1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/filelock.h> 10 #include <linux/pagemap.h> 11 #include <linux/slab.h> 12 #include <linux/cred.h> 13 #include <linux/mount.h> 14 #include <linux/vfs.h> 15 #include <linux/quotaops.h> 16 #include <linux/mutex.h> 17 #include <linux/namei.h> 18 #include <linux/exportfs.h> 19 #include <linux/iversion.h> 20 #include <linux/writeback.h> 21 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 22 #include <linux/fs_context.h> 23 #include <linux/pseudo_fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/unicode.h> 26 #include <linux/fscrypt.h> 27 #include <linux/pidfs.h> 28 29 #include <linux/uaccess.h> 30 31 #include "internal.h" 32 33 int simple_getattr(struct mnt_idmap *idmap, const struct path *path, 34 struct kstat *stat, u32 request_mask, 35 unsigned int query_flags) 36 { 37 struct inode *inode = d_inode(path->dentry); 38 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 39 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 40 return 0; 41 } 42 EXPORT_SYMBOL(simple_getattr); 43 44 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 45 { 46 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 47 48 buf->f_fsid = u64_to_fsid(id); 49 buf->f_type = dentry->d_sb->s_magic; 50 buf->f_bsize = PAGE_SIZE; 51 buf->f_namelen = NAME_MAX; 52 return 0; 53 } 54 EXPORT_SYMBOL(simple_statfs); 55 56 /* 57 * Retaining negative dentries for an in-memory filesystem just wastes 58 * memory and lookup time: arrange for them to be deleted immediately. 59 */ 60 int always_delete_dentry(const struct dentry *dentry) 61 { 62 return 1; 63 } 64 EXPORT_SYMBOL(always_delete_dentry); 65 66 /* 67 * Lookup the data. This is trivial - if the dentry didn't already 68 * exist, we know it is negative. Set d_op to delete negative dentries. 69 */ 70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 71 { 72 if (dentry->d_name.len > NAME_MAX) 73 return ERR_PTR(-ENAMETOOLONG); 74 if (!dentry->d_op && !(dentry->d_flags & DCACHE_DONTCACHE)) { 75 spin_lock(&dentry->d_lock); 76 dentry->d_flags |= DCACHE_DONTCACHE; 77 spin_unlock(&dentry->d_lock); 78 } 79 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 80 return NULL; 81 82 d_add(dentry, NULL); 83 return NULL; 84 } 85 EXPORT_SYMBOL(simple_lookup); 86 87 int dcache_dir_open(struct inode *inode, struct file *file) 88 { 89 file->private_data = d_alloc_cursor(file->f_path.dentry); 90 91 return file->private_data ? 0 : -ENOMEM; 92 } 93 EXPORT_SYMBOL(dcache_dir_open); 94 95 int dcache_dir_close(struct inode *inode, struct file *file) 96 { 97 dput(file->private_data); 98 return 0; 99 } 100 EXPORT_SYMBOL(dcache_dir_close); 101 102 /* parent is locked at least shared */ 103 /* 104 * Returns an element of siblings' list. 105 * We are looking for <count>th positive after <p>; if 106 * found, dentry is grabbed and returned to caller. 107 * If no such element exists, NULL is returned. 108 */ 109 static struct dentry *scan_positives(struct dentry *cursor, 110 struct hlist_node **p, 111 loff_t count, 112 struct dentry *last) 113 { 114 struct dentry *dentry = cursor->d_parent, *found = NULL; 115 116 spin_lock(&dentry->d_lock); 117 while (*p) { 118 struct dentry *d = hlist_entry(*p, struct dentry, d_sib); 119 p = &d->d_sib.next; 120 // we must at least skip cursors, to avoid livelocks 121 if (d->d_flags & DCACHE_DENTRY_CURSOR) 122 continue; 123 if (simple_positive(d) && !--count) { 124 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 125 if (simple_positive(d)) 126 found = dget_dlock(d); 127 spin_unlock(&d->d_lock); 128 if (likely(found)) 129 break; 130 count = 1; 131 } 132 if (need_resched()) { 133 if (!hlist_unhashed(&cursor->d_sib)) 134 __hlist_del(&cursor->d_sib); 135 hlist_add_behind(&cursor->d_sib, &d->d_sib); 136 p = &cursor->d_sib.next; 137 spin_unlock(&dentry->d_lock); 138 cond_resched(); 139 spin_lock(&dentry->d_lock); 140 } 141 } 142 spin_unlock(&dentry->d_lock); 143 dput(last); 144 return found; 145 } 146 147 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 148 { 149 struct dentry *dentry = file->f_path.dentry; 150 switch (whence) { 151 case 1: 152 offset += file->f_pos; 153 fallthrough; 154 case 0: 155 if (offset >= 0) 156 break; 157 fallthrough; 158 default: 159 return -EINVAL; 160 } 161 if (offset != file->f_pos) { 162 struct dentry *cursor = file->private_data; 163 struct dentry *to = NULL; 164 165 inode_lock_shared(dentry->d_inode); 166 167 if (offset > 2) 168 to = scan_positives(cursor, &dentry->d_children.first, 169 offset - 2, NULL); 170 spin_lock(&dentry->d_lock); 171 hlist_del_init(&cursor->d_sib); 172 if (to) 173 hlist_add_behind(&cursor->d_sib, &to->d_sib); 174 spin_unlock(&dentry->d_lock); 175 dput(to); 176 177 file->f_pos = offset; 178 179 inode_unlock_shared(dentry->d_inode); 180 } 181 return offset; 182 } 183 EXPORT_SYMBOL(dcache_dir_lseek); 184 185 /* 186 * Directory is locked and all positive dentries in it are safe, since 187 * for ramfs-type trees they can't go away without unlink() or rmdir(), 188 * both impossible due to the lock on directory. 189 */ 190 191 int dcache_readdir(struct file *file, struct dir_context *ctx) 192 { 193 struct dentry *dentry = file->f_path.dentry; 194 struct dentry *cursor = file->private_data; 195 struct dentry *next = NULL; 196 struct hlist_node **p; 197 198 if (!dir_emit_dots(file, ctx)) 199 return 0; 200 201 if (ctx->pos == 2) 202 p = &dentry->d_children.first; 203 else 204 p = &cursor->d_sib.next; 205 206 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 207 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 208 d_inode(next)->i_ino, 209 fs_umode_to_dtype(d_inode(next)->i_mode))) 210 break; 211 ctx->pos++; 212 p = &next->d_sib.next; 213 } 214 spin_lock(&dentry->d_lock); 215 hlist_del_init(&cursor->d_sib); 216 if (next) 217 hlist_add_before(&cursor->d_sib, &next->d_sib); 218 spin_unlock(&dentry->d_lock); 219 dput(next); 220 221 return 0; 222 } 223 EXPORT_SYMBOL(dcache_readdir); 224 225 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 226 { 227 return -EISDIR; 228 } 229 EXPORT_SYMBOL(generic_read_dir); 230 231 const struct file_operations simple_dir_operations = { 232 .open = dcache_dir_open, 233 .release = dcache_dir_close, 234 .llseek = dcache_dir_lseek, 235 .read = generic_read_dir, 236 .iterate_shared = dcache_readdir, 237 .fsync = noop_fsync, 238 }; 239 EXPORT_SYMBOL(simple_dir_operations); 240 241 const struct inode_operations simple_dir_inode_operations = { 242 .lookup = simple_lookup, 243 }; 244 EXPORT_SYMBOL(simple_dir_inode_operations); 245 246 /* simple_offset_add() never assigns these to a dentry */ 247 enum { 248 DIR_OFFSET_FIRST = 2, /* Find first real entry */ 249 DIR_OFFSET_EOD = S32_MAX, 250 }; 251 252 /* simple_offset_add() allocation range */ 253 enum { 254 DIR_OFFSET_MIN = DIR_OFFSET_FIRST + 1, 255 DIR_OFFSET_MAX = DIR_OFFSET_EOD - 1, 256 }; 257 258 static void offset_set(struct dentry *dentry, long offset) 259 { 260 dentry->d_fsdata = (void *)offset; 261 } 262 263 static long dentry2offset(struct dentry *dentry) 264 { 265 return (long)dentry->d_fsdata; 266 } 267 268 static struct lock_class_key simple_offset_lock_class; 269 270 /** 271 * simple_offset_init - initialize an offset_ctx 272 * @octx: directory offset map to be initialized 273 * 274 */ 275 void simple_offset_init(struct offset_ctx *octx) 276 { 277 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE); 278 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class); 279 octx->next_offset = DIR_OFFSET_MIN; 280 } 281 282 /** 283 * simple_offset_add - Add an entry to a directory's offset map 284 * @octx: directory offset ctx to be updated 285 * @dentry: new dentry being added 286 * 287 * Returns zero on success. @octx and the dentry's offset are updated. 288 * Otherwise, a negative errno value is returned. 289 */ 290 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) 291 { 292 unsigned long offset; 293 int ret; 294 295 if (dentry2offset(dentry) != 0) 296 return -EBUSY; 297 298 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN, 299 DIR_OFFSET_MAX, &octx->next_offset, 300 GFP_KERNEL); 301 if (unlikely(ret < 0)) 302 return ret == -EBUSY ? -ENOSPC : ret; 303 304 offset_set(dentry, offset); 305 return 0; 306 } 307 308 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry, 309 long offset) 310 { 311 int ret; 312 313 ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL); 314 if (ret) 315 return ret; 316 offset_set(dentry, offset); 317 return 0; 318 } 319 320 /** 321 * simple_offset_remove - Remove an entry to a directory's offset map 322 * @octx: directory offset ctx to be updated 323 * @dentry: dentry being removed 324 * 325 */ 326 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) 327 { 328 long offset; 329 330 offset = dentry2offset(dentry); 331 if (offset == 0) 332 return; 333 334 mtree_erase(&octx->mt, offset); 335 offset_set(dentry, 0); 336 } 337 338 /** 339 * simple_offset_rename - handle directory offsets for rename 340 * @old_dir: parent directory of source entry 341 * @old_dentry: dentry of source entry 342 * @new_dir: parent_directory of destination entry 343 * @new_dentry: dentry of destination 344 * 345 * Caller provides appropriate serialization. 346 * 347 * User space expects the directory offset value of the replaced 348 * (new) directory entry to be unchanged after a rename. 349 * 350 * Caller must have grabbed a slot for new_dentry in the maple_tree 351 * associated with new_dir, even if dentry is negative. 352 */ 353 void simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, 354 struct inode *new_dir, struct dentry *new_dentry) 355 { 356 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 357 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 358 long new_offset = dentry2offset(new_dentry); 359 360 if (WARN_ON(!new_offset)) 361 return; 362 363 simple_offset_remove(old_ctx, old_dentry); 364 offset_set(new_dentry, 0); 365 WARN_ON(simple_offset_replace(new_ctx, old_dentry, new_offset)); 366 } 367 368 /** 369 * simple_offset_rename_exchange - exchange rename with directory offsets 370 * @old_dir: parent of dentry being moved 371 * @old_dentry: dentry being moved 372 * @new_dir: destination parent 373 * @new_dentry: destination dentry 374 * 375 * This API preserves the directory offset values. Caller provides 376 * appropriate serialization. 377 * 378 * Returns zero on success. Otherwise a negative errno is returned and the 379 * rename is rolled back. 380 */ 381 int simple_offset_rename_exchange(struct inode *old_dir, 382 struct dentry *old_dentry, 383 struct inode *new_dir, 384 struct dentry *new_dentry) 385 { 386 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 387 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 388 long old_index = dentry2offset(old_dentry); 389 long new_index = dentry2offset(new_dentry); 390 int ret; 391 392 if (WARN_ON(!old_index || !new_index)) 393 return -EINVAL; 394 395 ret = mtree_store(&new_ctx->mt, new_index, old_dentry, GFP_KERNEL); 396 if (WARN_ON(ret)) 397 return ret; 398 399 ret = mtree_store(&old_ctx->mt, old_index, new_dentry, GFP_KERNEL); 400 if (WARN_ON(ret)) { 401 mtree_store(&new_ctx->mt, new_index, new_dentry, GFP_KERNEL); 402 return ret; 403 } 404 405 offset_set(old_dentry, new_index); 406 offset_set(new_dentry, old_index); 407 simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 408 return 0; 409 } 410 411 /** 412 * simple_offset_destroy - Release offset map 413 * @octx: directory offset ctx that is about to be destroyed 414 * 415 * During fs teardown (eg. umount), a directory's offset map might still 416 * contain entries. xa_destroy() cleans out anything that remains. 417 */ 418 void simple_offset_destroy(struct offset_ctx *octx) 419 { 420 mtree_destroy(&octx->mt); 421 } 422 423 /** 424 * offset_dir_llseek - Advance the read position of a directory descriptor 425 * @file: an open directory whose position is to be updated 426 * @offset: a byte offset 427 * @whence: enumerator describing the starting position for this update 428 * 429 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. 430 * 431 * Returns the updated read position if successful; otherwise a 432 * negative errno is returned and the read position remains unchanged. 433 */ 434 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) 435 { 436 switch (whence) { 437 case SEEK_CUR: 438 offset += file->f_pos; 439 fallthrough; 440 case SEEK_SET: 441 if (offset >= 0) 442 break; 443 fallthrough; 444 default: 445 return -EINVAL; 446 } 447 448 return vfs_setpos(file, offset, LONG_MAX); 449 } 450 451 static struct dentry *find_positive_dentry(struct dentry *parent, 452 struct dentry *dentry, 453 bool next) 454 { 455 struct dentry *found = NULL; 456 457 spin_lock(&parent->d_lock); 458 if (next) 459 dentry = d_next_sibling(dentry); 460 else if (!dentry) 461 dentry = d_first_child(parent); 462 hlist_for_each_entry_from(dentry, d_sib) { 463 if (!simple_positive(dentry)) 464 continue; 465 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 466 if (simple_positive(dentry)) 467 found = dget_dlock(dentry); 468 spin_unlock(&dentry->d_lock); 469 if (likely(found)) 470 break; 471 } 472 spin_unlock(&parent->d_lock); 473 return found; 474 } 475 476 static noinline_for_stack struct dentry * 477 offset_dir_lookup(struct dentry *parent, loff_t offset) 478 { 479 struct inode *inode = d_inode(parent); 480 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode); 481 struct dentry *child, *found = NULL; 482 483 MA_STATE(mas, &octx->mt, offset, offset); 484 485 if (offset == DIR_OFFSET_FIRST) 486 found = find_positive_dentry(parent, NULL, false); 487 else { 488 rcu_read_lock(); 489 child = mas_find_rev(&mas, DIR_OFFSET_MIN); 490 found = find_positive_dentry(parent, child, false); 491 rcu_read_unlock(); 492 } 493 return found; 494 } 495 496 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) 497 { 498 struct inode *inode = d_inode(dentry); 499 500 return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len, 501 inode->i_ino, fs_umode_to_dtype(inode->i_mode)); 502 } 503 504 static void offset_iterate_dir(struct file *file, struct dir_context *ctx) 505 { 506 struct dentry *dir = file->f_path.dentry; 507 struct dentry *dentry; 508 509 dentry = offset_dir_lookup(dir, ctx->pos); 510 if (!dentry) 511 goto out_eod; 512 while (true) { 513 struct dentry *next; 514 515 ctx->pos = dentry2offset(dentry); 516 if (!offset_dir_emit(ctx, dentry)) 517 break; 518 519 next = find_positive_dentry(dir, dentry, true); 520 dput(dentry); 521 522 if (!next) 523 goto out_eod; 524 dentry = next; 525 } 526 dput(dentry); 527 return; 528 529 out_eod: 530 ctx->pos = DIR_OFFSET_EOD; 531 } 532 533 /** 534 * offset_readdir - Emit entries starting at offset @ctx->pos 535 * @file: an open directory to iterate over 536 * @ctx: directory iteration context 537 * 538 * Caller must hold @file's i_rwsem to prevent insertion or removal of 539 * entries during this call. 540 * 541 * On entry, @ctx->pos contains an offset that represents the first entry 542 * to be read from the directory. 543 * 544 * The operation continues until there are no more entries to read, or 545 * until the ctx->actor indicates there is no more space in the caller's 546 * output buffer. 547 * 548 * On return, @ctx->pos contains an offset that will read the next entry 549 * in this directory when offset_readdir() is called again with @ctx. 550 * Caller places this value in the d_off field of the last entry in the 551 * user's buffer. 552 * 553 * Return values: 554 * %0 - Complete 555 */ 556 static int offset_readdir(struct file *file, struct dir_context *ctx) 557 { 558 struct dentry *dir = file->f_path.dentry; 559 560 lockdep_assert_held(&d_inode(dir)->i_rwsem); 561 562 if (!dir_emit_dots(file, ctx)) 563 return 0; 564 if (ctx->pos != DIR_OFFSET_EOD) 565 offset_iterate_dir(file, ctx); 566 return 0; 567 } 568 569 const struct file_operations simple_offset_dir_operations = { 570 .llseek = offset_dir_llseek, 571 .iterate_shared = offset_readdir, 572 .read = generic_read_dir, 573 .fsync = noop_fsync, 574 .setlease = generic_setlease, 575 }; 576 577 struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 578 { 579 struct dentry *child = NULL, *d; 580 581 spin_lock(&parent->d_lock); 582 d = prev ? d_next_sibling(prev) : d_first_child(parent); 583 hlist_for_each_entry_from(d, d_sib) { 584 if (simple_positive(d)) { 585 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 586 if (simple_positive(d)) 587 child = dget_dlock(d); 588 spin_unlock(&d->d_lock); 589 if (likely(child)) 590 break; 591 } 592 } 593 spin_unlock(&parent->d_lock); 594 dput(prev); 595 return child; 596 } 597 EXPORT_SYMBOL(find_next_child); 598 599 static void __simple_recursive_removal(struct dentry *dentry, 600 void (*callback)(struct dentry *), 601 bool locked) 602 { 603 struct dentry *this = dget(dentry); 604 while (true) { 605 struct dentry *victim = NULL, *child; 606 struct inode *inode = this->d_inode; 607 608 inode_lock_nested(inode, I_MUTEX_CHILD); 609 if (d_is_dir(this)) 610 inode->i_flags |= S_DEAD; 611 while ((child = find_next_child(this, victim)) == NULL) { 612 // kill and ascend 613 // update metadata while it's still locked 614 inode_set_ctime_current(inode); 615 clear_nlink(inode); 616 inode_unlock(inode); 617 victim = this; 618 this = this->d_parent; 619 inode = this->d_inode; 620 if (!locked || victim != dentry) 621 inode_lock_nested(inode, I_MUTEX_CHILD); 622 if (simple_positive(victim)) { 623 d_invalidate(victim); // avoid lost mounts 624 if (callback) 625 callback(victim); 626 fsnotify_delete(inode, d_inode(victim), victim); 627 d_make_discardable(victim); 628 } 629 if (victim == dentry) { 630 inode_set_mtime_to_ts(inode, 631 inode_set_ctime_current(inode)); 632 if (d_is_dir(dentry)) 633 drop_nlink(inode); 634 if (!locked) 635 inode_unlock(inode); 636 dput(dentry); 637 return; 638 } 639 } 640 inode_unlock(inode); 641 this = child; 642 } 643 } 644 645 void simple_recursive_removal(struct dentry *dentry, 646 void (*callback)(struct dentry *)) 647 { 648 return __simple_recursive_removal(dentry, callback, false); 649 } 650 EXPORT_SYMBOL(simple_recursive_removal); 651 652 void simple_remove_by_name(struct dentry *parent, const char *name, 653 void (*callback)(struct dentry *)) 654 { 655 struct dentry *dentry; 656 657 dentry = lookup_noperm_positive_unlocked(&QSTR(name), parent); 658 if (!IS_ERR(dentry)) { 659 simple_recursive_removal(dentry, callback); 660 dput(dentry); // paired with lookup_noperm_positive_unlocked() 661 } 662 } 663 EXPORT_SYMBOL(simple_remove_by_name); 664 665 /* caller holds parent directory with I_MUTEX_PARENT */ 666 void locked_recursive_removal(struct dentry *dentry, 667 void (*callback)(struct dentry *)) 668 { 669 return __simple_recursive_removal(dentry, callback, true); 670 } 671 EXPORT_SYMBOL(locked_recursive_removal); 672 673 static const struct super_operations simple_super_operations = { 674 .statfs = simple_statfs, 675 }; 676 677 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 678 { 679 struct pseudo_fs_context *ctx = fc->fs_private; 680 struct inode *root; 681 682 s->s_maxbytes = MAX_LFS_FILESIZE; 683 s->s_blocksize = PAGE_SIZE; 684 s->s_blocksize_bits = PAGE_SHIFT; 685 s->s_magic = ctx->magic; 686 s->s_op = ctx->ops ?: &simple_super_operations; 687 s->s_export_op = ctx->eops; 688 s->s_xattr = ctx->xattr; 689 s->s_time_gran = 1; 690 s->s_d_flags |= ctx->s_d_flags; 691 root = new_inode(s); 692 if (!root) 693 return -ENOMEM; 694 695 /* 696 * since this is the first inode, make it number 1. New inodes created 697 * after this must take care not to collide with it (by passing 698 * max_reserved of 1 to iunique). 699 */ 700 root->i_ino = 1; 701 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 702 simple_inode_init_ts(root); 703 s->s_root = d_make_root(root); 704 if (!s->s_root) 705 return -ENOMEM; 706 set_default_d_op(s, ctx->dops); 707 return 0; 708 } 709 710 static int pseudo_fs_get_tree(struct fs_context *fc) 711 { 712 return get_tree_nodev(fc, pseudo_fs_fill_super); 713 } 714 715 static void pseudo_fs_free(struct fs_context *fc) 716 { 717 kfree(fc->fs_private); 718 } 719 720 static const struct fs_context_operations pseudo_fs_context_ops = { 721 .free = pseudo_fs_free, 722 .get_tree = pseudo_fs_get_tree, 723 }; 724 725 /* 726 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 727 * will never be mountable) 728 */ 729 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 730 unsigned long magic) 731 { 732 struct pseudo_fs_context *ctx; 733 734 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 735 if (likely(ctx)) { 736 ctx->magic = magic; 737 fc->fs_private = ctx; 738 fc->ops = &pseudo_fs_context_ops; 739 fc->sb_flags |= SB_NOUSER; 740 fc->global = true; 741 } 742 return ctx; 743 } 744 EXPORT_SYMBOL(init_pseudo); 745 746 int simple_open(struct inode *inode, struct file *file) 747 { 748 if (inode->i_private) 749 file->private_data = inode->i_private; 750 return 0; 751 } 752 EXPORT_SYMBOL(simple_open); 753 754 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 755 { 756 struct inode *inode = d_inode(old_dentry); 757 758 inode_set_mtime_to_ts(dir, 759 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 760 inc_nlink(inode); 761 ihold(inode); 762 d_make_persistent(dentry, inode); 763 return 0; 764 } 765 EXPORT_SYMBOL(simple_link); 766 767 int simple_empty(struct dentry *dentry) 768 { 769 struct dentry *child; 770 int ret = 0; 771 772 spin_lock(&dentry->d_lock); 773 hlist_for_each_entry(child, &dentry->d_children, d_sib) { 774 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 775 if (simple_positive(child)) { 776 spin_unlock(&child->d_lock); 777 goto out; 778 } 779 spin_unlock(&child->d_lock); 780 } 781 ret = 1; 782 out: 783 spin_unlock(&dentry->d_lock); 784 return ret; 785 } 786 EXPORT_SYMBOL(simple_empty); 787 788 void __simple_unlink(struct inode *dir, struct dentry *dentry) 789 { 790 struct inode *inode = d_inode(dentry); 791 792 inode_set_mtime_to_ts(dir, 793 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 794 drop_nlink(inode); 795 } 796 EXPORT_SYMBOL(__simple_unlink); 797 798 void __simple_rmdir(struct inode *dir, struct dentry *dentry) 799 { 800 drop_nlink(d_inode(dentry)); 801 __simple_unlink(dir, dentry); 802 drop_nlink(dir); 803 } 804 EXPORT_SYMBOL(__simple_rmdir); 805 806 int simple_unlink(struct inode *dir, struct dentry *dentry) 807 { 808 __simple_unlink(dir, dentry); 809 d_make_discardable(dentry); 810 return 0; 811 } 812 EXPORT_SYMBOL(simple_unlink); 813 814 int simple_rmdir(struct inode *dir, struct dentry *dentry) 815 { 816 if (!simple_empty(dentry)) 817 return -ENOTEMPTY; 818 819 __simple_rmdir(dir, dentry); 820 d_make_discardable(dentry); 821 return 0; 822 } 823 EXPORT_SYMBOL(simple_rmdir); 824 825 /** 826 * simple_rename_timestamp - update the various inode timestamps for rename 827 * @old_dir: old parent directory 828 * @old_dentry: dentry that is being renamed 829 * @new_dir: new parent directory 830 * @new_dentry: target for rename 831 * 832 * POSIX mandates that the old and new parent directories have their ctime and 833 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have 834 * their ctime updated. 835 */ 836 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 837 struct inode *new_dir, struct dentry *new_dentry) 838 { 839 struct inode *newino = d_inode(new_dentry); 840 841 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir)); 842 if (new_dir != old_dir) 843 inode_set_mtime_to_ts(new_dir, 844 inode_set_ctime_current(new_dir)); 845 inode_set_ctime_current(d_inode(old_dentry)); 846 if (newino) 847 inode_set_ctime_current(newino); 848 } 849 EXPORT_SYMBOL_GPL(simple_rename_timestamp); 850 851 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 852 struct inode *new_dir, struct dentry *new_dentry) 853 { 854 bool old_is_dir = d_is_dir(old_dentry); 855 bool new_is_dir = d_is_dir(new_dentry); 856 857 if (old_dir != new_dir && old_is_dir != new_is_dir) { 858 if (old_is_dir) { 859 drop_nlink(old_dir); 860 inc_nlink(new_dir); 861 } else { 862 drop_nlink(new_dir); 863 inc_nlink(old_dir); 864 } 865 } 866 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 867 return 0; 868 } 869 EXPORT_SYMBOL_GPL(simple_rename_exchange); 870 871 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, 872 struct dentry *old_dentry, struct inode *new_dir, 873 struct dentry *new_dentry, unsigned int flags) 874 { 875 int they_are_dirs = d_is_dir(old_dentry); 876 877 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 878 return -EINVAL; 879 880 if (flags & RENAME_EXCHANGE) 881 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 882 883 if (!simple_empty(new_dentry)) 884 return -ENOTEMPTY; 885 886 if (d_really_is_positive(new_dentry)) { 887 simple_unlink(new_dir, new_dentry); 888 if (they_are_dirs) { 889 drop_nlink(d_inode(new_dentry)); 890 drop_nlink(old_dir); 891 } 892 } else if (they_are_dirs) { 893 drop_nlink(old_dir); 894 inc_nlink(new_dir); 895 } 896 897 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 898 return 0; 899 } 900 EXPORT_SYMBOL(simple_rename); 901 902 /** 903 * simple_setattr - setattr for simple filesystem 904 * @idmap: idmap of the target mount 905 * @dentry: dentry 906 * @iattr: iattr structure 907 * 908 * Returns 0 on success, -error on failure. 909 * 910 * simple_setattr is a simple ->setattr implementation without a proper 911 * implementation of size changes. 912 * 913 * It can either be used for in-memory filesystems or special files 914 * on simple regular filesystems. Anything that needs to change on-disk 915 * or wire state on size changes needs its own setattr method. 916 */ 917 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 918 struct iattr *iattr) 919 { 920 struct inode *inode = d_inode(dentry); 921 int error; 922 923 error = setattr_prepare(idmap, dentry, iattr); 924 if (error) 925 return error; 926 927 if (iattr->ia_valid & ATTR_SIZE) 928 truncate_setsize(inode, iattr->ia_size); 929 setattr_copy(idmap, inode, iattr); 930 mark_inode_dirty(inode); 931 return 0; 932 } 933 EXPORT_SYMBOL(simple_setattr); 934 935 static int simple_read_folio(struct file *file, struct folio *folio) 936 { 937 folio_zero_range(folio, 0, folio_size(folio)); 938 flush_dcache_folio(folio); 939 folio_mark_uptodate(folio); 940 folio_unlock(folio); 941 return 0; 942 } 943 944 int simple_write_begin(const struct kiocb *iocb, struct address_space *mapping, 945 loff_t pos, unsigned len, 946 struct folio **foliop, void **fsdata) 947 { 948 struct folio *folio; 949 950 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN, 951 mapping_gfp_mask(mapping)); 952 if (IS_ERR(folio)) 953 return PTR_ERR(folio); 954 955 *foliop = folio; 956 957 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { 958 size_t from = offset_in_folio(folio, pos); 959 960 folio_zero_segments(folio, 0, from, 961 from + len, folio_size(folio)); 962 } 963 return 0; 964 } 965 EXPORT_SYMBOL(simple_write_begin); 966 967 /** 968 * simple_write_end - .write_end helper for non-block-device FSes 969 * @iocb: kernel I/O control block 970 * @mapping: " 971 * @pos: " 972 * @len: " 973 * @copied: " 974 * @folio: " 975 * @fsdata: " 976 * 977 * simple_write_end does the minimum needed for updating a folio after 978 * writing is done. It has the same API signature as the .write_end of 979 * address_space_operations vector. So it can just be set onto .write_end for 980 * FSes that don't need any other processing. i_rwsem is assumed to be held 981 * exclusively. 982 * Block based filesystems should use generic_write_end(). 983 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 984 * is not called, so a filesystem that actually does store data in .write_inode 985 * should extend on what's done here with a call to mark_inode_dirty() in the 986 * case that i_size has changed. 987 * 988 * Use *ONLY* with simple_read_folio() 989 */ 990 static int simple_write_end(const struct kiocb *iocb, 991 struct address_space *mapping, 992 loff_t pos, unsigned len, unsigned copied, 993 struct folio *folio, void *fsdata) 994 { 995 struct inode *inode = folio->mapping->host; 996 loff_t last_pos = pos + copied; 997 998 /* zero the stale part of the folio if we did a short copy */ 999 if (!folio_test_uptodate(folio)) { 1000 if (copied < len) { 1001 size_t from = offset_in_folio(folio, pos); 1002 1003 folio_zero_range(folio, from + copied, len - copied); 1004 } 1005 folio_mark_uptodate(folio); 1006 } 1007 /* 1008 * No need to use i_size_read() here, the i_size 1009 * cannot change under us because we hold the i_rwsem. 1010 */ 1011 if (last_pos > inode->i_size) 1012 i_size_write(inode, last_pos); 1013 1014 folio_mark_dirty(folio); 1015 folio_unlock(folio); 1016 folio_put(folio); 1017 1018 return copied; 1019 } 1020 1021 /* 1022 * Provides ramfs-style behavior: data in the pagecache, but no writeback. 1023 */ 1024 const struct address_space_operations ram_aops = { 1025 .read_folio = simple_read_folio, 1026 .write_begin = simple_write_begin, 1027 .write_end = simple_write_end, 1028 .dirty_folio = noop_dirty_folio, 1029 }; 1030 EXPORT_SYMBOL(ram_aops); 1031 1032 /* 1033 * the inodes created here are not hashed. If you use iunique to generate 1034 * unique inode values later for this filesystem, then you must take care 1035 * to pass it an appropriate max_reserved value to avoid collisions. 1036 */ 1037 int simple_fill_super(struct super_block *s, unsigned long magic, 1038 const struct tree_descr *files) 1039 { 1040 struct inode *inode; 1041 struct dentry *dentry; 1042 int i; 1043 1044 s->s_blocksize = PAGE_SIZE; 1045 s->s_blocksize_bits = PAGE_SHIFT; 1046 s->s_magic = magic; 1047 s->s_op = &simple_super_operations; 1048 s->s_time_gran = 1; 1049 1050 inode = new_inode(s); 1051 if (!inode) 1052 return -ENOMEM; 1053 /* 1054 * because the root inode is 1, the files array must not contain an 1055 * entry at index 1 1056 */ 1057 inode->i_ino = 1; 1058 inode->i_mode = S_IFDIR | 0755; 1059 simple_inode_init_ts(inode); 1060 inode->i_op = &simple_dir_inode_operations; 1061 inode->i_fop = &simple_dir_operations; 1062 set_nlink(inode, 2); 1063 s->s_root = d_make_root(inode); 1064 if (!s->s_root) 1065 return -ENOMEM; 1066 for (i = 0; !files->name || files->name[0]; i++, files++) { 1067 if (!files->name) 1068 continue; 1069 1070 /* warn if it tries to conflict with the root inode */ 1071 if (unlikely(i == 1)) 1072 printk(KERN_WARNING "%s: %s passed in a files array" 1073 "with an index of 1!\n", __func__, 1074 s->s_type->name); 1075 1076 dentry = d_alloc_name(s->s_root, files->name); 1077 if (!dentry) 1078 return -ENOMEM; 1079 inode = new_inode(s); 1080 if (!inode) { 1081 dput(dentry); 1082 return -ENOMEM; 1083 } 1084 inode->i_mode = S_IFREG | files->mode; 1085 simple_inode_init_ts(inode); 1086 inode->i_fop = files->ops; 1087 inode->i_ino = i; 1088 d_make_persistent(dentry, inode); 1089 dput(dentry); 1090 } 1091 return 0; 1092 } 1093 EXPORT_SYMBOL(simple_fill_super); 1094 1095 static DEFINE_SPINLOCK(pin_fs_lock); 1096 1097 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 1098 { 1099 struct vfsmount *mnt = NULL; 1100 spin_lock(&pin_fs_lock); 1101 if (unlikely(!*mount)) { 1102 spin_unlock(&pin_fs_lock); 1103 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 1104 if (IS_ERR(mnt)) 1105 return PTR_ERR(mnt); 1106 spin_lock(&pin_fs_lock); 1107 if (!*mount) 1108 *mount = mnt; 1109 } 1110 mntget(*mount); 1111 ++*count; 1112 spin_unlock(&pin_fs_lock); 1113 mntput(mnt); 1114 return 0; 1115 } 1116 EXPORT_SYMBOL(simple_pin_fs); 1117 1118 void simple_release_fs(struct vfsmount **mount, int *count) 1119 { 1120 struct vfsmount *mnt; 1121 spin_lock(&pin_fs_lock); 1122 mnt = *mount; 1123 if (!--*count) 1124 *mount = NULL; 1125 spin_unlock(&pin_fs_lock); 1126 mntput(mnt); 1127 } 1128 EXPORT_SYMBOL(simple_release_fs); 1129 1130 /** 1131 * simple_read_from_buffer - copy data from the buffer to user space 1132 * @to: the user space buffer to read to 1133 * @count: the maximum number of bytes to read 1134 * @ppos: the current position in the buffer 1135 * @from: the buffer to read from 1136 * @available: the size of the buffer 1137 * 1138 * The simple_read_from_buffer() function reads up to @count bytes from the 1139 * buffer @from at offset @ppos into the user space address starting at @to. 1140 * 1141 * On success, the number of bytes read is returned and the offset @ppos is 1142 * advanced by this number, or negative value is returned on error. 1143 **/ 1144 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 1145 const void *from, size_t available) 1146 { 1147 loff_t pos = *ppos; 1148 size_t ret; 1149 1150 if (pos < 0) 1151 return -EINVAL; 1152 if (pos >= available || !count) 1153 return 0; 1154 if (count > available - pos) 1155 count = available - pos; 1156 ret = copy_to_user(to, from + pos, count); 1157 if (ret == count) 1158 return -EFAULT; 1159 count -= ret; 1160 *ppos = pos + count; 1161 return count; 1162 } 1163 EXPORT_SYMBOL(simple_read_from_buffer); 1164 1165 /** 1166 * simple_write_to_buffer - copy data from user space to the buffer 1167 * @to: the buffer to write to 1168 * @available: the size of the buffer 1169 * @ppos: the current position in the buffer 1170 * @from: the user space buffer to read from 1171 * @count: the maximum number of bytes to read 1172 * 1173 * The simple_write_to_buffer() function reads up to @count bytes from the user 1174 * space address starting at @from into the buffer @to at offset @ppos. 1175 * 1176 * On success, the number of bytes written is returned and the offset @ppos is 1177 * advanced by this number, or negative value is returned on error. 1178 **/ 1179 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 1180 const void __user *from, size_t count) 1181 { 1182 loff_t pos = *ppos; 1183 size_t res; 1184 1185 if (pos < 0) 1186 return -EINVAL; 1187 if (pos >= available || !count) 1188 return 0; 1189 if (count > available - pos) 1190 count = available - pos; 1191 res = copy_from_user(to + pos, from, count); 1192 if (res == count) 1193 return -EFAULT; 1194 count -= res; 1195 *ppos = pos + count; 1196 return count; 1197 } 1198 EXPORT_SYMBOL(simple_write_to_buffer); 1199 1200 /** 1201 * memory_read_from_buffer - copy data from the buffer 1202 * @to: the kernel space buffer to read to 1203 * @count: the maximum number of bytes to read 1204 * @ppos: the current position in the buffer 1205 * @from: the buffer to read from 1206 * @available: the size of the buffer 1207 * 1208 * The memory_read_from_buffer() function reads up to @count bytes from the 1209 * buffer @from at offset @ppos into the kernel space address starting at @to. 1210 * 1211 * On success, the number of bytes read is returned and the offset @ppos is 1212 * advanced by this number, or negative value is returned on error. 1213 **/ 1214 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 1215 const void *from, size_t available) 1216 { 1217 loff_t pos = *ppos; 1218 1219 if (pos < 0) 1220 return -EINVAL; 1221 if (pos >= available) 1222 return 0; 1223 if (count > available - pos) 1224 count = available - pos; 1225 memcpy(to, from + pos, count); 1226 *ppos = pos + count; 1227 1228 return count; 1229 } 1230 EXPORT_SYMBOL(memory_read_from_buffer); 1231 1232 /* 1233 * Transaction based IO. 1234 * The file expects a single write which triggers the transaction, and then 1235 * possibly a read which collects the result - which is stored in a 1236 * file-local buffer. 1237 */ 1238 1239 void simple_transaction_set(struct file *file, size_t n) 1240 { 1241 struct simple_transaction_argresp *ar = file->private_data; 1242 1243 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 1244 1245 /* 1246 * The barrier ensures that ar->size will really remain zero until 1247 * ar->data is ready for reading. 1248 */ 1249 smp_mb(); 1250 ar->size = n; 1251 } 1252 EXPORT_SYMBOL(simple_transaction_set); 1253 1254 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 1255 { 1256 struct simple_transaction_argresp *ar; 1257 static DEFINE_SPINLOCK(simple_transaction_lock); 1258 1259 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 1260 return ERR_PTR(-EFBIG); 1261 1262 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 1263 if (!ar) 1264 return ERR_PTR(-ENOMEM); 1265 1266 spin_lock(&simple_transaction_lock); 1267 1268 /* only one write allowed per open */ 1269 if (file->private_data) { 1270 spin_unlock(&simple_transaction_lock); 1271 free_page((unsigned long)ar); 1272 return ERR_PTR(-EBUSY); 1273 } 1274 1275 file->private_data = ar; 1276 1277 spin_unlock(&simple_transaction_lock); 1278 1279 if (copy_from_user(ar->data, buf, size)) 1280 return ERR_PTR(-EFAULT); 1281 1282 return ar->data; 1283 } 1284 EXPORT_SYMBOL(simple_transaction_get); 1285 1286 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 1287 { 1288 struct simple_transaction_argresp *ar = file->private_data; 1289 1290 if (!ar) 1291 return 0; 1292 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 1293 } 1294 EXPORT_SYMBOL(simple_transaction_read); 1295 1296 int simple_transaction_release(struct inode *inode, struct file *file) 1297 { 1298 free_page((unsigned long)file->private_data); 1299 return 0; 1300 } 1301 EXPORT_SYMBOL(simple_transaction_release); 1302 1303 /* Simple attribute files */ 1304 1305 struct simple_attr { 1306 int (*get)(void *, u64 *); 1307 int (*set)(void *, u64); 1308 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 1309 char set_buf[24]; 1310 void *data; 1311 const char *fmt; /* format for read operation */ 1312 struct mutex mutex; /* protects access to these buffers */ 1313 }; 1314 1315 /* simple_attr_open is called by an actual attribute open file operation 1316 * to set the attribute specific access operations. */ 1317 int simple_attr_open(struct inode *inode, struct file *file, 1318 int (*get)(void *, u64 *), int (*set)(void *, u64), 1319 const char *fmt) 1320 { 1321 struct simple_attr *attr; 1322 1323 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1324 if (!attr) 1325 return -ENOMEM; 1326 1327 attr->get = get; 1328 attr->set = set; 1329 attr->data = inode->i_private; 1330 attr->fmt = fmt; 1331 mutex_init(&attr->mutex); 1332 1333 file->private_data = attr; 1334 1335 return nonseekable_open(inode, file); 1336 } 1337 EXPORT_SYMBOL_GPL(simple_attr_open); 1338 1339 int simple_attr_release(struct inode *inode, struct file *file) 1340 { 1341 kfree(file->private_data); 1342 return 0; 1343 } 1344 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 1345 1346 /* read from the buffer that is filled with the get function */ 1347 ssize_t simple_attr_read(struct file *file, char __user *buf, 1348 size_t len, loff_t *ppos) 1349 { 1350 struct simple_attr *attr; 1351 size_t size; 1352 ssize_t ret; 1353 1354 attr = file->private_data; 1355 1356 if (!attr->get) 1357 return -EACCES; 1358 1359 ret = mutex_lock_interruptible(&attr->mutex); 1360 if (ret) 1361 return ret; 1362 1363 if (*ppos && attr->get_buf[0]) { 1364 /* continued read */ 1365 size = strlen(attr->get_buf); 1366 } else { 1367 /* first read */ 1368 u64 val; 1369 ret = attr->get(attr->data, &val); 1370 if (ret) 1371 goto out; 1372 1373 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 1374 attr->fmt, (unsigned long long)val); 1375 } 1376 1377 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 1378 out: 1379 mutex_unlock(&attr->mutex); 1380 return ret; 1381 } 1382 EXPORT_SYMBOL_GPL(simple_attr_read); 1383 1384 /* interpret the buffer as a number to call the set function with */ 1385 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, 1386 size_t len, loff_t *ppos, bool is_signed) 1387 { 1388 struct simple_attr *attr; 1389 unsigned long long val; 1390 size_t size; 1391 ssize_t ret; 1392 1393 attr = file->private_data; 1394 if (!attr->set) 1395 return -EACCES; 1396 1397 ret = mutex_lock_interruptible(&attr->mutex); 1398 if (ret) 1399 return ret; 1400 1401 ret = -EFAULT; 1402 size = min(sizeof(attr->set_buf) - 1, len); 1403 if (copy_from_user(attr->set_buf, buf, size)) 1404 goto out; 1405 1406 attr->set_buf[size] = '\0'; 1407 if (is_signed) 1408 ret = kstrtoll(attr->set_buf, 0, &val); 1409 else 1410 ret = kstrtoull(attr->set_buf, 0, &val); 1411 if (ret) 1412 goto out; 1413 ret = attr->set(attr->data, val); 1414 if (ret == 0) 1415 ret = len; /* on success, claim we got the whole input */ 1416 out: 1417 mutex_unlock(&attr->mutex); 1418 return ret; 1419 } 1420 1421 ssize_t simple_attr_write(struct file *file, const char __user *buf, 1422 size_t len, loff_t *ppos) 1423 { 1424 return simple_attr_write_xsigned(file, buf, len, ppos, false); 1425 } 1426 EXPORT_SYMBOL_GPL(simple_attr_write); 1427 1428 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 1429 size_t len, loff_t *ppos) 1430 { 1431 return simple_attr_write_xsigned(file, buf, len, ppos, true); 1432 } 1433 EXPORT_SYMBOL_GPL(simple_attr_write_signed); 1434 1435 /** 1436 * generic_encode_ino32_fh - generic export_operations->encode_fh function 1437 * @inode: the object to encode 1438 * @fh: where to store the file handle fragment 1439 * @max_len: maximum length to store there (in 4 byte units) 1440 * @parent: parent directory inode, if wanted 1441 * 1442 * This generic encode_fh function assumes that the 32 inode number 1443 * is suitable for locating an inode, and that the generation number 1444 * can be used to check that it is still valid. It places them in the 1445 * filehandle fragment where export_decode_fh expects to find them. 1446 */ 1447 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len, 1448 struct inode *parent) 1449 { 1450 struct fid *fid = (void *)fh; 1451 int len = *max_len; 1452 int type = FILEID_INO32_GEN; 1453 1454 if (parent && (len < 4)) { 1455 *max_len = 4; 1456 return FILEID_INVALID; 1457 } else if (len < 2) { 1458 *max_len = 2; 1459 return FILEID_INVALID; 1460 } 1461 1462 len = 2; 1463 fid->i32.ino = inode->i_ino; 1464 fid->i32.gen = inode->i_generation; 1465 if (parent) { 1466 fid->i32.parent_ino = parent->i_ino; 1467 fid->i32.parent_gen = parent->i_generation; 1468 len = 4; 1469 type = FILEID_INO32_GEN_PARENT; 1470 } 1471 *max_len = len; 1472 return type; 1473 } 1474 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh); 1475 1476 /** 1477 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 1478 * @sb: filesystem to do the file handle conversion on 1479 * @fid: file handle to convert 1480 * @fh_len: length of the file handle in bytes 1481 * @fh_type: type of file handle 1482 * @get_inode: filesystem callback to retrieve inode 1483 * 1484 * This function decodes @fid as long as it has one of the well-known 1485 * Linux filehandle types and calls @get_inode on it to retrieve the 1486 * inode for the object specified in the file handle. 1487 */ 1488 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1489 int fh_len, int fh_type, struct inode *(*get_inode) 1490 (struct super_block *sb, u64 ino, u32 gen)) 1491 { 1492 struct inode *inode = NULL; 1493 1494 if (fh_len < 2) 1495 return NULL; 1496 1497 switch (fh_type) { 1498 case FILEID_INO32_GEN: 1499 case FILEID_INO32_GEN_PARENT: 1500 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1501 break; 1502 } 1503 1504 return d_obtain_alias(inode); 1505 } 1506 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1507 1508 /** 1509 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1510 * @sb: filesystem to do the file handle conversion on 1511 * @fid: file handle to convert 1512 * @fh_len: length of the file handle in bytes 1513 * @fh_type: type of file handle 1514 * @get_inode: filesystem callback to retrieve inode 1515 * 1516 * This function decodes @fid as long as it has one of the well-known 1517 * Linux filehandle types and calls @get_inode on it to retrieve the 1518 * inode for the _parent_ object specified in the file handle if it 1519 * is specified in the file handle, or NULL otherwise. 1520 */ 1521 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1522 int fh_len, int fh_type, struct inode *(*get_inode) 1523 (struct super_block *sb, u64 ino, u32 gen)) 1524 { 1525 struct inode *inode = NULL; 1526 1527 if (fh_len <= 2) 1528 return NULL; 1529 1530 switch (fh_type) { 1531 case FILEID_INO32_GEN_PARENT: 1532 inode = get_inode(sb, fid->i32.parent_ino, 1533 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1534 break; 1535 } 1536 1537 return d_obtain_alias(inode); 1538 } 1539 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1540 1541 /** 1542 * __generic_file_fsync - generic fsync implementation for simple filesystems 1543 * 1544 * @file: file to synchronize 1545 * @start: start offset in bytes 1546 * @end: end offset in bytes (inclusive) 1547 * @datasync: only synchronize essential metadata if true 1548 * 1549 * This is a generic implementation of the fsync method for simple 1550 * filesystems which track all non-inode metadata in the buffers list 1551 * hanging off the address_space structure. 1552 */ 1553 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1554 int datasync) 1555 { 1556 struct inode *inode = file->f_mapping->host; 1557 int err; 1558 int ret; 1559 1560 err = file_write_and_wait_range(file, start, end); 1561 if (err) 1562 return err; 1563 1564 inode_lock(inode); 1565 ret = sync_mapping_buffers(inode->i_mapping); 1566 if (!(inode_state_read_once(inode) & I_DIRTY_ALL)) 1567 goto out; 1568 if (datasync && !(inode_state_read_once(inode) & I_DIRTY_DATASYNC)) 1569 goto out; 1570 1571 err = sync_inode_metadata(inode, 1); 1572 if (ret == 0) 1573 ret = err; 1574 1575 out: 1576 inode_unlock(inode); 1577 /* check and advance again to catch errors after syncing out buffers */ 1578 err = file_check_and_advance_wb_err(file); 1579 if (ret == 0) 1580 ret = err; 1581 return ret; 1582 } 1583 EXPORT_SYMBOL(__generic_file_fsync); 1584 1585 /** 1586 * generic_file_fsync - generic fsync implementation for simple filesystems 1587 * with flush 1588 * @file: file to synchronize 1589 * @start: start offset in bytes 1590 * @end: end offset in bytes (inclusive) 1591 * @datasync: only synchronize essential metadata if true 1592 * 1593 */ 1594 1595 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1596 int datasync) 1597 { 1598 struct inode *inode = file->f_mapping->host; 1599 int err; 1600 1601 err = __generic_file_fsync(file, start, end, datasync); 1602 if (err) 1603 return err; 1604 return blkdev_issue_flush(inode->i_sb->s_bdev); 1605 } 1606 EXPORT_SYMBOL(generic_file_fsync); 1607 1608 /** 1609 * generic_check_addressable - Check addressability of file system 1610 * @blocksize_bits: log of file system block size 1611 * @num_blocks: number of blocks in file system 1612 * 1613 * Determine whether a file system with @num_blocks blocks (and a 1614 * block size of 2**@blocksize_bits) is addressable by the sector_t 1615 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1616 */ 1617 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1618 { 1619 u64 last_fs_block = num_blocks - 1; 1620 u64 last_fs_page, max_bytes; 1621 1622 if (check_shl_overflow(num_blocks, blocksize_bits, &max_bytes)) 1623 return -EFBIG; 1624 1625 last_fs_page = (max_bytes >> PAGE_SHIFT) - 1; 1626 1627 if (unlikely(num_blocks == 0)) 1628 return 0; 1629 1630 if (blocksize_bits < 9) 1631 return -EINVAL; 1632 1633 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1634 (last_fs_page > (pgoff_t)(~0ULL))) { 1635 return -EFBIG; 1636 } 1637 return 0; 1638 } 1639 EXPORT_SYMBOL(generic_check_addressable); 1640 1641 /* 1642 * No-op implementation of ->fsync for in-memory filesystems. 1643 */ 1644 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1645 { 1646 return 0; 1647 } 1648 EXPORT_SYMBOL(noop_fsync); 1649 1650 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1651 { 1652 /* 1653 * iomap based filesystems support direct I/O without need for 1654 * this callback. However, it still needs to be set in 1655 * inode->a_ops so that open/fcntl know that direct I/O is 1656 * generally supported. 1657 */ 1658 return -EINVAL; 1659 } 1660 EXPORT_SYMBOL_GPL(noop_direct_IO); 1661 1662 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1663 void kfree_link(void *p) 1664 { 1665 kfree(p); 1666 } 1667 EXPORT_SYMBOL(kfree_link); 1668 1669 struct inode *alloc_anon_inode(struct super_block *s) 1670 { 1671 static const struct address_space_operations anon_aops = { 1672 .dirty_folio = noop_dirty_folio, 1673 }; 1674 struct inode *inode = new_inode_pseudo(s); 1675 1676 if (!inode) 1677 return ERR_PTR(-ENOMEM); 1678 1679 inode->i_ino = get_next_ino(); 1680 inode->i_mapping->a_ops = &anon_aops; 1681 1682 /* 1683 * Mark the inode dirty from the very beginning, 1684 * that way it will never be moved to the dirty 1685 * list because mark_inode_dirty() will think 1686 * that it already _is_ on the dirty list. 1687 */ 1688 inode_state_assign_raw(inode, I_DIRTY); 1689 /* 1690 * Historically anonymous inodes don't have a type at all and 1691 * userspace has come to rely on this. 1692 */ 1693 inode->i_mode = S_IRUSR | S_IWUSR; 1694 inode->i_uid = current_fsuid(); 1695 inode->i_gid = current_fsgid(); 1696 inode->i_flags |= S_PRIVATE | S_ANON_INODE; 1697 simple_inode_init_ts(inode); 1698 return inode; 1699 } 1700 EXPORT_SYMBOL(alloc_anon_inode); 1701 1702 /** 1703 * simple_get_link - generic helper to get the target of "fast" symlinks 1704 * @dentry: not used here 1705 * @inode: the symlink inode 1706 * @done: not used here 1707 * 1708 * Generic helper for filesystems to use for symlink inodes where a pointer to 1709 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1710 * since as an optimization the path lookup code uses any non-NULL ->i_link 1711 * directly, without calling ->get_link(). But ->get_link() still must be set, 1712 * to mark the inode_operations as being for a symlink. 1713 * 1714 * Return: the symlink target 1715 */ 1716 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1717 struct delayed_call *done) 1718 { 1719 return inode->i_link; 1720 } 1721 EXPORT_SYMBOL(simple_get_link); 1722 1723 const struct inode_operations simple_symlink_inode_operations = { 1724 .get_link = simple_get_link, 1725 }; 1726 EXPORT_SYMBOL(simple_symlink_inode_operations); 1727 1728 /* 1729 * Operations for a permanently empty directory. 1730 */ 1731 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1732 { 1733 return ERR_PTR(-ENOENT); 1734 } 1735 1736 static int empty_dir_setattr(struct mnt_idmap *idmap, 1737 struct dentry *dentry, struct iattr *attr) 1738 { 1739 return -EPERM; 1740 } 1741 1742 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1743 { 1744 return -EOPNOTSUPP; 1745 } 1746 1747 static const struct inode_operations empty_dir_inode_operations = { 1748 .lookup = empty_dir_lookup, 1749 .setattr = empty_dir_setattr, 1750 .listxattr = empty_dir_listxattr, 1751 }; 1752 1753 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1754 { 1755 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1756 return generic_file_llseek_size(file, offset, whence, 2, 2); 1757 } 1758 1759 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1760 { 1761 dir_emit_dots(file, ctx); 1762 return 0; 1763 } 1764 1765 static const struct file_operations empty_dir_operations = { 1766 .llseek = empty_dir_llseek, 1767 .read = generic_read_dir, 1768 .iterate_shared = empty_dir_readdir, 1769 .fsync = noop_fsync, 1770 }; 1771 1772 1773 void make_empty_dir_inode(struct inode *inode) 1774 { 1775 set_nlink(inode, 2); 1776 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1777 inode->i_uid = GLOBAL_ROOT_UID; 1778 inode->i_gid = GLOBAL_ROOT_GID; 1779 inode->i_rdev = 0; 1780 inode->i_size = 0; 1781 inode->i_blkbits = PAGE_SHIFT; 1782 inode->i_blocks = 0; 1783 1784 inode->i_op = &empty_dir_inode_operations; 1785 inode->i_opflags &= ~IOP_XATTR; 1786 inode->i_fop = &empty_dir_operations; 1787 } 1788 1789 bool is_empty_dir_inode(struct inode *inode) 1790 { 1791 return (inode->i_fop == &empty_dir_operations) && 1792 (inode->i_op == &empty_dir_inode_operations); 1793 } 1794 1795 #if IS_ENABLED(CONFIG_UNICODE) 1796 /** 1797 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1798 * @dentry: dentry whose name we are checking against 1799 * @len: len of name of dentry 1800 * @str: str pointer to name of dentry 1801 * @name: Name to compare against 1802 * 1803 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1804 */ 1805 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1806 const char *str, const struct qstr *name) 1807 { 1808 const struct dentry *parent; 1809 const struct inode *dir; 1810 union shortname_store strbuf; 1811 struct qstr qstr; 1812 1813 /* 1814 * Attempt a case-sensitive match first. It is cheaper and 1815 * should cover most lookups, including all the sane 1816 * applications that expect a case-sensitive filesystem. 1817 * 1818 * This comparison is safe under RCU because the caller 1819 * guarantees the consistency between str and len. See 1820 * __d_lookup_rcu_op_compare() for details. 1821 */ 1822 if (len == name->len && !memcmp(str, name->name, len)) 1823 return 0; 1824 1825 parent = READ_ONCE(dentry->d_parent); 1826 dir = READ_ONCE(parent->d_inode); 1827 if (!dir || !IS_CASEFOLDED(dir)) 1828 return 1; 1829 1830 qstr.len = len; 1831 qstr.name = str; 1832 /* 1833 * If the dentry name is stored in-line, then it may be concurrently 1834 * modified by a rename. If this happens, the VFS will eventually retry 1835 * the lookup, so it doesn't matter what ->d_compare() returns. 1836 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1837 * string. Therefore, we have to copy the name into a temporary buffer. 1838 * As above, len is guaranteed to match str, so the shortname case 1839 * is exactly when str points to ->d_shortname. 1840 */ 1841 if (qstr.name == dentry->d_shortname.string) { 1842 strbuf = dentry->d_shortname; // NUL is guaranteed to be in there 1843 qstr.name = strbuf.string; 1844 /* prevent compiler from optimizing out the temporary buffer */ 1845 barrier(); 1846 } 1847 1848 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr); 1849 } 1850 EXPORT_SYMBOL(generic_ci_d_compare); 1851 1852 /** 1853 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1854 * @dentry: dentry of the parent directory 1855 * @str: qstr of name whose hash we should fill in 1856 * 1857 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1858 */ 1859 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1860 { 1861 const struct inode *dir = READ_ONCE(dentry->d_inode); 1862 struct super_block *sb = dentry->d_sb; 1863 const struct unicode_map *um = sb->s_encoding; 1864 int ret; 1865 1866 if (!dir || !IS_CASEFOLDED(dir)) 1867 return 0; 1868 1869 ret = utf8_casefold_hash(um, dentry, str); 1870 if (ret < 0 && sb_has_strict_encoding(sb)) 1871 return -EINVAL; 1872 return 0; 1873 } 1874 EXPORT_SYMBOL(generic_ci_d_hash); 1875 1876 static const struct dentry_operations generic_ci_dentry_ops = { 1877 .d_hash = generic_ci_d_hash, 1878 .d_compare = generic_ci_d_compare, 1879 #ifdef CONFIG_FS_ENCRYPTION 1880 .d_revalidate = fscrypt_d_revalidate, 1881 #endif 1882 }; 1883 1884 /** 1885 * generic_ci_match() - Match a name (case-insensitively) with a dirent. 1886 * This is a filesystem helper for comparison with directory entries. 1887 * generic_ci_d_compare should be used in VFS' ->d_compare instead. 1888 * 1889 * @parent: Inode of the parent of the dirent under comparison 1890 * @name: name under lookup. 1891 * @folded_name: Optional pre-folded name under lookup 1892 * @de_name: Dirent name. 1893 * @de_name_len: dirent name length. 1894 * 1895 * Test whether a case-insensitive directory entry matches the filename 1896 * being searched. If @folded_name is provided, it is used instead of 1897 * recalculating the casefold of @name. 1898 * 1899 * Return: > 0 if the directory entry matches, 0 if it doesn't match, or 1900 * < 0 on error. 1901 */ 1902 int generic_ci_match(const struct inode *parent, 1903 const struct qstr *name, 1904 const struct qstr *folded_name, 1905 const u8 *de_name, u32 de_name_len) 1906 { 1907 const struct super_block *sb = parent->i_sb; 1908 const struct unicode_map *um = sb->s_encoding; 1909 struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len); 1910 struct qstr dirent = QSTR_INIT(de_name, de_name_len); 1911 int res = 0; 1912 1913 if (IS_ENCRYPTED(parent)) { 1914 const struct fscrypt_str encrypted_name = 1915 FSTR_INIT((u8 *) de_name, de_name_len); 1916 1917 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent))) 1918 return -EINVAL; 1919 1920 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL); 1921 if (!decrypted_name.name) 1922 return -ENOMEM; 1923 res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name, 1924 &decrypted_name); 1925 if (res < 0) { 1926 kfree(decrypted_name.name); 1927 return res; 1928 } 1929 dirent.name = decrypted_name.name; 1930 dirent.len = decrypted_name.len; 1931 } 1932 1933 /* 1934 * Attempt a case-sensitive match first. It is cheaper and 1935 * should cover most lookups, including all the sane 1936 * applications that expect a case-sensitive filesystem. 1937 */ 1938 1939 if (dirent.len == name->len && 1940 !memcmp(name->name, dirent.name, dirent.len)) 1941 goto out; 1942 1943 if (folded_name->name) 1944 res = utf8_strncasecmp_folded(um, folded_name, &dirent); 1945 else 1946 res = utf8_strncasecmp(um, name, &dirent); 1947 1948 out: 1949 kfree(decrypted_name.name); 1950 if (res < 0 && sb_has_strict_encoding(sb)) { 1951 pr_err_ratelimited("Directory contains filename that is invalid UTF-8"); 1952 return 0; 1953 } 1954 return !res; 1955 } 1956 EXPORT_SYMBOL(generic_ci_match); 1957 #endif 1958 1959 #ifdef CONFIG_FS_ENCRYPTION 1960 static const struct dentry_operations generic_encrypted_dentry_ops = { 1961 .d_revalidate = fscrypt_d_revalidate, 1962 }; 1963 #endif 1964 1965 /** 1966 * generic_set_sb_d_ops - helper for choosing the set of 1967 * filesystem-wide dentry operations for the enabled features 1968 * @sb: superblock to be configured 1969 * 1970 * Filesystems supporting casefolding and/or fscrypt can call this 1971 * helper at mount-time to configure default dentry_operations to the 1972 * best set of dentry operations required for the enabled features. 1973 * The helper must be called after these have been configured, but 1974 * before the root dentry is created. 1975 */ 1976 void generic_set_sb_d_ops(struct super_block *sb) 1977 { 1978 #if IS_ENABLED(CONFIG_UNICODE) 1979 if (sb->s_encoding) { 1980 set_default_d_op(sb, &generic_ci_dentry_ops); 1981 return; 1982 } 1983 #endif 1984 #ifdef CONFIG_FS_ENCRYPTION 1985 if (sb->s_cop) { 1986 set_default_d_op(sb, &generic_encrypted_dentry_ops); 1987 return; 1988 } 1989 #endif 1990 } 1991 EXPORT_SYMBOL(generic_set_sb_d_ops); 1992 1993 /** 1994 * inode_maybe_inc_iversion - increments i_version 1995 * @inode: inode with the i_version that should be updated 1996 * @force: increment the counter even if it's not necessary? 1997 * 1998 * Every time the inode is modified, the i_version field must be seen to have 1999 * changed by any observer. 2000 * 2001 * If "force" is set or the QUERIED flag is set, then ensure that we increment 2002 * the value, and clear the queried flag. 2003 * 2004 * In the common case where neither is set, then we can return "false" without 2005 * updating i_version. 2006 * 2007 * If this function returns false, and no other metadata has changed, then we 2008 * can avoid logging the metadata. 2009 */ 2010 bool inode_maybe_inc_iversion(struct inode *inode, bool force) 2011 { 2012 u64 cur, new; 2013 2014 /* 2015 * The i_version field is not strictly ordered with any other inode 2016 * information, but the legacy inode_inc_iversion code used a spinlock 2017 * to serialize increments. 2018 * 2019 * We add a full memory barrier to ensure that any de facto ordering 2020 * with other state is preserved (either implicitly coming from cmpxchg 2021 * or explicitly from smp_mb if we don't know upfront if we will execute 2022 * the former). 2023 * 2024 * These barriers pair with inode_query_iversion(). 2025 */ 2026 cur = inode_peek_iversion_raw(inode); 2027 if (!force && !(cur & I_VERSION_QUERIED)) { 2028 smp_mb(); 2029 cur = inode_peek_iversion_raw(inode); 2030 } 2031 2032 do { 2033 /* If flag is clear then we needn't do anything */ 2034 if (!force && !(cur & I_VERSION_QUERIED)) 2035 return false; 2036 2037 /* Since lowest bit is flag, add 2 to avoid it */ 2038 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; 2039 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 2040 return true; 2041 } 2042 EXPORT_SYMBOL(inode_maybe_inc_iversion); 2043 2044 /** 2045 * inode_query_iversion - read i_version for later use 2046 * @inode: inode from which i_version should be read 2047 * 2048 * Read the inode i_version counter. This should be used by callers that wish 2049 * to store the returned i_version for later comparison. This will guarantee 2050 * that a later query of the i_version will result in a different value if 2051 * anything has changed. 2052 * 2053 * In this implementation, we fetch the current value, set the QUERIED flag and 2054 * then try to swap it into place with a cmpxchg, if it wasn't already set. If 2055 * that fails, we try again with the newly fetched value from the cmpxchg. 2056 */ 2057 u64 inode_query_iversion(struct inode *inode) 2058 { 2059 u64 cur, new; 2060 bool fenced = false; 2061 2062 /* 2063 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with 2064 * inode_maybe_inc_iversion(), see that routine for more details. 2065 */ 2066 cur = inode_peek_iversion_raw(inode); 2067 do { 2068 /* If flag is already set, then no need to swap */ 2069 if (cur & I_VERSION_QUERIED) { 2070 if (!fenced) 2071 smp_mb(); 2072 break; 2073 } 2074 2075 fenced = true; 2076 new = cur | I_VERSION_QUERIED; 2077 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 2078 return cur >> I_VERSION_QUERIED_SHIFT; 2079 } 2080 EXPORT_SYMBOL(inode_query_iversion); 2081 2082 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 2083 ssize_t direct_written, ssize_t buffered_written) 2084 { 2085 struct address_space *mapping = iocb->ki_filp->f_mapping; 2086 loff_t pos = iocb->ki_pos - buffered_written; 2087 loff_t end = iocb->ki_pos - 1; 2088 int err; 2089 2090 /* 2091 * If the buffered write fallback returned an error, we want to return 2092 * the number of bytes which were written by direct I/O, or the error 2093 * code if that was zero. 2094 * 2095 * Note that this differs from normal direct-io semantics, which will 2096 * return -EFOO even if some bytes were written. 2097 */ 2098 if (unlikely(buffered_written < 0)) { 2099 if (direct_written) 2100 return direct_written; 2101 return buffered_written; 2102 } 2103 2104 /* 2105 * We need to ensure that the page cache pages are written to disk and 2106 * invalidated to preserve the expected O_DIRECT semantics. 2107 */ 2108 err = filemap_write_and_wait_range(mapping, pos, end); 2109 if (err < 0) { 2110 /* 2111 * We don't know how much we wrote, so just return the number of 2112 * bytes which were direct-written 2113 */ 2114 iocb->ki_pos -= buffered_written; 2115 if (direct_written) 2116 return direct_written; 2117 return err; 2118 } 2119 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT); 2120 return direct_written + buffered_written; 2121 } 2122 EXPORT_SYMBOL_GPL(direct_write_fallback); 2123 2124 /** 2125 * simple_inode_init_ts - initialize the timestamps for a new inode 2126 * @inode: inode to be initialized 2127 * 2128 * When a new inode is created, most filesystems set the timestamps to the 2129 * current time. Add a helper to do this. 2130 */ 2131 struct timespec64 simple_inode_init_ts(struct inode *inode) 2132 { 2133 struct timespec64 ts = inode_set_ctime_current(inode); 2134 2135 inode_set_atime_to_ts(inode, ts); 2136 inode_set_mtime_to_ts(inode, ts); 2137 return ts; 2138 } 2139 EXPORT_SYMBOL(simple_inode_init_ts); 2140 2141 struct dentry *stashed_dentry_get(struct dentry **stashed) 2142 { 2143 struct dentry *dentry; 2144 2145 guard(rcu)(); 2146 dentry = rcu_dereference(*stashed); 2147 if (!dentry) 2148 return NULL; 2149 if (IS_ERR(dentry)) 2150 return dentry; 2151 if (!lockref_get_not_dead(&dentry->d_lockref)) 2152 return NULL; 2153 return dentry; 2154 } 2155 2156 static struct dentry *prepare_anon_dentry(struct dentry **stashed, 2157 struct super_block *sb, 2158 void *data) 2159 { 2160 struct dentry *dentry; 2161 struct inode *inode; 2162 const struct stashed_operations *sops = sb->s_fs_info; 2163 int ret; 2164 2165 inode = new_inode_pseudo(sb); 2166 if (!inode) { 2167 sops->put_data(data); 2168 return ERR_PTR(-ENOMEM); 2169 } 2170 2171 inode->i_flags |= S_IMMUTABLE; 2172 inode->i_mode = S_IFREG; 2173 simple_inode_init_ts(inode); 2174 2175 ret = sops->init_inode(inode, data); 2176 if (ret < 0) { 2177 iput(inode); 2178 return ERR_PTR(ret); 2179 } 2180 2181 /* Notice when this is changed. */ 2182 WARN_ON_ONCE(!S_ISREG(inode->i_mode)); 2183 2184 dentry = d_alloc_anon(sb); 2185 if (!dentry) { 2186 iput(inode); 2187 return ERR_PTR(-ENOMEM); 2188 } 2189 2190 /* Store address of location where dentry's supposed to be stashed. */ 2191 dentry->d_fsdata = stashed; 2192 2193 /* @data is now owned by the fs */ 2194 d_instantiate(dentry, inode); 2195 return dentry; 2196 } 2197 2198 struct dentry *stash_dentry(struct dentry **stashed, struct dentry *dentry) 2199 { 2200 guard(rcu)(); 2201 for (;;) { 2202 struct dentry *old; 2203 2204 /* Assume any old dentry was cleared out. */ 2205 old = cmpxchg(stashed, NULL, dentry); 2206 if (likely(!old)) 2207 return dentry; 2208 2209 /* Check if somebody else installed a reusable dentry. */ 2210 if (lockref_get_not_dead(&old->d_lockref)) 2211 return old; 2212 2213 /* There's an old dead dentry there, try to take it over. */ 2214 if (likely(try_cmpxchg(stashed, &old, dentry))) 2215 return dentry; 2216 } 2217 } 2218 2219 /** 2220 * path_from_stashed - create path from stashed or new dentry 2221 * @stashed: where to retrieve or stash dentry 2222 * @mnt: mnt of the filesystems to use 2223 * @data: data to store in inode->i_private 2224 * @path: path to create 2225 * 2226 * The function tries to retrieve a stashed dentry from @stashed. If the dentry 2227 * is still valid then it will be reused. If the dentry isn't able the function 2228 * will allocate a new dentry and inode. It will then check again whether it 2229 * can reuse an existing dentry in case one has been added in the meantime or 2230 * update @stashed with the newly added dentry. 2231 * 2232 * Special-purpose helper for nsfs and pidfs. 2233 * 2234 * Return: On success zero and on failure a negative error is returned. 2235 */ 2236 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data, 2237 struct path *path) 2238 { 2239 struct dentry *dentry, *res; 2240 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info; 2241 2242 /* See if dentry can be reused. */ 2243 res = stashed_dentry_get(stashed); 2244 if (IS_ERR(res)) 2245 return PTR_ERR(res); 2246 if (res) { 2247 sops->put_data(data); 2248 goto make_path; 2249 } 2250 2251 /* Allocate a new dentry. */ 2252 dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data); 2253 if (IS_ERR(dentry)) 2254 return PTR_ERR(dentry); 2255 2256 /* Added a new dentry. @data is now owned by the filesystem. */ 2257 if (sops->stash_dentry) 2258 res = sops->stash_dentry(stashed, dentry); 2259 else 2260 res = stash_dentry(stashed, dentry); 2261 if (IS_ERR(res)) { 2262 dput(dentry); 2263 return PTR_ERR(res); 2264 } 2265 if (res != dentry) 2266 dput(dentry); 2267 2268 make_path: 2269 path->dentry = res; 2270 path->mnt = mntget(mnt); 2271 VFS_WARN_ON_ONCE(path->dentry->d_fsdata != stashed); 2272 VFS_WARN_ON_ONCE(d_inode(path->dentry)->i_private != data); 2273 return 0; 2274 } 2275 2276 void stashed_dentry_prune(struct dentry *dentry) 2277 { 2278 struct dentry **stashed = dentry->d_fsdata; 2279 struct inode *inode = d_inode(dentry); 2280 2281 if (WARN_ON_ONCE(!stashed)) 2282 return; 2283 2284 if (!inode) 2285 return; 2286 2287 /* 2288 * Only replace our own @dentry as someone else might've 2289 * already cleared out @dentry and stashed their own 2290 * dentry in there. 2291 */ 2292 cmpxchg(stashed, dentry, NULL); 2293 } 2294 2295 /** 2296 * simple_start_creating - prepare to create a given name 2297 * @parent: directory in which to prepare to create the name 2298 * @name: the name to be created 2299 * 2300 * Required lock is taken and a lookup in performed prior to creating an 2301 * object in a directory. No permission checking is performed. 2302 * 2303 * Returns: a negative dentry on which vfs_create() or similar may 2304 * be attempted, or an error. 2305 */ 2306 struct dentry *simple_start_creating(struct dentry *parent, const char *name) 2307 { 2308 struct qstr qname = QSTR(name); 2309 int err; 2310 2311 err = lookup_noperm_common(&qname, parent); 2312 if (err) 2313 return ERR_PTR(err); 2314 return start_dirop(parent, &qname, LOOKUP_CREATE | LOOKUP_EXCL); 2315 } 2316 EXPORT_SYMBOL(simple_start_creating); 2317 2318 /* parent must have been held exclusive since simple_start_creating() */ 2319 void simple_done_creating(struct dentry *child) 2320 { 2321 inode_unlock(child->d_parent->d_inode); 2322 dput(child); 2323 } 2324 EXPORT_SYMBOL(simple_done_creating); 2325