1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * BQ27xxx battery driver
4 *
5 * Copyright (C) 2008 Rodolfo Giometti <giometti@linux.it>
6 * Copyright (C) 2008 Eurotech S.p.A. <info@eurotech.it>
7 * Copyright (C) 2010-2011 Lars-Peter Clausen <lars@metafoo.de>
8 * Copyright (C) 2011 Pali Rohár <pali@kernel.org>
9 * Copyright (C) 2017 Liam Breck <kernel@networkimprov.net>
10 *
11 * Based on a previous work by Copyright (C) 2008 Texas Instruments, Inc.
12 *
13 * Datasheets:
14 * https://www.ti.com/product/bq27000
15 * https://www.ti.com/product/bq27200
16 * https://www.ti.com/product/bq27010
17 * https://www.ti.com/product/bq27210
18 * https://www.ti.com/product/bq27500
19 * https://www.ti.com/product/bq27510-g1
20 * https://www.ti.com/product/bq27510-g2
21 * https://www.ti.com/product/bq27510-g3
22 * https://www.ti.com/product/bq27520-g1
23 * https://www.ti.com/product/bq27520-g2
24 * https://www.ti.com/product/bq27520-g3
25 * https://www.ti.com/product/bq27520-g4
26 * https://www.ti.com/product/bq27530-g1
27 * https://www.ti.com/product/bq27531-g1
28 * https://www.ti.com/product/bq27541-g1
29 * https://www.ti.com/product/bq27542-g1
30 * https://www.ti.com/product/bq27546-g1
31 * https://www.ti.com/product/bq27742-g1
32 * https://www.ti.com/product/bq27545-g1
33 * https://www.ti.com/product/bq27421-g1
34 * https://www.ti.com/product/bq27425-g1
35 * https://www.ti.com/product/bq27426
36 * https://www.ti.com/product/bq27411-g1
37 * https://www.ti.com/product/bq27441-g1
38 * https://www.ti.com/product/bq27621-g1
39 * https://www.ti.com/product/bq27z561
40 * https://www.ti.com/product/bq28z610
41 * https://www.ti.com/product/bq34z100-g1
42 * https://www.ti.com/product/bq78z100
43 */
44
45 #include <linux/device.h>
46 #include <linux/module.h>
47 #include <linux/mutex.h>
48 #include <linux/param.h>
49 #include <linux/jiffies.h>
50 #include <linux/workqueue.h>
51 #include <linux/delay.h>
52 #include <linux/platform_device.h>
53 #include <linux/power_supply.h>
54 #include <linux/slab.h>
55 #include <linux/of.h>
56
57 #include <linux/power/bq27xxx_battery.h>
58
59 #define BQ27XXX_MANUFACTURER "Texas Instruments"
60
61 /* BQ27XXX Flags */
62 #define BQ27XXX_FLAG_DSC BIT(0)
63 #define BQ27XXX_FLAG_SOCF BIT(1) /* State-of-Charge threshold final */
64 #define BQ27XXX_FLAG_SOC1 BIT(2) /* State-of-Charge threshold 1 */
65 #define BQ27XXX_FLAG_CFGUP BIT(4)
66 #define BQ27XXX_FLAG_FC BIT(9)
67 #define BQ27XXX_FLAG_OTD BIT(14)
68 #define BQ27XXX_FLAG_OTC BIT(15)
69 #define BQ27XXX_FLAG_UT BIT(14)
70 #define BQ27XXX_FLAG_OT BIT(15)
71
72 /* BQ27000 has different layout for Flags register */
73 #define BQ27000_FLAG_EDVF BIT(0) /* Final End-of-Discharge-Voltage flag */
74 #define BQ27000_FLAG_EDV1 BIT(1) /* First End-of-Discharge-Voltage flag */
75 #define BQ27000_FLAG_CI BIT(4) /* Capacity Inaccurate flag */
76 #define BQ27000_FLAG_FC BIT(5)
77 #define BQ27000_FLAG_CHGS BIT(7) /* Charge state flag */
78
79 /* BQ27Z561 has different layout for Flags register */
80 #define BQ27Z561_FLAG_FDC BIT(4) /* Battery fully discharged */
81 #define BQ27Z561_FLAG_FC BIT(5) /* Battery fully charged */
82 #define BQ27Z561_FLAG_DIS_CH BIT(6) /* Battery is discharging */
83
84 /* control register params */
85 #define BQ27XXX_SEALED 0x20
86 #define BQ27XXX_SET_CFGUPDATE 0x13
87 #define BQ27XXX_SOFT_RESET 0x42
88 #define BQ27XXX_RESET 0x41
89
90 #define BQ27XXX_RS (20) /* Resistor sense mOhm */
91 #define BQ27XXX_POWER_CONSTANT (29200) /* 29.2 µV^2 * 1000 */
92 #define BQ27XXX_CURRENT_CONSTANT (3570) /* 3.57 µV * 1000 */
93
94 #define INVALID_REG_ADDR 0xff
95
96 /*
97 * bq27xxx_reg_index - Register names
98 *
99 * These are indexes into a device's register mapping array.
100 */
101
102 enum bq27xxx_reg_index {
103 BQ27XXX_REG_CTRL = 0, /* Control */
104 BQ27XXX_REG_TEMP, /* Temperature */
105 BQ27XXX_REG_INT_TEMP, /* Internal Temperature */
106 BQ27XXX_REG_VOLT, /* Voltage */
107 BQ27XXX_REG_AI, /* Average Current */
108 BQ27XXX_REG_FLAGS, /* Flags */
109 BQ27XXX_REG_TTE, /* Time-to-Empty */
110 BQ27XXX_REG_TTF, /* Time-to-Full */
111 BQ27XXX_REG_TTES, /* Time-to-Empty Standby */
112 BQ27XXX_REG_TTECP, /* Time-to-Empty at Constant Power */
113 BQ27XXX_REG_NAC, /* Nominal Available Capacity */
114 BQ27XXX_REG_RC, /* Remaining Capacity */
115 BQ27XXX_REG_FCC, /* Full Charge Capacity */
116 BQ27XXX_REG_CYCT, /* Cycle Count */
117 BQ27XXX_REG_AE, /* Available Energy */
118 BQ27XXX_REG_SOC, /* State-of-Charge */
119 BQ27XXX_REG_DCAP, /* Design Capacity */
120 BQ27XXX_REG_AP, /* Average Power */
121 BQ27XXX_DM_CTRL, /* Block Data Control */
122 BQ27XXX_DM_CLASS, /* Data Class */
123 BQ27XXX_DM_BLOCK, /* Data Block */
124 BQ27XXX_DM_DATA, /* Block Data */
125 BQ27XXX_DM_CKSUM, /* Block Data Checksum */
126 BQ27XXX_REG_MAX, /* sentinel */
127 };
128
129 #define BQ27XXX_DM_REG_ROWS \
130 [BQ27XXX_DM_CTRL] = 0x61, \
131 [BQ27XXX_DM_CLASS] = 0x3e, \
132 [BQ27XXX_DM_BLOCK] = 0x3f, \
133 [BQ27XXX_DM_DATA] = 0x40, \
134 [BQ27XXX_DM_CKSUM] = 0x60
135
136 /* Register mappings */
137 static u8
138 bq27000_regs[BQ27XXX_REG_MAX] = {
139 [BQ27XXX_REG_CTRL] = 0x00,
140 [BQ27XXX_REG_TEMP] = 0x06,
141 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
142 [BQ27XXX_REG_VOLT] = 0x08,
143 [BQ27XXX_REG_AI] = 0x14,
144 [BQ27XXX_REG_FLAGS] = 0x0a,
145 [BQ27XXX_REG_TTE] = 0x16,
146 [BQ27XXX_REG_TTF] = 0x18,
147 [BQ27XXX_REG_TTES] = 0x1c,
148 [BQ27XXX_REG_TTECP] = 0x26,
149 [BQ27XXX_REG_NAC] = 0x0c,
150 [BQ27XXX_REG_RC] = INVALID_REG_ADDR,
151 [BQ27XXX_REG_FCC] = 0x12,
152 [BQ27XXX_REG_CYCT] = 0x2a,
153 [BQ27XXX_REG_AE] = 0x22,
154 [BQ27XXX_REG_SOC] = 0x0b,
155 [BQ27XXX_REG_DCAP] = 0x76,
156 [BQ27XXX_REG_AP] = 0x24,
157 [BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
158 [BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
159 [BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
160 [BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
161 [BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
162 },
163 bq27010_regs[BQ27XXX_REG_MAX] = {
164 [BQ27XXX_REG_CTRL] = 0x00,
165 [BQ27XXX_REG_TEMP] = 0x06,
166 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
167 [BQ27XXX_REG_VOLT] = 0x08,
168 [BQ27XXX_REG_AI] = 0x14,
169 [BQ27XXX_REG_FLAGS] = 0x0a,
170 [BQ27XXX_REG_TTE] = 0x16,
171 [BQ27XXX_REG_TTF] = 0x18,
172 [BQ27XXX_REG_TTES] = 0x1c,
173 [BQ27XXX_REG_TTECP] = 0x26,
174 [BQ27XXX_REG_NAC] = 0x0c,
175 [BQ27XXX_REG_RC] = INVALID_REG_ADDR,
176 [BQ27XXX_REG_FCC] = 0x12,
177 [BQ27XXX_REG_CYCT] = 0x2a,
178 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
179 [BQ27XXX_REG_SOC] = 0x0b,
180 [BQ27XXX_REG_DCAP] = 0x76,
181 [BQ27XXX_REG_AP] = INVALID_REG_ADDR,
182 [BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
183 [BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
184 [BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
185 [BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
186 [BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
187 },
188 bq2750x_regs[BQ27XXX_REG_MAX] = {
189 [BQ27XXX_REG_CTRL] = 0x00,
190 [BQ27XXX_REG_TEMP] = 0x06,
191 [BQ27XXX_REG_INT_TEMP] = 0x28,
192 [BQ27XXX_REG_VOLT] = 0x08,
193 [BQ27XXX_REG_AI] = 0x14,
194 [BQ27XXX_REG_FLAGS] = 0x0a,
195 [BQ27XXX_REG_TTE] = 0x16,
196 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
197 [BQ27XXX_REG_TTES] = 0x1a,
198 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
199 [BQ27XXX_REG_NAC] = 0x0c,
200 [BQ27XXX_REG_RC] = 0x10,
201 [BQ27XXX_REG_FCC] = 0x12,
202 [BQ27XXX_REG_CYCT] = 0x2a,
203 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
204 [BQ27XXX_REG_SOC] = 0x2c,
205 [BQ27XXX_REG_DCAP] = 0x3c,
206 [BQ27XXX_REG_AP] = INVALID_REG_ADDR,
207 BQ27XXX_DM_REG_ROWS,
208 },
209 #define bq2751x_regs bq27510g3_regs
210 #define bq2752x_regs bq27510g3_regs
211 bq27500_regs[BQ27XXX_REG_MAX] = {
212 [BQ27XXX_REG_CTRL] = 0x00,
213 [BQ27XXX_REG_TEMP] = 0x06,
214 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
215 [BQ27XXX_REG_VOLT] = 0x08,
216 [BQ27XXX_REG_AI] = 0x14,
217 [BQ27XXX_REG_FLAGS] = 0x0a,
218 [BQ27XXX_REG_TTE] = 0x16,
219 [BQ27XXX_REG_TTF] = 0x18,
220 [BQ27XXX_REG_TTES] = 0x1c,
221 [BQ27XXX_REG_TTECP] = 0x26,
222 [BQ27XXX_REG_NAC] = 0x0c,
223 [BQ27XXX_REG_RC] = 0x10,
224 [BQ27XXX_REG_FCC] = 0x12,
225 [BQ27XXX_REG_CYCT] = 0x2a,
226 [BQ27XXX_REG_AE] = 0x22,
227 [BQ27XXX_REG_SOC] = 0x2c,
228 [BQ27XXX_REG_DCAP] = 0x3c,
229 [BQ27XXX_REG_AP] = 0x24,
230 BQ27XXX_DM_REG_ROWS,
231 },
232 #define bq27510g1_regs bq27500_regs
233 #define bq27510g2_regs bq27500_regs
234 bq27510g3_regs[BQ27XXX_REG_MAX] = {
235 [BQ27XXX_REG_CTRL] = 0x00,
236 [BQ27XXX_REG_TEMP] = 0x06,
237 [BQ27XXX_REG_INT_TEMP] = 0x28,
238 [BQ27XXX_REG_VOLT] = 0x08,
239 [BQ27XXX_REG_AI] = 0x14,
240 [BQ27XXX_REG_FLAGS] = 0x0a,
241 [BQ27XXX_REG_TTE] = 0x16,
242 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
243 [BQ27XXX_REG_TTES] = 0x1a,
244 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
245 [BQ27XXX_REG_NAC] = 0x0c,
246 [BQ27XXX_REG_RC] = 0x10,
247 [BQ27XXX_REG_FCC] = 0x12,
248 [BQ27XXX_REG_CYCT] = 0x1e,
249 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
250 [BQ27XXX_REG_SOC] = 0x20,
251 [BQ27XXX_REG_DCAP] = 0x2e,
252 [BQ27XXX_REG_AP] = INVALID_REG_ADDR,
253 BQ27XXX_DM_REG_ROWS,
254 },
255 bq27520g1_regs[BQ27XXX_REG_MAX] = {
256 [BQ27XXX_REG_CTRL] = 0x00,
257 [BQ27XXX_REG_TEMP] = 0x06,
258 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
259 [BQ27XXX_REG_VOLT] = 0x08,
260 [BQ27XXX_REG_AI] = 0x14,
261 [BQ27XXX_REG_FLAGS] = 0x0a,
262 [BQ27XXX_REG_TTE] = 0x16,
263 [BQ27XXX_REG_TTF] = 0x18,
264 [BQ27XXX_REG_TTES] = 0x1c,
265 [BQ27XXX_REG_TTECP] = 0x26,
266 [BQ27XXX_REG_NAC] = 0x0c,
267 [BQ27XXX_REG_RC] = 0x10,
268 [BQ27XXX_REG_FCC] = 0x12,
269 [BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
270 [BQ27XXX_REG_AE] = 0x22,
271 [BQ27XXX_REG_SOC] = 0x2c,
272 [BQ27XXX_REG_DCAP] = 0x3c,
273 [BQ27XXX_REG_AP] = 0x24,
274 BQ27XXX_DM_REG_ROWS,
275 },
276 bq27520g2_regs[BQ27XXX_REG_MAX] = {
277 [BQ27XXX_REG_CTRL] = 0x00,
278 [BQ27XXX_REG_TEMP] = 0x06,
279 [BQ27XXX_REG_INT_TEMP] = 0x36,
280 [BQ27XXX_REG_VOLT] = 0x08,
281 [BQ27XXX_REG_AI] = 0x14,
282 [BQ27XXX_REG_FLAGS] = 0x0a,
283 [BQ27XXX_REG_TTE] = 0x16,
284 [BQ27XXX_REG_TTF] = 0x18,
285 [BQ27XXX_REG_TTES] = 0x1c,
286 [BQ27XXX_REG_TTECP] = 0x26,
287 [BQ27XXX_REG_NAC] = 0x0c,
288 [BQ27XXX_REG_RC] = 0x10,
289 [BQ27XXX_REG_FCC] = 0x12,
290 [BQ27XXX_REG_CYCT] = 0x2a,
291 [BQ27XXX_REG_AE] = 0x22,
292 [BQ27XXX_REG_SOC] = 0x2c,
293 [BQ27XXX_REG_DCAP] = 0x3c,
294 [BQ27XXX_REG_AP] = 0x24,
295 BQ27XXX_DM_REG_ROWS,
296 },
297 bq27520g3_regs[BQ27XXX_REG_MAX] = {
298 [BQ27XXX_REG_CTRL] = 0x00,
299 [BQ27XXX_REG_TEMP] = 0x06,
300 [BQ27XXX_REG_INT_TEMP] = 0x36,
301 [BQ27XXX_REG_VOLT] = 0x08,
302 [BQ27XXX_REG_AI] = 0x14,
303 [BQ27XXX_REG_FLAGS] = 0x0a,
304 [BQ27XXX_REG_TTE] = 0x16,
305 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
306 [BQ27XXX_REG_TTES] = 0x1c,
307 [BQ27XXX_REG_TTECP] = 0x26,
308 [BQ27XXX_REG_NAC] = 0x0c,
309 [BQ27XXX_REG_RC] = 0x10,
310 [BQ27XXX_REG_FCC] = 0x12,
311 [BQ27XXX_REG_CYCT] = 0x2a,
312 [BQ27XXX_REG_AE] = 0x22,
313 [BQ27XXX_REG_SOC] = 0x2c,
314 [BQ27XXX_REG_DCAP] = 0x3c,
315 [BQ27XXX_REG_AP] = 0x24,
316 BQ27XXX_DM_REG_ROWS,
317 },
318 bq27520g4_regs[BQ27XXX_REG_MAX] = {
319 [BQ27XXX_REG_CTRL] = 0x00,
320 [BQ27XXX_REG_TEMP] = 0x06,
321 [BQ27XXX_REG_INT_TEMP] = 0x28,
322 [BQ27XXX_REG_VOLT] = 0x08,
323 [BQ27XXX_REG_AI] = 0x14,
324 [BQ27XXX_REG_FLAGS] = 0x0a,
325 [BQ27XXX_REG_TTE] = 0x16,
326 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
327 [BQ27XXX_REG_TTES] = 0x1c,
328 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
329 [BQ27XXX_REG_NAC] = 0x0c,
330 [BQ27XXX_REG_RC] = 0x10,
331 [BQ27XXX_REG_FCC] = 0x12,
332 [BQ27XXX_REG_CYCT] = 0x1e,
333 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
334 [BQ27XXX_REG_SOC] = 0x20,
335 [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
336 [BQ27XXX_REG_AP] = INVALID_REG_ADDR,
337 BQ27XXX_DM_REG_ROWS,
338 },
339 bq27521_regs[BQ27XXX_REG_MAX] = {
340 [BQ27XXX_REG_CTRL] = 0x02,
341 [BQ27XXX_REG_TEMP] = 0x0a,
342 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
343 [BQ27XXX_REG_VOLT] = 0x0c,
344 [BQ27XXX_REG_AI] = 0x0e,
345 [BQ27XXX_REG_FLAGS] = 0x08,
346 [BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
347 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
348 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
349 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
350 [BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
351 [BQ27XXX_REG_RC] = INVALID_REG_ADDR,
352 [BQ27XXX_REG_FCC] = INVALID_REG_ADDR,
353 [BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
354 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
355 [BQ27XXX_REG_SOC] = INVALID_REG_ADDR,
356 [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
357 [BQ27XXX_REG_AP] = INVALID_REG_ADDR,
358 [BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
359 [BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
360 [BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
361 [BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
362 [BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
363 },
364 bq27530_regs[BQ27XXX_REG_MAX] = {
365 [BQ27XXX_REG_CTRL] = 0x00,
366 [BQ27XXX_REG_TEMP] = 0x06,
367 [BQ27XXX_REG_INT_TEMP] = 0x32,
368 [BQ27XXX_REG_VOLT] = 0x08,
369 [BQ27XXX_REG_AI] = 0x14,
370 [BQ27XXX_REG_FLAGS] = 0x0a,
371 [BQ27XXX_REG_TTE] = 0x16,
372 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
373 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
374 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
375 [BQ27XXX_REG_NAC] = 0x0c,
376 [BQ27XXX_REG_RC] = 0x10,
377 [BQ27XXX_REG_FCC] = 0x12,
378 [BQ27XXX_REG_CYCT] = 0x2a,
379 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
380 [BQ27XXX_REG_SOC] = 0x2c,
381 [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
382 [BQ27XXX_REG_AP] = 0x24,
383 BQ27XXX_DM_REG_ROWS,
384 },
385 #define bq27531_regs bq27530_regs
386 bq27541_regs[BQ27XXX_REG_MAX] = {
387 [BQ27XXX_REG_CTRL] = 0x00,
388 [BQ27XXX_REG_TEMP] = 0x06,
389 [BQ27XXX_REG_INT_TEMP] = 0x28,
390 [BQ27XXX_REG_VOLT] = 0x08,
391 [BQ27XXX_REG_AI] = 0x14,
392 [BQ27XXX_REG_FLAGS] = 0x0a,
393 [BQ27XXX_REG_TTE] = 0x16,
394 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
395 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
396 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
397 [BQ27XXX_REG_NAC] = 0x0c,
398 [BQ27XXX_REG_RC] = 0x10,
399 [BQ27XXX_REG_FCC] = 0x12,
400 [BQ27XXX_REG_CYCT] = 0x2a,
401 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
402 [BQ27XXX_REG_SOC] = 0x2c,
403 [BQ27XXX_REG_DCAP] = 0x3c,
404 [BQ27XXX_REG_AP] = 0x24,
405 BQ27XXX_DM_REG_ROWS,
406 },
407 #define bq27542_regs bq27541_regs
408 #define bq27546_regs bq27541_regs
409 #define bq27742_regs bq27541_regs
410 bq27545_regs[BQ27XXX_REG_MAX] = {
411 [BQ27XXX_REG_CTRL] = 0x00,
412 [BQ27XXX_REG_TEMP] = 0x06,
413 [BQ27XXX_REG_INT_TEMP] = 0x28,
414 [BQ27XXX_REG_VOLT] = 0x08,
415 [BQ27XXX_REG_AI] = 0x14,
416 [BQ27XXX_REG_FLAGS] = 0x0a,
417 [BQ27XXX_REG_TTE] = 0x16,
418 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
419 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
420 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
421 [BQ27XXX_REG_NAC] = 0x0c,
422 [BQ27XXX_REG_RC] = 0x10,
423 [BQ27XXX_REG_FCC] = 0x12,
424 [BQ27XXX_REG_CYCT] = 0x2a,
425 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
426 [BQ27XXX_REG_SOC] = 0x2c,
427 [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
428 [BQ27XXX_REG_AP] = 0x24,
429 BQ27XXX_DM_REG_ROWS,
430 },
431 bq27421_regs[BQ27XXX_REG_MAX] = {
432 [BQ27XXX_REG_CTRL] = 0x00,
433 [BQ27XXX_REG_TEMP] = 0x02,
434 [BQ27XXX_REG_INT_TEMP] = 0x1e,
435 [BQ27XXX_REG_VOLT] = 0x04,
436 [BQ27XXX_REG_AI] = 0x10,
437 [BQ27XXX_REG_FLAGS] = 0x06,
438 [BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
439 [BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
440 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
441 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
442 [BQ27XXX_REG_NAC] = 0x08,
443 [BQ27XXX_REG_RC] = 0x0c,
444 [BQ27XXX_REG_FCC] = 0x0e,
445 [BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
446 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
447 [BQ27XXX_REG_SOC] = 0x1c,
448 [BQ27XXX_REG_DCAP] = 0x3c,
449 [BQ27XXX_REG_AP] = 0x18,
450 BQ27XXX_DM_REG_ROWS,
451 },
452 #define bq27411_regs bq27421_regs
453 #define bq27425_regs bq27421_regs
454 #define bq27426_regs bq27421_regs
455 #define bq27441_regs bq27421_regs
456 #define bq27621_regs bq27421_regs
457 bq27z561_regs[BQ27XXX_REG_MAX] = {
458 [BQ27XXX_REG_CTRL] = 0x00,
459 [BQ27XXX_REG_TEMP] = 0x06,
460 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
461 [BQ27XXX_REG_VOLT] = 0x08,
462 [BQ27XXX_REG_AI] = 0x14,
463 [BQ27XXX_REG_FLAGS] = 0x0a,
464 [BQ27XXX_REG_TTE] = 0x16,
465 [BQ27XXX_REG_TTF] = 0x18,
466 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
467 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
468 [BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
469 [BQ27XXX_REG_RC] = 0x10,
470 [BQ27XXX_REG_FCC] = 0x12,
471 [BQ27XXX_REG_CYCT] = 0x2a,
472 [BQ27XXX_REG_AE] = 0x22,
473 [BQ27XXX_REG_SOC] = 0x2c,
474 [BQ27XXX_REG_DCAP] = 0x3c,
475 [BQ27XXX_REG_AP] = 0x22,
476 BQ27XXX_DM_REG_ROWS,
477 },
478 bq28z610_regs[BQ27XXX_REG_MAX] = {
479 [BQ27XXX_REG_CTRL] = 0x00,
480 [BQ27XXX_REG_TEMP] = 0x06,
481 [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
482 [BQ27XXX_REG_VOLT] = 0x08,
483 [BQ27XXX_REG_AI] = 0x14,
484 [BQ27XXX_REG_FLAGS] = 0x0a,
485 [BQ27XXX_REG_TTE] = 0x16,
486 [BQ27XXX_REG_TTF] = 0x18,
487 [BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
488 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
489 [BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
490 [BQ27XXX_REG_RC] = 0x10,
491 [BQ27XXX_REG_FCC] = 0x12,
492 [BQ27XXX_REG_CYCT] = 0x2a,
493 [BQ27XXX_REG_AE] = 0x22,
494 [BQ27XXX_REG_SOC] = 0x2c,
495 [BQ27XXX_REG_DCAP] = 0x3c,
496 [BQ27XXX_REG_AP] = 0x22,
497 BQ27XXX_DM_REG_ROWS,
498 },
499 bq34z100_regs[BQ27XXX_REG_MAX] = {
500 [BQ27XXX_REG_CTRL] = 0x00,
501 [BQ27XXX_REG_TEMP] = 0x0c,
502 [BQ27XXX_REG_INT_TEMP] = 0x2a,
503 [BQ27XXX_REG_VOLT] = 0x08,
504 [BQ27XXX_REG_AI] = 0x0a,
505 [BQ27XXX_REG_FLAGS] = 0x0e,
506 [BQ27XXX_REG_TTE] = 0x18,
507 [BQ27XXX_REG_TTF] = 0x1a,
508 [BQ27XXX_REG_TTES] = 0x1e,
509 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
510 [BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
511 [BQ27XXX_REG_RC] = 0x04,
512 [BQ27XXX_REG_FCC] = 0x06,
513 [BQ27XXX_REG_CYCT] = 0x2c,
514 [BQ27XXX_REG_AE] = 0x24,
515 [BQ27XXX_REG_SOC] = 0x02,
516 [BQ27XXX_REG_DCAP] = 0x3c,
517 [BQ27XXX_REG_AP] = 0x22,
518 BQ27XXX_DM_REG_ROWS,
519 },
520 bq78z100_regs[BQ27XXX_REG_MAX] = {
521 [BQ27XXX_REG_CTRL] = 0x00,
522 [BQ27XXX_REG_TEMP] = 0x06,
523 [BQ27XXX_REG_INT_TEMP] = 0x28,
524 [BQ27XXX_REG_VOLT] = 0x08,
525 [BQ27XXX_REG_AI] = 0x14,
526 [BQ27XXX_REG_FLAGS] = 0x0a,
527 [BQ27XXX_REG_TTE] = 0x16,
528 [BQ27XXX_REG_TTF] = 0x18,
529 [BQ27XXX_REG_TTES] = 0x1c,
530 [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
531 [BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
532 [BQ27XXX_REG_RC] = 0x10,
533 [BQ27XXX_REG_FCC] = 0x12,
534 [BQ27XXX_REG_CYCT] = 0x2a,
535 [BQ27XXX_REG_AE] = INVALID_REG_ADDR,
536 [BQ27XXX_REG_SOC] = 0x2c,
537 [BQ27XXX_REG_DCAP] = 0x3c,
538 [BQ27XXX_REG_AP] = 0x22,
539 BQ27XXX_DM_REG_ROWS,
540 };
541
542 static enum power_supply_property bq27000_props[] = {
543 POWER_SUPPLY_PROP_STATUS,
544 POWER_SUPPLY_PROP_PRESENT,
545 POWER_SUPPLY_PROP_VOLTAGE_NOW,
546 POWER_SUPPLY_PROP_CURRENT_NOW,
547 POWER_SUPPLY_PROP_CAPACITY,
548 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
549 POWER_SUPPLY_PROP_TEMP,
550 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
551 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
552 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
553 POWER_SUPPLY_PROP_TECHNOLOGY,
554 POWER_SUPPLY_PROP_CHARGE_FULL,
555 POWER_SUPPLY_PROP_CHARGE_NOW,
556 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
557 POWER_SUPPLY_PROP_CYCLE_COUNT,
558 POWER_SUPPLY_PROP_ENERGY_NOW,
559 POWER_SUPPLY_PROP_POWER_AVG,
560 POWER_SUPPLY_PROP_HEALTH,
561 POWER_SUPPLY_PROP_MANUFACTURER,
562 };
563
564 static enum power_supply_property bq27010_props[] = {
565 POWER_SUPPLY_PROP_STATUS,
566 POWER_SUPPLY_PROP_PRESENT,
567 POWER_SUPPLY_PROP_VOLTAGE_NOW,
568 POWER_SUPPLY_PROP_CURRENT_NOW,
569 POWER_SUPPLY_PROP_CAPACITY,
570 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
571 POWER_SUPPLY_PROP_TEMP,
572 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
573 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
574 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
575 POWER_SUPPLY_PROP_TECHNOLOGY,
576 POWER_SUPPLY_PROP_CHARGE_FULL,
577 POWER_SUPPLY_PROP_CHARGE_NOW,
578 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
579 POWER_SUPPLY_PROP_CYCLE_COUNT,
580 POWER_SUPPLY_PROP_HEALTH,
581 POWER_SUPPLY_PROP_MANUFACTURER,
582 };
583
584 #define bq2750x_props bq27510g3_props
585 #define bq2751x_props bq27510g3_props
586 #define bq2752x_props bq27510g3_props
587
588 static enum power_supply_property bq27500_props[] = {
589 POWER_SUPPLY_PROP_STATUS,
590 POWER_SUPPLY_PROP_PRESENT,
591 POWER_SUPPLY_PROP_VOLTAGE_NOW,
592 POWER_SUPPLY_PROP_CURRENT_NOW,
593 POWER_SUPPLY_PROP_CAPACITY,
594 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
595 POWER_SUPPLY_PROP_TEMP,
596 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
597 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
598 POWER_SUPPLY_PROP_TECHNOLOGY,
599 POWER_SUPPLY_PROP_CHARGE_FULL,
600 POWER_SUPPLY_PROP_CHARGE_NOW,
601 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
602 POWER_SUPPLY_PROP_CYCLE_COUNT,
603 POWER_SUPPLY_PROP_ENERGY_NOW,
604 POWER_SUPPLY_PROP_POWER_AVG,
605 POWER_SUPPLY_PROP_HEALTH,
606 POWER_SUPPLY_PROP_MANUFACTURER,
607 };
608 #define bq27510g1_props bq27500_props
609 #define bq27510g2_props bq27500_props
610
611 static enum power_supply_property bq27510g3_props[] = {
612 POWER_SUPPLY_PROP_STATUS,
613 POWER_SUPPLY_PROP_PRESENT,
614 POWER_SUPPLY_PROP_VOLTAGE_NOW,
615 POWER_SUPPLY_PROP_CURRENT_NOW,
616 POWER_SUPPLY_PROP_CAPACITY,
617 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
618 POWER_SUPPLY_PROP_TEMP,
619 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
620 POWER_SUPPLY_PROP_TECHNOLOGY,
621 POWER_SUPPLY_PROP_CHARGE_FULL,
622 POWER_SUPPLY_PROP_CHARGE_NOW,
623 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
624 POWER_SUPPLY_PROP_CYCLE_COUNT,
625 POWER_SUPPLY_PROP_HEALTH,
626 POWER_SUPPLY_PROP_MANUFACTURER,
627 };
628
629 static enum power_supply_property bq27520g1_props[] = {
630 POWER_SUPPLY_PROP_STATUS,
631 POWER_SUPPLY_PROP_PRESENT,
632 POWER_SUPPLY_PROP_VOLTAGE_NOW,
633 POWER_SUPPLY_PROP_CURRENT_NOW,
634 POWER_SUPPLY_PROP_CAPACITY,
635 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
636 POWER_SUPPLY_PROP_TEMP,
637 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
638 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
639 POWER_SUPPLY_PROP_TECHNOLOGY,
640 POWER_SUPPLY_PROP_CHARGE_FULL,
641 POWER_SUPPLY_PROP_CHARGE_NOW,
642 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
643 POWER_SUPPLY_PROP_ENERGY_NOW,
644 POWER_SUPPLY_PROP_POWER_AVG,
645 POWER_SUPPLY_PROP_HEALTH,
646 POWER_SUPPLY_PROP_MANUFACTURER,
647 };
648
649 #define bq27520g2_props bq27500_props
650
651 static enum power_supply_property bq27520g3_props[] = {
652 POWER_SUPPLY_PROP_STATUS,
653 POWER_SUPPLY_PROP_PRESENT,
654 POWER_SUPPLY_PROP_VOLTAGE_NOW,
655 POWER_SUPPLY_PROP_CURRENT_NOW,
656 POWER_SUPPLY_PROP_CAPACITY,
657 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
658 POWER_SUPPLY_PROP_TEMP,
659 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
660 POWER_SUPPLY_PROP_TECHNOLOGY,
661 POWER_SUPPLY_PROP_CHARGE_FULL,
662 POWER_SUPPLY_PROP_CHARGE_NOW,
663 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
664 POWER_SUPPLY_PROP_CYCLE_COUNT,
665 POWER_SUPPLY_PROP_ENERGY_NOW,
666 POWER_SUPPLY_PROP_POWER_AVG,
667 POWER_SUPPLY_PROP_HEALTH,
668 POWER_SUPPLY_PROP_MANUFACTURER,
669 };
670
671 static enum power_supply_property bq27520g4_props[] = {
672 POWER_SUPPLY_PROP_STATUS,
673 POWER_SUPPLY_PROP_PRESENT,
674 POWER_SUPPLY_PROP_VOLTAGE_NOW,
675 POWER_SUPPLY_PROP_CURRENT_NOW,
676 POWER_SUPPLY_PROP_CAPACITY,
677 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
678 POWER_SUPPLY_PROP_TEMP,
679 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
680 POWER_SUPPLY_PROP_TECHNOLOGY,
681 POWER_SUPPLY_PROP_CHARGE_FULL,
682 POWER_SUPPLY_PROP_CHARGE_NOW,
683 POWER_SUPPLY_PROP_CYCLE_COUNT,
684 POWER_SUPPLY_PROP_HEALTH,
685 POWER_SUPPLY_PROP_MANUFACTURER,
686 };
687
688 static enum power_supply_property bq27521_props[] = {
689 POWER_SUPPLY_PROP_STATUS,
690 POWER_SUPPLY_PROP_PRESENT,
691 POWER_SUPPLY_PROP_VOLTAGE_NOW,
692 POWER_SUPPLY_PROP_CURRENT_NOW,
693 POWER_SUPPLY_PROP_TEMP,
694 POWER_SUPPLY_PROP_TECHNOLOGY,
695 };
696
697 static enum power_supply_property bq27530_props[] = {
698 POWER_SUPPLY_PROP_STATUS,
699 POWER_SUPPLY_PROP_PRESENT,
700 POWER_SUPPLY_PROP_VOLTAGE_NOW,
701 POWER_SUPPLY_PROP_CURRENT_NOW,
702 POWER_SUPPLY_PROP_CAPACITY,
703 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
704 POWER_SUPPLY_PROP_TEMP,
705 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
706 POWER_SUPPLY_PROP_TECHNOLOGY,
707 POWER_SUPPLY_PROP_CHARGE_FULL,
708 POWER_SUPPLY_PROP_CHARGE_NOW,
709 POWER_SUPPLY_PROP_POWER_AVG,
710 POWER_SUPPLY_PROP_HEALTH,
711 POWER_SUPPLY_PROP_CYCLE_COUNT,
712 POWER_SUPPLY_PROP_MANUFACTURER,
713 };
714 #define bq27531_props bq27530_props
715
716 static enum power_supply_property bq27541_props[] = {
717 POWER_SUPPLY_PROP_STATUS,
718 POWER_SUPPLY_PROP_PRESENT,
719 POWER_SUPPLY_PROP_VOLTAGE_NOW,
720 POWER_SUPPLY_PROP_CURRENT_NOW,
721 POWER_SUPPLY_PROP_CAPACITY,
722 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
723 POWER_SUPPLY_PROP_TEMP,
724 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
725 POWER_SUPPLY_PROP_TECHNOLOGY,
726 POWER_SUPPLY_PROP_CHARGE_FULL,
727 POWER_SUPPLY_PROP_CHARGE_NOW,
728 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
729 POWER_SUPPLY_PROP_CYCLE_COUNT,
730 POWER_SUPPLY_PROP_POWER_AVG,
731 POWER_SUPPLY_PROP_HEALTH,
732 POWER_SUPPLY_PROP_MANUFACTURER,
733 };
734 #define bq27542_props bq27541_props
735 #define bq27546_props bq27541_props
736 #define bq27742_props bq27541_props
737
738 static enum power_supply_property bq27545_props[] = {
739 POWER_SUPPLY_PROP_STATUS,
740 POWER_SUPPLY_PROP_PRESENT,
741 POWER_SUPPLY_PROP_VOLTAGE_NOW,
742 POWER_SUPPLY_PROP_CURRENT_NOW,
743 POWER_SUPPLY_PROP_CAPACITY,
744 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
745 POWER_SUPPLY_PROP_TEMP,
746 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
747 POWER_SUPPLY_PROP_TECHNOLOGY,
748 POWER_SUPPLY_PROP_CHARGE_FULL,
749 POWER_SUPPLY_PROP_CHARGE_NOW,
750 POWER_SUPPLY_PROP_HEALTH,
751 POWER_SUPPLY_PROP_CYCLE_COUNT,
752 POWER_SUPPLY_PROP_POWER_AVG,
753 POWER_SUPPLY_PROP_MANUFACTURER,
754 };
755
756 static enum power_supply_property bq27421_props[] = {
757 POWER_SUPPLY_PROP_STATUS,
758 POWER_SUPPLY_PROP_PRESENT,
759 POWER_SUPPLY_PROP_VOLTAGE_NOW,
760 POWER_SUPPLY_PROP_CURRENT_NOW,
761 POWER_SUPPLY_PROP_CAPACITY,
762 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
763 POWER_SUPPLY_PROP_TEMP,
764 POWER_SUPPLY_PROP_TECHNOLOGY,
765 POWER_SUPPLY_PROP_CHARGE_FULL,
766 POWER_SUPPLY_PROP_CHARGE_NOW,
767 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
768 POWER_SUPPLY_PROP_MANUFACTURER,
769 };
770 #define bq27411_props bq27421_props
771 #define bq27425_props bq27421_props
772 #define bq27426_props bq27421_props
773 #define bq27441_props bq27421_props
774 #define bq27621_props bq27421_props
775
776 static enum power_supply_property bq27z561_props[] = {
777 POWER_SUPPLY_PROP_STATUS,
778 POWER_SUPPLY_PROP_PRESENT,
779 POWER_SUPPLY_PROP_VOLTAGE_NOW,
780 POWER_SUPPLY_PROP_CURRENT_NOW,
781 POWER_SUPPLY_PROP_CAPACITY,
782 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
783 POWER_SUPPLY_PROP_TEMP,
784 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
785 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
786 POWER_SUPPLY_PROP_TECHNOLOGY,
787 POWER_SUPPLY_PROP_CHARGE_FULL,
788 POWER_SUPPLY_PROP_CHARGE_NOW,
789 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
790 POWER_SUPPLY_PROP_CYCLE_COUNT,
791 POWER_SUPPLY_PROP_POWER_AVG,
792 POWER_SUPPLY_PROP_HEALTH,
793 POWER_SUPPLY_PROP_MANUFACTURER,
794 };
795
796 static enum power_supply_property bq28z610_props[] = {
797 POWER_SUPPLY_PROP_STATUS,
798 POWER_SUPPLY_PROP_PRESENT,
799 POWER_SUPPLY_PROP_VOLTAGE_NOW,
800 POWER_SUPPLY_PROP_CURRENT_NOW,
801 POWER_SUPPLY_PROP_CAPACITY,
802 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
803 POWER_SUPPLY_PROP_TEMP,
804 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
805 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
806 POWER_SUPPLY_PROP_TECHNOLOGY,
807 POWER_SUPPLY_PROP_CHARGE_FULL,
808 POWER_SUPPLY_PROP_CHARGE_NOW,
809 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
810 POWER_SUPPLY_PROP_CYCLE_COUNT,
811 POWER_SUPPLY_PROP_POWER_AVG,
812 POWER_SUPPLY_PROP_HEALTH,
813 POWER_SUPPLY_PROP_MANUFACTURER,
814 };
815
816 static enum power_supply_property bq34z100_props[] = {
817 POWER_SUPPLY_PROP_STATUS,
818 POWER_SUPPLY_PROP_PRESENT,
819 POWER_SUPPLY_PROP_VOLTAGE_NOW,
820 POWER_SUPPLY_PROP_CURRENT_NOW,
821 POWER_SUPPLY_PROP_CAPACITY,
822 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
823 POWER_SUPPLY_PROP_TEMP,
824 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
825 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
826 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
827 POWER_SUPPLY_PROP_TECHNOLOGY,
828 POWER_SUPPLY_PROP_CHARGE_FULL,
829 POWER_SUPPLY_PROP_CHARGE_NOW,
830 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
831 POWER_SUPPLY_PROP_CYCLE_COUNT,
832 POWER_SUPPLY_PROP_ENERGY_NOW,
833 POWER_SUPPLY_PROP_POWER_AVG,
834 POWER_SUPPLY_PROP_HEALTH,
835 POWER_SUPPLY_PROP_MANUFACTURER,
836 };
837
838 static enum power_supply_property bq78z100_props[] = {
839 POWER_SUPPLY_PROP_STATUS,
840 POWER_SUPPLY_PROP_PRESENT,
841 POWER_SUPPLY_PROP_VOLTAGE_NOW,
842 POWER_SUPPLY_PROP_CURRENT_NOW,
843 POWER_SUPPLY_PROP_CAPACITY,
844 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
845 POWER_SUPPLY_PROP_TEMP,
846 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
847 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
848 POWER_SUPPLY_PROP_TECHNOLOGY,
849 POWER_SUPPLY_PROP_CHARGE_FULL,
850 POWER_SUPPLY_PROP_CHARGE_NOW,
851 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
852 POWER_SUPPLY_PROP_CYCLE_COUNT,
853 POWER_SUPPLY_PROP_POWER_AVG,
854 POWER_SUPPLY_PROP_HEALTH,
855 POWER_SUPPLY_PROP_MANUFACTURER,
856 };
857
858 struct bq27xxx_dm_reg {
859 u8 subclass_id;
860 u8 offset;
861 u8 bytes;
862 u16 min, max;
863 };
864
865 enum bq27xxx_dm_reg_id {
866 BQ27XXX_DM_DESIGN_CAPACITY = 0,
867 BQ27XXX_DM_DESIGN_ENERGY,
868 BQ27XXX_DM_TERMINATE_VOLTAGE,
869 };
870
871 #define bq27000_dm_regs NULL
872 #define bq27010_dm_regs NULL
873 #define bq2750x_dm_regs NULL
874 #define bq2751x_dm_regs NULL
875 #define bq2752x_dm_regs NULL
876
877 #if 0 /* not yet tested */
878 static struct bq27xxx_dm_reg bq27500_dm_regs[] = {
879 [BQ27XXX_DM_DESIGN_CAPACITY] = { 48, 10, 2, 0, 65535 },
880 [BQ27XXX_DM_DESIGN_ENERGY] = { }, /* missing on chip */
881 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 48, 2, 1000, 32767 },
882 };
883 #else
884 #define bq27500_dm_regs NULL
885 #endif
886
887 /* todo create data memory definitions from datasheets and test on chips */
888 #define bq27510g1_dm_regs NULL
889 #define bq27510g2_dm_regs NULL
890 #define bq27510g3_dm_regs NULL
891 #define bq27520g1_dm_regs NULL
892 #define bq27520g2_dm_regs NULL
893 #define bq27520g3_dm_regs NULL
894 #define bq27520g4_dm_regs NULL
895 #define bq27521_dm_regs NULL
896 #define bq27530_dm_regs NULL
897 #define bq27531_dm_regs NULL
898 #define bq27541_dm_regs NULL
899 #define bq27542_dm_regs NULL
900 #define bq27546_dm_regs NULL
901 #define bq27742_dm_regs NULL
902
903 #if 0 /* not yet tested */
904 static struct bq27xxx_dm_reg bq27545_dm_regs[] = {
905 [BQ27XXX_DM_DESIGN_CAPACITY] = { 48, 23, 2, 0, 32767 },
906 [BQ27XXX_DM_DESIGN_ENERGY] = { 48, 25, 2, 0, 32767 },
907 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 67, 2, 2800, 3700 },
908 };
909 #else
910 #define bq27545_dm_regs NULL
911 #endif
912
913 static struct bq27xxx_dm_reg bq27411_dm_regs[] = {
914 [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 10, 2, 0, 32767 },
915 [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 12, 2, 0, 32767 },
916 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2800, 3700 },
917 };
918
919 static struct bq27xxx_dm_reg bq27421_dm_regs[] = {
920 [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 10, 2, 0, 8000 },
921 [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 12, 2, 0, 32767 },
922 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2500, 3700 },
923 };
924
925 static struct bq27xxx_dm_reg bq27425_dm_regs[] = {
926 [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 12, 2, 0, 32767 },
927 [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 14, 2, 0, 32767 },
928 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 18, 2, 2800, 3700 },
929 };
930
931 static struct bq27xxx_dm_reg bq27426_dm_regs[] = {
932 [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 6, 2, 0, 8000 },
933 [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 8, 2, 0, 32767 },
934 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 10, 2, 2500, 3700 },
935 };
936
937 #if 0 /* not yet tested */
938 #define bq27441_dm_regs bq27421_dm_regs
939 #else
940 #define bq27441_dm_regs NULL
941 #endif
942
943 #if 0 /* not yet tested */
944 static struct bq27xxx_dm_reg bq27621_dm_regs[] = {
945 [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 3, 2, 0, 8000 },
946 [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 5, 2, 0, 32767 },
947 [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 9, 2, 2500, 3700 },
948 };
949 #else
950 #define bq27621_dm_regs NULL
951 #endif
952
953 #define bq27z561_dm_regs NULL
954 #define bq28z610_dm_regs NULL
955 #define bq34z100_dm_regs NULL
956 #define bq78z100_dm_regs NULL
957
958 #define BQ27XXX_O_ZERO BIT(0)
959 #define BQ27XXX_O_OTDC BIT(1) /* has OTC/OTD overtemperature flags */
960 #define BQ27XXX_O_UTOT BIT(2) /* has OT overtemperature flag */
961 #define BQ27XXX_O_CFGUP BIT(3)
962 #define BQ27XXX_O_RAM BIT(4)
963 #define BQ27Z561_O_BITS BIT(5)
964 #define BQ27XXX_O_SOC_SI BIT(6) /* SoC is single register */
965 #define BQ27XXX_O_HAS_CI BIT(7) /* has Capacity Inaccurate flag */
966 #define BQ27XXX_O_MUL_CHEM BIT(8) /* multiple chemistries supported */
967
968 #define BQ27XXX_DATA(ref, key, opt) { \
969 .opts = (opt), \
970 .unseal_key = key, \
971 .regs = ref##_regs, \
972 .dm_regs = ref##_dm_regs, \
973 .props = ref##_props, \
974 .props_size = ARRAY_SIZE(ref##_props) }
975
976 static struct {
977 u32 opts;
978 u32 unseal_key;
979 u8 *regs;
980 struct bq27xxx_dm_reg *dm_regs;
981 enum power_supply_property *props;
982 size_t props_size;
983 } bq27xxx_chip_data[] = {
984 [BQ27000] = BQ27XXX_DATA(bq27000, 0 , BQ27XXX_O_ZERO | BQ27XXX_O_SOC_SI | BQ27XXX_O_HAS_CI),
985 [BQ27010] = BQ27XXX_DATA(bq27010, 0 , BQ27XXX_O_ZERO | BQ27XXX_O_SOC_SI | BQ27XXX_O_HAS_CI),
986 [BQ2750X] = BQ27XXX_DATA(bq2750x, 0 , BQ27XXX_O_OTDC),
987 [BQ2751X] = BQ27XXX_DATA(bq2751x, 0 , BQ27XXX_O_OTDC),
988 [BQ2752X] = BQ27XXX_DATA(bq2752x, 0 , BQ27XXX_O_OTDC),
989 [BQ27500] = BQ27XXX_DATA(bq27500, 0x04143672, BQ27XXX_O_OTDC),
990 [BQ27510G1] = BQ27XXX_DATA(bq27510g1, 0 , BQ27XXX_O_OTDC),
991 [BQ27510G2] = BQ27XXX_DATA(bq27510g2, 0 , BQ27XXX_O_OTDC),
992 [BQ27510G3] = BQ27XXX_DATA(bq27510g3, 0 , BQ27XXX_O_OTDC),
993 [BQ27520G1] = BQ27XXX_DATA(bq27520g1, 0 , BQ27XXX_O_OTDC),
994 [BQ27520G2] = BQ27XXX_DATA(bq27520g2, 0 , BQ27XXX_O_OTDC),
995 [BQ27520G3] = BQ27XXX_DATA(bq27520g3, 0 , BQ27XXX_O_OTDC),
996 [BQ27520G4] = BQ27XXX_DATA(bq27520g4, 0 , BQ27XXX_O_OTDC),
997 [BQ27521] = BQ27XXX_DATA(bq27521, 0 , 0),
998 [BQ27530] = BQ27XXX_DATA(bq27530, 0 , BQ27XXX_O_UTOT),
999 [BQ27531] = BQ27XXX_DATA(bq27531, 0 , BQ27XXX_O_UTOT),
1000 [BQ27541] = BQ27XXX_DATA(bq27541, 0 , BQ27XXX_O_OTDC),
1001 [BQ27542] = BQ27XXX_DATA(bq27542, 0 , BQ27XXX_O_OTDC),
1002 [BQ27546] = BQ27XXX_DATA(bq27546, 0 , BQ27XXX_O_OTDC),
1003 [BQ27742] = BQ27XXX_DATA(bq27742, 0 , BQ27XXX_O_OTDC),
1004 [BQ27545] = BQ27XXX_DATA(bq27545, 0x04143672, BQ27XXX_O_OTDC),
1005 [BQ27411] = BQ27XXX_DATA(bq27411, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
1006 [BQ27421] = BQ27XXX_DATA(bq27421, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
1007 [BQ27425] = BQ27XXX_DATA(bq27425, 0x04143672, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP),
1008 [BQ27426] = BQ27XXX_DATA(bq27426, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
1009 [BQ27441] = BQ27XXX_DATA(bq27441, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
1010 [BQ27621] = BQ27XXX_DATA(bq27621, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
1011 [BQ27Z561] = BQ27XXX_DATA(bq27z561, 0 , BQ27Z561_O_BITS),
1012 [BQ28Z610] = BQ27XXX_DATA(bq28z610, 0 , BQ27Z561_O_BITS),
1013 [BQ34Z100] = BQ27XXX_DATA(bq34z100, 0 , BQ27XXX_O_OTDC | BQ27XXX_O_SOC_SI | \
1014 BQ27XXX_O_HAS_CI | BQ27XXX_O_MUL_CHEM),
1015 [BQ78Z100] = BQ27XXX_DATA(bq78z100, 0 , BQ27Z561_O_BITS),
1016 };
1017
1018 static DEFINE_MUTEX(bq27xxx_list_lock);
1019 static LIST_HEAD(bq27xxx_battery_devices);
1020
1021 #define BQ27XXX_MSLEEP(i) usleep_range((i)*1000, (i)*1000+500)
1022
1023 #define BQ27XXX_DM_SZ 32
1024
1025 /**
1026 * struct bq27xxx_dm_buf - chip data memory buffer
1027 * @class: data memory subclass_id
1028 * @block: data memory block number
1029 * @data: data from/for the block
1030 * @has_data: true if data has been filled by read
1031 * @dirty: true if data has changed since last read/write
1032 *
1033 * Encapsulates info required to manage chip data memory blocks.
1034 */
1035 struct bq27xxx_dm_buf {
1036 u8 class;
1037 u8 block;
1038 u8 data[BQ27XXX_DM_SZ];
1039 bool has_data, dirty;
1040 };
1041
1042 #define BQ27XXX_DM_BUF(di, i) { \
1043 .class = (di)->dm_regs[i].subclass_id, \
1044 .block = (di)->dm_regs[i].offset / BQ27XXX_DM_SZ, \
1045 }
1046
bq27xxx_dm_reg_ptr(struct bq27xxx_dm_buf * buf,struct bq27xxx_dm_reg * reg)1047 static inline __be16 *bq27xxx_dm_reg_ptr(struct bq27xxx_dm_buf *buf,
1048 struct bq27xxx_dm_reg *reg)
1049 {
1050 if (buf->class == reg->subclass_id &&
1051 buf->block == reg->offset / BQ27XXX_DM_SZ)
1052 return (__be16 *) (buf->data + reg->offset % BQ27XXX_DM_SZ);
1053
1054 return NULL;
1055 }
1056
1057 static const char * const bq27xxx_dm_reg_name[] = {
1058 [BQ27XXX_DM_DESIGN_CAPACITY] = "design-capacity",
1059 [BQ27XXX_DM_DESIGN_ENERGY] = "design-energy",
1060 [BQ27XXX_DM_TERMINATE_VOLTAGE] = "terminate-voltage",
1061 };
1062
1063
1064 static bool bq27xxx_dt_to_nvm = true;
1065 module_param_named(dt_monitored_battery_updates_nvm, bq27xxx_dt_to_nvm, bool, 0444);
1066 MODULE_PARM_DESC(dt_monitored_battery_updates_nvm,
1067 "Devicetree monitored-battery config updates data memory on NVM/flash chips.\n"
1068 "Users must set this =0 when installing a different type of battery!\n"
1069 "Default is =1."
1070 #ifndef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
1071 "\nSetting this affects future kernel updates, not the current configuration."
1072 #endif
1073 );
1074
poll_interval_param_set(const char * val,const struct kernel_param * kp)1075 static int poll_interval_param_set(const char *val, const struct kernel_param *kp)
1076 {
1077 struct bq27xxx_device_info *di;
1078 unsigned int prev_val = *(unsigned int *) kp->arg;
1079 int ret;
1080
1081 ret = param_set_uint(val, kp);
1082 if (ret < 0 || prev_val == *(unsigned int *) kp->arg)
1083 return ret;
1084
1085 mutex_lock(&bq27xxx_list_lock);
1086 list_for_each_entry(di, &bq27xxx_battery_devices, list)
1087 mod_delayed_work(system_wq, &di->work, 0);
1088 mutex_unlock(&bq27xxx_list_lock);
1089
1090 return ret;
1091 }
1092
1093 static const struct kernel_param_ops param_ops_poll_interval = {
1094 .get = param_get_uint,
1095 .set = poll_interval_param_set,
1096 };
1097
1098 static unsigned int poll_interval = 360;
1099 module_param_cb(poll_interval, ¶m_ops_poll_interval, &poll_interval, 0644);
1100 MODULE_PARM_DESC(poll_interval,
1101 "battery poll interval in seconds - 0 disables polling");
1102
1103 /*
1104 * Common code for BQ27xxx devices
1105 */
1106
bq27xxx_read(struct bq27xxx_device_info * di,int reg_index,bool single)1107 static inline int bq27xxx_read(struct bq27xxx_device_info *di, int reg_index,
1108 bool single)
1109 {
1110 int ret;
1111
1112 if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1113 return -EINVAL;
1114
1115 ret = di->bus.read(di, di->regs[reg_index], single);
1116 if (ret < 0)
1117 dev_dbg(di->dev, "failed to read register 0x%02x (index %d)\n",
1118 di->regs[reg_index], reg_index);
1119
1120 return ret;
1121 }
1122
bq27xxx_write(struct bq27xxx_device_info * di,int reg_index,u16 value,bool single)1123 static inline int bq27xxx_write(struct bq27xxx_device_info *di, int reg_index,
1124 u16 value, bool single)
1125 {
1126 int ret;
1127
1128 if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1129 return -EINVAL;
1130
1131 if (!di->bus.write)
1132 return -EPERM;
1133
1134 ret = di->bus.write(di, di->regs[reg_index], value, single);
1135 if (ret < 0)
1136 dev_dbg(di->dev, "failed to write register 0x%02x (index %d)\n",
1137 di->regs[reg_index], reg_index);
1138
1139 return ret;
1140 }
1141
bq27xxx_read_block(struct bq27xxx_device_info * di,int reg_index,u8 * data,int len)1142 static inline int bq27xxx_read_block(struct bq27xxx_device_info *di, int reg_index,
1143 u8 *data, int len)
1144 {
1145 int ret;
1146
1147 if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1148 return -EINVAL;
1149
1150 if (!di->bus.read_bulk)
1151 return -EPERM;
1152
1153 ret = di->bus.read_bulk(di, di->regs[reg_index], data, len);
1154 if (ret < 0)
1155 dev_dbg(di->dev, "failed to read_bulk register 0x%02x (index %d)\n",
1156 di->regs[reg_index], reg_index);
1157
1158 return ret;
1159 }
1160
bq27xxx_write_block(struct bq27xxx_device_info * di,int reg_index,u8 * data,int len)1161 static inline int bq27xxx_write_block(struct bq27xxx_device_info *di, int reg_index,
1162 u8 *data, int len)
1163 {
1164 int ret;
1165
1166 if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1167 return -EINVAL;
1168
1169 if (!di->bus.write_bulk)
1170 return -EPERM;
1171
1172 ret = di->bus.write_bulk(di, di->regs[reg_index], data, len);
1173 if (ret < 0)
1174 dev_dbg(di->dev, "failed to write_bulk register 0x%02x (index %d)\n",
1175 di->regs[reg_index], reg_index);
1176
1177 return ret;
1178 }
1179
bq27xxx_battery_seal(struct bq27xxx_device_info * di)1180 static int bq27xxx_battery_seal(struct bq27xxx_device_info *di)
1181 {
1182 int ret;
1183
1184 ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_SEALED, false);
1185 if (ret < 0) {
1186 dev_err(di->dev, "bus error on seal: %d\n", ret);
1187 return ret;
1188 }
1189
1190 return 0;
1191 }
1192
bq27xxx_battery_unseal(struct bq27xxx_device_info * di)1193 static int bq27xxx_battery_unseal(struct bq27xxx_device_info *di)
1194 {
1195 int ret;
1196
1197 if (di->unseal_key == 0) {
1198 dev_err(di->dev, "unseal failed due to missing key\n");
1199 return -EINVAL;
1200 }
1201
1202 ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)(di->unseal_key >> 16), false);
1203 if (ret < 0)
1204 goto out;
1205
1206 ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)di->unseal_key, false);
1207 if (ret < 0)
1208 goto out;
1209
1210 return 0;
1211
1212 out:
1213 dev_err(di->dev, "bus error on unseal: %d\n", ret);
1214 return ret;
1215 }
1216
bq27xxx_battery_checksum_dm_block(struct bq27xxx_dm_buf * buf)1217 static u8 bq27xxx_battery_checksum_dm_block(struct bq27xxx_dm_buf *buf)
1218 {
1219 u16 sum = 0;
1220 int i;
1221
1222 for (i = 0; i < BQ27XXX_DM_SZ; i++)
1223 sum += buf->data[i];
1224 sum &= 0xff;
1225
1226 return 0xff - sum;
1227 }
1228
bq27xxx_battery_read_dm_block(struct bq27xxx_device_info * di,struct bq27xxx_dm_buf * buf)1229 static int bq27xxx_battery_read_dm_block(struct bq27xxx_device_info *di,
1230 struct bq27xxx_dm_buf *buf)
1231 {
1232 int ret;
1233
1234 buf->has_data = false;
1235
1236 ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true);
1237 if (ret < 0)
1238 goto out;
1239
1240 ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true);
1241 if (ret < 0)
1242 goto out;
1243
1244 BQ27XXX_MSLEEP(1);
1245
1246 ret = bq27xxx_read_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ);
1247 if (ret < 0)
1248 goto out;
1249
1250 ret = bq27xxx_read(di, BQ27XXX_DM_CKSUM, true);
1251 if (ret < 0)
1252 goto out;
1253
1254 if ((u8)ret != bq27xxx_battery_checksum_dm_block(buf)) {
1255 ret = -EINVAL;
1256 goto out;
1257 }
1258
1259 buf->has_data = true;
1260 buf->dirty = false;
1261
1262 return 0;
1263
1264 out:
1265 dev_err(di->dev, "bus error reading chip memory: %d\n", ret);
1266 return ret;
1267 }
1268
bq27xxx_battery_update_dm_block(struct bq27xxx_device_info * di,struct bq27xxx_dm_buf * buf,enum bq27xxx_dm_reg_id reg_id,unsigned int val)1269 static void bq27xxx_battery_update_dm_block(struct bq27xxx_device_info *di,
1270 struct bq27xxx_dm_buf *buf,
1271 enum bq27xxx_dm_reg_id reg_id,
1272 unsigned int val)
1273 {
1274 struct bq27xxx_dm_reg *reg = &di->dm_regs[reg_id];
1275 const char *str = bq27xxx_dm_reg_name[reg_id];
1276 __be16 *prev = bq27xxx_dm_reg_ptr(buf, reg);
1277
1278 if (prev == NULL) {
1279 dev_warn(di->dev, "buffer does not match %s dm spec\n", str);
1280 return;
1281 }
1282
1283 if (reg->bytes != 2) {
1284 dev_warn(di->dev, "%s dm spec has unsupported byte size\n", str);
1285 return;
1286 }
1287
1288 if (!buf->has_data)
1289 return;
1290
1291 if (be16_to_cpup(prev) == val) {
1292 dev_info(di->dev, "%s has %u\n", str, val);
1293 return;
1294 }
1295
1296 #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
1297 if (!(di->opts & BQ27XXX_O_RAM) && !bq27xxx_dt_to_nvm) {
1298 #else
1299 if (!(di->opts & BQ27XXX_O_RAM)) {
1300 #endif
1301 /* devicetree and NVM differ; defer to NVM */
1302 dev_warn(di->dev, "%s has %u; update to %u disallowed "
1303 #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
1304 "by dt_monitored_battery_updates_nvm=0"
1305 #else
1306 "for flash/NVM data memory"
1307 #endif
1308 "\n", str, be16_to_cpup(prev), val);
1309 return;
1310 }
1311
1312 dev_info(di->dev, "update %s to %u\n", str, val);
1313
1314 *prev = cpu_to_be16(val);
1315 buf->dirty = true;
1316 }
1317
1318 static int bq27xxx_battery_cfgupdate_priv(struct bq27xxx_device_info *di, bool active)
1319 {
1320 const int limit = 100;
1321 u16 cmd = active ? BQ27XXX_SET_CFGUPDATE : BQ27XXX_SOFT_RESET;
1322 int ret, try = limit;
1323
1324 ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, cmd, false);
1325 if (ret < 0)
1326 return ret;
1327
1328 do {
1329 BQ27XXX_MSLEEP(25);
1330 ret = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false);
1331 if (ret < 0)
1332 return ret;
1333 } while (!!(ret & BQ27XXX_FLAG_CFGUP) != active && --try);
1334
1335 if (!try && di->chip != BQ27425) { // 425 has a bug
1336 dev_err(di->dev, "timed out waiting for cfgupdate flag %d\n", active);
1337 return -EINVAL;
1338 }
1339
1340 if (limit - try > 3)
1341 dev_warn(di->dev, "cfgupdate %d, retries %d\n", active, limit - try);
1342
1343 return 0;
1344 }
1345
1346 static inline int bq27xxx_battery_set_cfgupdate(struct bq27xxx_device_info *di)
1347 {
1348 int ret = bq27xxx_battery_cfgupdate_priv(di, true);
1349 if (ret < 0 && ret != -EINVAL)
1350 dev_err(di->dev, "bus error on set_cfgupdate: %d\n", ret);
1351
1352 return ret;
1353 }
1354
1355 static inline int bq27xxx_battery_soft_reset(struct bq27xxx_device_info *di)
1356 {
1357 int ret = bq27xxx_battery_cfgupdate_priv(di, false);
1358 if (ret < 0 && ret != -EINVAL)
1359 dev_err(di->dev, "bus error on soft_reset: %d\n", ret);
1360
1361 return ret;
1362 }
1363
1364 static int bq27xxx_battery_write_dm_block(struct bq27xxx_device_info *di,
1365 struct bq27xxx_dm_buf *buf)
1366 {
1367 bool cfgup = di->opts & BQ27XXX_O_CFGUP;
1368 int ret;
1369
1370 if (!buf->dirty)
1371 return 0;
1372
1373 if (cfgup) {
1374 ret = bq27xxx_battery_set_cfgupdate(di);
1375 if (ret < 0)
1376 return ret;
1377 }
1378
1379 ret = bq27xxx_write(di, BQ27XXX_DM_CTRL, 0, true);
1380 if (ret < 0)
1381 goto out;
1382
1383 ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true);
1384 if (ret < 0)
1385 goto out;
1386
1387 ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true);
1388 if (ret < 0)
1389 goto out;
1390
1391 BQ27XXX_MSLEEP(1);
1392
1393 ret = bq27xxx_write_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ);
1394 if (ret < 0)
1395 goto out;
1396
1397 ret = bq27xxx_write(di, BQ27XXX_DM_CKSUM,
1398 bq27xxx_battery_checksum_dm_block(buf), true);
1399 if (ret < 0)
1400 goto out;
1401
1402 /* DO NOT read BQ27XXX_DM_CKSUM here to verify it! That may cause NVM
1403 * corruption on the '425 chip (and perhaps others), which can damage
1404 * the chip.
1405 */
1406
1407 if (cfgup) {
1408 BQ27XXX_MSLEEP(1);
1409 ret = bq27xxx_battery_soft_reset(di);
1410 if (ret < 0)
1411 return ret;
1412 } else {
1413 BQ27XXX_MSLEEP(100); /* flash DM updates in <100ms */
1414 }
1415
1416 buf->dirty = false;
1417
1418 return 0;
1419
1420 out:
1421 if (cfgup)
1422 bq27xxx_battery_soft_reset(di);
1423
1424 dev_err(di->dev, "bus error writing chip memory: %d\n", ret);
1425 return ret;
1426 }
1427
1428 static void bq27xxx_battery_set_config(struct bq27xxx_device_info *di,
1429 struct power_supply_battery_info *info)
1430 {
1431 struct bq27xxx_dm_buf bd = BQ27XXX_DM_BUF(di, BQ27XXX_DM_DESIGN_CAPACITY);
1432 struct bq27xxx_dm_buf bt = BQ27XXX_DM_BUF(di, BQ27XXX_DM_TERMINATE_VOLTAGE);
1433 bool updated;
1434
1435 if (bq27xxx_battery_unseal(di) < 0)
1436 return;
1437
1438 if (info->charge_full_design_uah != -EINVAL &&
1439 info->energy_full_design_uwh != -EINVAL) {
1440 bq27xxx_battery_read_dm_block(di, &bd);
1441 /* assume design energy & capacity are in same block */
1442 bq27xxx_battery_update_dm_block(di, &bd,
1443 BQ27XXX_DM_DESIGN_CAPACITY,
1444 info->charge_full_design_uah / 1000);
1445 bq27xxx_battery_update_dm_block(di, &bd,
1446 BQ27XXX_DM_DESIGN_ENERGY,
1447 info->energy_full_design_uwh / 1000);
1448 }
1449
1450 if (info->voltage_min_design_uv != -EINVAL) {
1451 bool same = bd.class == bt.class && bd.block == bt.block;
1452 if (!same)
1453 bq27xxx_battery_read_dm_block(di, &bt);
1454 bq27xxx_battery_update_dm_block(di, same ? &bd : &bt,
1455 BQ27XXX_DM_TERMINATE_VOLTAGE,
1456 info->voltage_min_design_uv / 1000);
1457 }
1458
1459 updated = bd.dirty || bt.dirty;
1460
1461 bq27xxx_battery_write_dm_block(di, &bd);
1462 bq27xxx_battery_write_dm_block(di, &bt);
1463
1464 bq27xxx_battery_seal(di);
1465
1466 if (updated && !(di->opts & BQ27XXX_O_CFGUP)) {
1467 bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_RESET, false);
1468 BQ27XXX_MSLEEP(300); /* reset time is not documented */
1469 }
1470 /* assume bq27xxx_battery_update() is called hereafter */
1471 }
1472
1473 static void bq27xxx_battery_settings(struct bq27xxx_device_info *di)
1474 {
1475 struct power_supply_battery_info *info;
1476 unsigned int min, max;
1477
1478 if (power_supply_get_battery_info(di->bat, &info) < 0)
1479 return;
1480
1481 if (!di->dm_regs) {
1482 dev_warn(di->dev, "data memory update not supported for chip\n");
1483 return;
1484 }
1485
1486 if (info->energy_full_design_uwh != info->charge_full_design_uah) {
1487 if (info->energy_full_design_uwh == -EINVAL)
1488 dev_warn(di->dev, "missing battery:energy-full-design-microwatt-hours\n");
1489 else if (info->charge_full_design_uah == -EINVAL)
1490 dev_warn(di->dev, "missing battery:charge-full-design-microamp-hours\n");
1491 }
1492
1493 /* assume min == 0 */
1494 max = di->dm_regs[BQ27XXX_DM_DESIGN_ENERGY].max;
1495 if (info->energy_full_design_uwh > max * 1000) {
1496 dev_err(di->dev, "invalid battery:energy-full-design-microwatt-hours %d\n",
1497 info->energy_full_design_uwh);
1498 info->energy_full_design_uwh = -EINVAL;
1499 }
1500
1501 /* assume min == 0 */
1502 max = di->dm_regs[BQ27XXX_DM_DESIGN_CAPACITY].max;
1503 if (info->charge_full_design_uah > max * 1000) {
1504 dev_err(di->dev, "invalid battery:charge-full-design-microamp-hours %d\n",
1505 info->charge_full_design_uah);
1506 info->charge_full_design_uah = -EINVAL;
1507 }
1508
1509 min = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].min;
1510 max = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].max;
1511 if ((info->voltage_min_design_uv < min * 1000 ||
1512 info->voltage_min_design_uv > max * 1000) &&
1513 info->voltage_min_design_uv != -EINVAL) {
1514 dev_err(di->dev, "invalid battery:voltage-min-design-microvolt %d\n",
1515 info->voltage_min_design_uv);
1516 info->voltage_min_design_uv = -EINVAL;
1517 }
1518
1519 if ((info->energy_full_design_uwh != -EINVAL &&
1520 info->charge_full_design_uah != -EINVAL) ||
1521 info->voltage_min_design_uv != -EINVAL)
1522 bq27xxx_battery_set_config(di, info);
1523 }
1524
1525 /*
1526 * Return the battery State-of-Charge
1527 * Or < 0 if something fails.
1528 */
1529 static int bq27xxx_battery_read_soc(struct bq27xxx_device_info *di)
1530 {
1531 int soc;
1532
1533 if (di->opts & BQ27XXX_O_SOC_SI)
1534 soc = bq27xxx_read(di, BQ27XXX_REG_SOC, true);
1535 else
1536 soc = bq27xxx_read(di, BQ27XXX_REG_SOC, false);
1537
1538 if (soc < 0)
1539 dev_dbg(di->dev, "error reading State-of-Charge\n");
1540
1541 return soc;
1542 }
1543
1544 /*
1545 * Return a battery charge value in µAh
1546 * Or < 0 if something fails.
1547 */
1548 static int bq27xxx_battery_read_charge(struct bq27xxx_device_info *di, u8 reg,
1549 union power_supply_propval *val)
1550 {
1551 int charge;
1552
1553 charge = bq27xxx_read(di, reg, false);
1554 if (charge < 0) {
1555 dev_dbg(di->dev, "error reading charge register %02x: %d\n",
1556 reg, charge);
1557 return charge;
1558 }
1559
1560 if (di->opts & BQ27XXX_O_ZERO)
1561 charge *= BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1562 else
1563 charge *= 1000;
1564
1565 val->intval = charge;
1566
1567 return 0;
1568 }
1569
1570 /*
1571 * Return the battery Nominal available capacity in µAh
1572 * Or < 0 if something fails.
1573 */
1574 static inline int bq27xxx_battery_read_nac(struct bq27xxx_device_info *di,
1575 union power_supply_propval *val)
1576 {
1577 return bq27xxx_battery_read_charge(di, BQ27XXX_REG_NAC, val);
1578 }
1579
1580 /*
1581 * Return the battery Remaining Capacity in µAh
1582 * Or < 0 if something fails.
1583 */
1584 static inline int bq27xxx_battery_read_rc(struct bq27xxx_device_info *di,
1585 union power_supply_propval *val)
1586 {
1587 return bq27xxx_battery_read_charge(di, BQ27XXX_REG_RC, val);
1588 }
1589
1590 /*
1591 * Return the battery Full Charge Capacity in µAh
1592 * Or < 0 if something fails.
1593 */
1594 static inline int bq27xxx_battery_read_fcc(struct bq27xxx_device_info *di,
1595 union power_supply_propval *val)
1596 {
1597 return bq27xxx_battery_read_charge(di, BQ27XXX_REG_FCC, val);
1598 }
1599
1600 /*
1601 * Return the Design Capacity in µAh
1602 * Or < 0 if something fails.
1603 */
1604 static int bq27xxx_battery_read_dcap(struct bq27xxx_device_info *di,
1605 union power_supply_propval *val)
1606 {
1607 int dcap;
1608
1609 /* We only have to read charge design full once */
1610 if (di->charge_design_full > 0) {
1611 val->intval = di->charge_design_full;
1612 return 0;
1613 }
1614
1615 if (di->opts & BQ27XXX_O_ZERO)
1616 dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, true);
1617 else
1618 dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, false);
1619
1620 if (dcap < 0) {
1621 dev_dbg(di->dev, "error reading design capacity\n");
1622 return dcap;
1623 }
1624
1625 if (di->opts & BQ27XXX_O_ZERO)
1626 dcap = (dcap << 8) * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1627 else
1628 dcap *= 1000;
1629
1630 /* Save for later reads */
1631 di->charge_design_full = dcap;
1632
1633 val->intval = dcap;
1634
1635 return 0;
1636 }
1637
1638 /*
1639 * Return the battery Available energy in µWh
1640 * Or < 0 if something fails.
1641 */
1642 static int bq27xxx_battery_read_energy(struct bq27xxx_device_info *di,
1643 union power_supply_propval *val)
1644 {
1645 int ae;
1646
1647 ae = bq27xxx_read(di, BQ27XXX_REG_AE, false);
1648 if (ae < 0) {
1649 dev_dbg(di->dev, "error reading available energy\n");
1650 return ae;
1651 }
1652
1653 if (di->opts & BQ27XXX_O_ZERO)
1654 ae *= BQ27XXX_POWER_CONSTANT / BQ27XXX_RS;
1655 else
1656 ae *= 1000;
1657
1658 val->intval = ae;
1659
1660 return 0;
1661 }
1662
1663 /*
1664 * Return the battery temperature in tenths of degree Celsius
1665 * Or < 0 if something fails.
1666 */
1667 static int bq27xxx_battery_read_temperature(struct bq27xxx_device_info *di,
1668 union power_supply_propval *val)
1669 {
1670 int temp;
1671
1672 temp = bq27xxx_read(di, BQ27XXX_REG_TEMP, false);
1673 if (temp < 0) {
1674 dev_err(di->dev, "error reading temperature\n");
1675 return temp;
1676 }
1677
1678 if (di->opts & BQ27XXX_O_ZERO)
1679 temp = 5 * temp / 2;
1680
1681 /* Convert decidegree Kelvin to Celsius */
1682 temp -= 2731;
1683
1684 val->intval = temp;
1685
1686 return 0;
1687 }
1688
1689 /*
1690 * Return the battery Cycle count total
1691 * Or < 0 if something fails.
1692 */
1693 static int bq27xxx_battery_read_cyct(struct bq27xxx_device_info *di,
1694 union power_supply_propval *val)
1695 {
1696 int cyct;
1697
1698 cyct = bq27xxx_read(di, BQ27XXX_REG_CYCT, false);
1699 if (cyct < 0)
1700 dev_err(di->dev, "error reading cycle count total\n");
1701
1702 val->intval = cyct;
1703
1704 return 0;
1705 }
1706
1707 /*
1708 * Read a time register.
1709 * Return < 0 if something fails.
1710 */
1711 static int bq27xxx_battery_read_time(struct bq27xxx_device_info *di, u8 reg,
1712 union power_supply_propval *val)
1713 {
1714 int tval;
1715
1716 tval = bq27xxx_read(di, reg, false);
1717 if (tval < 0) {
1718 dev_dbg(di->dev, "error reading time register %02x: %d\n",
1719 reg, tval);
1720 return tval;
1721 }
1722
1723 if (tval == 65535)
1724 return -ENODATA;
1725
1726 val->intval = tval * 60;
1727
1728 return 0;
1729 }
1730
1731 /*
1732 * Returns true if a battery over temperature condition is detected
1733 */
1734 static bool bq27xxx_battery_overtemp(struct bq27xxx_device_info *di, u16 flags)
1735 {
1736 if (di->opts & BQ27XXX_O_OTDC)
1737 return flags & (BQ27XXX_FLAG_OTC | BQ27XXX_FLAG_OTD);
1738 if (di->opts & BQ27XXX_O_UTOT)
1739 return flags & BQ27XXX_FLAG_OT;
1740
1741 return false;
1742 }
1743
1744 /*
1745 * Returns true if a battery under temperature condition is detected
1746 */
1747 static bool bq27xxx_battery_undertemp(struct bq27xxx_device_info *di, u16 flags)
1748 {
1749 if (di->opts & BQ27XXX_O_UTOT)
1750 return flags & BQ27XXX_FLAG_UT;
1751
1752 return false;
1753 }
1754
1755 /*
1756 * Returns true if a low state of charge condition is detected
1757 */
1758 static bool bq27xxx_battery_dead(struct bq27xxx_device_info *di, u16 flags)
1759 {
1760 if (di->opts & BQ27XXX_O_ZERO)
1761 return flags & (BQ27000_FLAG_EDV1 | BQ27000_FLAG_EDVF);
1762 else if (di->opts & BQ27Z561_O_BITS)
1763 return flags & BQ27Z561_FLAG_FDC;
1764 else
1765 return flags & (BQ27XXX_FLAG_SOC1 | BQ27XXX_FLAG_SOCF);
1766 }
1767
1768 /*
1769 * Returns true if reported battery capacity is inaccurate
1770 */
1771 static bool bq27xxx_battery_capacity_inaccurate(struct bq27xxx_device_info *di,
1772 u16 flags)
1773 {
1774 if (di->opts & BQ27XXX_O_HAS_CI)
1775 return (flags & BQ27000_FLAG_CI);
1776 else
1777 return false;
1778 }
1779
1780 static int bq27xxx_battery_read_health(struct bq27xxx_device_info *di,
1781 union power_supply_propval *val)
1782 {
1783 int health;
1784
1785 /* Unlikely but important to return first */
1786 if (unlikely(bq27xxx_battery_overtemp(di, di->cache.flags)))
1787 health = POWER_SUPPLY_HEALTH_OVERHEAT;
1788 else if (unlikely(bq27xxx_battery_undertemp(di, di->cache.flags)))
1789 health = POWER_SUPPLY_HEALTH_COLD;
1790 else if (unlikely(bq27xxx_battery_dead(di, di->cache.flags)))
1791 health = POWER_SUPPLY_HEALTH_DEAD;
1792 else if (unlikely(bq27xxx_battery_capacity_inaccurate(di, di->cache.flags)))
1793 health = POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED;
1794 else
1795 health = POWER_SUPPLY_HEALTH_GOOD;
1796
1797 val->intval = health;
1798
1799 return 0;
1800 }
1801
1802 static bool bq27xxx_battery_is_full(struct bq27xxx_device_info *di, int flags)
1803 {
1804 if (di->opts & BQ27XXX_O_ZERO)
1805 return (flags & BQ27000_FLAG_FC);
1806 else if (di->opts & BQ27Z561_O_BITS)
1807 return (flags & BQ27Z561_FLAG_FC);
1808 else
1809 return (flags & BQ27XXX_FLAG_FC);
1810 }
1811
1812 /*
1813 * Return the battery average current in µA and the status
1814 * Note that current can be negative signed as well
1815 * Or 0 if something fails.
1816 */
1817 static int bq27xxx_battery_current_and_status(
1818 struct bq27xxx_device_info *di,
1819 union power_supply_propval *val_curr,
1820 union power_supply_propval *val_status,
1821 struct bq27xxx_reg_cache *cache)
1822 {
1823 bool single_flags = (di->opts & BQ27XXX_O_ZERO);
1824 int curr;
1825 int flags;
1826
1827 curr = bq27xxx_read(di, BQ27XXX_REG_AI, false);
1828 if (curr < 0) {
1829 dev_err(di->dev, "error reading current\n");
1830 return curr;
1831 }
1832
1833 if (cache) {
1834 flags = cache->flags;
1835 } else {
1836 flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, single_flags);
1837 if (flags < 0) {
1838 dev_err(di->dev, "error reading flags\n");
1839 return flags;
1840 }
1841 }
1842
1843 if (di->opts & BQ27XXX_O_ZERO) {
1844 if (!(flags & BQ27000_FLAG_CHGS)) {
1845 dev_dbg(di->dev, "negative current!\n");
1846 curr = -curr;
1847 }
1848
1849 curr = curr * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1850 } else {
1851 /* Other gauges return signed value */
1852 curr = (int)((s16)curr) * 1000;
1853 }
1854
1855 if (val_curr)
1856 val_curr->intval = curr;
1857
1858 if (val_status) {
1859 if (bq27xxx_battery_is_full(di, flags))
1860 val_status->intval = POWER_SUPPLY_STATUS_FULL;
1861 else if (curr > 0)
1862 val_status->intval = POWER_SUPPLY_STATUS_CHARGING;
1863 else if (curr < 0)
1864 val_status->intval = POWER_SUPPLY_STATUS_DISCHARGING;
1865 else
1866 val_status->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
1867 }
1868
1869 return 0;
1870 }
1871
1872 static void bq27xxx_battery_update_unlocked(struct bq27xxx_device_info *di)
1873 {
1874 union power_supply_propval status = di->last_status;
1875 struct bq27xxx_reg_cache cache = {0, };
1876 bool has_singe_flag = di->opts & BQ27XXX_O_ZERO;
1877
1878 cache.flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, has_singe_flag);
1879 if ((cache.flags & 0xff) == 0xff)
1880 cache.flags = -1; /* read error */
1881 if (cache.flags >= 0) {
1882 cache.capacity = bq27xxx_battery_read_soc(di);
1883 di->cache.flags = cache.flags;
1884
1885 /*
1886 * On gauges with signed current reporting the current must be
1887 * checked to detect charging <-> discharging status changes.
1888 */
1889 if (!(di->opts & BQ27XXX_O_ZERO))
1890 bq27xxx_battery_current_and_status(di, NULL, &status, &cache);
1891 }
1892
1893 if ((di->cache.capacity != cache.capacity) ||
1894 (di->cache.flags != cache.flags) ||
1895 (di->last_status.intval != status.intval)) {
1896 di->last_status.intval = status.intval;
1897 power_supply_changed(di->bat);
1898 }
1899
1900 if (memcmp(&di->cache, &cache, sizeof(cache)) != 0)
1901 di->cache = cache;
1902
1903 di->last_update = jiffies;
1904
1905 if (!di->removed && poll_interval > 0)
1906 mod_delayed_work(system_wq, &di->work, poll_interval * HZ);
1907 }
1908
1909 void bq27xxx_battery_update(struct bq27xxx_device_info *di)
1910 {
1911 mutex_lock(&di->lock);
1912 bq27xxx_battery_update_unlocked(di);
1913 mutex_unlock(&di->lock);
1914 }
1915 EXPORT_SYMBOL_GPL(bq27xxx_battery_update);
1916
1917 static void bq27xxx_battery_poll(struct work_struct *work)
1918 {
1919 struct bq27xxx_device_info *di =
1920 container_of(work, struct bq27xxx_device_info,
1921 work.work);
1922
1923 bq27xxx_battery_update(di);
1924 }
1925
1926 /*
1927 * Get the average power in µW
1928 * Return < 0 if something fails.
1929 */
1930 static int bq27xxx_battery_pwr_avg(struct bq27xxx_device_info *di,
1931 union power_supply_propval *val)
1932 {
1933 int power;
1934
1935 power = bq27xxx_read(di, BQ27XXX_REG_AP, false);
1936 if (power < 0) {
1937 dev_err(di->dev,
1938 "error reading average power register %02x: %d\n",
1939 BQ27XXX_REG_AP, power);
1940 return power;
1941 }
1942
1943 if (di->opts & BQ27XXX_O_ZERO)
1944 val->intval = (power * BQ27XXX_POWER_CONSTANT) / BQ27XXX_RS;
1945 else
1946 /* Other gauges return a signed value in units of 10mW */
1947 val->intval = (int)((s16)power) * 10000;
1948
1949 return 0;
1950 }
1951
1952 static int bq27xxx_battery_capacity_level(struct bq27xxx_device_info *di,
1953 union power_supply_propval *val)
1954 {
1955 int level;
1956
1957 if (di->opts & BQ27XXX_O_ZERO) {
1958 if (di->cache.flags & BQ27000_FLAG_FC)
1959 level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1960 else if (di->cache.flags & BQ27000_FLAG_EDVF)
1961 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1962 else if (di->cache.flags & BQ27000_FLAG_EDV1)
1963 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1964 else
1965 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1966 } else if (di->opts & BQ27Z561_O_BITS) {
1967 if (di->cache.flags & BQ27Z561_FLAG_FC)
1968 level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1969 else if (di->cache.flags & BQ27Z561_FLAG_FDC)
1970 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1971 else
1972 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1973 } else {
1974 if (di->cache.flags & BQ27XXX_FLAG_FC)
1975 level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1976 else if (di->cache.flags & BQ27XXX_FLAG_SOCF)
1977 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1978 else if (di->cache.flags & BQ27XXX_FLAG_SOC1)
1979 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1980 else
1981 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1982 }
1983
1984 val->intval = level;
1985
1986 return 0;
1987 }
1988
1989 /*
1990 * Return the battery Voltage in millivolts
1991 * Or < 0 if something fails.
1992 */
1993 static int bq27xxx_battery_voltage(struct bq27xxx_device_info *di,
1994 union power_supply_propval *val)
1995 {
1996 int volt;
1997
1998 volt = bq27xxx_read(di, BQ27XXX_REG_VOLT, false);
1999 if (volt < 0) {
2000 dev_err(di->dev, "error reading voltage\n");
2001 return volt;
2002 }
2003
2004 val->intval = volt * 1000;
2005
2006 return 0;
2007 }
2008
2009 static int bq27xxx_simple_value(int value,
2010 union power_supply_propval *val)
2011 {
2012 if (value < 0)
2013 return value;
2014
2015 val->intval = value;
2016
2017 return 0;
2018 }
2019
2020 static int bq27xxx_battery_get_property(struct power_supply *psy,
2021 enum power_supply_property psp,
2022 union power_supply_propval *val)
2023 {
2024 int ret = 0;
2025 struct bq27xxx_device_info *di = power_supply_get_drvdata(psy);
2026
2027 mutex_lock(&di->lock);
2028 if (time_is_before_jiffies(di->last_update + 5 * HZ))
2029 bq27xxx_battery_update_unlocked(di);
2030 mutex_unlock(&di->lock);
2031
2032 if (psp != POWER_SUPPLY_PROP_PRESENT && di->cache.flags < 0)
2033 return -ENODEV;
2034
2035 switch (psp) {
2036 case POWER_SUPPLY_PROP_STATUS:
2037 ret = bq27xxx_battery_current_and_status(di, NULL, val, NULL);
2038 break;
2039 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2040 ret = bq27xxx_battery_voltage(di, val);
2041 break;
2042 case POWER_SUPPLY_PROP_PRESENT:
2043 val->intval = di->cache.flags < 0 ? 0 : 1;
2044 break;
2045 case POWER_SUPPLY_PROP_CURRENT_NOW:
2046 ret = bq27xxx_battery_current_and_status(di, val, NULL, NULL);
2047 break;
2048 case POWER_SUPPLY_PROP_CAPACITY:
2049 ret = bq27xxx_simple_value(di->cache.capacity, val);
2050 break;
2051 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2052 ret = bq27xxx_battery_capacity_level(di, val);
2053 break;
2054 case POWER_SUPPLY_PROP_TEMP:
2055 ret = bq27xxx_battery_read_temperature(di, val);
2056 break;
2057 case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW:
2058 ret = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTE, val);
2059 break;
2060 case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
2061 ret = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTECP, val);
2062 break;
2063 case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
2064 ret = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTF, val);
2065 break;
2066 case POWER_SUPPLY_PROP_TECHNOLOGY:
2067 if (di->opts & BQ27XXX_O_MUL_CHEM)
2068 val->intval = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
2069 else
2070 val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
2071 break;
2072 case POWER_SUPPLY_PROP_CHARGE_NOW:
2073 if (di->regs[BQ27XXX_REG_NAC] != INVALID_REG_ADDR)
2074 ret = bq27xxx_battery_read_nac(di, val);
2075 else
2076 ret = bq27xxx_battery_read_rc(di, val);
2077 break;
2078 case POWER_SUPPLY_PROP_CHARGE_FULL:
2079 ret = bq27xxx_battery_read_fcc(di, val);
2080 break;
2081 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2082 ret = bq27xxx_battery_read_dcap(di, val);
2083 break;
2084 /*
2085 * TODO: Implement these to make registers set from
2086 * power_supply_battery_info visible in sysfs.
2087 */
2088 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2089 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
2090 return -EINVAL;
2091 case POWER_SUPPLY_PROP_CYCLE_COUNT:
2092 ret = bq27xxx_battery_read_cyct(di, val);
2093 break;
2094 case POWER_SUPPLY_PROP_ENERGY_NOW:
2095 ret = bq27xxx_battery_read_energy(di, val);
2096 break;
2097 case POWER_SUPPLY_PROP_POWER_AVG:
2098 ret = bq27xxx_battery_pwr_avg(di, val);
2099 break;
2100 case POWER_SUPPLY_PROP_HEALTH:
2101 ret = bq27xxx_battery_read_health(di, val);
2102 break;
2103 case POWER_SUPPLY_PROP_MANUFACTURER:
2104 val->strval = BQ27XXX_MANUFACTURER;
2105 break;
2106 default:
2107 return -EINVAL;
2108 }
2109
2110 return ret;
2111 }
2112
2113 static void bq27xxx_external_power_changed(struct power_supply *psy)
2114 {
2115 struct bq27xxx_device_info *di = power_supply_get_drvdata(psy);
2116
2117 /* After charger plug in/out wait 0.5s for things to stabilize */
2118 mod_delayed_work(system_wq, &di->work, HZ / 2);
2119 }
2120
2121 static void bq27xxx_battery_mutex_destroy(void *data)
2122 {
2123 struct mutex *lock = data;
2124
2125 mutex_destroy(lock);
2126 }
2127
2128 int bq27xxx_battery_setup(struct bq27xxx_device_info *di)
2129 {
2130 struct power_supply_desc *psy_desc;
2131 struct power_supply_config psy_cfg = {
2132 .of_node = di->dev->of_node,
2133 .drv_data = di,
2134 };
2135 int ret;
2136
2137 INIT_DELAYED_WORK(&di->work, bq27xxx_battery_poll);
2138 mutex_init(&di->lock);
2139 ret = devm_add_action_or_reset(di->dev, bq27xxx_battery_mutex_destroy,
2140 &di->lock);
2141 if (ret)
2142 return ret;
2143
2144 di->regs = bq27xxx_chip_data[di->chip].regs;
2145 di->unseal_key = bq27xxx_chip_data[di->chip].unseal_key;
2146 di->dm_regs = bq27xxx_chip_data[di->chip].dm_regs;
2147 di->opts = bq27xxx_chip_data[di->chip].opts;
2148
2149 psy_desc = devm_kzalloc(di->dev, sizeof(*psy_desc), GFP_KERNEL);
2150 if (!psy_desc)
2151 return -ENOMEM;
2152
2153 psy_desc->name = di->name;
2154 psy_desc->type = POWER_SUPPLY_TYPE_BATTERY;
2155 psy_desc->properties = bq27xxx_chip_data[di->chip].props;
2156 psy_desc->num_properties = bq27xxx_chip_data[di->chip].props_size;
2157 psy_desc->get_property = bq27xxx_battery_get_property;
2158 psy_desc->external_power_changed = bq27xxx_external_power_changed;
2159
2160 di->bat = devm_power_supply_register_no_ws(di->dev, psy_desc, &psy_cfg);
2161 if (IS_ERR(di->bat))
2162 return dev_err_probe(di->dev, PTR_ERR(di->bat),
2163 "failed to register battery\n");
2164
2165 bq27xxx_battery_settings(di);
2166 bq27xxx_battery_update(di);
2167
2168 mutex_lock(&bq27xxx_list_lock);
2169 list_add(&di->list, &bq27xxx_battery_devices);
2170 mutex_unlock(&bq27xxx_list_lock);
2171
2172 return 0;
2173 }
2174 EXPORT_SYMBOL_GPL(bq27xxx_battery_setup);
2175
2176 void bq27xxx_battery_teardown(struct bq27xxx_device_info *di)
2177 {
2178 mutex_lock(&bq27xxx_list_lock);
2179 list_del(&di->list);
2180 mutex_unlock(&bq27xxx_list_lock);
2181
2182 /* Set removed to avoid bq27xxx_battery_update() re-queuing the work */
2183 mutex_lock(&di->lock);
2184 di->removed = true;
2185 mutex_unlock(&di->lock);
2186
2187 cancel_delayed_work_sync(&di->work);
2188 }
2189 EXPORT_SYMBOL_GPL(bq27xxx_battery_teardown);
2190
2191 #ifdef CONFIG_PM_SLEEP
2192 static int bq27xxx_battery_suspend(struct device *dev)
2193 {
2194 struct bq27xxx_device_info *di = dev_get_drvdata(dev);
2195
2196 cancel_delayed_work(&di->work);
2197 return 0;
2198 }
2199
2200 static int bq27xxx_battery_resume(struct device *dev)
2201 {
2202 struct bq27xxx_device_info *di = dev_get_drvdata(dev);
2203
2204 schedule_delayed_work(&di->work, 0);
2205 return 0;
2206 }
2207 #endif /* CONFIG_PM_SLEEP */
2208
2209 SIMPLE_DEV_PM_OPS(bq27xxx_battery_battery_pm_ops,
2210 bq27xxx_battery_suspend, bq27xxx_battery_resume);
2211 EXPORT_SYMBOL_GPL(bq27xxx_battery_battery_pm_ops);
2212
2213 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
2214 MODULE_DESCRIPTION("BQ27xxx battery monitor driver");
2215 MODULE_LICENSE("GPL");
2216