xref: /linux/sound/pci/sis7019.c (revision 05a54fa773284d1a7923cdfdd8f0c8dabb98bd26)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Driver for SiS7019 Audio Accelerator
4  *
5  *  Copyright (C) 2004-2007, David Dillow
6  *  Written by David Dillow <dave@thedillows.org>
7  *  Inspired by the Trident 4D-WaveDX/NX driver.
8  *
9  *  All rights reserved.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/time.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <sound/core.h>
20 #include <sound/ac97_codec.h>
21 #include <sound/initval.h>
22 #include "sis7019.h"
23 
24 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
25 MODULE_DESCRIPTION("SiS7019");
26 MODULE_LICENSE("GPL");
27 
28 static int index = SNDRV_DEFAULT_IDX1;	/* Index 0-MAX */
29 static char *id = SNDRV_DEFAULT_STR1;	/* ID for this card */
30 static bool enable = 1;
31 static int codecs = 1;
32 
33 module_param(index, int, 0444);
34 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
35 module_param(id, charp, 0444);
36 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
37 module_param(enable, bool, 0444);
38 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
39 module_param(codecs, int, 0444);
40 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
41 
42 static const struct pci_device_id snd_sis7019_ids[] = {
43 	{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
44 	{ 0, }
45 };
46 
47 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
48 
49 /* There are three timing modes for the voices.
50  *
51  * For both playback and capture, when the buffer is one or two periods long,
52  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
53  * to let us know when the periods have ended.
54  *
55  * When performing playback with more than two periods per buffer, we set
56  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
57  * reach it. We then update the offset and continue on until we are
58  * interrupted for the next period.
59  *
60  * Capture channels do not have a SSO, so we allocate a playback channel to
61  * use as a timer for the capture periods. We use the SSO on the playback
62  * channel to clock out virtual periods, and adjust the virtual period length
63  * to maintain synchronization. This algorithm came from the Trident driver.
64  *
65  * FIXME: It'd be nice to make use of some of the synth features in the
66  * hardware, but a woeful lack of documentation is a significant roadblock.
67  */
68 struct voice {
69 	u16 flags;
70 #define 	VOICE_IN_USE		1
71 #define 	VOICE_CAPTURE		2
72 #define 	VOICE_SSO_TIMING	4
73 #define 	VOICE_SYNC_TIMING	8
74 	u16 sync_cso;
75 	u16 period_size;
76 	u16 buffer_size;
77 	u16 sync_period_size;
78 	u16 sync_buffer_size;
79 	u32 sso;
80 	u32 vperiod;
81 	struct snd_pcm_substream *substream;
82 	struct voice *timing;
83 	void __iomem *ctrl_base;
84 	void __iomem *wave_base;
85 	void __iomem *sync_base;
86 	int num;
87 };
88 
89 /* We need four pages to store our wave parameters during a suspend. If
90  * we're not doing power management, we still need to allocate a page
91  * for the silence buffer.
92  */
93 #define SIS_SUSPEND_PAGES	4
94 
95 struct sis7019 {
96 	unsigned long ioport;
97 	void __iomem *ioaddr;
98 	int irq;
99 	int codecs_present;
100 
101 	struct pci_dev *pci;
102 	struct snd_pcm *pcm;
103 	struct snd_card *card;
104 	struct snd_ac97 *ac97[3];
105 
106 	/* Protect against more than one thread hitting the AC97
107 	 * registers (in a more polite manner than pounding the hardware
108 	 * semaphore)
109 	 */
110 	struct mutex ac97_mutex;
111 
112 	/* voice_lock protects allocation/freeing of the voice descriptions
113 	 */
114 	spinlock_t voice_lock;
115 
116 	struct voice voices[64];
117 	struct voice capture_voice;
118 
119 	/* Allocate pages to store the internal wave state during
120 	 * suspends. When we're operating, this can be used as a silence
121 	 * buffer for a timing channel.
122 	 */
123 	void *suspend_state[SIS_SUSPEND_PAGES];
124 
125 	int silence_users;
126 	dma_addr_t silence_dma_addr;
127 };
128 
129 /* These values are also used by the module param 'codecs' to indicate
130  * which codecs should be present.
131  */
132 #define SIS_PRIMARY_CODEC_PRESENT	0x0001
133 #define SIS_SECONDARY_CODEC_PRESENT	0x0002
134 #define SIS_TERTIARY_CODEC_PRESENT	0x0004
135 
136 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
137  * documented range of 8-0xfff8 samples. Given that they are 0-based,
138  * that places our period/buffer range at 9-0xfff9 samples. That makes the
139  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
140  * max samples / min samples gives us the max periods in a buffer.
141  *
142  * We'll add a constraint upon open that limits the period and buffer sample
143  * size to values that are legal for the hardware.
144  */
145 static const struct snd_pcm_hardware sis_playback_hw_info = {
146 	.info = (SNDRV_PCM_INFO_MMAP |
147 		 SNDRV_PCM_INFO_MMAP_VALID |
148 		 SNDRV_PCM_INFO_INTERLEAVED |
149 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
150 		 SNDRV_PCM_INFO_SYNC_START |
151 		 SNDRV_PCM_INFO_RESUME),
152 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
153 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
154 	.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
155 	.rate_min = 4000,
156 	.rate_max = 48000,
157 	.channels_min = 1,
158 	.channels_max = 2,
159 	.buffer_bytes_max = (0xfff9 * 4),
160 	.period_bytes_min = 9,
161 	.period_bytes_max = (0xfff9 * 4),
162 	.periods_min = 1,
163 	.periods_max = (0xfff9 / 9),
164 };
165 
166 static const struct snd_pcm_hardware sis_capture_hw_info = {
167 	.info = (SNDRV_PCM_INFO_MMAP |
168 		 SNDRV_PCM_INFO_MMAP_VALID |
169 		 SNDRV_PCM_INFO_INTERLEAVED |
170 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
171 		 SNDRV_PCM_INFO_SYNC_START |
172 		 SNDRV_PCM_INFO_RESUME),
173 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
174 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
175 	.rates = SNDRV_PCM_RATE_48000,
176 	.rate_min = 4000,
177 	.rate_max = 48000,
178 	.channels_min = 1,
179 	.channels_max = 2,
180 	.buffer_bytes_max = (0xfff9 * 4),
181 	.period_bytes_min = 9,
182 	.period_bytes_max = (0xfff9 * 4),
183 	.periods_min = 1,
184 	.periods_max = (0xfff9 / 9),
185 };
186 
187 static void sis_update_sso(struct voice *voice, u16 period)
188 {
189 	void __iomem *base = voice->ctrl_base;
190 
191 	voice->sso += period;
192 	if (voice->sso >= voice->buffer_size)
193 		voice->sso -= voice->buffer_size;
194 
195 	/* Enforce the documented hardware minimum offset */
196 	if (voice->sso < 8)
197 		voice->sso = 8;
198 
199 	/* The SSO is in the upper 16 bits of the register. */
200 	writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
201 }
202 
203 static void sis_update_voice(struct voice *voice)
204 {
205 	if (voice->flags & VOICE_SSO_TIMING) {
206 		sis_update_sso(voice, voice->period_size);
207 	} else if (voice->flags & VOICE_SYNC_TIMING) {
208 		int sync;
209 
210 		/* If we've not hit the end of the virtual period, update
211 		 * our records and keep going.
212 		 */
213 		if (voice->vperiod > voice->period_size) {
214 			voice->vperiod -= voice->period_size;
215 			if (voice->vperiod < voice->period_size)
216 				sis_update_sso(voice, voice->vperiod);
217 			else
218 				sis_update_sso(voice, voice->period_size);
219 			return;
220 		}
221 
222 		/* Calculate our relative offset between the target and
223 		 * the actual CSO value. Since we're operating in a loop,
224 		 * if the value is more than half way around, we can
225 		 * consider ourselves wrapped.
226 		 */
227 		sync = voice->sync_cso;
228 		sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
229 		if (sync > (voice->sync_buffer_size / 2))
230 			sync -= voice->sync_buffer_size;
231 
232 		/* If sync is positive, then we interrupted too early, and
233 		 * we'll need to come back in a few samples and try again.
234 		 * There's a minimum wait, as it takes some time for the DMA
235 		 * engine to startup, etc...
236 		 */
237 		if (sync > 0) {
238 			if (sync < 16)
239 				sync = 16;
240 			sis_update_sso(voice, sync);
241 			return;
242 		}
243 
244 		/* Ok, we interrupted right on time, or (hopefully) just
245 		 * a bit late. We'll adjst our next waiting period based
246 		 * on how close we got.
247 		 *
248 		 * We need to stay just behind the actual channel to ensure
249 		 * it really is past a period when we get our interrupt --
250 		 * otherwise we'll fall into the early code above and have
251 		 * a minimum wait time, which makes us quite late here,
252 		 * eating into the user's time to refresh the buffer, esp.
253 		 * if using small periods.
254 		 *
255 		 * If we're less than 9 samples behind, we're on target.
256 		 * Otherwise, shorten the next vperiod by the amount we've
257 		 * been delayed.
258 		 */
259 		if (sync > -9)
260 			voice->vperiod = voice->sync_period_size + 1;
261 		else
262 			voice->vperiod = voice->sync_period_size + sync + 10;
263 
264 		if (voice->vperiod < voice->buffer_size) {
265 			sis_update_sso(voice, voice->vperiod);
266 			voice->vperiod = 0;
267 		} else
268 			sis_update_sso(voice, voice->period_size);
269 
270 		sync = voice->sync_cso + voice->sync_period_size;
271 		if (sync >= voice->sync_buffer_size)
272 			sync -= voice->sync_buffer_size;
273 		voice->sync_cso = sync;
274 	}
275 
276 	snd_pcm_period_elapsed(voice->substream);
277 }
278 
279 static void sis_voice_irq(u32 status, struct voice *voice)
280 {
281 	int bit;
282 
283 	while (status) {
284 		bit = __ffs(status);
285 		status >>= bit + 1;
286 		voice += bit;
287 		sis_update_voice(voice);
288 		voice++;
289 	}
290 }
291 
292 static irqreturn_t sis_interrupt(int irq, void *dev)
293 {
294 	struct sis7019 *sis = dev;
295 	unsigned long io = sis->ioport;
296 	struct voice *voice;
297 	u32 intr, status;
298 
299 	/* We only use the DMA interrupts, and we don't enable any other
300 	 * source of interrupts. But, it is possible to see an interrupt
301 	 * status that didn't actually interrupt us, so eliminate anything
302 	 * we're not expecting to avoid falsely claiming an IRQ, and an
303 	 * ensuing endless loop.
304 	 */
305 	intr = inl(io + SIS_GISR);
306 	intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
307 		SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
308 	if (!intr)
309 		return IRQ_NONE;
310 
311 	do {
312 		status = inl(io + SIS_PISR_A);
313 		if (status) {
314 			sis_voice_irq(status, sis->voices);
315 			outl(status, io + SIS_PISR_A);
316 		}
317 
318 		status = inl(io + SIS_PISR_B);
319 		if (status) {
320 			sis_voice_irq(status, &sis->voices[32]);
321 			outl(status, io + SIS_PISR_B);
322 		}
323 
324 		status = inl(io + SIS_RISR);
325 		if (status) {
326 			voice = &sis->capture_voice;
327 			if (!voice->timing)
328 				snd_pcm_period_elapsed(voice->substream);
329 
330 			outl(status, io + SIS_RISR);
331 		}
332 
333 		outl(intr, io + SIS_GISR);
334 		intr = inl(io + SIS_GISR);
335 		intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
336 			SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
337 	} while (intr);
338 
339 	return IRQ_HANDLED;
340 }
341 
342 static u32 sis_rate_to_delta(unsigned int rate)
343 {
344 	u32 delta;
345 
346 	/* This was copied from the trident driver, but it seems its gotten
347 	 * around a bit... nevertheless, it works well.
348 	 *
349 	 * We special case 44100 and 8000 since rounding with the equation
350 	 * does not give us an accurate enough value. For 11025 and 22050
351 	 * the equation gives us the best answer. All other frequencies will
352 	 * also use the equation. JDW
353 	 */
354 	if (rate == 44100)
355 		delta = 0xeb3;
356 	else if (rate == 8000)
357 		delta = 0x2ab;
358 	else if (rate == 48000)
359 		delta = 0x1000;
360 	else
361 		delta = DIV_ROUND_CLOSEST(rate << 12, 48000) & 0x0000ffff;
362 	return delta;
363 }
364 
365 static void __sis_map_silence(struct sis7019 *sis)
366 {
367 	/* Helper function: must hold sis->voice_lock on entry */
368 	if (!sis->silence_users)
369 		sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
370 						sis->suspend_state[0],
371 						4096, DMA_TO_DEVICE);
372 	sis->silence_users++;
373 }
374 
375 static void __sis_unmap_silence(struct sis7019 *sis)
376 {
377 	/* Helper function: must hold sis->voice_lock on entry */
378 	sis->silence_users--;
379 	if (!sis->silence_users)
380 		dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
381 					DMA_TO_DEVICE);
382 }
383 
384 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
385 {
386 	guard(spinlock_irqsave)(&sis->voice_lock);
387 	if (voice->timing) {
388 		__sis_unmap_silence(sis);
389 		voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
390 						VOICE_SYNC_TIMING);
391 		voice->timing = NULL;
392 	}
393 	voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
394 }
395 
396 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
397 {
398 	/* Must hold the voice_lock on entry */
399 	struct voice *voice;
400 	int i;
401 
402 	for (i = 0; i < 64; i++) {
403 		voice = &sis->voices[i];
404 		if (voice->flags & VOICE_IN_USE)
405 			continue;
406 		voice->flags |= VOICE_IN_USE;
407 		goto found_one;
408 	}
409 	voice = NULL;
410 
411 found_one:
412 	return voice;
413 }
414 
415 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
416 {
417 	guard(spinlock_irqsave)(&sis->voice_lock);
418 	return __sis_alloc_playback_voice(sis);
419 }
420 
421 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
422 					struct snd_pcm_hw_params *hw_params)
423 {
424 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
425 	struct snd_pcm_runtime *runtime = substream->runtime;
426 	struct voice *voice = runtime->private_data;
427 	unsigned int period_size, buffer_size;
428 	int needed;
429 
430 	/* If there are one or two periods per buffer, we don't need a
431 	 * timing voice, as we can use the capture channel's interrupts
432 	 * to clock out the periods.
433 	 */
434 	period_size = params_period_size(hw_params);
435 	buffer_size = params_buffer_size(hw_params);
436 	needed = (period_size != buffer_size &&
437 			period_size != (buffer_size / 2));
438 
439 	if (needed && !voice->timing) {
440 		scoped_guard(spinlock_irqsave, &sis->voice_lock) {
441 			voice->timing = __sis_alloc_playback_voice(sis);
442 			if (voice->timing)
443 				__sis_map_silence(sis);
444 		}
445 		if (!voice->timing)
446 			return -ENOMEM;
447 		voice->timing->substream = substream;
448 	} else if (!needed && voice->timing) {
449 		sis_free_voice(sis, voice);
450 		voice->timing = NULL;
451 	}
452 
453 	return 0;
454 }
455 
456 static int sis_playback_open(struct snd_pcm_substream *substream)
457 {
458 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
459 	struct snd_pcm_runtime *runtime = substream->runtime;
460 	struct voice *voice;
461 
462 	voice = sis_alloc_playback_voice(sis);
463 	if (!voice)
464 		return -EAGAIN;
465 
466 	voice->substream = substream;
467 	runtime->private_data = voice;
468 	runtime->hw = sis_playback_hw_info;
469 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
470 						9, 0xfff9);
471 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
472 						9, 0xfff9);
473 	snd_pcm_set_sync(substream);
474 	return 0;
475 }
476 
477 static int sis_substream_close(struct snd_pcm_substream *substream)
478 {
479 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
480 	struct snd_pcm_runtime *runtime = substream->runtime;
481 	struct voice *voice = runtime->private_data;
482 
483 	sis_free_voice(sis, voice);
484 	return 0;
485 }
486 
487 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
488 {
489 	struct snd_pcm_runtime *runtime = substream->runtime;
490 	struct voice *voice = runtime->private_data;
491 	void __iomem *ctrl_base = voice->ctrl_base;
492 	void __iomem *wave_base = voice->wave_base;
493 	u32 format, dma_addr, control, sso_eso, delta, reg;
494 	u16 leo;
495 
496 	/* We rely on the PCM core to ensure that the parameters for this
497 	 * substream do not change on us while we're programming the HW.
498 	 */
499 	format = 0;
500 	if (snd_pcm_format_width(runtime->format) == 8)
501 		format |= SIS_PLAY_DMA_FORMAT_8BIT;
502 	if (!snd_pcm_format_signed(runtime->format))
503 		format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
504 	if (runtime->channels == 1)
505 		format |= SIS_PLAY_DMA_FORMAT_MONO;
506 
507 	/* The baseline setup is for a single period per buffer, and
508 	 * we add bells and whistles as needed from there.
509 	 */
510 	dma_addr = runtime->dma_addr;
511 	leo = runtime->buffer_size - 1;
512 	control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
513 	sso_eso = leo;
514 
515 	if (runtime->period_size == (runtime->buffer_size / 2)) {
516 		control |= SIS_PLAY_DMA_INTR_AT_MLP;
517 	} else if (runtime->period_size != runtime->buffer_size) {
518 		voice->flags |= VOICE_SSO_TIMING;
519 		voice->sso = runtime->period_size - 1;
520 		voice->period_size = runtime->period_size;
521 		voice->buffer_size = runtime->buffer_size;
522 
523 		control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
524 		control |= SIS_PLAY_DMA_INTR_AT_SSO;
525 		sso_eso |= (runtime->period_size - 1) << 16;
526 	}
527 
528 	delta = sis_rate_to_delta(runtime->rate);
529 
530 	/* Ok, we're ready to go, set up the channel.
531 	 */
532 	writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
533 	writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
534 	writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
535 	writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
536 
537 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
538 		writel(0, wave_base + reg);
539 
540 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
541 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
542 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
543 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
544 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
545 			wave_base + SIS_WAVE_CHANNEL_CONTROL);
546 
547 	/* Force PCI writes to post. */
548 	readl(ctrl_base);
549 
550 	return 0;
551 }
552 
553 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
554 {
555 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
556 	unsigned long io = sis->ioport;
557 	struct snd_pcm_substream *s;
558 	struct voice *voice;
559 	void *chip;
560 	int starting;
561 	u32 record = 0;
562 	u32 play[2] = { 0, 0 };
563 
564 	/* No locks needed, as the PCM core will hold the locks on the
565 	 * substreams, and the HW will only start/stop the indicated voices
566 	 * without changing the state of the others.
567 	 */
568 	switch (cmd) {
569 	case SNDRV_PCM_TRIGGER_START:
570 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
571 	case SNDRV_PCM_TRIGGER_RESUME:
572 		starting = 1;
573 		break;
574 	case SNDRV_PCM_TRIGGER_STOP:
575 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
576 	case SNDRV_PCM_TRIGGER_SUSPEND:
577 		starting = 0;
578 		break;
579 	default:
580 		return -EINVAL;
581 	}
582 
583 	snd_pcm_group_for_each_entry(s, substream) {
584 		/* Make sure it is for us... */
585 		chip = snd_pcm_substream_chip(s);
586 		if (chip != sis)
587 			continue;
588 
589 		voice = s->runtime->private_data;
590 		if (voice->flags & VOICE_CAPTURE) {
591 			record |= 1 << voice->num;
592 			voice = voice->timing;
593 		}
594 
595 		/* voice could be NULL if this a recording stream, and it
596 		 * doesn't have an external timing channel.
597 		 */
598 		if (voice)
599 			play[voice->num / 32] |= 1 << (voice->num & 0x1f);
600 
601 		snd_pcm_trigger_done(s, substream);
602 	}
603 
604 	if (starting) {
605 		if (record)
606 			outl(record, io + SIS_RECORD_START_REG);
607 		if (play[0])
608 			outl(play[0], io + SIS_PLAY_START_A_REG);
609 		if (play[1])
610 			outl(play[1], io + SIS_PLAY_START_B_REG);
611 	} else {
612 		if (record)
613 			outl(record, io + SIS_RECORD_STOP_REG);
614 		if (play[0])
615 			outl(play[0], io + SIS_PLAY_STOP_A_REG);
616 		if (play[1])
617 			outl(play[1], io + SIS_PLAY_STOP_B_REG);
618 	}
619 	return 0;
620 }
621 
622 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
623 {
624 	struct snd_pcm_runtime *runtime = substream->runtime;
625 	struct voice *voice = runtime->private_data;
626 	u32 cso;
627 
628 	cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
629 	cso &= 0xffff;
630 	return cso;
631 }
632 
633 static int sis_capture_open(struct snd_pcm_substream *substream)
634 {
635 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
636 	struct snd_pcm_runtime *runtime = substream->runtime;
637 	struct voice *voice = &sis->capture_voice;
638 
639 	/* FIXME: The driver only supports recording from one channel
640 	 * at the moment, but it could support more.
641 	 */
642 	scoped_guard(spinlock_irqsave, &sis->voice_lock) {
643 		if (voice->flags & VOICE_IN_USE)
644 			voice = NULL;
645 		else
646 			voice->flags |= VOICE_IN_USE;
647 	}
648 
649 	if (!voice)
650 		return -EAGAIN;
651 
652 	voice->substream = substream;
653 	runtime->private_data = voice;
654 	runtime->hw = sis_capture_hw_info;
655 	runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
656 	snd_pcm_limit_hw_rates(runtime);
657 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
658 						9, 0xfff9);
659 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
660 						9, 0xfff9);
661 	snd_pcm_set_sync(substream);
662 	return 0;
663 }
664 
665 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
666 					struct snd_pcm_hw_params *hw_params)
667 {
668 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
669 	int rc;
670 
671 	rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
672 						params_rate(hw_params));
673 	if (rc)
674 		goto out;
675 
676 	rc = sis_alloc_timing_voice(substream, hw_params);
677 
678 out:
679 	return rc;
680 }
681 
682 static void sis_prepare_timing_voice(struct voice *voice,
683 					struct snd_pcm_substream *substream)
684 {
685 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
686 	struct snd_pcm_runtime *runtime = substream->runtime;
687 	struct voice *timing = voice->timing;
688 	void __iomem *play_base = timing->ctrl_base;
689 	void __iomem *wave_base = timing->wave_base;
690 	u16 buffer_size, period_size;
691 	u32 format, control, sso_eso, delta;
692 	u32 vperiod, sso, reg;
693 
694 	/* Set our initial buffer and period as large as we can given a
695 	 * single page of silence.
696 	 */
697 	buffer_size = 4096 / runtime->channels;
698 	buffer_size /= snd_pcm_format_size(runtime->format, 1);
699 	period_size = buffer_size;
700 
701 	/* Initially, we want to interrupt just a bit behind the end of
702 	 * the period we're clocking out. 12 samples seems to give a good
703 	 * delay.
704 	 *
705 	 * We want to spread our interrupts throughout the virtual period,
706 	 * so that we don't end up with two interrupts back to back at the
707 	 * end -- this helps minimize the effects of any jitter. Adjust our
708 	 * clocking period size so that the last period is at least a fourth
709 	 * of a full period.
710 	 *
711 	 * This is all moot if we don't need to use virtual periods.
712 	 */
713 	vperiod = runtime->period_size + 12;
714 	if (vperiod > period_size) {
715 		u16 tail = vperiod % period_size;
716 		u16 quarter_period = period_size / 4;
717 
718 		if (tail && tail < quarter_period) {
719 			u16 loops = vperiod / period_size;
720 
721 			tail = quarter_period - tail;
722 			tail += loops - 1;
723 			tail /= loops;
724 			period_size -= tail;
725 		}
726 
727 		sso = period_size - 1;
728 	} else {
729 		/* The initial period will fit inside the buffer, so we
730 		 * don't need to use virtual periods -- disable them.
731 		 */
732 		period_size = runtime->period_size;
733 		sso = vperiod - 1;
734 		vperiod = 0;
735 	}
736 
737 	/* The interrupt handler implements the timing synchronization, so
738 	 * setup its state.
739 	 */
740 	timing->flags |= VOICE_SYNC_TIMING;
741 	timing->sync_base = voice->ctrl_base;
742 	timing->sync_cso = runtime->period_size;
743 	timing->sync_period_size = runtime->period_size;
744 	timing->sync_buffer_size = runtime->buffer_size;
745 	timing->period_size = period_size;
746 	timing->buffer_size = buffer_size;
747 	timing->sso = sso;
748 	timing->vperiod = vperiod;
749 
750 	/* Using unsigned samples with the all-zero silence buffer
751 	 * forces the output to the lower rail, killing playback.
752 	 * So ignore unsigned vs signed -- it doesn't change the timing.
753 	 */
754 	format = 0;
755 	if (snd_pcm_format_width(runtime->format) == 8)
756 		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
757 	if (runtime->channels == 1)
758 		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
759 
760 	control = timing->buffer_size - 1;
761 	control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
762 	sso_eso = timing->buffer_size - 1;
763 	sso_eso |= timing->sso << 16;
764 
765 	delta = sis_rate_to_delta(runtime->rate);
766 
767 	/* We've done the math, now configure the channel.
768 	 */
769 	writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
770 	writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
771 	writel(control, play_base + SIS_PLAY_DMA_CONTROL);
772 	writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
773 
774 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
775 		writel(0, wave_base + reg);
776 
777 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
778 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
779 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
780 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
781 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
782 			wave_base + SIS_WAVE_CHANNEL_CONTROL);
783 }
784 
785 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
786 {
787 	struct snd_pcm_runtime *runtime = substream->runtime;
788 	struct voice *voice = runtime->private_data;
789 	void __iomem *rec_base = voice->ctrl_base;
790 	u32 format, dma_addr, control;
791 	u16 leo;
792 
793 	/* We rely on the PCM core to ensure that the parameters for this
794 	 * substream do not change on us while we're programming the HW.
795 	 */
796 	format = 0;
797 	if (snd_pcm_format_width(runtime->format) == 8)
798 		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
799 	if (!snd_pcm_format_signed(runtime->format))
800 		format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
801 	if (runtime->channels == 1)
802 		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
803 
804 	dma_addr = runtime->dma_addr;
805 	leo = runtime->buffer_size - 1;
806 	control = leo | SIS_CAPTURE_DMA_LOOP;
807 
808 	/* If we've got more than two periods per buffer, then we have
809 	 * use a timing voice to clock out the periods. Otherwise, we can
810 	 * use the capture channel's interrupts.
811 	 */
812 	if (voice->timing) {
813 		sis_prepare_timing_voice(voice, substream);
814 	} else {
815 		control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
816 		if (runtime->period_size != runtime->buffer_size)
817 			control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
818 	}
819 
820 	writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
821 	writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
822 	writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
823 
824 	/* Force the writes to post. */
825 	readl(rec_base);
826 
827 	return 0;
828 }
829 
830 static const struct snd_pcm_ops sis_playback_ops = {
831 	.open = sis_playback_open,
832 	.close = sis_substream_close,
833 	.prepare = sis_pcm_playback_prepare,
834 	.trigger = sis_pcm_trigger,
835 	.pointer = sis_pcm_pointer,
836 };
837 
838 static const struct snd_pcm_ops sis_capture_ops = {
839 	.open = sis_capture_open,
840 	.close = sis_substream_close,
841 	.hw_params = sis_capture_hw_params,
842 	.prepare = sis_pcm_capture_prepare,
843 	.trigger = sis_pcm_trigger,
844 	.pointer = sis_pcm_pointer,
845 };
846 
847 static int sis_pcm_create(struct sis7019 *sis)
848 {
849 	struct snd_pcm *pcm;
850 	int rc;
851 
852 	/* We have 64 voices, and the driver currently records from
853 	 * only one channel, though that could change in the future.
854 	 */
855 	rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
856 	if (rc)
857 		return rc;
858 
859 	pcm->private_data = sis;
860 	strscpy(pcm->name, "SiS7019");
861 	sis->pcm = pcm;
862 
863 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
864 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
865 
866 	/* Try to preallocate some memory, but it's not the end of the
867 	 * world if this fails.
868 	 */
869 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
870 				       &sis->pci->dev, 64*1024, 128*1024);
871 
872 	return 0;
873 }
874 
875 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
876 {
877 	unsigned long io = sis->ioport;
878 	unsigned short val = 0xffff;
879 	u16 status;
880 	u16 rdy;
881 	int count;
882 	static const u16 codec_ready[3] = {
883 		SIS_AC97_STATUS_CODEC_READY,
884 		SIS_AC97_STATUS_CODEC2_READY,
885 		SIS_AC97_STATUS_CODEC3_READY,
886 	};
887 
888 	rdy = codec_ready[codec];
889 
890 
891 	/* Get the AC97 semaphore -- software first, so we don't spin
892 	 * pounding out IO reads on the hardware semaphore...
893 	 */
894 	guard(mutex)(&sis->ac97_mutex);
895 
896 	count = 0xffff;
897 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
898 		udelay(1);
899 
900 	if (!count)
901 		goto timeout;
902 
903 	/* ... and wait for any outstanding commands to complete ...
904 	 */
905 	count = 0xffff;
906 	do {
907 		status = inw(io + SIS_AC97_STATUS);
908 		if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
909 			break;
910 
911 		udelay(1);
912 	} while (--count);
913 
914 	if (!count)
915 		goto timeout_sema;
916 
917 	/* ... before sending our command and waiting for it to finish ...
918 	 */
919 	outl(cmd, io + SIS_AC97_CMD);
920 	udelay(10);
921 
922 	count = 0xffff;
923 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
924 		udelay(1);
925 
926 	/* ... and reading the results (if any).
927 	 */
928 	val = inl(io + SIS_AC97_CMD) >> 16;
929 
930 timeout_sema:
931 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
932 timeout:
933 	if (!count) {
934 		dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
935 					codec, cmd);
936 	}
937 
938 	return val;
939 }
940 
941 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
942 				unsigned short val)
943 {
944 	static const u32 cmd[3] = {
945 		SIS_AC97_CMD_CODEC_WRITE,
946 		SIS_AC97_CMD_CODEC2_WRITE,
947 		SIS_AC97_CMD_CODEC3_WRITE,
948 	};
949 	sis_ac97_rw(ac97->private_data, ac97->num,
950 			(val << 16) | (reg << 8) | cmd[ac97->num]);
951 }
952 
953 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
954 {
955 	static const u32 cmd[3] = {
956 		SIS_AC97_CMD_CODEC_READ,
957 		SIS_AC97_CMD_CODEC2_READ,
958 		SIS_AC97_CMD_CODEC3_READ,
959 	};
960 	return sis_ac97_rw(ac97->private_data, ac97->num,
961 					(reg << 8) | cmd[ac97->num]);
962 }
963 
964 static int sis_mixer_create(struct sis7019 *sis)
965 {
966 	struct snd_ac97_bus *bus;
967 	struct snd_ac97_template ac97;
968 	static const struct snd_ac97_bus_ops ops = {
969 		.write = sis_ac97_write,
970 		.read = sis_ac97_read,
971 	};
972 	int rc;
973 
974 	memset(&ac97, 0, sizeof(ac97));
975 	ac97.private_data = sis;
976 
977 	rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
978 	if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
979 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
980 	ac97.num = 1;
981 	if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
982 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
983 	ac97.num = 2;
984 	if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
985 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
986 
987 	/* If we return an error here, then snd_card_free() should
988 	 * free up any ac97 codecs that got created, as well as the bus.
989 	 */
990 	return rc;
991 }
992 
993 static void sis_chip_free(struct snd_card *card)
994 {
995 	struct sis7019 *sis = card->private_data;
996 
997 	/* Reset the chip, and disable all interrputs.
998 	 */
999 	outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1000 	udelay(25);
1001 	outl(0, sis->ioport + SIS_GCR);
1002 	outl(0, sis->ioport + SIS_GIER);
1003 
1004 	/* Now, free everything we allocated.
1005 	 */
1006 	if (sis->irq >= 0)
1007 		free_irq(sis->irq, sis);
1008 }
1009 
1010 static int sis_chip_init(struct sis7019 *sis)
1011 {
1012 	unsigned long io = sis->ioport;
1013 	void __iomem *ioaddr = sis->ioaddr;
1014 	unsigned long timeout;
1015 	u16 status;
1016 	int count;
1017 	int i;
1018 
1019 	/* Reset the audio controller
1020 	 */
1021 	outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1022 	udelay(25);
1023 	outl(0, io + SIS_GCR);
1024 
1025 	/* Get the AC-link semaphore, and reset the codecs
1026 	 */
1027 	count = 0xffff;
1028 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1029 		udelay(1);
1030 
1031 	if (!count)
1032 		return -EIO;
1033 
1034 	outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1035 	udelay(250);
1036 
1037 	count = 0xffff;
1038 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1039 		udelay(1);
1040 
1041 	/* Command complete, we can let go of the semaphore now.
1042 	 */
1043 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1044 	if (!count)
1045 		return -EIO;
1046 
1047 	/* Now that we've finished the reset, find out what's attached.
1048 	 * There are some codec/board combinations that take an extremely
1049 	 * long time to come up. 350+ ms has been observed in the field,
1050 	 * so we'll give them up to 500ms.
1051 	 */
1052 	sis->codecs_present = 0;
1053 	timeout = msecs_to_jiffies(500) + jiffies;
1054 	while (time_before_eq(jiffies, timeout)) {
1055 		status = inl(io + SIS_AC97_STATUS);
1056 		if (status & SIS_AC97_STATUS_CODEC_READY)
1057 			sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1058 		if (status & SIS_AC97_STATUS_CODEC2_READY)
1059 			sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1060 		if (status & SIS_AC97_STATUS_CODEC3_READY)
1061 			sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1062 
1063 		if (sis->codecs_present == codecs)
1064 			break;
1065 
1066 		msleep(1);
1067 	}
1068 
1069 	/* All done, check for errors.
1070 	 */
1071 	if (!sis->codecs_present) {
1072 		dev_err(&sis->pci->dev, "could not find any codecs\n");
1073 		return -EIO;
1074 	}
1075 
1076 	if (sis->codecs_present != codecs) {
1077 		dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1078 					 sis->codecs_present, codecs);
1079 	}
1080 
1081 	/* Let the hardware know that the audio driver is alive,
1082 	 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1083 	 * record channels. We're going to want to use Variable Rate Audio
1084 	 * for recording, to avoid needlessly resampling from 48kHZ.
1085 	 */
1086 	outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1087 	outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1088 		SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1089 		SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1090 		SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1091 
1092 	/* All AC97 PCM slots should be sourced from sub-mixer 0.
1093 	 */
1094 	outl(0, io + SIS_AC97_PSR);
1095 
1096 	/* There is only one valid DMA setup for a PCI environment.
1097 	 */
1098 	outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1099 
1100 	/* Reset the synchronization groups for all of the channels
1101 	 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1102 	 * we'll need to change how we handle these. Until then, we just
1103 	 * assign sub-mixer 0 to all playback channels, and avoid any
1104 	 * attenuation on the audio.
1105 	 */
1106 	outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1107 	outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1108 	outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1109 	outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1110 	outl(0, io + SIS_MIXER_SYNC_GROUP);
1111 
1112 	for (i = 0; i < 64; i++) {
1113 		writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1114 		writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1115 				SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1116 	}
1117 
1118 	/* Don't attenuate any audio set for the wave amplifier.
1119 	 *
1120 	 * FIXME: Maximum attenuation is set for the music amp, which will
1121 	 * need to change if we start using the synth engine.
1122 	 */
1123 	outl(0xffff0000, io + SIS_WEVCR);
1124 
1125 	/* Ensure that the wave engine is in normal operating mode.
1126 	 */
1127 	outl(0, io + SIS_WECCR);
1128 
1129 	/* Go ahead and enable the DMA interrupts. They won't go live
1130 	 * until we start a channel.
1131 	 */
1132 	outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1133 		SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1134 
1135 	return 0;
1136 }
1137 
1138 static int sis_suspend(struct device *dev)
1139 {
1140 	struct snd_card *card = dev_get_drvdata(dev);
1141 	struct sis7019 *sis = card->private_data;
1142 	void __iomem *ioaddr = sis->ioaddr;
1143 	int i;
1144 
1145 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1146 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1147 		snd_ac97_suspend(sis->ac97[0]);
1148 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1149 		snd_ac97_suspend(sis->ac97[1]);
1150 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1151 		snd_ac97_suspend(sis->ac97[2]);
1152 
1153 	/* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1154 	 */
1155 	if (sis->irq >= 0) {
1156 		free_irq(sis->irq, sis);
1157 		sis->irq = -1;
1158 	}
1159 
1160 	/* Save the internal state away
1161 	 */
1162 	for (i = 0; i < 4; i++) {
1163 		memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1164 		ioaddr += 4096;
1165 	}
1166 
1167 	return 0;
1168 }
1169 
1170 static int sis_resume(struct device *dev)
1171 {
1172 	struct pci_dev *pci = to_pci_dev(dev);
1173 	struct snd_card *card = dev_get_drvdata(dev);
1174 	struct sis7019 *sis = card->private_data;
1175 	void __iomem *ioaddr = sis->ioaddr;
1176 	int i;
1177 
1178 	if (sis_chip_init(sis)) {
1179 		dev_err(&pci->dev, "unable to re-init controller\n");
1180 		goto error;
1181 	}
1182 
1183 	if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1184 			KBUILD_MODNAME, sis)) {
1185 		dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1186 		goto error;
1187 	}
1188 
1189 	/* Restore saved state, then clear out the page we use for the
1190 	 * silence buffer.
1191 	 */
1192 	for (i = 0; i < 4; i++) {
1193 		memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1194 		ioaddr += 4096;
1195 	}
1196 
1197 	memset(sis->suspend_state[0], 0, 4096);
1198 
1199 	sis->irq = pci->irq;
1200 
1201 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1202 		snd_ac97_resume(sis->ac97[0]);
1203 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1204 		snd_ac97_resume(sis->ac97[1]);
1205 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1206 		snd_ac97_resume(sis->ac97[2]);
1207 
1208 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1209 	return 0;
1210 
1211 error:
1212 	snd_card_disconnect(card);
1213 	return -EIO;
1214 }
1215 
1216 static DEFINE_SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1217 
1218 static int sis_alloc_suspend(struct sis7019 *sis)
1219 {
1220 	int i;
1221 
1222 	/* We need 16K to store the internal wave engine state during a
1223 	 * suspend, but we don't need it to be contiguous, so play nice
1224 	 * with the memory system. We'll also use this area for a silence
1225 	 * buffer.
1226 	 */
1227 	for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1228 		sis->suspend_state[i] = devm_kmalloc(&sis->pci->dev, 4096,
1229 						     GFP_KERNEL);
1230 		if (!sis->suspend_state[i])
1231 			return -ENOMEM;
1232 	}
1233 	memset(sis->suspend_state[0], 0, 4096);
1234 
1235 	return 0;
1236 }
1237 
1238 static int sis_chip_create(struct snd_card *card,
1239 			   struct pci_dev *pci)
1240 {
1241 	struct sis7019 *sis = card->private_data;
1242 	struct voice *voice;
1243 	int rc;
1244 	int i;
1245 
1246 	rc = pcim_enable_device(pci);
1247 	if (rc)
1248 		return rc;
1249 
1250 	rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1251 	if (rc < 0) {
1252 		dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1253 		return -ENXIO;
1254 	}
1255 
1256 	mutex_init(&sis->ac97_mutex);
1257 	spin_lock_init(&sis->voice_lock);
1258 	sis->card = card;
1259 	sis->pci = pci;
1260 	sis->irq = -1;
1261 	sis->ioport = pci_resource_start(pci, 0);
1262 
1263 	rc = pcim_request_all_regions(pci, "SiS7019");
1264 	if (rc) {
1265 		dev_err(&pci->dev, "unable request regions\n");
1266 		return rc;
1267 	}
1268 
1269 	sis->ioaddr = devm_ioremap(&pci->dev, pci_resource_start(pci, 1), 0x4000);
1270 	if (!sis->ioaddr) {
1271 		dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1272 		return -EIO;
1273 	}
1274 
1275 	rc = sis_alloc_suspend(sis);
1276 	if (rc < 0) {
1277 		dev_err(&pci->dev, "unable to allocate state storage\n");
1278 		return rc;
1279 	}
1280 
1281 	rc = sis_chip_init(sis);
1282 	if (rc)
1283 		return rc;
1284 	card->private_free = sis_chip_free;
1285 
1286 	rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1287 			 sis);
1288 	if (rc) {
1289 		dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1290 		return rc;
1291 	}
1292 
1293 	sis->irq = pci->irq;
1294 	card->sync_irq = sis->irq;
1295 	pci_set_master(pci);
1296 
1297 	for (i = 0; i < 64; i++) {
1298 		voice = &sis->voices[i];
1299 		voice->num = i;
1300 		voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1301 		voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1302 	}
1303 
1304 	voice = &sis->capture_voice;
1305 	voice->flags = VOICE_CAPTURE;
1306 	voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1307 	voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1308 
1309 	return 0;
1310 }
1311 
1312 static int __snd_sis7019_probe(struct pci_dev *pci,
1313 			       const struct pci_device_id *pci_id)
1314 {
1315 	struct snd_card *card;
1316 	struct sis7019 *sis;
1317 	int rc;
1318 
1319 	if (!enable)
1320 		return -ENOENT;
1321 
1322 	/* The user can specify which codecs should be present so that we
1323 	 * can wait for them to show up if they are slow to recover from
1324 	 * the AC97 cold reset. We default to a single codec, the primary.
1325 	 *
1326 	 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1327 	 */
1328 	codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1329 		  SIS_TERTIARY_CODEC_PRESENT;
1330 	if (!codecs)
1331 		codecs = SIS_PRIMARY_CODEC_PRESENT;
1332 
1333 	rc = snd_devm_card_new(&pci->dev, index, id, THIS_MODULE,
1334 			       sizeof(*sis), &card);
1335 	if (rc < 0)
1336 		return rc;
1337 
1338 	strscpy(card->driver, "SiS7019");
1339 	strscpy(card->shortname, "SiS7019");
1340 	rc = sis_chip_create(card, pci);
1341 	if (rc)
1342 		return rc;
1343 
1344 	sis = card->private_data;
1345 
1346 	rc = sis_mixer_create(sis);
1347 	if (rc)
1348 		return rc;
1349 
1350 	rc = sis_pcm_create(sis);
1351 	if (rc)
1352 		return rc;
1353 
1354 	snprintf(card->longname, sizeof(card->longname),
1355 			"%s Audio Accelerator with %s at 0x%lx, irq %d",
1356 			card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1357 			sis->ioport, sis->irq);
1358 
1359 	rc = snd_card_register(card);
1360 	if (rc)
1361 		return rc;
1362 
1363 	pci_set_drvdata(pci, card);
1364 	return 0;
1365 }
1366 
1367 static int snd_sis7019_probe(struct pci_dev *pci,
1368 			     const struct pci_device_id *pci_id)
1369 {
1370 	return snd_card_free_on_error(&pci->dev, __snd_sis7019_probe(pci, pci_id));
1371 }
1372 
1373 static struct pci_driver sis7019_driver = {
1374 	.name = KBUILD_MODNAME,
1375 	.id_table = snd_sis7019_ids,
1376 	.probe = snd_sis7019_probe,
1377 	.driver = {
1378 		.pm = &sis_pm,
1379 	},
1380 };
1381 
1382 module_pci_driver(sis7019_driver);
1383