1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/kstack_erase.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108 #include <linux/unwind_deferred.h>
109
110 #include <asm/pgalloc.h>
111 #include <linux/uaccess.h>
112 #include <asm/mmu_context.h>
113 #include <asm/cacheflush.h>
114 #include <asm/tlbflush.h>
115
116 /* For dup_mmap(). */
117 #include "../mm/internal.h"
118
119 #include <trace/events/sched.h>
120
121 #define CREATE_TRACE_POINTS
122 #include <trace/events/task.h>
123
124 #include <kunit/visibility.h>
125
126 /*
127 * Minimum number of threads to boot the kernel
128 */
129 #define MIN_THREADS 20
130
131 /*
132 * Maximum number of threads
133 */
134 #define MAX_THREADS FUTEX_TID_MASK
135
136 /*
137 * Protected counters by write_lock_irq(&tasklist_lock)
138 */
139 unsigned long total_forks; /* Handle normal Linux uptimes. */
140 int nr_threads; /* The idle threads do not count.. */
141
142 static int max_threads; /* tunable limit on nr_threads */
143
144 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
145
146 static const char * const resident_page_types[] = {
147 NAMED_ARRAY_INDEX(MM_FILEPAGES),
148 NAMED_ARRAY_INDEX(MM_ANONPAGES),
149 NAMED_ARRAY_INDEX(MM_SWAPENTS),
150 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
151 };
152
153 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
154
155 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
156
157 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)158 int lockdep_tasklist_lock_is_held(void)
159 {
160 return lockdep_is_held(&tasklist_lock);
161 }
162 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
163 #endif /* #ifdef CONFIG_PROVE_RCU */
164
nr_processes(void)165 int nr_processes(void)
166 {
167 int cpu;
168 int total = 0;
169
170 for_each_possible_cpu(cpu)
171 total += per_cpu(process_counts, cpu);
172
173 return total;
174 }
175
arch_release_task_struct(struct task_struct * tsk)176 void __weak arch_release_task_struct(struct task_struct *tsk)
177 {
178 }
179
180 static struct kmem_cache *task_struct_cachep;
181
alloc_task_struct_node(int node)182 static inline struct task_struct *alloc_task_struct_node(int node)
183 {
184 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
185 }
186
free_task_struct(struct task_struct * tsk)187 static inline void free_task_struct(struct task_struct *tsk)
188 {
189 kmem_cache_free(task_struct_cachep, tsk);
190 }
191
192 /*
193 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
194 * kmemcache based allocator.
195 */
196 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
197
198 # ifdef CONFIG_VMAP_STACK
199 /*
200 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
201 * flush. Try to minimize the number of calls by caching stacks.
202 */
203 #define NR_CACHED_STACKS 2
204 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
205
206 struct vm_stack {
207 struct rcu_head rcu;
208 struct vm_struct *stack_vm_area;
209 };
210
try_release_thread_stack_to_cache(struct vm_struct * vm)211 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
212 {
213 unsigned int i;
214
215 for (i = 0; i < NR_CACHED_STACKS; i++) {
216 struct vm_struct *tmp = NULL;
217
218 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
219 return true;
220 }
221 return false;
222 }
223
thread_stack_free_rcu(struct rcu_head * rh)224 static void thread_stack_free_rcu(struct rcu_head *rh)
225 {
226 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
227
228 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
229 return;
230
231 vfree(vm_stack);
232 }
233
thread_stack_delayed_free(struct task_struct * tsk)234 static void thread_stack_delayed_free(struct task_struct *tsk)
235 {
236 struct vm_stack *vm_stack = tsk->stack;
237
238 vm_stack->stack_vm_area = tsk->stack_vm_area;
239 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
240 }
241
free_vm_stack_cache(unsigned int cpu)242 static int free_vm_stack_cache(unsigned int cpu)
243 {
244 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
245 int i;
246
247 for (i = 0; i < NR_CACHED_STACKS; i++) {
248 struct vm_struct *vm_stack = cached_vm_stacks[i];
249
250 if (!vm_stack)
251 continue;
252
253 vfree(vm_stack->addr);
254 cached_vm_stacks[i] = NULL;
255 }
256
257 return 0;
258 }
259
memcg_charge_kernel_stack(struct vm_struct * vm)260 static int memcg_charge_kernel_stack(struct vm_struct *vm)
261 {
262 int i;
263 int ret;
264 int nr_charged = 0;
265
266 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
267
268 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
269 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
270 if (ret)
271 goto err;
272 nr_charged++;
273 }
274 return 0;
275 err:
276 for (i = 0; i < nr_charged; i++)
277 memcg_kmem_uncharge_page(vm->pages[i], 0);
278 return ret;
279 }
280
alloc_thread_stack_node(struct task_struct * tsk,int node)281 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
282 {
283 struct vm_struct *vm;
284 void *stack;
285 int i;
286
287 for (i = 0; i < NR_CACHED_STACKS; i++) {
288 struct vm_struct *s;
289
290 s = this_cpu_xchg(cached_stacks[i], NULL);
291
292 if (!s)
293 continue;
294
295 /* Reset stack metadata. */
296 kasan_unpoison_range(s->addr, THREAD_SIZE);
297
298 stack = kasan_reset_tag(s->addr);
299
300 /* Clear stale pointers from reused stack. */
301 memset(stack, 0, THREAD_SIZE);
302
303 if (memcg_charge_kernel_stack(s)) {
304 vfree(s->addr);
305 return -ENOMEM;
306 }
307
308 tsk->stack_vm_area = s;
309 tsk->stack = stack;
310 return 0;
311 }
312
313 /*
314 * Allocated stacks are cached and later reused by new threads,
315 * so memcg accounting is performed manually on assigning/releasing
316 * stacks to tasks. Drop __GFP_ACCOUNT.
317 */
318 stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN,
319 THREADINFO_GFP & ~__GFP_ACCOUNT,
320 node, __builtin_return_address(0));
321 if (!stack)
322 return -ENOMEM;
323
324 vm = find_vm_area(stack);
325 if (memcg_charge_kernel_stack(vm)) {
326 vfree(stack);
327 return -ENOMEM;
328 }
329 /*
330 * We can't call find_vm_area() in interrupt context, and
331 * free_thread_stack() can be called in interrupt context,
332 * so cache the vm_struct.
333 */
334 tsk->stack_vm_area = vm;
335 stack = kasan_reset_tag(stack);
336 tsk->stack = stack;
337 return 0;
338 }
339
free_thread_stack(struct task_struct * tsk)340 static void free_thread_stack(struct task_struct *tsk)
341 {
342 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
343 thread_stack_delayed_free(tsk);
344
345 tsk->stack = NULL;
346 tsk->stack_vm_area = NULL;
347 }
348
349 # else /* !CONFIG_VMAP_STACK */
350
thread_stack_free_rcu(struct rcu_head * rh)351 static void thread_stack_free_rcu(struct rcu_head *rh)
352 {
353 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
354 }
355
thread_stack_delayed_free(struct task_struct * tsk)356 static void thread_stack_delayed_free(struct task_struct *tsk)
357 {
358 struct rcu_head *rh = tsk->stack;
359
360 call_rcu(rh, thread_stack_free_rcu);
361 }
362
alloc_thread_stack_node(struct task_struct * tsk,int node)363 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
364 {
365 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
366 THREAD_SIZE_ORDER);
367
368 if (likely(page)) {
369 tsk->stack = kasan_reset_tag(page_address(page));
370 return 0;
371 }
372 return -ENOMEM;
373 }
374
free_thread_stack(struct task_struct * tsk)375 static void free_thread_stack(struct task_struct *tsk)
376 {
377 thread_stack_delayed_free(tsk);
378 tsk->stack = NULL;
379 }
380
381 # endif /* CONFIG_VMAP_STACK */
382 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
383
384 static struct kmem_cache *thread_stack_cache;
385
thread_stack_free_rcu(struct rcu_head * rh)386 static void thread_stack_free_rcu(struct rcu_head *rh)
387 {
388 kmem_cache_free(thread_stack_cache, rh);
389 }
390
thread_stack_delayed_free(struct task_struct * tsk)391 static void thread_stack_delayed_free(struct task_struct *tsk)
392 {
393 struct rcu_head *rh = tsk->stack;
394
395 call_rcu(rh, thread_stack_free_rcu);
396 }
397
alloc_thread_stack_node(struct task_struct * tsk,int node)398 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
399 {
400 unsigned long *stack;
401 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
402 stack = kasan_reset_tag(stack);
403 tsk->stack = stack;
404 return stack ? 0 : -ENOMEM;
405 }
406
free_thread_stack(struct task_struct * tsk)407 static void free_thread_stack(struct task_struct *tsk)
408 {
409 thread_stack_delayed_free(tsk);
410 tsk->stack = NULL;
411 }
412
thread_stack_cache_init(void)413 void thread_stack_cache_init(void)
414 {
415 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
416 THREAD_SIZE, THREAD_SIZE, 0, 0,
417 THREAD_SIZE, NULL);
418 BUG_ON(thread_stack_cache == NULL);
419 }
420
421 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
422
423 /* SLAB cache for signal_struct structures (tsk->signal) */
424 static struct kmem_cache *signal_cachep;
425
426 /* SLAB cache for sighand_struct structures (tsk->sighand) */
427 struct kmem_cache *sighand_cachep;
428
429 /* SLAB cache for files_struct structures (tsk->files) */
430 struct kmem_cache *files_cachep;
431
432 /* SLAB cache for fs_struct structures (tsk->fs) */
433 struct kmem_cache *fs_cachep;
434
435 /* SLAB cache for mm_struct structures (tsk->mm) */
436 static struct kmem_cache *mm_cachep;
437
account_kernel_stack(struct task_struct * tsk,int account)438 static void account_kernel_stack(struct task_struct *tsk, int account)
439 {
440 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
441 struct vm_struct *vm = task_stack_vm_area(tsk);
442 int i;
443
444 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
445 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
446 account * (PAGE_SIZE / 1024));
447 } else {
448 void *stack = task_stack_page(tsk);
449
450 /* All stack pages are in the same node. */
451 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
452 account * (THREAD_SIZE / 1024));
453 }
454 }
455
exit_task_stack_account(struct task_struct * tsk)456 void exit_task_stack_account(struct task_struct *tsk)
457 {
458 account_kernel_stack(tsk, -1);
459
460 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
461 struct vm_struct *vm;
462 int i;
463
464 vm = task_stack_vm_area(tsk);
465 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
466 memcg_kmem_uncharge_page(vm->pages[i], 0);
467 }
468 }
469
release_task_stack(struct task_struct * tsk)470 static void release_task_stack(struct task_struct *tsk)
471 {
472 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
473 return; /* Better to leak the stack than to free prematurely */
474
475 free_thread_stack(tsk);
476 }
477
478 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)479 void put_task_stack(struct task_struct *tsk)
480 {
481 if (refcount_dec_and_test(&tsk->stack_refcount))
482 release_task_stack(tsk);
483 }
484 #endif
485
free_task(struct task_struct * tsk)486 void free_task(struct task_struct *tsk)
487 {
488 #ifdef CONFIG_SECCOMP
489 WARN_ON_ONCE(tsk->seccomp.filter);
490 #endif
491 release_user_cpus_ptr(tsk);
492 scs_release(tsk);
493
494 #ifndef CONFIG_THREAD_INFO_IN_TASK
495 /*
496 * The task is finally done with both the stack and thread_info,
497 * so free both.
498 */
499 release_task_stack(tsk);
500 #else
501 /*
502 * If the task had a separate stack allocation, it should be gone
503 * by now.
504 */
505 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
506 #endif
507 rt_mutex_debug_task_free(tsk);
508 ftrace_graph_exit_task(tsk);
509 arch_release_task_struct(tsk);
510 if (tsk->flags & PF_KTHREAD)
511 free_kthread_struct(tsk);
512 bpf_task_storage_free(tsk);
513 free_task_struct(tsk);
514 }
515 EXPORT_SYMBOL(free_task);
516
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)517 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
518 {
519 struct file *exe_file;
520
521 exe_file = get_mm_exe_file(oldmm);
522 RCU_INIT_POINTER(mm->exe_file, exe_file);
523 /*
524 * We depend on the oldmm having properly denied write access to the
525 * exe_file already.
526 */
527 if (exe_file && exe_file_deny_write_access(exe_file))
528 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
529 }
530
531 #ifdef CONFIG_MMU
mm_alloc_pgd(struct mm_struct * mm)532 static inline int mm_alloc_pgd(struct mm_struct *mm)
533 {
534 mm->pgd = pgd_alloc(mm);
535 if (unlikely(!mm->pgd))
536 return -ENOMEM;
537 return 0;
538 }
539
mm_free_pgd(struct mm_struct * mm)540 static inline void mm_free_pgd(struct mm_struct *mm)
541 {
542 pgd_free(mm, mm->pgd);
543 }
544 #else
545 #define mm_alloc_pgd(mm) (0)
546 #define mm_free_pgd(mm)
547 #endif /* CONFIG_MMU */
548
549 #ifdef CONFIG_MM_ID
550 static DEFINE_IDA(mm_ida);
551
mm_alloc_id(struct mm_struct * mm)552 static inline int mm_alloc_id(struct mm_struct *mm)
553 {
554 int ret;
555
556 ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL);
557 if (ret < 0)
558 return ret;
559 mm->mm_id = ret;
560 return 0;
561 }
562
mm_free_id(struct mm_struct * mm)563 static inline void mm_free_id(struct mm_struct *mm)
564 {
565 const mm_id_t id = mm->mm_id;
566
567 mm->mm_id = MM_ID_DUMMY;
568 if (id == MM_ID_DUMMY)
569 return;
570 if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX))
571 return;
572 ida_free(&mm_ida, id);
573 }
574 #else /* !CONFIG_MM_ID */
mm_alloc_id(struct mm_struct * mm)575 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; }
mm_free_id(struct mm_struct * mm)576 static inline void mm_free_id(struct mm_struct *mm) {}
577 #endif /* CONFIG_MM_ID */
578
check_mm(struct mm_struct * mm)579 static void check_mm(struct mm_struct *mm)
580 {
581 int i;
582
583 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
584 "Please make sure 'struct resident_page_types[]' is updated as well");
585
586 for (i = 0; i < NR_MM_COUNTERS; i++) {
587 long x = percpu_counter_sum(&mm->rss_stat[i]);
588
589 if (unlikely(x))
590 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
591 mm, resident_page_types[i], x);
592 }
593
594 if (mm_pgtables_bytes(mm))
595 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
596 mm_pgtables_bytes(mm));
597
598 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
599 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
600 #endif
601 }
602
603 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
604 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
605
do_check_lazy_tlb(void * arg)606 static void do_check_lazy_tlb(void *arg)
607 {
608 struct mm_struct *mm = arg;
609
610 WARN_ON_ONCE(current->active_mm == mm);
611 }
612
do_shoot_lazy_tlb(void * arg)613 static void do_shoot_lazy_tlb(void *arg)
614 {
615 struct mm_struct *mm = arg;
616
617 if (current->active_mm == mm) {
618 WARN_ON_ONCE(current->mm);
619 current->active_mm = &init_mm;
620 switch_mm(mm, &init_mm, current);
621 }
622 }
623
cleanup_lazy_tlbs(struct mm_struct * mm)624 static void cleanup_lazy_tlbs(struct mm_struct *mm)
625 {
626 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
627 /*
628 * In this case, lazy tlb mms are refounted and would not reach
629 * __mmdrop until all CPUs have switched away and mmdrop()ed.
630 */
631 return;
632 }
633
634 /*
635 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
636 * requires lazy mm users to switch to another mm when the refcount
637 * drops to zero, before the mm is freed. This requires IPIs here to
638 * switch kernel threads to init_mm.
639 *
640 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
641 * switch with the final userspace teardown TLB flush which leaves the
642 * mm lazy on this CPU but no others, reducing the need for additional
643 * IPIs here. There are cases where a final IPI is still required here,
644 * such as the final mmdrop being performed on a different CPU than the
645 * one exiting, or kernel threads using the mm when userspace exits.
646 *
647 * IPI overheads have not found to be expensive, but they could be
648 * reduced in a number of possible ways, for example (roughly
649 * increasing order of complexity):
650 * - The last lazy reference created by exit_mm() could instead switch
651 * to init_mm, however it's probable this will run on the same CPU
652 * immediately afterwards, so this may not reduce IPIs much.
653 * - A batch of mms requiring IPIs could be gathered and freed at once.
654 * - CPUs store active_mm where it can be remotely checked without a
655 * lock, to filter out false-positives in the cpumask.
656 * - After mm_users or mm_count reaches zero, switching away from the
657 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
658 * with some batching or delaying of the final IPIs.
659 * - A delayed freeing and RCU-like quiescing sequence based on mm
660 * switching to avoid IPIs completely.
661 */
662 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
663 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
664 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
665 }
666
667 /*
668 * Called when the last reference to the mm
669 * is dropped: either by a lazy thread or by
670 * mmput. Free the page directory and the mm.
671 */
__mmdrop(struct mm_struct * mm)672 void __mmdrop(struct mm_struct *mm)
673 {
674 BUG_ON(mm == &init_mm);
675 WARN_ON_ONCE(mm == current->mm);
676
677 /* Ensure no CPUs are using this as their lazy tlb mm */
678 cleanup_lazy_tlbs(mm);
679
680 WARN_ON_ONCE(mm == current->active_mm);
681 mm_free_pgd(mm);
682 mm_free_id(mm);
683 destroy_context(mm);
684 mmu_notifier_subscriptions_destroy(mm);
685 check_mm(mm);
686 put_user_ns(mm->user_ns);
687 mm_pasid_drop(mm);
688 mm_destroy_cid(mm);
689 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
690
691 free_mm(mm);
692 }
693 EXPORT_SYMBOL_GPL(__mmdrop);
694
mmdrop_async_fn(struct work_struct * work)695 static void mmdrop_async_fn(struct work_struct *work)
696 {
697 struct mm_struct *mm;
698
699 mm = container_of(work, struct mm_struct, async_put_work);
700 __mmdrop(mm);
701 }
702
mmdrop_async(struct mm_struct * mm)703 static void mmdrop_async(struct mm_struct *mm)
704 {
705 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
706 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
707 schedule_work(&mm->async_put_work);
708 }
709 }
710
free_signal_struct(struct signal_struct * sig)711 static inline void free_signal_struct(struct signal_struct *sig)
712 {
713 taskstats_tgid_free(sig);
714 sched_autogroup_exit(sig);
715 /*
716 * __mmdrop is not safe to call from softirq context on x86 due to
717 * pgd_dtor so postpone it to the async context
718 */
719 if (sig->oom_mm)
720 mmdrop_async(sig->oom_mm);
721 kmem_cache_free(signal_cachep, sig);
722 }
723
put_signal_struct(struct signal_struct * sig)724 static inline void put_signal_struct(struct signal_struct *sig)
725 {
726 if (refcount_dec_and_test(&sig->sigcnt))
727 free_signal_struct(sig);
728 }
729
__put_task_struct(struct task_struct * tsk)730 void __put_task_struct(struct task_struct *tsk)
731 {
732 WARN_ON(!tsk->exit_state);
733 WARN_ON(refcount_read(&tsk->usage));
734 WARN_ON(tsk == current);
735
736 unwind_task_free(tsk);
737 sched_ext_free(tsk);
738 io_uring_free(tsk);
739 cgroup_free(tsk);
740 task_numa_free(tsk, true);
741 security_task_free(tsk);
742 exit_creds(tsk);
743 delayacct_tsk_free(tsk);
744 put_signal_struct(tsk->signal);
745 sched_core_free(tsk);
746 free_task(tsk);
747 }
748 EXPORT_SYMBOL_GPL(__put_task_struct);
749
__put_task_struct_rcu_cb(struct rcu_head * rhp)750 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
751 {
752 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
753
754 __put_task_struct(task);
755 }
756 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
757
arch_task_cache_init(void)758 void __init __weak arch_task_cache_init(void) { }
759
760 /*
761 * set_max_threads
762 */
set_max_threads(unsigned int max_threads_suggested)763 static void __init set_max_threads(unsigned int max_threads_suggested)
764 {
765 u64 threads;
766 unsigned long nr_pages = memblock_estimated_nr_free_pages();
767
768 /*
769 * The number of threads shall be limited such that the thread
770 * structures may only consume a small part of the available memory.
771 */
772 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
773 threads = MAX_THREADS;
774 else
775 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
776 (u64) THREAD_SIZE * 8UL);
777
778 if (threads > max_threads_suggested)
779 threads = max_threads_suggested;
780
781 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
782 }
783
784 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
785 /* Initialized by the architecture: */
786 int arch_task_struct_size __read_mostly;
787 #endif
788
task_struct_whitelist(unsigned long * offset,unsigned long * size)789 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
790 {
791 /* Fetch thread_struct whitelist for the architecture. */
792 arch_thread_struct_whitelist(offset, size);
793
794 /*
795 * Handle zero-sized whitelist or empty thread_struct, otherwise
796 * adjust offset to position of thread_struct in task_struct.
797 */
798 if (unlikely(*size == 0))
799 *offset = 0;
800 else
801 *offset += offsetof(struct task_struct, thread);
802 }
803
fork_init(void)804 void __init fork_init(void)
805 {
806 int i;
807 #ifndef ARCH_MIN_TASKALIGN
808 #define ARCH_MIN_TASKALIGN 0
809 #endif
810 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
811 unsigned long useroffset, usersize;
812
813 /* create a slab on which task_structs can be allocated */
814 task_struct_whitelist(&useroffset, &usersize);
815 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
816 arch_task_struct_size, align,
817 SLAB_PANIC|SLAB_ACCOUNT,
818 useroffset, usersize, NULL);
819
820 /* do the arch specific task caches init */
821 arch_task_cache_init();
822
823 set_max_threads(MAX_THREADS);
824
825 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
826 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
827 init_task.signal->rlim[RLIMIT_SIGPENDING] =
828 init_task.signal->rlim[RLIMIT_NPROC];
829
830 for (i = 0; i < UCOUNT_COUNTS; i++)
831 init_user_ns.ucount_max[i] = max_threads/2;
832
833 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
834 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
835 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
836 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
837
838 #ifdef CONFIG_VMAP_STACK
839 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
840 NULL, free_vm_stack_cache);
841 #endif
842
843 scs_init();
844
845 lockdep_init_task(&init_task);
846 uprobes_init();
847 }
848
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)849 int __weak arch_dup_task_struct(struct task_struct *dst,
850 struct task_struct *src)
851 {
852 *dst = *src;
853 return 0;
854 }
855
set_task_stack_end_magic(struct task_struct * tsk)856 void set_task_stack_end_magic(struct task_struct *tsk)
857 {
858 unsigned long *stackend;
859
860 stackend = end_of_stack(tsk);
861 *stackend = STACK_END_MAGIC; /* for overflow detection */
862 }
863
dup_task_struct(struct task_struct * orig,int node)864 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
865 {
866 struct task_struct *tsk;
867 int err;
868
869 if (node == NUMA_NO_NODE)
870 node = tsk_fork_get_node(orig);
871 tsk = alloc_task_struct_node(node);
872 if (!tsk)
873 return NULL;
874
875 err = arch_dup_task_struct(tsk, orig);
876 if (err)
877 goto free_tsk;
878
879 err = alloc_thread_stack_node(tsk, node);
880 if (err)
881 goto free_tsk;
882
883 #ifdef CONFIG_THREAD_INFO_IN_TASK
884 refcount_set(&tsk->stack_refcount, 1);
885 #endif
886 account_kernel_stack(tsk, 1);
887
888 err = scs_prepare(tsk, node);
889 if (err)
890 goto free_stack;
891
892 #ifdef CONFIG_SECCOMP
893 /*
894 * We must handle setting up seccomp filters once we're under
895 * the sighand lock in case orig has changed between now and
896 * then. Until then, filter must be NULL to avoid messing up
897 * the usage counts on the error path calling free_task.
898 */
899 tsk->seccomp.filter = NULL;
900 #endif
901
902 setup_thread_stack(tsk, orig);
903 clear_user_return_notifier(tsk);
904 clear_tsk_need_resched(tsk);
905 set_task_stack_end_magic(tsk);
906 clear_syscall_work_syscall_user_dispatch(tsk);
907
908 #ifdef CONFIG_STACKPROTECTOR
909 tsk->stack_canary = get_random_canary();
910 #endif
911 if (orig->cpus_ptr == &orig->cpus_mask)
912 tsk->cpus_ptr = &tsk->cpus_mask;
913 dup_user_cpus_ptr(tsk, orig, node);
914
915 /*
916 * One for the user space visible state that goes away when reaped.
917 * One for the scheduler.
918 */
919 refcount_set(&tsk->rcu_users, 2);
920 /* One for the rcu users */
921 refcount_set(&tsk->usage, 1);
922 #ifdef CONFIG_BLK_DEV_IO_TRACE
923 tsk->btrace_seq = 0;
924 #endif
925 tsk->splice_pipe = NULL;
926 tsk->task_frag.page = NULL;
927 tsk->wake_q.next = NULL;
928 tsk->worker_private = NULL;
929
930 kcov_task_init(tsk);
931 kmsan_task_create(tsk);
932 kmap_local_fork(tsk);
933
934 #ifdef CONFIG_FAULT_INJECTION
935 tsk->fail_nth = 0;
936 #endif
937
938 #ifdef CONFIG_BLK_CGROUP
939 tsk->throttle_disk = NULL;
940 tsk->use_memdelay = 0;
941 #endif
942
943 #ifdef CONFIG_ARCH_HAS_CPU_PASID
944 tsk->pasid_activated = 0;
945 #endif
946
947 #ifdef CONFIG_MEMCG
948 tsk->active_memcg = NULL;
949 #endif
950
951 #ifdef CONFIG_X86_BUS_LOCK_DETECT
952 tsk->reported_split_lock = 0;
953 #endif
954
955 #ifdef CONFIG_SCHED_MM_CID
956 tsk->mm_cid = -1;
957 tsk->last_mm_cid = -1;
958 tsk->mm_cid_active = 0;
959 tsk->migrate_from_cpu = -1;
960 #endif
961 return tsk;
962
963 free_stack:
964 exit_task_stack_account(tsk);
965 free_thread_stack(tsk);
966 free_tsk:
967 free_task_struct(tsk);
968 return NULL;
969 }
970
971 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
972
973 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
974
coredump_filter_setup(char * s)975 static int __init coredump_filter_setup(char *s)
976 {
977 default_dump_filter =
978 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
979 MMF_DUMP_FILTER_MASK;
980 return 1;
981 }
982
983 __setup("coredump_filter=", coredump_filter_setup);
984
985 #include <linux/init_task.h>
986
mm_init_aio(struct mm_struct * mm)987 static void mm_init_aio(struct mm_struct *mm)
988 {
989 #ifdef CONFIG_AIO
990 spin_lock_init(&mm->ioctx_lock);
991 mm->ioctx_table = NULL;
992 #endif
993 }
994
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)995 static __always_inline void mm_clear_owner(struct mm_struct *mm,
996 struct task_struct *p)
997 {
998 #ifdef CONFIG_MEMCG
999 if (mm->owner == p)
1000 WRITE_ONCE(mm->owner, NULL);
1001 #endif
1002 }
1003
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1004 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1005 {
1006 #ifdef CONFIG_MEMCG
1007 mm->owner = p;
1008 #endif
1009 }
1010
mm_init_uprobes_state(struct mm_struct * mm)1011 static void mm_init_uprobes_state(struct mm_struct *mm)
1012 {
1013 #ifdef CONFIG_UPROBES
1014 mm->uprobes_state.xol_area = NULL;
1015 #endif
1016 }
1017
mmap_init_lock(struct mm_struct * mm)1018 static void mmap_init_lock(struct mm_struct *mm)
1019 {
1020 init_rwsem(&mm->mmap_lock);
1021 mm_lock_seqcount_init(mm);
1022 #ifdef CONFIG_PER_VMA_LOCK
1023 rcuwait_init(&mm->vma_writer_wait);
1024 #endif
1025 }
1026
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1027 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1028 struct user_namespace *user_ns)
1029 {
1030 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1031 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1032 atomic_set(&mm->mm_users, 1);
1033 atomic_set(&mm->mm_count, 1);
1034 seqcount_init(&mm->write_protect_seq);
1035 mmap_init_lock(mm);
1036 INIT_LIST_HEAD(&mm->mmlist);
1037 mm_pgtables_bytes_init(mm);
1038 mm->map_count = 0;
1039 mm->locked_vm = 0;
1040 atomic64_set(&mm->pinned_vm, 0);
1041 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1042 spin_lock_init(&mm->page_table_lock);
1043 spin_lock_init(&mm->arg_lock);
1044 mm_init_cpumask(mm);
1045 mm_init_aio(mm);
1046 mm_init_owner(mm, p);
1047 mm_pasid_init(mm);
1048 RCU_INIT_POINTER(mm->exe_file, NULL);
1049 mmu_notifier_subscriptions_init(mm);
1050 init_tlb_flush_pending(mm);
1051 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1052 mm->pmd_huge_pte = NULL;
1053 #endif
1054 mm_init_uprobes_state(mm);
1055 hugetlb_count_init(mm);
1056
1057 if (current->mm) {
1058 mm->flags = mmf_init_flags(current->mm->flags);
1059 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1060 } else {
1061 mm->flags = default_dump_filter;
1062 mm->def_flags = 0;
1063 }
1064
1065 if (futex_mm_init(mm))
1066 goto fail_mm_init;
1067
1068 if (mm_alloc_pgd(mm))
1069 goto fail_nopgd;
1070
1071 if (mm_alloc_id(mm))
1072 goto fail_noid;
1073
1074 if (init_new_context(p, mm))
1075 goto fail_nocontext;
1076
1077 if (mm_alloc_cid(mm, p))
1078 goto fail_cid;
1079
1080 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1081 NR_MM_COUNTERS))
1082 goto fail_pcpu;
1083
1084 mm->user_ns = get_user_ns(user_ns);
1085 lru_gen_init_mm(mm);
1086 return mm;
1087
1088 fail_pcpu:
1089 mm_destroy_cid(mm);
1090 fail_cid:
1091 destroy_context(mm);
1092 fail_nocontext:
1093 mm_free_id(mm);
1094 fail_noid:
1095 mm_free_pgd(mm);
1096 fail_nopgd:
1097 futex_hash_free(mm);
1098 fail_mm_init:
1099 free_mm(mm);
1100 return NULL;
1101 }
1102
1103 /*
1104 * Allocate and initialize an mm_struct.
1105 */
mm_alloc(void)1106 struct mm_struct *mm_alloc(void)
1107 {
1108 struct mm_struct *mm;
1109
1110 mm = allocate_mm();
1111 if (!mm)
1112 return NULL;
1113
1114 memset(mm, 0, sizeof(*mm));
1115 return mm_init(mm, current, current_user_ns());
1116 }
1117 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1118
__mmput(struct mm_struct * mm)1119 static inline void __mmput(struct mm_struct *mm)
1120 {
1121 VM_BUG_ON(atomic_read(&mm->mm_users));
1122
1123 uprobe_clear_state(mm);
1124 exit_aio(mm);
1125 ksm_exit(mm);
1126 khugepaged_exit(mm); /* must run before exit_mmap */
1127 exit_mmap(mm);
1128 mm_put_huge_zero_folio(mm);
1129 set_mm_exe_file(mm, NULL);
1130 if (!list_empty(&mm->mmlist)) {
1131 spin_lock(&mmlist_lock);
1132 list_del(&mm->mmlist);
1133 spin_unlock(&mmlist_lock);
1134 }
1135 if (mm->binfmt)
1136 module_put(mm->binfmt->module);
1137 lru_gen_del_mm(mm);
1138 futex_hash_free(mm);
1139 mmdrop(mm);
1140 }
1141
1142 /*
1143 * Decrement the use count and release all resources for an mm.
1144 */
mmput(struct mm_struct * mm)1145 void mmput(struct mm_struct *mm)
1146 {
1147 might_sleep();
1148
1149 if (atomic_dec_and_test(&mm->mm_users))
1150 __mmput(mm);
1151 }
1152 EXPORT_SYMBOL_GPL(mmput);
1153
1154 #if defined(CONFIG_MMU) || defined(CONFIG_FUTEX_PRIVATE_HASH)
mmput_async_fn(struct work_struct * work)1155 static void mmput_async_fn(struct work_struct *work)
1156 {
1157 struct mm_struct *mm = container_of(work, struct mm_struct,
1158 async_put_work);
1159
1160 __mmput(mm);
1161 }
1162
mmput_async(struct mm_struct * mm)1163 void mmput_async(struct mm_struct *mm)
1164 {
1165 if (atomic_dec_and_test(&mm->mm_users)) {
1166 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1167 schedule_work(&mm->async_put_work);
1168 }
1169 }
1170 EXPORT_SYMBOL_GPL(mmput_async);
1171 #endif
1172
1173 /**
1174 * set_mm_exe_file - change a reference to the mm's executable file
1175 * @mm: The mm to change.
1176 * @new_exe_file: The new file to use.
1177 *
1178 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1179 *
1180 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1181 * invocations: in mmput() nobody alive left, in execve it happens before
1182 * the new mm is made visible to anyone.
1183 *
1184 * Can only fail if new_exe_file != NULL.
1185 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1186 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1187 {
1188 struct file *old_exe_file;
1189
1190 /*
1191 * It is safe to dereference the exe_file without RCU as
1192 * this function is only called if nobody else can access
1193 * this mm -- see comment above for justification.
1194 */
1195 old_exe_file = rcu_dereference_raw(mm->exe_file);
1196
1197 if (new_exe_file) {
1198 /*
1199 * We expect the caller (i.e., sys_execve) to already denied
1200 * write access, so this is unlikely to fail.
1201 */
1202 if (unlikely(exe_file_deny_write_access(new_exe_file)))
1203 return -EACCES;
1204 get_file(new_exe_file);
1205 }
1206 rcu_assign_pointer(mm->exe_file, new_exe_file);
1207 if (old_exe_file) {
1208 exe_file_allow_write_access(old_exe_file);
1209 fput(old_exe_file);
1210 }
1211 return 0;
1212 }
1213
1214 /**
1215 * replace_mm_exe_file - replace a reference to the mm's executable file
1216 * @mm: The mm to change.
1217 * @new_exe_file: The new file to use.
1218 *
1219 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1220 *
1221 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1222 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1223 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1224 {
1225 struct vm_area_struct *vma;
1226 struct file *old_exe_file;
1227 int ret = 0;
1228
1229 /* Forbid mm->exe_file change if old file still mapped. */
1230 old_exe_file = get_mm_exe_file(mm);
1231 if (old_exe_file) {
1232 VMA_ITERATOR(vmi, mm, 0);
1233 mmap_read_lock(mm);
1234 for_each_vma(vmi, vma) {
1235 if (!vma->vm_file)
1236 continue;
1237 if (path_equal(&vma->vm_file->f_path,
1238 &old_exe_file->f_path)) {
1239 ret = -EBUSY;
1240 break;
1241 }
1242 }
1243 mmap_read_unlock(mm);
1244 fput(old_exe_file);
1245 if (ret)
1246 return ret;
1247 }
1248
1249 ret = exe_file_deny_write_access(new_exe_file);
1250 if (ret)
1251 return -EACCES;
1252 get_file(new_exe_file);
1253
1254 /* set the new file */
1255 mmap_write_lock(mm);
1256 old_exe_file = rcu_dereference_raw(mm->exe_file);
1257 rcu_assign_pointer(mm->exe_file, new_exe_file);
1258 mmap_write_unlock(mm);
1259
1260 if (old_exe_file) {
1261 exe_file_allow_write_access(old_exe_file);
1262 fput(old_exe_file);
1263 }
1264 return 0;
1265 }
1266
1267 /**
1268 * get_mm_exe_file - acquire a reference to the mm's executable file
1269 * @mm: The mm of interest.
1270 *
1271 * Returns %NULL if mm has no associated executable file.
1272 * User must release file via fput().
1273 */
get_mm_exe_file(struct mm_struct * mm)1274 struct file *get_mm_exe_file(struct mm_struct *mm)
1275 {
1276 struct file *exe_file;
1277
1278 rcu_read_lock();
1279 exe_file = get_file_rcu(&mm->exe_file);
1280 rcu_read_unlock();
1281 return exe_file;
1282 }
1283
1284 /**
1285 * get_task_exe_file - acquire a reference to the task's executable file
1286 * @task: The task.
1287 *
1288 * Returns %NULL if task's mm (if any) has no associated executable file or
1289 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1290 * User must release file via fput().
1291 */
get_task_exe_file(struct task_struct * task)1292 struct file *get_task_exe_file(struct task_struct *task)
1293 {
1294 struct file *exe_file = NULL;
1295 struct mm_struct *mm;
1296
1297 if (task->flags & PF_KTHREAD)
1298 return NULL;
1299
1300 task_lock(task);
1301 mm = task->mm;
1302 if (mm)
1303 exe_file = get_mm_exe_file(mm);
1304 task_unlock(task);
1305 return exe_file;
1306 }
1307
1308 /**
1309 * get_task_mm - acquire a reference to the task's mm
1310 * @task: The task.
1311 *
1312 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1313 * this kernel workthread has transiently adopted a user mm with use_mm,
1314 * to do its AIO) is not set and if so returns a reference to it, after
1315 * bumping up the use count. User must release the mm via mmput()
1316 * after use. Typically used by /proc and ptrace.
1317 */
get_task_mm(struct task_struct * task)1318 struct mm_struct *get_task_mm(struct task_struct *task)
1319 {
1320 struct mm_struct *mm;
1321
1322 if (task->flags & PF_KTHREAD)
1323 return NULL;
1324
1325 task_lock(task);
1326 mm = task->mm;
1327 if (mm)
1328 mmget(mm);
1329 task_unlock(task);
1330 return mm;
1331 }
1332 EXPORT_SYMBOL_GPL(get_task_mm);
1333
may_access_mm(struct mm_struct * mm,struct task_struct * task,unsigned int mode)1334 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode)
1335 {
1336 if (mm == current->mm)
1337 return true;
1338 if (ptrace_may_access(task, mode))
1339 return true;
1340 if ((mode & PTRACE_MODE_READ) && perfmon_capable())
1341 return true;
1342 return false;
1343 }
1344
mm_access(struct task_struct * task,unsigned int mode)1345 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1346 {
1347 struct mm_struct *mm;
1348 int err;
1349
1350 err = down_read_killable(&task->signal->exec_update_lock);
1351 if (err)
1352 return ERR_PTR(err);
1353
1354 mm = get_task_mm(task);
1355 if (!mm) {
1356 mm = ERR_PTR(-ESRCH);
1357 } else if (!may_access_mm(mm, task, mode)) {
1358 mmput(mm);
1359 mm = ERR_PTR(-EACCES);
1360 }
1361 up_read(&task->signal->exec_update_lock);
1362
1363 return mm;
1364 }
1365
complete_vfork_done(struct task_struct * tsk)1366 static void complete_vfork_done(struct task_struct *tsk)
1367 {
1368 struct completion *vfork;
1369
1370 task_lock(tsk);
1371 vfork = tsk->vfork_done;
1372 if (likely(vfork)) {
1373 tsk->vfork_done = NULL;
1374 complete(vfork);
1375 }
1376 task_unlock(tsk);
1377 }
1378
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1379 static int wait_for_vfork_done(struct task_struct *child,
1380 struct completion *vfork)
1381 {
1382 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1383 int killed;
1384
1385 cgroup_enter_frozen();
1386 killed = wait_for_completion_state(vfork, state);
1387 cgroup_leave_frozen(false);
1388
1389 if (killed) {
1390 task_lock(child);
1391 child->vfork_done = NULL;
1392 task_unlock(child);
1393 }
1394
1395 put_task_struct(child);
1396 return killed;
1397 }
1398
1399 /* Please note the differences between mmput and mm_release.
1400 * mmput is called whenever we stop holding onto a mm_struct,
1401 * error success whatever.
1402 *
1403 * mm_release is called after a mm_struct has been removed
1404 * from the current process.
1405 *
1406 * This difference is important for error handling, when we
1407 * only half set up a mm_struct for a new process and need to restore
1408 * the old one. Because we mmput the new mm_struct before
1409 * restoring the old one. . .
1410 * Eric Biederman 10 January 1998
1411 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1412 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1413 {
1414 uprobe_free_utask(tsk);
1415
1416 /* Get rid of any cached register state */
1417 deactivate_mm(tsk, mm);
1418
1419 /*
1420 * Signal userspace if we're not exiting with a core dump
1421 * because we want to leave the value intact for debugging
1422 * purposes.
1423 */
1424 if (tsk->clear_child_tid) {
1425 if (atomic_read(&mm->mm_users) > 1) {
1426 /*
1427 * We don't check the error code - if userspace has
1428 * not set up a proper pointer then tough luck.
1429 */
1430 put_user(0, tsk->clear_child_tid);
1431 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1432 1, NULL, NULL, 0, 0);
1433 }
1434 tsk->clear_child_tid = NULL;
1435 }
1436
1437 /*
1438 * All done, finally we can wake up parent and return this mm to him.
1439 * Also kthread_stop() uses this completion for synchronization.
1440 */
1441 if (tsk->vfork_done)
1442 complete_vfork_done(tsk);
1443 }
1444
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1445 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1446 {
1447 futex_exit_release(tsk);
1448 mm_release(tsk, mm);
1449 }
1450
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1451 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1452 {
1453 futex_exec_release(tsk);
1454 mm_release(tsk, mm);
1455 }
1456
1457 /**
1458 * dup_mm() - duplicates an existing mm structure
1459 * @tsk: the task_struct with which the new mm will be associated.
1460 * @oldmm: the mm to duplicate.
1461 *
1462 * Allocates a new mm structure and duplicates the provided @oldmm structure
1463 * content into it.
1464 *
1465 * Return: the duplicated mm or NULL on failure.
1466 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1467 static struct mm_struct *dup_mm(struct task_struct *tsk,
1468 struct mm_struct *oldmm)
1469 {
1470 struct mm_struct *mm;
1471 int err;
1472
1473 mm = allocate_mm();
1474 if (!mm)
1475 goto fail_nomem;
1476
1477 memcpy(mm, oldmm, sizeof(*mm));
1478
1479 if (!mm_init(mm, tsk, mm->user_ns))
1480 goto fail_nomem;
1481
1482 uprobe_start_dup_mmap();
1483 err = dup_mmap(mm, oldmm);
1484 if (err)
1485 goto free_pt;
1486 uprobe_end_dup_mmap();
1487
1488 mm->hiwater_rss = get_mm_rss(mm);
1489 mm->hiwater_vm = mm->total_vm;
1490
1491 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1492 goto free_pt;
1493
1494 return mm;
1495
1496 free_pt:
1497 /* don't put binfmt in mmput, we haven't got module yet */
1498 mm->binfmt = NULL;
1499 mm_init_owner(mm, NULL);
1500 mmput(mm);
1501 if (err)
1502 uprobe_end_dup_mmap();
1503
1504 fail_nomem:
1505 return NULL;
1506 }
1507
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1508 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1509 {
1510 struct mm_struct *mm, *oldmm;
1511
1512 tsk->min_flt = tsk->maj_flt = 0;
1513 tsk->nvcsw = tsk->nivcsw = 0;
1514 #ifdef CONFIG_DETECT_HUNG_TASK
1515 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1516 tsk->last_switch_time = 0;
1517 #endif
1518
1519 tsk->mm = NULL;
1520 tsk->active_mm = NULL;
1521
1522 /*
1523 * Are we cloning a kernel thread?
1524 *
1525 * We need to steal a active VM for that..
1526 */
1527 oldmm = current->mm;
1528 if (!oldmm)
1529 return 0;
1530
1531 if (clone_flags & CLONE_VM) {
1532 mmget(oldmm);
1533 mm = oldmm;
1534 } else {
1535 mm = dup_mm(tsk, current->mm);
1536 if (!mm)
1537 return -ENOMEM;
1538 }
1539
1540 tsk->mm = mm;
1541 tsk->active_mm = mm;
1542 sched_mm_cid_fork(tsk);
1543 return 0;
1544 }
1545
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1546 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1547 {
1548 struct fs_struct *fs = current->fs;
1549 if (clone_flags & CLONE_FS) {
1550 /* tsk->fs is already what we want */
1551 read_seqlock_excl(&fs->seq);
1552 /* "users" and "in_exec" locked for check_unsafe_exec() */
1553 if (fs->in_exec) {
1554 read_sequnlock_excl(&fs->seq);
1555 return -EAGAIN;
1556 }
1557 fs->users++;
1558 read_sequnlock_excl(&fs->seq);
1559 return 0;
1560 }
1561 tsk->fs = copy_fs_struct(fs);
1562 if (!tsk->fs)
1563 return -ENOMEM;
1564 return 0;
1565 }
1566
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1567 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1568 int no_files)
1569 {
1570 struct files_struct *oldf, *newf;
1571
1572 /*
1573 * A background process may not have any files ...
1574 */
1575 oldf = current->files;
1576 if (!oldf)
1577 return 0;
1578
1579 if (no_files) {
1580 tsk->files = NULL;
1581 return 0;
1582 }
1583
1584 if (clone_flags & CLONE_FILES) {
1585 atomic_inc(&oldf->count);
1586 return 0;
1587 }
1588
1589 newf = dup_fd(oldf, NULL);
1590 if (IS_ERR(newf))
1591 return PTR_ERR(newf);
1592
1593 tsk->files = newf;
1594 return 0;
1595 }
1596
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1597 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1598 {
1599 struct sighand_struct *sig;
1600
1601 if (clone_flags & CLONE_SIGHAND) {
1602 refcount_inc(¤t->sighand->count);
1603 return 0;
1604 }
1605 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1606 RCU_INIT_POINTER(tsk->sighand, sig);
1607 if (!sig)
1608 return -ENOMEM;
1609
1610 refcount_set(&sig->count, 1);
1611 spin_lock_irq(¤t->sighand->siglock);
1612 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1613 spin_unlock_irq(¤t->sighand->siglock);
1614
1615 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1616 if (clone_flags & CLONE_CLEAR_SIGHAND)
1617 flush_signal_handlers(tsk, 0);
1618
1619 return 0;
1620 }
1621
__cleanup_sighand(struct sighand_struct * sighand)1622 void __cleanup_sighand(struct sighand_struct *sighand)
1623 {
1624 if (refcount_dec_and_test(&sighand->count)) {
1625 signalfd_cleanup(sighand);
1626 /*
1627 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1628 * without an RCU grace period, see __lock_task_sighand().
1629 */
1630 kmem_cache_free(sighand_cachep, sighand);
1631 }
1632 }
1633
1634 /*
1635 * Initialize POSIX timer handling for a thread group.
1636 */
posix_cpu_timers_init_group(struct signal_struct * sig)1637 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1638 {
1639 struct posix_cputimers *pct = &sig->posix_cputimers;
1640 unsigned long cpu_limit;
1641
1642 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1643 posix_cputimers_group_init(pct, cpu_limit);
1644 }
1645
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1646 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1647 {
1648 struct signal_struct *sig;
1649
1650 if (clone_flags & CLONE_THREAD)
1651 return 0;
1652
1653 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1654 tsk->signal = sig;
1655 if (!sig)
1656 return -ENOMEM;
1657
1658 sig->nr_threads = 1;
1659 sig->quick_threads = 1;
1660 atomic_set(&sig->live, 1);
1661 refcount_set(&sig->sigcnt, 1);
1662
1663 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1664 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1665 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1666
1667 init_waitqueue_head(&sig->wait_chldexit);
1668 sig->curr_target = tsk;
1669 init_sigpending(&sig->shared_pending);
1670 INIT_HLIST_HEAD(&sig->multiprocess);
1671 seqlock_init(&sig->stats_lock);
1672 prev_cputime_init(&sig->prev_cputime);
1673
1674 #ifdef CONFIG_POSIX_TIMERS
1675 INIT_HLIST_HEAD(&sig->posix_timers);
1676 INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1677 hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1678 #endif
1679
1680 task_lock(current->group_leader);
1681 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1682 task_unlock(current->group_leader);
1683
1684 posix_cpu_timers_init_group(sig);
1685
1686 tty_audit_fork(sig);
1687 sched_autogroup_fork(sig);
1688
1689 sig->oom_score_adj = current->signal->oom_score_adj;
1690 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1691
1692 mutex_init(&sig->cred_guard_mutex);
1693 init_rwsem(&sig->exec_update_lock);
1694
1695 return 0;
1696 }
1697
copy_seccomp(struct task_struct * p)1698 static void copy_seccomp(struct task_struct *p)
1699 {
1700 #ifdef CONFIG_SECCOMP
1701 /*
1702 * Must be called with sighand->lock held, which is common to
1703 * all threads in the group. Holding cred_guard_mutex is not
1704 * needed because this new task is not yet running and cannot
1705 * be racing exec.
1706 */
1707 assert_spin_locked(¤t->sighand->siglock);
1708
1709 /* Ref-count the new filter user, and assign it. */
1710 get_seccomp_filter(current);
1711 p->seccomp = current->seccomp;
1712
1713 /*
1714 * Explicitly enable no_new_privs here in case it got set
1715 * between the task_struct being duplicated and holding the
1716 * sighand lock. The seccomp state and nnp must be in sync.
1717 */
1718 if (task_no_new_privs(current))
1719 task_set_no_new_privs(p);
1720
1721 /*
1722 * If the parent gained a seccomp mode after copying thread
1723 * flags and between before we held the sighand lock, we have
1724 * to manually enable the seccomp thread flag here.
1725 */
1726 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1727 set_task_syscall_work(p, SECCOMP);
1728 #endif
1729 }
1730
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1731 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1732 {
1733 current->clear_child_tid = tidptr;
1734
1735 return task_pid_vnr(current);
1736 }
1737
rt_mutex_init_task(struct task_struct * p)1738 static void rt_mutex_init_task(struct task_struct *p)
1739 {
1740 raw_spin_lock_init(&p->pi_lock);
1741 #ifdef CONFIG_RT_MUTEXES
1742 p->pi_waiters = RB_ROOT_CACHED;
1743 p->pi_top_task = NULL;
1744 p->pi_blocked_on = NULL;
1745 #endif
1746 }
1747
init_task_pid_links(struct task_struct * task)1748 static inline void init_task_pid_links(struct task_struct *task)
1749 {
1750 enum pid_type type;
1751
1752 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1753 INIT_HLIST_NODE(&task->pid_links[type]);
1754 }
1755
1756 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1757 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1758 {
1759 if (type == PIDTYPE_PID)
1760 task->thread_pid = pid;
1761 else
1762 task->signal->pids[type] = pid;
1763 }
1764
rcu_copy_process(struct task_struct * p)1765 static inline void rcu_copy_process(struct task_struct *p)
1766 {
1767 #ifdef CONFIG_PREEMPT_RCU
1768 p->rcu_read_lock_nesting = 0;
1769 p->rcu_read_unlock_special.s = 0;
1770 p->rcu_blocked_node = NULL;
1771 INIT_LIST_HEAD(&p->rcu_node_entry);
1772 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1773 #ifdef CONFIG_TASKS_RCU
1774 p->rcu_tasks_holdout = false;
1775 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1776 p->rcu_tasks_idle_cpu = -1;
1777 INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1778 #endif /* #ifdef CONFIG_TASKS_RCU */
1779 #ifdef CONFIG_TASKS_TRACE_RCU
1780 p->trc_reader_nesting = 0;
1781 p->trc_reader_special.s = 0;
1782 INIT_LIST_HEAD(&p->trc_holdout_list);
1783 INIT_LIST_HEAD(&p->trc_blkd_node);
1784 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1785 }
1786
1787 /**
1788 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1789 * @pid: the struct pid for which to create a pidfd
1790 * @flags: flags of the new @pidfd
1791 * @ret_file: return the new pidfs file
1792 *
1793 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1794 * caller's file descriptor table. The pidfd is reserved but not installed yet.
1795 *
1796 * The helper verifies that @pid is still in use, without PIDFD_THREAD the
1797 * task identified by @pid must be a thread-group leader.
1798 *
1799 * If this function returns successfully the caller is responsible to either
1800 * call fd_install() passing the returned pidfd and pidfd file as arguments in
1801 * order to install the pidfd into its file descriptor table or they must use
1802 * put_unused_fd() and fput() on the returned pidfd and pidfd file
1803 * respectively.
1804 *
1805 * This function is useful when a pidfd must already be reserved but there
1806 * might still be points of failure afterwards and the caller wants to ensure
1807 * that no pidfd is leaked into its file descriptor table.
1808 *
1809 * Return: On success, a reserved pidfd is returned from the function and a new
1810 * pidfd file is returned in the last argument to the function. On
1811 * error, a negative error code is returned from the function and the
1812 * last argument remains unchanged.
1813 */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret_file)1814 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file)
1815 {
1816 struct file *pidfs_file;
1817
1818 /*
1819 * PIDFD_STALE is only allowed to be passed if the caller knows
1820 * that @pid is already registered in pidfs and thus
1821 * PIDFD_INFO_EXIT information is guaranteed to be available.
1822 */
1823 if (!(flags & PIDFD_STALE)) {
1824 /*
1825 * While holding the pidfd waitqueue lock removing the
1826 * task linkage for the thread-group leader pid
1827 * (PIDTYPE_TGID) isn't possible. Thus, if there's still
1828 * task linkage for PIDTYPE_PID not having thread-group
1829 * leader linkage for the pid means it wasn't a
1830 * thread-group leader in the first place.
1831 */
1832 guard(spinlock_irq)(&pid->wait_pidfd.lock);
1833
1834 /* Task has already been reaped. */
1835 if (!pid_has_task(pid, PIDTYPE_PID))
1836 return -ESRCH;
1837 /*
1838 * If this struct pid isn't used as a thread-group
1839 * leader but the caller requested to create a
1840 * thread-group leader pidfd then report ENOENT.
1841 */
1842 if (!(flags & PIDFD_THREAD) && !pid_has_task(pid, PIDTYPE_TGID))
1843 return -ENOENT;
1844 }
1845
1846 CLASS(get_unused_fd, pidfd)(O_CLOEXEC);
1847 if (pidfd < 0)
1848 return pidfd;
1849
1850 pidfs_file = pidfs_alloc_file(pid, flags | O_RDWR);
1851 if (IS_ERR(pidfs_file))
1852 return PTR_ERR(pidfs_file);
1853
1854 *ret_file = pidfs_file;
1855 return take_fd(pidfd);
1856 }
1857
__delayed_free_task(struct rcu_head * rhp)1858 static void __delayed_free_task(struct rcu_head *rhp)
1859 {
1860 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1861
1862 free_task(tsk);
1863 }
1864
delayed_free_task(struct task_struct * tsk)1865 static __always_inline void delayed_free_task(struct task_struct *tsk)
1866 {
1867 if (IS_ENABLED(CONFIG_MEMCG))
1868 call_rcu(&tsk->rcu, __delayed_free_task);
1869 else
1870 free_task(tsk);
1871 }
1872
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1873 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1874 {
1875 /* Skip if kernel thread */
1876 if (!tsk->mm)
1877 return;
1878
1879 /* Skip if spawning a thread or using vfork */
1880 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1881 return;
1882
1883 /* We need to synchronize with __set_oom_adj */
1884 mutex_lock(&oom_adj_mutex);
1885 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1886 /* Update the values in case they were changed after copy_signal */
1887 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1888 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1889 mutex_unlock(&oom_adj_mutex);
1890 }
1891
1892 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)1893 static void rv_task_fork(struct task_struct *p)
1894 {
1895 memset(&p->rv, 0, sizeof(p->rv));
1896 }
1897 #else
1898 #define rv_task_fork(p) do {} while (0)
1899 #endif
1900
need_futex_hash_allocate_default(u64 clone_flags)1901 static bool need_futex_hash_allocate_default(u64 clone_flags)
1902 {
1903 if ((clone_flags & (CLONE_THREAD | CLONE_VM)) != (CLONE_THREAD | CLONE_VM))
1904 return false;
1905 return true;
1906 }
1907
1908 /*
1909 * This creates a new process as a copy of the old one,
1910 * but does not actually start it yet.
1911 *
1912 * It copies the registers, and all the appropriate
1913 * parts of the process environment (as per the clone
1914 * flags). The actual kick-off is left to the caller.
1915 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1916 __latent_entropy struct task_struct *copy_process(
1917 struct pid *pid,
1918 int trace,
1919 int node,
1920 struct kernel_clone_args *args)
1921 {
1922 int pidfd = -1, retval;
1923 struct task_struct *p;
1924 struct multiprocess_signals delayed;
1925 struct file *pidfile = NULL;
1926 const u64 clone_flags = args->flags;
1927 struct nsproxy *nsp = current->nsproxy;
1928
1929 /*
1930 * Don't allow sharing the root directory with processes in a different
1931 * namespace
1932 */
1933 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1934 return ERR_PTR(-EINVAL);
1935
1936 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1937 return ERR_PTR(-EINVAL);
1938
1939 /*
1940 * Thread groups must share signals as well, and detached threads
1941 * can only be started up within the thread group.
1942 */
1943 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1944 return ERR_PTR(-EINVAL);
1945
1946 /*
1947 * Shared signal handlers imply shared VM. By way of the above,
1948 * thread groups also imply shared VM. Blocking this case allows
1949 * for various simplifications in other code.
1950 */
1951 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1952 return ERR_PTR(-EINVAL);
1953
1954 /*
1955 * Siblings of global init remain as zombies on exit since they are
1956 * not reaped by their parent (swapper). To solve this and to avoid
1957 * multi-rooted process trees, prevent global and container-inits
1958 * from creating siblings.
1959 */
1960 if ((clone_flags & CLONE_PARENT) &&
1961 current->signal->flags & SIGNAL_UNKILLABLE)
1962 return ERR_PTR(-EINVAL);
1963
1964 /*
1965 * If the new process will be in a different pid or user namespace
1966 * do not allow it to share a thread group with the forking task.
1967 */
1968 if (clone_flags & CLONE_THREAD) {
1969 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1970 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1971 return ERR_PTR(-EINVAL);
1972 }
1973
1974 if (clone_flags & CLONE_PIDFD) {
1975 /*
1976 * - CLONE_DETACHED is blocked so that we can potentially
1977 * reuse it later for CLONE_PIDFD.
1978 */
1979 if (clone_flags & CLONE_DETACHED)
1980 return ERR_PTR(-EINVAL);
1981 }
1982
1983 /*
1984 * Force any signals received before this point to be delivered
1985 * before the fork happens. Collect up signals sent to multiple
1986 * processes that happen during the fork and delay them so that
1987 * they appear to happen after the fork.
1988 */
1989 sigemptyset(&delayed.signal);
1990 INIT_HLIST_NODE(&delayed.node);
1991
1992 spin_lock_irq(¤t->sighand->siglock);
1993 if (!(clone_flags & CLONE_THREAD))
1994 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1995 recalc_sigpending();
1996 spin_unlock_irq(¤t->sighand->siglock);
1997 retval = -ERESTARTNOINTR;
1998 if (task_sigpending(current))
1999 goto fork_out;
2000
2001 retval = -ENOMEM;
2002 p = dup_task_struct(current, node);
2003 if (!p)
2004 goto fork_out;
2005 p->flags &= ~PF_KTHREAD;
2006 if (args->kthread)
2007 p->flags |= PF_KTHREAD;
2008 if (args->user_worker) {
2009 /*
2010 * Mark us a user worker, and block any signal that isn't
2011 * fatal or STOP
2012 */
2013 p->flags |= PF_USER_WORKER;
2014 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2015 }
2016 if (args->io_thread)
2017 p->flags |= PF_IO_WORKER;
2018
2019 if (args->name)
2020 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2021
2022 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2023 /*
2024 * Clear TID on mm_release()?
2025 */
2026 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2027
2028 ftrace_graph_init_task(p);
2029
2030 rt_mutex_init_task(p);
2031
2032 lockdep_assert_irqs_enabled();
2033 #ifdef CONFIG_PROVE_LOCKING
2034 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2035 #endif
2036 retval = copy_creds(p, clone_flags);
2037 if (retval < 0)
2038 goto bad_fork_free;
2039
2040 retval = -EAGAIN;
2041 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2042 if (p->real_cred->user != INIT_USER &&
2043 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2044 goto bad_fork_cleanup_count;
2045 }
2046 current->flags &= ~PF_NPROC_EXCEEDED;
2047
2048 /*
2049 * If multiple threads are within copy_process(), then this check
2050 * triggers too late. This doesn't hurt, the check is only there
2051 * to stop root fork bombs.
2052 */
2053 retval = -EAGAIN;
2054 if (data_race(nr_threads >= max_threads))
2055 goto bad_fork_cleanup_count;
2056
2057 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2058 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2059 p->flags |= PF_FORKNOEXEC;
2060 INIT_LIST_HEAD(&p->children);
2061 INIT_LIST_HEAD(&p->sibling);
2062 rcu_copy_process(p);
2063 p->vfork_done = NULL;
2064 spin_lock_init(&p->alloc_lock);
2065
2066 init_sigpending(&p->pending);
2067
2068 p->utime = p->stime = p->gtime = 0;
2069 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2070 p->utimescaled = p->stimescaled = 0;
2071 #endif
2072 prev_cputime_init(&p->prev_cputime);
2073
2074 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2075 seqcount_init(&p->vtime.seqcount);
2076 p->vtime.starttime = 0;
2077 p->vtime.state = VTIME_INACTIVE;
2078 #endif
2079
2080 #ifdef CONFIG_IO_URING
2081 p->io_uring = NULL;
2082 #endif
2083
2084 p->default_timer_slack_ns = current->timer_slack_ns;
2085
2086 #ifdef CONFIG_PSI
2087 p->psi_flags = 0;
2088 #endif
2089
2090 task_io_accounting_init(&p->ioac);
2091 acct_clear_integrals(p);
2092
2093 posix_cputimers_init(&p->posix_cputimers);
2094 tick_dep_init_task(p);
2095
2096 p->io_context = NULL;
2097 audit_set_context(p, NULL);
2098 cgroup_fork(p);
2099 if (args->kthread) {
2100 if (!set_kthread_struct(p))
2101 goto bad_fork_cleanup_delayacct;
2102 }
2103 #ifdef CONFIG_NUMA
2104 p->mempolicy = mpol_dup(p->mempolicy);
2105 if (IS_ERR(p->mempolicy)) {
2106 retval = PTR_ERR(p->mempolicy);
2107 p->mempolicy = NULL;
2108 goto bad_fork_cleanup_delayacct;
2109 }
2110 #endif
2111 #ifdef CONFIG_CPUSETS
2112 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2113 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2114 #endif
2115 #ifdef CONFIG_TRACE_IRQFLAGS
2116 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2117 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2118 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2119 p->softirqs_enabled = 1;
2120 p->softirq_context = 0;
2121 #endif
2122
2123 p->pagefault_disabled = 0;
2124
2125 #ifdef CONFIG_LOCKDEP
2126 lockdep_init_task(p);
2127 #endif
2128
2129 p->blocked_on = NULL; /* not blocked yet */
2130
2131 #ifdef CONFIG_BCACHE
2132 p->sequential_io = 0;
2133 p->sequential_io_avg = 0;
2134 #endif
2135 #ifdef CONFIG_BPF_SYSCALL
2136 RCU_INIT_POINTER(p->bpf_storage, NULL);
2137 p->bpf_ctx = NULL;
2138 #endif
2139
2140 unwind_task_init(p);
2141
2142 /* Perform scheduler related setup. Assign this task to a CPU. */
2143 retval = sched_fork(clone_flags, p);
2144 if (retval)
2145 goto bad_fork_cleanup_policy;
2146
2147 retval = perf_event_init_task(p, clone_flags);
2148 if (retval)
2149 goto bad_fork_sched_cancel_fork;
2150 retval = audit_alloc(p);
2151 if (retval)
2152 goto bad_fork_cleanup_perf;
2153 /* copy all the process information */
2154 shm_init_task(p);
2155 retval = security_task_alloc(p, clone_flags);
2156 if (retval)
2157 goto bad_fork_cleanup_audit;
2158 retval = copy_semundo(clone_flags, p);
2159 if (retval)
2160 goto bad_fork_cleanup_security;
2161 retval = copy_files(clone_flags, p, args->no_files);
2162 if (retval)
2163 goto bad_fork_cleanup_semundo;
2164 retval = copy_fs(clone_flags, p);
2165 if (retval)
2166 goto bad_fork_cleanup_files;
2167 retval = copy_sighand(clone_flags, p);
2168 if (retval)
2169 goto bad_fork_cleanup_fs;
2170 retval = copy_signal(clone_flags, p);
2171 if (retval)
2172 goto bad_fork_cleanup_sighand;
2173 retval = copy_mm(clone_flags, p);
2174 if (retval)
2175 goto bad_fork_cleanup_signal;
2176 retval = copy_namespaces(clone_flags, p);
2177 if (retval)
2178 goto bad_fork_cleanup_mm;
2179 retval = copy_io(clone_flags, p);
2180 if (retval)
2181 goto bad_fork_cleanup_namespaces;
2182 retval = copy_thread(p, args);
2183 if (retval)
2184 goto bad_fork_cleanup_io;
2185
2186 stackleak_task_init(p);
2187
2188 if (pid != &init_struct_pid) {
2189 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2190 args->set_tid_size);
2191 if (IS_ERR(pid)) {
2192 retval = PTR_ERR(pid);
2193 goto bad_fork_cleanup_thread;
2194 }
2195 }
2196
2197 /*
2198 * This has to happen after we've potentially unshared the file
2199 * descriptor table (so that the pidfd doesn't leak into the child
2200 * if the fd table isn't shared).
2201 */
2202 if (clone_flags & CLONE_PIDFD) {
2203 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2204
2205 /*
2206 * Note that no task has been attached to @pid yet indicate
2207 * that via CLONE_PIDFD.
2208 */
2209 retval = pidfd_prepare(pid, flags | PIDFD_STALE, &pidfile);
2210 if (retval < 0)
2211 goto bad_fork_free_pid;
2212 pidfd = retval;
2213
2214 retval = put_user(pidfd, args->pidfd);
2215 if (retval)
2216 goto bad_fork_put_pidfd;
2217 }
2218
2219 #ifdef CONFIG_BLOCK
2220 p->plug = NULL;
2221 #endif
2222 futex_init_task(p);
2223
2224 /*
2225 * sigaltstack should be cleared when sharing the same VM
2226 */
2227 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2228 sas_ss_reset(p);
2229
2230 /*
2231 * Syscall tracing and stepping should be turned off in the
2232 * child regardless of CLONE_PTRACE.
2233 */
2234 user_disable_single_step(p);
2235 clear_task_syscall_work(p, SYSCALL_TRACE);
2236 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2237 clear_task_syscall_work(p, SYSCALL_EMU);
2238 #endif
2239 clear_tsk_latency_tracing(p);
2240
2241 /* ok, now we should be set up.. */
2242 p->pid = pid_nr(pid);
2243 if (clone_flags & CLONE_THREAD) {
2244 p->group_leader = current->group_leader;
2245 p->tgid = current->tgid;
2246 } else {
2247 p->group_leader = p;
2248 p->tgid = p->pid;
2249 }
2250
2251 p->nr_dirtied = 0;
2252 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2253 p->dirty_paused_when = 0;
2254
2255 p->pdeath_signal = 0;
2256 p->task_works = NULL;
2257 clear_posix_cputimers_work(p);
2258
2259 #ifdef CONFIG_KRETPROBES
2260 p->kretprobe_instances.first = NULL;
2261 #endif
2262 #ifdef CONFIG_RETHOOK
2263 p->rethooks.first = NULL;
2264 #endif
2265
2266 /*
2267 * Ensure that the cgroup subsystem policies allow the new process to be
2268 * forked. It should be noted that the new process's css_set can be changed
2269 * between here and cgroup_post_fork() if an organisation operation is in
2270 * progress.
2271 */
2272 retval = cgroup_can_fork(p, args);
2273 if (retval)
2274 goto bad_fork_put_pidfd;
2275
2276 /*
2277 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2278 * the new task on the correct runqueue. All this *before* the task
2279 * becomes visible.
2280 *
2281 * This isn't part of ->can_fork() because while the re-cloning is
2282 * cgroup specific, it unconditionally needs to place the task on a
2283 * runqueue.
2284 */
2285 retval = sched_cgroup_fork(p, args);
2286 if (retval)
2287 goto bad_fork_cancel_cgroup;
2288
2289 /*
2290 * Allocate a default futex hash for the user process once the first
2291 * thread spawns.
2292 */
2293 if (need_futex_hash_allocate_default(clone_flags)) {
2294 retval = futex_hash_allocate_default();
2295 if (retval)
2296 goto bad_fork_core_free;
2297 /*
2298 * If we fail beyond this point we don't free the allocated
2299 * futex hash map. We assume that another thread will be created
2300 * and makes use of it. The hash map will be freed once the main
2301 * thread terminates.
2302 */
2303 }
2304 /*
2305 * From this point on we must avoid any synchronous user-space
2306 * communication until we take the tasklist-lock. In particular, we do
2307 * not want user-space to be able to predict the process start-time by
2308 * stalling fork(2) after we recorded the start_time but before it is
2309 * visible to the system.
2310 */
2311
2312 p->start_time = ktime_get_ns();
2313 p->start_boottime = ktime_get_boottime_ns();
2314
2315 /*
2316 * Make it visible to the rest of the system, but dont wake it up yet.
2317 * Need tasklist lock for parent etc handling!
2318 */
2319 write_lock_irq(&tasklist_lock);
2320
2321 /* CLONE_PARENT re-uses the old parent */
2322 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2323 p->real_parent = current->real_parent;
2324 p->parent_exec_id = current->parent_exec_id;
2325 if (clone_flags & CLONE_THREAD)
2326 p->exit_signal = -1;
2327 else
2328 p->exit_signal = current->group_leader->exit_signal;
2329 } else {
2330 p->real_parent = current;
2331 p->parent_exec_id = current->self_exec_id;
2332 p->exit_signal = args->exit_signal;
2333 }
2334
2335 klp_copy_process(p);
2336
2337 sched_core_fork(p);
2338
2339 spin_lock(¤t->sighand->siglock);
2340
2341 rv_task_fork(p);
2342
2343 rseq_fork(p, clone_flags);
2344
2345 /* Don't start children in a dying pid namespace */
2346 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2347 retval = -ENOMEM;
2348 goto bad_fork_core_free;
2349 }
2350
2351 /* Let kill terminate clone/fork in the middle */
2352 if (fatal_signal_pending(current)) {
2353 retval = -EINTR;
2354 goto bad_fork_core_free;
2355 }
2356
2357 /* No more failure paths after this point. */
2358
2359 /*
2360 * Copy seccomp details explicitly here, in case they were changed
2361 * before holding sighand lock.
2362 */
2363 copy_seccomp(p);
2364
2365 init_task_pid_links(p);
2366 if (likely(p->pid)) {
2367 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2368
2369 init_task_pid(p, PIDTYPE_PID, pid);
2370 if (thread_group_leader(p)) {
2371 init_task_pid(p, PIDTYPE_TGID, pid);
2372 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2373 init_task_pid(p, PIDTYPE_SID, task_session(current));
2374
2375 if (is_child_reaper(pid)) {
2376 ns_of_pid(pid)->child_reaper = p;
2377 p->signal->flags |= SIGNAL_UNKILLABLE;
2378 }
2379 p->signal->shared_pending.signal = delayed.signal;
2380 p->signal->tty = tty_kref_get(current->signal->tty);
2381 /*
2382 * Inherit has_child_subreaper flag under the same
2383 * tasklist_lock with adding child to the process tree
2384 * for propagate_has_child_subreaper optimization.
2385 */
2386 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2387 p->real_parent->signal->is_child_subreaper;
2388 list_add_tail(&p->sibling, &p->real_parent->children);
2389 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2390 attach_pid(p, PIDTYPE_TGID);
2391 attach_pid(p, PIDTYPE_PGID);
2392 attach_pid(p, PIDTYPE_SID);
2393 __this_cpu_inc(process_counts);
2394 } else {
2395 current->signal->nr_threads++;
2396 current->signal->quick_threads++;
2397 atomic_inc(¤t->signal->live);
2398 refcount_inc(¤t->signal->sigcnt);
2399 task_join_group_stop(p);
2400 list_add_tail_rcu(&p->thread_node,
2401 &p->signal->thread_head);
2402 }
2403 attach_pid(p, PIDTYPE_PID);
2404 nr_threads++;
2405 }
2406 total_forks++;
2407 hlist_del_init(&delayed.node);
2408 spin_unlock(¤t->sighand->siglock);
2409 syscall_tracepoint_update(p);
2410 write_unlock_irq(&tasklist_lock);
2411
2412 if (pidfile)
2413 fd_install(pidfd, pidfile);
2414
2415 proc_fork_connector(p);
2416 sched_post_fork(p);
2417 cgroup_post_fork(p, args);
2418 perf_event_fork(p);
2419
2420 trace_task_newtask(p, clone_flags);
2421 uprobe_copy_process(p, clone_flags);
2422 user_events_fork(p, clone_flags);
2423
2424 copy_oom_score_adj(clone_flags, p);
2425
2426 return p;
2427
2428 bad_fork_core_free:
2429 sched_core_free(p);
2430 spin_unlock(¤t->sighand->siglock);
2431 write_unlock_irq(&tasklist_lock);
2432 bad_fork_cancel_cgroup:
2433 cgroup_cancel_fork(p, args);
2434 bad_fork_put_pidfd:
2435 if (clone_flags & CLONE_PIDFD) {
2436 fput(pidfile);
2437 put_unused_fd(pidfd);
2438 }
2439 bad_fork_free_pid:
2440 if (pid != &init_struct_pid)
2441 free_pid(pid);
2442 bad_fork_cleanup_thread:
2443 exit_thread(p);
2444 bad_fork_cleanup_io:
2445 if (p->io_context)
2446 exit_io_context(p);
2447 bad_fork_cleanup_namespaces:
2448 exit_task_namespaces(p);
2449 bad_fork_cleanup_mm:
2450 if (p->mm) {
2451 mm_clear_owner(p->mm, p);
2452 mmput(p->mm);
2453 }
2454 bad_fork_cleanup_signal:
2455 if (!(clone_flags & CLONE_THREAD))
2456 free_signal_struct(p->signal);
2457 bad_fork_cleanup_sighand:
2458 __cleanup_sighand(p->sighand);
2459 bad_fork_cleanup_fs:
2460 exit_fs(p); /* blocking */
2461 bad_fork_cleanup_files:
2462 exit_files(p); /* blocking */
2463 bad_fork_cleanup_semundo:
2464 exit_sem(p);
2465 bad_fork_cleanup_security:
2466 security_task_free(p);
2467 bad_fork_cleanup_audit:
2468 audit_free(p);
2469 bad_fork_cleanup_perf:
2470 perf_event_free_task(p);
2471 bad_fork_sched_cancel_fork:
2472 sched_cancel_fork(p);
2473 bad_fork_cleanup_policy:
2474 lockdep_free_task(p);
2475 #ifdef CONFIG_NUMA
2476 mpol_put(p->mempolicy);
2477 #endif
2478 bad_fork_cleanup_delayacct:
2479 delayacct_tsk_free(p);
2480 bad_fork_cleanup_count:
2481 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2482 exit_creds(p);
2483 bad_fork_free:
2484 WRITE_ONCE(p->__state, TASK_DEAD);
2485 exit_task_stack_account(p);
2486 put_task_stack(p);
2487 delayed_free_task(p);
2488 fork_out:
2489 spin_lock_irq(¤t->sighand->siglock);
2490 hlist_del_init(&delayed.node);
2491 spin_unlock_irq(¤t->sighand->siglock);
2492 return ERR_PTR(retval);
2493 }
2494
init_idle_pids(struct task_struct * idle)2495 static inline void init_idle_pids(struct task_struct *idle)
2496 {
2497 enum pid_type type;
2498
2499 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2500 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2501 init_task_pid(idle, type, &init_struct_pid);
2502 }
2503 }
2504
idle_dummy(void * dummy)2505 static int idle_dummy(void *dummy)
2506 {
2507 /* This function is never called */
2508 return 0;
2509 }
2510
fork_idle(int cpu)2511 struct task_struct * __init fork_idle(int cpu)
2512 {
2513 struct task_struct *task;
2514 struct kernel_clone_args args = {
2515 .flags = CLONE_VM,
2516 .fn = &idle_dummy,
2517 .fn_arg = NULL,
2518 .kthread = 1,
2519 .idle = 1,
2520 };
2521
2522 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2523 if (!IS_ERR(task)) {
2524 init_idle_pids(task);
2525 init_idle(task, cpu);
2526 }
2527
2528 return task;
2529 }
2530
2531 /*
2532 * This is like kernel_clone(), but shaved down and tailored to just
2533 * creating io_uring workers. It returns a created task, or an error pointer.
2534 * The returned task is inactive, and the caller must fire it up through
2535 * wake_up_new_task(p). All signals are blocked in the created task.
2536 */
create_io_thread(int (* fn)(void *),void * arg,int node)2537 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2538 {
2539 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2540 CLONE_IO;
2541 struct kernel_clone_args args = {
2542 .flags = ((lower_32_bits(flags) | CLONE_VM |
2543 CLONE_UNTRACED) & ~CSIGNAL),
2544 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2545 .fn = fn,
2546 .fn_arg = arg,
2547 .io_thread = 1,
2548 .user_worker = 1,
2549 };
2550
2551 return copy_process(NULL, 0, node, &args);
2552 }
2553
2554 /*
2555 * Ok, this is the main fork-routine.
2556 *
2557 * It copies the process, and if successful kick-starts
2558 * it and waits for it to finish using the VM if required.
2559 *
2560 * args->exit_signal is expected to be checked for sanity by the caller.
2561 */
kernel_clone(struct kernel_clone_args * args)2562 pid_t kernel_clone(struct kernel_clone_args *args)
2563 {
2564 u64 clone_flags = args->flags;
2565 struct completion vfork;
2566 struct pid *pid;
2567 struct task_struct *p;
2568 int trace = 0;
2569 pid_t nr;
2570
2571 /*
2572 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2573 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2574 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2575 * field in struct clone_args and it still doesn't make sense to have
2576 * them both point at the same memory location. Performing this check
2577 * here has the advantage that we don't need to have a separate helper
2578 * to check for legacy clone().
2579 */
2580 if ((clone_flags & CLONE_PIDFD) &&
2581 (clone_flags & CLONE_PARENT_SETTID) &&
2582 (args->pidfd == args->parent_tid))
2583 return -EINVAL;
2584
2585 /*
2586 * Determine whether and which event to report to ptracer. When
2587 * called from kernel_thread or CLONE_UNTRACED is explicitly
2588 * requested, no event is reported; otherwise, report if the event
2589 * for the type of forking is enabled.
2590 */
2591 if (!(clone_flags & CLONE_UNTRACED)) {
2592 if (clone_flags & CLONE_VFORK)
2593 trace = PTRACE_EVENT_VFORK;
2594 else if (args->exit_signal != SIGCHLD)
2595 trace = PTRACE_EVENT_CLONE;
2596 else
2597 trace = PTRACE_EVENT_FORK;
2598
2599 if (likely(!ptrace_event_enabled(current, trace)))
2600 trace = 0;
2601 }
2602
2603 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2604 add_latent_entropy();
2605
2606 if (IS_ERR(p))
2607 return PTR_ERR(p);
2608
2609 /*
2610 * Do this prior waking up the new thread - the thread pointer
2611 * might get invalid after that point, if the thread exits quickly.
2612 */
2613 trace_sched_process_fork(current, p);
2614
2615 pid = get_task_pid(p, PIDTYPE_PID);
2616 nr = pid_vnr(pid);
2617
2618 if (clone_flags & CLONE_PARENT_SETTID)
2619 put_user(nr, args->parent_tid);
2620
2621 if (clone_flags & CLONE_VFORK) {
2622 p->vfork_done = &vfork;
2623 init_completion(&vfork);
2624 get_task_struct(p);
2625 }
2626
2627 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2628 /* lock the task to synchronize with memcg migration */
2629 task_lock(p);
2630 lru_gen_add_mm(p->mm);
2631 task_unlock(p);
2632 }
2633
2634 wake_up_new_task(p);
2635
2636 /* forking complete and child started to run, tell ptracer */
2637 if (unlikely(trace))
2638 ptrace_event_pid(trace, pid);
2639
2640 if (clone_flags & CLONE_VFORK) {
2641 if (!wait_for_vfork_done(p, &vfork))
2642 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2643 }
2644
2645 put_pid(pid);
2646 return nr;
2647 }
2648
2649 /*
2650 * Create a kernel thread.
2651 */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2652 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2653 unsigned long flags)
2654 {
2655 struct kernel_clone_args args = {
2656 .flags = ((lower_32_bits(flags) | CLONE_VM |
2657 CLONE_UNTRACED) & ~CSIGNAL),
2658 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2659 .fn = fn,
2660 .fn_arg = arg,
2661 .name = name,
2662 .kthread = 1,
2663 };
2664
2665 return kernel_clone(&args);
2666 }
2667
2668 /*
2669 * Create a user mode thread.
2670 */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2671 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2672 {
2673 struct kernel_clone_args args = {
2674 .flags = ((lower_32_bits(flags) | CLONE_VM |
2675 CLONE_UNTRACED) & ~CSIGNAL),
2676 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2677 .fn = fn,
2678 .fn_arg = arg,
2679 };
2680
2681 return kernel_clone(&args);
2682 }
2683
2684 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2685 SYSCALL_DEFINE0(fork)
2686 {
2687 #ifdef CONFIG_MMU
2688 struct kernel_clone_args args = {
2689 .exit_signal = SIGCHLD,
2690 };
2691
2692 return kernel_clone(&args);
2693 #else
2694 /* can not support in nommu mode */
2695 return -EINVAL;
2696 #endif
2697 }
2698 #endif
2699
2700 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2701 SYSCALL_DEFINE0(vfork)
2702 {
2703 struct kernel_clone_args args = {
2704 .flags = CLONE_VFORK | CLONE_VM,
2705 .exit_signal = SIGCHLD,
2706 };
2707
2708 return kernel_clone(&args);
2709 }
2710 #endif
2711
2712 #ifdef __ARCH_WANT_SYS_CLONE
2713 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2714 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2715 int __user *, parent_tidptr,
2716 unsigned long, tls,
2717 int __user *, child_tidptr)
2718 #elif defined(CONFIG_CLONE_BACKWARDS2)
2719 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2720 int __user *, parent_tidptr,
2721 int __user *, child_tidptr,
2722 unsigned long, tls)
2723 #elif defined(CONFIG_CLONE_BACKWARDS3)
2724 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2725 int, stack_size,
2726 int __user *, parent_tidptr,
2727 int __user *, child_tidptr,
2728 unsigned long, tls)
2729 #else
2730 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2731 int __user *, parent_tidptr,
2732 int __user *, child_tidptr,
2733 unsigned long, tls)
2734 #endif
2735 {
2736 struct kernel_clone_args args = {
2737 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2738 .pidfd = parent_tidptr,
2739 .child_tid = child_tidptr,
2740 .parent_tid = parent_tidptr,
2741 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2742 .stack = newsp,
2743 .tls = tls,
2744 };
2745
2746 return kernel_clone(&args);
2747 }
2748 #endif
2749
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2750 static noinline int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2751 struct clone_args __user *uargs,
2752 size_t usize)
2753 {
2754 int err;
2755 struct clone_args args;
2756 pid_t *kset_tid = kargs->set_tid;
2757
2758 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2759 CLONE_ARGS_SIZE_VER0);
2760 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2761 CLONE_ARGS_SIZE_VER1);
2762 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2763 CLONE_ARGS_SIZE_VER2);
2764 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2765
2766 if (unlikely(usize > PAGE_SIZE))
2767 return -E2BIG;
2768 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2769 return -EINVAL;
2770
2771 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2772 if (err)
2773 return err;
2774
2775 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2776 return -EINVAL;
2777
2778 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2779 return -EINVAL;
2780
2781 if (unlikely(args.set_tid && args.set_tid_size == 0))
2782 return -EINVAL;
2783
2784 /*
2785 * Verify that higher 32bits of exit_signal are unset and that
2786 * it is a valid signal
2787 */
2788 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2789 !valid_signal(args.exit_signal)))
2790 return -EINVAL;
2791
2792 if ((args.flags & CLONE_INTO_CGROUP) &&
2793 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2794 return -EINVAL;
2795
2796 *kargs = (struct kernel_clone_args){
2797 .flags = args.flags,
2798 .pidfd = u64_to_user_ptr(args.pidfd),
2799 .child_tid = u64_to_user_ptr(args.child_tid),
2800 .parent_tid = u64_to_user_ptr(args.parent_tid),
2801 .exit_signal = args.exit_signal,
2802 .stack = args.stack,
2803 .stack_size = args.stack_size,
2804 .tls = args.tls,
2805 .set_tid_size = args.set_tid_size,
2806 .cgroup = args.cgroup,
2807 };
2808
2809 if (args.set_tid &&
2810 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2811 (kargs->set_tid_size * sizeof(pid_t))))
2812 return -EFAULT;
2813
2814 kargs->set_tid = kset_tid;
2815
2816 return 0;
2817 }
2818
2819 /**
2820 * clone3_stack_valid - check and prepare stack
2821 * @kargs: kernel clone args
2822 *
2823 * Verify that the stack arguments userspace gave us are sane.
2824 * In addition, set the stack direction for userspace since it's easy for us to
2825 * determine.
2826 */
clone3_stack_valid(struct kernel_clone_args * kargs)2827 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2828 {
2829 if (kargs->stack == 0) {
2830 if (kargs->stack_size > 0)
2831 return false;
2832 } else {
2833 if (kargs->stack_size == 0)
2834 return false;
2835
2836 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2837 return false;
2838
2839 #if !defined(CONFIG_STACK_GROWSUP)
2840 kargs->stack += kargs->stack_size;
2841 #endif
2842 }
2843
2844 return true;
2845 }
2846
clone3_args_valid(struct kernel_clone_args * kargs)2847 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2848 {
2849 /* Verify that no unknown flags are passed along. */
2850 if (kargs->flags &
2851 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2852 return false;
2853
2854 /*
2855 * - make the CLONE_DETACHED bit reusable for clone3
2856 * - make the CSIGNAL bits reusable for clone3
2857 */
2858 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2859 return false;
2860
2861 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2862 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2863 return false;
2864
2865 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2866 kargs->exit_signal)
2867 return false;
2868
2869 if (!clone3_stack_valid(kargs))
2870 return false;
2871
2872 return true;
2873 }
2874
2875 /**
2876 * sys_clone3 - create a new process with specific properties
2877 * @uargs: argument structure
2878 * @size: size of @uargs
2879 *
2880 * clone3() is the extensible successor to clone()/clone2().
2881 * It takes a struct as argument that is versioned by its size.
2882 *
2883 * Return: On success, a positive PID for the child process.
2884 * On error, a negative errno number.
2885 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2886 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2887 {
2888 int err;
2889
2890 struct kernel_clone_args kargs;
2891 pid_t set_tid[MAX_PID_NS_LEVEL];
2892
2893 #ifdef __ARCH_BROKEN_SYS_CLONE3
2894 #warning clone3() entry point is missing, please fix
2895 return -ENOSYS;
2896 #endif
2897
2898 kargs.set_tid = set_tid;
2899
2900 err = copy_clone_args_from_user(&kargs, uargs, size);
2901 if (err)
2902 return err;
2903
2904 if (!clone3_args_valid(&kargs))
2905 return -EINVAL;
2906
2907 return kernel_clone(&kargs);
2908 }
2909
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2910 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2911 {
2912 struct task_struct *leader, *parent, *child;
2913 int res;
2914
2915 read_lock(&tasklist_lock);
2916 leader = top = top->group_leader;
2917 down:
2918 for_each_thread(leader, parent) {
2919 list_for_each_entry(child, &parent->children, sibling) {
2920 res = visitor(child, data);
2921 if (res) {
2922 if (res < 0)
2923 goto out;
2924 leader = child;
2925 goto down;
2926 }
2927 up:
2928 ;
2929 }
2930 }
2931
2932 if (leader != top) {
2933 child = leader;
2934 parent = child->real_parent;
2935 leader = parent->group_leader;
2936 goto up;
2937 }
2938 out:
2939 read_unlock(&tasklist_lock);
2940 }
2941
2942 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2943 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2944 #endif
2945
sighand_ctor(void * data)2946 static void sighand_ctor(void *data)
2947 {
2948 struct sighand_struct *sighand = data;
2949
2950 spin_lock_init(&sighand->siglock);
2951 init_waitqueue_head(&sighand->signalfd_wqh);
2952 }
2953
mm_cache_init(void)2954 void __init mm_cache_init(void)
2955 {
2956 unsigned int mm_size;
2957
2958 /*
2959 * The mm_cpumask is located at the end of mm_struct, and is
2960 * dynamically sized based on the maximum CPU number this system
2961 * can have, taking hotplug into account (nr_cpu_ids).
2962 */
2963 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
2964
2965 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2966 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2967 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2968 offsetof(struct mm_struct, saved_auxv),
2969 sizeof_field(struct mm_struct, saved_auxv),
2970 NULL);
2971 }
2972
proc_caches_init(void)2973 void __init proc_caches_init(void)
2974 {
2975 sighand_cachep = kmem_cache_create("sighand_cache",
2976 sizeof(struct sighand_struct), 0,
2977 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2978 SLAB_ACCOUNT, sighand_ctor);
2979 signal_cachep = kmem_cache_create("signal_cache",
2980 sizeof(struct signal_struct), 0,
2981 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2982 NULL);
2983 files_cachep = kmem_cache_create("files_cache",
2984 sizeof(struct files_struct), 0,
2985 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2986 NULL);
2987 fs_cachep = kmem_cache_create("fs_cache",
2988 sizeof(struct fs_struct), 0,
2989 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2990 NULL);
2991 mmap_init();
2992 nsproxy_cache_init();
2993 }
2994
2995 /*
2996 * Check constraints on flags passed to the unshare system call.
2997 */
check_unshare_flags(unsigned long unshare_flags)2998 static int check_unshare_flags(unsigned long unshare_flags)
2999 {
3000 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3001 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3002 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3003 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3004 CLONE_NEWTIME))
3005 return -EINVAL;
3006 /*
3007 * Not implemented, but pretend it works if there is nothing
3008 * to unshare. Note that unsharing the address space or the
3009 * signal handlers also need to unshare the signal queues (aka
3010 * CLONE_THREAD).
3011 */
3012 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3013 if (!thread_group_empty(current))
3014 return -EINVAL;
3015 }
3016 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3017 if (refcount_read(¤t->sighand->count) > 1)
3018 return -EINVAL;
3019 }
3020 if (unshare_flags & CLONE_VM) {
3021 if (!current_is_single_threaded())
3022 return -EINVAL;
3023 }
3024
3025 return 0;
3026 }
3027
3028 /*
3029 * Unshare the filesystem structure if it is being shared
3030 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3031 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3032 {
3033 struct fs_struct *fs = current->fs;
3034
3035 if (!(unshare_flags & CLONE_FS) || !fs)
3036 return 0;
3037
3038 /* don't need lock here; in the worst case we'll do useless copy */
3039 if (fs->users == 1)
3040 return 0;
3041
3042 *new_fsp = copy_fs_struct(fs);
3043 if (!*new_fsp)
3044 return -ENOMEM;
3045
3046 return 0;
3047 }
3048
3049 /*
3050 * Unshare file descriptor table if it is being shared
3051 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3052 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3053 {
3054 struct files_struct *fd = current->files;
3055
3056 if ((unshare_flags & CLONE_FILES) &&
3057 (fd && atomic_read(&fd->count) > 1)) {
3058 fd = dup_fd(fd, NULL);
3059 if (IS_ERR(fd))
3060 return PTR_ERR(fd);
3061 *new_fdp = fd;
3062 }
3063
3064 return 0;
3065 }
3066
3067 /*
3068 * unshare allows a process to 'unshare' part of the process
3069 * context which was originally shared using clone. copy_*
3070 * functions used by kernel_clone() cannot be used here directly
3071 * because they modify an inactive task_struct that is being
3072 * constructed. Here we are modifying the current, active,
3073 * task_struct.
3074 */
ksys_unshare(unsigned long unshare_flags)3075 int ksys_unshare(unsigned long unshare_flags)
3076 {
3077 struct fs_struct *fs, *new_fs = NULL;
3078 struct files_struct *new_fd = NULL;
3079 struct cred *new_cred = NULL;
3080 struct nsproxy *new_nsproxy = NULL;
3081 int do_sysvsem = 0;
3082 int err;
3083
3084 /*
3085 * If unsharing a user namespace must also unshare the thread group
3086 * and unshare the filesystem root and working directories.
3087 */
3088 if (unshare_flags & CLONE_NEWUSER)
3089 unshare_flags |= CLONE_THREAD | CLONE_FS;
3090 /*
3091 * If unsharing vm, must also unshare signal handlers.
3092 */
3093 if (unshare_flags & CLONE_VM)
3094 unshare_flags |= CLONE_SIGHAND;
3095 /*
3096 * If unsharing a signal handlers, must also unshare the signal queues.
3097 */
3098 if (unshare_flags & CLONE_SIGHAND)
3099 unshare_flags |= CLONE_THREAD;
3100 /*
3101 * If unsharing namespace, must also unshare filesystem information.
3102 */
3103 if (unshare_flags & CLONE_NEWNS)
3104 unshare_flags |= CLONE_FS;
3105
3106 err = check_unshare_flags(unshare_flags);
3107 if (err)
3108 goto bad_unshare_out;
3109 /*
3110 * CLONE_NEWIPC must also detach from the undolist: after switching
3111 * to a new ipc namespace, the semaphore arrays from the old
3112 * namespace are unreachable.
3113 */
3114 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3115 do_sysvsem = 1;
3116 err = unshare_fs(unshare_flags, &new_fs);
3117 if (err)
3118 goto bad_unshare_out;
3119 err = unshare_fd(unshare_flags, &new_fd);
3120 if (err)
3121 goto bad_unshare_cleanup_fs;
3122 err = unshare_userns(unshare_flags, &new_cred);
3123 if (err)
3124 goto bad_unshare_cleanup_fd;
3125 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3126 new_cred, new_fs);
3127 if (err)
3128 goto bad_unshare_cleanup_cred;
3129
3130 if (new_cred) {
3131 err = set_cred_ucounts(new_cred);
3132 if (err)
3133 goto bad_unshare_cleanup_cred;
3134 }
3135
3136 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3137 if (do_sysvsem) {
3138 /*
3139 * CLONE_SYSVSEM is equivalent to sys_exit().
3140 */
3141 exit_sem(current);
3142 }
3143 if (unshare_flags & CLONE_NEWIPC) {
3144 /* Orphan segments in old ns (see sem above). */
3145 exit_shm(current);
3146 shm_init_task(current);
3147 }
3148
3149 if (new_nsproxy)
3150 switch_task_namespaces(current, new_nsproxy);
3151
3152 task_lock(current);
3153
3154 if (new_fs) {
3155 fs = current->fs;
3156 read_seqlock_excl(&fs->seq);
3157 current->fs = new_fs;
3158 if (--fs->users)
3159 new_fs = NULL;
3160 else
3161 new_fs = fs;
3162 read_sequnlock_excl(&fs->seq);
3163 }
3164
3165 if (new_fd)
3166 swap(current->files, new_fd);
3167
3168 task_unlock(current);
3169
3170 if (new_cred) {
3171 /* Install the new user namespace */
3172 commit_creds(new_cred);
3173 new_cred = NULL;
3174 }
3175 }
3176
3177 perf_event_namespaces(current);
3178
3179 bad_unshare_cleanup_cred:
3180 if (new_cred)
3181 put_cred(new_cred);
3182 bad_unshare_cleanup_fd:
3183 if (new_fd)
3184 put_files_struct(new_fd);
3185
3186 bad_unshare_cleanup_fs:
3187 if (new_fs)
3188 free_fs_struct(new_fs);
3189
3190 bad_unshare_out:
3191 return err;
3192 }
3193
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3194 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3195 {
3196 return ksys_unshare(unshare_flags);
3197 }
3198
3199 /*
3200 * Helper to unshare the files of the current task.
3201 * We don't want to expose copy_files internals to
3202 * the exec layer of the kernel.
3203 */
3204
unshare_files(void)3205 int unshare_files(void)
3206 {
3207 struct task_struct *task = current;
3208 struct files_struct *old, *copy = NULL;
3209 int error;
3210
3211 error = unshare_fd(CLONE_FILES, ©);
3212 if (error || !copy)
3213 return error;
3214
3215 old = task->files;
3216 task_lock(task);
3217 task->files = copy;
3218 task_unlock(task);
3219 put_files_struct(old);
3220 return 0;
3221 }
3222
sysctl_max_threads(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3223 static int sysctl_max_threads(const struct ctl_table *table, int write,
3224 void *buffer, size_t *lenp, loff_t *ppos)
3225 {
3226 struct ctl_table t;
3227 int ret;
3228 int threads = max_threads;
3229 int min = 1;
3230 int max = MAX_THREADS;
3231
3232 t = *table;
3233 t.data = &threads;
3234 t.extra1 = &min;
3235 t.extra2 = &max;
3236
3237 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3238 if (ret || !write)
3239 return ret;
3240
3241 max_threads = threads;
3242
3243 return 0;
3244 }
3245
3246 static const struct ctl_table fork_sysctl_table[] = {
3247 {
3248 .procname = "threads-max",
3249 .data = NULL,
3250 .maxlen = sizeof(int),
3251 .mode = 0644,
3252 .proc_handler = sysctl_max_threads,
3253 },
3254 };
3255
init_fork_sysctl(void)3256 static int __init init_fork_sysctl(void)
3257 {
3258 register_sysctl_init("kernel", fork_sysctl_table);
3259 return 0;
3260 }
3261
3262 subsys_initcall(init_fork_sysctl);
3263