1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4
5 #include <linux/reciprocal_div.h>
6 #include <linux/list_lru.h>
7 #include <linux/local_lock.h>
8 #include <linux/random.h>
9 #include <linux/kobject.h>
10 #include <linux/sched/mm.h>
11 #include <linux/memcontrol.h>
12 #include <linux/kfence.h>
13 #include <linux/kasan.h>
14
15 /*
16 * Internal slab definitions
17 */
18
19 #ifdef CONFIG_64BIT
20 # ifdef system_has_cmpxchg128
21 # define system_has_freelist_aba() system_has_cmpxchg128()
22 # define try_cmpxchg_freelist try_cmpxchg128
23 # endif
24 #define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg128
25 typedef u128 freelist_full_t;
26 #else /* CONFIG_64BIT */
27 # ifdef system_has_cmpxchg64
28 # define system_has_freelist_aba() system_has_cmpxchg64()
29 # define try_cmpxchg_freelist try_cmpxchg64
30 # endif
31 #define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg64
32 typedef u64 freelist_full_t;
33 #endif /* CONFIG_64BIT */
34
35 #if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
36 #undef system_has_freelist_aba
37 #endif
38
39 /*
40 * Freelist pointer and counter to cmpxchg together, avoids the typical ABA
41 * problems with cmpxchg of just a pointer.
42 */
43 struct freelist_counters {
44 union {
45 struct {
46 void *freelist;
47 union {
48 unsigned long counters;
49 struct {
50 unsigned inuse:16;
51 unsigned objects:15;
52 /*
53 * If slab debugging is enabled then the
54 * frozen bit can be reused to indicate
55 * that the slab was corrupted
56 */
57 unsigned frozen:1;
58 };
59 };
60 };
61 #ifdef system_has_freelist_aba
62 freelist_full_t freelist_counters;
63 #endif
64 };
65 };
66
67 /* Reuses the bits in struct page */
68 struct slab {
69 memdesc_flags_t flags;
70
71 struct kmem_cache *slab_cache;
72 union {
73 struct {
74 union {
75 struct list_head slab_list;
76 struct { /* For deferred deactivate_slab() */
77 struct llist_node llnode;
78 void *flush_freelist;
79 };
80 #ifdef CONFIG_SLUB_CPU_PARTIAL
81 struct {
82 struct slab *next;
83 int slabs; /* Nr of slabs left */
84 };
85 #endif
86 };
87 /* Double-word boundary */
88 struct freelist_counters;
89 };
90 struct rcu_head rcu_head;
91 };
92
93 unsigned int __page_type;
94 atomic_t __page_refcount;
95 #ifdef CONFIG_SLAB_OBJ_EXT
96 unsigned long obj_exts;
97 #endif
98 };
99
100 #define SLAB_MATCH(pg, sl) \
101 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
102 SLAB_MATCH(flags, flags);
103 SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */
104 SLAB_MATCH(_refcount, __page_refcount);
105 #ifdef CONFIG_MEMCG
106 SLAB_MATCH(memcg_data, obj_exts);
107 #elif defined(CONFIG_SLAB_OBJ_EXT)
108 SLAB_MATCH(_unused_slab_obj_exts, obj_exts);
109 #endif
110 #undef SLAB_MATCH
111 static_assert(sizeof(struct slab) <= sizeof(struct page));
112 #if defined(system_has_freelist_aba)
113 static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(struct freelist_counters)));
114 #endif
115
116 /**
117 * slab_folio - The folio allocated for a slab
118 * @s: The slab.
119 *
120 * Slabs are allocated as folios that contain the individual objects and are
121 * using some fields in the first struct page of the folio - those fields are
122 * now accessed by struct slab. It is occasionally necessary to convert back to
123 * a folio in order to communicate with the rest of the mm. Please use this
124 * helper function instead of casting yourself, as the implementation may change
125 * in the future.
126 */
127 #define slab_folio(s) (_Generic((s), \
128 const struct slab *: (const struct folio *)s, \
129 struct slab *: (struct folio *)s))
130
131 /**
132 * page_slab - Converts from struct page to its slab.
133 * @page: A page which may or may not belong to a slab.
134 *
135 * Return: The slab which contains this page or NULL if the page does
136 * not belong to a slab. This includes pages returned from large kmalloc.
137 */
page_slab(const struct page * page)138 static inline struct slab *page_slab(const struct page *page)
139 {
140 unsigned long head;
141
142 head = READ_ONCE(page->compound_head);
143 if (head & 1)
144 page = (struct page *)(head - 1);
145 if (data_race(page->page_type >> 24) != PGTY_slab)
146 page = NULL;
147
148 return (struct slab *)page;
149 }
150
151 /**
152 * slab_page - The first struct page allocated for a slab
153 * @s: The slab.
154 *
155 * A convenience wrapper for converting slab to the first struct page of the
156 * underlying folio, to communicate with code not yet converted to folio or
157 * struct slab.
158 */
159 #define slab_page(s) folio_page(slab_folio(s), 0)
160
slab_address(const struct slab * slab)161 static inline void *slab_address(const struct slab *slab)
162 {
163 return folio_address(slab_folio(slab));
164 }
165
slab_nid(const struct slab * slab)166 static inline int slab_nid(const struct slab *slab)
167 {
168 return memdesc_nid(slab->flags);
169 }
170
slab_pgdat(const struct slab * slab)171 static inline pg_data_t *slab_pgdat(const struct slab *slab)
172 {
173 return NODE_DATA(slab_nid(slab));
174 }
175
virt_to_slab(const void * addr)176 static inline struct slab *virt_to_slab(const void *addr)
177 {
178 return page_slab(virt_to_page(addr));
179 }
180
slab_order(const struct slab * slab)181 static inline int slab_order(const struct slab *slab)
182 {
183 return folio_order(slab_folio(slab));
184 }
185
slab_size(const struct slab * slab)186 static inline size_t slab_size(const struct slab *slab)
187 {
188 return PAGE_SIZE << slab_order(slab);
189 }
190
191 #ifdef CONFIG_SLUB_CPU_PARTIAL
192 #define slub_percpu_partial(c) ((c)->partial)
193
194 #define slub_set_percpu_partial(c, p) \
195 ({ \
196 slub_percpu_partial(c) = (p)->next; \
197 })
198
199 #define slub_percpu_partial_read_once(c) READ_ONCE(slub_percpu_partial(c))
200 #else
201 #define slub_percpu_partial(c) NULL
202
203 #define slub_set_percpu_partial(c, p)
204
205 #define slub_percpu_partial_read_once(c) NULL
206 #endif // CONFIG_SLUB_CPU_PARTIAL
207
208 /*
209 * Word size structure that can be atomically updated or read and that
210 * contains both the order and the number of objects that a slab of the
211 * given order would contain.
212 */
213 struct kmem_cache_order_objects {
214 unsigned int x;
215 };
216
217 /*
218 * Slab cache management.
219 */
220 struct kmem_cache {
221 struct kmem_cache_cpu __percpu *cpu_slab;
222 struct lock_class_key lock_key;
223 struct slub_percpu_sheaves __percpu *cpu_sheaves;
224 /* Used for retrieving partial slabs, etc. */
225 slab_flags_t flags;
226 unsigned long min_partial;
227 unsigned int size; /* Object size including metadata */
228 unsigned int object_size; /* Object size without metadata */
229 struct reciprocal_value reciprocal_size;
230 unsigned int offset; /* Free pointer offset */
231 #ifdef CONFIG_SLUB_CPU_PARTIAL
232 /* Number of per cpu partial objects to keep around */
233 unsigned int cpu_partial;
234 /* Number of per cpu partial slabs to keep around */
235 unsigned int cpu_partial_slabs;
236 #endif
237 unsigned int sheaf_capacity;
238 struct kmem_cache_order_objects oo;
239
240 /* Allocation and freeing of slabs */
241 struct kmem_cache_order_objects min;
242 gfp_t allocflags; /* gfp flags to use on each alloc */
243 int refcount; /* Refcount for slab cache destroy */
244 void (*ctor)(void *object); /* Object constructor */
245 unsigned int inuse; /* Offset to metadata */
246 unsigned int align; /* Alignment */
247 unsigned int red_left_pad; /* Left redzone padding size */
248 const char *name; /* Name (only for display!) */
249 struct list_head list; /* List of slab caches */
250 #ifdef CONFIG_SYSFS
251 struct kobject kobj; /* For sysfs */
252 #endif
253 #ifdef CONFIG_SLAB_FREELIST_HARDENED
254 unsigned long random;
255 #endif
256
257 #ifdef CONFIG_NUMA
258 /*
259 * Defragmentation by allocating from a remote node.
260 */
261 unsigned int remote_node_defrag_ratio;
262 #endif
263
264 #ifdef CONFIG_SLAB_FREELIST_RANDOM
265 unsigned int *random_seq;
266 #endif
267
268 #ifdef CONFIG_KASAN_GENERIC
269 struct kasan_cache kasan_info;
270 #endif
271
272 #ifdef CONFIG_HARDENED_USERCOPY
273 unsigned int useroffset; /* Usercopy region offset */
274 unsigned int usersize; /* Usercopy region size */
275 #endif
276
277 struct kmem_cache_node *node[MAX_NUMNODES];
278 };
279
280 #if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY)
281 #define SLAB_SUPPORTS_SYSFS 1
282 void sysfs_slab_unlink(struct kmem_cache *s);
283 void sysfs_slab_release(struct kmem_cache *s);
284 #else
sysfs_slab_unlink(struct kmem_cache * s)285 static inline void sysfs_slab_unlink(struct kmem_cache *s) { }
sysfs_slab_release(struct kmem_cache * s)286 static inline void sysfs_slab_release(struct kmem_cache *s) { }
287 #endif
288
289 void *fixup_red_left(struct kmem_cache *s, void *p);
290
nearest_obj(struct kmem_cache * cache,const struct slab * slab,void * x)291 static inline void *nearest_obj(struct kmem_cache *cache,
292 const struct slab *slab, void *x)
293 {
294 void *object = x - (x - slab_address(slab)) % cache->size;
295 void *last_object = slab_address(slab) +
296 (slab->objects - 1) * cache->size;
297 void *result = (unlikely(object > last_object)) ? last_object : object;
298
299 result = fixup_red_left(cache, result);
300 return result;
301 }
302
303 /* Determine object index from a given position */
__obj_to_index(const struct kmem_cache * cache,void * addr,void * obj)304 static inline unsigned int __obj_to_index(const struct kmem_cache *cache,
305 void *addr, void *obj)
306 {
307 return reciprocal_divide(kasan_reset_tag(obj) - addr,
308 cache->reciprocal_size);
309 }
310
obj_to_index(const struct kmem_cache * cache,const struct slab * slab,void * obj)311 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
312 const struct slab *slab, void *obj)
313 {
314 if (is_kfence_address(obj))
315 return 0;
316 return __obj_to_index(cache, slab_address(slab), obj);
317 }
318
objs_per_slab(const struct kmem_cache * cache,const struct slab * slab)319 static inline int objs_per_slab(const struct kmem_cache *cache,
320 const struct slab *slab)
321 {
322 return slab->objects;
323 }
324
325 /*
326 * State of the slab allocator.
327 *
328 * This is used to describe the states of the allocator during bootup.
329 * Allocators use this to gradually bootstrap themselves. Most allocators
330 * have the problem that the structures used for managing slab caches are
331 * allocated from slab caches themselves.
332 */
333 enum slab_state {
334 DOWN, /* No slab functionality yet */
335 PARTIAL, /* SLUB: kmem_cache_node available */
336 UP, /* Slab caches usable but not all extras yet */
337 FULL /* Everything is working */
338 };
339
340 extern enum slab_state slab_state;
341
342 /* The slab cache mutex protects the management structures during changes */
343 extern struct mutex slab_mutex;
344
345 /* The list of all slab caches on the system */
346 extern struct list_head slab_caches;
347
348 /* The slab cache that manages slab cache information */
349 extern struct kmem_cache *kmem_cache;
350
351 /* A table of kmalloc cache names and sizes */
352 extern const struct kmalloc_info_struct {
353 const char *name[NR_KMALLOC_TYPES];
354 unsigned int size;
355 } kmalloc_info[];
356
357 /* Kmalloc array related functions */
358 void setup_kmalloc_cache_index_table(void);
359 void create_kmalloc_caches(void);
360
361 extern u8 kmalloc_size_index[24];
362
size_index_elem(unsigned int bytes)363 static inline unsigned int size_index_elem(unsigned int bytes)
364 {
365 return (bytes - 1) / 8;
366 }
367
368 /*
369 * Find the kmem_cache structure that serves a given size of
370 * allocation
371 *
372 * This assumes size is larger than zero and not larger than
373 * KMALLOC_MAX_CACHE_SIZE and the caller must check that.
374 */
375 static inline struct kmem_cache *
kmalloc_slab(size_t size,kmem_buckets * b,gfp_t flags,unsigned long caller)376 kmalloc_slab(size_t size, kmem_buckets *b, gfp_t flags, unsigned long caller)
377 {
378 unsigned int index;
379
380 if (!b)
381 b = &kmalloc_caches[kmalloc_type(flags, caller)];
382 if (size <= 192)
383 index = kmalloc_size_index[size_index_elem(size)];
384 else
385 index = fls(size - 1);
386
387 return (*b)[index];
388 }
389
390 gfp_t kmalloc_fix_flags(gfp_t flags);
391
392 /* Functions provided by the slab allocators */
393 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
394 unsigned int size, struct kmem_cache_args *args,
395 slab_flags_t flags);
396
397 void __init kmem_cache_init(void);
398 extern void create_boot_cache(struct kmem_cache *, const char *name,
399 unsigned int size, slab_flags_t flags,
400 unsigned int useroffset, unsigned int usersize);
401
402 int slab_unmergeable(struct kmem_cache *s);
403 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
404 slab_flags_t flags, const char *name, void (*ctor)(void *));
405 struct kmem_cache *
406 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
407 slab_flags_t flags, void (*ctor)(void *));
408
409 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name);
410
is_kmalloc_cache(struct kmem_cache * s)411 static inline bool is_kmalloc_cache(struct kmem_cache *s)
412 {
413 return (s->flags & SLAB_KMALLOC);
414 }
415
is_kmalloc_normal(struct kmem_cache * s)416 static inline bool is_kmalloc_normal(struct kmem_cache *s)
417 {
418 if (!is_kmalloc_cache(s))
419 return false;
420 return !(s->flags & (SLAB_CACHE_DMA|SLAB_ACCOUNT|SLAB_RECLAIM_ACCOUNT));
421 }
422
423 bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj);
424 void flush_all_rcu_sheaves(void);
425 void flush_rcu_sheaves_on_cache(struct kmem_cache *s);
426
427 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
428 SLAB_CACHE_DMA32 | SLAB_PANIC | \
429 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS | \
430 SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
431 SLAB_TEMPORARY | SLAB_ACCOUNT | \
432 SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE)
433
434 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
435 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
436
437 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS)
438
439 bool __kmem_cache_empty(struct kmem_cache *);
440 int __kmem_cache_shutdown(struct kmem_cache *);
441 void __kmem_cache_release(struct kmem_cache *);
442 int __kmem_cache_shrink(struct kmem_cache *);
443 void slab_kmem_cache_release(struct kmem_cache *);
444
445 struct seq_file;
446 struct file;
447
448 struct slabinfo {
449 unsigned long active_objs;
450 unsigned long num_objs;
451 unsigned long active_slabs;
452 unsigned long num_slabs;
453 unsigned long shared_avail;
454 unsigned int limit;
455 unsigned int batchcount;
456 unsigned int shared;
457 unsigned int objects_per_slab;
458 unsigned int cache_order;
459 };
460
461 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
462
463 #ifdef CONFIG_SLUB_DEBUG
464 #ifdef CONFIG_SLUB_DEBUG_ON
465 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
466 #else
467 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
468 #endif
469 extern void print_tracking(struct kmem_cache *s, void *object);
470 long validate_slab_cache(struct kmem_cache *s);
__slub_debug_enabled(void)471 static inline bool __slub_debug_enabled(void)
472 {
473 return static_branch_unlikely(&slub_debug_enabled);
474 }
475 #else
print_tracking(struct kmem_cache * s,void * object)476 static inline void print_tracking(struct kmem_cache *s, void *object)
477 {
478 }
__slub_debug_enabled(void)479 static inline bool __slub_debug_enabled(void)
480 {
481 return false;
482 }
483 #endif
484
485 /*
486 * Returns true if any of the specified slab_debug flags is enabled for the
487 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
488 * the static key.
489 */
kmem_cache_debug_flags(struct kmem_cache * s,slab_flags_t flags)490 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
491 {
492 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
493 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
494 if (__slub_debug_enabled())
495 return s->flags & flags;
496 return false;
497 }
498
499 #if IS_ENABLED(CONFIG_SLUB_DEBUG) && IS_ENABLED(CONFIG_KUNIT)
500 bool slab_in_kunit_test(void);
501 #else
slab_in_kunit_test(void)502 static inline bool slab_in_kunit_test(void) { return false; }
503 #endif
504
505 #ifdef CONFIG_SLAB_OBJ_EXT
506
507 /*
508 * slab_obj_exts - get the pointer to the slab object extension vector
509 * associated with a slab.
510 * @slab: a pointer to the slab struct
511 *
512 * Returns a pointer to the object extension vector associated with the slab,
513 * or NULL if no such vector has been associated yet.
514 */
slab_obj_exts(struct slab * slab)515 static inline struct slabobj_ext *slab_obj_exts(struct slab *slab)
516 {
517 unsigned long obj_exts = READ_ONCE(slab->obj_exts);
518
519 #ifdef CONFIG_MEMCG
520 /*
521 * obj_exts should be either NULL, a valid pointer with
522 * MEMCG_DATA_OBJEXTS bit set or be equal to OBJEXTS_ALLOC_FAIL.
523 */
524 VM_BUG_ON_PAGE(obj_exts && !(obj_exts & MEMCG_DATA_OBJEXTS) &&
525 obj_exts != OBJEXTS_ALLOC_FAIL, slab_page(slab));
526 VM_BUG_ON_PAGE(obj_exts & MEMCG_DATA_KMEM, slab_page(slab));
527 #endif
528 return (struct slabobj_ext *)(obj_exts & ~OBJEXTS_FLAGS_MASK);
529 }
530
531 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
532 gfp_t gfp, bool new_slab);
533
534 #else /* CONFIG_SLAB_OBJ_EXT */
535
slab_obj_exts(struct slab * slab)536 static inline struct slabobj_ext *slab_obj_exts(struct slab *slab)
537 {
538 return NULL;
539 }
540
541 #endif /* CONFIG_SLAB_OBJ_EXT */
542
cache_vmstat_idx(struct kmem_cache * s)543 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
544 {
545 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
546 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
547 }
548
549 #ifdef CONFIG_MEMCG
550 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
551 gfp_t flags, size_t size, void **p);
552 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
553 void **p, int objects, struct slabobj_ext *obj_exts);
554 #endif
555
556 void kvfree_rcu_cb(struct rcu_head *head);
557
558 size_t __ksize(const void *objp);
559
slab_ksize(const struct kmem_cache * s)560 static inline size_t slab_ksize(const struct kmem_cache *s)
561 {
562 #ifdef CONFIG_SLUB_DEBUG
563 /*
564 * Debugging requires use of the padding between object
565 * and whatever may come after it.
566 */
567 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
568 return s->object_size;
569 #endif
570 if (s->flags & SLAB_KASAN)
571 return s->object_size;
572 /*
573 * If we have the need to store the freelist pointer
574 * back there or track user information then we can
575 * only use the space before that information.
576 */
577 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
578 return s->inuse;
579 /*
580 * Else we can use all the padding etc for the allocation
581 */
582 return s->size;
583 }
584
large_kmalloc_order(const struct page * page)585 static inline unsigned int large_kmalloc_order(const struct page *page)
586 {
587 return page[1].flags.f & 0xff;
588 }
589
large_kmalloc_size(const struct page * page)590 static inline size_t large_kmalloc_size(const struct page *page)
591 {
592 return PAGE_SIZE << large_kmalloc_order(page);
593 }
594
595 #ifdef CONFIG_SLUB_DEBUG
596 void dump_unreclaimable_slab(void);
597 #else
dump_unreclaimable_slab(void)598 static inline void dump_unreclaimable_slab(void)
599 {
600 }
601 #endif
602
603 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
604
605 #ifdef CONFIG_SLAB_FREELIST_RANDOM
606 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
607 gfp_t gfp);
608 void cache_random_seq_destroy(struct kmem_cache *cachep);
609 #else
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)610 static inline int cache_random_seq_create(struct kmem_cache *cachep,
611 unsigned int count, gfp_t gfp)
612 {
613 return 0;
614 }
cache_random_seq_destroy(struct kmem_cache * cachep)615 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
616 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
617
slab_want_init_on_alloc(gfp_t flags,struct kmem_cache * c)618 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
619 {
620 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
621 &init_on_alloc)) {
622 if (c->ctor)
623 return false;
624 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
625 return flags & __GFP_ZERO;
626 return true;
627 }
628 return flags & __GFP_ZERO;
629 }
630
slab_want_init_on_free(struct kmem_cache * c)631 static inline bool slab_want_init_on_free(struct kmem_cache *c)
632 {
633 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
634 &init_on_free))
635 return !(c->ctor ||
636 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
637 return false;
638 }
639
640 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
641 void debugfs_slab_release(struct kmem_cache *);
642 #else
debugfs_slab_release(struct kmem_cache * s)643 static inline void debugfs_slab_release(struct kmem_cache *s) { }
644 #endif
645
646 #ifdef CONFIG_PRINTK
647 #define KS_ADDRS_COUNT 16
648 struct kmem_obj_info {
649 void *kp_ptr;
650 struct slab *kp_slab;
651 void *kp_objp;
652 unsigned long kp_data_offset;
653 struct kmem_cache *kp_slab_cache;
654 void *kp_ret;
655 void *kp_stack[KS_ADDRS_COUNT];
656 void *kp_free_stack[KS_ADDRS_COUNT];
657 };
658 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
659 #endif
660
661 void __check_heap_object(const void *ptr, unsigned long n,
662 const struct slab *slab, bool to_user);
663
664 void defer_free_barrier(void);
665
slub_debug_orig_size(struct kmem_cache * s)666 static inline bool slub_debug_orig_size(struct kmem_cache *s)
667 {
668 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
669 (s->flags & SLAB_KMALLOC));
670 }
671
672 #ifdef CONFIG_SLUB_DEBUG
673 void skip_orig_size_check(struct kmem_cache *s, const void *object);
674 #endif
675
676 #endif /* MM_SLAB_H */
677