xref: /linux/kernel/signal.c (revision 25144ea31b90af6fa860e1ce3ab735d8bb8deb83)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 #include <uapi/linux/pidfd.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/signal.h>
54 
55 #include <asm/param.h>
56 #include <linux/uaccess.h>
57 #include <asm/unistd.h>
58 #include <asm/siginfo.h>
59 #include <asm/cacheflush.h>
60 #include <asm/syscall.h>	/* for syscall_get_* */
61 
62 #include "time/posix-timers.h"
63 
64 /*
65  * SLAB caches for signal bits.
66  */
67 
68 static struct kmem_cache *sigqueue_cachep;
69 
70 int print_fatal_signals __read_mostly;
71 
sig_handler(struct task_struct * t,int sig)72 static void __user *sig_handler(struct task_struct *t, int sig)
73 {
74 	return t->sighand->action[sig - 1].sa.sa_handler;
75 }
76 
sig_handler_ignored(void __user * handler,int sig)77 static inline bool sig_handler_ignored(void __user *handler, int sig)
78 {
79 	/* Is it explicitly or implicitly ignored? */
80 	return handler == SIG_IGN ||
81 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
82 }
83 
sig_task_ignored(struct task_struct * t,int sig,bool force)84 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
85 {
86 	void __user *handler;
87 
88 	handler = sig_handler(t, sig);
89 
90 	/* SIGKILL and SIGSTOP may not be sent to the global init */
91 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
92 		return true;
93 
94 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
95 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
96 		return true;
97 
98 	/* Only allow kernel generated signals to this kthread */
99 	if (unlikely((t->flags & PF_KTHREAD) &&
100 		     (handler == SIG_KTHREAD_KERNEL) && !force))
101 		return true;
102 
103 	return sig_handler_ignored(handler, sig);
104 }
105 
sig_ignored(struct task_struct * t,int sig,bool force)106 static bool sig_ignored(struct task_struct *t, int sig, bool force)
107 {
108 	/*
109 	 * Blocked signals are never ignored, since the
110 	 * signal handler may change by the time it is
111 	 * unblocked.
112 	 */
113 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
114 		return false;
115 
116 	/*
117 	 * Tracers may want to know about even ignored signal unless it
118 	 * is SIGKILL which can't be reported anyway but can be ignored
119 	 * by SIGNAL_UNKILLABLE task.
120 	 */
121 	if (t->ptrace && sig != SIGKILL)
122 		return false;
123 
124 	return sig_task_ignored(t, sig, force);
125 }
126 
127 /*
128  * Re-calculate pending state from the set of locally pending
129  * signals, globally pending signals, and blocked signals.
130  */
has_pending_signals(sigset_t * signal,sigset_t * blocked)131 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
132 {
133 	unsigned long ready;
134 	long i;
135 
136 	switch (_NSIG_WORDS) {
137 	default:
138 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
139 			ready |= signal->sig[i] &~ blocked->sig[i];
140 		break;
141 
142 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
143 		ready |= signal->sig[2] &~ blocked->sig[2];
144 		ready |= signal->sig[1] &~ blocked->sig[1];
145 		ready |= signal->sig[0] &~ blocked->sig[0];
146 		break;
147 
148 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
149 		ready |= signal->sig[0] &~ blocked->sig[0];
150 		break;
151 
152 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
153 	}
154 	return ready !=	0;
155 }
156 
157 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
158 
recalc_sigpending_tsk(struct task_struct * t)159 static bool recalc_sigpending_tsk(struct task_struct *t)
160 {
161 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
162 	    PENDING(&t->pending, &t->blocked) ||
163 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
164 	    cgroup_task_frozen(t)) {
165 		set_tsk_thread_flag(t, TIF_SIGPENDING);
166 		return true;
167 	}
168 
169 	/*
170 	 * We must never clear the flag in another thread, or in current
171 	 * when it's possible the current syscall is returning -ERESTART*.
172 	 * So we don't clear it here, and only callers who know they should do.
173 	 */
174 	return false;
175 }
176 
recalc_sigpending(void)177 void recalc_sigpending(void)
178 {
179 	if (!recalc_sigpending_tsk(current) && !freezing(current))
180 		clear_thread_flag(TIF_SIGPENDING);
181 
182 }
183 EXPORT_SYMBOL(recalc_sigpending);
184 
calculate_sigpending(void)185 void calculate_sigpending(void)
186 {
187 	/* Have any signals or users of TIF_SIGPENDING been delayed
188 	 * until after fork?
189 	 */
190 	spin_lock_irq(&current->sighand->siglock);
191 	set_tsk_thread_flag(current, TIF_SIGPENDING);
192 	recalc_sigpending();
193 	spin_unlock_irq(&current->sighand->siglock);
194 }
195 
196 /* Given the mask, find the first available signal that should be serviced. */
197 
198 #define SYNCHRONOUS_MASK \
199 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
200 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
201 
next_signal(struct sigpending * pending,sigset_t * mask)202 int next_signal(struct sigpending *pending, sigset_t *mask)
203 {
204 	unsigned long i, *s, *m, x;
205 	int sig = 0;
206 
207 	s = pending->signal.sig;
208 	m = mask->sig;
209 
210 	/*
211 	 * Handle the first word specially: it contains the
212 	 * synchronous signals that need to be dequeued first.
213 	 */
214 	x = *s &~ *m;
215 	if (x) {
216 		if (x & SYNCHRONOUS_MASK)
217 			x &= SYNCHRONOUS_MASK;
218 		sig = ffz(~x) + 1;
219 		return sig;
220 	}
221 
222 	switch (_NSIG_WORDS) {
223 	default:
224 		for (i = 1; i < _NSIG_WORDS; ++i) {
225 			x = *++s &~ *++m;
226 			if (!x)
227 				continue;
228 			sig = ffz(~x) + i*_NSIG_BPW + 1;
229 			break;
230 		}
231 		break;
232 
233 	case 2:
234 		x = s[1] &~ m[1];
235 		if (!x)
236 			break;
237 		sig = ffz(~x) + _NSIG_BPW + 1;
238 		break;
239 
240 	case 1:
241 		/* Nothing to do */
242 		break;
243 	}
244 
245 	return sig;
246 }
247 
print_dropped_signal(int sig)248 static inline void print_dropped_signal(int sig)
249 {
250 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
251 
252 	if (!print_fatal_signals)
253 		return;
254 
255 	if (!__ratelimit(&ratelimit_state))
256 		return;
257 
258 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
259 				current->comm, current->pid, sig);
260 }
261 
262 /**
263  * task_set_jobctl_pending - set jobctl pending bits
264  * @task: target task
265  * @mask: pending bits to set
266  *
267  * Clear @mask from @task->jobctl.  @mask must be subset of
268  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
269  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
270  * cleared.  If @task is already being killed or exiting, this function
271  * becomes noop.
272  *
273  * CONTEXT:
274  * Must be called with @task->sighand->siglock held.
275  *
276  * RETURNS:
277  * %true if @mask is set, %false if made noop because @task was dying.
278  */
task_set_jobctl_pending(struct task_struct * task,unsigned long mask)279 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
280 {
281 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
282 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
283 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
284 
285 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
286 		return false;
287 
288 	if (mask & JOBCTL_STOP_SIGMASK)
289 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
290 
291 	task->jobctl |= mask;
292 	return true;
293 }
294 
295 /**
296  * task_clear_jobctl_trapping - clear jobctl trapping bit
297  * @task: target task
298  *
299  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
300  * Clear it and wake up the ptracer.  Note that we don't need any further
301  * locking.  @task->siglock guarantees that @task->parent points to the
302  * ptracer.
303  *
304  * CONTEXT:
305  * Must be called with @task->sighand->siglock held.
306  */
task_clear_jobctl_trapping(struct task_struct * task)307 void task_clear_jobctl_trapping(struct task_struct *task)
308 {
309 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
310 		task->jobctl &= ~JOBCTL_TRAPPING;
311 		smp_mb();	/* advised by wake_up_bit() */
312 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
313 	}
314 }
315 
316 /**
317  * task_clear_jobctl_pending - clear jobctl pending bits
318  * @task: target task
319  * @mask: pending bits to clear
320  *
321  * Clear @mask from @task->jobctl.  @mask must be subset of
322  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
323  * STOP bits are cleared together.
324  *
325  * If clearing of @mask leaves no stop or trap pending, this function calls
326  * task_clear_jobctl_trapping().
327  *
328  * CONTEXT:
329  * Must be called with @task->sighand->siglock held.
330  */
task_clear_jobctl_pending(struct task_struct * task,unsigned long mask)331 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
332 {
333 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
334 
335 	if (mask & JOBCTL_STOP_PENDING)
336 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
337 
338 	task->jobctl &= ~mask;
339 
340 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
341 		task_clear_jobctl_trapping(task);
342 }
343 
344 /**
345  * task_participate_group_stop - participate in a group stop
346  * @task: task participating in a group stop
347  *
348  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
349  * Group stop states are cleared and the group stop count is consumed if
350  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
351  * stop, the appropriate `SIGNAL_*` flags are set.
352  *
353  * CONTEXT:
354  * Must be called with @task->sighand->siglock held.
355  *
356  * RETURNS:
357  * %true if group stop completion should be notified to the parent, %false
358  * otherwise.
359  */
task_participate_group_stop(struct task_struct * task)360 static bool task_participate_group_stop(struct task_struct *task)
361 {
362 	struct signal_struct *sig = task->signal;
363 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
364 
365 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
366 
367 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
368 
369 	if (!consume)
370 		return false;
371 
372 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
373 		sig->group_stop_count--;
374 
375 	/*
376 	 * Tell the caller to notify completion iff we are entering into a
377 	 * fresh group stop.  Read comment in do_signal_stop() for details.
378 	 */
379 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
380 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
381 		return true;
382 	}
383 	return false;
384 }
385 
task_join_group_stop(struct task_struct * task)386 void task_join_group_stop(struct task_struct *task)
387 {
388 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
389 	struct signal_struct *sig = current->signal;
390 
391 	if (sig->group_stop_count) {
392 		sig->group_stop_count++;
393 		mask |= JOBCTL_STOP_CONSUME;
394 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
395 		return;
396 
397 	/* Have the new thread join an on-going signal group stop */
398 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
399 }
400 
sig_get_ucounts(struct task_struct * t,int sig,int override_rlimit)401 static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig,
402 				       int override_rlimit)
403 {
404 	struct ucounts *ucounts;
405 	long sigpending;
406 
407 	/*
408 	 * Protect access to @t credentials. This can go away when all
409 	 * callers hold rcu read lock.
410 	 *
411 	 * NOTE! A pending signal will hold on to the user refcount,
412 	 * and we get/put the refcount only when the sigpending count
413 	 * changes from/to zero.
414 	 */
415 	rcu_read_lock();
416 	ucounts = task_ucounts(t);
417 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING,
418 					    override_rlimit);
419 	rcu_read_unlock();
420 	if (!sigpending)
421 		return NULL;
422 
423 	if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) {
424 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
425 		print_dropped_signal(sig);
426 		return NULL;
427 	}
428 
429 	return ucounts;
430 }
431 
__sigqueue_init(struct sigqueue * q,struct ucounts * ucounts,const unsigned int sigqueue_flags)432 static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts,
433 			    const unsigned int sigqueue_flags)
434 {
435 	INIT_LIST_HEAD(&q->list);
436 	q->flags = sigqueue_flags;
437 	q->ucounts = ucounts;
438 }
439 
440 /*
441  * allocate a new signal queue record
442  * - this may be called without locks if and only if t == current, otherwise an
443  *   appropriate lock must be held to stop the target task from exiting
444  */
sigqueue_alloc(int sig,struct task_struct * t,gfp_t gfp_flags,int override_rlimit)445 static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
446 				       int override_rlimit)
447 {
448 	struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit);
449 	struct sigqueue *q;
450 
451 	if (!ucounts)
452 		return NULL;
453 
454 	q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
455 	if (!q) {
456 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
457 		return NULL;
458 	}
459 
460 	__sigqueue_init(q, ucounts, 0);
461 	return q;
462 }
463 
__sigqueue_free(struct sigqueue * q)464 static void __sigqueue_free(struct sigqueue *q)
465 {
466 	if (q->flags & SIGQUEUE_PREALLOC) {
467 		posixtimer_sigqueue_putref(q);
468 		return;
469 	}
470 	if (q->ucounts) {
471 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
472 		q->ucounts = NULL;
473 	}
474 	kmem_cache_free(sigqueue_cachep, q);
475 }
476 
flush_sigqueue(struct sigpending * queue)477 void flush_sigqueue(struct sigpending *queue)
478 {
479 	struct sigqueue *q;
480 
481 	sigemptyset(&queue->signal);
482 	while (!list_empty(&queue->list)) {
483 		q = list_entry(queue->list.next, struct sigqueue , list);
484 		list_del_init(&q->list);
485 		__sigqueue_free(q);
486 	}
487 }
488 
489 /*
490  * Flush all pending signals for this kthread.
491  */
flush_signals(struct task_struct * t)492 void flush_signals(struct task_struct *t)
493 {
494 	unsigned long flags;
495 
496 	spin_lock_irqsave(&t->sighand->siglock, flags);
497 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
498 	flush_sigqueue(&t->pending);
499 	flush_sigqueue(&t->signal->shared_pending);
500 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
501 }
502 EXPORT_SYMBOL(flush_signals);
503 
ignore_signals(struct task_struct * t)504 void ignore_signals(struct task_struct *t)
505 {
506 	int i;
507 
508 	for (i = 0; i < _NSIG; ++i)
509 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
510 
511 	flush_signals(t);
512 }
513 
514 /*
515  * Flush all handlers for a task.
516  */
517 
518 void
flush_signal_handlers(struct task_struct * t,int force_default)519 flush_signal_handlers(struct task_struct *t, int force_default)
520 {
521 	int i;
522 	struct k_sigaction *ka = &t->sighand->action[0];
523 	for (i = _NSIG ; i != 0 ; i--) {
524 		if (force_default || ka->sa.sa_handler != SIG_IGN)
525 			ka->sa.sa_handler = SIG_DFL;
526 		ka->sa.sa_flags = 0;
527 #ifdef __ARCH_HAS_SA_RESTORER
528 		ka->sa.sa_restorer = NULL;
529 #endif
530 		sigemptyset(&ka->sa.sa_mask);
531 		ka++;
532 	}
533 }
534 
unhandled_signal(struct task_struct * tsk,int sig)535 bool unhandled_signal(struct task_struct *tsk, int sig)
536 {
537 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
538 	if (is_global_init(tsk))
539 		return true;
540 
541 	if (handler != SIG_IGN && handler != SIG_DFL)
542 		return false;
543 
544 	/* If dying, we handle all new signals by ignoring them */
545 	if (fatal_signal_pending(tsk))
546 		return false;
547 
548 	/* if ptraced, let the tracer determine */
549 	return !tsk->ptrace;
550 }
551 
collect_signal(int sig,struct sigpending * list,kernel_siginfo_t * info,struct sigqueue ** timer_sigq)552 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
553 			   struct sigqueue **timer_sigq)
554 {
555 	struct sigqueue *q, *first = NULL;
556 
557 	/*
558 	 * Collect the siginfo appropriate to this signal.  Check if
559 	 * there is another siginfo for the same signal.
560 	*/
561 	list_for_each_entry(q, &list->list, list) {
562 		if (q->info.si_signo == sig) {
563 			if (first)
564 				goto still_pending;
565 			first = q;
566 		}
567 	}
568 
569 	sigdelset(&list->signal, sig);
570 
571 	if (first) {
572 still_pending:
573 		list_del_init(&first->list);
574 		copy_siginfo(info, &first->info);
575 
576 		/*
577 		 * posix-timer signals are preallocated and freed when the last
578 		 * reference count is dropped in posixtimer_deliver_signal() or
579 		 * immediately on timer deletion when the signal is not pending.
580 		 * Spare the extra round through __sigqueue_free() which is
581 		 * ignoring preallocated signals.
582 		 */
583 		if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER)))
584 			*timer_sigq = first;
585 		else
586 			__sigqueue_free(first);
587 	} else {
588 		/*
589 		 * Ok, it wasn't in the queue.  This must be
590 		 * a fast-pathed signal or we must have been
591 		 * out of queue space.  So zero out the info.
592 		 */
593 		clear_siginfo(info);
594 		info->si_signo = sig;
595 		info->si_errno = 0;
596 		info->si_code = SI_USER;
597 		info->si_pid = 0;
598 		info->si_uid = 0;
599 	}
600 }
601 
__dequeue_signal(struct sigpending * pending,sigset_t * mask,kernel_siginfo_t * info,struct sigqueue ** timer_sigq)602 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
603 			    kernel_siginfo_t *info, struct sigqueue **timer_sigq)
604 {
605 	int sig = next_signal(pending, mask);
606 
607 	if (sig)
608 		collect_signal(sig, pending, info, timer_sigq);
609 	return sig;
610 }
611 
612 /*
613  * Try to dequeue a signal. If a deliverable signal is found fill in the
614  * caller provided siginfo and return the signal number. Otherwise return
615  * 0.
616  */
dequeue_signal(sigset_t * mask,kernel_siginfo_t * info,enum pid_type * type)617 int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type)
618 {
619 	struct task_struct *tsk = current;
620 	struct sigqueue *timer_sigq;
621 	int signr;
622 
623 	lockdep_assert_held(&tsk->sighand->siglock);
624 
625 again:
626 	*type = PIDTYPE_PID;
627 	timer_sigq = NULL;
628 	signr = __dequeue_signal(&tsk->pending, mask, info, &timer_sigq);
629 	if (!signr) {
630 		*type = PIDTYPE_TGID;
631 		signr = __dequeue_signal(&tsk->signal->shared_pending,
632 					 mask, info, &timer_sigq);
633 
634 		if (unlikely(signr == SIGALRM))
635 			posixtimer_rearm_itimer(tsk);
636 	}
637 
638 	recalc_sigpending();
639 	if (!signr)
640 		return 0;
641 
642 	if (unlikely(sig_kernel_stop(signr))) {
643 		/*
644 		 * Set a marker that we have dequeued a stop signal.  Our
645 		 * caller might release the siglock and then the pending
646 		 * stop signal it is about to process is no longer in the
647 		 * pending bitmasks, but must still be cleared by a SIGCONT
648 		 * (and overruled by a SIGKILL).  So those cases clear this
649 		 * shared flag after we've set it.  Note that this flag may
650 		 * remain set after the signal we return is ignored or
651 		 * handled.  That doesn't matter because its only purpose
652 		 * is to alert stop-signal processing code when another
653 		 * processor has come along and cleared the flag.
654 		 */
655 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
656 	}
657 
658 	if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) {
659 		if (!posixtimer_deliver_signal(info, timer_sigq))
660 			goto again;
661 	}
662 
663 	return signr;
664 }
665 EXPORT_SYMBOL_GPL(dequeue_signal);
666 
dequeue_synchronous_signal(kernel_siginfo_t * info)667 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
668 {
669 	struct task_struct *tsk = current;
670 	struct sigpending *pending = &tsk->pending;
671 	struct sigqueue *q, *sync = NULL;
672 
673 	/*
674 	 * Might a synchronous signal be in the queue?
675 	 */
676 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
677 		return 0;
678 
679 	/*
680 	 * Return the first synchronous signal in the queue.
681 	 */
682 	list_for_each_entry(q, &pending->list, list) {
683 		/* Synchronous signals have a positive si_code */
684 		if ((q->info.si_code > SI_USER) &&
685 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
686 			sync = q;
687 			goto next;
688 		}
689 	}
690 	return 0;
691 next:
692 	/*
693 	 * Check if there is another siginfo for the same signal.
694 	 */
695 	list_for_each_entry_continue(q, &pending->list, list) {
696 		if (q->info.si_signo == sync->info.si_signo)
697 			goto still_pending;
698 	}
699 
700 	sigdelset(&pending->signal, sync->info.si_signo);
701 	recalc_sigpending();
702 still_pending:
703 	list_del_init(&sync->list);
704 	copy_siginfo(info, &sync->info);
705 	__sigqueue_free(sync);
706 	return info->si_signo;
707 }
708 
709 /*
710  * Tell a process that it has a new active signal..
711  *
712  * NOTE! we rely on the previous spin_lock to
713  * lock interrupts for us! We can only be called with
714  * "siglock" held, and the local interrupt must
715  * have been disabled when that got acquired!
716  *
717  * No need to set need_resched since signal event passing
718  * goes through ->blocked
719  */
signal_wake_up_state(struct task_struct * t,unsigned int state)720 void signal_wake_up_state(struct task_struct *t, unsigned int state)
721 {
722 	lockdep_assert_held(&t->sighand->siglock);
723 
724 	set_tsk_thread_flag(t, TIF_SIGPENDING);
725 
726 	/*
727 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
728 	 * case. We don't check t->state here because there is a race with it
729 	 * executing another processor and just now entering stopped state.
730 	 * By using wake_up_state, we ensure the process will wake up and
731 	 * handle its death signal.
732 	 */
733 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
734 		kick_process(t);
735 }
736 
737 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q);
738 
sigqueue_free_ignored(struct task_struct * tsk,struct sigqueue * q)739 static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q)
740 {
741 	if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER))
742 		__sigqueue_free(q);
743 	else
744 		posixtimer_sig_ignore(tsk, q);
745 }
746 
747 /* Remove signals in mask from the pending set and queue. */
flush_sigqueue_mask(struct task_struct * p,sigset_t * mask,struct sigpending * s)748 static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s)
749 {
750 	struct sigqueue *q, *n;
751 	sigset_t m;
752 
753 	lockdep_assert_held(&p->sighand->siglock);
754 
755 	sigandsets(&m, mask, &s->signal);
756 	if (sigisemptyset(&m))
757 		return;
758 
759 	sigandnsets(&s->signal, &s->signal, mask);
760 	list_for_each_entry_safe(q, n, &s->list, list) {
761 		if (sigismember(mask, q->info.si_signo)) {
762 			list_del_init(&q->list);
763 			sigqueue_free_ignored(p, q);
764 		}
765 	}
766 }
767 
is_si_special(const struct kernel_siginfo * info)768 static inline int is_si_special(const struct kernel_siginfo *info)
769 {
770 	return info <= SEND_SIG_PRIV;
771 }
772 
si_fromuser(const struct kernel_siginfo * info)773 static inline bool si_fromuser(const struct kernel_siginfo *info)
774 {
775 	return info == SEND_SIG_NOINFO ||
776 		(!is_si_special(info) && SI_FROMUSER(info));
777 }
778 
779 /*
780  * called with RCU read lock from check_kill_permission()
781  */
kill_ok_by_cred(struct task_struct * t)782 static bool kill_ok_by_cred(struct task_struct *t)
783 {
784 	const struct cred *cred = current_cred();
785 	const struct cred *tcred = __task_cred(t);
786 
787 	return uid_eq(cred->euid, tcred->suid) ||
788 	       uid_eq(cred->euid, tcred->uid) ||
789 	       uid_eq(cred->uid, tcred->suid) ||
790 	       uid_eq(cred->uid, tcred->uid) ||
791 	       ns_capable(tcred->user_ns, CAP_KILL);
792 }
793 
794 /*
795  * Bad permissions for sending the signal
796  * - the caller must hold the RCU read lock
797  */
check_kill_permission(int sig,struct kernel_siginfo * info,struct task_struct * t)798 static int check_kill_permission(int sig, struct kernel_siginfo *info,
799 				 struct task_struct *t)
800 {
801 	struct pid *sid;
802 	int error;
803 
804 	if (!valid_signal(sig))
805 		return -EINVAL;
806 
807 	if (!si_fromuser(info))
808 		return 0;
809 
810 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
811 	if (error)
812 		return error;
813 
814 	if (!same_thread_group(current, t) &&
815 	    !kill_ok_by_cred(t)) {
816 		switch (sig) {
817 		case SIGCONT:
818 			sid = task_session(t);
819 			/*
820 			 * We don't return the error if sid == NULL. The
821 			 * task was unhashed, the caller must notice this.
822 			 */
823 			if (!sid || sid == task_session(current))
824 				break;
825 			fallthrough;
826 		default:
827 			return -EPERM;
828 		}
829 	}
830 
831 	return security_task_kill(t, info, sig, NULL);
832 }
833 
834 /**
835  * ptrace_trap_notify - schedule trap to notify ptracer
836  * @t: tracee wanting to notify tracer
837  *
838  * This function schedules sticky ptrace trap which is cleared on the next
839  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
840  * ptracer.
841  *
842  * If @t is running, STOP trap will be taken.  If trapped for STOP and
843  * ptracer is listening for events, tracee is woken up so that it can
844  * re-trap for the new event.  If trapped otherwise, STOP trap will be
845  * eventually taken without returning to userland after the existing traps
846  * are finished by PTRACE_CONT.
847  *
848  * CONTEXT:
849  * Must be called with @task->sighand->siglock held.
850  */
ptrace_trap_notify(struct task_struct * t)851 static void ptrace_trap_notify(struct task_struct *t)
852 {
853 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
854 	lockdep_assert_held(&t->sighand->siglock);
855 
856 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
857 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
858 }
859 
860 /*
861  * Handle magic process-wide effects of stop/continue signals. Unlike
862  * the signal actions, these happen immediately at signal-generation
863  * time regardless of blocking, ignoring, or handling.  This does the
864  * actual continuing for SIGCONT, but not the actual stopping for stop
865  * signals. The process stop is done as a signal action for SIG_DFL.
866  *
867  * Returns true if the signal should be actually delivered, otherwise
868  * it should be dropped.
869  */
prepare_signal(int sig,struct task_struct * p,bool force)870 static bool prepare_signal(int sig, struct task_struct *p, bool force)
871 {
872 	struct signal_struct *signal = p->signal;
873 	struct task_struct *t;
874 	sigset_t flush;
875 
876 	if (signal->flags & SIGNAL_GROUP_EXIT) {
877 		if (signal->core_state)
878 			return sig == SIGKILL;
879 		/*
880 		 * The process is in the middle of dying, drop the signal.
881 		 */
882 		return false;
883 	} else if (sig_kernel_stop(sig)) {
884 		/*
885 		 * This is a stop signal.  Remove SIGCONT from all queues.
886 		 */
887 		siginitset(&flush, sigmask(SIGCONT));
888 		flush_sigqueue_mask(p, &flush, &signal->shared_pending);
889 		for_each_thread(p, t)
890 			flush_sigqueue_mask(p, &flush, &t->pending);
891 	} else if (sig == SIGCONT) {
892 		unsigned int why;
893 		/*
894 		 * Remove all stop signals from all queues, wake all threads.
895 		 */
896 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
897 		flush_sigqueue_mask(p, &flush, &signal->shared_pending);
898 		for_each_thread(p, t) {
899 			flush_sigqueue_mask(p, &flush, &t->pending);
900 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
901 			if (likely(!(t->ptrace & PT_SEIZED))) {
902 				t->jobctl &= ~JOBCTL_STOPPED;
903 				wake_up_state(t, __TASK_STOPPED);
904 			} else
905 				ptrace_trap_notify(t);
906 		}
907 
908 		/*
909 		 * Notify the parent with CLD_CONTINUED if we were stopped.
910 		 *
911 		 * If we were in the middle of a group stop, we pretend it
912 		 * was already finished, and then continued. Since SIGCHLD
913 		 * doesn't queue we report only CLD_STOPPED, as if the next
914 		 * CLD_CONTINUED was dropped.
915 		 */
916 		why = 0;
917 		if (signal->flags & SIGNAL_STOP_STOPPED)
918 			why |= SIGNAL_CLD_CONTINUED;
919 		else if (signal->group_stop_count)
920 			why |= SIGNAL_CLD_STOPPED;
921 
922 		if (why) {
923 			/*
924 			 * The first thread which returns from do_signal_stop()
925 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
926 			 * notify its parent. See get_signal().
927 			 */
928 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
929 			signal->group_stop_count = 0;
930 			signal->group_exit_code = 0;
931 		}
932 	}
933 
934 	return !sig_ignored(p, sig, force);
935 }
936 
937 /*
938  * Test if P wants to take SIG.  After we've checked all threads with this,
939  * it's equivalent to finding no threads not blocking SIG.  Any threads not
940  * blocking SIG were ruled out because they are not running and already
941  * have pending signals.  Such threads will dequeue from the shared queue
942  * as soon as they're available, so putting the signal on the shared queue
943  * will be equivalent to sending it to one such thread.
944  */
wants_signal(int sig,struct task_struct * p)945 static inline bool wants_signal(int sig, struct task_struct *p)
946 {
947 	if (sigismember(&p->blocked, sig))
948 		return false;
949 
950 	if (p->flags & PF_EXITING)
951 		return false;
952 
953 	if (sig == SIGKILL)
954 		return true;
955 
956 	if (task_is_stopped_or_traced(p))
957 		return false;
958 
959 	return task_curr(p) || !task_sigpending(p);
960 }
961 
complete_signal(int sig,struct task_struct * p,enum pid_type type)962 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
963 {
964 	struct signal_struct *signal = p->signal;
965 	struct task_struct *t;
966 
967 	/*
968 	 * Now find a thread we can wake up to take the signal off the queue.
969 	 *
970 	 * Try the suggested task first (may or may not be the main thread).
971 	 */
972 	if (wants_signal(sig, p))
973 		t = p;
974 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
975 		/*
976 		 * There is just one thread and it does not need to be woken.
977 		 * It will dequeue unblocked signals before it runs again.
978 		 */
979 		return;
980 	else {
981 		/*
982 		 * Otherwise try to find a suitable thread.
983 		 */
984 		t = signal->curr_target;
985 		while (!wants_signal(sig, t)) {
986 			t = next_thread(t);
987 			if (t == signal->curr_target)
988 				/*
989 				 * No thread needs to be woken.
990 				 * Any eligible threads will see
991 				 * the signal in the queue soon.
992 				 */
993 				return;
994 		}
995 		signal->curr_target = t;
996 	}
997 
998 	/*
999 	 * Found a killable thread.  If the signal will be fatal,
1000 	 * then start taking the whole group down immediately.
1001 	 */
1002 	if (sig_fatal(p, sig) &&
1003 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1004 	    !sigismember(&t->real_blocked, sig) &&
1005 	    (sig == SIGKILL || !p->ptrace)) {
1006 		/*
1007 		 * This signal will be fatal to the whole group.
1008 		 */
1009 		if (!sig_kernel_coredump(sig)) {
1010 			/*
1011 			 * Start a group exit and wake everybody up.
1012 			 * This way we don't have other threads
1013 			 * running and doing things after a slower
1014 			 * thread has the fatal signal pending.
1015 			 */
1016 			signal->flags = SIGNAL_GROUP_EXIT;
1017 			signal->group_exit_code = sig;
1018 			signal->group_stop_count = 0;
1019 			__for_each_thread(signal, t) {
1020 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1021 				sigaddset(&t->pending.signal, SIGKILL);
1022 				signal_wake_up(t, 1);
1023 			}
1024 			return;
1025 		}
1026 	}
1027 
1028 	/*
1029 	 * The signal is already in the shared-pending queue.
1030 	 * Tell the chosen thread to wake up and dequeue it.
1031 	 */
1032 	signal_wake_up(t, sig == SIGKILL);
1033 	return;
1034 }
1035 
legacy_queue(struct sigpending * signals,int sig)1036 static inline bool legacy_queue(struct sigpending *signals, int sig)
1037 {
1038 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1039 }
1040 
__send_signal_locked(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type,bool force)1041 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1042 				struct task_struct *t, enum pid_type type, bool force)
1043 {
1044 	struct sigpending *pending;
1045 	struct sigqueue *q;
1046 	int override_rlimit;
1047 	int ret = 0, result;
1048 
1049 	lockdep_assert_held(&t->sighand->siglock);
1050 
1051 	result = TRACE_SIGNAL_IGNORED;
1052 	if (!prepare_signal(sig, t, force))
1053 		goto ret;
1054 
1055 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1056 	/*
1057 	 * Short-circuit ignored signals and support queuing
1058 	 * exactly one non-rt signal, so that we can get more
1059 	 * detailed information about the cause of the signal.
1060 	 */
1061 	result = TRACE_SIGNAL_ALREADY_PENDING;
1062 	if (legacy_queue(pending, sig))
1063 		goto ret;
1064 
1065 	result = TRACE_SIGNAL_DELIVERED;
1066 	/*
1067 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1068 	 */
1069 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1070 		goto out_set;
1071 
1072 	/*
1073 	 * Real-time signals must be queued if sent by sigqueue, or
1074 	 * some other real-time mechanism.  It is implementation
1075 	 * defined whether kill() does so.  We attempt to do so, on
1076 	 * the principle of least surprise, but since kill is not
1077 	 * allowed to fail with EAGAIN when low on memory we just
1078 	 * make sure at least one signal gets delivered and don't
1079 	 * pass on the info struct.
1080 	 */
1081 	if (sig < SIGRTMIN)
1082 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1083 	else
1084 		override_rlimit = 0;
1085 
1086 	q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1087 
1088 	if (q) {
1089 		list_add_tail(&q->list, &pending->list);
1090 		switch ((unsigned long) info) {
1091 		case (unsigned long) SEND_SIG_NOINFO:
1092 			clear_siginfo(&q->info);
1093 			q->info.si_signo = sig;
1094 			q->info.si_errno = 0;
1095 			q->info.si_code = SI_USER;
1096 			q->info.si_pid = task_tgid_nr_ns(current,
1097 							task_active_pid_ns(t));
1098 			rcu_read_lock();
1099 			q->info.si_uid =
1100 				from_kuid_munged(task_cred_xxx(t, user_ns),
1101 						 current_uid());
1102 			rcu_read_unlock();
1103 			break;
1104 		case (unsigned long) SEND_SIG_PRIV:
1105 			clear_siginfo(&q->info);
1106 			q->info.si_signo = sig;
1107 			q->info.si_errno = 0;
1108 			q->info.si_code = SI_KERNEL;
1109 			q->info.si_pid = 0;
1110 			q->info.si_uid = 0;
1111 			break;
1112 		default:
1113 			copy_siginfo(&q->info, info);
1114 			break;
1115 		}
1116 	} else if (!is_si_special(info) &&
1117 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1118 		/*
1119 		 * Queue overflow, abort.  We may abort if the
1120 		 * signal was rt and sent by user using something
1121 		 * other than kill().
1122 		 */
1123 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1124 		ret = -EAGAIN;
1125 		goto ret;
1126 	} else {
1127 		/*
1128 		 * This is a silent loss of information.  We still
1129 		 * send the signal, but the *info bits are lost.
1130 		 */
1131 		result = TRACE_SIGNAL_LOSE_INFO;
1132 	}
1133 
1134 out_set:
1135 	signalfd_notify(t, sig);
1136 	sigaddset(&pending->signal, sig);
1137 
1138 	/* Let multiprocess signals appear after on-going forks */
1139 	if (type > PIDTYPE_TGID) {
1140 		struct multiprocess_signals *delayed;
1141 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1142 			sigset_t *signal = &delayed->signal;
1143 			/* Can't queue both a stop and a continue signal */
1144 			if (sig == SIGCONT)
1145 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1146 			else if (sig_kernel_stop(sig))
1147 				sigdelset(signal, SIGCONT);
1148 			sigaddset(signal, sig);
1149 		}
1150 	}
1151 
1152 	complete_signal(sig, t, type);
1153 ret:
1154 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1155 	return ret;
1156 }
1157 
has_si_pid_and_uid(struct kernel_siginfo * info)1158 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1159 {
1160 	bool ret = false;
1161 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1162 	case SIL_KILL:
1163 	case SIL_CHLD:
1164 	case SIL_RT:
1165 		ret = true;
1166 		break;
1167 	case SIL_TIMER:
1168 	case SIL_POLL:
1169 	case SIL_FAULT:
1170 	case SIL_FAULT_TRAPNO:
1171 	case SIL_FAULT_MCEERR:
1172 	case SIL_FAULT_BNDERR:
1173 	case SIL_FAULT_PKUERR:
1174 	case SIL_FAULT_PERF_EVENT:
1175 	case SIL_SYS:
1176 		ret = false;
1177 		break;
1178 	}
1179 	return ret;
1180 }
1181 
send_signal_locked(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type)1182 int send_signal_locked(int sig, struct kernel_siginfo *info,
1183 		       struct task_struct *t, enum pid_type type)
1184 {
1185 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1186 	bool force = false;
1187 
1188 	if (info == SEND_SIG_NOINFO) {
1189 		/* Force if sent from an ancestor pid namespace */
1190 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1191 	} else if (info == SEND_SIG_PRIV) {
1192 		/* Don't ignore kernel generated signals */
1193 		force = true;
1194 	} else if (has_si_pid_and_uid(info)) {
1195 		/* SIGKILL and SIGSTOP is special or has ids */
1196 		struct user_namespace *t_user_ns;
1197 
1198 		rcu_read_lock();
1199 		t_user_ns = task_cred_xxx(t, user_ns);
1200 		if (current_user_ns() != t_user_ns) {
1201 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1202 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1203 		}
1204 		rcu_read_unlock();
1205 
1206 		/* A kernel generated signal? */
1207 		force = (info->si_code == SI_KERNEL);
1208 
1209 		/* From an ancestor pid namespace? */
1210 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1211 			info->si_pid = 0;
1212 			force = true;
1213 		}
1214 	}
1215 	return __send_signal_locked(sig, info, t, type, force);
1216 }
1217 
print_fatal_signal(int signr)1218 static void print_fatal_signal(int signr)
1219 {
1220 	struct pt_regs *regs = task_pt_regs(current);
1221 	struct file *exe_file;
1222 
1223 	exe_file = get_task_exe_file(current);
1224 	if (exe_file) {
1225 		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1226 			exe_file, current->comm, signr);
1227 		fput(exe_file);
1228 	} else {
1229 		pr_info("%s: potentially unexpected fatal signal %d.\n",
1230 			current->comm, signr);
1231 	}
1232 
1233 #if defined(__i386__) && !defined(__arch_um__)
1234 	pr_info("code at %08lx: ", regs->ip);
1235 	{
1236 		int i;
1237 		for (i = 0; i < 16; i++) {
1238 			unsigned char insn;
1239 
1240 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1241 				break;
1242 			pr_cont("%02x ", insn);
1243 		}
1244 	}
1245 	pr_cont("\n");
1246 #endif
1247 	preempt_disable();
1248 	show_regs(regs);
1249 	preempt_enable();
1250 }
1251 
setup_print_fatal_signals(char * str)1252 static int __init setup_print_fatal_signals(char *str)
1253 {
1254 	get_option (&str, &print_fatal_signals);
1255 
1256 	return 1;
1257 }
1258 
1259 __setup("print-fatal-signals=", setup_print_fatal_signals);
1260 
do_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1261 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1262 			enum pid_type type)
1263 {
1264 	unsigned long flags;
1265 	int ret = -ESRCH;
1266 
1267 	if (lock_task_sighand(p, &flags)) {
1268 		ret = send_signal_locked(sig, info, p, type);
1269 		unlock_task_sighand(p, &flags);
1270 	}
1271 
1272 	return ret;
1273 }
1274 
1275 enum sig_handler {
1276 	HANDLER_CURRENT, /* If reachable use the current handler */
1277 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1278 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1279 };
1280 
1281 /*
1282  * Force a signal that the process can't ignore: if necessary
1283  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1284  *
1285  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1286  * since we do not want to have a signal handler that was blocked
1287  * be invoked when user space had explicitly blocked it.
1288  *
1289  * We don't want to have recursive SIGSEGV's etc, for example,
1290  * that is why we also clear SIGNAL_UNKILLABLE.
1291  */
1292 static int
force_sig_info_to_task(struct kernel_siginfo * info,struct task_struct * t,enum sig_handler handler)1293 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1294 	enum sig_handler handler)
1295 {
1296 	unsigned long int flags;
1297 	int ret, blocked, ignored;
1298 	struct k_sigaction *action;
1299 	int sig = info->si_signo;
1300 
1301 	spin_lock_irqsave(&t->sighand->siglock, flags);
1302 	action = &t->sighand->action[sig-1];
1303 	ignored = action->sa.sa_handler == SIG_IGN;
1304 	blocked = sigismember(&t->blocked, sig);
1305 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1306 		action->sa.sa_handler = SIG_DFL;
1307 		if (handler == HANDLER_EXIT)
1308 			action->sa.sa_flags |= SA_IMMUTABLE;
1309 		if (blocked)
1310 			sigdelset(&t->blocked, sig);
1311 	}
1312 	/*
1313 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1314 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1315 	 */
1316 	if (action->sa.sa_handler == SIG_DFL &&
1317 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1318 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1319 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1320 	/* This can happen if the signal was already pending and blocked */
1321 	if (!task_sigpending(t))
1322 		signal_wake_up(t, 0);
1323 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1324 
1325 	return ret;
1326 }
1327 
force_sig_info(struct kernel_siginfo * info)1328 int force_sig_info(struct kernel_siginfo *info)
1329 {
1330 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1331 }
1332 
1333 /*
1334  * Nuke all other threads in the group.
1335  */
zap_other_threads(struct task_struct * p)1336 int zap_other_threads(struct task_struct *p)
1337 {
1338 	struct task_struct *t;
1339 	int count = 0;
1340 
1341 	p->signal->group_stop_count = 0;
1342 
1343 	for_other_threads(p, t) {
1344 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1345 		count++;
1346 
1347 		/* Don't bother with already dead threads */
1348 		if (t->exit_state)
1349 			continue;
1350 		sigaddset(&t->pending.signal, SIGKILL);
1351 		signal_wake_up(t, 1);
1352 	}
1353 
1354 	return count;
1355 }
1356 
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1357 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1358 					   unsigned long *flags)
1359 {
1360 	struct sighand_struct *sighand;
1361 
1362 	rcu_read_lock();
1363 	for (;;) {
1364 		sighand = rcu_dereference(tsk->sighand);
1365 		if (unlikely(sighand == NULL))
1366 			break;
1367 
1368 		/*
1369 		 * This sighand can be already freed and even reused, but
1370 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1371 		 * initializes ->siglock: this slab can't go away, it has
1372 		 * the same object type, ->siglock can't be reinitialized.
1373 		 *
1374 		 * We need to ensure that tsk->sighand is still the same
1375 		 * after we take the lock, we can race with de_thread() or
1376 		 * __exit_signal(). In the latter case the next iteration
1377 		 * must see ->sighand == NULL.
1378 		 */
1379 		spin_lock_irqsave(&sighand->siglock, *flags);
1380 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1381 			break;
1382 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1383 	}
1384 	rcu_read_unlock();
1385 
1386 	return sighand;
1387 }
1388 
1389 #ifdef CONFIG_LOCKDEP
lockdep_assert_task_sighand_held(struct task_struct * task)1390 void lockdep_assert_task_sighand_held(struct task_struct *task)
1391 {
1392 	struct sighand_struct *sighand;
1393 
1394 	rcu_read_lock();
1395 	sighand = rcu_dereference(task->sighand);
1396 	if (sighand)
1397 		lockdep_assert_held(&sighand->siglock);
1398 	else
1399 		WARN_ON_ONCE(1);
1400 	rcu_read_unlock();
1401 }
1402 #endif
1403 
1404 /*
1405  * send signal info to all the members of a thread group or to the
1406  * individual thread if type == PIDTYPE_PID.
1407  */
group_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1408 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1409 			struct task_struct *p, enum pid_type type)
1410 {
1411 	int ret;
1412 
1413 	rcu_read_lock();
1414 	ret = check_kill_permission(sig, info, p);
1415 	rcu_read_unlock();
1416 
1417 	if (!ret && sig)
1418 		ret = do_send_sig_info(sig, info, p, type);
1419 
1420 	return ret;
1421 }
1422 
1423 /*
1424  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1425  * control characters do (^C, ^Z etc)
1426  * - the caller must hold at least a readlock on tasklist_lock
1427  */
__kill_pgrp_info(int sig,struct kernel_siginfo * info,struct pid * pgrp)1428 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1429 {
1430 	struct task_struct *p = NULL;
1431 	int ret = -ESRCH;
1432 
1433 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1434 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1435 		/*
1436 		 * If group_send_sig_info() succeeds at least once ret
1437 		 * becomes 0 and after that the code below has no effect.
1438 		 * Otherwise we return the last err or -ESRCH if this
1439 		 * process group is empty.
1440 		 */
1441 		if (ret)
1442 			ret = err;
1443 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1444 
1445 	return ret;
1446 }
1447 
kill_pid_info_type(int sig,struct kernel_siginfo * info,struct pid * pid,enum pid_type type)1448 static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1449 				struct pid *pid, enum pid_type type)
1450 {
1451 	int error = -ESRCH;
1452 	struct task_struct *p;
1453 
1454 	for (;;) {
1455 		rcu_read_lock();
1456 		p = pid_task(pid, PIDTYPE_PID);
1457 		if (p)
1458 			error = group_send_sig_info(sig, info, p, type);
1459 		rcu_read_unlock();
1460 		if (likely(!p || error != -ESRCH))
1461 			return error;
1462 		/*
1463 		 * The task was unhashed in between, try again.  If it
1464 		 * is dead, pid_task() will return NULL, if we race with
1465 		 * de_thread() it will find the new leader.
1466 		 */
1467 	}
1468 }
1469 
kill_pid_info(int sig,struct kernel_siginfo * info,struct pid * pid)1470 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1471 {
1472 	return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1473 }
1474 
kill_proc_info(int sig,struct kernel_siginfo * info,pid_t pid)1475 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1476 {
1477 	int error;
1478 	rcu_read_lock();
1479 	error = kill_pid_info(sig, info, find_vpid(pid));
1480 	rcu_read_unlock();
1481 	return error;
1482 }
1483 
kill_as_cred_perm(const struct cred * cred,struct task_struct * target)1484 static inline bool kill_as_cred_perm(const struct cred *cred,
1485 				     struct task_struct *target)
1486 {
1487 	const struct cred *pcred = __task_cred(target);
1488 
1489 	return uid_eq(cred->euid, pcred->suid) ||
1490 	       uid_eq(cred->euid, pcred->uid) ||
1491 	       uid_eq(cred->uid, pcred->suid) ||
1492 	       uid_eq(cred->uid, pcred->uid);
1493 }
1494 
1495 /*
1496  * The usb asyncio usage of siginfo is wrong.  The glibc support
1497  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1498  * AKA after the generic fields:
1499  *	kernel_pid_t	si_pid;
1500  *	kernel_uid32_t	si_uid;
1501  *	sigval_t	si_value;
1502  *
1503  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1504  * after the generic fields is:
1505  *	void __user 	*si_addr;
1506  *
1507  * This is a practical problem when there is a 64bit big endian kernel
1508  * and a 32bit userspace.  As the 32bit address will encoded in the low
1509  * 32bits of the pointer.  Those low 32bits will be stored at higher
1510  * address than appear in a 32 bit pointer.  So userspace will not
1511  * see the address it was expecting for it's completions.
1512  *
1513  * There is nothing in the encoding that can allow
1514  * copy_siginfo_to_user32 to detect this confusion of formats, so
1515  * handle this by requiring the caller of kill_pid_usb_asyncio to
1516  * notice when this situration takes place and to store the 32bit
1517  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1518  * parameter.
1519  */
kill_pid_usb_asyncio(int sig,int errno,sigval_t addr,struct pid * pid,const struct cred * cred)1520 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1521 			 struct pid *pid, const struct cred *cred)
1522 {
1523 	struct kernel_siginfo info;
1524 	struct task_struct *p;
1525 	unsigned long flags;
1526 	int ret = -EINVAL;
1527 
1528 	if (!valid_signal(sig))
1529 		return ret;
1530 
1531 	clear_siginfo(&info);
1532 	info.si_signo = sig;
1533 	info.si_errno = errno;
1534 	info.si_code = SI_ASYNCIO;
1535 	*((sigval_t *)&info.si_pid) = addr;
1536 
1537 	rcu_read_lock();
1538 	p = pid_task(pid, PIDTYPE_PID);
1539 	if (!p) {
1540 		ret = -ESRCH;
1541 		goto out_unlock;
1542 	}
1543 	if (!kill_as_cred_perm(cred, p)) {
1544 		ret = -EPERM;
1545 		goto out_unlock;
1546 	}
1547 	ret = security_task_kill(p, &info, sig, cred);
1548 	if (ret)
1549 		goto out_unlock;
1550 
1551 	if (sig) {
1552 		if (lock_task_sighand(p, &flags)) {
1553 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1554 			unlock_task_sighand(p, &flags);
1555 		} else
1556 			ret = -ESRCH;
1557 	}
1558 out_unlock:
1559 	rcu_read_unlock();
1560 	return ret;
1561 }
1562 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1563 
1564 /*
1565  * kill_something_info() interprets pid in interesting ways just like kill(2).
1566  *
1567  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1568  * is probably wrong.  Should make it like BSD or SYSV.
1569  */
1570 
kill_something_info(int sig,struct kernel_siginfo * info,pid_t pid)1571 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1572 {
1573 	int ret;
1574 
1575 	if (pid > 0)
1576 		return kill_proc_info(sig, info, pid);
1577 
1578 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1579 	if (pid == INT_MIN)
1580 		return -ESRCH;
1581 
1582 	read_lock(&tasklist_lock);
1583 	if (pid != -1) {
1584 		ret = __kill_pgrp_info(sig, info,
1585 				pid ? find_vpid(-pid) : task_pgrp(current));
1586 	} else {
1587 		int retval = 0, count = 0;
1588 		struct task_struct * p;
1589 
1590 		for_each_process(p) {
1591 			if (task_pid_vnr(p) > 1 &&
1592 					!same_thread_group(p, current)) {
1593 				int err = group_send_sig_info(sig, info, p,
1594 							      PIDTYPE_MAX);
1595 				++count;
1596 				if (err != -EPERM)
1597 					retval = err;
1598 			}
1599 		}
1600 		ret = count ? retval : -ESRCH;
1601 	}
1602 	read_unlock(&tasklist_lock);
1603 
1604 	return ret;
1605 }
1606 
1607 /*
1608  * These are for backward compatibility with the rest of the kernel source.
1609  */
1610 
send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p)1611 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1612 {
1613 	/*
1614 	 * Make sure legacy kernel users don't send in bad values
1615 	 * (normal paths check this in check_kill_permission).
1616 	 */
1617 	if (!valid_signal(sig))
1618 		return -EINVAL;
1619 
1620 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1621 }
1622 EXPORT_SYMBOL(send_sig_info);
1623 
1624 #define __si_special(priv) \
1625 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1626 
1627 int
send_sig(int sig,struct task_struct * p,int priv)1628 send_sig(int sig, struct task_struct *p, int priv)
1629 {
1630 	return send_sig_info(sig, __si_special(priv), p);
1631 }
1632 EXPORT_SYMBOL(send_sig);
1633 
force_sig(int sig)1634 void force_sig(int sig)
1635 {
1636 	struct kernel_siginfo info;
1637 
1638 	clear_siginfo(&info);
1639 	info.si_signo = sig;
1640 	info.si_errno = 0;
1641 	info.si_code = SI_KERNEL;
1642 	info.si_pid = 0;
1643 	info.si_uid = 0;
1644 	force_sig_info(&info);
1645 }
1646 EXPORT_SYMBOL(force_sig);
1647 
force_fatal_sig(int sig)1648 void force_fatal_sig(int sig)
1649 {
1650 	struct kernel_siginfo info;
1651 
1652 	clear_siginfo(&info);
1653 	info.si_signo = sig;
1654 	info.si_errno = 0;
1655 	info.si_code = SI_KERNEL;
1656 	info.si_pid = 0;
1657 	info.si_uid = 0;
1658 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1659 }
1660 
force_exit_sig(int sig)1661 void force_exit_sig(int sig)
1662 {
1663 	struct kernel_siginfo info;
1664 
1665 	clear_siginfo(&info);
1666 	info.si_signo = sig;
1667 	info.si_errno = 0;
1668 	info.si_code = SI_KERNEL;
1669 	info.si_pid = 0;
1670 	info.si_uid = 0;
1671 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1672 }
1673 
1674 /*
1675  * When things go south during signal handling, we
1676  * will force a SIGSEGV. And if the signal that caused
1677  * the problem was already a SIGSEGV, we'll want to
1678  * make sure we don't even try to deliver the signal..
1679  */
force_sigsegv(int sig)1680 void force_sigsegv(int sig)
1681 {
1682 	if (sig == SIGSEGV)
1683 		force_fatal_sig(SIGSEGV);
1684 	else
1685 		force_sig(SIGSEGV);
1686 }
1687 
force_sig_fault_to_task(int sig,int code,void __user * addr,struct task_struct * t)1688 int force_sig_fault_to_task(int sig, int code, void __user *addr,
1689 			    struct task_struct *t)
1690 {
1691 	struct kernel_siginfo info;
1692 
1693 	clear_siginfo(&info);
1694 	info.si_signo = sig;
1695 	info.si_errno = 0;
1696 	info.si_code  = code;
1697 	info.si_addr  = addr;
1698 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1699 }
1700 
force_sig_fault(int sig,int code,void __user * addr)1701 int force_sig_fault(int sig, int code, void __user *addr)
1702 {
1703 	return force_sig_fault_to_task(sig, code, addr, current);
1704 }
1705 
send_sig_fault(int sig,int code,void __user * addr,struct task_struct * t)1706 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1707 {
1708 	struct kernel_siginfo info;
1709 
1710 	clear_siginfo(&info);
1711 	info.si_signo = sig;
1712 	info.si_errno = 0;
1713 	info.si_code  = code;
1714 	info.si_addr  = addr;
1715 	return send_sig_info(info.si_signo, &info, t);
1716 }
1717 
force_sig_mceerr(int code,void __user * addr,short lsb)1718 int force_sig_mceerr(int code, void __user *addr, short lsb)
1719 {
1720 	struct kernel_siginfo info;
1721 
1722 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1723 	clear_siginfo(&info);
1724 	info.si_signo = SIGBUS;
1725 	info.si_errno = 0;
1726 	info.si_code = code;
1727 	info.si_addr = addr;
1728 	info.si_addr_lsb = lsb;
1729 	return force_sig_info(&info);
1730 }
1731 
send_sig_mceerr(int code,void __user * addr,short lsb,struct task_struct * t)1732 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1733 {
1734 	struct kernel_siginfo info;
1735 
1736 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1737 	clear_siginfo(&info);
1738 	info.si_signo = SIGBUS;
1739 	info.si_errno = 0;
1740 	info.si_code = code;
1741 	info.si_addr = addr;
1742 	info.si_addr_lsb = lsb;
1743 	return send_sig_info(info.si_signo, &info, t);
1744 }
1745 EXPORT_SYMBOL(send_sig_mceerr);
1746 
force_sig_bnderr(void __user * addr,void __user * lower,void __user * upper)1747 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1748 {
1749 	struct kernel_siginfo info;
1750 
1751 	clear_siginfo(&info);
1752 	info.si_signo = SIGSEGV;
1753 	info.si_errno = 0;
1754 	info.si_code  = SEGV_BNDERR;
1755 	info.si_addr  = addr;
1756 	info.si_lower = lower;
1757 	info.si_upper = upper;
1758 	return force_sig_info(&info);
1759 }
1760 
1761 #ifdef SEGV_PKUERR
force_sig_pkuerr(void __user * addr,u32 pkey)1762 int force_sig_pkuerr(void __user *addr, u32 pkey)
1763 {
1764 	struct kernel_siginfo info;
1765 
1766 	clear_siginfo(&info);
1767 	info.si_signo = SIGSEGV;
1768 	info.si_errno = 0;
1769 	info.si_code  = SEGV_PKUERR;
1770 	info.si_addr  = addr;
1771 	info.si_pkey  = pkey;
1772 	return force_sig_info(&info);
1773 }
1774 #endif
1775 
send_sig_perf(void __user * addr,u32 type,u64 sig_data)1776 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1777 {
1778 	struct kernel_siginfo info;
1779 
1780 	clear_siginfo(&info);
1781 	info.si_signo     = SIGTRAP;
1782 	info.si_errno     = 0;
1783 	info.si_code      = TRAP_PERF;
1784 	info.si_addr      = addr;
1785 	info.si_perf_data = sig_data;
1786 	info.si_perf_type = type;
1787 
1788 	/*
1789 	 * Signals generated by perf events should not terminate the whole
1790 	 * process if SIGTRAP is blocked, however, delivering the signal
1791 	 * asynchronously is better than not delivering at all. But tell user
1792 	 * space if the signal was asynchronous, so it can clearly be
1793 	 * distinguished from normal synchronous ones.
1794 	 */
1795 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1796 				     TRAP_PERF_FLAG_ASYNC :
1797 				     0;
1798 
1799 	return send_sig_info(info.si_signo, &info, current);
1800 }
1801 
1802 /**
1803  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1804  * @syscall: syscall number to send to userland
1805  * @reason: filter-supplied reason code to send to userland (via si_errno)
1806  * @force_coredump: true to trigger a coredump
1807  *
1808  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1809  */
force_sig_seccomp(int syscall,int reason,bool force_coredump)1810 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1811 {
1812 	struct kernel_siginfo info;
1813 
1814 	clear_siginfo(&info);
1815 	info.si_signo = SIGSYS;
1816 	info.si_code = SYS_SECCOMP;
1817 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1818 	info.si_errno = reason;
1819 	info.si_arch = syscall_get_arch(current);
1820 	info.si_syscall = syscall;
1821 	return force_sig_info_to_task(&info, current,
1822 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1823 }
1824 
1825 /* For the crazy architectures that include trap information in
1826  * the errno field, instead of an actual errno value.
1827  */
force_sig_ptrace_errno_trap(int errno,void __user * addr)1828 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1829 {
1830 	struct kernel_siginfo info;
1831 
1832 	clear_siginfo(&info);
1833 	info.si_signo = SIGTRAP;
1834 	info.si_errno = errno;
1835 	info.si_code  = TRAP_HWBKPT;
1836 	info.si_addr  = addr;
1837 	return force_sig_info(&info);
1838 }
1839 
1840 /* For the rare architectures that include trap information using
1841  * si_trapno.
1842  */
force_sig_fault_trapno(int sig,int code,void __user * addr,int trapno)1843 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1844 {
1845 	struct kernel_siginfo info;
1846 
1847 	clear_siginfo(&info);
1848 	info.si_signo = sig;
1849 	info.si_errno = 0;
1850 	info.si_code  = code;
1851 	info.si_addr  = addr;
1852 	info.si_trapno = trapno;
1853 	return force_sig_info(&info);
1854 }
1855 
1856 /* For the rare architectures that include trap information using
1857  * si_trapno.
1858  */
send_sig_fault_trapno(int sig,int code,void __user * addr,int trapno,struct task_struct * t)1859 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1860 			  struct task_struct *t)
1861 {
1862 	struct kernel_siginfo info;
1863 
1864 	clear_siginfo(&info);
1865 	info.si_signo = sig;
1866 	info.si_errno = 0;
1867 	info.si_code  = code;
1868 	info.si_addr  = addr;
1869 	info.si_trapno = trapno;
1870 	return send_sig_info(info.si_signo, &info, t);
1871 }
1872 
kill_pgrp_info(int sig,struct kernel_siginfo * info,struct pid * pgrp)1873 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1874 {
1875 	int ret;
1876 	read_lock(&tasklist_lock);
1877 	ret = __kill_pgrp_info(sig, info, pgrp);
1878 	read_unlock(&tasklist_lock);
1879 	return ret;
1880 }
1881 
kill_pgrp(struct pid * pid,int sig,int priv)1882 int kill_pgrp(struct pid *pid, int sig, int priv)
1883 {
1884 	return kill_pgrp_info(sig, __si_special(priv), pid);
1885 }
1886 EXPORT_SYMBOL(kill_pgrp);
1887 
kill_pid(struct pid * pid,int sig,int priv)1888 int kill_pid(struct pid *pid, int sig, int priv)
1889 {
1890 	return kill_pid_info(sig, __si_special(priv), pid);
1891 }
1892 EXPORT_SYMBOL(kill_pid);
1893 
1894 #ifdef CONFIG_POSIX_TIMERS
1895 /*
1896  * These functions handle POSIX timer signals. POSIX timers use
1897  * preallocated sigqueue structs for sending signals.
1898  */
__flush_itimer_signals(struct sigpending * pending)1899 static void __flush_itimer_signals(struct sigpending *pending)
1900 {
1901 	sigset_t signal, retain;
1902 	struct sigqueue *q, *n;
1903 
1904 	signal = pending->signal;
1905 	sigemptyset(&retain);
1906 
1907 	list_for_each_entry_safe(q, n, &pending->list, list) {
1908 		int sig = q->info.si_signo;
1909 
1910 		if (likely(q->info.si_code != SI_TIMER)) {
1911 			sigaddset(&retain, sig);
1912 		} else {
1913 			sigdelset(&signal, sig);
1914 			list_del_init(&q->list);
1915 			__sigqueue_free(q);
1916 		}
1917 	}
1918 
1919 	sigorsets(&pending->signal, &signal, &retain);
1920 }
1921 
flush_itimer_signals(void)1922 void flush_itimer_signals(void)
1923 {
1924 	struct task_struct *tsk = current;
1925 
1926 	guard(spinlock_irqsave)(&tsk->sighand->siglock);
1927 	__flush_itimer_signals(&tsk->pending);
1928 	__flush_itimer_signals(&tsk->signal->shared_pending);
1929 }
1930 
posixtimer_init_sigqueue(struct sigqueue * q)1931 bool posixtimer_init_sigqueue(struct sigqueue *q)
1932 {
1933 	struct ucounts *ucounts = sig_get_ucounts(current, -1, 0);
1934 
1935 	if (!ucounts)
1936 		return false;
1937 	clear_siginfo(&q->info);
1938 	__sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC);
1939 	return true;
1940 }
1941 
posixtimer_queue_sigqueue(struct sigqueue * q,struct task_struct * t,enum pid_type type)1942 static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type)
1943 {
1944 	struct sigpending *pending;
1945 	int sig = q->info.si_signo;
1946 
1947 	signalfd_notify(t, sig);
1948 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1949 	list_add_tail(&q->list, &pending->list);
1950 	sigaddset(&pending->signal, sig);
1951 	complete_signal(sig, t, type);
1952 }
1953 
1954 /*
1955  * This function is used by POSIX timers to deliver a timer signal.
1956  * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1957  * set), the signal must be delivered to the specific thread (queues
1958  * into t->pending).
1959  *
1960  * Where type is not PIDTYPE_PID, signals must be delivered to the
1961  * process. In this case, prefer to deliver to current if it is in
1962  * the same thread group as the target process and its sighand is
1963  * stable, which avoids unnecessarily waking up a potentially idle task.
1964  */
posixtimer_get_target(struct k_itimer * tmr)1965 static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr)
1966 {
1967 	struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type);
1968 
1969 	if (t && tmr->it_pid_type != PIDTYPE_PID &&
1970 	    same_thread_group(t, current) && !current->exit_state)
1971 		t = current;
1972 	return t;
1973 }
1974 
posixtimer_send_sigqueue(struct k_itimer * tmr)1975 void posixtimer_send_sigqueue(struct k_itimer *tmr)
1976 {
1977 	struct sigqueue *q = &tmr->sigq;
1978 	int sig = q->info.si_signo;
1979 	struct task_struct *t;
1980 	unsigned long flags;
1981 	int result;
1982 
1983 	guard(rcu)();
1984 
1985 	t = posixtimer_get_target(tmr);
1986 	if (!t)
1987 		return;
1988 
1989 	if (!likely(lock_task_sighand(t, &flags)))
1990 		return;
1991 
1992 	/*
1993 	 * Update @tmr::sigqueue_seq for posix timer signals with sighand
1994 	 * locked to prevent a race against dequeue_signal().
1995 	 */
1996 	tmr->it_sigqueue_seq = tmr->it_signal_seq;
1997 
1998 	/*
1999 	 * Set the signal delivery status under sighand lock, so that the
2000 	 * ignored signal handling can distinguish between a periodic and a
2001 	 * non-periodic timer.
2002 	 */
2003 	tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING;
2004 
2005 	if (!prepare_signal(sig, t, false)) {
2006 		result = TRACE_SIGNAL_IGNORED;
2007 
2008 		if (!list_empty(&q->list)) {
2009 			/*
2010 			 * The signal was ignored and blocked. The timer
2011 			 * expiry queued it because blocked signals are
2012 			 * queued independent of the ignored state.
2013 			 *
2014 			 * The unblocking set SIGPENDING, but the signal
2015 			 * was not yet dequeued from the pending list.
2016 			 * So prepare_signal() sees unblocked and ignored,
2017 			 * which ends up here. Leave it queued like a
2018 			 * regular signal.
2019 			 *
2020 			 * The same happens when the task group is exiting
2021 			 * and the signal is already queued.
2022 			 * prepare_signal() treats SIGNAL_GROUP_EXIT as
2023 			 * ignored independent of its queued state. This
2024 			 * gets cleaned up in __exit_signal().
2025 			 */
2026 			goto out;
2027 		}
2028 
2029 		/* Periodic timers with SIG_IGN are queued on the ignored list */
2030 		if (tmr->it_sig_periodic) {
2031 			/*
2032 			 * Already queued means the timer was rearmed after
2033 			 * the previous expiry got it on the ignore list.
2034 			 * Nothing to do for that case.
2035 			 */
2036 			if (hlist_unhashed(&tmr->ignored_list)) {
2037 				/*
2038 				 * Take a signal reference and queue it on
2039 				 * the ignored list.
2040 				 */
2041 				posixtimer_sigqueue_getref(q);
2042 				posixtimer_sig_ignore(t, q);
2043 			}
2044 		} else if (!hlist_unhashed(&tmr->ignored_list)) {
2045 			/*
2046 			 * Covers the case where a timer was periodic and
2047 			 * then the signal was ignored. Later it was rearmed
2048 			 * as oneshot timer. The previous signal is invalid
2049 			 * now, and this oneshot signal has to be dropped.
2050 			 * Remove it from the ignored list and drop the
2051 			 * reference count as the signal is not longer
2052 			 * queued.
2053 			 */
2054 			hlist_del_init(&tmr->ignored_list);
2055 			posixtimer_putref(tmr);
2056 		}
2057 		goto out;
2058 	}
2059 
2060 	if (unlikely(!list_empty(&q->list))) {
2061 		/* This holds a reference count already */
2062 		result = TRACE_SIGNAL_ALREADY_PENDING;
2063 		goto out;
2064 	}
2065 
2066 	/*
2067 	 * If the signal is on the ignore list, it got blocked after it was
2068 	 * ignored earlier. But nothing lifted the ignore. Move it back to
2069 	 * the pending list to be consistent with the regular signal
2070 	 * handling. This already holds a reference count.
2071 	 *
2072 	 * If it's not on the ignore list acquire a reference count.
2073 	 */
2074 	if (likely(hlist_unhashed(&tmr->ignored_list)))
2075 		posixtimer_sigqueue_getref(q);
2076 	else
2077 		hlist_del_init(&tmr->ignored_list);
2078 
2079 	posixtimer_queue_sigqueue(q, t, tmr->it_pid_type);
2080 	result = TRACE_SIGNAL_DELIVERED;
2081 out:
2082 	trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result);
2083 	unlock_task_sighand(t, &flags);
2084 }
2085 
posixtimer_sig_ignore(struct task_struct * tsk,struct sigqueue * q)2086 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q)
2087 {
2088 	struct k_itimer *tmr = container_of(q, struct k_itimer, sigq);
2089 
2090 	/*
2091 	 * If the timer is marked deleted already or the signal originates
2092 	 * from a non-periodic timer, then just drop the reference
2093 	 * count. Otherwise queue it on the ignored list.
2094 	 */
2095 	if (tmr->it_signal && tmr->it_sig_periodic)
2096 		hlist_add_head(&tmr->ignored_list, &tsk->signal->ignored_posix_timers);
2097 	else
2098 		posixtimer_putref(tmr);
2099 }
2100 
posixtimer_sig_unignore(struct task_struct * tsk,int sig)2101 static void posixtimer_sig_unignore(struct task_struct *tsk, int sig)
2102 {
2103 	struct hlist_head *head = &tsk->signal->ignored_posix_timers;
2104 	struct hlist_node *tmp;
2105 	struct k_itimer *tmr;
2106 
2107 	if (likely(hlist_empty(head)))
2108 		return;
2109 
2110 	/*
2111 	 * Rearming a timer with sighand lock held is not possible due to
2112 	 * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and
2113 	 * let the signal delivery path deal with it whether it needs to be
2114 	 * rearmed or not. This cannot be decided here w/o dropping sighand
2115 	 * lock and creating a loop retry horror show.
2116 	 */
2117 	hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) {
2118 		struct task_struct *target;
2119 
2120 		/*
2121 		 * tmr::sigq.info.si_signo is immutable, so accessing it
2122 		 * without holding tmr::it_lock is safe.
2123 		 */
2124 		if (tmr->sigq.info.si_signo != sig)
2125 			continue;
2126 
2127 		hlist_del_init(&tmr->ignored_list);
2128 
2129 		/* This should never happen and leaks a reference count */
2130 		if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list)))
2131 			continue;
2132 
2133 		/*
2134 		 * Get the target for the signal. If target is a thread and
2135 		 * has exited by now, drop the reference count.
2136 		 */
2137 		guard(rcu)();
2138 		target = posixtimer_get_target(tmr);
2139 		if (target)
2140 			posixtimer_queue_sigqueue(&tmr->sigq, target, tmr->it_pid_type);
2141 		else
2142 			posixtimer_putref(tmr);
2143 	}
2144 }
2145 #else /* CONFIG_POSIX_TIMERS */
posixtimer_sig_ignore(struct task_struct * tsk,struct sigqueue * q)2146 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { }
posixtimer_sig_unignore(struct task_struct * tsk,int sig)2147 static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { }
2148 #endif /* !CONFIG_POSIX_TIMERS */
2149 
do_notify_pidfd(struct task_struct * task)2150 void do_notify_pidfd(struct task_struct *task)
2151 {
2152 	struct pid *pid = task_pid(task);
2153 
2154 	WARN_ON(task->exit_state == 0);
2155 
2156 	__wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2157 			poll_to_key(EPOLLIN | EPOLLRDNORM));
2158 }
2159 
2160 /*
2161  * Let a parent know about the death of a child.
2162  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2163  *
2164  * Returns true if our parent ignored us and so we've switched to
2165  * self-reaping.
2166  */
do_notify_parent(struct task_struct * tsk,int sig)2167 bool do_notify_parent(struct task_struct *tsk, int sig)
2168 {
2169 	struct kernel_siginfo info;
2170 	unsigned long flags;
2171 	struct sighand_struct *psig;
2172 	bool autoreap = false;
2173 	u64 utime, stime;
2174 
2175 	WARN_ON_ONCE(sig == -1);
2176 
2177 	/* do_notify_parent_cldstop should have been called instead.  */
2178 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2179 
2180 	WARN_ON_ONCE(!tsk->ptrace &&
2181 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2182 	/*
2183 	 * tsk is a group leader and has no threads, wake up the
2184 	 * non-PIDFD_THREAD waiters.
2185 	 */
2186 	if (thread_group_empty(tsk))
2187 		do_notify_pidfd(tsk);
2188 
2189 	if (sig != SIGCHLD) {
2190 		/*
2191 		 * This is only possible if parent == real_parent.
2192 		 * Check if it has changed security domain.
2193 		 */
2194 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2195 			sig = SIGCHLD;
2196 	}
2197 
2198 	clear_siginfo(&info);
2199 	info.si_signo = sig;
2200 	info.si_errno = 0;
2201 	/*
2202 	 * We are under tasklist_lock here so our parent is tied to
2203 	 * us and cannot change.
2204 	 *
2205 	 * task_active_pid_ns will always return the same pid namespace
2206 	 * until a task passes through release_task.
2207 	 *
2208 	 * write_lock() currently calls preempt_disable() which is the
2209 	 * same as rcu_read_lock(), but according to Oleg, this is not
2210 	 * correct to rely on this
2211 	 */
2212 	rcu_read_lock();
2213 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2214 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2215 				       task_uid(tsk));
2216 	rcu_read_unlock();
2217 
2218 	task_cputime(tsk, &utime, &stime);
2219 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2220 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2221 
2222 	info.si_status = tsk->exit_code & 0x7f;
2223 	if (tsk->exit_code & 0x80)
2224 		info.si_code = CLD_DUMPED;
2225 	else if (tsk->exit_code & 0x7f)
2226 		info.si_code = CLD_KILLED;
2227 	else {
2228 		info.si_code = CLD_EXITED;
2229 		info.si_status = tsk->exit_code >> 8;
2230 	}
2231 
2232 	psig = tsk->parent->sighand;
2233 	spin_lock_irqsave(&psig->siglock, flags);
2234 	if (!tsk->ptrace && sig == SIGCHLD &&
2235 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2236 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2237 		/*
2238 		 * We are exiting and our parent doesn't care.  POSIX.1
2239 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2240 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2241 		 * automatically and not left for our parent's wait4 call.
2242 		 * Rather than having the parent do it as a magic kind of
2243 		 * signal handler, we just set this to tell do_exit that we
2244 		 * can be cleaned up without becoming a zombie.  Note that
2245 		 * we still call __wake_up_parent in this case, because a
2246 		 * blocked sys_wait4 might now return -ECHILD.
2247 		 *
2248 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2249 		 * is implementation-defined: we do (if you don't want
2250 		 * it, just use SIG_IGN instead).
2251 		 */
2252 		autoreap = true;
2253 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2254 			sig = 0;
2255 	}
2256 	/*
2257 	 * Send with __send_signal as si_pid and si_uid are in the
2258 	 * parent's namespaces.
2259 	 */
2260 	if (valid_signal(sig) && sig)
2261 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2262 	__wake_up_parent(tsk, tsk->parent);
2263 	spin_unlock_irqrestore(&psig->siglock, flags);
2264 
2265 	return autoreap;
2266 }
2267 
2268 /**
2269  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2270  * @tsk: task reporting the state change
2271  * @for_ptracer: the notification is for ptracer
2272  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2273  *
2274  * Notify @tsk's parent that the stopped/continued state has changed.  If
2275  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2276  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2277  *
2278  * CONTEXT:
2279  * Must be called with tasklist_lock at least read locked.
2280  */
do_notify_parent_cldstop(struct task_struct * tsk,bool for_ptracer,int why)2281 static void do_notify_parent_cldstop(struct task_struct *tsk,
2282 				     bool for_ptracer, int why)
2283 {
2284 	struct kernel_siginfo info;
2285 	unsigned long flags;
2286 	struct task_struct *parent;
2287 	struct sighand_struct *sighand;
2288 	u64 utime, stime;
2289 
2290 	if (for_ptracer) {
2291 		parent = tsk->parent;
2292 	} else {
2293 		tsk = tsk->group_leader;
2294 		parent = tsk->real_parent;
2295 	}
2296 
2297 	clear_siginfo(&info);
2298 	info.si_signo = SIGCHLD;
2299 	info.si_errno = 0;
2300 	/*
2301 	 * see comment in do_notify_parent() about the following 4 lines
2302 	 */
2303 	rcu_read_lock();
2304 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2305 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2306 	rcu_read_unlock();
2307 
2308 	task_cputime(tsk, &utime, &stime);
2309 	info.si_utime = nsec_to_clock_t(utime);
2310 	info.si_stime = nsec_to_clock_t(stime);
2311 
2312  	info.si_code = why;
2313  	switch (why) {
2314  	case CLD_CONTINUED:
2315  		info.si_status = SIGCONT;
2316  		break;
2317  	case CLD_STOPPED:
2318  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2319  		break;
2320  	case CLD_TRAPPED:
2321  		info.si_status = tsk->exit_code & 0x7f;
2322  		break;
2323  	default:
2324  		BUG();
2325  	}
2326 
2327 	sighand = parent->sighand;
2328 	spin_lock_irqsave(&sighand->siglock, flags);
2329 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2330 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2331 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2332 	/*
2333 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2334 	 */
2335 	__wake_up_parent(tsk, parent);
2336 	spin_unlock_irqrestore(&sighand->siglock, flags);
2337 }
2338 
2339 /*
2340  * This must be called with current->sighand->siglock held.
2341  *
2342  * This should be the path for all ptrace stops.
2343  * We always set current->last_siginfo while stopped here.
2344  * That makes it a way to test a stopped process for
2345  * being ptrace-stopped vs being job-control-stopped.
2346  *
2347  * Returns the signal the ptracer requested the code resume
2348  * with.  If the code did not stop because the tracer is gone,
2349  * the stop signal remains unchanged unless clear_code.
2350  */
ptrace_stop(int exit_code,int why,unsigned long message,kernel_siginfo_t * info)2351 static int ptrace_stop(int exit_code, int why, unsigned long message,
2352 		       kernel_siginfo_t *info)
2353 	__releases(&current->sighand->siglock)
2354 	__acquires(&current->sighand->siglock)
2355 {
2356 	bool gstop_done = false;
2357 
2358 	if (arch_ptrace_stop_needed()) {
2359 		/*
2360 		 * The arch code has something special to do before a
2361 		 * ptrace stop.  This is allowed to block, e.g. for faults
2362 		 * on user stack pages.  We can't keep the siglock while
2363 		 * calling arch_ptrace_stop, so we must release it now.
2364 		 * To preserve proper semantics, we must do this before
2365 		 * any signal bookkeeping like checking group_stop_count.
2366 		 */
2367 		spin_unlock_irq(&current->sighand->siglock);
2368 		arch_ptrace_stop();
2369 		spin_lock_irq(&current->sighand->siglock);
2370 	}
2371 
2372 	/*
2373 	 * After this point ptrace_signal_wake_up or signal_wake_up
2374 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2375 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2376 	 * signals here to prevent ptrace_stop sleeping in schedule.
2377 	 */
2378 	if (!current->ptrace || __fatal_signal_pending(current))
2379 		return exit_code;
2380 
2381 	set_special_state(TASK_TRACED);
2382 	current->jobctl |= JOBCTL_TRACED;
2383 
2384 	/*
2385 	 * We're committing to trapping.  TRACED should be visible before
2386 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2387 	 * Also, transition to TRACED and updates to ->jobctl should be
2388 	 * atomic with respect to siglock and should be done after the arch
2389 	 * hook as siglock is released and regrabbed across it.
2390 	 *
2391 	 *     TRACER				    TRACEE
2392 	 *
2393 	 *     ptrace_attach()
2394 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2395 	 *     do_wait()
2396 	 *       set_current_state()                smp_wmb();
2397 	 *       ptrace_do_wait()
2398 	 *         wait_task_stopped()
2399 	 *           task_stopped_code()
2400 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2401 	 */
2402 	smp_wmb();
2403 
2404 	current->ptrace_message = message;
2405 	current->last_siginfo = info;
2406 	current->exit_code = exit_code;
2407 
2408 	/*
2409 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2410 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2411 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2412 	 * could be clear now.  We act as if SIGCONT is received after
2413 	 * TASK_TRACED is entered - ignore it.
2414 	 */
2415 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2416 		gstop_done = task_participate_group_stop(current);
2417 
2418 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2419 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2420 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2421 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2422 
2423 	/* entering a trap, clear TRAPPING */
2424 	task_clear_jobctl_trapping(current);
2425 
2426 	spin_unlock_irq(&current->sighand->siglock);
2427 	read_lock(&tasklist_lock);
2428 	/*
2429 	 * Notify parents of the stop.
2430 	 *
2431 	 * While ptraced, there are two parents - the ptracer and
2432 	 * the real_parent of the group_leader.  The ptracer should
2433 	 * know about every stop while the real parent is only
2434 	 * interested in the completion of group stop.  The states
2435 	 * for the two don't interact with each other.  Notify
2436 	 * separately unless they're gonna be duplicates.
2437 	 */
2438 	if (current->ptrace)
2439 		do_notify_parent_cldstop(current, true, why);
2440 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2441 		do_notify_parent_cldstop(current, false, why);
2442 
2443 	/*
2444 	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2445 	 * One a PREEMPTION kernel this can result in preemption requirement
2446 	 * which will be fulfilled after read_unlock() and the ptracer will be
2447 	 * put on the CPU.
2448 	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2449 	 * this task wait in schedule(). If this task gets preempted then it
2450 	 * remains enqueued on the runqueue. The ptracer will observe this and
2451 	 * then sleep for a delay of one HZ tick. In the meantime this task
2452 	 * gets scheduled, enters schedule() and will wait for the ptracer.
2453 	 *
2454 	 * This preemption point is not bad from a correctness point of
2455 	 * view but extends the runtime by one HZ tick time due to the
2456 	 * ptracer's sleep.  The preempt-disable section ensures that there
2457 	 * will be no preemption between unlock and schedule() and so
2458 	 * improving the performance since the ptracer will observe that
2459 	 * the tracee is scheduled out once it gets on the CPU.
2460 	 *
2461 	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2462 	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2463 	 * before unlocking tasklist_lock so there is no benefit in doing this.
2464 	 *
2465 	 * In fact disabling preemption is harmful on PREEMPT_RT because
2466 	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2467 	 * with preemption disabled due to the 'sleeping' spinlock
2468 	 * substitution of RT.
2469 	 */
2470 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2471 		preempt_disable();
2472 	read_unlock(&tasklist_lock);
2473 	cgroup_enter_frozen();
2474 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2475 		preempt_enable_no_resched();
2476 	schedule();
2477 	cgroup_leave_frozen(true);
2478 
2479 	/*
2480 	 * We are back.  Now reacquire the siglock before touching
2481 	 * last_siginfo, so that we are sure to have synchronized with
2482 	 * any signal-sending on another CPU that wants to examine it.
2483 	 */
2484 	spin_lock_irq(&current->sighand->siglock);
2485 	exit_code = current->exit_code;
2486 	current->last_siginfo = NULL;
2487 	current->ptrace_message = 0;
2488 	current->exit_code = 0;
2489 
2490 	/* LISTENING can be set only during STOP traps, clear it */
2491 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2492 
2493 	/*
2494 	 * Queued signals ignored us while we were stopped for tracing.
2495 	 * So check for any that we should take before resuming user mode.
2496 	 * This sets TIF_SIGPENDING, but never clears it.
2497 	 */
2498 	recalc_sigpending_tsk(current);
2499 	return exit_code;
2500 }
2501 
ptrace_do_notify(int signr,int exit_code,int why,unsigned long message)2502 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2503 {
2504 	kernel_siginfo_t info;
2505 
2506 	clear_siginfo(&info);
2507 	info.si_signo = signr;
2508 	info.si_code = exit_code;
2509 	info.si_pid = task_pid_vnr(current);
2510 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2511 
2512 	/* Let the debugger run.  */
2513 	return ptrace_stop(exit_code, why, message, &info);
2514 }
2515 
ptrace_notify(int exit_code,unsigned long message)2516 int ptrace_notify(int exit_code, unsigned long message)
2517 {
2518 	int signr;
2519 
2520 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2521 	if (unlikely(task_work_pending(current)))
2522 		task_work_run();
2523 
2524 	spin_lock_irq(&current->sighand->siglock);
2525 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2526 	spin_unlock_irq(&current->sighand->siglock);
2527 	return signr;
2528 }
2529 
2530 /**
2531  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2532  * @signr: signr causing group stop if initiating
2533  *
2534  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2535  * and participate in it.  If already set, participate in the existing
2536  * group stop.  If participated in a group stop (and thus slept), %true is
2537  * returned with siglock released.
2538  *
2539  * If ptraced, this function doesn't handle stop itself.  Instead,
2540  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2541  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2542  * places afterwards.
2543  *
2544  * CONTEXT:
2545  * Must be called with @current->sighand->siglock held, which is released
2546  * on %true return.
2547  *
2548  * RETURNS:
2549  * %false if group stop is already cancelled or ptrace trap is scheduled.
2550  * %true if participated in group stop.
2551  */
do_signal_stop(int signr)2552 static bool do_signal_stop(int signr)
2553 	__releases(&current->sighand->siglock)
2554 {
2555 	struct signal_struct *sig = current->signal;
2556 
2557 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2558 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2559 		struct task_struct *t;
2560 
2561 		/* signr will be recorded in task->jobctl for retries */
2562 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2563 
2564 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2565 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2566 		    unlikely(sig->group_exec_task))
2567 			return false;
2568 		/*
2569 		 * There is no group stop already in progress.  We must
2570 		 * initiate one now.
2571 		 *
2572 		 * While ptraced, a task may be resumed while group stop is
2573 		 * still in effect and then receive a stop signal and
2574 		 * initiate another group stop.  This deviates from the
2575 		 * usual behavior as two consecutive stop signals can't
2576 		 * cause two group stops when !ptraced.  That is why we
2577 		 * also check !task_is_stopped(t) below.
2578 		 *
2579 		 * The condition can be distinguished by testing whether
2580 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2581 		 * group_exit_code in such case.
2582 		 *
2583 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2584 		 * an intervening stop signal is required to cause two
2585 		 * continued events regardless of ptrace.
2586 		 */
2587 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2588 			sig->group_exit_code = signr;
2589 
2590 		sig->group_stop_count = 0;
2591 		if (task_set_jobctl_pending(current, signr | gstop))
2592 			sig->group_stop_count++;
2593 
2594 		for_other_threads(current, t) {
2595 			/*
2596 			 * Setting state to TASK_STOPPED for a group
2597 			 * stop is always done with the siglock held,
2598 			 * so this check has no races.
2599 			 */
2600 			if (!task_is_stopped(t) &&
2601 			    task_set_jobctl_pending(t, signr | gstop)) {
2602 				sig->group_stop_count++;
2603 				if (likely(!(t->ptrace & PT_SEIZED)))
2604 					signal_wake_up(t, 0);
2605 				else
2606 					ptrace_trap_notify(t);
2607 			}
2608 		}
2609 	}
2610 
2611 	if (likely(!current->ptrace)) {
2612 		int notify = 0;
2613 
2614 		/*
2615 		 * If there are no other threads in the group, or if there
2616 		 * is a group stop in progress and we are the last to stop,
2617 		 * report to the parent.
2618 		 */
2619 		if (task_participate_group_stop(current))
2620 			notify = CLD_STOPPED;
2621 
2622 		current->jobctl |= JOBCTL_STOPPED;
2623 		set_special_state(TASK_STOPPED);
2624 		spin_unlock_irq(&current->sighand->siglock);
2625 
2626 		/*
2627 		 * Notify the parent of the group stop completion.  Because
2628 		 * we're not holding either the siglock or tasklist_lock
2629 		 * here, ptracer may attach inbetween; however, this is for
2630 		 * group stop and should always be delivered to the real
2631 		 * parent of the group leader.  The new ptracer will get
2632 		 * its notification when this task transitions into
2633 		 * TASK_TRACED.
2634 		 */
2635 		if (notify) {
2636 			read_lock(&tasklist_lock);
2637 			do_notify_parent_cldstop(current, false, notify);
2638 			read_unlock(&tasklist_lock);
2639 		}
2640 
2641 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2642 		cgroup_enter_frozen();
2643 		schedule();
2644 		return true;
2645 	} else {
2646 		/*
2647 		 * While ptraced, group stop is handled by STOP trap.
2648 		 * Schedule it and let the caller deal with it.
2649 		 */
2650 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2651 		return false;
2652 	}
2653 }
2654 
2655 /**
2656  * do_jobctl_trap - take care of ptrace jobctl traps
2657  *
2658  * When PT_SEIZED, it's used for both group stop and explicit
2659  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2660  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2661  * the stop signal; otherwise, %SIGTRAP.
2662  *
2663  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2664  * number as exit_code and no siginfo.
2665  *
2666  * CONTEXT:
2667  * Must be called with @current->sighand->siglock held, which may be
2668  * released and re-acquired before returning with intervening sleep.
2669  */
do_jobctl_trap(void)2670 static void do_jobctl_trap(void)
2671 {
2672 	struct signal_struct *signal = current->signal;
2673 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2674 
2675 	if (current->ptrace & PT_SEIZED) {
2676 		if (!signal->group_stop_count &&
2677 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2678 			signr = SIGTRAP;
2679 		WARN_ON_ONCE(!signr);
2680 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2681 				 CLD_STOPPED, 0);
2682 	} else {
2683 		WARN_ON_ONCE(!signr);
2684 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2685 	}
2686 }
2687 
2688 /**
2689  * do_freezer_trap - handle the freezer jobctl trap
2690  *
2691  * Puts the task into frozen state, if only the task is not about to quit.
2692  * In this case it drops JOBCTL_TRAP_FREEZE.
2693  *
2694  * CONTEXT:
2695  * Must be called with @current->sighand->siglock held,
2696  * which is always released before returning.
2697  */
do_freezer_trap(void)2698 static void do_freezer_trap(void)
2699 	__releases(&current->sighand->siglock)
2700 {
2701 	/*
2702 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2703 	 * let's make another loop to give it a chance to be handled.
2704 	 * In any case, we'll return back.
2705 	 */
2706 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2707 	     JOBCTL_TRAP_FREEZE) {
2708 		spin_unlock_irq(&current->sighand->siglock);
2709 		return;
2710 	}
2711 
2712 	/*
2713 	 * Now we're sure that there is no pending fatal signal and no
2714 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2715 	 * immediately (if there is a non-fatal signal pending), and
2716 	 * put the task into sleep.
2717 	 */
2718 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2719 	clear_thread_flag(TIF_SIGPENDING);
2720 	spin_unlock_irq(&current->sighand->siglock);
2721 	cgroup_enter_frozen();
2722 	schedule();
2723 
2724 	/*
2725 	 * We could've been woken by task_work, run it to clear
2726 	 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2727 	 */
2728 	clear_notify_signal();
2729 	if (unlikely(task_work_pending(current)))
2730 		task_work_run();
2731 }
2732 
ptrace_signal(int signr,kernel_siginfo_t * info,enum pid_type type)2733 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2734 {
2735 	/*
2736 	 * We do not check sig_kernel_stop(signr) but set this marker
2737 	 * unconditionally because we do not know whether debugger will
2738 	 * change signr. This flag has no meaning unless we are going
2739 	 * to stop after return from ptrace_stop(). In this case it will
2740 	 * be checked in do_signal_stop(), we should only stop if it was
2741 	 * not cleared by SIGCONT while we were sleeping. See also the
2742 	 * comment in dequeue_signal().
2743 	 */
2744 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2745 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2746 
2747 	/* We're back.  Did the debugger cancel the sig?  */
2748 	if (signr == 0)
2749 		return signr;
2750 
2751 	/*
2752 	 * Update the siginfo structure if the signal has
2753 	 * changed.  If the debugger wanted something
2754 	 * specific in the siginfo structure then it should
2755 	 * have updated *info via PTRACE_SETSIGINFO.
2756 	 */
2757 	if (signr != info->si_signo) {
2758 		clear_siginfo(info);
2759 		info->si_signo = signr;
2760 		info->si_errno = 0;
2761 		info->si_code = SI_USER;
2762 		rcu_read_lock();
2763 		info->si_pid = task_pid_vnr(current->parent);
2764 		info->si_uid = from_kuid_munged(current_user_ns(),
2765 						task_uid(current->parent));
2766 		rcu_read_unlock();
2767 	}
2768 
2769 	/* If the (new) signal is now blocked, requeue it.  */
2770 	if (sigismember(&current->blocked, signr) ||
2771 	    fatal_signal_pending(current)) {
2772 		send_signal_locked(signr, info, current, type);
2773 		signr = 0;
2774 	}
2775 
2776 	return signr;
2777 }
2778 
hide_si_addr_tag_bits(struct ksignal * ksig)2779 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2780 {
2781 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2782 	case SIL_FAULT:
2783 	case SIL_FAULT_TRAPNO:
2784 	case SIL_FAULT_MCEERR:
2785 	case SIL_FAULT_BNDERR:
2786 	case SIL_FAULT_PKUERR:
2787 	case SIL_FAULT_PERF_EVENT:
2788 		ksig->info.si_addr = arch_untagged_si_addr(
2789 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2790 		break;
2791 	case SIL_KILL:
2792 	case SIL_TIMER:
2793 	case SIL_POLL:
2794 	case SIL_CHLD:
2795 	case SIL_RT:
2796 	case SIL_SYS:
2797 		break;
2798 	}
2799 }
2800 
get_signal(struct ksignal * ksig)2801 bool get_signal(struct ksignal *ksig)
2802 {
2803 	struct sighand_struct *sighand = current->sighand;
2804 	struct signal_struct *signal = current->signal;
2805 	int signr;
2806 
2807 	clear_notify_signal();
2808 	if (unlikely(task_work_pending(current)))
2809 		task_work_run();
2810 
2811 	if (!task_sigpending(current))
2812 		return false;
2813 
2814 	if (unlikely(uprobe_deny_signal()))
2815 		return false;
2816 
2817 	/*
2818 	 * Do this once, we can't return to user-mode if freezing() == T.
2819 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2820 	 * thus do not need another check after return.
2821 	 */
2822 	try_to_freeze();
2823 
2824 relock:
2825 	spin_lock_irq(&sighand->siglock);
2826 
2827 	/*
2828 	 * Every stopped thread goes here after wakeup. Check to see if
2829 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2830 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2831 	 */
2832 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2833 		int why;
2834 
2835 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2836 			why = CLD_CONTINUED;
2837 		else
2838 			why = CLD_STOPPED;
2839 
2840 		signal->flags &= ~SIGNAL_CLD_MASK;
2841 
2842 		spin_unlock_irq(&sighand->siglock);
2843 
2844 		/*
2845 		 * Notify the parent that we're continuing.  This event is
2846 		 * always per-process and doesn't make whole lot of sense
2847 		 * for ptracers, who shouldn't consume the state via
2848 		 * wait(2) either, but, for backward compatibility, notify
2849 		 * the ptracer of the group leader too unless it's gonna be
2850 		 * a duplicate.
2851 		 */
2852 		read_lock(&tasklist_lock);
2853 		do_notify_parent_cldstop(current, false, why);
2854 
2855 		if (ptrace_reparented(current->group_leader))
2856 			do_notify_parent_cldstop(current->group_leader,
2857 						true, why);
2858 		read_unlock(&tasklist_lock);
2859 
2860 		goto relock;
2861 	}
2862 
2863 	for (;;) {
2864 		struct k_sigaction *ka;
2865 		enum pid_type type;
2866 
2867 		/* Has this task already been marked for death? */
2868 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2869 		     signal->group_exec_task) {
2870 			signr = SIGKILL;
2871 			sigdelset(&current->pending.signal, SIGKILL);
2872 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2873 					     &sighand->action[SIGKILL-1]);
2874 			recalc_sigpending();
2875 			/*
2876 			 * implies do_group_exit() or return to PF_USER_WORKER,
2877 			 * no need to initialize ksig->info/etc.
2878 			 */
2879 			goto fatal;
2880 		}
2881 
2882 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2883 		    do_signal_stop(0))
2884 			goto relock;
2885 
2886 		if (unlikely(current->jobctl &
2887 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2888 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2889 				do_jobctl_trap();
2890 				spin_unlock_irq(&sighand->siglock);
2891 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2892 				do_freezer_trap();
2893 
2894 			goto relock;
2895 		}
2896 
2897 		/*
2898 		 * If the task is leaving the frozen state, let's update
2899 		 * cgroup counters and reset the frozen bit.
2900 		 */
2901 		if (unlikely(cgroup_task_frozen(current))) {
2902 			spin_unlock_irq(&sighand->siglock);
2903 			cgroup_leave_frozen(false);
2904 			goto relock;
2905 		}
2906 
2907 		/*
2908 		 * Signals generated by the execution of an instruction
2909 		 * need to be delivered before any other pending signals
2910 		 * so that the instruction pointer in the signal stack
2911 		 * frame points to the faulting instruction.
2912 		 */
2913 		type = PIDTYPE_PID;
2914 		signr = dequeue_synchronous_signal(&ksig->info);
2915 		if (!signr)
2916 			signr = dequeue_signal(&current->blocked, &ksig->info, &type);
2917 
2918 		if (!signr)
2919 			break; /* will return 0 */
2920 
2921 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2922 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2923 			signr = ptrace_signal(signr, &ksig->info, type);
2924 			if (!signr)
2925 				continue;
2926 		}
2927 
2928 		ka = &sighand->action[signr-1];
2929 
2930 		/* Trace actually delivered signals. */
2931 		trace_signal_deliver(signr, &ksig->info, ka);
2932 
2933 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2934 			continue;
2935 		if (ka->sa.sa_handler != SIG_DFL) {
2936 			/* Run the handler.  */
2937 			ksig->ka = *ka;
2938 
2939 			if (ka->sa.sa_flags & SA_ONESHOT)
2940 				ka->sa.sa_handler = SIG_DFL;
2941 
2942 			break; /* will return non-zero "signr" value */
2943 		}
2944 
2945 		/*
2946 		 * Now we are doing the default action for this signal.
2947 		 */
2948 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2949 			continue;
2950 
2951 		/*
2952 		 * Global init gets no signals it doesn't want.
2953 		 * Container-init gets no signals it doesn't want from same
2954 		 * container.
2955 		 *
2956 		 * Note that if global/container-init sees a sig_kernel_only()
2957 		 * signal here, the signal must have been generated internally
2958 		 * or must have come from an ancestor namespace. In either
2959 		 * case, the signal cannot be dropped.
2960 		 */
2961 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2962 				!sig_kernel_only(signr))
2963 			continue;
2964 
2965 		if (sig_kernel_stop(signr)) {
2966 			/*
2967 			 * The default action is to stop all threads in
2968 			 * the thread group.  The job control signals
2969 			 * do nothing in an orphaned pgrp, but SIGSTOP
2970 			 * always works.  Note that siglock needs to be
2971 			 * dropped during the call to is_orphaned_pgrp()
2972 			 * because of lock ordering with tasklist_lock.
2973 			 * This allows an intervening SIGCONT to be posted.
2974 			 * We need to check for that and bail out if necessary.
2975 			 */
2976 			if (signr != SIGSTOP) {
2977 				spin_unlock_irq(&sighand->siglock);
2978 
2979 				/* signals can be posted during this window */
2980 
2981 				if (is_current_pgrp_orphaned())
2982 					goto relock;
2983 
2984 				spin_lock_irq(&sighand->siglock);
2985 			}
2986 
2987 			if (likely(do_signal_stop(signr))) {
2988 				/* It released the siglock.  */
2989 				goto relock;
2990 			}
2991 
2992 			/*
2993 			 * We didn't actually stop, due to a race
2994 			 * with SIGCONT or something like that.
2995 			 */
2996 			continue;
2997 		}
2998 
2999 	fatal:
3000 		spin_unlock_irq(&sighand->siglock);
3001 		if (unlikely(cgroup_task_frozen(current)))
3002 			cgroup_leave_frozen(true);
3003 
3004 		/*
3005 		 * Anything else is fatal, maybe with a core dump.
3006 		 */
3007 		current->flags |= PF_SIGNALED;
3008 
3009 		if (sig_kernel_coredump(signr)) {
3010 			if (print_fatal_signals)
3011 				print_fatal_signal(signr);
3012 			proc_coredump_connector(current);
3013 			/*
3014 			 * If it was able to dump core, this kills all
3015 			 * other threads in the group and synchronizes with
3016 			 * their demise.  If we lost the race with another
3017 			 * thread getting here, it set group_exit_code
3018 			 * first and our do_group_exit call below will use
3019 			 * that value and ignore the one we pass it.
3020 			 */
3021 			do_coredump(&ksig->info);
3022 		}
3023 
3024 		/*
3025 		 * PF_USER_WORKER threads will catch and exit on fatal signals
3026 		 * themselves. They have cleanup that must be performed, so we
3027 		 * cannot call do_exit() on their behalf. Note that ksig won't
3028 		 * be properly initialized, PF_USER_WORKER's shouldn't use it.
3029 		 */
3030 		if (current->flags & PF_USER_WORKER)
3031 			goto out;
3032 
3033 		/*
3034 		 * Death signals, no core dump.
3035 		 */
3036 		do_group_exit(signr);
3037 		/* NOTREACHED */
3038 	}
3039 	spin_unlock_irq(&sighand->siglock);
3040 
3041 	ksig->sig = signr;
3042 
3043 	if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
3044 		hide_si_addr_tag_bits(ksig);
3045 out:
3046 	return signr > 0;
3047 }
3048 
3049 /**
3050  * signal_delivered - called after signal delivery to update blocked signals
3051  * @ksig:		kernel signal struct
3052  * @stepping:		nonzero if debugger single-step or block-step in use
3053  *
3054  * This function should be called when a signal has successfully been
3055  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
3056  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
3057  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
3058  */
signal_delivered(struct ksignal * ksig,int stepping)3059 static void signal_delivered(struct ksignal *ksig, int stepping)
3060 {
3061 	sigset_t blocked;
3062 
3063 	/* A signal was successfully delivered, and the
3064 	   saved sigmask was stored on the signal frame,
3065 	   and will be restored by sigreturn.  So we can
3066 	   simply clear the restore sigmask flag.  */
3067 	clear_restore_sigmask();
3068 
3069 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
3070 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
3071 		sigaddset(&blocked, ksig->sig);
3072 	set_current_blocked(&blocked);
3073 	if (current->sas_ss_flags & SS_AUTODISARM)
3074 		sas_ss_reset(current);
3075 	if (stepping)
3076 		ptrace_notify(SIGTRAP, 0);
3077 }
3078 
signal_setup_done(int failed,struct ksignal * ksig,int stepping)3079 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
3080 {
3081 	if (failed)
3082 		force_sigsegv(ksig->sig);
3083 	else
3084 		signal_delivered(ksig, stepping);
3085 }
3086 
3087 /*
3088  * It could be that complete_signal() picked us to notify about the
3089  * group-wide signal. Other threads should be notified now to take
3090  * the shared signals in @which since we will not.
3091  */
retarget_shared_pending(struct task_struct * tsk,sigset_t * which)3092 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
3093 {
3094 	sigset_t retarget;
3095 	struct task_struct *t;
3096 
3097 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
3098 	if (sigisemptyset(&retarget))
3099 		return;
3100 
3101 	for_other_threads(tsk, t) {
3102 		if (t->flags & PF_EXITING)
3103 			continue;
3104 
3105 		if (!has_pending_signals(&retarget, &t->blocked))
3106 			continue;
3107 		/* Remove the signals this thread can handle. */
3108 		sigandsets(&retarget, &retarget, &t->blocked);
3109 
3110 		if (!task_sigpending(t))
3111 			signal_wake_up(t, 0);
3112 
3113 		if (sigisemptyset(&retarget))
3114 			break;
3115 	}
3116 }
3117 
exit_signals(struct task_struct * tsk)3118 void exit_signals(struct task_struct *tsk)
3119 {
3120 	int group_stop = 0;
3121 	sigset_t unblocked;
3122 
3123 	/*
3124 	 * @tsk is about to have PF_EXITING set - lock out users which
3125 	 * expect stable threadgroup.
3126 	 */
3127 	cgroup_threadgroup_change_begin(tsk);
3128 
3129 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3130 		sched_mm_cid_exit_signals(tsk);
3131 		tsk->flags |= PF_EXITING;
3132 		cgroup_threadgroup_change_end(tsk);
3133 		return;
3134 	}
3135 
3136 	spin_lock_irq(&tsk->sighand->siglock);
3137 	/*
3138 	 * From now this task is not visible for group-wide signals,
3139 	 * see wants_signal(), do_signal_stop().
3140 	 */
3141 	sched_mm_cid_exit_signals(tsk);
3142 	tsk->flags |= PF_EXITING;
3143 
3144 	cgroup_threadgroup_change_end(tsk);
3145 
3146 	if (!task_sigpending(tsk))
3147 		goto out;
3148 
3149 	unblocked = tsk->blocked;
3150 	signotset(&unblocked);
3151 	retarget_shared_pending(tsk, &unblocked);
3152 
3153 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3154 	    task_participate_group_stop(tsk))
3155 		group_stop = CLD_STOPPED;
3156 out:
3157 	spin_unlock_irq(&tsk->sighand->siglock);
3158 
3159 	/*
3160 	 * If group stop has completed, deliver the notification.  This
3161 	 * should always go to the real parent of the group leader.
3162 	 */
3163 	if (unlikely(group_stop)) {
3164 		read_lock(&tasklist_lock);
3165 		do_notify_parent_cldstop(tsk, false, group_stop);
3166 		read_unlock(&tasklist_lock);
3167 	}
3168 }
3169 
3170 /*
3171  * System call entry points.
3172  */
3173 
3174 /**
3175  *  sys_restart_syscall - restart a system call
3176  */
SYSCALL_DEFINE0(restart_syscall)3177 SYSCALL_DEFINE0(restart_syscall)
3178 {
3179 	struct restart_block *restart = &current->restart_block;
3180 	return restart->fn(restart);
3181 }
3182 
do_no_restart_syscall(struct restart_block * param)3183 long do_no_restart_syscall(struct restart_block *param)
3184 {
3185 	return -EINTR;
3186 }
3187 
__set_task_blocked(struct task_struct * tsk,const sigset_t * newset)3188 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3189 {
3190 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3191 		sigset_t newblocked;
3192 		/* A set of now blocked but previously unblocked signals. */
3193 		sigandnsets(&newblocked, newset, &current->blocked);
3194 		retarget_shared_pending(tsk, &newblocked);
3195 	}
3196 	tsk->blocked = *newset;
3197 	recalc_sigpending();
3198 }
3199 
3200 /**
3201  * set_current_blocked - change current->blocked mask
3202  * @newset: new mask
3203  *
3204  * It is wrong to change ->blocked directly, this helper should be used
3205  * to ensure the process can't miss a shared signal we are going to block.
3206  */
set_current_blocked(sigset_t * newset)3207 void set_current_blocked(sigset_t *newset)
3208 {
3209 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3210 	__set_current_blocked(newset);
3211 }
3212 
__set_current_blocked(const sigset_t * newset)3213 void __set_current_blocked(const sigset_t *newset)
3214 {
3215 	struct task_struct *tsk = current;
3216 
3217 	/*
3218 	 * In case the signal mask hasn't changed, there is nothing we need
3219 	 * to do. The current->blocked shouldn't be modified by other task.
3220 	 */
3221 	if (sigequalsets(&tsk->blocked, newset))
3222 		return;
3223 
3224 	spin_lock_irq(&tsk->sighand->siglock);
3225 	__set_task_blocked(tsk, newset);
3226 	spin_unlock_irq(&tsk->sighand->siglock);
3227 }
3228 
3229 /*
3230  * This is also useful for kernel threads that want to temporarily
3231  * (or permanently) block certain signals.
3232  *
3233  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3234  * interface happily blocks "unblockable" signals like SIGKILL
3235  * and friends.
3236  */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)3237 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3238 {
3239 	struct task_struct *tsk = current;
3240 	sigset_t newset;
3241 
3242 	/* Lockless, only current can change ->blocked, never from irq */
3243 	if (oldset)
3244 		*oldset = tsk->blocked;
3245 
3246 	switch (how) {
3247 	case SIG_BLOCK:
3248 		sigorsets(&newset, &tsk->blocked, set);
3249 		break;
3250 	case SIG_UNBLOCK:
3251 		sigandnsets(&newset, &tsk->blocked, set);
3252 		break;
3253 	case SIG_SETMASK:
3254 		newset = *set;
3255 		break;
3256 	default:
3257 		return -EINVAL;
3258 	}
3259 
3260 	__set_current_blocked(&newset);
3261 	return 0;
3262 }
3263 EXPORT_SYMBOL(sigprocmask);
3264 
3265 /*
3266  * The api helps set app-provided sigmasks.
3267  *
3268  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3269  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3270  *
3271  * Note that it does set_restore_sigmask() in advance, so it must be always
3272  * paired with restore_saved_sigmask_unless() before return from syscall.
3273  */
set_user_sigmask(const sigset_t __user * umask,size_t sigsetsize)3274 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3275 {
3276 	sigset_t kmask;
3277 
3278 	if (!umask)
3279 		return 0;
3280 	if (sigsetsize != sizeof(sigset_t))
3281 		return -EINVAL;
3282 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3283 		return -EFAULT;
3284 
3285 	set_restore_sigmask();
3286 	current->saved_sigmask = current->blocked;
3287 	set_current_blocked(&kmask);
3288 
3289 	return 0;
3290 }
3291 
3292 #ifdef CONFIG_COMPAT
set_compat_user_sigmask(const compat_sigset_t __user * umask,size_t sigsetsize)3293 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3294 			    size_t sigsetsize)
3295 {
3296 	sigset_t kmask;
3297 
3298 	if (!umask)
3299 		return 0;
3300 	if (sigsetsize != sizeof(compat_sigset_t))
3301 		return -EINVAL;
3302 	if (get_compat_sigset(&kmask, umask))
3303 		return -EFAULT;
3304 
3305 	set_restore_sigmask();
3306 	current->saved_sigmask = current->blocked;
3307 	set_current_blocked(&kmask);
3308 
3309 	return 0;
3310 }
3311 #endif
3312 
3313 /**
3314  *  sys_rt_sigprocmask - change the list of currently blocked signals
3315  *  @how: whether to add, remove, or set signals
3316  *  @nset: stores pending signals
3317  *  @oset: previous value of signal mask if non-null
3318  *  @sigsetsize: size of sigset_t type
3319  */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,nset,sigset_t __user *,oset,size_t,sigsetsize)3320 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3321 		sigset_t __user *, oset, size_t, sigsetsize)
3322 {
3323 	sigset_t old_set, new_set;
3324 	int error;
3325 
3326 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3327 	if (sigsetsize != sizeof(sigset_t))
3328 		return -EINVAL;
3329 
3330 	old_set = current->blocked;
3331 
3332 	if (nset) {
3333 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3334 			return -EFAULT;
3335 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3336 
3337 		error = sigprocmask(how, &new_set, NULL);
3338 		if (error)
3339 			return error;
3340 	}
3341 
3342 	if (oset) {
3343 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3344 			return -EFAULT;
3345 	}
3346 
3347 	return 0;
3348 }
3349 
3350 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask,int,how,compat_sigset_t __user *,nset,compat_sigset_t __user *,oset,compat_size_t,sigsetsize)3351 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3352 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3353 {
3354 	sigset_t old_set = current->blocked;
3355 
3356 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3357 	if (sigsetsize != sizeof(sigset_t))
3358 		return -EINVAL;
3359 
3360 	if (nset) {
3361 		sigset_t new_set;
3362 		int error;
3363 		if (get_compat_sigset(&new_set, nset))
3364 			return -EFAULT;
3365 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3366 
3367 		error = sigprocmask(how, &new_set, NULL);
3368 		if (error)
3369 			return error;
3370 	}
3371 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3372 }
3373 #endif
3374 
do_sigpending(sigset_t * set)3375 static void do_sigpending(sigset_t *set)
3376 {
3377 	spin_lock_irq(&current->sighand->siglock);
3378 	sigorsets(set, &current->pending.signal,
3379 		  &current->signal->shared_pending.signal);
3380 	spin_unlock_irq(&current->sighand->siglock);
3381 
3382 	/* Outside the lock because only this thread touches it.  */
3383 	sigandsets(set, &current->blocked, set);
3384 }
3385 
3386 /**
3387  *  sys_rt_sigpending - examine a pending signal that has been raised
3388  *			while blocked
3389  *  @uset: stores pending signals
3390  *  @sigsetsize: size of sigset_t type or larger
3391  */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,uset,size_t,sigsetsize)3392 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3393 {
3394 	sigset_t set;
3395 
3396 	if (sigsetsize > sizeof(*uset))
3397 		return -EINVAL;
3398 
3399 	do_sigpending(&set);
3400 
3401 	if (copy_to_user(uset, &set, sigsetsize))
3402 		return -EFAULT;
3403 
3404 	return 0;
3405 }
3406 
3407 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigpending,compat_sigset_t __user *,uset,compat_size_t,sigsetsize)3408 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3409 		compat_size_t, sigsetsize)
3410 {
3411 	sigset_t set;
3412 
3413 	if (sigsetsize > sizeof(*uset))
3414 		return -EINVAL;
3415 
3416 	do_sigpending(&set);
3417 
3418 	return put_compat_sigset(uset, &set, sigsetsize);
3419 }
3420 #endif
3421 
3422 static const struct {
3423 	unsigned char limit, layout;
3424 } sig_sicodes[] = {
3425 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3426 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3427 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3428 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3429 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3430 #if defined(SIGEMT)
3431 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3432 #endif
3433 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3434 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3435 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3436 };
3437 
known_siginfo_layout(unsigned sig,int si_code)3438 static bool known_siginfo_layout(unsigned sig, int si_code)
3439 {
3440 	if (si_code == SI_KERNEL)
3441 		return true;
3442 	else if ((si_code > SI_USER)) {
3443 		if (sig_specific_sicodes(sig)) {
3444 			if (si_code <= sig_sicodes[sig].limit)
3445 				return true;
3446 		}
3447 		else if (si_code <= NSIGPOLL)
3448 			return true;
3449 	}
3450 	else if (si_code >= SI_DETHREAD)
3451 		return true;
3452 	else if (si_code == SI_ASYNCNL)
3453 		return true;
3454 	return false;
3455 }
3456 
siginfo_layout(unsigned sig,int si_code)3457 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3458 {
3459 	enum siginfo_layout layout = SIL_KILL;
3460 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3461 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3462 		    (si_code <= sig_sicodes[sig].limit)) {
3463 			layout = sig_sicodes[sig].layout;
3464 			/* Handle the exceptions */
3465 			if ((sig == SIGBUS) &&
3466 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3467 				layout = SIL_FAULT_MCEERR;
3468 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3469 				layout = SIL_FAULT_BNDERR;
3470 #ifdef SEGV_PKUERR
3471 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3472 				layout = SIL_FAULT_PKUERR;
3473 #endif
3474 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3475 				layout = SIL_FAULT_PERF_EVENT;
3476 			else if (IS_ENABLED(CONFIG_SPARC) &&
3477 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3478 				layout = SIL_FAULT_TRAPNO;
3479 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3480 				 ((sig == SIGFPE) ||
3481 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3482 				layout = SIL_FAULT_TRAPNO;
3483 		}
3484 		else if (si_code <= NSIGPOLL)
3485 			layout = SIL_POLL;
3486 	} else {
3487 		if (si_code == SI_TIMER)
3488 			layout = SIL_TIMER;
3489 		else if (si_code == SI_SIGIO)
3490 			layout = SIL_POLL;
3491 		else if (si_code < 0)
3492 			layout = SIL_RT;
3493 	}
3494 	return layout;
3495 }
3496 
si_expansion(const siginfo_t __user * info)3497 static inline char __user *si_expansion(const siginfo_t __user *info)
3498 {
3499 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3500 }
3501 
copy_siginfo_to_user(siginfo_t __user * to,const kernel_siginfo_t * from)3502 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3503 {
3504 	char __user *expansion = si_expansion(to);
3505 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3506 		return -EFAULT;
3507 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3508 		return -EFAULT;
3509 	return 0;
3510 }
3511 
post_copy_siginfo_from_user(kernel_siginfo_t * info,const siginfo_t __user * from)3512 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3513 				       const siginfo_t __user *from)
3514 {
3515 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3516 		char __user *expansion = si_expansion(from);
3517 		char buf[SI_EXPANSION_SIZE];
3518 		int i;
3519 		/*
3520 		 * An unknown si_code might need more than
3521 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3522 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3523 		 * will return this data to userspace exactly.
3524 		 */
3525 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3526 			return -EFAULT;
3527 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3528 			if (buf[i] != 0)
3529 				return -E2BIG;
3530 		}
3531 	}
3532 	return 0;
3533 }
3534 
__copy_siginfo_from_user(int signo,kernel_siginfo_t * to,const siginfo_t __user * from)3535 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3536 				    const siginfo_t __user *from)
3537 {
3538 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3539 		return -EFAULT;
3540 	to->si_signo = signo;
3541 	return post_copy_siginfo_from_user(to, from);
3542 }
3543 
copy_siginfo_from_user(kernel_siginfo_t * to,const siginfo_t __user * from)3544 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3545 {
3546 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3547 		return -EFAULT;
3548 	return post_copy_siginfo_from_user(to, from);
3549 }
3550 
3551 #ifdef CONFIG_COMPAT
3552 /**
3553  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3554  * @to: compat siginfo destination
3555  * @from: kernel siginfo source
3556  *
3557  * Note: This function does not work properly for the SIGCHLD on x32, but
3558  * fortunately it doesn't have to.  The only valid callers for this function are
3559  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3560  * The latter does not care because SIGCHLD will never cause a coredump.
3561  */
copy_siginfo_to_external32(struct compat_siginfo * to,const struct kernel_siginfo * from)3562 void copy_siginfo_to_external32(struct compat_siginfo *to,
3563 		const struct kernel_siginfo *from)
3564 {
3565 	memset(to, 0, sizeof(*to));
3566 
3567 	to->si_signo = from->si_signo;
3568 	to->si_errno = from->si_errno;
3569 	to->si_code  = from->si_code;
3570 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3571 	case SIL_KILL:
3572 		to->si_pid = from->si_pid;
3573 		to->si_uid = from->si_uid;
3574 		break;
3575 	case SIL_TIMER:
3576 		to->si_tid     = from->si_tid;
3577 		to->si_overrun = from->si_overrun;
3578 		to->si_int     = from->si_int;
3579 		break;
3580 	case SIL_POLL:
3581 		to->si_band = from->si_band;
3582 		to->si_fd   = from->si_fd;
3583 		break;
3584 	case SIL_FAULT:
3585 		to->si_addr = ptr_to_compat(from->si_addr);
3586 		break;
3587 	case SIL_FAULT_TRAPNO:
3588 		to->si_addr = ptr_to_compat(from->si_addr);
3589 		to->si_trapno = from->si_trapno;
3590 		break;
3591 	case SIL_FAULT_MCEERR:
3592 		to->si_addr = ptr_to_compat(from->si_addr);
3593 		to->si_addr_lsb = from->si_addr_lsb;
3594 		break;
3595 	case SIL_FAULT_BNDERR:
3596 		to->si_addr = ptr_to_compat(from->si_addr);
3597 		to->si_lower = ptr_to_compat(from->si_lower);
3598 		to->si_upper = ptr_to_compat(from->si_upper);
3599 		break;
3600 	case SIL_FAULT_PKUERR:
3601 		to->si_addr = ptr_to_compat(from->si_addr);
3602 		to->si_pkey = from->si_pkey;
3603 		break;
3604 	case SIL_FAULT_PERF_EVENT:
3605 		to->si_addr = ptr_to_compat(from->si_addr);
3606 		to->si_perf_data = from->si_perf_data;
3607 		to->si_perf_type = from->si_perf_type;
3608 		to->si_perf_flags = from->si_perf_flags;
3609 		break;
3610 	case SIL_CHLD:
3611 		to->si_pid = from->si_pid;
3612 		to->si_uid = from->si_uid;
3613 		to->si_status = from->si_status;
3614 		to->si_utime = from->si_utime;
3615 		to->si_stime = from->si_stime;
3616 		break;
3617 	case SIL_RT:
3618 		to->si_pid = from->si_pid;
3619 		to->si_uid = from->si_uid;
3620 		to->si_int = from->si_int;
3621 		break;
3622 	case SIL_SYS:
3623 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3624 		to->si_syscall   = from->si_syscall;
3625 		to->si_arch      = from->si_arch;
3626 		break;
3627 	}
3628 }
3629 
__copy_siginfo_to_user32(struct compat_siginfo __user * to,const struct kernel_siginfo * from)3630 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3631 			   const struct kernel_siginfo *from)
3632 {
3633 	struct compat_siginfo new;
3634 
3635 	copy_siginfo_to_external32(&new, from);
3636 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3637 		return -EFAULT;
3638 	return 0;
3639 }
3640 
post_copy_siginfo_from_user32(kernel_siginfo_t * to,const struct compat_siginfo * from)3641 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3642 					 const struct compat_siginfo *from)
3643 {
3644 	clear_siginfo(to);
3645 	to->si_signo = from->si_signo;
3646 	to->si_errno = from->si_errno;
3647 	to->si_code  = from->si_code;
3648 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3649 	case SIL_KILL:
3650 		to->si_pid = from->si_pid;
3651 		to->si_uid = from->si_uid;
3652 		break;
3653 	case SIL_TIMER:
3654 		to->si_tid     = from->si_tid;
3655 		to->si_overrun = from->si_overrun;
3656 		to->si_int     = from->si_int;
3657 		break;
3658 	case SIL_POLL:
3659 		to->si_band = from->si_band;
3660 		to->si_fd   = from->si_fd;
3661 		break;
3662 	case SIL_FAULT:
3663 		to->si_addr = compat_ptr(from->si_addr);
3664 		break;
3665 	case SIL_FAULT_TRAPNO:
3666 		to->si_addr = compat_ptr(from->si_addr);
3667 		to->si_trapno = from->si_trapno;
3668 		break;
3669 	case SIL_FAULT_MCEERR:
3670 		to->si_addr = compat_ptr(from->si_addr);
3671 		to->si_addr_lsb = from->si_addr_lsb;
3672 		break;
3673 	case SIL_FAULT_BNDERR:
3674 		to->si_addr = compat_ptr(from->si_addr);
3675 		to->si_lower = compat_ptr(from->si_lower);
3676 		to->si_upper = compat_ptr(from->si_upper);
3677 		break;
3678 	case SIL_FAULT_PKUERR:
3679 		to->si_addr = compat_ptr(from->si_addr);
3680 		to->si_pkey = from->si_pkey;
3681 		break;
3682 	case SIL_FAULT_PERF_EVENT:
3683 		to->si_addr = compat_ptr(from->si_addr);
3684 		to->si_perf_data = from->si_perf_data;
3685 		to->si_perf_type = from->si_perf_type;
3686 		to->si_perf_flags = from->si_perf_flags;
3687 		break;
3688 	case SIL_CHLD:
3689 		to->si_pid    = from->si_pid;
3690 		to->si_uid    = from->si_uid;
3691 		to->si_status = from->si_status;
3692 #ifdef CONFIG_X86_X32_ABI
3693 		if (in_x32_syscall()) {
3694 			to->si_utime = from->_sifields._sigchld_x32._utime;
3695 			to->si_stime = from->_sifields._sigchld_x32._stime;
3696 		} else
3697 #endif
3698 		{
3699 			to->si_utime = from->si_utime;
3700 			to->si_stime = from->si_stime;
3701 		}
3702 		break;
3703 	case SIL_RT:
3704 		to->si_pid = from->si_pid;
3705 		to->si_uid = from->si_uid;
3706 		to->si_int = from->si_int;
3707 		break;
3708 	case SIL_SYS:
3709 		to->si_call_addr = compat_ptr(from->si_call_addr);
3710 		to->si_syscall   = from->si_syscall;
3711 		to->si_arch      = from->si_arch;
3712 		break;
3713 	}
3714 	return 0;
3715 }
3716 
__copy_siginfo_from_user32(int signo,struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3717 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3718 				      const struct compat_siginfo __user *ufrom)
3719 {
3720 	struct compat_siginfo from;
3721 
3722 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3723 		return -EFAULT;
3724 
3725 	from.si_signo = signo;
3726 	return post_copy_siginfo_from_user32(to, &from);
3727 }
3728 
copy_siginfo_from_user32(struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3729 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3730 			     const struct compat_siginfo __user *ufrom)
3731 {
3732 	struct compat_siginfo from;
3733 
3734 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3735 		return -EFAULT;
3736 
3737 	return post_copy_siginfo_from_user32(to, &from);
3738 }
3739 #endif /* CONFIG_COMPAT */
3740 
3741 /**
3742  *  do_sigtimedwait - wait for queued signals specified in @which
3743  *  @which: queued signals to wait for
3744  *  @info: if non-null, the signal's siginfo is returned here
3745  *  @ts: upper bound on process time suspension
3746  */
do_sigtimedwait(const sigset_t * which,kernel_siginfo_t * info,const struct timespec64 * ts)3747 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3748 		    const struct timespec64 *ts)
3749 {
3750 	ktime_t *to = NULL, timeout = KTIME_MAX;
3751 	struct task_struct *tsk = current;
3752 	sigset_t mask = *which;
3753 	enum pid_type type;
3754 	int sig, ret = 0;
3755 
3756 	if (ts) {
3757 		if (!timespec64_valid(ts))
3758 			return -EINVAL;
3759 		timeout = timespec64_to_ktime(*ts);
3760 		to = &timeout;
3761 	}
3762 
3763 	/*
3764 	 * Invert the set of allowed signals to get those we want to block.
3765 	 */
3766 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3767 	signotset(&mask);
3768 
3769 	spin_lock_irq(&tsk->sighand->siglock);
3770 	sig = dequeue_signal(&mask, info, &type);
3771 	if (!sig && timeout) {
3772 		/*
3773 		 * None ready, temporarily unblock those we're interested
3774 		 * while we are sleeping in so that we'll be awakened when
3775 		 * they arrive. Unblocking is always fine, we can avoid
3776 		 * set_current_blocked().
3777 		 */
3778 		tsk->real_blocked = tsk->blocked;
3779 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3780 		recalc_sigpending();
3781 		spin_unlock_irq(&tsk->sighand->siglock);
3782 
3783 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3784 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3785 					       HRTIMER_MODE_REL);
3786 		spin_lock_irq(&tsk->sighand->siglock);
3787 		__set_task_blocked(tsk, &tsk->real_blocked);
3788 		sigemptyset(&tsk->real_blocked);
3789 		sig = dequeue_signal(&mask, info, &type);
3790 	}
3791 	spin_unlock_irq(&tsk->sighand->siglock);
3792 
3793 	if (sig)
3794 		return sig;
3795 	return ret ? -EINTR : -EAGAIN;
3796 }
3797 
3798 /**
3799  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3800  *			in @uthese
3801  *  @uthese: queued signals to wait for
3802  *  @uinfo: if non-null, the signal's siginfo is returned here
3803  *  @uts: upper bound on process time suspension
3804  *  @sigsetsize: size of sigset_t type
3805  */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct __kernel_timespec __user *,uts,size_t,sigsetsize)3806 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3807 		siginfo_t __user *, uinfo,
3808 		const struct __kernel_timespec __user *, uts,
3809 		size_t, sigsetsize)
3810 {
3811 	sigset_t these;
3812 	struct timespec64 ts;
3813 	kernel_siginfo_t info;
3814 	int ret;
3815 
3816 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3817 	if (sigsetsize != sizeof(sigset_t))
3818 		return -EINVAL;
3819 
3820 	if (copy_from_user(&these, uthese, sizeof(these)))
3821 		return -EFAULT;
3822 
3823 	if (uts) {
3824 		if (get_timespec64(&ts, uts))
3825 			return -EFAULT;
3826 	}
3827 
3828 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3829 
3830 	if (ret > 0 && uinfo) {
3831 		if (copy_siginfo_to_user(uinfo, &info))
3832 			ret = -EFAULT;
3833 	}
3834 
3835 	return ret;
3836 }
3837 
3838 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(rt_sigtimedwait_time32,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct old_timespec32 __user *,uts,size_t,sigsetsize)3839 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3840 		siginfo_t __user *, uinfo,
3841 		const struct old_timespec32 __user *, uts,
3842 		size_t, sigsetsize)
3843 {
3844 	sigset_t these;
3845 	struct timespec64 ts;
3846 	kernel_siginfo_t info;
3847 	int ret;
3848 
3849 	if (sigsetsize != sizeof(sigset_t))
3850 		return -EINVAL;
3851 
3852 	if (copy_from_user(&these, uthese, sizeof(these)))
3853 		return -EFAULT;
3854 
3855 	if (uts) {
3856 		if (get_old_timespec32(&ts, uts))
3857 			return -EFAULT;
3858 	}
3859 
3860 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3861 
3862 	if (ret > 0 && uinfo) {
3863 		if (copy_siginfo_to_user(uinfo, &info))
3864 			ret = -EFAULT;
3865 	}
3866 
3867 	return ret;
3868 }
3869 #endif
3870 
3871 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct __kernel_timespec __user *,uts,compat_size_t,sigsetsize)3872 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3873 		struct compat_siginfo __user *, uinfo,
3874 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3875 {
3876 	sigset_t s;
3877 	struct timespec64 t;
3878 	kernel_siginfo_t info;
3879 	long ret;
3880 
3881 	if (sigsetsize != sizeof(sigset_t))
3882 		return -EINVAL;
3883 
3884 	if (get_compat_sigset(&s, uthese))
3885 		return -EFAULT;
3886 
3887 	if (uts) {
3888 		if (get_timespec64(&t, uts))
3889 			return -EFAULT;
3890 	}
3891 
3892 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3893 
3894 	if (ret > 0 && uinfo) {
3895 		if (copy_siginfo_to_user32(uinfo, &info))
3896 			ret = -EFAULT;
3897 	}
3898 
3899 	return ret;
3900 }
3901 
3902 #ifdef CONFIG_COMPAT_32BIT_TIME
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct old_timespec32 __user *,uts,compat_size_t,sigsetsize)3903 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3904 		struct compat_siginfo __user *, uinfo,
3905 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3906 {
3907 	sigset_t s;
3908 	struct timespec64 t;
3909 	kernel_siginfo_t info;
3910 	long ret;
3911 
3912 	if (sigsetsize != sizeof(sigset_t))
3913 		return -EINVAL;
3914 
3915 	if (get_compat_sigset(&s, uthese))
3916 		return -EFAULT;
3917 
3918 	if (uts) {
3919 		if (get_old_timespec32(&t, uts))
3920 			return -EFAULT;
3921 	}
3922 
3923 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3924 
3925 	if (ret > 0 && uinfo) {
3926 		if (copy_siginfo_to_user32(uinfo, &info))
3927 			ret = -EFAULT;
3928 	}
3929 
3930 	return ret;
3931 }
3932 #endif
3933 #endif
3934 
prepare_kill_siginfo(int sig,struct kernel_siginfo * info,enum pid_type type)3935 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3936 				 enum pid_type type)
3937 {
3938 	clear_siginfo(info);
3939 	info->si_signo = sig;
3940 	info->si_errno = 0;
3941 	info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3942 	info->si_pid = task_tgid_vnr(current);
3943 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3944 }
3945 
3946 /**
3947  *  sys_kill - send a signal to a process
3948  *  @pid: the PID of the process
3949  *  @sig: signal to be sent
3950  */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)3951 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3952 {
3953 	struct kernel_siginfo info;
3954 
3955 	prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3956 
3957 	return kill_something_info(sig, &info, pid);
3958 }
3959 
3960 /*
3961  * Verify that the signaler and signalee either are in the same pid namespace
3962  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3963  * namespace.
3964  */
access_pidfd_pidns(struct pid * pid)3965 static bool access_pidfd_pidns(struct pid *pid)
3966 {
3967 	struct pid_namespace *active = task_active_pid_ns(current);
3968 	struct pid_namespace *p = ns_of_pid(pid);
3969 
3970 	for (;;) {
3971 		if (!p)
3972 			return false;
3973 		if (p == active)
3974 			break;
3975 		p = p->parent;
3976 	}
3977 
3978 	return true;
3979 }
3980 
copy_siginfo_from_user_any(kernel_siginfo_t * kinfo,siginfo_t __user * info)3981 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3982 		siginfo_t __user *info)
3983 {
3984 #ifdef CONFIG_COMPAT
3985 	/*
3986 	 * Avoid hooking up compat syscalls and instead handle necessary
3987 	 * conversions here. Note, this is a stop-gap measure and should not be
3988 	 * considered a generic solution.
3989 	 */
3990 	if (in_compat_syscall())
3991 		return copy_siginfo_from_user32(
3992 			kinfo, (struct compat_siginfo __user *)info);
3993 #endif
3994 	return copy_siginfo_from_user(kinfo, info);
3995 }
3996 
pidfd_to_pid(const struct file * file)3997 static struct pid *pidfd_to_pid(const struct file *file)
3998 {
3999 	struct pid *pid;
4000 
4001 	pid = pidfd_pid(file);
4002 	if (!IS_ERR(pid))
4003 		return pid;
4004 
4005 	return tgid_pidfd_to_pid(file);
4006 }
4007 
4008 #define PIDFD_SEND_SIGNAL_FLAGS                            \
4009 	(PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
4010 	 PIDFD_SIGNAL_PROCESS_GROUP)
4011 
4012 /**
4013  * sys_pidfd_send_signal - Signal a process through a pidfd
4014  * @pidfd:  file descriptor of the process
4015  * @sig:    signal to send
4016  * @info:   signal info
4017  * @flags:  future flags
4018  *
4019  * Send the signal to the thread group or to the individual thread depending
4020  * on PIDFD_THREAD.
4021  * In the future extension to @flags may be used to override the default scope
4022  * of @pidfd.
4023  *
4024  * Return: 0 on success, negative errno on failure
4025  */
SYSCALL_DEFINE4(pidfd_send_signal,int,pidfd,int,sig,siginfo_t __user *,info,unsigned int,flags)4026 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
4027 		siginfo_t __user *, info, unsigned int, flags)
4028 {
4029 	int ret;
4030 	struct pid *pid;
4031 	kernel_siginfo_t kinfo;
4032 	enum pid_type type;
4033 
4034 	/* Enforce flags be set to 0 until we add an extension. */
4035 	if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
4036 		return -EINVAL;
4037 
4038 	/* Ensure that only a single signal scope determining flag is set. */
4039 	if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
4040 		return -EINVAL;
4041 
4042 	CLASS(fd, f)(pidfd);
4043 	if (fd_empty(f))
4044 		return -EBADF;
4045 
4046 	/* Is this a pidfd? */
4047 	pid = pidfd_to_pid(fd_file(f));
4048 	if (IS_ERR(pid))
4049 		return PTR_ERR(pid);
4050 
4051 	if (!access_pidfd_pidns(pid))
4052 		return -EINVAL;
4053 
4054 	switch (flags) {
4055 	case 0:
4056 		/* Infer scope from the type of pidfd. */
4057 		if (fd_file(f)->f_flags & PIDFD_THREAD)
4058 			type = PIDTYPE_PID;
4059 		else
4060 			type = PIDTYPE_TGID;
4061 		break;
4062 	case PIDFD_SIGNAL_THREAD:
4063 		type = PIDTYPE_PID;
4064 		break;
4065 	case PIDFD_SIGNAL_THREAD_GROUP:
4066 		type = PIDTYPE_TGID;
4067 		break;
4068 	case PIDFD_SIGNAL_PROCESS_GROUP:
4069 		type = PIDTYPE_PGID;
4070 		break;
4071 	}
4072 
4073 	if (info) {
4074 		ret = copy_siginfo_from_user_any(&kinfo, info);
4075 		if (unlikely(ret))
4076 			return ret;
4077 
4078 		if (unlikely(sig != kinfo.si_signo))
4079 			return -EINVAL;
4080 
4081 		/* Only allow sending arbitrary signals to yourself. */
4082 		if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
4083 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
4084 			return -EPERM;
4085 	} else {
4086 		prepare_kill_siginfo(sig, &kinfo, type);
4087 	}
4088 
4089 	if (type == PIDTYPE_PGID)
4090 		return kill_pgrp_info(sig, &kinfo, pid);
4091 	else
4092 		return kill_pid_info_type(sig, &kinfo, pid, type);
4093 }
4094 
4095 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct kernel_siginfo * info)4096 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
4097 {
4098 	struct task_struct *p;
4099 	int error = -ESRCH;
4100 
4101 	rcu_read_lock();
4102 	p = find_task_by_vpid(pid);
4103 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
4104 		error = check_kill_permission(sig, info, p);
4105 		/*
4106 		 * The null signal is a permissions and process existence
4107 		 * probe.  No signal is actually delivered.
4108 		 */
4109 		if (!error && sig) {
4110 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
4111 			/*
4112 			 * If lock_task_sighand() failed we pretend the task
4113 			 * dies after receiving the signal. The window is tiny,
4114 			 * and the signal is private anyway.
4115 			 */
4116 			if (unlikely(error == -ESRCH))
4117 				error = 0;
4118 		}
4119 	}
4120 	rcu_read_unlock();
4121 
4122 	return error;
4123 }
4124 
do_tkill(pid_t tgid,pid_t pid,int sig)4125 static int do_tkill(pid_t tgid, pid_t pid, int sig)
4126 {
4127 	struct kernel_siginfo info;
4128 
4129 	prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4130 
4131 	return do_send_specific(tgid, pid, sig, &info);
4132 }
4133 
4134 /**
4135  *  sys_tgkill - send signal to one specific thread
4136  *  @tgid: the thread group ID of the thread
4137  *  @pid: the PID of the thread
4138  *  @sig: signal to be sent
4139  *
4140  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4141  *  exists but it's not belonging to the target process anymore. This
4142  *  method solves the problem of threads exiting and PIDs getting reused.
4143  */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)4144 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4145 {
4146 	/* This is only valid for single tasks */
4147 	if (pid <= 0 || tgid <= 0)
4148 		return -EINVAL;
4149 
4150 	return do_tkill(tgid, pid, sig);
4151 }
4152 
4153 /**
4154  *  sys_tkill - send signal to one specific task
4155  *  @pid: the PID of the task
4156  *  @sig: signal to be sent
4157  *
4158  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4159  */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)4160 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4161 {
4162 	/* This is only valid for single tasks */
4163 	if (pid <= 0)
4164 		return -EINVAL;
4165 
4166 	return do_tkill(0, pid, sig);
4167 }
4168 
do_rt_sigqueueinfo(pid_t pid,int sig,kernel_siginfo_t * info)4169 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4170 {
4171 	/* Not even root can pretend to send signals from the kernel.
4172 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4173 	 */
4174 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4175 	    (task_pid_vnr(current) != pid))
4176 		return -EPERM;
4177 
4178 	/* POSIX.1b doesn't mention process groups.  */
4179 	return kill_proc_info(sig, info, pid);
4180 }
4181 
4182 /**
4183  *  sys_rt_sigqueueinfo - send signal information to a signal
4184  *  @pid: the PID of the thread
4185  *  @sig: signal to be sent
4186  *  @uinfo: signal info to be sent
4187  */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)4188 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4189 		siginfo_t __user *, uinfo)
4190 {
4191 	kernel_siginfo_t info;
4192 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4193 	if (unlikely(ret))
4194 		return ret;
4195 	return do_rt_sigqueueinfo(pid, sig, &info);
4196 }
4197 
4198 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)4199 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4200 			compat_pid_t, pid,
4201 			int, sig,
4202 			struct compat_siginfo __user *, uinfo)
4203 {
4204 	kernel_siginfo_t info;
4205 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4206 	if (unlikely(ret))
4207 		return ret;
4208 	return do_rt_sigqueueinfo(pid, sig, &info);
4209 }
4210 #endif
4211 
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,kernel_siginfo_t * info)4212 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4213 {
4214 	/* This is only valid for single tasks */
4215 	if (pid <= 0 || tgid <= 0)
4216 		return -EINVAL;
4217 
4218 	/* Not even root can pretend to send signals from the kernel.
4219 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4220 	 */
4221 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4222 	    (task_pid_vnr(current) != pid))
4223 		return -EPERM;
4224 
4225 	return do_send_specific(tgid, pid, sig, info);
4226 }
4227 
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)4228 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4229 		siginfo_t __user *, uinfo)
4230 {
4231 	kernel_siginfo_t info;
4232 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4233 	if (unlikely(ret))
4234 		return ret;
4235 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4236 }
4237 
4238 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,compat_pid_t,tgid,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)4239 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4240 			compat_pid_t, tgid,
4241 			compat_pid_t, pid,
4242 			int, sig,
4243 			struct compat_siginfo __user *, uinfo)
4244 {
4245 	kernel_siginfo_t info;
4246 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4247 	if (unlikely(ret))
4248 		return ret;
4249 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4250 }
4251 #endif
4252 
4253 /*
4254  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4255  */
kernel_sigaction(int sig,__sighandler_t action)4256 void kernel_sigaction(int sig, __sighandler_t action)
4257 {
4258 	spin_lock_irq(&current->sighand->siglock);
4259 	current->sighand->action[sig - 1].sa.sa_handler = action;
4260 	if (action == SIG_IGN) {
4261 		sigset_t mask;
4262 
4263 		sigemptyset(&mask);
4264 		sigaddset(&mask, sig);
4265 
4266 		flush_sigqueue_mask(current, &mask, &current->signal->shared_pending);
4267 		flush_sigqueue_mask(current, &mask, &current->pending);
4268 		recalc_sigpending();
4269 	}
4270 	spin_unlock_irq(&current->sighand->siglock);
4271 }
4272 EXPORT_SYMBOL(kernel_sigaction);
4273 
sigaction_compat_abi(struct k_sigaction * act,struct k_sigaction * oact)4274 void __weak sigaction_compat_abi(struct k_sigaction *act,
4275 		struct k_sigaction *oact)
4276 {
4277 }
4278 
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)4279 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4280 {
4281 	struct task_struct *p = current, *t;
4282 	struct k_sigaction *k;
4283 	sigset_t mask;
4284 
4285 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4286 		return -EINVAL;
4287 
4288 	k = &p->sighand->action[sig-1];
4289 
4290 	spin_lock_irq(&p->sighand->siglock);
4291 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4292 		spin_unlock_irq(&p->sighand->siglock);
4293 		return -EINVAL;
4294 	}
4295 	if (oact)
4296 		*oact = *k;
4297 
4298 	/*
4299 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4300 	 * e.g. by having an architecture use the bit in their uapi.
4301 	 */
4302 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4303 
4304 	/*
4305 	 * Clear unknown flag bits in order to allow userspace to detect missing
4306 	 * support for flag bits and to allow the kernel to use non-uapi bits
4307 	 * internally.
4308 	 */
4309 	if (act)
4310 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4311 	if (oact)
4312 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4313 
4314 	sigaction_compat_abi(act, oact);
4315 
4316 	if (act) {
4317 		bool was_ignored = k->sa.sa_handler == SIG_IGN;
4318 
4319 		sigdelsetmask(&act->sa.sa_mask,
4320 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4321 		*k = *act;
4322 		/*
4323 		 * POSIX 3.3.1.3:
4324 		 *  "Setting a signal action to SIG_IGN for a signal that is
4325 		 *   pending shall cause the pending signal to be discarded,
4326 		 *   whether or not it is blocked."
4327 		 *
4328 		 *  "Setting a signal action to SIG_DFL for a signal that is
4329 		 *   pending and whose default action is to ignore the signal
4330 		 *   (for example, SIGCHLD), shall cause the pending signal to
4331 		 *   be discarded, whether or not it is blocked"
4332 		 */
4333 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4334 			sigemptyset(&mask);
4335 			sigaddset(&mask, sig);
4336 			flush_sigqueue_mask(p, &mask, &p->signal->shared_pending);
4337 			for_each_thread(p, t)
4338 				flush_sigqueue_mask(p, &mask, &t->pending);
4339 		} else if (was_ignored) {
4340 			posixtimer_sig_unignore(p, sig);
4341 		}
4342 	}
4343 
4344 	spin_unlock_irq(&p->sighand->siglock);
4345 	return 0;
4346 }
4347 
4348 #ifdef CONFIG_DYNAMIC_SIGFRAME
sigaltstack_lock(void)4349 static inline void sigaltstack_lock(void)
4350 	__acquires(&current->sighand->siglock)
4351 {
4352 	spin_lock_irq(&current->sighand->siglock);
4353 }
4354 
sigaltstack_unlock(void)4355 static inline void sigaltstack_unlock(void)
4356 	__releases(&current->sighand->siglock)
4357 {
4358 	spin_unlock_irq(&current->sighand->siglock);
4359 }
4360 #else
sigaltstack_lock(void)4361 static inline void sigaltstack_lock(void) { }
sigaltstack_unlock(void)4362 static inline void sigaltstack_unlock(void) { }
4363 #endif
4364 
4365 static int
do_sigaltstack(const stack_t * ss,stack_t * oss,unsigned long sp,size_t min_ss_size)4366 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4367 		size_t min_ss_size)
4368 {
4369 	struct task_struct *t = current;
4370 	int ret = 0;
4371 
4372 	if (oss) {
4373 		memset(oss, 0, sizeof(stack_t));
4374 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4375 		oss->ss_size = t->sas_ss_size;
4376 		oss->ss_flags = sas_ss_flags(sp) |
4377 			(current->sas_ss_flags & SS_FLAG_BITS);
4378 	}
4379 
4380 	if (ss) {
4381 		void __user *ss_sp = ss->ss_sp;
4382 		size_t ss_size = ss->ss_size;
4383 		unsigned ss_flags = ss->ss_flags;
4384 		int ss_mode;
4385 
4386 		if (unlikely(on_sig_stack(sp)))
4387 			return -EPERM;
4388 
4389 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4390 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4391 				ss_mode != 0))
4392 			return -EINVAL;
4393 
4394 		/*
4395 		 * Return before taking any locks if no actual
4396 		 * sigaltstack changes were requested.
4397 		 */
4398 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4399 		    t->sas_ss_size == ss_size &&
4400 		    t->sas_ss_flags == ss_flags)
4401 			return 0;
4402 
4403 		sigaltstack_lock();
4404 		if (ss_mode == SS_DISABLE) {
4405 			ss_size = 0;
4406 			ss_sp = NULL;
4407 		} else {
4408 			if (unlikely(ss_size < min_ss_size))
4409 				ret = -ENOMEM;
4410 			if (!sigaltstack_size_valid(ss_size))
4411 				ret = -ENOMEM;
4412 		}
4413 		if (!ret) {
4414 			t->sas_ss_sp = (unsigned long) ss_sp;
4415 			t->sas_ss_size = ss_size;
4416 			t->sas_ss_flags = ss_flags;
4417 		}
4418 		sigaltstack_unlock();
4419 	}
4420 	return ret;
4421 }
4422 
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss,stack_t __user *,uoss)4423 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4424 {
4425 	stack_t new, old;
4426 	int err;
4427 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4428 		return -EFAULT;
4429 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4430 			      current_user_stack_pointer(),
4431 			      MINSIGSTKSZ);
4432 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4433 		err = -EFAULT;
4434 	return err;
4435 }
4436 
restore_altstack(const stack_t __user * uss)4437 int restore_altstack(const stack_t __user *uss)
4438 {
4439 	stack_t new;
4440 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4441 		return -EFAULT;
4442 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4443 			     MINSIGSTKSZ);
4444 	/* squash all but EFAULT for now */
4445 	return 0;
4446 }
4447 
__save_altstack(stack_t __user * uss,unsigned long sp)4448 int __save_altstack(stack_t __user *uss, unsigned long sp)
4449 {
4450 	struct task_struct *t = current;
4451 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4452 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4453 		__put_user(t->sas_ss_size, &uss->ss_size);
4454 	return err;
4455 }
4456 
4457 #ifdef CONFIG_COMPAT
do_compat_sigaltstack(const compat_stack_t __user * uss_ptr,compat_stack_t __user * uoss_ptr)4458 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4459 				 compat_stack_t __user *uoss_ptr)
4460 {
4461 	stack_t uss, uoss;
4462 	int ret;
4463 
4464 	if (uss_ptr) {
4465 		compat_stack_t uss32;
4466 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4467 			return -EFAULT;
4468 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4469 		uss.ss_flags = uss32.ss_flags;
4470 		uss.ss_size = uss32.ss_size;
4471 	}
4472 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4473 			     compat_user_stack_pointer(),
4474 			     COMPAT_MINSIGSTKSZ);
4475 	if (ret >= 0 && uoss_ptr)  {
4476 		compat_stack_t old;
4477 		memset(&old, 0, sizeof(old));
4478 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4479 		old.ss_flags = uoss.ss_flags;
4480 		old.ss_size = uoss.ss_size;
4481 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4482 			ret = -EFAULT;
4483 	}
4484 	return ret;
4485 }
4486 
COMPAT_SYSCALL_DEFINE2(sigaltstack,const compat_stack_t __user *,uss_ptr,compat_stack_t __user *,uoss_ptr)4487 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4488 			const compat_stack_t __user *, uss_ptr,
4489 			compat_stack_t __user *, uoss_ptr)
4490 {
4491 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4492 }
4493 
compat_restore_altstack(const compat_stack_t __user * uss)4494 int compat_restore_altstack(const compat_stack_t __user *uss)
4495 {
4496 	int err = do_compat_sigaltstack(uss, NULL);
4497 	/* squash all but -EFAULT for now */
4498 	return err == -EFAULT ? err : 0;
4499 }
4500 
__compat_save_altstack(compat_stack_t __user * uss,unsigned long sp)4501 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4502 {
4503 	int err;
4504 	struct task_struct *t = current;
4505 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4506 			 &uss->ss_sp) |
4507 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4508 		__put_user(t->sas_ss_size, &uss->ss_size);
4509 	return err;
4510 }
4511 #endif
4512 
4513 #ifdef __ARCH_WANT_SYS_SIGPENDING
4514 
4515 /**
4516  *  sys_sigpending - examine pending signals
4517  *  @uset: where mask of pending signal is returned
4518  */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,uset)4519 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4520 {
4521 	sigset_t set;
4522 
4523 	if (sizeof(old_sigset_t) > sizeof(*uset))
4524 		return -EINVAL;
4525 
4526 	do_sigpending(&set);
4527 
4528 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4529 		return -EFAULT;
4530 
4531 	return 0;
4532 }
4533 
4534 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE1(sigpending,compat_old_sigset_t __user *,set32)4535 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4536 {
4537 	sigset_t set;
4538 
4539 	do_sigpending(&set);
4540 
4541 	return put_user(set.sig[0], set32);
4542 }
4543 #endif
4544 
4545 #endif
4546 
4547 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4548 /**
4549  *  sys_sigprocmask - examine and change blocked signals
4550  *  @how: whether to add, remove, or set signals
4551  *  @nset: signals to add or remove (if non-null)
4552  *  @oset: previous value of signal mask if non-null
4553  *
4554  * Some platforms have their own version with special arguments;
4555  * others support only sys_rt_sigprocmask.
4556  */
4557 
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,nset,old_sigset_t __user *,oset)4558 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4559 		old_sigset_t __user *, oset)
4560 {
4561 	old_sigset_t old_set, new_set;
4562 	sigset_t new_blocked;
4563 
4564 	old_set = current->blocked.sig[0];
4565 
4566 	if (nset) {
4567 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4568 			return -EFAULT;
4569 
4570 		new_blocked = current->blocked;
4571 
4572 		switch (how) {
4573 		case SIG_BLOCK:
4574 			sigaddsetmask(&new_blocked, new_set);
4575 			break;
4576 		case SIG_UNBLOCK:
4577 			sigdelsetmask(&new_blocked, new_set);
4578 			break;
4579 		case SIG_SETMASK:
4580 			new_blocked.sig[0] = new_set;
4581 			break;
4582 		default:
4583 			return -EINVAL;
4584 		}
4585 
4586 		set_current_blocked(&new_blocked);
4587 	}
4588 
4589 	if (oset) {
4590 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4591 			return -EFAULT;
4592 	}
4593 
4594 	return 0;
4595 }
4596 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4597 
4598 #ifndef CONFIG_ODD_RT_SIGACTION
4599 /**
4600  *  sys_rt_sigaction - alter an action taken by a process
4601  *  @sig: signal to be sent
4602  *  @act: new sigaction
4603  *  @oact: used to save the previous sigaction
4604  *  @sigsetsize: size of sigset_t type
4605  */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)4606 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4607 		const struct sigaction __user *, act,
4608 		struct sigaction __user *, oact,
4609 		size_t, sigsetsize)
4610 {
4611 	struct k_sigaction new_sa, old_sa;
4612 	int ret;
4613 
4614 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4615 	if (sigsetsize != sizeof(sigset_t))
4616 		return -EINVAL;
4617 
4618 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4619 		return -EFAULT;
4620 
4621 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4622 	if (ret)
4623 		return ret;
4624 
4625 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4626 		return -EFAULT;
4627 
4628 	return 0;
4629 }
4630 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct compat_sigaction __user *,act,struct compat_sigaction __user *,oact,compat_size_t,sigsetsize)4631 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4632 		const struct compat_sigaction __user *, act,
4633 		struct compat_sigaction __user *, oact,
4634 		compat_size_t, sigsetsize)
4635 {
4636 	struct k_sigaction new_ka, old_ka;
4637 #ifdef __ARCH_HAS_SA_RESTORER
4638 	compat_uptr_t restorer;
4639 #endif
4640 	int ret;
4641 
4642 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4643 	if (sigsetsize != sizeof(compat_sigset_t))
4644 		return -EINVAL;
4645 
4646 	if (act) {
4647 		compat_uptr_t handler;
4648 		ret = get_user(handler, &act->sa_handler);
4649 		new_ka.sa.sa_handler = compat_ptr(handler);
4650 #ifdef __ARCH_HAS_SA_RESTORER
4651 		ret |= get_user(restorer, &act->sa_restorer);
4652 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4653 #endif
4654 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4655 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4656 		if (ret)
4657 			return -EFAULT;
4658 	}
4659 
4660 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4661 	if (!ret && oact) {
4662 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4663 			       &oact->sa_handler);
4664 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4665 					 sizeof(oact->sa_mask));
4666 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4667 #ifdef __ARCH_HAS_SA_RESTORER
4668 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4669 				&oact->sa_restorer);
4670 #endif
4671 	}
4672 	return ret;
4673 }
4674 #endif
4675 #endif /* !CONFIG_ODD_RT_SIGACTION */
4676 
4677 #ifdef CONFIG_OLD_SIGACTION
SYSCALL_DEFINE3(sigaction,int,sig,const struct old_sigaction __user *,act,struct old_sigaction __user *,oact)4678 SYSCALL_DEFINE3(sigaction, int, sig,
4679 		const struct old_sigaction __user *, act,
4680 	        struct old_sigaction __user *, oact)
4681 {
4682 	struct k_sigaction new_ka, old_ka;
4683 	int ret;
4684 
4685 	if (act) {
4686 		old_sigset_t mask;
4687 		if (!access_ok(act, sizeof(*act)) ||
4688 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4689 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4690 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4691 		    __get_user(mask, &act->sa_mask))
4692 			return -EFAULT;
4693 #ifdef __ARCH_HAS_KA_RESTORER
4694 		new_ka.ka_restorer = NULL;
4695 #endif
4696 		siginitset(&new_ka.sa.sa_mask, mask);
4697 	}
4698 
4699 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4700 
4701 	if (!ret && oact) {
4702 		if (!access_ok(oact, sizeof(*oact)) ||
4703 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4704 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4705 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4706 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4707 			return -EFAULT;
4708 	}
4709 
4710 	return ret;
4711 }
4712 #endif
4713 #ifdef CONFIG_COMPAT_OLD_SIGACTION
COMPAT_SYSCALL_DEFINE3(sigaction,int,sig,const struct compat_old_sigaction __user *,act,struct compat_old_sigaction __user *,oact)4714 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4715 		const struct compat_old_sigaction __user *, act,
4716 	        struct compat_old_sigaction __user *, oact)
4717 {
4718 	struct k_sigaction new_ka, old_ka;
4719 	int ret;
4720 	compat_old_sigset_t mask;
4721 	compat_uptr_t handler, restorer;
4722 
4723 	if (act) {
4724 		if (!access_ok(act, sizeof(*act)) ||
4725 		    __get_user(handler, &act->sa_handler) ||
4726 		    __get_user(restorer, &act->sa_restorer) ||
4727 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4728 		    __get_user(mask, &act->sa_mask))
4729 			return -EFAULT;
4730 
4731 #ifdef __ARCH_HAS_KA_RESTORER
4732 		new_ka.ka_restorer = NULL;
4733 #endif
4734 		new_ka.sa.sa_handler = compat_ptr(handler);
4735 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4736 		siginitset(&new_ka.sa.sa_mask, mask);
4737 	}
4738 
4739 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4740 
4741 	if (!ret && oact) {
4742 		if (!access_ok(oact, sizeof(*oact)) ||
4743 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4744 			       &oact->sa_handler) ||
4745 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4746 			       &oact->sa_restorer) ||
4747 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4748 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4749 			return -EFAULT;
4750 	}
4751 	return ret;
4752 }
4753 #endif
4754 
4755 #ifdef CONFIG_SGETMASK_SYSCALL
4756 
4757 /*
4758  * For backwards compatibility.  Functionality superseded by sigprocmask.
4759  */
SYSCALL_DEFINE0(sgetmask)4760 SYSCALL_DEFINE0(sgetmask)
4761 {
4762 	/* SMP safe */
4763 	return current->blocked.sig[0];
4764 }
4765 
SYSCALL_DEFINE1(ssetmask,int,newmask)4766 SYSCALL_DEFINE1(ssetmask, int, newmask)
4767 {
4768 	int old = current->blocked.sig[0];
4769 	sigset_t newset;
4770 
4771 	siginitset(&newset, newmask);
4772 	set_current_blocked(&newset);
4773 
4774 	return old;
4775 }
4776 #endif /* CONFIG_SGETMASK_SYSCALL */
4777 
4778 #ifdef __ARCH_WANT_SYS_SIGNAL
4779 /*
4780  * For backwards compatibility.  Functionality superseded by sigaction.
4781  */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)4782 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4783 {
4784 	struct k_sigaction new_sa, old_sa;
4785 	int ret;
4786 
4787 	new_sa.sa.sa_handler = handler;
4788 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4789 	sigemptyset(&new_sa.sa.sa_mask);
4790 
4791 	ret = do_sigaction(sig, &new_sa, &old_sa);
4792 
4793 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4794 }
4795 #endif /* __ARCH_WANT_SYS_SIGNAL */
4796 
4797 #ifdef __ARCH_WANT_SYS_PAUSE
4798 
SYSCALL_DEFINE0(pause)4799 SYSCALL_DEFINE0(pause)
4800 {
4801 	while (!signal_pending(current)) {
4802 		__set_current_state(TASK_INTERRUPTIBLE);
4803 		schedule();
4804 	}
4805 	return -ERESTARTNOHAND;
4806 }
4807 
4808 #endif
4809 
sigsuspend(sigset_t * set)4810 static int sigsuspend(sigset_t *set)
4811 {
4812 	current->saved_sigmask = current->blocked;
4813 	set_current_blocked(set);
4814 
4815 	while (!signal_pending(current)) {
4816 		__set_current_state(TASK_INTERRUPTIBLE);
4817 		schedule();
4818 	}
4819 	set_restore_sigmask();
4820 	return -ERESTARTNOHAND;
4821 }
4822 
4823 /**
4824  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4825  *	@unewset value until a signal is received
4826  *  @unewset: new signal mask value
4827  *  @sigsetsize: size of sigset_t type
4828  */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)4829 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4830 {
4831 	sigset_t newset;
4832 
4833 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4834 	if (sigsetsize != sizeof(sigset_t))
4835 		return -EINVAL;
4836 
4837 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4838 		return -EFAULT;
4839 	return sigsuspend(&newset);
4840 }
4841 
4842 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend,compat_sigset_t __user *,unewset,compat_size_t,sigsetsize)4843 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4844 {
4845 	sigset_t newset;
4846 
4847 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4848 	if (sigsetsize != sizeof(sigset_t))
4849 		return -EINVAL;
4850 
4851 	if (get_compat_sigset(&newset, unewset))
4852 		return -EFAULT;
4853 	return sigsuspend(&newset);
4854 }
4855 #endif
4856 
4857 #ifdef CONFIG_OLD_SIGSUSPEND
SYSCALL_DEFINE1(sigsuspend,old_sigset_t,mask)4858 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4859 {
4860 	sigset_t blocked;
4861 	siginitset(&blocked, mask);
4862 	return sigsuspend(&blocked);
4863 }
4864 #endif
4865 #ifdef CONFIG_OLD_SIGSUSPEND3
SYSCALL_DEFINE3(sigsuspend,int,unused1,int,unused2,old_sigset_t,mask)4866 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4867 {
4868 	sigset_t blocked;
4869 	siginitset(&blocked, mask);
4870 	return sigsuspend(&blocked);
4871 }
4872 #endif
4873 
arch_vma_name(struct vm_area_struct * vma)4874 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4875 {
4876 	return NULL;
4877 }
4878 
siginfo_buildtime_checks(void)4879 static inline void siginfo_buildtime_checks(void)
4880 {
4881 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4882 
4883 	/* Verify the offsets in the two siginfos match */
4884 #define CHECK_OFFSET(field) \
4885 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4886 
4887 	/* kill */
4888 	CHECK_OFFSET(si_pid);
4889 	CHECK_OFFSET(si_uid);
4890 
4891 	/* timer */
4892 	CHECK_OFFSET(si_tid);
4893 	CHECK_OFFSET(si_overrun);
4894 	CHECK_OFFSET(si_value);
4895 
4896 	/* rt */
4897 	CHECK_OFFSET(si_pid);
4898 	CHECK_OFFSET(si_uid);
4899 	CHECK_OFFSET(si_value);
4900 
4901 	/* sigchld */
4902 	CHECK_OFFSET(si_pid);
4903 	CHECK_OFFSET(si_uid);
4904 	CHECK_OFFSET(si_status);
4905 	CHECK_OFFSET(si_utime);
4906 	CHECK_OFFSET(si_stime);
4907 
4908 	/* sigfault */
4909 	CHECK_OFFSET(si_addr);
4910 	CHECK_OFFSET(si_trapno);
4911 	CHECK_OFFSET(si_addr_lsb);
4912 	CHECK_OFFSET(si_lower);
4913 	CHECK_OFFSET(si_upper);
4914 	CHECK_OFFSET(si_pkey);
4915 	CHECK_OFFSET(si_perf_data);
4916 	CHECK_OFFSET(si_perf_type);
4917 	CHECK_OFFSET(si_perf_flags);
4918 
4919 	/* sigpoll */
4920 	CHECK_OFFSET(si_band);
4921 	CHECK_OFFSET(si_fd);
4922 
4923 	/* sigsys */
4924 	CHECK_OFFSET(si_call_addr);
4925 	CHECK_OFFSET(si_syscall);
4926 	CHECK_OFFSET(si_arch);
4927 #undef CHECK_OFFSET
4928 
4929 	/* usb asyncio */
4930 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4931 		     offsetof(struct siginfo, si_addr));
4932 	if (sizeof(int) == sizeof(void __user *)) {
4933 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4934 			     sizeof(void __user *));
4935 	} else {
4936 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4937 			      sizeof_field(struct siginfo, si_uid)) !=
4938 			     sizeof(void __user *));
4939 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4940 			     offsetof(struct siginfo, si_uid));
4941 	}
4942 #ifdef CONFIG_COMPAT
4943 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4944 		     offsetof(struct compat_siginfo, si_addr));
4945 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4946 		     sizeof(compat_uptr_t));
4947 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4948 		     sizeof_field(struct siginfo, si_pid));
4949 #endif
4950 }
4951 
4952 #if defined(CONFIG_SYSCTL)
4953 static struct ctl_table signal_debug_table[] = {
4954 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4955 	{
4956 		.procname	= "exception-trace",
4957 		.data		= &show_unhandled_signals,
4958 		.maxlen		= sizeof(int),
4959 		.mode		= 0644,
4960 		.proc_handler	= proc_dointvec
4961 	},
4962 #endif
4963 };
4964 
init_signal_sysctls(void)4965 static int __init init_signal_sysctls(void)
4966 {
4967 	register_sysctl_init("debug", signal_debug_table);
4968 	return 0;
4969 }
4970 early_initcall(init_signal_sysctls);
4971 #endif /* CONFIG_SYSCTL */
4972 
signals_init(void)4973 void __init signals_init(void)
4974 {
4975 	siginfo_buildtime_checks();
4976 
4977 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4978 }
4979 
4980 #ifdef CONFIG_KGDB_KDB
4981 #include <linux/kdb.h>
4982 /*
4983  * kdb_send_sig - Allows kdb to send signals without exposing
4984  * signal internals.  This function checks if the required locks are
4985  * available before calling the main signal code, to avoid kdb
4986  * deadlocks.
4987  */
kdb_send_sig(struct task_struct * t,int sig)4988 void kdb_send_sig(struct task_struct *t, int sig)
4989 {
4990 	static struct task_struct *kdb_prev_t;
4991 	int new_t, ret;
4992 	if (!spin_trylock(&t->sighand->siglock)) {
4993 		kdb_printf("Can't do kill command now.\n"
4994 			   "The sigmask lock is held somewhere else in "
4995 			   "kernel, try again later\n");
4996 		return;
4997 	}
4998 	new_t = kdb_prev_t != t;
4999 	kdb_prev_t = t;
5000 	if (!task_is_running(t) && new_t) {
5001 		spin_unlock(&t->sighand->siglock);
5002 		kdb_printf("Process is not RUNNING, sending a signal from "
5003 			   "kdb risks deadlock\n"
5004 			   "on the run queue locks. "
5005 			   "The signal has _not_ been sent.\n"
5006 			   "Reissue the kill command if you want to risk "
5007 			   "the deadlock.\n");
5008 		return;
5009 	}
5010 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
5011 	spin_unlock(&t->sighand->siglock);
5012 	if (ret)
5013 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
5014 			   sig, t->pid);
5015 	else
5016 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
5017 }
5018 #endif	/* CONFIG_KGDB_KDB */
5019