * the different types. So we add this dummy type reference which will
8537 * be included in vmlinux BTF, allowing both modules to refer to the
8538 * same type ID.
8539 */
8540 BTF_TYPE_EMIT(struct nf_conn___init);
8541 #endif
8542 }
8543
8544 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8545 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8546
8547 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8548 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8549 {
8550 const struct bpf_func_proto *func_proto;
8551
8552 func_proto = cgroup_common_func_proto(func_id, prog);
8553 if (func_proto)
8554 return func_proto;
8555
8556 switch (func_id) {
8557 case BPF_FUNC_setsockopt:
8558 return &bpf_sock_ops_setsockopt_proto;
8559 case BPF_FUNC_getsockopt:
8560 return &bpf_sock_ops_getsockopt_proto;
8561 case BPF_FUNC_sock_ops_cb_flags_set:
8562 return &bpf_sock_ops_cb_flags_set_proto;
8563 case BPF_FUNC_sock_map_update:
8564 return &bpf_sock_map_update_proto;
8565 case BPF_FUNC_sock_hash_update:
8566 return &bpf_sock_hash_update_proto;
8567 case BPF_FUNC_get_socket_cookie:
8568 return &bpf_get_socket_cookie_sock_ops_proto;
8569 case BPF_FUNC_perf_event_output:
8570 return &bpf_event_output_data_proto;
8571 case BPF_FUNC_sk_storage_get:
8572 return &bpf_sk_storage_get_proto;
8573 case BPF_FUNC_sk_storage_delete:
8574 return &bpf_sk_storage_delete_proto;
8575 case BPF_FUNC_get_netns_cookie:
8576 return &bpf_get_netns_cookie_sock_ops_proto;
8577 #ifdef CONFIG_INET
8578 case BPF_FUNC_load_hdr_opt:
8579 return &bpf_sock_ops_load_hdr_opt_proto;
8580 case BPF_FUNC_store_hdr_opt:
8581 return &bpf_sock_ops_store_hdr_opt_proto;
8582 case BPF_FUNC_reserve_hdr_opt:
8583 return &bpf_sock_ops_reserve_hdr_opt_proto;
8584 case BPF_FUNC_tcp_sock:
8585 return &bpf_tcp_sock_proto;
8586 #endif /* CONFIG_INET */
8587 default:
8588 return bpf_sk_base_func_proto(func_id, prog);
8589 }
8590 }
8591
8592 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8593 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8594
8595 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8596 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8597 {
8598 switch (func_id) {
8599 case BPF_FUNC_msg_redirect_map:
8600 return &bpf_msg_redirect_map_proto;
8601 case BPF_FUNC_msg_redirect_hash:
8602 return &bpf_msg_redirect_hash_proto;
8603 case BPF_FUNC_msg_apply_bytes:
8604 return &bpf_msg_apply_bytes_proto;
8605 case BPF_FUNC_msg_cork_bytes:
8606 return &bpf_msg_cork_bytes_proto;
8607 case BPF_FUNC_msg_pull_data:
8608 return &bpf_msg_pull_data_proto;
8609 case BPF_FUNC_msg_push_data:
8610 return &bpf_msg_push_data_proto;
8611 case BPF_FUNC_msg_pop_data:
8612 return &bpf_msg_pop_data_proto;
8613 case BPF_FUNC_perf_event_output:
8614 return &bpf_event_output_data_proto;
8615 case BPF_FUNC_sk_storage_get:
8616 return &bpf_sk_storage_get_proto;
8617 case BPF_FUNC_sk_storage_delete:
8618 return &bpf_sk_storage_delete_proto;
8619 case BPF_FUNC_get_netns_cookie:
8620 return &bpf_get_netns_cookie_sk_msg_proto;
8621 default:
8622 return bpf_sk_base_func_proto(func_id, prog);
8623 }
8624 }
8625
8626 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8627 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8628
8629 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8630 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8631 {
8632 switch (func_id) {
8633 case BPF_FUNC_skb_store_bytes:
8634 return &bpf_skb_store_bytes_proto;
8635 case BPF_FUNC_skb_load_bytes:
8636 return &bpf_skb_load_bytes_proto;
8637 case BPF_FUNC_skb_pull_data:
8638 return &sk_skb_pull_data_proto;
8639 case BPF_FUNC_skb_change_tail:
8640 return &sk_skb_change_tail_proto;
8641 case BPF_FUNC_skb_change_head:
8642 return &sk_skb_change_head_proto;
8643 case BPF_FUNC_skb_adjust_room:
8644 return &sk_skb_adjust_room_proto;
8645 case BPF_FUNC_get_socket_cookie:
8646 return &bpf_get_socket_cookie_proto;
8647 case BPF_FUNC_get_socket_uid:
8648 return &bpf_get_socket_uid_proto;
8649 case BPF_FUNC_sk_redirect_map:
8650 return &bpf_sk_redirect_map_proto;
8651 case BPF_FUNC_sk_redirect_hash:
8652 return &bpf_sk_redirect_hash_proto;
8653 case BPF_FUNC_perf_event_output:
8654 return &bpf_skb_event_output_proto;
8655 #ifdef CONFIG_INET
8656 case BPF_FUNC_sk_lookup_tcp:
8657 return &bpf_sk_lookup_tcp_proto;
8658 case BPF_FUNC_sk_lookup_udp:
8659 return &bpf_sk_lookup_udp_proto;
8660 case BPF_FUNC_sk_release:
8661 return &bpf_sk_release_proto;
8662 case BPF_FUNC_skc_lookup_tcp:
8663 return &bpf_skc_lookup_tcp_proto;
8664 #endif
8665 default:
8666 return bpf_sk_base_func_proto(func_id, prog);
8667 }
8668 }
8669
8670 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8671 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8672 {
8673 switch (func_id) {
8674 case BPF_FUNC_skb_load_bytes:
8675 return &bpf_flow_dissector_load_bytes_proto;
8676 default:
8677 return bpf_sk_base_func_proto(func_id, prog);
8678 }
8679 }
8680
8681 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8682 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8683 {
8684 switch (func_id) {
8685 case BPF_FUNC_skb_load_bytes:
8686 return &bpf_skb_load_bytes_proto;
8687 case BPF_FUNC_skb_pull_data:
8688 return &bpf_skb_pull_data_proto;
8689 case BPF_FUNC_csum_diff:
8690 return &bpf_csum_diff_proto;
8691 case BPF_FUNC_get_cgroup_classid:
8692 return &bpf_get_cgroup_classid_proto;
8693 case BPF_FUNC_get_route_realm:
8694 return &bpf_get_route_realm_proto;
8695 case BPF_FUNC_get_hash_recalc:
8696 return &bpf_get_hash_recalc_proto;
8697 case BPF_FUNC_perf_event_output:
8698 return &bpf_skb_event_output_proto;
8699 case BPF_FUNC_get_smp_processor_id:
8700 return &bpf_get_smp_processor_id_proto;
8701 case BPF_FUNC_skb_under_cgroup:
8702 return &bpf_skb_under_cgroup_proto;
8703 default:
8704 return bpf_sk_base_func_proto(func_id, prog);
8705 }
8706 }
8707
8708 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8709 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8710 {
8711 switch (func_id) {
8712 case BPF_FUNC_lwt_push_encap:
8713 return &bpf_lwt_in_push_encap_proto;
8714 default:
8715 return lwt_out_func_proto(func_id, prog);
8716 }
8717 }
8718
8719 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8720 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8721 {
8722 switch (func_id) {
8723 case BPF_FUNC_skb_get_tunnel_key:
8724 return &bpf_skb_get_tunnel_key_proto;
8725 case BPF_FUNC_skb_set_tunnel_key:
8726 return bpf_get_skb_set_tunnel_proto(func_id);
8727 case BPF_FUNC_skb_get_tunnel_opt:
8728 return &bpf_skb_get_tunnel_opt_proto;
8729 case BPF_FUNC_skb_set_tunnel_opt:
8730 return bpf_get_skb_set_tunnel_proto(func_id);
8731 case BPF_FUNC_redirect:
8732 return &bpf_redirect_proto;
8733 case BPF_FUNC_clone_redirect:
8734 return &bpf_clone_redirect_proto;
8735 case BPF_FUNC_skb_change_tail:
8736 return &bpf_skb_change_tail_proto;
8737 case BPF_FUNC_skb_change_head:
8738 return &bpf_skb_change_head_proto;
8739 case BPF_FUNC_skb_store_bytes:
8740 return &bpf_skb_store_bytes_proto;
8741 case BPF_FUNC_csum_update:
8742 return &bpf_csum_update_proto;
8743 case BPF_FUNC_csum_level:
8744 return &bpf_csum_level_proto;
8745 case BPF_FUNC_l3_csum_replace:
8746 return &bpf_l3_csum_replace_proto;
8747 case BPF_FUNC_l4_csum_replace:
8748 return &bpf_l4_csum_replace_proto;
8749 case BPF_FUNC_set_hash_invalid:
8750 return &bpf_set_hash_invalid_proto;
8751 case BPF_FUNC_lwt_push_encap:
8752 return &bpf_lwt_xmit_push_encap_proto;
8753 default:
8754 return lwt_out_func_proto(func_id, prog);
8755 }
8756 }
8757
8758 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8759 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8760 {
8761 switch (func_id) {
8762 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8763 case BPF_FUNC_lwt_seg6_store_bytes:
8764 return &bpf_lwt_seg6_store_bytes_proto;
8765 case BPF_FUNC_lwt_seg6_action:
8766 return &bpf_lwt_seg6_action_proto;
8767 case BPF_FUNC_lwt_seg6_adjust_srh:
8768 return &bpf_lwt_seg6_adjust_srh_proto;
8769 #endif
8770 default:
8771 return lwt_out_func_proto(func_id, prog);
8772 }
8773 }
8774
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8775 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8776 const struct bpf_prog *prog,
8777 struct bpf_insn_access_aux *info)
8778 {
8779 const int size_default = sizeof(__u32);
8780
8781 if (off < 0 || off >= sizeof(struct __sk_buff))
8782 return false;
8783
8784 /* The verifier guarantees that size > 0. */
8785 if (off % size != 0)
8786 return false;
8787
8788 switch (off) {
8789 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8790 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8791 return false;
8792 break;
8793 case bpf_ctx_range(struct __sk_buff, data):
8794 case bpf_ctx_range(struct __sk_buff, data_meta):
8795 case bpf_ctx_range(struct __sk_buff, data_end):
8796 if (info->is_ldsx || size != size_default)
8797 return false;
8798 break;
8799 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8800 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8801 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8802 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8803 if (size != size_default)
8804 return false;
8805 break;
8806 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8807 return false;
8808 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8809 if (type == BPF_WRITE || size != sizeof(__u64))
8810 return false;
8811 break;
8812 case bpf_ctx_range(struct __sk_buff, tstamp):
8813 if (size != sizeof(__u64))
8814 return false;
8815 break;
8816 case bpf_ctx_range_ptr(struct __sk_buff, sk):
8817 if (type == BPF_WRITE || size != sizeof(__u64))
8818 return false;
8819 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8820 break;
8821 case offsetof(struct __sk_buff, tstamp_type):
8822 return false;
8823 case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8824 /* Explicitly prohibit access to padding in __sk_buff. */
8825 return false;
8826 default:
8827 /* Only narrow read access allowed for now. */
8828 if (type == BPF_WRITE) {
8829 if (size != size_default)
8830 return false;
8831 } else {
8832 bpf_ctx_record_field_size(info, size_default);
8833 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8834 return false;
8835 }
8836 }
8837
8838 return true;
8839 }
8840
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8841 static bool sk_filter_is_valid_access(int off, int size,
8842 enum bpf_access_type type,
8843 const struct bpf_prog *prog,
8844 struct bpf_insn_access_aux *info)
8845 {
8846 switch (off) {
8847 case bpf_ctx_range(struct __sk_buff, tc_classid):
8848 case bpf_ctx_range(struct __sk_buff, data):
8849 case bpf_ctx_range(struct __sk_buff, data_meta):
8850 case bpf_ctx_range(struct __sk_buff, data_end):
8851 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8852 case bpf_ctx_range(struct __sk_buff, tstamp):
8853 case bpf_ctx_range(struct __sk_buff, wire_len):
8854 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8855 return false;
8856 }
8857
8858 if (type == BPF_WRITE) {
8859 switch (off) {
8860 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8861 break;
8862 default:
8863 return false;
8864 }
8865 }
8866
8867 return bpf_skb_is_valid_access(off, size, type, prog, info);
8868 }
8869
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8870 static bool cg_skb_is_valid_access(int off, int size,
8871 enum bpf_access_type type,
8872 const struct bpf_prog *prog,
8873 struct bpf_insn_access_aux *info)
8874 {
8875 switch (off) {
8876 case bpf_ctx_range(struct __sk_buff, tc_classid):
8877 case bpf_ctx_range(struct __sk_buff, data_meta):
8878 case bpf_ctx_range(struct __sk_buff, wire_len):
8879 return false;
8880 case bpf_ctx_range(struct __sk_buff, data):
8881 case bpf_ctx_range(struct __sk_buff, data_end):
8882 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8883 return false;
8884 break;
8885 }
8886
8887 if (type == BPF_WRITE) {
8888 switch (off) {
8889 case bpf_ctx_range(struct __sk_buff, mark):
8890 case bpf_ctx_range(struct __sk_buff, priority):
8891 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8892 break;
8893 case bpf_ctx_range(struct __sk_buff, tstamp):
8894 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8895 return false;
8896 break;
8897 default:
8898 return false;
8899 }
8900 }
8901
8902 switch (off) {
8903 case bpf_ctx_range(struct __sk_buff, data):
8904 info->reg_type = PTR_TO_PACKET;
8905 break;
8906 case bpf_ctx_range(struct __sk_buff, data_end):
8907 info->reg_type = PTR_TO_PACKET_END;
8908 break;
8909 }
8910
8911 return bpf_skb_is_valid_access(off, size, type, prog, info);
8912 }
8913
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8914 static bool lwt_is_valid_access(int off, int size,
8915 enum bpf_access_type type,
8916 const struct bpf_prog *prog,
8917 struct bpf_insn_access_aux *info)
8918 {
8919 switch (off) {
8920 case bpf_ctx_range(struct __sk_buff, tc_classid):
8921 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8922 case bpf_ctx_range(struct __sk_buff, data_meta):
8923 case bpf_ctx_range(struct __sk_buff, tstamp):
8924 case bpf_ctx_range(struct __sk_buff, wire_len):
8925 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8926 return false;
8927 }
8928
8929 if (type == BPF_WRITE) {
8930 switch (off) {
8931 case bpf_ctx_range(struct __sk_buff, mark):
8932 case bpf_ctx_range(struct __sk_buff, priority):
8933 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8934 break;
8935 default:
8936 return false;
8937 }
8938 }
8939
8940 switch (off) {
8941 case bpf_ctx_range(struct __sk_buff, data):
8942 info->reg_type = PTR_TO_PACKET;
8943 break;
8944 case bpf_ctx_range(struct __sk_buff, data_end):
8945 info->reg_type = PTR_TO_PACKET_END;
8946 break;
8947 }
8948
8949 return bpf_skb_is_valid_access(off, size, type, prog, info);
8950 }
8951
8952 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8953 static bool __sock_filter_check_attach_type(int off,
8954 enum bpf_access_type access_type,
8955 enum bpf_attach_type attach_type)
8956 {
8957 switch (off) {
8958 case offsetof(struct bpf_sock, bound_dev_if):
8959 case offsetof(struct bpf_sock, mark):
8960 case offsetof(struct bpf_sock, priority):
8961 switch (attach_type) {
8962 case BPF_CGROUP_INET_SOCK_CREATE:
8963 case BPF_CGROUP_INET_SOCK_RELEASE:
8964 goto full_access;
8965 default:
8966 return false;
8967 }
8968 case bpf_ctx_range(struct bpf_sock, src_ip4):
8969 switch (attach_type) {
8970 case BPF_CGROUP_INET4_POST_BIND:
8971 goto read_only;
8972 default:
8973 return false;
8974 }
8975 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8976 switch (attach_type) {
8977 case BPF_CGROUP_INET6_POST_BIND:
8978 goto read_only;
8979 default:
8980 return false;
8981 }
8982 case bpf_ctx_range(struct bpf_sock, src_port):
8983 switch (attach_type) {
8984 case BPF_CGROUP_INET4_POST_BIND:
8985 case BPF_CGROUP_INET6_POST_BIND:
8986 goto read_only;
8987 default:
8988 return false;
8989 }
8990 }
8991 read_only:
8992 return access_type == BPF_READ;
8993 full_access:
8994 return true;
8995 }
8996
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8997 bool bpf_sock_common_is_valid_access(int off, int size,
8998 enum bpf_access_type type,
8999 struct bpf_insn_access_aux *info)
9000 {
9001 switch (off) {
9002 case bpf_ctx_range_till(struct bpf_sock, type, priority):
9003 return false;
9004 default:
9005 return bpf_sock_is_valid_access(off, size, type, info);
9006 }
9007 }
9008
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)9009 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
9010 struct bpf_insn_access_aux *info)
9011 {
9012 const int size_default = sizeof(__u32);
9013 int field_size;
9014
9015 if (off < 0 || off >= sizeof(struct bpf_sock))
9016 return false;
9017 if (off % size != 0)
9018 return false;
9019
9020 switch (off) {
9021 case offsetof(struct bpf_sock, state):
9022 case offsetof(struct bpf_sock, family):
9023 case offsetof(struct bpf_sock, type):
9024 case offsetof(struct bpf_sock, protocol):
9025 case offsetof(struct bpf_sock, src_port):
9026 case offsetof(struct bpf_sock, rx_queue_mapping):
9027 case bpf_ctx_range(struct bpf_sock, src_ip4):
9028 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9029 case bpf_ctx_range(struct bpf_sock, dst_ip4):
9030 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9031 bpf_ctx_record_field_size(info, size_default);
9032 return bpf_ctx_narrow_access_ok(off, size, size_default);
9033 case bpf_ctx_range(struct bpf_sock, dst_port):
9034 field_size = size == size_default ?
9035 size_default : sizeof_field(struct bpf_sock, dst_port);
9036 bpf_ctx_record_field_size(info, field_size);
9037 return bpf_ctx_narrow_access_ok(off, size, field_size);
9038 case offsetofend(struct bpf_sock, dst_port) ...
9039 offsetof(struct bpf_sock, dst_ip4) - 1:
9040 return false;
9041 }
9042
9043 return size == size_default;
9044 }
9045
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9046 static bool sock_filter_is_valid_access(int off, int size,
9047 enum bpf_access_type type,
9048 const struct bpf_prog *prog,
9049 struct bpf_insn_access_aux *info)
9050 {
9051 if (!bpf_sock_is_valid_access(off, size, type, info))
9052 return false;
9053 return __sock_filter_check_attach_type(off, type,
9054 prog->expected_attach_type);
9055 }
9056
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9057 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
9058 const struct bpf_prog *prog)
9059 {
9060 /* Neither direct read nor direct write requires any preliminary
9061 * action.
9062 */
9063 return 0;
9064 }
9065
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)9066 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
9067 const struct bpf_prog *prog, int drop_verdict)
9068 {
9069 struct bpf_insn *insn = insn_buf;
9070
9071 if (!direct_write)
9072 return 0;
9073
9074 /* if (!skb->cloned)
9075 * goto start;
9076 *
9077 * (Fast-path, otherwise approximation that we might be
9078 * a clone, do the rest in helper.)
9079 */
9080 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
9081 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
9082 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
9083
9084 /* ret = bpf_skb_pull_data(skb, 0); */
9085 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
9086 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
9087 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
9088 BPF_FUNC_skb_pull_data);
9089 /* if (!ret)
9090 * goto restore;
9091 * return TC_ACT_SHOT;
9092 */
9093 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
9094 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
9095 *insn++ = BPF_EXIT_INSN();
9096
9097 /* restore: */
9098 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
9099 /* start: */
9100 *insn++ = prog->insnsi[0];
9101
9102 return insn - insn_buf;
9103 }
9104
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)9105 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
9106 struct bpf_insn *insn_buf)
9107 {
9108 bool indirect = BPF_MODE(orig->code) == BPF_IND;
9109 struct bpf_insn *insn = insn_buf;
9110
9111 if (!indirect) {
9112 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
9113 } else {
9114 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
9115 if (orig->imm)
9116 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
9117 }
9118 /* We're guaranteed here that CTX is in R6. */
9119 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
9120
9121 switch (BPF_SIZE(orig->code)) {
9122 case BPF_B:
9123 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
9124 break;
9125 case BPF_H:
9126 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
9127 break;
9128 case BPF_W:
9129 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
9130 break;
9131 }
9132
9133 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
9134 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
9135 *insn++ = BPF_EXIT_INSN();
9136
9137 return insn - insn_buf;
9138 }
9139
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9140 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
9141 const struct bpf_prog *prog)
9142 {
9143 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
9144 }
9145
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9146 static bool tc_cls_act_is_valid_access(int off, int size,
9147 enum bpf_access_type type,
9148 const struct bpf_prog *prog,
9149 struct bpf_insn_access_aux *info)
9150 {
9151 if (type == BPF_WRITE) {
9152 switch (off) {
9153 case bpf_ctx_range(struct __sk_buff, mark):
9154 case bpf_ctx_range(struct __sk_buff, tc_index):
9155 case bpf_ctx_range(struct __sk_buff, priority):
9156 case bpf_ctx_range(struct __sk_buff, tc_classid):
9157 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
9158 case bpf_ctx_range(struct __sk_buff, tstamp):
9159 case bpf_ctx_range(struct __sk_buff, queue_mapping):
9160 break;
9161 default:
9162 return false;
9163 }
9164 }
9165
9166 switch (off) {
9167 case bpf_ctx_range(struct __sk_buff, data):
9168 info->reg_type = PTR_TO_PACKET;
9169 break;
9170 case bpf_ctx_range(struct __sk_buff, data_meta):
9171 info->reg_type = PTR_TO_PACKET_META;
9172 break;
9173 case bpf_ctx_range(struct __sk_buff, data_end):
9174 info->reg_type = PTR_TO_PACKET_END;
9175 break;
9176 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
9177 return false;
9178 case offsetof(struct __sk_buff, tstamp_type):
9179 /* The convert_ctx_access() on reading and writing
9180 * __sk_buff->tstamp depends on whether the bpf prog
9181 * has used __sk_buff->tstamp_type or not.
9182 * Thus, we need to set prog->tstamp_type_access
9183 * earlier during is_valid_access() here.
9184 */
9185 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
9186 return size == sizeof(__u8);
9187 }
9188
9189 return bpf_skb_is_valid_access(off, size, type, prog, info);
9190 }
9191
9192 DEFINE_MUTEX(nf_conn_btf_access_lock);
9193 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
9194
9195 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
9196 const struct bpf_reg_state *reg,
9197 int off, int size);
9198 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
9199
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9200 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
9201 const struct bpf_reg_state *reg,
9202 int off, int size)
9203 {
9204 int ret = -EACCES;
9205
9206 mutex_lock(&nf_conn_btf_access_lock);
9207 if (nfct_btf_struct_access)
9208 ret = nfct_btf_struct_access(log, reg, off, size);
9209 mutex_unlock(&nf_conn_btf_access_lock);
9210
9211 return ret;
9212 }
9213
__is_valid_xdp_access(int off,int size)9214 static bool __is_valid_xdp_access(int off, int size)
9215 {
9216 if (off < 0 || off >= sizeof(struct xdp_md))
9217 return false;
9218 if (off % size != 0)
9219 return false;
9220 if (size != sizeof(__u32))
9221 return false;
9222
9223 return true;
9224 }
9225
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9226 static bool xdp_is_valid_access(int off, int size,
9227 enum bpf_access_type type,
9228 const struct bpf_prog *prog,
9229 struct bpf_insn_access_aux *info)
9230 {
9231 if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
9232 switch (off) {
9233 case offsetof(struct xdp_md, egress_ifindex):
9234 return false;
9235 }
9236 }
9237
9238 if (type == BPF_WRITE) {
9239 if (bpf_prog_is_offloaded(prog->aux)) {
9240 switch (off) {
9241 case offsetof(struct xdp_md, rx_queue_index):
9242 return __is_valid_xdp_access(off, size);
9243 }
9244 }
9245 return false;
9246 } else {
9247 switch (off) {
9248 case offsetof(struct xdp_md, data_meta):
9249 case offsetof(struct xdp_md, data):
9250 case offsetof(struct xdp_md, data_end):
9251 if (info->is_ldsx)
9252 return false;
9253 }
9254 }
9255
9256 switch (off) {
9257 case offsetof(struct xdp_md, data):
9258 info->reg_type = PTR_TO_PACKET;
9259 break;
9260 case offsetof(struct xdp_md, data_meta):
9261 info->reg_type = PTR_TO_PACKET_META;
9262 break;
9263 case offsetof(struct xdp_md, data_end):
9264 info->reg_type = PTR_TO_PACKET_END;
9265 break;
9266 }
9267
9268 return __is_valid_xdp_access(off, size);
9269 }
9270
bpf_warn_invalid_xdp_action(const struct net_device * dev,const struct bpf_prog * prog,u32 act)9271 void bpf_warn_invalid_xdp_action(const struct net_device *dev,
9272 const struct bpf_prog *prog, u32 act)
9273 {
9274 const u32 act_max = XDP_REDIRECT;
9275
9276 pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9277 act > act_max ? "Illegal" : "Driver unsupported",
9278 act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9279 }
9280 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9281
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9282 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9283 const struct bpf_reg_state *reg,
9284 int off, int size)
9285 {
9286 int ret = -EACCES;
9287
9288 mutex_lock(&nf_conn_btf_access_lock);
9289 if (nfct_btf_struct_access)
9290 ret = nfct_btf_struct_access(log, reg, off, size);
9291 mutex_unlock(&nf_conn_btf_access_lock);
9292
9293 return ret;
9294 }
9295
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9296 static bool sock_addr_is_valid_access(int off, int size,
9297 enum bpf_access_type type,
9298 const struct bpf_prog *prog,
9299 struct bpf_insn_access_aux *info)
9300 {
9301 const int size_default = sizeof(__u32);
9302
9303 if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9304 return false;
9305 if (off % size != 0)
9306 return false;
9307
9308 /* Disallow access to fields not belonging to the attach type's address
9309 * family.
9310 */
9311 switch (off) {
9312 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9313 switch (prog->expected_attach_type) {
9314 case BPF_CGROUP_INET4_BIND:
9315 case BPF_CGROUP_INET4_CONNECT:
9316 case BPF_CGROUP_INET4_GETPEERNAME:
9317 case BPF_CGROUP_INET4_GETSOCKNAME:
9318 case BPF_CGROUP_UDP4_SENDMSG:
9319 case BPF_CGROUP_UDP4_RECVMSG:
9320 break;
9321 default:
9322 return false;
9323 }
9324 break;
9325 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9326 switch (prog->expected_attach_type) {
9327 case BPF_CGROUP_INET6_BIND:
9328 case BPF_CGROUP_INET6_CONNECT:
9329 case BPF_CGROUP_INET6_GETPEERNAME:
9330 case BPF_CGROUP_INET6_GETSOCKNAME:
9331 case BPF_CGROUP_UDP6_SENDMSG:
9332 case BPF_CGROUP_UDP6_RECVMSG:
9333 break;
9334 default:
9335 return false;
9336 }
9337 break;
9338 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9339 switch (prog->expected_attach_type) {
9340 case BPF_CGROUP_UDP4_SENDMSG:
9341 break;
9342 default:
9343 return false;
9344 }
9345 break;
9346 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9347 msg_src_ip6[3]):
9348 switch (prog->expected_attach_type) {
9349 case BPF_CGROUP_UDP6_SENDMSG:
9350 break;
9351 default:
9352 return false;
9353 }
9354 break;
9355 }
9356
9357 switch (off) {
9358 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9359 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9360 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9361 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9362 msg_src_ip6[3]):
9363 case bpf_ctx_range(struct bpf_sock_addr, user_port):
9364 if (type == BPF_READ) {
9365 bpf_ctx_record_field_size(info, size_default);
9366
9367 if (bpf_ctx_wide_access_ok(off, size,
9368 struct bpf_sock_addr,
9369 user_ip6))
9370 return true;
9371
9372 if (bpf_ctx_wide_access_ok(off, size,
9373 struct bpf_sock_addr,
9374 msg_src_ip6))
9375 return true;
9376
9377 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9378 return false;
9379 } else {
9380 if (bpf_ctx_wide_access_ok(off, size,
9381 struct bpf_sock_addr,
9382 user_ip6))
9383 return true;
9384
9385 if (bpf_ctx_wide_access_ok(off, size,
9386 struct bpf_sock_addr,
9387 msg_src_ip6))
9388 return true;
9389
9390 if (size != size_default)
9391 return false;
9392 }
9393 break;
9394 case bpf_ctx_range_ptr(struct bpf_sock_addr, sk):
9395 if (type != BPF_READ)
9396 return false;
9397 if (size != sizeof(__u64))
9398 return false;
9399 info->reg_type = PTR_TO_SOCKET;
9400 break;
9401 case bpf_ctx_range(struct bpf_sock_addr, user_family):
9402 case bpf_ctx_range(struct bpf_sock_addr, family):
9403 case bpf_ctx_range(struct bpf_sock_addr, type):
9404 case bpf_ctx_range(struct bpf_sock_addr, protocol):
9405 if (type != BPF_READ)
9406 return false;
9407 if (size != size_default)
9408 return false;
9409 break;
9410 default:
9411 return false;
9412 }
9413
9414 return true;
9415 }
9416
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9417 static bool sock_ops_is_valid_access(int off, int size,
9418 enum bpf_access_type type,
9419 const struct bpf_prog *prog,
9420 struct bpf_insn_access_aux *info)
9421 {
9422 const int size_default = sizeof(__u32);
9423
9424 if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9425 return false;
9426
9427 /* The verifier guarantees that size > 0. */
9428 if (off % size != 0)
9429 return false;
9430
9431 if (type == BPF_WRITE) {
9432 switch (off) {
9433 case offsetof(struct bpf_sock_ops, reply):
9434 case offsetof(struct bpf_sock_ops, sk_txhash):
9435 if (size != size_default)
9436 return false;
9437 break;
9438 default:
9439 return false;
9440 }
9441 } else {
9442 switch (off) {
9443 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9444 bytes_acked):
9445 if (size != sizeof(__u64))
9446 return false;
9447 break;
9448 case bpf_ctx_range_ptr(struct bpf_sock_ops, sk):
9449 if (size != sizeof(__u64))
9450 return false;
9451 info->reg_type = PTR_TO_SOCKET_OR_NULL;
9452 break;
9453 case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data):
9454 if (size != sizeof(__u64))
9455 return false;
9456 info->reg_type = PTR_TO_PACKET;
9457 break;
9458 case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data_end):
9459 if (size != sizeof(__u64))
9460 return false;
9461 info->reg_type = PTR_TO_PACKET_END;
9462 break;
9463 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9464 bpf_ctx_record_field_size(info, size_default);
9465 return bpf_ctx_narrow_access_ok(off, size,
9466 size_default);
9467 case bpf_ctx_range(struct bpf_sock_ops, skb_hwtstamp):
9468 if (size != sizeof(__u64))
9469 return false;
9470 break;
9471 default:
9472 if (size != size_default)
9473 return false;
9474 break;
9475 }
9476 }
9477
9478 return true;
9479 }
9480
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9481 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9482 const struct bpf_prog *prog)
9483 {
9484 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9485 }
9486
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9487 static bool sk_skb_is_valid_access(int off, int size,
9488 enum bpf_access_type type,
9489 const struct bpf_prog *prog,
9490 struct bpf_insn_access_aux *info)
9491 {
9492 switch (off) {
9493 case bpf_ctx_range(struct __sk_buff, tc_classid):
9494 case bpf_ctx_range(struct __sk_buff, data_meta):
9495 case bpf_ctx_range(struct __sk_buff, tstamp):
9496 case bpf_ctx_range(struct __sk_buff, wire_len):
9497 case bpf_ctx_range(struct __sk_buff, hwtstamp):
9498 return false;
9499 }
9500
9501 if (type == BPF_WRITE) {
9502 switch (off) {
9503 case bpf_ctx_range(struct __sk_buff, tc_index):
9504 case bpf_ctx_range(struct __sk_buff, priority):
9505 break;
9506 default:
9507 return false;
9508 }
9509 }
9510
9511 switch (off) {
9512 case bpf_ctx_range(struct __sk_buff, mark):
9513 return false;
9514 case bpf_ctx_range(struct __sk_buff, data):
9515 info->reg_type = PTR_TO_PACKET;
9516 break;
9517 case bpf_ctx_range(struct __sk_buff, data_end):
9518 info->reg_type = PTR_TO_PACKET_END;
9519 break;
9520 }
9521
9522 return bpf_skb_is_valid_access(off, size, type, prog, info);
9523 }
9524
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9525 static bool sk_msg_is_valid_access(int off, int size,
9526 enum bpf_access_type type,
9527 const struct bpf_prog *prog,
9528 struct bpf_insn_access_aux *info)
9529 {
9530 if (type == BPF_WRITE)
9531 return false;
9532
9533 if (off % size != 0)
9534 return false;
9535
9536 switch (off) {
9537 case bpf_ctx_range_ptr(struct sk_msg_md, data):
9538 info->reg_type = PTR_TO_PACKET;
9539 if (size != sizeof(__u64))
9540 return false;
9541 break;
9542 case bpf_ctx_range_ptr(struct sk_msg_md, data_end):
9543 info->reg_type = PTR_TO_PACKET_END;
9544 if (size != sizeof(__u64))
9545 return false;
9546 break;
9547 case bpf_ctx_range_ptr(struct sk_msg_md, sk):
9548 if (size != sizeof(__u64))
9549 return false;
9550 info->reg_type = PTR_TO_SOCKET;
9551 break;
9552 case bpf_ctx_range(struct sk_msg_md, family):
9553 case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9554 case bpf_ctx_range(struct sk_msg_md, local_ip4):
9555 case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9556 case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9557 case bpf_ctx_range(struct sk_msg_md, remote_port):
9558 case bpf_ctx_range(struct sk_msg_md, local_port):
9559 case bpf_ctx_range(struct sk_msg_md, size):
9560 if (size != sizeof(__u32))
9561 return false;
9562 break;
9563 default:
9564 return false;
9565 }
9566 return true;
9567 }
9568
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9569 static bool flow_dissector_is_valid_access(int off, int size,
9570 enum bpf_access_type type,
9571 const struct bpf_prog *prog,
9572 struct bpf_insn_access_aux *info)
9573 {
9574 const int size_default = sizeof(__u32);
9575
9576 if (off < 0 || off >= sizeof(struct __sk_buff))
9577 return false;
9578
9579 if (off % size != 0)
9580 return false;
9581
9582 if (type == BPF_WRITE)
9583 return false;
9584
9585 switch (off) {
9586 case bpf_ctx_range(struct __sk_buff, data):
9587 if (info->is_ldsx || size != size_default)
9588 return false;
9589 info->reg_type = PTR_TO_PACKET;
9590 return true;
9591 case bpf_ctx_range(struct __sk_buff, data_end):
9592 if (info->is_ldsx || size != size_default)
9593 return false;
9594 info->reg_type = PTR_TO_PACKET_END;
9595 return true;
9596 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9597 if (size != sizeof(__u64))
9598 return false;
9599 info->reg_type = PTR_TO_FLOW_KEYS;
9600 return true;
9601 default:
9602 return false;
9603 }
9604 }
9605
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9606 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9607 const struct bpf_insn *si,
9608 struct bpf_insn *insn_buf,
9609 struct bpf_prog *prog,
9610 u32 *target_size)
9611
9612 {
9613 struct bpf_insn *insn = insn_buf;
9614
9615 switch (si->off) {
9616 case offsetof(struct __sk_buff, data):
9617 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9618 si->dst_reg, si->src_reg,
9619 offsetof(struct bpf_flow_dissector, data));
9620 break;
9621
9622 case offsetof(struct __sk_buff, data_end):
9623 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9624 si->dst_reg, si->src_reg,
9625 offsetof(struct bpf_flow_dissector, data_end));
9626 break;
9627
9628 case offsetof(struct __sk_buff, flow_keys):
9629 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9630 si->dst_reg, si->src_reg,
9631 offsetof(struct bpf_flow_dissector, flow_keys));
9632 break;
9633 }
9634
9635 return insn - insn_buf;
9636 }
9637
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9638 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9639 struct bpf_insn *insn)
9640 {
9641 __u8 value_reg = si->dst_reg;
9642 __u8 skb_reg = si->src_reg;
9643 BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI);
9644 BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME);
9645 BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC);
9646 BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI);
9647 *insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9648 *insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK);
9649 #ifdef __BIG_ENDIAN_BITFIELD
9650 *insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT);
9651 #else
9652 BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1));
9653 #endif
9654
9655 return insn;
9656 }
9657
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9658 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9659 struct bpf_insn *insn)
9660 {
9661 /* si->dst_reg = skb_shinfo(SKB); */
9662 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9663 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9664 BPF_REG_AX, skb_reg,
9665 offsetof(struct sk_buff, end));
9666 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9667 dst_reg, skb_reg,
9668 offsetof(struct sk_buff, head));
9669 *insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9670 #else
9671 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9672 dst_reg, skb_reg,
9673 offsetof(struct sk_buff, end));
9674 #endif
9675
9676 return insn;
9677 }
9678
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9679 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9680 const struct bpf_insn *si,
9681 struct bpf_insn *insn)
9682 {
9683 __u8 value_reg = si->dst_reg;
9684 __u8 skb_reg = si->src_reg;
9685
9686 #ifdef CONFIG_NET_XGRESS
9687 /* If the tstamp_type is read,
9688 * the bpf prog is aware the tstamp could have delivery time.
9689 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9690 */
9691 if (!prog->tstamp_type_access) {
9692 /* AX is needed because src_reg and dst_reg could be the same */
9693 __u8 tmp_reg = BPF_REG_AX;
9694
9695 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9696 /* check if ingress mask bits is set */
9697 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9698 *insn++ = BPF_JMP_A(4);
9699 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1);
9700 *insn++ = BPF_JMP_A(2);
9701 /* skb->tc_at_ingress && skb->tstamp_type,
9702 * read 0 as the (rcv) timestamp.
9703 */
9704 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9705 *insn++ = BPF_JMP_A(1);
9706 }
9707 #endif
9708
9709 *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9710 offsetof(struct sk_buff, tstamp));
9711 return insn;
9712 }
9713
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9714 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9715 const struct bpf_insn *si,
9716 struct bpf_insn *insn)
9717 {
9718 __u8 value_reg = si->src_reg;
9719 __u8 skb_reg = si->dst_reg;
9720
9721 #ifdef CONFIG_NET_XGRESS
9722 /* If the tstamp_type is read,
9723 * the bpf prog is aware the tstamp could have delivery time.
9724 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9725 * Otherwise, writing at ingress will have to clear the
9726 * skb->tstamp_type bit also.
9727 */
9728 if (!prog->tstamp_type_access) {
9729 __u8 tmp_reg = BPF_REG_AX;
9730
9731 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9732 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9733 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9734 /* goto <store> */
9735 *insn++ = BPF_JMP_A(2);
9736 /* <clear>: skb->tstamp_type */
9737 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK);
9738 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9739 }
9740 #endif
9741
9742 /* <store>: skb->tstamp = tstamp */
9743 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9744 skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9745 return insn;
9746 }
9747
9748 #define BPF_EMIT_STORE(size, si, off) \
9749 BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM, \
9750 (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9751
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9752 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9753 const struct bpf_insn *si,
9754 struct bpf_insn *insn_buf,
9755 struct bpf_prog *prog, u32 *target_size)
9756 {
9757 struct bpf_insn *insn = insn_buf;
9758 int off;
9759
9760 switch (si->off) {
9761 case offsetof(struct __sk_buff, len):
9762 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9763 bpf_target_off(struct sk_buff, len, 4,
9764 target_size));
9765 break;
9766
9767 case offsetof(struct __sk_buff, protocol):
9768 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9769 bpf_target_off(struct sk_buff, protocol, 2,
9770 target_size));
9771 break;
9772
9773 case offsetof(struct __sk_buff, vlan_proto):
9774 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9775 bpf_target_off(struct sk_buff, vlan_proto, 2,
9776 target_size));
9777 break;
9778
9779 case offsetof(struct __sk_buff, priority):
9780 if (type == BPF_WRITE)
9781 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9782 bpf_target_off(struct sk_buff, priority, 4,
9783 target_size));
9784 else
9785 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9786 bpf_target_off(struct sk_buff, priority, 4,
9787 target_size));
9788 break;
9789
9790 case offsetof(struct __sk_buff, ingress_ifindex):
9791 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9792 bpf_target_off(struct sk_buff, skb_iif, 4,
9793 target_size));
9794 break;
9795
9796 case offsetof(struct __sk_buff, ifindex):
9797 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9798 si->dst_reg, si->src_reg,
9799 offsetof(struct sk_buff, dev));
9800 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9801 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9802 bpf_target_off(struct net_device, ifindex, 4,
9803 target_size));
9804 break;
9805
9806 case offsetof(struct __sk_buff, hash):
9807 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9808 bpf_target_off(struct sk_buff, hash, 4,
9809 target_size));
9810 break;
9811
9812 case offsetof(struct __sk_buff, mark):
9813 if (type == BPF_WRITE)
9814 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9815 bpf_target_off(struct sk_buff, mark, 4,
9816 target_size));
9817 else
9818 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9819 bpf_target_off(struct sk_buff, mark, 4,
9820 target_size));
9821 break;
9822
9823 case offsetof(struct __sk_buff, pkt_type):
9824 *target_size = 1;
9825 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9826 PKT_TYPE_OFFSET);
9827 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9828 #ifdef __BIG_ENDIAN_BITFIELD
9829 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9830 #endif
9831 break;
9832
9833 case offsetof(struct __sk_buff, queue_mapping):
9834 if (type == BPF_WRITE) {
9835 u32 offset = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9836
9837 if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9838 *insn++ = BPF_JMP_A(0); /* noop */
9839 break;
9840 }
9841
9842 if (BPF_CLASS(si->code) == BPF_STX)
9843 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9844 *insn++ = BPF_EMIT_STORE(BPF_H, si, offset);
9845 } else {
9846 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9847 bpf_target_off(struct sk_buff,
9848 queue_mapping,
9849 2, target_size));
9850 }
9851 break;
9852
9853 case offsetof(struct __sk_buff, vlan_present):
9854 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9855 bpf_target_off(struct sk_buff,
9856 vlan_all, 4, target_size));
9857 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9858 *insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9859 break;
9860
9861 case offsetof(struct __sk_buff, vlan_tci):
9862 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9863 bpf_target_off(struct sk_buff, vlan_tci, 2,
9864 target_size));
9865 break;
9866
9867 case offsetof(struct __sk_buff, cb[0]) ...
9868 offsetofend(struct __sk_buff, cb[4]) - 1:
9869 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9870 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9871 offsetof(struct qdisc_skb_cb, data)) %
9872 sizeof(__u64));
9873
9874 prog->cb_access = 1;
9875 off = si->off;
9876 off -= offsetof(struct __sk_buff, cb[0]);
9877 off += offsetof(struct sk_buff, cb);
9878 off += offsetof(struct qdisc_skb_cb, data);
9879 if (type == BPF_WRITE)
9880 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9881 else
9882 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9883 si->src_reg, off);
9884 break;
9885
9886 case offsetof(struct __sk_buff, tc_classid):
9887 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9888
9889 off = si->off;
9890 off -= offsetof(struct __sk_buff, tc_classid);
9891 off += offsetof(struct sk_buff, cb);
9892 off += offsetof(struct qdisc_skb_cb, tc_classid);
9893 *target_size = 2;
9894 if (type == BPF_WRITE)
9895 *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9896 else
9897 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9898 si->src_reg, off);
9899 break;
9900
9901 case offsetof(struct __sk_buff, data):
9902 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9903 si->dst_reg, si->src_reg,
9904 offsetof(struct sk_buff, data));
9905 break;
9906
9907 case offsetof(struct __sk_buff, data_meta):
9908 off = si->off;
9909 off -= offsetof(struct __sk_buff, data_meta);
9910 off += offsetof(struct sk_buff, cb);
9911 off += offsetof(struct bpf_skb_data_end, data_meta);
9912 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9913 si->src_reg, off);
9914 break;
9915
9916 case offsetof(struct __sk_buff, data_end):
9917 off = si->off;
9918 off -= offsetof(struct __sk_buff, data_end);
9919 off += offsetof(struct sk_buff, cb);
9920 off += offsetof(struct bpf_skb_data_end, data_end);
9921 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9922 si->src_reg, off);
9923 break;
9924
9925 case offsetof(struct __sk_buff, tc_index):
9926 #ifdef CONFIG_NET_SCHED
9927 if (type == BPF_WRITE)
9928 *insn++ = BPF_EMIT_STORE(BPF_H, si,
9929 bpf_target_off(struct sk_buff, tc_index, 2,
9930 target_size));
9931 else
9932 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9933 bpf_target_off(struct sk_buff, tc_index, 2,
9934 target_size));
9935 #else
9936 *target_size = 2;
9937 if (type == BPF_WRITE)
9938 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9939 else
9940 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9941 #endif
9942 break;
9943
9944 case offsetof(struct __sk_buff, napi_id):
9945 #if defined(CONFIG_NET_RX_BUSY_POLL)
9946 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9947 bpf_target_off(struct sk_buff, napi_id, 4,
9948 target_size));
9949 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9950 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9951 #else
9952 *target_size = 4;
9953 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9954 #endif
9955 break;
9956 case offsetof(struct __sk_buff, family):
9957 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9958
9959 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9960 si->dst_reg, si->src_reg,
9961 offsetof(struct sk_buff, sk));
9962 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9963 bpf_target_off(struct sock_common,
9964 skc_family,
9965 2, target_size));
9966 break;
9967 case offsetof(struct __sk_buff, remote_ip4):
9968 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9969
9970 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9971 si->dst_reg, si->src_reg,
9972 offsetof(struct sk_buff, sk));
9973 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9974 bpf_target_off(struct sock_common,
9975 skc_daddr,
9976 4, target_size));
9977 break;
9978 case offsetof(struct __sk_buff, local_ip4):
9979 BUILD_BUG_ON(sizeof_field(struct sock_common,
9980 skc_rcv_saddr) != 4);
9981
9982 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9983 si->dst_reg, si->src_reg,
9984 offsetof(struct sk_buff, sk));
9985 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9986 bpf_target_off(struct sock_common,
9987 skc_rcv_saddr,
9988 4, target_size));
9989 break;
9990 case offsetof(struct __sk_buff, remote_ip6[0]) ...
9991 offsetof(struct __sk_buff, remote_ip6[3]):
9992 #if IS_ENABLED(CONFIG_IPV6)
9993 BUILD_BUG_ON(sizeof_field(struct sock_common,
9994 skc_v6_daddr.s6_addr32[0]) != 4);
9995
9996 off = si->off;
9997 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9998
9999 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
10000 si->dst_reg, si->src_reg,
10001 offsetof(struct sk_buff, sk));
10002 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10003 offsetof(struct sock_common,
10004 skc_v6_daddr.s6_addr32[0]) +
10005 off);
10006 #else
10007 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10008 #endif
10009 break;
10010 case offsetof(struct __sk_buff, local_ip6[0]) ...
10011 offsetof(struct __sk_buff, local_ip6[3]):
10012 #if IS_ENABLED(CONFIG_IPV6)
10013 BUILD_BUG_ON(sizeof_field(struct sock_common,
10014 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10015
10016 off = si->off;
10017 off -= offsetof(struct __sk_buff, local_ip6[0]);
10018
10019 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
10020 si->dst_reg, si->src_reg,
10021 offsetof(struct sk_buff, sk));
10022 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10023 offsetof(struct sock_common,
10024 skc_v6_rcv_saddr.s6_addr32[0]) +
10025 off);
10026 #else
10027 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10028 #endif
10029 break;
10030
10031 case offsetof(struct __sk_buff, remote_port):
10032 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10033
10034 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
10035 si->dst_reg, si->src_reg,
10036 offsetof(struct sk_buff, sk));
10037 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10038 bpf_target_off(struct sock_common,
10039 skc_dport,
10040 2, target_size));
10041 #ifndef __BIG_ENDIAN_BITFIELD
10042 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10043 #endif
10044 break;
10045
10046 case offsetof(struct __sk_buff, local_port):
10047 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10048
10049 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
10050 si->dst_reg, si->src_reg,
10051 offsetof(struct sk_buff, sk));
10052 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10053 bpf_target_off(struct sock_common,
10054 skc_num, 2, target_size));
10055 break;
10056
10057 case offsetof(struct __sk_buff, tstamp):
10058 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
10059
10060 if (type == BPF_WRITE)
10061 insn = bpf_convert_tstamp_write(prog, si, insn);
10062 else
10063 insn = bpf_convert_tstamp_read(prog, si, insn);
10064 break;
10065
10066 case offsetof(struct __sk_buff, tstamp_type):
10067 insn = bpf_convert_tstamp_type_read(si, insn);
10068 break;
10069
10070 case offsetof(struct __sk_buff, gso_segs):
10071 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
10072 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
10073 si->dst_reg, si->dst_reg,
10074 bpf_target_off(struct skb_shared_info,
10075 gso_segs, 2,
10076 target_size));
10077 break;
10078 case offsetof(struct __sk_buff, gso_size):
10079 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
10080 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
10081 si->dst_reg, si->dst_reg,
10082 bpf_target_off(struct skb_shared_info,
10083 gso_size, 2,
10084 target_size));
10085 break;
10086 case offsetof(struct __sk_buff, wire_len):
10087 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
10088
10089 off = si->off;
10090 off -= offsetof(struct __sk_buff, wire_len);
10091 off += offsetof(struct sk_buff, cb);
10092 off += offsetof(struct qdisc_skb_cb, pkt_len);
10093 *target_size = 4;
10094 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
10095 break;
10096
10097 case offsetof(struct __sk_buff, sk):
10098 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
10099 si->dst_reg, si->src_reg,
10100 offsetof(struct sk_buff, sk));
10101 break;
10102 case offsetof(struct __sk_buff, hwtstamp):
10103 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
10104 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
10105
10106 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
10107 *insn++ = BPF_LDX_MEM(BPF_DW,
10108 si->dst_reg, si->dst_reg,
10109 bpf_target_off(struct skb_shared_info,
10110 hwtstamps, 8,
10111 target_size));
10112 break;
10113 }
10114
10115 return insn - insn_buf;
10116 }
10117
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10118 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
10119 const struct bpf_insn *si,
10120 struct bpf_insn *insn_buf,
10121 struct bpf_prog *prog, u32 *target_size)
10122 {
10123 struct bpf_insn *insn = insn_buf;
10124 int off;
10125
10126 switch (si->off) {
10127 case offsetof(struct bpf_sock, bound_dev_if):
10128 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
10129
10130 if (type == BPF_WRITE)
10131 *insn++ = BPF_EMIT_STORE(BPF_W, si,
10132 offsetof(struct sock, sk_bound_dev_if));
10133 else
10134 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10135 offsetof(struct sock, sk_bound_dev_if));
10136 break;
10137
10138 case offsetof(struct bpf_sock, mark):
10139 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
10140
10141 if (type == BPF_WRITE)
10142 *insn++ = BPF_EMIT_STORE(BPF_W, si,
10143 offsetof(struct sock, sk_mark));
10144 else
10145 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10146 offsetof(struct sock, sk_mark));
10147 break;
10148
10149 case offsetof(struct bpf_sock, priority):
10150 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
10151
10152 if (type == BPF_WRITE)
10153 *insn++ = BPF_EMIT_STORE(BPF_W, si,
10154 offsetof(struct sock, sk_priority));
10155 else
10156 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10157 offsetof(struct sock, sk_priority));
10158 break;
10159
10160 case offsetof(struct bpf_sock, family):
10161 *insn++ = BPF_LDX_MEM(
10162 BPF_FIELD_SIZEOF(struct sock_common, skc_family),
10163 si->dst_reg, si->src_reg,
10164 bpf_target_off(struct sock_common,
10165 skc_family,
10166 sizeof_field(struct sock_common,
10167 skc_family),
10168 target_size));
10169 break;
10170
10171 case offsetof(struct bpf_sock, type):
10172 *insn++ = BPF_LDX_MEM(
10173 BPF_FIELD_SIZEOF(struct sock, sk_type),
10174 si->dst_reg, si->src_reg,
10175 bpf_target_off(struct sock, sk_type,
10176 sizeof_field(struct sock, sk_type),
10177 target_size));
10178 break;
10179
10180 case offsetof(struct bpf_sock, protocol):
10181 *insn++ = BPF_LDX_MEM(
10182 BPF_FIELD_SIZEOF(struct sock, sk_protocol),
10183 si->dst_reg, si->src_reg,
10184 bpf_target_off(struct sock, sk_protocol,
10185 sizeof_field(struct sock, sk_protocol),
10186 target_size));
10187 break;
10188
10189 case offsetof(struct bpf_sock, src_ip4):
10190 *insn++ = BPF_LDX_MEM(
10191 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10192 bpf_target_off(struct sock_common, skc_rcv_saddr,
10193 sizeof_field(struct sock_common,
10194 skc_rcv_saddr),
10195 target_size));
10196 break;
10197
10198 case offsetof(struct bpf_sock, dst_ip4):
10199 *insn++ = BPF_LDX_MEM(
10200 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10201 bpf_target_off(struct sock_common, skc_daddr,
10202 sizeof_field(struct sock_common,
10203 skc_daddr),
10204 target_size));
10205 break;
10206
10207 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
10208 #if IS_ENABLED(CONFIG_IPV6)
10209 off = si->off;
10210 off -= offsetof(struct bpf_sock, src_ip6[0]);
10211 *insn++ = BPF_LDX_MEM(
10212 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10213 bpf_target_off(
10214 struct sock_common,
10215 skc_v6_rcv_saddr.s6_addr32[0],
10216 sizeof_field(struct sock_common,
10217 skc_v6_rcv_saddr.s6_addr32[0]),
10218 target_size) + off);
10219 #else
10220 (void)off;
10221 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10222 #endif
10223 break;
10224
10225 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
10226 #if IS_ENABLED(CONFIG_IPV6)
10227 off = si->off;
10228 off -= offsetof(struct bpf_sock, dst_ip6[0]);
10229 *insn++ = BPF_LDX_MEM(
10230 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10231 bpf_target_off(struct sock_common,
10232 skc_v6_daddr.s6_addr32[0],
10233 sizeof_field(struct sock_common,
10234 skc_v6_daddr.s6_addr32[0]),
10235 target_size) + off);
10236 #else
10237 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10238 *target_size = 4;
10239 #endif
10240 break;
10241
10242 case offsetof(struct bpf_sock, src_port):
10243 *insn++ = BPF_LDX_MEM(
10244 BPF_FIELD_SIZEOF(struct sock_common, skc_num),
10245 si->dst_reg, si->src_reg,
10246 bpf_target_off(struct sock_common, skc_num,
10247 sizeof_field(struct sock_common,
10248 skc_num),
10249 target_size));
10250 break;
10251
10252 case offsetof(struct bpf_sock, dst_port):
10253 *insn++ = BPF_LDX_MEM(
10254 BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
10255 si->dst_reg, si->src_reg,
10256 bpf_target_off(struct sock_common, skc_dport,
10257 sizeof_field(struct sock_common,
10258 skc_dport),
10259 target_size));
10260 break;
10261
10262 case offsetof(struct bpf_sock, state):
10263 *insn++ = BPF_LDX_MEM(
10264 BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10265 si->dst_reg, si->src_reg,
10266 bpf_target_off(struct sock_common, skc_state,
10267 sizeof_field(struct sock_common,
10268 skc_state),
10269 target_size));
10270 break;
10271 case offsetof(struct bpf_sock, rx_queue_mapping):
10272 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10273 *insn++ = BPF_LDX_MEM(
10274 BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10275 si->dst_reg, si->src_reg,
10276 bpf_target_off(struct sock, sk_rx_queue_mapping,
10277 sizeof_field(struct sock,
10278 sk_rx_queue_mapping),
10279 target_size));
10280 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10281 1);
10282 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10283 #else
10284 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10285 *target_size = 2;
10286 #endif
10287 break;
10288 }
10289
10290 return insn - insn_buf;
10291 }
10292
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10293 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10294 const struct bpf_insn *si,
10295 struct bpf_insn *insn_buf,
10296 struct bpf_prog *prog, u32 *target_size)
10297 {
10298 struct bpf_insn *insn = insn_buf;
10299
10300 switch (si->off) {
10301 case offsetof(struct __sk_buff, ifindex):
10302 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10303 si->dst_reg, si->src_reg,
10304 offsetof(struct sk_buff, dev));
10305 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10306 bpf_target_off(struct net_device, ifindex, 4,
10307 target_size));
10308 break;
10309 default:
10310 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10311 target_size);
10312 }
10313
10314 return insn - insn_buf;
10315 }
10316
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10317 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10318 const struct bpf_insn *si,
10319 struct bpf_insn *insn_buf,
10320 struct bpf_prog *prog, u32 *target_size)
10321 {
10322 struct bpf_insn *insn = insn_buf;
10323
10324 switch (si->off) {
10325 case offsetof(struct xdp_md, data):
10326 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10327 si->dst_reg, si->src_reg,
10328 offsetof(struct xdp_buff, data));
10329 break;
10330 case offsetof(struct xdp_md, data_meta):
10331 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10332 si->dst_reg, si->src_reg,
10333 offsetof(struct xdp_buff, data_meta));
10334 break;
10335 case offsetof(struct xdp_md, data_end):
10336 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10337 si->dst_reg, si->src_reg,
10338 offsetof(struct xdp_buff, data_end));
10339 break;
10340 case offsetof(struct xdp_md, ingress_ifindex):
10341 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10342 si->dst_reg, si->src_reg,
10343 offsetof(struct xdp_buff, rxq));
10344 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10345 si->dst_reg, si->dst_reg,
10346 offsetof(struct xdp_rxq_info, dev));
10347 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10348 offsetof(struct net_device, ifindex));
10349 break;
10350 case offsetof(struct xdp_md, rx_queue_index):
10351 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10352 si->dst_reg, si->src_reg,
10353 offsetof(struct xdp_buff, rxq));
10354 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10355 offsetof(struct xdp_rxq_info,
10356 queue_index));
10357 break;
10358 case offsetof(struct xdp_md, egress_ifindex):
10359 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10360 si->dst_reg, si->src_reg,
10361 offsetof(struct xdp_buff, txq));
10362 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10363 si->dst_reg, si->dst_reg,
10364 offsetof(struct xdp_txq_info, dev));
10365 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10366 offsetof(struct net_device, ifindex));
10367 break;
10368 }
10369
10370 return insn - insn_buf;
10371 }
10372
10373 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10374 * context Structure, F is Field in context structure that contains a pointer
10375 * to Nested Structure of type NS that has the field NF.
10376 *
10377 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10378 * sure that SIZE is not greater than actual size of S.F.NF.
10379 *
10380 * If offset OFF is provided, the load happens from that offset relative to
10381 * offset of NF.
10382 */
10383 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \
10384 do { \
10385 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \
10386 si->src_reg, offsetof(S, F)); \
10387 *insn++ = BPF_LDX_MEM( \
10388 SIZE, si->dst_reg, si->dst_reg, \
10389 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10390 target_size) \
10391 + OFF); \
10392 } while (0)
10393
10394 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \
10395 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \
10396 BPF_FIELD_SIZEOF(NS, NF), 0)
10397
10398 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10399 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10400 *
10401 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10402 * "register" since two registers available in convert_ctx_access are not
10403 * enough: we can't override neither SRC, since it contains value to store, nor
10404 * DST since it contains pointer to context that may be used by later
10405 * instructions. But we need a temporary place to save pointer to nested
10406 * structure whose field we want to store to.
10407 */
10408 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \
10409 do { \
10410 int tmp_reg = BPF_REG_9; \
10411 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10412 --tmp_reg; \
10413 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10414 --tmp_reg; \
10415 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \
10416 offsetof(S, TF)); \
10417 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \
10418 si->dst_reg, offsetof(S, F)); \
10419 *insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code), \
10420 tmp_reg, si->src_reg, \
10421 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10422 target_size) \
10423 + OFF, \
10424 si->imm); \
10425 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \
10426 offsetof(S, TF)); \
10427 } while (0)
10428
10429 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10430 TF) \
10431 do { \
10432 if (type == BPF_WRITE) { \
10433 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \
10434 OFF, TF); \
10435 } else { \
10436 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \
10437 S, NS, F, NF, SIZE, OFF); \
10438 } \
10439 } while (0)
10440
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10441 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10442 const struct bpf_insn *si,
10443 struct bpf_insn *insn_buf,
10444 struct bpf_prog *prog, u32 *target_size)
10445 {
10446 int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10447 struct bpf_insn *insn = insn_buf;
10448
10449 switch (si->off) {
10450 case offsetof(struct bpf_sock_addr, user_family):
10451 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10452 struct sockaddr, uaddr, sa_family);
10453 break;
10454
10455 case offsetof(struct bpf_sock_addr, user_ip4):
10456 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10457 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10458 sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10459 break;
10460
10461 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10462 off = si->off;
10463 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10464 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10465 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10466 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10467 tmp_reg);
10468 break;
10469
10470 case offsetof(struct bpf_sock_addr, user_port):
10471 /* To get port we need to know sa_family first and then treat
10472 * sockaddr as either sockaddr_in or sockaddr_in6.
10473 * Though we can simplify since port field has same offset and
10474 * size in both structures.
10475 * Here we check this invariant and use just one of the
10476 * structures if it's true.
10477 */
10478 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10479 offsetof(struct sockaddr_in6, sin6_port));
10480 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10481 sizeof_field(struct sockaddr_in6, sin6_port));
10482 /* Account for sin6_port being smaller than user_port. */
10483 port_size = min(port_size, BPF_LDST_BYTES(si));
10484 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10485 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10486 sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10487 break;
10488
10489 case offsetof(struct bpf_sock_addr, family):
10490 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10491 struct sock, sk, sk_family);
10492 break;
10493
10494 case offsetof(struct bpf_sock_addr, type):
10495 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10496 struct sock, sk, sk_type);
10497 break;
10498
10499 case offsetof(struct bpf_sock_addr, protocol):
10500 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10501 struct sock, sk, sk_protocol);
10502 break;
10503
10504 case offsetof(struct bpf_sock_addr, msg_src_ip4):
10505 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
10506 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10507 struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10508 s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10509 break;
10510
10511 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10512 msg_src_ip6[3]):
10513 off = si->off;
10514 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10515 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10516 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10517 struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10518 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10519 break;
10520 case offsetof(struct bpf_sock_addr, sk):
10521 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10522 si->dst_reg, si->src_reg,
10523 offsetof(struct bpf_sock_addr_kern, sk));
10524 break;
10525 }
10526
10527 return insn - insn_buf;
10528 }
10529
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10530 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10531 const struct bpf_insn *si,
10532 struct bpf_insn *insn_buf,
10533 struct bpf_prog *prog,
10534 u32 *target_size)
10535 {
10536 struct bpf_insn *insn = insn_buf;
10537 int off;
10538
10539 /* Helper macro for adding read access to tcp_sock or sock fields. */
10540 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10541 do { \
10542 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \
10543 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10544 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10545 if (si->dst_reg == reg || si->src_reg == reg) \
10546 reg--; \
10547 if (si->dst_reg == reg || si->src_reg == reg) \
10548 reg--; \
10549 if (si->dst_reg == si->src_reg) { \
10550 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10551 offsetof(struct bpf_sock_ops_kern, \
10552 temp)); \
10553 fullsock_reg = reg; \
10554 jmp += 2; \
10555 } \
10556 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10557 struct bpf_sock_ops_kern, \
10558 is_locked_tcp_sock), \
10559 fullsock_reg, si->src_reg, \
10560 offsetof(struct bpf_sock_ops_kern, \
10561 is_locked_tcp_sock)); \
10562 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10563 if (si->dst_reg == si->src_reg) \
10564 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10565 offsetof(struct bpf_sock_ops_kern, \
10566 temp)); \
10567 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10568 struct bpf_sock_ops_kern, sk),\
10569 si->dst_reg, si->src_reg, \
10570 offsetof(struct bpf_sock_ops_kern, sk));\
10571 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \
10572 OBJ_FIELD), \
10573 si->dst_reg, si->dst_reg, \
10574 offsetof(OBJ, OBJ_FIELD)); \
10575 if (si->dst_reg == si->src_reg) { \
10576 *insn++ = BPF_JMP_A(1); \
10577 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10578 offsetof(struct bpf_sock_ops_kern, \
10579 temp)); \
10580 } \
10581 } while (0)
10582
10583 #define SOCK_OPS_GET_SK() \
10584 do { \
10585 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \
10586 if (si->dst_reg == reg || si->src_reg == reg) \
10587 reg--; \
10588 if (si->dst_reg == reg || si->src_reg == reg) \
10589 reg--; \
10590 if (si->dst_reg == si->src_reg) { \
10591 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10592 offsetof(struct bpf_sock_ops_kern, \
10593 temp)); \
10594 fullsock_reg = reg; \
10595 jmp += 2; \
10596 } \
10597 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10598 struct bpf_sock_ops_kern, \
10599 is_fullsock), \
10600 fullsock_reg, si->src_reg, \
10601 offsetof(struct bpf_sock_ops_kern, \
10602 is_fullsock)); \
10603 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10604 if (si->dst_reg == si->src_reg) \
10605 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10606 offsetof(struct bpf_sock_ops_kern, \
10607 temp)); \
10608 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10609 struct bpf_sock_ops_kern, sk),\
10610 si->dst_reg, si->src_reg, \
10611 offsetof(struct bpf_sock_ops_kern, sk));\
10612 if (si->dst_reg == si->src_reg) { \
10613 *insn++ = BPF_JMP_A(1); \
10614 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10615 offsetof(struct bpf_sock_ops_kern, \
10616 temp)); \
10617 } \
10618 } while (0)
10619
10620 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10621 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10622
10623 /* Helper macro for adding write access to tcp_sock or sock fields.
10624 * The macro is called with two registers, dst_reg which contains a pointer
10625 * to ctx (context) and src_reg which contains the value that should be
10626 * stored. However, we need an additional register since we cannot overwrite
10627 * dst_reg because it may be used later in the program.
10628 * Instead we "borrow" one of the other register. We first save its value
10629 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10630 * it at the end of the macro.
10631 */
10632 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10633 do { \
10634 int reg = BPF_REG_9; \
10635 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10636 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10637 if (si->dst_reg == reg || si->src_reg == reg) \
10638 reg--; \
10639 if (si->dst_reg == reg || si->src_reg == reg) \
10640 reg--; \
10641 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \
10642 offsetof(struct bpf_sock_ops_kern, \
10643 temp)); \
10644 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10645 struct bpf_sock_ops_kern, \
10646 is_locked_tcp_sock), \
10647 reg, si->dst_reg, \
10648 offsetof(struct bpf_sock_ops_kern, \
10649 is_locked_tcp_sock)); \
10650 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \
10651 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10652 struct bpf_sock_ops_kern, sk),\
10653 reg, si->dst_reg, \
10654 offsetof(struct bpf_sock_ops_kern, sk));\
10655 *insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) | \
10656 BPF_MEM | BPF_CLASS(si->code), \
10657 reg, si->src_reg, \
10658 offsetof(OBJ, OBJ_FIELD), \
10659 si->imm); \
10660 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \
10661 offsetof(struct bpf_sock_ops_kern, \
10662 temp)); \
10663 } while (0)
10664
10665 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \
10666 do { \
10667 if (TYPE == BPF_WRITE) \
10668 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10669 else \
10670 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10671 } while (0)
10672
10673 switch (si->off) {
10674 case offsetof(struct bpf_sock_ops, op):
10675 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10676 op),
10677 si->dst_reg, si->src_reg,
10678 offsetof(struct bpf_sock_ops_kern, op));
10679 break;
10680
10681 case offsetof(struct bpf_sock_ops, replylong[0]) ...
10682 offsetof(struct bpf_sock_ops, replylong[3]):
10683 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10684 sizeof_field(struct bpf_sock_ops_kern, reply));
10685 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10686 sizeof_field(struct bpf_sock_ops_kern, replylong));
10687 off = si->off;
10688 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10689 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10690 if (type == BPF_WRITE)
10691 *insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10692 else
10693 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10694 off);
10695 break;
10696
10697 case offsetof(struct bpf_sock_ops, family):
10698 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10699
10700 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10701 struct bpf_sock_ops_kern, sk),
10702 si->dst_reg, si->src_reg,
10703 offsetof(struct bpf_sock_ops_kern, sk));
10704 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10705 offsetof(struct sock_common, skc_family));
10706 break;
10707
10708 case offsetof(struct bpf_sock_ops, remote_ip4):
10709 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10710
10711 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10712 struct bpf_sock_ops_kern, sk),
10713 si->dst_reg, si->src_reg,
10714 offsetof(struct bpf_sock_ops_kern, sk));
10715 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10716 offsetof(struct sock_common, skc_daddr));
10717 break;
10718
10719 case offsetof(struct bpf_sock_ops, local_ip4):
10720 BUILD_BUG_ON(sizeof_field(struct sock_common,
10721 skc_rcv_saddr) != 4);
10722
10723 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10724 struct bpf_sock_ops_kern, sk),
10725 si->dst_reg, si->src_reg,
10726 offsetof(struct bpf_sock_ops_kern, sk));
10727 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10728 offsetof(struct sock_common,
10729 skc_rcv_saddr));
10730 break;
10731
10732 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10733 offsetof(struct bpf_sock_ops, remote_ip6[3]):
10734 #if IS_ENABLED(CONFIG_IPV6)
10735 BUILD_BUG_ON(sizeof_field(struct sock_common,
10736 skc_v6_daddr.s6_addr32[0]) != 4);
10737
10738 off = si->off;
10739 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10740 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10741 struct bpf_sock_ops_kern, sk),
10742 si->dst_reg, si->src_reg,
10743 offsetof(struct bpf_sock_ops_kern, sk));
10744 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10745 offsetof(struct sock_common,
10746 skc_v6_daddr.s6_addr32[0]) +
10747 off);
10748 #else
10749 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10750 #endif
10751 break;
10752
10753 case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10754 offsetof(struct bpf_sock_ops, local_ip6[3]):
10755 #if IS_ENABLED(CONFIG_IPV6)
10756 BUILD_BUG_ON(sizeof_field(struct sock_common,
10757 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10758
10759 off = si->off;
10760 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10761 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10762 struct bpf_sock_ops_kern, sk),
10763 si->dst_reg, si->src_reg,
10764 offsetof(struct bpf_sock_ops_kern, sk));
10765 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10766 offsetof(struct sock_common,
10767 skc_v6_rcv_saddr.s6_addr32[0]) +
10768 off);
10769 #else
10770 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10771 #endif
10772 break;
10773
10774 case offsetof(struct bpf_sock_ops, remote_port):
10775 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10776
10777 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10778 struct bpf_sock_ops_kern, sk),
10779 si->dst_reg, si->src_reg,
10780 offsetof(struct bpf_sock_ops_kern, sk));
10781 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10782 offsetof(struct sock_common, skc_dport));
10783 #ifndef __BIG_ENDIAN_BITFIELD
10784 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10785 #endif
10786 break;
10787
10788 case offsetof(struct bpf_sock_ops, local_port):
10789 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10790
10791 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10792 struct bpf_sock_ops_kern, sk),
10793 si->dst_reg, si->src_reg,
10794 offsetof(struct bpf_sock_ops_kern, sk));
10795 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10796 offsetof(struct sock_common, skc_num));
10797 break;
10798
10799 case offsetof(struct bpf_sock_ops, is_fullsock):
10800 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10801 struct bpf_sock_ops_kern,
10802 is_fullsock),
10803 si->dst_reg, si->src_reg,
10804 offsetof(struct bpf_sock_ops_kern,
10805 is_fullsock));
10806 break;
10807
10808 case offsetof(struct bpf_sock_ops, state):
10809 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10810
10811 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10812 struct bpf_sock_ops_kern, sk),
10813 si->dst_reg, si->src_reg,
10814 offsetof(struct bpf_sock_ops_kern, sk));
10815 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10816 offsetof(struct sock_common, skc_state));
10817 break;
10818
10819 case offsetof(struct bpf_sock_ops, rtt_min):
10820 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10821 sizeof(struct minmax));
10822 BUILD_BUG_ON(sizeof(struct minmax) <
10823 sizeof(struct minmax_sample));
10824
10825 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10826 struct bpf_sock_ops_kern, sk),
10827 si->dst_reg, si->src_reg,
10828 offsetof(struct bpf_sock_ops_kern, sk));
10829 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10830 offsetof(struct tcp_sock, rtt_min) +
10831 sizeof_field(struct minmax_sample, t));
10832 break;
10833
10834 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10835 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10836 struct tcp_sock);
10837 break;
10838
10839 case offsetof(struct bpf_sock_ops, sk_txhash):
10840 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10841 struct sock, type);
10842 break;
10843 case offsetof(struct bpf_sock_ops, snd_cwnd):
10844 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10845 break;
10846 case offsetof(struct bpf_sock_ops, srtt_us):
10847 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10848 break;
10849 case offsetof(struct bpf_sock_ops, snd_ssthresh):
10850 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10851 break;
10852 case offsetof(struct bpf_sock_ops, rcv_nxt):
10853 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10854 break;
10855 case offsetof(struct bpf_sock_ops, snd_nxt):
10856 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10857 break;
10858 case offsetof(struct bpf_sock_ops, snd_una):
10859 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10860 break;
10861 case offsetof(struct bpf_sock_ops, mss_cache):
10862 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10863 break;
10864 case offsetof(struct bpf_sock_ops, ecn_flags):
10865 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10866 break;
10867 case offsetof(struct bpf_sock_ops, rate_delivered):
10868 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10869 break;
10870 case offsetof(struct bpf_sock_ops, rate_interval_us):
10871 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10872 break;
10873 case offsetof(struct bpf_sock_ops, packets_out):
10874 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10875 break;
10876 case offsetof(struct bpf_sock_ops, retrans_out):
10877 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10878 break;
10879 case offsetof(struct bpf_sock_ops, total_retrans):
10880 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10881 break;
10882 case offsetof(struct bpf_sock_ops, segs_in):
10883 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10884 break;
10885 case offsetof(struct bpf_sock_ops, data_segs_in):
10886 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10887 break;
10888 case offsetof(struct bpf_sock_ops, segs_out):
10889 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10890 break;
10891 case offsetof(struct bpf_sock_ops, data_segs_out):
10892 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10893 break;
10894 case offsetof(struct bpf_sock_ops, lost_out):
10895 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10896 break;
10897 case offsetof(struct bpf_sock_ops, sacked_out):
10898 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10899 break;
10900 case offsetof(struct bpf_sock_ops, bytes_received):
10901 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10902 break;
10903 case offsetof(struct bpf_sock_ops, bytes_acked):
10904 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10905 break;
10906 case offsetof(struct bpf_sock_ops, sk):
10907 SOCK_OPS_GET_SK();
10908 break;
10909 case offsetof(struct bpf_sock_ops, skb_data_end):
10910 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10911 skb_data_end),
10912 si->dst_reg, si->src_reg,
10913 offsetof(struct bpf_sock_ops_kern,
10914 skb_data_end));
10915 break;
10916 case offsetof(struct bpf_sock_ops, skb_data):
10917 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10918 skb),
10919 si->dst_reg, si->src_reg,
10920 offsetof(struct bpf_sock_ops_kern,
10921 skb));
10922 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10923 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10924 si->dst_reg, si->dst_reg,
10925 offsetof(struct sk_buff, data));
10926 break;
10927 case offsetof(struct bpf_sock_ops, skb_len):
10928 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10929 skb),
10930 si->dst_reg, si->src_reg,
10931 offsetof(struct bpf_sock_ops_kern,
10932 skb));
10933 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10934 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10935 si->dst_reg, si->dst_reg,
10936 offsetof(struct sk_buff, len));
10937 break;
10938 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10939 off = offsetof(struct sk_buff, cb);
10940 off += offsetof(struct tcp_skb_cb, tcp_flags);
10941 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10942 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10943 skb),
10944 si->dst_reg, si->src_reg,
10945 offsetof(struct bpf_sock_ops_kern,
10946 skb));
10947 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10948 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10949 tcp_flags),
10950 si->dst_reg, si->dst_reg, off);
10951 break;
10952 case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10953 struct bpf_insn *jmp_on_null_skb;
10954
10955 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10956 skb),
10957 si->dst_reg, si->src_reg,
10958 offsetof(struct bpf_sock_ops_kern,
10959 skb));
10960 /* Reserve one insn to test skb == NULL */
10961 jmp_on_null_skb = insn++;
10962 insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10963 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10964 bpf_target_off(struct skb_shared_info,
10965 hwtstamps, 8,
10966 target_size));
10967 *jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10968 insn - jmp_on_null_skb - 1);
10969 break;
10970 }
10971 }
10972 return insn - insn_buf;
10973 }
10974
10975 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10976 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10977 struct bpf_insn *insn)
10978 {
10979 int reg;
10980 int temp_reg_off = offsetof(struct sk_buff, cb) +
10981 offsetof(struct sk_skb_cb, temp_reg);
10982
10983 if (si->src_reg == si->dst_reg) {
10984 /* We need an extra register, choose and save a register. */
10985 reg = BPF_REG_9;
10986 if (si->src_reg == reg || si->dst_reg == reg)
10987 reg--;
10988 if (si->src_reg == reg || si->dst_reg == reg)
10989 reg--;
10990 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10991 } else {
10992 reg = si->dst_reg;
10993 }
10994
10995 /* reg = skb->data */
10996 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10997 reg, si->src_reg,
10998 offsetof(struct sk_buff, data));
10999 /* AX = skb->len */
11000 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
11001 BPF_REG_AX, si->src_reg,
11002 offsetof(struct sk_buff, len));
11003 /* reg = skb->data + skb->len */
11004 *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
11005 /* AX = skb->data_len */
11006 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
11007 BPF_REG_AX, si->src_reg,
11008 offsetof(struct sk_buff, data_len));
11009
11010 /* reg = skb->data + skb->len - skb->data_len */
11011 *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
11012
11013 if (si->src_reg == si->dst_reg) {
11014 /* Restore the saved register */
11015 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
11016 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
11017 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
11018 }
11019
11020 return insn;
11021 }
11022
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11023 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
11024 const struct bpf_insn *si,
11025 struct bpf_insn *insn_buf,
11026 struct bpf_prog *prog, u32 *target_size)
11027 {
11028 struct bpf_insn *insn = insn_buf;
11029 int off;
11030
11031 switch (si->off) {
11032 case offsetof(struct __sk_buff, data_end):
11033 insn = bpf_convert_data_end_access(si, insn);
11034 break;
11035 case offsetof(struct __sk_buff, cb[0]) ...
11036 offsetofend(struct __sk_buff, cb[4]) - 1:
11037 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
11038 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
11039 offsetof(struct sk_skb_cb, data)) %
11040 sizeof(__u64));
11041
11042 prog->cb_access = 1;
11043 off = si->off;
11044 off -= offsetof(struct __sk_buff, cb[0]);
11045 off += offsetof(struct sk_buff, cb);
11046 off += offsetof(struct sk_skb_cb, data);
11047 if (type == BPF_WRITE)
11048 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
11049 else
11050 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
11051 si->src_reg, off);
11052 break;
11053
11054
11055 default:
11056 return bpf_convert_ctx_access(type, si, insn_buf, prog,
11057 target_size);
11058 }
11059
11060 return insn - insn_buf;
11061 }
11062
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11063 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
11064 const struct bpf_insn *si,
11065 struct bpf_insn *insn_buf,
11066 struct bpf_prog *prog, u32 *target_size)
11067 {
11068 struct bpf_insn *insn = insn_buf;
11069 #if IS_ENABLED(CONFIG_IPV6)
11070 int off;
11071 #endif
11072
11073 /* convert ctx uses the fact sg element is first in struct */
11074 BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
11075
11076 switch (si->off) {
11077 case offsetof(struct sk_msg_md, data):
11078 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
11079 si->dst_reg, si->src_reg,
11080 offsetof(struct sk_msg, data));
11081 break;
11082 case offsetof(struct sk_msg_md, data_end):
11083 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
11084 si->dst_reg, si->src_reg,
11085 offsetof(struct sk_msg, data_end));
11086 break;
11087 case offsetof(struct sk_msg_md, family):
11088 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
11089
11090 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11091 struct sk_msg, sk),
11092 si->dst_reg, si->src_reg,
11093 offsetof(struct sk_msg, sk));
11094 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11095 offsetof(struct sock_common, skc_family));
11096 break;
11097
11098 case offsetof(struct sk_msg_md, remote_ip4):
11099 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
11100
11101 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11102 struct sk_msg, sk),
11103 si->dst_reg, si->src_reg,
11104 offsetof(struct sk_msg, sk));
11105 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11106 offsetof(struct sock_common, skc_daddr));
11107 break;
11108
11109 case offsetof(struct sk_msg_md, local_ip4):
11110 BUILD_BUG_ON(sizeof_field(struct sock_common,
11111 skc_rcv_saddr) != 4);
11112
11113 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11114 struct sk_msg, sk),
11115 si->dst_reg, si->src_reg,
11116 offsetof(struct sk_msg, sk));
11117 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11118 offsetof(struct sock_common,
11119 skc_rcv_saddr));
11120 break;
11121
11122 case offsetof(struct sk_msg_md, remote_ip6[0]) ...
11123 offsetof(struct sk_msg_md, remote_ip6[3]):
11124 #if IS_ENABLED(CONFIG_IPV6)
11125 BUILD_BUG_ON(sizeof_field(struct sock_common,
11126 skc_v6_daddr.s6_addr32[0]) != 4);
11127
11128 off = si->off;
11129 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
11130 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11131 struct sk_msg, sk),
11132 si->dst_reg, si->src_reg,
11133 offsetof(struct sk_msg, sk));
11134 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11135 offsetof(struct sock_common,
11136 skc_v6_daddr.s6_addr32[0]) +
11137 off);
11138 #else
11139 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11140 #endif
11141 break;
11142
11143 case offsetof(struct sk_msg_md, local_ip6[0]) ...
11144 offsetof(struct sk_msg_md, local_ip6[3]):
11145 #if IS_ENABLED(CONFIG_IPV6)
11146 BUILD_BUG_ON(sizeof_field(struct sock_common,
11147 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
11148
11149 off = si->off;
11150 off -= offsetof(struct sk_msg_md, local_ip6[0]);
11151 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11152 struct sk_msg, sk),
11153 si->dst_reg, si->src_reg,
11154 offsetof(struct sk_msg, sk));
11155 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11156 offsetof(struct sock_common,
11157 skc_v6_rcv_saddr.s6_addr32[0]) +
11158 off);
11159 #else
11160 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11161 #endif
11162 break;
11163
11164 case offsetof(struct sk_msg_md, remote_port):
11165 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
11166
11167 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11168 struct sk_msg, sk),
11169 si->dst_reg, si->src_reg,
11170 offsetof(struct sk_msg, sk));
11171 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11172 offsetof(struct sock_common, skc_dport));
11173 #ifndef __BIG_ENDIAN_BITFIELD
11174 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
11175 #endif
11176 break;
11177
11178 case offsetof(struct sk_msg_md, local_port):
11179 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
11180
11181 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11182 struct sk_msg, sk),
11183 si->dst_reg, si->src_reg,
11184 offsetof(struct sk_msg, sk));
11185 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11186 offsetof(struct sock_common, skc_num));
11187 break;
11188
11189 case offsetof(struct sk_msg_md, size):
11190 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
11191 si->dst_reg, si->src_reg,
11192 offsetof(struct sk_msg_sg, size));
11193 break;
11194
11195 case offsetof(struct sk_msg_md, sk):
11196 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
11197 si->dst_reg, si->src_reg,
11198 offsetof(struct sk_msg, sk));
11199 break;
11200 }
11201
11202 return insn - insn_buf;
11203 }
11204
11205 const struct bpf_verifier_ops sk_filter_verifier_ops = {
11206 .get_func_proto = sk_filter_func_proto,
11207 .is_valid_access = sk_filter_is_valid_access,
11208 .convert_ctx_access = bpf_convert_ctx_access,
11209 .gen_ld_abs = bpf_gen_ld_abs,
11210 };
11211
11212 const struct bpf_prog_ops sk_filter_prog_ops = {
11213 .test_run = bpf_prog_test_run_skb,
11214 };
11215
11216 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
11217 .get_func_proto = tc_cls_act_func_proto,
11218 .is_valid_access = tc_cls_act_is_valid_access,
11219 .convert_ctx_access = tc_cls_act_convert_ctx_access,
11220 .gen_prologue = tc_cls_act_prologue,
11221 .gen_ld_abs = bpf_gen_ld_abs,
11222 .btf_struct_access = tc_cls_act_btf_struct_access,
11223 };
11224
11225 const struct bpf_prog_ops tc_cls_act_prog_ops = {
11226 .test_run = bpf_prog_test_run_skb,
11227 };
11228
11229 const struct bpf_verifier_ops xdp_verifier_ops = {
11230 .get_func_proto = xdp_func_proto,
11231 .is_valid_access = xdp_is_valid_access,
11232 .convert_ctx_access = xdp_convert_ctx_access,
11233 .gen_prologue = bpf_noop_prologue,
11234 .btf_struct_access = xdp_btf_struct_access,
11235 };
11236
11237 const struct bpf_prog_ops xdp_prog_ops = {
11238 .test_run = bpf_prog_test_run_xdp,
11239 };
11240
11241 const struct bpf_verifier_ops cg_skb_verifier_ops = {
11242 .get_func_proto = cg_skb_func_proto,
11243 .is_valid_access = cg_skb_is_valid_access,
11244 .convert_ctx_access = bpf_convert_ctx_access,
11245 };
11246
11247 const struct bpf_prog_ops cg_skb_prog_ops = {
11248 .test_run = bpf_prog_test_run_skb,
11249 };
11250
11251 const struct bpf_verifier_ops lwt_in_verifier_ops = {
11252 .get_func_proto = lwt_in_func_proto,
11253 .is_valid_access = lwt_is_valid_access,
11254 .convert_ctx_access = bpf_convert_ctx_access,
11255 };
11256
11257 const struct bpf_prog_ops lwt_in_prog_ops = {
11258 .test_run = bpf_prog_test_run_skb,
11259 };
11260
11261 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11262 .get_func_proto = lwt_out_func_proto,
11263 .is_valid_access = lwt_is_valid_access,
11264 .convert_ctx_access = bpf_convert_ctx_access,
11265 };
11266
11267 const struct bpf_prog_ops lwt_out_prog_ops = {
11268 .test_run = bpf_prog_test_run_skb,
11269 };
11270
11271 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11272 .get_func_proto = lwt_xmit_func_proto,
11273 .is_valid_access = lwt_is_valid_access,
11274 .convert_ctx_access = bpf_convert_ctx_access,
11275 .gen_prologue = tc_cls_act_prologue,
11276 };
11277
11278 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11279 .test_run = bpf_prog_test_run_skb,
11280 };
11281
11282 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11283 .get_func_proto = lwt_seg6local_func_proto,
11284 .is_valid_access = lwt_is_valid_access,
11285 .convert_ctx_access = bpf_convert_ctx_access,
11286 };
11287
11288 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11289 };
11290
11291 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11292 .get_func_proto = sock_filter_func_proto,
11293 .is_valid_access = sock_filter_is_valid_access,
11294 .convert_ctx_access = bpf_sock_convert_ctx_access,
11295 };
11296
11297 const struct bpf_prog_ops cg_sock_prog_ops = {
11298 };
11299
11300 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11301 .get_func_proto = sock_addr_func_proto,
11302 .is_valid_access = sock_addr_is_valid_access,
11303 .convert_ctx_access = sock_addr_convert_ctx_access,
11304 };
11305
11306 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11307 };
11308
11309 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11310 .get_func_proto = sock_ops_func_proto,
11311 .is_valid_access = sock_ops_is_valid_access,
11312 .convert_ctx_access = sock_ops_convert_ctx_access,
11313 };
11314
11315 const struct bpf_prog_ops sock_ops_prog_ops = {
11316 };
11317
11318 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11319 .get_func_proto = sk_skb_func_proto,
11320 .is_valid_access = sk_skb_is_valid_access,
11321 .convert_ctx_access = sk_skb_convert_ctx_access,
11322 .gen_prologue = sk_skb_prologue,
11323 };
11324
11325 const struct bpf_prog_ops sk_skb_prog_ops = {
11326 };
11327
11328 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11329 .get_func_proto = sk_msg_func_proto,
11330 .is_valid_access = sk_msg_is_valid_access,
11331 .convert_ctx_access = sk_msg_convert_ctx_access,
11332 .gen_prologue = bpf_noop_prologue,
11333 };
11334
11335 const struct bpf_prog_ops sk_msg_prog_ops = {
11336 };
11337
11338 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11339 .get_func_proto = flow_dissector_func_proto,
11340 .is_valid_access = flow_dissector_is_valid_access,
11341 .convert_ctx_access = flow_dissector_convert_ctx_access,
11342 };
11343
11344 const struct bpf_prog_ops flow_dissector_prog_ops = {
11345 .test_run = bpf_prog_test_run_flow_dissector,
11346 };
11347
sk_detach_filter(struct sock * sk)11348 int sk_detach_filter(struct sock *sk)
11349 {
11350 int ret = -ENOENT;
11351 struct sk_filter *filter;
11352
11353 if (sock_flag(sk, SOCK_FILTER_LOCKED))
11354 return -EPERM;
11355
11356 filter = rcu_dereference_protected(sk->sk_filter,
11357 lockdep_sock_is_held(sk));
11358 if (filter) {
11359 RCU_INIT_POINTER(sk->sk_filter, NULL);
11360 sk_filter_uncharge(sk, filter);
11361 ret = 0;
11362 }
11363
11364 return ret;
11365 }
11366 EXPORT_SYMBOL_GPL(sk_detach_filter);
11367
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11368 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11369 {
11370 struct sock_fprog_kern *fprog;
11371 struct sk_filter *filter;
11372 int ret = 0;
11373
11374 sockopt_lock_sock(sk);
11375 filter = rcu_dereference_protected(sk->sk_filter,
11376 lockdep_sock_is_held(sk));
11377 if (!filter)
11378 goto out;
11379
11380 /* We're copying the filter that has been originally attached,
11381 * so no conversion/decode needed anymore. eBPF programs that
11382 * have no original program cannot be dumped through this.
11383 */
11384 ret = -EACCES;
11385 fprog = filter->prog->orig_prog;
11386 if (!fprog)
11387 goto out;
11388
11389 ret = fprog->len;
11390 if (!len)
11391 /* User space only enquires number of filter blocks. */
11392 goto out;
11393
11394 ret = -EINVAL;
11395 if (len < fprog->len)
11396 goto out;
11397
11398 ret = -EFAULT;
11399 if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11400 goto out;
11401
11402 /* Instead of bytes, the API requests to return the number
11403 * of filter blocks.
11404 */
11405 ret = fprog->len;
11406 out:
11407 sockopt_release_sock(sk);
11408 return ret;
11409 }
11410
11411 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11412 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11413 struct sock_reuseport *reuse,
11414 struct sock *sk, struct sk_buff *skb,
11415 struct sock *migrating_sk,
11416 u32 hash)
11417 {
11418 reuse_kern->skb = skb;
11419 reuse_kern->sk = sk;
11420 reuse_kern->selected_sk = NULL;
11421 reuse_kern->migrating_sk = migrating_sk;
11422 reuse_kern->data_end = skb->data + skb_headlen(skb);
11423 reuse_kern->hash = hash;
11424 reuse_kern->reuseport_id = reuse->reuseport_id;
11425 reuse_kern->bind_inany = reuse->bind_inany;
11426 }
11427
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11428 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11429 struct bpf_prog *prog, struct sk_buff *skb,
11430 struct sock *migrating_sk,
11431 u32 hash)
11432 {
11433 struct sk_reuseport_kern reuse_kern;
11434 enum sk_action action;
11435
11436 bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11437 action = bpf_prog_run(prog, &reuse_kern);
11438
11439 if (action == SK_PASS)
11440 return reuse_kern.selected_sk;
11441 else
11442 return ERR_PTR(-ECONNREFUSED);
11443 }
11444
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11445 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11446 struct bpf_map *, map, void *, key, u32, flags)
11447 {
11448 bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11449 struct sock_reuseport *reuse;
11450 struct sock *selected_sk;
11451 int err;
11452
11453 selected_sk = map->ops->map_lookup_elem(map, key);
11454 if (!selected_sk)
11455 return -ENOENT;
11456
11457 reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11458 if (!reuse) {
11459 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
11460 * The only (!reuse) case here is - the sk has already been
11461 * unhashed (e.g. by close()), so treat it as -ENOENT.
11462 *
11463 * Other maps (e.g. sock_map) do not provide this guarantee and
11464 * the sk may never be in the reuseport group to begin with.
11465 */
11466 err = is_sockarray ? -ENOENT : -EINVAL;
11467 goto error;
11468 }
11469
11470 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11471 struct sock *sk = reuse_kern->sk;
11472
11473 if (sk->sk_protocol != selected_sk->sk_protocol) {
11474 err = -EPROTOTYPE;
11475 } else if (sk->sk_family != selected_sk->sk_family) {
11476 err = -EAFNOSUPPORT;
11477 } else {
11478 /* Catch all. Likely bound to a different sockaddr. */
11479 err = -EBADFD;
11480 }
11481 goto error;
11482 }
11483
11484 reuse_kern->selected_sk = selected_sk;
11485
11486 return 0;
11487 error:
11488 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11489 if (sk_is_refcounted(selected_sk))
11490 sock_put(selected_sk);
11491
11492 return err;
11493 }
11494
11495 static const struct bpf_func_proto sk_select_reuseport_proto = {
11496 .func = sk_select_reuseport,
11497 .gpl_only = false,
11498 .ret_type = RET_INTEGER,
11499 .arg1_type = ARG_PTR_TO_CTX,
11500 .arg2_type = ARG_CONST_MAP_PTR,
11501 .arg3_type = ARG_PTR_TO_MAP_KEY,
11502 .arg4_type = ARG_ANYTHING,
11503 };
11504
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11505 BPF_CALL_4(sk_reuseport_load_bytes,
11506 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11507 void *, to, u32, len)
11508 {
11509 return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11510 }
11511
11512 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11513 .func = sk_reuseport_load_bytes,
11514 .gpl_only = false,
11515 .ret_type = RET_INTEGER,
11516 .arg1_type = ARG_PTR_TO_CTX,
11517 .arg2_type = ARG_ANYTHING,
11518 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11519 .arg4_type = ARG_CONST_SIZE,
11520 };
11521
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11522 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11523 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11524 void *, to, u32, len, u32, start_header)
11525 {
11526 return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11527 len, start_header);
11528 }
11529
11530 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11531 .func = sk_reuseport_load_bytes_relative,
11532 .gpl_only = false,
11533 .ret_type = RET_INTEGER,
11534 .arg1_type = ARG_PTR_TO_CTX,
11535 .arg2_type = ARG_ANYTHING,
11536 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11537 .arg4_type = ARG_CONST_SIZE,
11538 .arg5_type = ARG_ANYTHING,
11539 };
11540
11541 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11542 sk_reuseport_func_proto(enum bpf_func_id func_id,
11543 const struct bpf_prog *prog)
11544 {
11545 switch (func_id) {
11546 case BPF_FUNC_sk_select_reuseport:
11547 return &sk_select_reuseport_proto;
11548 case BPF_FUNC_skb_load_bytes:
11549 return &sk_reuseport_load_bytes_proto;
11550 case BPF_FUNC_skb_load_bytes_relative:
11551 return &sk_reuseport_load_bytes_relative_proto;
11552 case BPF_FUNC_get_socket_cookie:
11553 return &bpf_get_socket_ptr_cookie_proto;
11554 case BPF_FUNC_ktime_get_coarse_ns:
11555 return &bpf_ktime_get_coarse_ns_proto;
11556 default:
11557 return bpf_base_func_proto(func_id, prog);
11558 }
11559 }
11560
11561 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11562 sk_reuseport_is_valid_access(int off, int size,
11563 enum bpf_access_type type,
11564 const struct bpf_prog *prog,
11565 struct bpf_insn_access_aux *info)
11566 {
11567 const u32 size_default = sizeof(__u32);
11568
11569 if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11570 off % size || type != BPF_READ)
11571 return false;
11572
11573 switch (off) {
11574 case offsetof(struct sk_reuseport_md, data):
11575 info->reg_type = PTR_TO_PACKET;
11576 return size == sizeof(__u64);
11577
11578 case offsetof(struct sk_reuseport_md, data_end):
11579 info->reg_type = PTR_TO_PACKET_END;
11580 return size == sizeof(__u64);
11581
11582 case offsetof(struct sk_reuseport_md, hash):
11583 return size == size_default;
11584
11585 case offsetof(struct sk_reuseport_md, sk):
11586 info->reg_type = PTR_TO_SOCKET;
11587 return size == sizeof(__u64);
11588
11589 case offsetof(struct sk_reuseport_md, migrating_sk):
11590 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11591 return size == sizeof(__u64);
11592
11593 /* Fields that allow narrowing */
11594 case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11595 if (size < sizeof_field(struct sk_buff, protocol))
11596 return false;
11597 fallthrough;
11598 case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11599 case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11600 case bpf_ctx_range(struct sk_reuseport_md, len):
11601 bpf_ctx_record_field_size(info, size_default);
11602 return bpf_ctx_narrow_access_ok(off, size, size_default);
11603
11604 default:
11605 return false;
11606 }
11607 }
11608
11609 #define SK_REUSEPORT_LOAD_FIELD(F) ({ \
11610 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11611 si->dst_reg, si->src_reg, \
11612 bpf_target_off(struct sk_reuseport_kern, F, \
11613 sizeof_field(struct sk_reuseport_kern, F), \
11614 target_size)); \
11615 })
11616
11617 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \
11618 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11619 struct sk_buff, \
11620 skb, \
11621 SKB_FIELD)
11622
11623 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \
11624 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11625 struct sock, \
11626 sk, \
11627 SK_FIELD)
11628
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11629 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11630 const struct bpf_insn *si,
11631 struct bpf_insn *insn_buf,
11632 struct bpf_prog *prog,
11633 u32 *target_size)
11634 {
11635 struct bpf_insn *insn = insn_buf;
11636
11637 switch (si->off) {
11638 case offsetof(struct sk_reuseport_md, data):
11639 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11640 break;
11641
11642 case offsetof(struct sk_reuseport_md, len):
11643 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11644 break;
11645
11646 case offsetof(struct sk_reuseport_md, eth_protocol):
11647 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11648 break;
11649
11650 case offsetof(struct sk_reuseport_md, ip_protocol):
11651 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11652 break;
11653
11654 case offsetof(struct sk_reuseport_md, data_end):
11655 SK_REUSEPORT_LOAD_FIELD(data_end);
11656 break;
11657
11658 case offsetof(struct sk_reuseport_md, hash):
11659 SK_REUSEPORT_LOAD_FIELD(hash);
11660 break;
11661
11662 case offsetof(struct sk_reuseport_md, bind_inany):
11663 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11664 break;
11665
11666 case offsetof(struct sk_reuseport_md, sk):
11667 SK_REUSEPORT_LOAD_FIELD(sk);
11668 break;
11669
11670 case offsetof(struct sk_reuseport_md, migrating_sk):
11671 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11672 break;
11673 }
11674
11675 return insn - insn_buf;
11676 }
11677
11678 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11679 .get_func_proto = sk_reuseport_func_proto,
11680 .is_valid_access = sk_reuseport_is_valid_access,
11681 .convert_ctx_access = sk_reuseport_convert_ctx_access,
11682 };
11683
11684 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11685 };
11686
11687 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11688 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11689
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11690 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11691 struct sock *, sk, u64, flags)
11692 {
11693 if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11694 BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11695 return -EINVAL;
11696 if (unlikely(sk && sk_is_refcounted(sk)))
11697 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11698 if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11699 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11700 if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11701 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11702
11703 /* Check if socket is suitable for packet L3/L4 protocol */
11704 if (sk && sk->sk_protocol != ctx->protocol)
11705 return -EPROTOTYPE;
11706 if (sk && sk->sk_family != ctx->family &&
11707 (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11708 return -EAFNOSUPPORT;
11709
11710 if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11711 return -EEXIST;
11712
11713 /* Select socket as lookup result */
11714 ctx->selected_sk = sk;
11715 ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11716 return 0;
11717 }
11718
11719 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11720 .func = bpf_sk_lookup_assign,
11721 .gpl_only = false,
11722 .ret_type = RET_INTEGER,
11723 .arg1_type = ARG_PTR_TO_CTX,
11724 .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL,
11725 .arg3_type = ARG_ANYTHING,
11726 };
11727
11728 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11729 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11730 {
11731 switch (func_id) {
11732 case BPF_FUNC_perf_event_output:
11733 return &bpf_event_output_data_proto;
11734 case BPF_FUNC_sk_assign:
11735 return &bpf_sk_lookup_assign_proto;
11736 case BPF_FUNC_sk_release:
11737 return &bpf_sk_release_proto;
11738 default:
11739 return bpf_sk_base_func_proto(func_id, prog);
11740 }
11741 }
11742
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11743 static bool sk_lookup_is_valid_access(int off, int size,
11744 enum bpf_access_type type,
11745 const struct bpf_prog *prog,
11746 struct bpf_insn_access_aux *info)
11747 {
11748 if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11749 return false;
11750 if (off % size != 0)
11751 return false;
11752 if (type != BPF_READ)
11753 return false;
11754
11755 switch (off) {
11756 case bpf_ctx_range_ptr(struct bpf_sk_lookup, sk):
11757 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11758 return size == sizeof(__u64);
11759
11760 case bpf_ctx_range(struct bpf_sk_lookup, family):
11761 case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11762 case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11763 case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11764 case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11765 case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11766 case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11767 case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11768 bpf_ctx_record_field_size(info, sizeof(__u32));
11769 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11770
11771 case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11772 /* Allow 4-byte access to 2-byte field for backward compatibility */
11773 if (size == sizeof(__u32))
11774 return true;
11775 bpf_ctx_record_field_size(info, sizeof(__be16));
11776 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11777
11778 case offsetofend(struct bpf_sk_lookup, remote_port) ...
11779 offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11780 /* Allow access to zero padding for backward compatibility */
11781 bpf_ctx_record_field_size(info, sizeof(__u16));
11782 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11783
11784 default:
11785 return false;
11786 }
11787 }
11788
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11789 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11790 const struct bpf_insn *si,
11791 struct bpf_insn *insn_buf,
11792 struct bpf_prog *prog,
11793 u32 *target_size)
11794 {
11795 struct bpf_insn *insn = insn_buf;
11796
11797 switch (si->off) {
11798 case offsetof(struct bpf_sk_lookup, sk):
11799 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11800 offsetof(struct bpf_sk_lookup_kern, selected_sk));
11801 break;
11802
11803 case offsetof(struct bpf_sk_lookup, family):
11804 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11805 bpf_target_off(struct bpf_sk_lookup_kern,
11806 family, 2, target_size));
11807 break;
11808
11809 case offsetof(struct bpf_sk_lookup, protocol):
11810 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11811 bpf_target_off(struct bpf_sk_lookup_kern,
11812 protocol, 2, target_size));
11813 break;
11814
11815 case offsetof(struct bpf_sk_lookup, remote_ip4):
11816 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11817 bpf_target_off(struct bpf_sk_lookup_kern,
11818 v4.saddr, 4, target_size));
11819 break;
11820
11821 case offsetof(struct bpf_sk_lookup, local_ip4):
11822 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11823 bpf_target_off(struct bpf_sk_lookup_kern,
11824 v4.daddr, 4, target_size));
11825 break;
11826
11827 case bpf_ctx_range_till(struct bpf_sk_lookup,
11828 remote_ip6[0], remote_ip6[3]): {
11829 #if IS_ENABLED(CONFIG_IPV6)
11830 int off = si->off;
11831
11832 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11833 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11834 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11835 offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11836 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11837 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11838 #else
11839 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11840 #endif
11841 break;
11842 }
11843 case bpf_ctx_range_till(struct bpf_sk_lookup,
11844 local_ip6[0], local_ip6[3]): {
11845 #if IS_ENABLED(CONFIG_IPV6)
11846 int off = si->off;
11847
11848 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11849 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11850 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11851 offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11852 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11853 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11854 #else
11855 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11856 #endif
11857 break;
11858 }
11859 case offsetof(struct bpf_sk_lookup, remote_port):
11860 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11861 bpf_target_off(struct bpf_sk_lookup_kern,
11862 sport, 2, target_size));
11863 break;
11864
11865 case offsetofend(struct bpf_sk_lookup, remote_port):
11866 *target_size = 2;
11867 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11868 break;
11869
11870 case offsetof(struct bpf_sk_lookup, local_port):
11871 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11872 bpf_target_off(struct bpf_sk_lookup_kern,
11873 dport, 2, target_size));
11874 break;
11875
11876 case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11877 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11878 bpf_target_off(struct bpf_sk_lookup_kern,
11879 ingress_ifindex, 4, target_size));
11880 break;
11881 }
11882
11883 return insn - insn_buf;
11884 }
11885
11886 const struct bpf_prog_ops sk_lookup_prog_ops = {
11887 .test_run = bpf_prog_test_run_sk_lookup,
11888 };
11889
11890 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11891 .get_func_proto = sk_lookup_func_proto,
11892 .is_valid_access = sk_lookup_is_valid_access,
11893 .convert_ctx_access = sk_lookup_convert_ctx_access,
11894 };
11895
11896 #endif /* CONFIG_INET */
11897
DEFINE_BPF_DISPATCHER(xdp)11898 DEFINE_BPF_DISPATCHER(xdp)
11899
11900 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11901 {
11902 bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11903 }
11904
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11905 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11906 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11907 BTF_SOCK_TYPE_xxx
11908 #undef BTF_SOCK_TYPE
11909
11910 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11911 {
11912 /* tcp6_sock type is not generated in dwarf and hence btf,
11913 * trigger an explicit type generation here.
11914 */
11915 BTF_TYPE_EMIT(struct tcp6_sock);
11916 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11917 sk->sk_family == AF_INET6)
11918 return (unsigned long)sk;
11919
11920 return (unsigned long)NULL;
11921 }
11922
11923 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11924 .func = bpf_skc_to_tcp6_sock,
11925 .gpl_only = false,
11926 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11927 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11928 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11929 };
11930
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11931 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11932 {
11933 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11934 return (unsigned long)sk;
11935
11936 return (unsigned long)NULL;
11937 }
11938
11939 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11940 .func = bpf_skc_to_tcp_sock,
11941 .gpl_only = false,
11942 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11943 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11944 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11945 };
11946
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11947 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11948 {
11949 /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11950 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11951 */
11952 BTF_TYPE_EMIT(struct inet_timewait_sock);
11953 BTF_TYPE_EMIT(struct tcp_timewait_sock);
11954
11955 #ifdef CONFIG_INET
11956 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11957 return (unsigned long)sk;
11958 #endif
11959
11960 #if IS_BUILTIN(CONFIG_IPV6)
11961 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11962 return (unsigned long)sk;
11963 #endif
11964
11965 return (unsigned long)NULL;
11966 }
11967
11968 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11969 .func = bpf_skc_to_tcp_timewait_sock,
11970 .gpl_only = false,
11971 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11972 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11973 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11974 };
11975
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11976 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11977 {
11978 #ifdef CONFIG_INET
11979 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11980 return (unsigned long)sk;
11981 #endif
11982
11983 #if IS_BUILTIN(CONFIG_IPV6)
11984 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11985 return (unsigned long)sk;
11986 #endif
11987
11988 return (unsigned long)NULL;
11989 }
11990
11991 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11992 .func = bpf_skc_to_tcp_request_sock,
11993 .gpl_only = false,
11994 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11995 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11996 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11997 };
11998
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11999 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
12000 {
12001 /* udp6_sock type is not generated in dwarf and hence btf,
12002 * trigger an explicit type generation here.
12003 */
12004 BTF_TYPE_EMIT(struct udp6_sock);
12005 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
12006 sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
12007 return (unsigned long)sk;
12008
12009 return (unsigned long)NULL;
12010 }
12011
12012 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
12013 .func = bpf_skc_to_udp6_sock,
12014 .gpl_only = false,
12015 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
12016 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
12017 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
12018 };
12019
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)12020 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
12021 {
12022 /* unix_sock type is not generated in dwarf and hence btf,
12023 * trigger an explicit type generation here.
12024 */
12025 BTF_TYPE_EMIT(struct unix_sock);
12026 if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
12027 return (unsigned long)sk;
12028
12029 return (unsigned long)NULL;
12030 }
12031
12032 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
12033 .func = bpf_skc_to_unix_sock,
12034 .gpl_only = false,
12035 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
12036 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
12037 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
12038 };
12039
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)12040 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
12041 {
12042 BTF_TYPE_EMIT(struct mptcp_sock);
12043 return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
12044 }
12045
12046 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
12047 .func = bpf_skc_to_mptcp_sock,
12048 .gpl_only = false,
12049 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
12050 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
12051 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
12052 };
12053
BPF_CALL_1(bpf_sock_from_file,struct file *,file)12054 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
12055 {
12056 return (unsigned long)sock_from_file(file);
12057 }
12058
12059 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
12060 BTF_ID(struct, socket)
12061 BTF_ID(struct, file)
12062
12063 const struct bpf_func_proto bpf_sock_from_file_proto = {
12064 .func = bpf_sock_from_file,
12065 .gpl_only = false,
12066 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
12067 .ret_btf_id = &bpf_sock_from_file_btf_ids[0],
12068 .arg1_type = ARG_PTR_TO_BTF_ID,
12069 .arg1_btf_id = &bpf_sock_from_file_btf_ids[1],
12070 };
12071
12072 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)12073 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
12074 {
12075 const struct bpf_func_proto *func;
12076
12077 switch (func_id) {
12078 case BPF_FUNC_skc_to_tcp6_sock:
12079 func = &bpf_skc_to_tcp6_sock_proto;
12080 break;
12081 case BPF_FUNC_skc_to_tcp_sock:
12082 func = &bpf_skc_to_tcp_sock_proto;
12083 break;
12084 case BPF_FUNC_skc_to_tcp_timewait_sock:
12085 func = &bpf_skc_to_tcp_timewait_sock_proto;
12086 break;
12087 case BPF_FUNC_skc_to_tcp_request_sock:
12088 func = &bpf_skc_to_tcp_request_sock_proto;
12089 break;
12090 case BPF_FUNC_skc_to_udp6_sock:
12091 func = &bpf_skc_to_udp6_sock_proto;
12092 break;
12093 case BPF_FUNC_skc_to_unix_sock:
12094 func = &bpf_skc_to_unix_sock_proto;
12095 break;
12096 case BPF_FUNC_skc_to_mptcp_sock:
12097 func = &bpf_skc_to_mptcp_sock_proto;
12098 break;
12099 case BPF_FUNC_ktime_get_coarse_ns:
12100 return &bpf_ktime_get_coarse_ns_proto;
12101 default:
12102 return bpf_base_func_proto(func_id, prog);
12103 }
12104
12105 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
12106 return NULL;
12107
12108 return func;
12109 }
12110
12111 /**
12112 * bpf_skb_meta_pointer() - Gets a mutable pointer within the skb metadata area.
12113 * @skb: socket buffer carrying the metadata
12114 * @offset: offset into the metadata area, must be <= skb_metadata_len()
12115 */
bpf_skb_meta_pointer(struct sk_buff * skb,u32 offset)12116 void *bpf_skb_meta_pointer(struct sk_buff *skb, u32 offset)
12117 {
12118 return skb_metadata_end(skb) - skb_metadata_len(skb) + offset;
12119 }
12120
__bpf_skb_meta_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)12121 int __bpf_skb_meta_store_bytes(struct sk_buff *skb, u32 offset,
12122 const void *from, u32 len, u64 flags)
12123 {
12124 if (unlikely(flags))
12125 return -EINVAL;
12126 if (unlikely(bpf_try_make_writable(skb, 0)))
12127 return -EFAULT;
12128
12129 memmove(bpf_skb_meta_pointer(skb, offset), from, len);
12130 return 0;
12131 }
12132
12133 __bpf_kfunc_start_defs();
bpf_dynptr_from_skb(struct __sk_buff * s,u64 flags,struct bpf_dynptr * ptr__uninit)12134 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags,
12135 struct bpf_dynptr *ptr__uninit)
12136 {
12137 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12138 struct sk_buff *skb = (struct sk_buff *)s;
12139
12140 if (flags) {
12141 bpf_dynptr_set_null(ptr);
12142 return -EINVAL;
12143 }
12144
12145 bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
12146
12147 return 0;
12148 }
12149
12150 /**
12151 * bpf_dynptr_from_skb_meta() - Initialize a dynptr to the skb metadata area.
12152 * @skb_: socket buffer carrying the metadata
12153 * @flags: future use, must be zero
12154 * @ptr__uninit: dynptr to initialize
12155 *
12156 * Set up a dynptr for access to the metadata area earlier allocated from the
12157 * XDP context with bpf_xdp_adjust_meta(). Serves as an alternative to
12158 * &__sk_buff->data_meta.
12159 *
12160 * Return:
12161 * * %0 - dynptr ready to use
12162 * * %-EINVAL - invalid flags, dynptr set to null
12163 */
bpf_dynptr_from_skb_meta(struct __sk_buff * skb_,u64 flags,struct bpf_dynptr * ptr__uninit)12164 __bpf_kfunc int bpf_dynptr_from_skb_meta(struct __sk_buff *skb_, u64 flags,
12165 struct bpf_dynptr *ptr__uninit)
12166 {
12167 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12168 struct sk_buff *skb = (struct sk_buff *)skb_;
12169
12170 if (flags) {
12171 bpf_dynptr_set_null(ptr);
12172 return -EINVAL;
12173 }
12174
12175 bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB_META, 0, skb_metadata_len(skb));
12176
12177 return 0;
12178 }
12179
bpf_dynptr_from_xdp(struct xdp_md * x,u64 flags,struct bpf_dynptr * ptr__uninit)12180 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags,
12181 struct bpf_dynptr *ptr__uninit)
12182 {
12183 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12184 struct xdp_buff *xdp = (struct xdp_buff *)x;
12185
12186 if (flags) {
12187 bpf_dynptr_set_null(ptr);
12188 return -EINVAL;
12189 }
12190
12191 bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
12192
12193 return 0;
12194 }
12195
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)12196 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
12197 const u8 *sun_path, u32 sun_path__sz)
12198 {
12199 struct sockaddr_un *un;
12200
12201 if (sa_kern->sk->sk_family != AF_UNIX)
12202 return -EINVAL;
12203
12204 /* We do not allow changing the address to unnamed or larger than the
12205 * maximum allowed address size for a unix sockaddr.
12206 */
12207 if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
12208 return -EINVAL;
12209
12210 un = (struct sockaddr_un *)sa_kern->uaddr;
12211 memcpy(un->sun_path, sun_path, sun_path__sz);
12212 sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
12213
12214 return 0;
12215 }
12216
bpf_sk_assign_tcp_reqsk(struct __sk_buff * s,struct sock * sk,struct bpf_tcp_req_attrs * attrs,int attrs__sz)12217 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk,
12218 struct bpf_tcp_req_attrs *attrs, int attrs__sz)
12219 {
12220 #if IS_ENABLED(CONFIG_SYN_COOKIES)
12221 struct sk_buff *skb = (struct sk_buff *)s;
12222 const struct request_sock_ops *ops;
12223 struct inet_request_sock *ireq;
12224 struct tcp_request_sock *treq;
12225 struct request_sock *req;
12226 struct net *net;
12227 __u16 min_mss;
12228 u32 tsoff = 0;
12229
12230 if (attrs__sz != sizeof(*attrs) ||
12231 attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
12232 return -EINVAL;
12233
12234 if (!skb_at_tc_ingress(skb))
12235 return -EINVAL;
12236
12237 net = dev_net(skb->dev);
12238 if (net != sock_net(sk))
12239 return -ENETUNREACH;
12240
12241 switch (skb->protocol) {
12242 case htons(ETH_P_IP):
12243 ops = &tcp_request_sock_ops;
12244 min_mss = 536;
12245 break;
12246 #if IS_BUILTIN(CONFIG_IPV6)
12247 case htons(ETH_P_IPV6):
12248 ops = &tcp6_request_sock_ops;
12249 min_mss = IPV6_MIN_MTU - 60;
12250 break;
12251 #endif
12252 default:
12253 return -EINVAL;
12254 }
12255
12256 if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
12257 sk_is_mptcp(sk))
12258 return -EINVAL;
12259
12260 if (attrs->mss < min_mss)
12261 return -EINVAL;
12262
12263 if (attrs->wscale_ok) {
12264 if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
12265 return -EINVAL;
12266
12267 if (attrs->snd_wscale > TCP_MAX_WSCALE ||
12268 attrs->rcv_wscale > TCP_MAX_WSCALE)
12269 return -EINVAL;
12270 }
12271
12272 if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
12273 return -EINVAL;
12274
12275 if (attrs->tstamp_ok) {
12276 if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
12277 return -EINVAL;
12278
12279 tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns());
12280 }
12281
12282 req = inet_reqsk_alloc(ops, sk, false);
12283 if (!req)
12284 return -ENOMEM;
12285
12286 ireq = inet_rsk(req);
12287 treq = tcp_rsk(req);
12288
12289 req->rsk_listener = sk;
12290 req->syncookie = 1;
12291 req->mss = attrs->mss;
12292 req->ts_recent = attrs->rcv_tsval;
12293
12294 ireq->snd_wscale = attrs->snd_wscale;
12295 ireq->rcv_wscale = attrs->rcv_wscale;
12296 ireq->tstamp_ok = !!attrs->tstamp_ok;
12297 ireq->sack_ok = !!attrs->sack_ok;
12298 ireq->wscale_ok = !!attrs->wscale_ok;
12299 ireq->ecn_ok = !!attrs->ecn_ok;
12300
12301 treq->req_usec_ts = !!attrs->usec_ts_ok;
12302 treq->ts_off = tsoff;
12303
12304 skb_orphan(skb);
12305 skb->sk = req_to_sk(req);
12306 skb->destructor = sock_pfree;
12307
12308 return 0;
12309 #else
12310 return -EOPNOTSUPP;
12311 #endif
12312 }
12313
bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern * skops,u64 flags)12314 __bpf_kfunc int bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern *skops,
12315 u64 flags)
12316 {
12317 struct sk_buff *skb;
12318
12319 if (skops->op != BPF_SOCK_OPS_TSTAMP_SENDMSG_CB)
12320 return -EOPNOTSUPP;
12321
12322 if (flags)
12323 return -EINVAL;
12324
12325 skb = skops->skb;
12326 skb_shinfo(skb)->tx_flags |= SKBTX_BPF;
12327 TCP_SKB_CB(skb)->txstamp_ack |= TSTAMP_ACK_BPF;
12328 skb_shinfo(skb)->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
12329
12330 return 0;
12331 }
12332
12333 /**
12334 * bpf_xdp_pull_data() - Pull in non-linear xdp data.
12335 * @x: &xdp_md associated with the XDP buffer
12336 * @len: length of data to be made directly accessible in the linear part
12337 *
12338 * Pull in data in case the XDP buffer associated with @x is non-linear and
12339 * not all @len are in the linear data area.
12340 *
12341 * Direct packet access allows reading and writing linear XDP data through
12342 * packet pointers (i.e., &xdp_md->data + offsets). The amount of data which
12343 * ends up in the linear part of the xdp_buff depends on the NIC and its
12344 * configuration. When a frag-capable XDP program wants to directly access
12345 * headers that may be in the non-linear area, call this kfunc to make sure
12346 * the data is available in the linear area. Alternatively, use dynptr or
12347 * bpf_xdp_{load,store}_bytes() to access data without pulling.
12348 *
12349 * This kfunc can also be used with bpf_xdp_adjust_head() to decapsulate
12350 * headers in the non-linear data area.
12351 *
12352 * A call to this kfunc may reduce headroom. If there is not enough tailroom
12353 * in the linear data area, metadata and data will be shifted down.
12354 *
12355 * A call to this kfunc is susceptible to change the buffer geometry.
12356 * Therefore, at load time, all checks on pointers previously done by the
12357 * verifier are invalidated and must be performed again, if the kfunc is used
12358 * in combination with direct packet access.
12359 *
12360 * Return:
12361 * * %0 - success
12362 * * %-EINVAL - invalid len
12363 */
bpf_xdp_pull_data(struct xdp_md * x,u32 len)12364 __bpf_kfunc int bpf_xdp_pull_data(struct xdp_md *x, u32 len)
12365 {
12366 struct xdp_buff *xdp = (struct xdp_buff *)x;
12367 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
12368 int i, delta, shift, headroom, tailroom, n_frags_free = 0;
12369 void *data_hard_end = xdp_data_hard_end(xdp);
12370 int data_len = xdp->data_end - xdp->data;
12371 void *start;
12372
12373 if (len <= data_len)
12374 return 0;
12375
12376 if (unlikely(len > xdp_get_buff_len(xdp)))
12377 return -EINVAL;
12378
12379 start = xdp_data_meta_unsupported(xdp) ? xdp->data : xdp->data_meta;
12380
12381 headroom = start - xdp->data_hard_start - sizeof(struct xdp_frame);
12382 tailroom = data_hard_end - xdp->data_end;
12383
12384 delta = len - data_len;
12385 if (unlikely(delta > tailroom + headroom))
12386 return -EINVAL;
12387
12388 shift = delta - tailroom;
12389 if (shift > 0) {
12390 memmove(start - shift, start, xdp->data_end - start);
12391
12392 xdp->data_meta -= shift;
12393 xdp->data -= shift;
12394 xdp->data_end -= shift;
12395 }
12396
12397 for (i = 0; i < sinfo->nr_frags && delta; i++) {
12398 skb_frag_t *frag = &sinfo->frags[i];
12399 u32 shrink = min_t(u32, delta, skb_frag_size(frag));
12400
12401 memcpy(xdp->data_end, skb_frag_address(frag), shrink);
12402
12403 xdp->data_end += shrink;
12404 sinfo->xdp_frags_size -= shrink;
12405 delta -= shrink;
12406 if (bpf_xdp_shrink_data(xdp, frag, shrink, false))
12407 n_frags_free++;
12408 }
12409
12410 if (unlikely(n_frags_free)) {
12411 memmove(sinfo->frags, sinfo->frags + n_frags_free,
12412 (sinfo->nr_frags - n_frags_free) * sizeof(skb_frag_t));
12413
12414 sinfo->nr_frags -= n_frags_free;
12415
12416 if (!sinfo->nr_frags) {
12417 xdp_buff_clear_frags_flag(xdp);
12418 xdp_buff_clear_frag_pfmemalloc(xdp);
12419 }
12420 }
12421
12422 return 0;
12423 }
12424
12425 __bpf_kfunc_end_defs();
12426
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr__uninit)12427 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
12428 struct bpf_dynptr *ptr__uninit)
12429 {
12430 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12431 int err;
12432
12433 err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
12434 if (err)
12435 return err;
12436
12437 bpf_dynptr_set_rdonly(ptr);
12438
12439 return 0;
12440 }
12441
12442 BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
12443 BTF_ID_FLAGS(func, bpf_dynptr_from_skb, KF_TRUSTED_ARGS)
12444 BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
12445
12446 BTF_KFUNCS_START(bpf_kfunc_check_set_skb_meta)
12447 BTF_ID_FLAGS(func, bpf_dynptr_from_skb_meta, KF_TRUSTED_ARGS)
12448 BTF_KFUNCS_END(bpf_kfunc_check_set_skb_meta)
12449
12450 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
12451 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
12452 BTF_ID_FLAGS(func, bpf_xdp_pull_data)
12453 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
12454
12455 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
12456 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
12457 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
12458
12459 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
12460 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
12461 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12462
12463 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_ops)
12464 BTF_ID_FLAGS(func, bpf_sock_ops_enable_tx_tstamp, KF_TRUSTED_ARGS)
12465 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_ops)
12466
12467 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12468 .owner = THIS_MODULE,
12469 .set = &bpf_kfunc_check_set_skb,
12470 };
12471
12472 static const struct btf_kfunc_id_set bpf_kfunc_set_skb_meta = {
12473 .owner = THIS_MODULE,
12474 .set = &bpf_kfunc_check_set_skb_meta,
12475 };
12476
12477 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12478 .owner = THIS_MODULE,
12479 .set = &bpf_kfunc_check_set_xdp,
12480 };
12481
12482 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12483 .owner = THIS_MODULE,
12484 .set = &bpf_kfunc_check_set_sock_addr,
12485 };
12486
12487 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12488 .owner = THIS_MODULE,
12489 .set = &bpf_kfunc_check_set_tcp_reqsk,
12490 };
12491
12492 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_ops = {
12493 .owner = THIS_MODULE,
12494 .set = &bpf_kfunc_check_set_sock_ops,
12495 };
12496
bpf_kfunc_init(void)12497 static int __init bpf_kfunc_init(void)
12498 {
12499 int ret;
12500
12501 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
12502 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
12503 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
12504 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
12505 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
12506 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
12507 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
12508 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
12509 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
12510 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
12511 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_kfunc_set_skb);
12512 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb_meta);
12513 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb_meta);
12514 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
12515 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12516 &bpf_kfunc_set_sock_addr);
12517 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk);
12518 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCK_OPS, &bpf_kfunc_set_sock_ops);
12519 }
12520 late_initcall(bpf_kfunc_init);
12521
12522 __bpf_kfunc_start_defs();
12523
12524 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12525 *
12526 * The function expects a non-NULL pointer to a socket, and invokes the
12527 * protocol specific socket destroy handlers.
12528 *
12529 * The helper can only be called from BPF contexts that have acquired the socket
12530 * locks.
12531 *
12532 * Parameters:
12533 * @sock: Pointer to socket to be destroyed
12534 *
12535 * Return:
12536 * On error, may return EPROTONOSUPPORT, EINVAL.
12537 * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12538 * 0 otherwise
12539 */
bpf_sock_destroy(struct sock_common * sock)12540 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12541 {
12542 struct sock *sk = (struct sock *)sock;
12543
12544 /* The locking semantics that allow for synchronous execution of the
12545 * destroy handlers are only supported for TCP and UDP.
12546 * Supporting protocols will need to acquire sock lock in the BPF context
12547 * prior to invoking this kfunc.
12548 */
12549 if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12550 sk->sk_protocol != IPPROTO_UDP))
12551 return -EOPNOTSUPP;
12552
12553 return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12554 }
12555
12556 __bpf_kfunc_end_defs();
12557
12558 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
BTF_ID_FLAGS(func,bpf_sock_destroy,KF_TRUSTED_ARGS)12559 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12560 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12561
12562 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12563 {
12564 if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12565 prog->expected_attach_type != BPF_TRACE_ITER)
12566 return -EACCES;
12567 return 0;
12568 }
12569
12570 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12571 .owner = THIS_MODULE,
12572 .set = &bpf_sk_iter_kfunc_ids,
12573 .filter = tracing_iter_filter,
12574 };
12575
init_subsystem(void)12576 static int init_subsystem(void)
12577 {
12578 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12579 }
12580 late_initcall(init_subsystem);
12581