1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * 2002-10-15 Posix Clocks & timers
4 * by George Anzinger george@mvista.com
5 * Copyright (C) 2002 2003 by MontaVista Software.
6 *
7 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
8 * Copyright (C) 2004 Boris Hu
9 *
10 * These are all the functions necessary to implement POSIX clocks & timers
11 */
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/slab.h>
15 #include <linux/time.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/task.h>
18
19 #include <linux/uaccess.h>
20 #include <linux/list.h>
21 #include <linux/init.h>
22 #include <linux/compiler.h>
23 #include <linux/hash.h>
24 #include <linux/posix-clock.h>
25 #include <linux/posix-timers.h>
26 #include <linux/syscalls.h>
27 #include <linux/wait.h>
28 #include <linux/workqueue.h>
29 #include <linux/export.h>
30 #include <linux/hashtable.h>
31 #include <linux/compat.h>
32 #include <linux/nospec.h>
33 #include <linux/time_namespace.h>
34
35 #include "timekeeping.h"
36 #include "posix-timers.h"
37
38 static struct kmem_cache *posix_timers_cache;
39
40 /*
41 * Timers are managed in a hash table for lockless lookup. The hash key is
42 * constructed from current::signal and the timer ID and the timer is
43 * matched against current::signal and the timer ID when walking the hash
44 * bucket list.
45 *
46 * This allows checkpoint/restore to reconstruct the exact timer IDs for
47 * a process.
48 */
49 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
50 static DEFINE_SPINLOCK(hash_lock);
51
52 static const struct k_clock * const posix_clocks[];
53 static const struct k_clock *clockid_to_kclock(const clockid_t id);
54 static const struct k_clock clock_realtime, clock_monotonic;
55
56 /* SIGEV_THREAD_ID cannot share a bit with the other SIGEV values. */
57 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
58 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
59 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
60 #endif
61
62 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
63
64 #define lock_timer(tid, flags) \
65 ({ struct k_itimer *__timr; \
66 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
67 __timr; \
68 })
69
hash(struct signal_struct * sig,unsigned int nr)70 static int hash(struct signal_struct *sig, unsigned int nr)
71 {
72 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
73 }
74
__posix_timers_find(struct hlist_head * head,struct signal_struct * sig,timer_t id)75 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
76 struct signal_struct *sig,
77 timer_t id)
78 {
79 struct k_itimer *timer;
80
81 hlist_for_each_entry_rcu(timer, head, t_hash, lockdep_is_held(&hash_lock)) {
82 /* timer->it_signal can be set concurrently */
83 if ((READ_ONCE(timer->it_signal) == sig) && (timer->it_id == id))
84 return timer;
85 }
86 return NULL;
87 }
88
posix_timer_by_id(timer_t id)89 static struct k_itimer *posix_timer_by_id(timer_t id)
90 {
91 struct signal_struct *sig = current->signal;
92 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
93
94 return __posix_timers_find(head, sig, id);
95 }
96
posix_timer_add(struct k_itimer * timer)97 static int posix_timer_add(struct k_itimer *timer)
98 {
99 struct signal_struct *sig = current->signal;
100 struct hlist_head *head;
101 unsigned int cnt, id;
102
103 /*
104 * FIXME: Replace this by a per signal struct xarray once there is
105 * a plan to handle the resulting CRIU regression gracefully.
106 */
107 for (cnt = 0; cnt <= INT_MAX; cnt++) {
108 spin_lock(&hash_lock);
109 id = sig->next_posix_timer_id;
110
111 /* Write the next ID back. Clamp it to the positive space */
112 sig->next_posix_timer_id = (id + 1) & INT_MAX;
113
114 head = &posix_timers_hashtable[hash(sig, id)];
115 if (!__posix_timers_find(head, sig, id)) {
116 hlist_add_head_rcu(&timer->t_hash, head);
117 spin_unlock(&hash_lock);
118 return id;
119 }
120 spin_unlock(&hash_lock);
121 }
122 /* POSIX return code when no timer ID could be allocated */
123 return -EAGAIN;
124 }
125
unlock_timer(struct k_itimer * timr,unsigned long flags)126 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
127 {
128 spin_unlock_irqrestore(&timr->it_lock, flags);
129 }
130
posix_get_realtime_timespec(clockid_t which_clock,struct timespec64 * tp)131 static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
132 {
133 ktime_get_real_ts64(tp);
134 return 0;
135 }
136
posix_get_realtime_ktime(clockid_t which_clock)137 static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
138 {
139 return ktime_get_real();
140 }
141
posix_clock_realtime_set(const clockid_t which_clock,const struct timespec64 * tp)142 static int posix_clock_realtime_set(const clockid_t which_clock,
143 const struct timespec64 *tp)
144 {
145 return do_sys_settimeofday64(tp, NULL);
146 }
147
posix_clock_realtime_adj(const clockid_t which_clock,struct __kernel_timex * t)148 static int posix_clock_realtime_adj(const clockid_t which_clock,
149 struct __kernel_timex *t)
150 {
151 return do_adjtimex(t);
152 }
153
posix_get_monotonic_timespec(clockid_t which_clock,struct timespec64 * tp)154 static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
155 {
156 ktime_get_ts64(tp);
157 timens_add_monotonic(tp);
158 return 0;
159 }
160
posix_get_monotonic_ktime(clockid_t which_clock)161 static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
162 {
163 return ktime_get();
164 }
165
posix_get_monotonic_raw(clockid_t which_clock,struct timespec64 * tp)166 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
167 {
168 ktime_get_raw_ts64(tp);
169 timens_add_monotonic(tp);
170 return 0;
171 }
172
posix_get_realtime_coarse(clockid_t which_clock,struct timespec64 * tp)173 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
174 {
175 ktime_get_coarse_real_ts64(tp);
176 return 0;
177 }
178
posix_get_monotonic_coarse(clockid_t which_clock,struct timespec64 * tp)179 static int posix_get_monotonic_coarse(clockid_t which_clock,
180 struct timespec64 *tp)
181 {
182 ktime_get_coarse_ts64(tp);
183 timens_add_monotonic(tp);
184 return 0;
185 }
186
posix_get_coarse_res(const clockid_t which_clock,struct timespec64 * tp)187 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
188 {
189 *tp = ktime_to_timespec64(KTIME_LOW_RES);
190 return 0;
191 }
192
posix_get_boottime_timespec(const clockid_t which_clock,struct timespec64 * tp)193 static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
194 {
195 ktime_get_boottime_ts64(tp);
196 timens_add_boottime(tp);
197 return 0;
198 }
199
posix_get_boottime_ktime(const clockid_t which_clock)200 static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
201 {
202 return ktime_get_boottime();
203 }
204
posix_get_tai_timespec(clockid_t which_clock,struct timespec64 * tp)205 static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
206 {
207 ktime_get_clocktai_ts64(tp);
208 return 0;
209 }
210
posix_get_tai_ktime(clockid_t which_clock)211 static ktime_t posix_get_tai_ktime(clockid_t which_clock)
212 {
213 return ktime_get_clocktai();
214 }
215
posix_get_hrtimer_res(clockid_t which_clock,struct timespec64 * tp)216 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
217 {
218 tp->tv_sec = 0;
219 tp->tv_nsec = hrtimer_resolution;
220 return 0;
221 }
222
init_posix_timers(void)223 static __init int init_posix_timers(void)
224 {
225 posix_timers_cache = kmem_cache_create("posix_timers_cache",
226 sizeof(struct k_itimer), 0,
227 SLAB_PANIC | SLAB_ACCOUNT, NULL);
228 return 0;
229 }
230 __initcall(init_posix_timers);
231
232 /*
233 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
234 * are of type int. Clamp the overrun value to INT_MAX
235 */
timer_overrun_to_int(struct k_itimer * timr,int baseval)236 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
237 {
238 s64 sum = timr->it_overrun_last + (s64)baseval;
239
240 return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
241 }
242
common_hrtimer_rearm(struct k_itimer * timr)243 static void common_hrtimer_rearm(struct k_itimer *timr)
244 {
245 struct hrtimer *timer = &timr->it.real.timer;
246
247 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
248 timr->it_interval);
249 hrtimer_restart(timer);
250 }
251
252 /*
253 * This function is called from the signal delivery code if
254 * info->si_sys_private is not zero, which indicates that the timer has to
255 * be rearmed. Restart the timer and update info::si_overrun.
256 */
posixtimer_rearm(struct kernel_siginfo * info)257 void posixtimer_rearm(struct kernel_siginfo *info)
258 {
259 struct k_itimer *timr;
260 unsigned long flags;
261
262 timr = lock_timer(info->si_tid, &flags);
263 if (!timr)
264 return;
265
266 if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
267 timr->kclock->timer_rearm(timr);
268
269 timr->it_active = 1;
270 timr->it_overrun_last = timr->it_overrun;
271 timr->it_overrun = -1LL;
272 ++timr->it_requeue_pending;
273
274 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
275 }
276
277 unlock_timer(timr, flags);
278 }
279
posix_timer_queue_signal(struct k_itimer * timr)280 int posix_timer_queue_signal(struct k_itimer *timr)
281 {
282 int ret, si_private = 0;
283 enum pid_type type;
284
285 lockdep_assert_held(&timr->it_lock);
286
287 timr->it_active = 0;
288 if (timr->it_interval)
289 si_private = ++timr->it_requeue_pending;
290
291 /*
292 * FIXME: if ->sigq is queued we can race with
293 * dequeue_signal()->posixtimer_rearm().
294 *
295 * If dequeue_signal() sees the "right" value of
296 * si_sys_private it calls posixtimer_rearm().
297 * We re-queue ->sigq and drop ->it_lock().
298 * posixtimer_rearm() locks the timer
299 * and re-schedules it while ->sigq is pending.
300 * Not really bad, but not that we want.
301 */
302 timr->sigq->info.si_sys_private = si_private;
303
304 type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
305 ret = send_sigqueue(timr->sigq, timr->it_pid, type);
306 /* If we failed to send the signal the timer stops. */
307 return ret > 0;
308 }
309
310 /*
311 * This function gets called when a POSIX.1b interval timer expires from
312 * the HRTIMER interrupt (soft interrupt on RT kernels).
313 *
314 * Handles CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME and CLOCK_TAI
315 * based timers.
316 */
posix_timer_fn(struct hrtimer * timer)317 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
318 {
319 struct k_itimer *timr = container_of(timer, struct k_itimer, it.real.timer);
320 enum hrtimer_restart ret = HRTIMER_NORESTART;
321 unsigned long flags;
322
323 spin_lock_irqsave(&timr->it_lock, flags);
324
325 if (posix_timer_queue_signal(timr)) {
326 /*
327 * The signal was not queued due to SIG_IGN. As a
328 * consequence the timer is not going to be rearmed from
329 * the signal delivery path. But as a real signal handler
330 * can be installed later the timer must be rearmed here.
331 */
332 if (timr->it_interval != 0) {
333 ktime_t now = hrtimer_cb_get_time(timer);
334
335 /*
336 * FIXME: What we really want, is to stop this
337 * timer completely and restart it in case the
338 * SIG_IGN is removed. This is a non trivial
339 * change to the signal handling code.
340 *
341 * For now let timers with an interval less than a
342 * jiffy expire every jiffy and recheck for a
343 * valid signal handler.
344 *
345 * This avoids interrupt starvation in case of a
346 * very small interval, which would expire the
347 * timer immediately again.
348 *
349 * Moving now ahead of time by one jiffy tricks
350 * hrtimer_forward() to expire the timer later,
351 * while it still maintains the overrun accuracy
352 * for the price of a slight inconsistency in the
353 * timer_gettime() case. This is at least better
354 * than a timer storm.
355 *
356 * Only required when high resolution timers are
357 * enabled as the periodic tick based timers are
358 * automatically aligned to the next tick.
359 */
360 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS)) {
361 ktime_t kj = TICK_NSEC;
362
363 if (timr->it_interval < kj)
364 now = ktime_add(now, kj);
365 }
366
367 timr->it_overrun += hrtimer_forward(timer, now, timr->it_interval);
368 ret = HRTIMER_RESTART;
369 ++timr->it_requeue_pending;
370 timr->it_active = 1;
371 }
372 }
373
374 unlock_timer(timr, flags);
375 return ret;
376 }
377
good_sigevent(sigevent_t * event)378 static struct pid *good_sigevent(sigevent_t * event)
379 {
380 struct pid *pid = task_tgid(current);
381 struct task_struct *rtn;
382
383 switch (event->sigev_notify) {
384 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
385 pid = find_vpid(event->sigev_notify_thread_id);
386 rtn = pid_task(pid, PIDTYPE_PID);
387 if (!rtn || !same_thread_group(rtn, current))
388 return NULL;
389 fallthrough;
390 case SIGEV_SIGNAL:
391 case SIGEV_THREAD:
392 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
393 return NULL;
394 fallthrough;
395 case SIGEV_NONE:
396 return pid;
397 default:
398 return NULL;
399 }
400 }
401
alloc_posix_timer(void)402 static struct k_itimer * alloc_posix_timer(void)
403 {
404 struct k_itimer *tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
405
406 if (!tmr)
407 return tmr;
408 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
409 kmem_cache_free(posix_timers_cache, tmr);
410 return NULL;
411 }
412 clear_siginfo(&tmr->sigq->info);
413 return tmr;
414 }
415
k_itimer_rcu_free(struct rcu_head * head)416 static void k_itimer_rcu_free(struct rcu_head *head)
417 {
418 struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
419
420 kmem_cache_free(posix_timers_cache, tmr);
421 }
422
posix_timer_free(struct k_itimer * tmr)423 static void posix_timer_free(struct k_itimer *tmr)
424 {
425 put_pid(tmr->it_pid);
426 sigqueue_free(tmr->sigq);
427 call_rcu(&tmr->rcu, k_itimer_rcu_free);
428 }
429
posix_timer_unhash_and_free(struct k_itimer * tmr)430 static void posix_timer_unhash_and_free(struct k_itimer *tmr)
431 {
432 spin_lock(&hash_lock);
433 hlist_del_rcu(&tmr->t_hash);
434 spin_unlock(&hash_lock);
435 posix_timer_free(tmr);
436 }
437
common_timer_create(struct k_itimer * new_timer)438 static int common_timer_create(struct k_itimer *new_timer)
439 {
440 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
441 return 0;
442 }
443
444 /* Create a POSIX.1b interval timer. */
do_timer_create(clockid_t which_clock,struct sigevent * event,timer_t __user * created_timer_id)445 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
446 timer_t __user *created_timer_id)
447 {
448 const struct k_clock *kc = clockid_to_kclock(which_clock);
449 struct k_itimer *new_timer;
450 int error, new_timer_id;
451
452 if (!kc)
453 return -EINVAL;
454 if (!kc->timer_create)
455 return -EOPNOTSUPP;
456
457 new_timer = alloc_posix_timer();
458 if (unlikely(!new_timer))
459 return -EAGAIN;
460
461 spin_lock_init(&new_timer->it_lock);
462
463 /*
464 * Add the timer to the hash table. The timer is not yet valid
465 * because new_timer::it_signal is still NULL. The timer id is also
466 * not yet visible to user space.
467 */
468 new_timer_id = posix_timer_add(new_timer);
469 if (new_timer_id < 0) {
470 posix_timer_free(new_timer);
471 return new_timer_id;
472 }
473
474 new_timer->it_id = (timer_t) new_timer_id;
475 new_timer->it_clock = which_clock;
476 new_timer->kclock = kc;
477 new_timer->it_overrun = -1LL;
478
479 if (event) {
480 rcu_read_lock();
481 new_timer->it_pid = get_pid(good_sigevent(event));
482 rcu_read_unlock();
483 if (!new_timer->it_pid) {
484 error = -EINVAL;
485 goto out;
486 }
487 new_timer->it_sigev_notify = event->sigev_notify;
488 new_timer->sigq->info.si_signo = event->sigev_signo;
489 new_timer->sigq->info.si_value = event->sigev_value;
490 } else {
491 new_timer->it_sigev_notify = SIGEV_SIGNAL;
492 new_timer->sigq->info.si_signo = SIGALRM;
493 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
494 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
495 new_timer->it_pid = get_pid(task_tgid(current));
496 }
497
498 new_timer->sigq->info.si_tid = new_timer->it_id;
499 new_timer->sigq->info.si_code = SI_TIMER;
500
501 if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) {
502 error = -EFAULT;
503 goto out;
504 }
505 /*
506 * After succesful copy out, the timer ID is visible to user space
507 * now but not yet valid because new_timer::signal is still NULL.
508 *
509 * Complete the initialization with the clock specific create
510 * callback.
511 */
512 error = kc->timer_create(new_timer);
513 if (error)
514 goto out;
515
516 spin_lock_irq(¤t->sighand->siglock);
517 /* This makes the timer valid in the hash table */
518 WRITE_ONCE(new_timer->it_signal, current->signal);
519 hlist_add_head(&new_timer->list, ¤t->signal->posix_timers);
520 spin_unlock_irq(¤t->sighand->siglock);
521 /*
522 * After unlocking sighand::siglock @new_timer is subject to
523 * concurrent removal and cannot be touched anymore
524 */
525 return 0;
526 out:
527 posix_timer_unhash_and_free(new_timer);
528 return error;
529 }
530
SYSCALL_DEFINE3(timer_create,const clockid_t,which_clock,struct sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)531 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
532 struct sigevent __user *, timer_event_spec,
533 timer_t __user *, created_timer_id)
534 {
535 if (timer_event_spec) {
536 sigevent_t event;
537
538 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
539 return -EFAULT;
540 return do_timer_create(which_clock, &event, created_timer_id);
541 }
542 return do_timer_create(which_clock, NULL, created_timer_id);
543 }
544
545 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(timer_create,clockid_t,which_clock,struct compat_sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)546 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
547 struct compat_sigevent __user *, timer_event_spec,
548 timer_t __user *, created_timer_id)
549 {
550 if (timer_event_spec) {
551 sigevent_t event;
552
553 if (get_compat_sigevent(&event, timer_event_spec))
554 return -EFAULT;
555 return do_timer_create(which_clock, &event, created_timer_id);
556 }
557 return do_timer_create(which_clock, NULL, created_timer_id);
558 }
559 #endif
560
__lock_timer(timer_t timer_id,unsigned long * flags)561 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
562 {
563 struct k_itimer *timr;
564
565 /*
566 * timer_t could be any type >= int and we want to make sure any
567 * @timer_id outside positive int range fails lookup.
568 */
569 if ((unsigned long long)timer_id > INT_MAX)
570 return NULL;
571
572 /*
573 * The hash lookup and the timers are RCU protected.
574 *
575 * Timers are added to the hash in invalid state where
576 * timr::it_signal == NULL. timer::it_signal is only set after the
577 * rest of the initialization succeeded.
578 *
579 * Timer destruction happens in steps:
580 * 1) Set timr::it_signal to NULL with timr::it_lock held
581 * 2) Release timr::it_lock
582 * 3) Remove from the hash under hash_lock
583 * 4) Call RCU for removal after the grace period
584 *
585 * Holding rcu_read_lock() accross the lookup ensures that
586 * the timer cannot be freed.
587 *
588 * The lookup validates locklessly that timr::it_signal ==
589 * current::it_signal and timr::it_id == @timer_id. timr::it_id
590 * can't change, but timr::it_signal becomes NULL during
591 * destruction.
592 */
593 rcu_read_lock();
594 timr = posix_timer_by_id(timer_id);
595 if (timr) {
596 spin_lock_irqsave(&timr->it_lock, *flags);
597 /*
598 * Validate under timr::it_lock that timr::it_signal is
599 * still valid. Pairs with #1 above.
600 */
601 if (timr->it_signal == current->signal) {
602 rcu_read_unlock();
603 return timr;
604 }
605 spin_unlock_irqrestore(&timr->it_lock, *flags);
606 }
607 rcu_read_unlock();
608
609 return NULL;
610 }
611
common_hrtimer_remaining(struct k_itimer * timr,ktime_t now)612 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
613 {
614 struct hrtimer *timer = &timr->it.real.timer;
615
616 return __hrtimer_expires_remaining_adjusted(timer, now);
617 }
618
common_hrtimer_forward(struct k_itimer * timr,ktime_t now)619 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
620 {
621 struct hrtimer *timer = &timr->it.real.timer;
622
623 return hrtimer_forward(timer, now, timr->it_interval);
624 }
625
626 /*
627 * Get the time remaining on a POSIX.1b interval timer.
628 *
629 * Two issues to handle here:
630 *
631 * 1) The timer has a requeue pending. The return value must appear as
632 * if the timer has been requeued right now.
633 *
634 * 2) The timer is a SIGEV_NONE timer. These timers are never enqueued
635 * into the hrtimer queue and therefore never expired. Emulate expiry
636 * here taking #1 into account.
637 */
common_timer_get(struct k_itimer * timr,struct itimerspec64 * cur_setting)638 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
639 {
640 const struct k_clock *kc = timr->kclock;
641 ktime_t now, remaining, iv;
642 bool sig_none;
643
644 sig_none = timr->it_sigev_notify == SIGEV_NONE;
645 iv = timr->it_interval;
646
647 /* interval timer ? */
648 if (iv) {
649 cur_setting->it_interval = ktime_to_timespec64(iv);
650 } else if (!timr->it_active) {
651 /*
652 * SIGEV_NONE oneshot timers are never queued and therefore
653 * timr->it_active is always false. The check below
654 * vs. remaining time will handle this case.
655 *
656 * For all other timers there is nothing to update here, so
657 * return.
658 */
659 if (!sig_none)
660 return;
661 }
662
663 now = kc->clock_get_ktime(timr->it_clock);
664
665 /*
666 * If this is an interval timer and either has requeue pending or
667 * is a SIGEV_NONE timer move the expiry time forward by intervals,
668 * so expiry is > now.
669 */
670 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
671 timr->it_overrun += kc->timer_forward(timr, now);
672
673 remaining = kc->timer_remaining(timr, now);
674 /*
675 * As @now is retrieved before a possible timer_forward() and
676 * cannot be reevaluated by the compiler @remaining is based on the
677 * same @now value. Therefore @remaining is consistent vs. @now.
678 *
679 * Consequently all interval timers, i.e. @iv > 0, cannot have a
680 * remaining time <= 0 because timer_forward() guarantees to move
681 * them forward so that the next timer expiry is > @now.
682 */
683 if (remaining <= 0) {
684 /*
685 * A single shot SIGEV_NONE timer must return 0, when it is
686 * expired! Timers which have a real signal delivery mode
687 * must return a remaining time greater than 0 because the
688 * signal has not yet been delivered.
689 */
690 if (!sig_none)
691 cur_setting->it_value.tv_nsec = 1;
692 } else {
693 cur_setting->it_value = ktime_to_timespec64(remaining);
694 }
695 }
696
do_timer_gettime(timer_t timer_id,struct itimerspec64 * setting)697 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
698 {
699 const struct k_clock *kc;
700 struct k_itimer *timr;
701 unsigned long flags;
702 int ret = 0;
703
704 timr = lock_timer(timer_id, &flags);
705 if (!timr)
706 return -EINVAL;
707
708 memset(setting, 0, sizeof(*setting));
709 kc = timr->kclock;
710 if (WARN_ON_ONCE(!kc || !kc->timer_get))
711 ret = -EINVAL;
712 else
713 kc->timer_get(timr, setting);
714
715 unlock_timer(timr, flags);
716 return ret;
717 }
718
719 /* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime,timer_t,timer_id,struct __kernel_itimerspec __user *,setting)720 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
721 struct __kernel_itimerspec __user *, setting)
722 {
723 struct itimerspec64 cur_setting;
724
725 int ret = do_timer_gettime(timer_id, &cur_setting);
726 if (!ret) {
727 if (put_itimerspec64(&cur_setting, setting))
728 ret = -EFAULT;
729 }
730 return ret;
731 }
732
733 #ifdef CONFIG_COMPAT_32BIT_TIME
734
SYSCALL_DEFINE2(timer_gettime32,timer_t,timer_id,struct old_itimerspec32 __user *,setting)735 SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
736 struct old_itimerspec32 __user *, setting)
737 {
738 struct itimerspec64 cur_setting;
739
740 int ret = do_timer_gettime(timer_id, &cur_setting);
741 if (!ret) {
742 if (put_old_itimerspec32(&cur_setting, setting))
743 ret = -EFAULT;
744 }
745 return ret;
746 }
747
748 #endif
749
750 /**
751 * sys_timer_getoverrun - Get the number of overruns of a POSIX.1b interval timer
752 * @timer_id: The timer ID which identifies the timer
753 *
754 * The "overrun count" of a timer is one plus the number of expiration
755 * intervals which have elapsed between the first expiry, which queues the
756 * signal and the actual signal delivery. On signal delivery the "overrun
757 * count" is calculated and cached, so it can be returned directly here.
758 *
759 * As this is relative to the last queued signal the returned overrun count
760 * is meaningless outside of the signal delivery path and even there it
761 * does not accurately reflect the current state when user space evaluates
762 * it.
763 *
764 * Returns:
765 * -EINVAL @timer_id is invalid
766 * 1..INT_MAX The number of overruns related to the last delivered signal
767 */
SYSCALL_DEFINE1(timer_getoverrun,timer_t,timer_id)768 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
769 {
770 struct k_itimer *timr;
771 unsigned long flags;
772 int overrun;
773
774 timr = lock_timer(timer_id, &flags);
775 if (!timr)
776 return -EINVAL;
777
778 overrun = timer_overrun_to_int(timr, 0);
779 unlock_timer(timr, flags);
780
781 return overrun;
782 }
783
common_hrtimer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)784 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
785 bool absolute, bool sigev_none)
786 {
787 struct hrtimer *timer = &timr->it.real.timer;
788 enum hrtimer_mode mode;
789
790 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
791 /*
792 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
793 * clock modifications, so they become CLOCK_MONOTONIC based under the
794 * hood. See hrtimer_init(). Update timr->kclock, so the generic
795 * functions which use timr->kclock->clock_get_*() work.
796 *
797 * Note: it_clock stays unmodified, because the next timer_set() might
798 * use ABSTIME, so it needs to switch back.
799 */
800 if (timr->it_clock == CLOCK_REALTIME)
801 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
802
803 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
804 timr->it.real.timer.function = posix_timer_fn;
805
806 if (!absolute)
807 expires = ktime_add_safe(expires, timer->base->get_time());
808 hrtimer_set_expires(timer, expires);
809
810 if (!sigev_none)
811 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
812 }
813
common_hrtimer_try_to_cancel(struct k_itimer * timr)814 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
815 {
816 return hrtimer_try_to_cancel(&timr->it.real.timer);
817 }
818
common_timer_wait_running(struct k_itimer * timer)819 static void common_timer_wait_running(struct k_itimer *timer)
820 {
821 hrtimer_cancel_wait_running(&timer->it.real.timer);
822 }
823
824 /*
825 * On PREEMPT_RT this prevents priority inversion and a potential livelock
826 * against the ksoftirqd thread in case that ksoftirqd gets preempted while
827 * executing a hrtimer callback.
828 *
829 * See the comments in hrtimer_cancel_wait_running(). For PREEMPT_RT=n this
830 * just results in a cpu_relax().
831 *
832 * For POSIX CPU timers with CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n this is
833 * just a cpu_relax(). With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y this
834 * prevents spinning on an eventually scheduled out task and a livelock
835 * when the task which tries to delete or disarm the timer has preempted
836 * the task which runs the expiry in task work context.
837 */
timer_wait_running(struct k_itimer * timer,unsigned long * flags)838 static struct k_itimer *timer_wait_running(struct k_itimer *timer,
839 unsigned long *flags)
840 {
841 const struct k_clock *kc = READ_ONCE(timer->kclock);
842 timer_t timer_id = READ_ONCE(timer->it_id);
843
844 /* Prevent kfree(timer) after dropping the lock */
845 rcu_read_lock();
846 unlock_timer(timer, *flags);
847
848 /*
849 * kc->timer_wait_running() might drop RCU lock. So @timer
850 * cannot be touched anymore after the function returns!
851 */
852 if (!WARN_ON_ONCE(!kc->timer_wait_running))
853 kc->timer_wait_running(timer);
854
855 rcu_read_unlock();
856 /* Relock the timer. It might be not longer hashed. */
857 return lock_timer(timer_id, flags);
858 }
859
860 /*
861 * Set up the new interval and reset the signal delivery data
862 */
posix_timer_set_common(struct k_itimer * timer,struct itimerspec64 * new_setting)863 void posix_timer_set_common(struct k_itimer *timer, struct itimerspec64 *new_setting)
864 {
865 if (new_setting->it_value.tv_sec || new_setting->it_value.tv_nsec)
866 timer->it_interval = timespec64_to_ktime(new_setting->it_interval);
867 else
868 timer->it_interval = 0;
869
870 /* Prevent reloading in case there is a signal pending */
871 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & ~REQUEUE_PENDING;
872 /* Reset overrun accounting */
873 timer->it_overrun_last = 0;
874 timer->it_overrun = -1LL;
875 }
876
877 /* Set a POSIX.1b interval timer. */
common_timer_set(struct k_itimer * timr,int flags,struct itimerspec64 * new_setting,struct itimerspec64 * old_setting)878 int common_timer_set(struct k_itimer *timr, int flags,
879 struct itimerspec64 *new_setting,
880 struct itimerspec64 *old_setting)
881 {
882 const struct k_clock *kc = timr->kclock;
883 bool sigev_none;
884 ktime_t expires;
885
886 if (old_setting)
887 common_timer_get(timr, old_setting);
888
889 /* Prevent rearming by clearing the interval */
890 timr->it_interval = 0;
891 /*
892 * Careful here. On SMP systems the timer expiry function could be
893 * active and spinning on timr->it_lock.
894 */
895 if (kc->timer_try_to_cancel(timr) < 0)
896 return TIMER_RETRY;
897
898 timr->it_active = 0;
899 posix_timer_set_common(timr, new_setting);
900
901 /* Keep timer disarmed when it_value is zero */
902 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
903 return 0;
904
905 expires = timespec64_to_ktime(new_setting->it_value);
906 if (flags & TIMER_ABSTIME)
907 expires = timens_ktime_to_host(timr->it_clock, expires);
908 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
909
910 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
911 timr->it_active = !sigev_none;
912 return 0;
913 }
914
do_timer_settime(timer_t timer_id,int tmr_flags,struct itimerspec64 * new_spec64,struct itimerspec64 * old_spec64)915 static int do_timer_settime(timer_t timer_id, int tmr_flags,
916 struct itimerspec64 *new_spec64,
917 struct itimerspec64 *old_spec64)
918 {
919 const struct k_clock *kc;
920 struct k_itimer *timr;
921 unsigned long flags;
922 int error;
923
924 if (!timespec64_valid(&new_spec64->it_interval) ||
925 !timespec64_valid(&new_spec64->it_value))
926 return -EINVAL;
927
928 if (old_spec64)
929 memset(old_spec64, 0, sizeof(*old_spec64));
930
931 timr = lock_timer(timer_id, &flags);
932 retry:
933 if (!timr)
934 return -EINVAL;
935
936 if (old_spec64)
937 old_spec64->it_interval = ktime_to_timespec64(timr->it_interval);
938
939 kc = timr->kclock;
940 if (WARN_ON_ONCE(!kc || !kc->timer_set))
941 error = -EINVAL;
942 else
943 error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
944
945 if (error == TIMER_RETRY) {
946 // We already got the old time...
947 old_spec64 = NULL;
948 /* Unlocks and relocks the timer if it still exists */
949 timr = timer_wait_running(timr, &flags);
950 goto retry;
951 }
952 unlock_timer(timr, flags);
953
954 return error;
955 }
956
957 /* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime,timer_t,timer_id,int,flags,const struct __kernel_itimerspec __user *,new_setting,struct __kernel_itimerspec __user *,old_setting)958 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
959 const struct __kernel_itimerspec __user *, new_setting,
960 struct __kernel_itimerspec __user *, old_setting)
961 {
962 struct itimerspec64 new_spec, old_spec, *rtn;
963 int error = 0;
964
965 if (!new_setting)
966 return -EINVAL;
967
968 if (get_itimerspec64(&new_spec, new_setting))
969 return -EFAULT;
970
971 rtn = old_setting ? &old_spec : NULL;
972 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
973 if (!error && old_setting) {
974 if (put_itimerspec64(&old_spec, old_setting))
975 error = -EFAULT;
976 }
977 return error;
978 }
979
980 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(timer_settime32,timer_t,timer_id,int,flags,struct old_itimerspec32 __user *,new,struct old_itimerspec32 __user *,old)981 SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
982 struct old_itimerspec32 __user *, new,
983 struct old_itimerspec32 __user *, old)
984 {
985 struct itimerspec64 new_spec, old_spec;
986 struct itimerspec64 *rtn = old ? &old_spec : NULL;
987 int error = 0;
988
989 if (!new)
990 return -EINVAL;
991 if (get_old_itimerspec32(&new_spec, new))
992 return -EFAULT;
993
994 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
995 if (!error && old) {
996 if (put_old_itimerspec32(&old_spec, old))
997 error = -EFAULT;
998 }
999 return error;
1000 }
1001 #endif
1002
common_timer_del(struct k_itimer * timer)1003 int common_timer_del(struct k_itimer *timer)
1004 {
1005 const struct k_clock *kc = timer->kclock;
1006
1007 timer->it_interval = 0;
1008 if (kc->timer_try_to_cancel(timer) < 0)
1009 return TIMER_RETRY;
1010 timer->it_active = 0;
1011 return 0;
1012 }
1013
timer_delete_hook(struct k_itimer * timer)1014 static inline int timer_delete_hook(struct k_itimer *timer)
1015 {
1016 const struct k_clock *kc = timer->kclock;
1017
1018 if (WARN_ON_ONCE(!kc || !kc->timer_del))
1019 return -EINVAL;
1020 return kc->timer_del(timer);
1021 }
1022
1023 /* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete,timer_t,timer_id)1024 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1025 {
1026 struct k_itimer *timer;
1027 unsigned long flags;
1028
1029 timer = lock_timer(timer_id, &flags);
1030
1031 retry_delete:
1032 if (!timer)
1033 return -EINVAL;
1034
1035 if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
1036 /* Unlocks and relocks the timer if it still exists */
1037 timer = timer_wait_running(timer, &flags);
1038 goto retry_delete;
1039 }
1040
1041 spin_lock(¤t->sighand->siglock);
1042 hlist_del(&timer->list);
1043 spin_unlock(¤t->sighand->siglock);
1044 /*
1045 * A concurrent lookup could check timer::it_signal lockless. It
1046 * will reevaluate with timer::it_lock held and observe the NULL.
1047 */
1048 WRITE_ONCE(timer->it_signal, NULL);
1049
1050 unlock_timer(timer, flags);
1051 posix_timer_unhash_and_free(timer);
1052 return 0;
1053 }
1054
1055 /*
1056 * Delete a timer if it is armed, remove it from the hash and schedule it
1057 * for RCU freeing.
1058 */
itimer_delete(struct k_itimer * timer)1059 static void itimer_delete(struct k_itimer *timer)
1060 {
1061 unsigned long flags;
1062
1063 /*
1064 * irqsave is required to make timer_wait_running() work.
1065 */
1066 spin_lock_irqsave(&timer->it_lock, flags);
1067
1068 retry_delete:
1069 /*
1070 * Even if the timer is not longer accessible from other tasks
1071 * it still might be armed and queued in the underlying timer
1072 * mechanism. Worse, that timer mechanism might run the expiry
1073 * function concurrently.
1074 */
1075 if (timer_delete_hook(timer) == TIMER_RETRY) {
1076 /*
1077 * Timer is expired concurrently, prevent livelocks
1078 * and pointless spinning on RT.
1079 *
1080 * timer_wait_running() drops timer::it_lock, which opens
1081 * the possibility for another task to delete the timer.
1082 *
1083 * That's not possible here because this is invoked from
1084 * do_exit() only for the last thread of the thread group.
1085 * So no other task can access and delete that timer.
1086 */
1087 if (WARN_ON_ONCE(timer_wait_running(timer, &flags) != timer))
1088 return;
1089
1090 goto retry_delete;
1091 }
1092 hlist_del(&timer->list);
1093
1094 /*
1095 * Setting timer::it_signal to NULL is technically not required
1096 * here as nothing can access the timer anymore legitimately via
1097 * the hash table. Set it to NULL nevertheless so that all deletion
1098 * paths are consistent.
1099 */
1100 WRITE_ONCE(timer->it_signal, NULL);
1101
1102 spin_unlock_irqrestore(&timer->it_lock, flags);
1103 posix_timer_unhash_and_free(timer);
1104 }
1105
1106 /*
1107 * Invoked from do_exit() when the last thread of a thread group exits.
1108 * At that point no other task can access the timers of the dying
1109 * task anymore.
1110 */
exit_itimers(struct task_struct * tsk)1111 void exit_itimers(struct task_struct *tsk)
1112 {
1113 struct hlist_head timers;
1114
1115 if (hlist_empty(&tsk->signal->posix_timers))
1116 return;
1117
1118 /* Protect against concurrent read via /proc/$PID/timers */
1119 spin_lock_irq(&tsk->sighand->siglock);
1120 hlist_move_list(&tsk->signal->posix_timers, &timers);
1121 spin_unlock_irq(&tsk->sighand->siglock);
1122
1123 /* The timers are not longer accessible via tsk::signal */
1124 while (!hlist_empty(&timers))
1125 itimer_delete(hlist_entry(timers.first, struct k_itimer, list));
1126 }
1127
SYSCALL_DEFINE2(clock_settime,const clockid_t,which_clock,const struct __kernel_timespec __user *,tp)1128 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1129 const struct __kernel_timespec __user *, tp)
1130 {
1131 const struct k_clock *kc = clockid_to_kclock(which_clock);
1132 struct timespec64 new_tp;
1133
1134 if (!kc || !kc->clock_set)
1135 return -EINVAL;
1136
1137 if (get_timespec64(&new_tp, tp))
1138 return -EFAULT;
1139
1140 /*
1141 * Permission checks have to be done inside the clock specific
1142 * setter callback.
1143 */
1144 return kc->clock_set(which_clock, &new_tp);
1145 }
1146
SYSCALL_DEFINE2(clock_gettime,const clockid_t,which_clock,struct __kernel_timespec __user *,tp)1147 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1148 struct __kernel_timespec __user *, tp)
1149 {
1150 const struct k_clock *kc = clockid_to_kclock(which_clock);
1151 struct timespec64 kernel_tp;
1152 int error;
1153
1154 if (!kc)
1155 return -EINVAL;
1156
1157 error = kc->clock_get_timespec(which_clock, &kernel_tp);
1158
1159 if (!error && put_timespec64(&kernel_tp, tp))
1160 error = -EFAULT;
1161
1162 return error;
1163 }
1164
do_clock_adjtime(const clockid_t which_clock,struct __kernel_timex * ktx)1165 int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
1166 {
1167 const struct k_clock *kc = clockid_to_kclock(which_clock);
1168
1169 if (!kc)
1170 return -EINVAL;
1171 if (!kc->clock_adj)
1172 return -EOPNOTSUPP;
1173
1174 return kc->clock_adj(which_clock, ktx);
1175 }
1176
SYSCALL_DEFINE2(clock_adjtime,const clockid_t,which_clock,struct __kernel_timex __user *,utx)1177 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1178 struct __kernel_timex __user *, utx)
1179 {
1180 struct __kernel_timex ktx;
1181 int err;
1182
1183 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1184 return -EFAULT;
1185
1186 err = do_clock_adjtime(which_clock, &ktx);
1187
1188 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1189 return -EFAULT;
1190
1191 return err;
1192 }
1193
1194 /**
1195 * sys_clock_getres - Get the resolution of a clock
1196 * @which_clock: The clock to get the resolution for
1197 * @tp: Pointer to a a user space timespec64 for storage
1198 *
1199 * POSIX defines:
1200 *
1201 * "The clock_getres() function shall return the resolution of any
1202 * clock. Clock resolutions are implementation-defined and cannot be set by
1203 * a process. If the argument res is not NULL, the resolution of the
1204 * specified clock shall be stored in the location pointed to by res. If
1205 * res is NULL, the clock resolution is not returned. If the time argument
1206 * of clock_settime() is not a multiple of res, then the value is truncated
1207 * to a multiple of res."
1208 *
1209 * Due to the various hardware constraints the real resolution can vary
1210 * wildly and even change during runtime when the underlying devices are
1211 * replaced. The kernel also can use hardware devices with different
1212 * resolutions for reading the time and for arming timers.
1213 *
1214 * The kernel therefore deviates from the POSIX spec in various aspects:
1215 *
1216 * 1) The resolution returned to user space
1217 *
1218 * For CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_TAI,
1219 * CLOCK_REALTIME_ALARM, CLOCK_BOOTTIME_ALAREM and CLOCK_MONOTONIC_RAW
1220 * the kernel differentiates only two cases:
1221 *
1222 * I) Low resolution mode:
1223 *
1224 * When high resolution timers are disabled at compile or runtime
1225 * the resolution returned is nanoseconds per tick, which represents
1226 * the precision at which timers expire.
1227 *
1228 * II) High resolution mode:
1229 *
1230 * When high resolution timers are enabled the resolution returned
1231 * is always one nanosecond independent of the actual resolution of
1232 * the underlying hardware devices.
1233 *
1234 * For CLOCK_*_ALARM the actual resolution depends on system
1235 * state. When system is running the resolution is the same as the
1236 * resolution of the other clocks. During suspend the actual
1237 * resolution is the resolution of the underlying RTC device which
1238 * might be way less precise than the clockevent device used during
1239 * running state.
1240 *
1241 * For CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE the resolution
1242 * returned is always nanoseconds per tick.
1243 *
1244 * For CLOCK_PROCESS_CPUTIME and CLOCK_THREAD_CPUTIME the resolution
1245 * returned is always one nanosecond under the assumption that the
1246 * underlying scheduler clock has a better resolution than nanoseconds
1247 * per tick.
1248 *
1249 * For dynamic POSIX clocks (PTP devices) the resolution returned is
1250 * always one nanosecond.
1251 *
1252 * 2) Affect on sys_clock_settime()
1253 *
1254 * The kernel does not truncate the time which is handed in to
1255 * sys_clock_settime(). The kernel internal timekeeping is always using
1256 * nanoseconds precision independent of the clocksource device which is
1257 * used to read the time from. The resolution of that device only
1258 * affects the presicion of the time returned by sys_clock_gettime().
1259 *
1260 * Returns:
1261 * 0 Success. @tp contains the resolution
1262 * -EINVAL @which_clock is not a valid clock ID
1263 * -EFAULT Copying the resolution to @tp faulted
1264 * -ENODEV Dynamic POSIX clock is not backed by a device
1265 * -EOPNOTSUPP Dynamic POSIX clock does not support getres()
1266 */
SYSCALL_DEFINE2(clock_getres,const clockid_t,which_clock,struct __kernel_timespec __user *,tp)1267 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1268 struct __kernel_timespec __user *, tp)
1269 {
1270 const struct k_clock *kc = clockid_to_kclock(which_clock);
1271 struct timespec64 rtn_tp;
1272 int error;
1273
1274 if (!kc)
1275 return -EINVAL;
1276
1277 error = kc->clock_getres(which_clock, &rtn_tp);
1278
1279 if (!error && tp && put_timespec64(&rtn_tp, tp))
1280 error = -EFAULT;
1281
1282 return error;
1283 }
1284
1285 #ifdef CONFIG_COMPAT_32BIT_TIME
1286
SYSCALL_DEFINE2(clock_settime32,clockid_t,which_clock,struct old_timespec32 __user *,tp)1287 SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1288 struct old_timespec32 __user *, tp)
1289 {
1290 const struct k_clock *kc = clockid_to_kclock(which_clock);
1291 struct timespec64 ts;
1292
1293 if (!kc || !kc->clock_set)
1294 return -EINVAL;
1295
1296 if (get_old_timespec32(&ts, tp))
1297 return -EFAULT;
1298
1299 return kc->clock_set(which_clock, &ts);
1300 }
1301
SYSCALL_DEFINE2(clock_gettime32,clockid_t,which_clock,struct old_timespec32 __user *,tp)1302 SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1303 struct old_timespec32 __user *, tp)
1304 {
1305 const struct k_clock *kc = clockid_to_kclock(which_clock);
1306 struct timespec64 ts;
1307 int err;
1308
1309 if (!kc)
1310 return -EINVAL;
1311
1312 err = kc->clock_get_timespec(which_clock, &ts);
1313
1314 if (!err && put_old_timespec32(&ts, tp))
1315 err = -EFAULT;
1316
1317 return err;
1318 }
1319
SYSCALL_DEFINE2(clock_adjtime32,clockid_t,which_clock,struct old_timex32 __user *,utp)1320 SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1321 struct old_timex32 __user *, utp)
1322 {
1323 struct __kernel_timex ktx;
1324 int err;
1325
1326 err = get_old_timex32(&ktx, utp);
1327 if (err)
1328 return err;
1329
1330 err = do_clock_adjtime(which_clock, &ktx);
1331
1332 if (err >= 0 && put_old_timex32(utp, &ktx))
1333 return -EFAULT;
1334
1335 return err;
1336 }
1337
SYSCALL_DEFINE2(clock_getres_time32,clockid_t,which_clock,struct old_timespec32 __user *,tp)1338 SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1339 struct old_timespec32 __user *, tp)
1340 {
1341 const struct k_clock *kc = clockid_to_kclock(which_clock);
1342 struct timespec64 ts;
1343 int err;
1344
1345 if (!kc)
1346 return -EINVAL;
1347
1348 err = kc->clock_getres(which_clock, &ts);
1349 if (!err && tp && put_old_timespec32(&ts, tp))
1350 return -EFAULT;
1351
1352 return err;
1353 }
1354
1355 #endif
1356
1357 /*
1358 * sys_clock_nanosleep() for CLOCK_REALTIME and CLOCK_TAI
1359 */
common_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1360 static int common_nsleep(const clockid_t which_clock, int flags,
1361 const struct timespec64 *rqtp)
1362 {
1363 ktime_t texp = timespec64_to_ktime(*rqtp);
1364
1365 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1366 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1367 which_clock);
1368 }
1369
1370 /*
1371 * sys_clock_nanosleep() for CLOCK_MONOTONIC and CLOCK_BOOTTIME
1372 *
1373 * Absolute nanosleeps for these clocks are time-namespace adjusted.
1374 */
common_nsleep_timens(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1375 static int common_nsleep_timens(const clockid_t which_clock, int flags,
1376 const struct timespec64 *rqtp)
1377 {
1378 ktime_t texp = timespec64_to_ktime(*rqtp);
1379
1380 if (flags & TIMER_ABSTIME)
1381 texp = timens_ktime_to_host(which_clock, texp);
1382
1383 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1384 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1385 which_clock);
1386 }
1387
SYSCALL_DEFINE4(clock_nanosleep,const clockid_t,which_clock,int,flags,const struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)1388 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1389 const struct __kernel_timespec __user *, rqtp,
1390 struct __kernel_timespec __user *, rmtp)
1391 {
1392 const struct k_clock *kc = clockid_to_kclock(which_clock);
1393 struct timespec64 t;
1394
1395 if (!kc)
1396 return -EINVAL;
1397 if (!kc->nsleep)
1398 return -EOPNOTSUPP;
1399
1400 if (get_timespec64(&t, rqtp))
1401 return -EFAULT;
1402
1403 if (!timespec64_valid(&t))
1404 return -EINVAL;
1405 if (flags & TIMER_ABSTIME)
1406 rmtp = NULL;
1407 current->restart_block.fn = do_no_restart_syscall;
1408 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1409 current->restart_block.nanosleep.rmtp = rmtp;
1410
1411 return kc->nsleep(which_clock, flags, &t);
1412 }
1413
1414 #ifdef CONFIG_COMPAT_32BIT_TIME
1415
SYSCALL_DEFINE4(clock_nanosleep_time32,clockid_t,which_clock,int,flags,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)1416 SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1417 struct old_timespec32 __user *, rqtp,
1418 struct old_timespec32 __user *, rmtp)
1419 {
1420 const struct k_clock *kc = clockid_to_kclock(which_clock);
1421 struct timespec64 t;
1422
1423 if (!kc)
1424 return -EINVAL;
1425 if (!kc->nsleep)
1426 return -EOPNOTSUPP;
1427
1428 if (get_old_timespec32(&t, rqtp))
1429 return -EFAULT;
1430
1431 if (!timespec64_valid(&t))
1432 return -EINVAL;
1433 if (flags & TIMER_ABSTIME)
1434 rmtp = NULL;
1435 current->restart_block.fn = do_no_restart_syscall;
1436 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1437 current->restart_block.nanosleep.compat_rmtp = rmtp;
1438
1439 return kc->nsleep(which_clock, flags, &t);
1440 }
1441
1442 #endif
1443
1444 static const struct k_clock clock_realtime = {
1445 .clock_getres = posix_get_hrtimer_res,
1446 .clock_get_timespec = posix_get_realtime_timespec,
1447 .clock_get_ktime = posix_get_realtime_ktime,
1448 .clock_set = posix_clock_realtime_set,
1449 .clock_adj = posix_clock_realtime_adj,
1450 .nsleep = common_nsleep,
1451 .timer_create = common_timer_create,
1452 .timer_set = common_timer_set,
1453 .timer_get = common_timer_get,
1454 .timer_del = common_timer_del,
1455 .timer_rearm = common_hrtimer_rearm,
1456 .timer_forward = common_hrtimer_forward,
1457 .timer_remaining = common_hrtimer_remaining,
1458 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1459 .timer_wait_running = common_timer_wait_running,
1460 .timer_arm = common_hrtimer_arm,
1461 };
1462
1463 static const struct k_clock clock_monotonic = {
1464 .clock_getres = posix_get_hrtimer_res,
1465 .clock_get_timespec = posix_get_monotonic_timespec,
1466 .clock_get_ktime = posix_get_monotonic_ktime,
1467 .nsleep = common_nsleep_timens,
1468 .timer_create = common_timer_create,
1469 .timer_set = common_timer_set,
1470 .timer_get = common_timer_get,
1471 .timer_del = common_timer_del,
1472 .timer_rearm = common_hrtimer_rearm,
1473 .timer_forward = common_hrtimer_forward,
1474 .timer_remaining = common_hrtimer_remaining,
1475 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1476 .timer_wait_running = common_timer_wait_running,
1477 .timer_arm = common_hrtimer_arm,
1478 };
1479
1480 static const struct k_clock clock_monotonic_raw = {
1481 .clock_getres = posix_get_hrtimer_res,
1482 .clock_get_timespec = posix_get_monotonic_raw,
1483 };
1484
1485 static const struct k_clock clock_realtime_coarse = {
1486 .clock_getres = posix_get_coarse_res,
1487 .clock_get_timespec = posix_get_realtime_coarse,
1488 };
1489
1490 static const struct k_clock clock_monotonic_coarse = {
1491 .clock_getres = posix_get_coarse_res,
1492 .clock_get_timespec = posix_get_monotonic_coarse,
1493 };
1494
1495 static const struct k_clock clock_tai = {
1496 .clock_getres = posix_get_hrtimer_res,
1497 .clock_get_ktime = posix_get_tai_ktime,
1498 .clock_get_timespec = posix_get_tai_timespec,
1499 .nsleep = common_nsleep,
1500 .timer_create = common_timer_create,
1501 .timer_set = common_timer_set,
1502 .timer_get = common_timer_get,
1503 .timer_del = common_timer_del,
1504 .timer_rearm = common_hrtimer_rearm,
1505 .timer_forward = common_hrtimer_forward,
1506 .timer_remaining = common_hrtimer_remaining,
1507 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1508 .timer_wait_running = common_timer_wait_running,
1509 .timer_arm = common_hrtimer_arm,
1510 };
1511
1512 static const struct k_clock clock_boottime = {
1513 .clock_getres = posix_get_hrtimer_res,
1514 .clock_get_ktime = posix_get_boottime_ktime,
1515 .clock_get_timespec = posix_get_boottime_timespec,
1516 .nsleep = common_nsleep_timens,
1517 .timer_create = common_timer_create,
1518 .timer_set = common_timer_set,
1519 .timer_get = common_timer_get,
1520 .timer_del = common_timer_del,
1521 .timer_rearm = common_hrtimer_rearm,
1522 .timer_forward = common_hrtimer_forward,
1523 .timer_remaining = common_hrtimer_remaining,
1524 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1525 .timer_wait_running = common_timer_wait_running,
1526 .timer_arm = common_hrtimer_arm,
1527 };
1528
1529 static const struct k_clock * const posix_clocks[] = {
1530 [CLOCK_REALTIME] = &clock_realtime,
1531 [CLOCK_MONOTONIC] = &clock_monotonic,
1532 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1533 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1534 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1535 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1536 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
1537 [CLOCK_BOOTTIME] = &clock_boottime,
1538 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1539 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1540 [CLOCK_TAI] = &clock_tai,
1541 };
1542
clockid_to_kclock(const clockid_t id)1543 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1544 {
1545 clockid_t idx = id;
1546
1547 if (id < 0) {
1548 return (id & CLOCKFD_MASK) == CLOCKFD ?
1549 &clock_posix_dynamic : &clock_posix_cpu;
1550 }
1551
1552 if (id >= ARRAY_SIZE(posix_clocks))
1553 return NULL;
1554
1555 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1556 }
1557