xref: /linux/drivers/nvme/host/pci.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq-dma.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/nodemask.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 
31 #include "trace.h"
32 #include "nvme.h"
33 
34 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
36 
37 /* Optimisation for I/Os between 4k and 128k */
38 #define NVME_SMALL_POOL_SIZE	256
39 
40 /*
41  * Arbitrary upper bound.
42  */
43 #define NVME_MAX_BYTES		SZ_8M
44 #define NVME_MAX_NR_DESCRIPTORS	5
45 
46 /*
47  * For data SGLs we support a single descriptors worth of SGL entries.
48  * For PRPs, segments don't matter at all.
49  */
50 #define NVME_MAX_SEGS \
51 	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
52 
53 /*
54  * For metadata SGLs, only the small descriptor is supported, and the first
55  * entry is the segment descriptor, which for the data pointer sits in the SQE.
56  */
57 #define NVME_MAX_META_SEGS \
58 	((NVME_SMALL_POOL_SIZE / sizeof(struct nvme_sgl_desc)) - 1)
59 
60 /*
61  * The last entry is used to link to the next descriptor.
62  */
63 #define PRPS_PER_PAGE \
64 	(((NVME_CTRL_PAGE_SIZE / sizeof(__le64))) - 1)
65 
66 /*
67  * I/O could be non-aligned both at the beginning and end.
68  */
69 #define MAX_PRP_RANGE \
70 	(NVME_MAX_BYTES + 2 * (NVME_CTRL_PAGE_SIZE - 1))
71 
72 static_assert(MAX_PRP_RANGE / NVME_CTRL_PAGE_SIZE <=
73 	(1 /* prp1 */ + NVME_MAX_NR_DESCRIPTORS * PRPS_PER_PAGE));
74 
75 static int use_threaded_interrupts;
76 module_param(use_threaded_interrupts, int, 0444);
77 
78 static bool use_cmb_sqes = true;
79 module_param(use_cmb_sqes, bool, 0444);
80 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
81 
82 static unsigned int max_host_mem_size_mb = 128;
83 module_param(max_host_mem_size_mb, uint, 0444);
84 MODULE_PARM_DESC(max_host_mem_size_mb,
85 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
86 
87 static unsigned int sgl_threshold = SZ_32K;
88 module_param(sgl_threshold, uint, 0644);
89 MODULE_PARM_DESC(sgl_threshold,
90 		"Use SGLs when average request segment size is larger or equal to "
91 		"this size. Use 0 to disable SGLs.");
92 
93 #define NVME_PCI_MIN_QUEUE_SIZE 2
94 #define NVME_PCI_MAX_QUEUE_SIZE 4095
95 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
96 static const struct kernel_param_ops io_queue_depth_ops = {
97 	.set = io_queue_depth_set,
98 	.get = param_get_uint,
99 };
100 
101 static unsigned int io_queue_depth = 1024;
102 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
103 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
104 
io_queue_count_set(const char * val,const struct kernel_param * kp)105 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
106 {
107 	unsigned int n;
108 	int ret;
109 
110 	ret = kstrtouint(val, 10, &n);
111 	if (ret != 0 || n > blk_mq_num_possible_queues(0))
112 		return -EINVAL;
113 	return param_set_uint(val, kp);
114 }
115 
116 static const struct kernel_param_ops io_queue_count_ops = {
117 	.set = io_queue_count_set,
118 	.get = param_get_uint,
119 };
120 
121 static unsigned int write_queues;
122 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
123 MODULE_PARM_DESC(write_queues,
124 	"Number of queues to use for writes. If not set, reads and writes "
125 	"will share a queue set.");
126 
127 static unsigned int poll_queues;
128 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
129 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
130 
131 static bool noacpi;
132 module_param(noacpi, bool, 0444);
133 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
134 
135 struct nvme_dev;
136 struct nvme_queue;
137 
138 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
139 static void nvme_delete_io_queues(struct nvme_dev *dev);
140 static void nvme_update_attrs(struct nvme_dev *dev);
141 
142 struct nvme_descriptor_pools {
143 	struct dma_pool *large;
144 	struct dma_pool *small;
145 };
146 
147 /*
148  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
149  */
150 struct nvme_dev {
151 	struct nvme_queue *queues;
152 	struct blk_mq_tag_set tagset;
153 	struct blk_mq_tag_set admin_tagset;
154 	u32 __iomem *dbs;
155 	struct device *dev;
156 	unsigned online_queues;
157 	unsigned max_qid;
158 	unsigned io_queues[HCTX_MAX_TYPES];
159 	unsigned int num_vecs;
160 	u32 q_depth;
161 	int io_sqes;
162 	u32 db_stride;
163 	void __iomem *bar;
164 	unsigned long bar_mapped_size;
165 	struct mutex shutdown_lock;
166 	bool subsystem;
167 	u64 cmb_size;
168 	bool cmb_use_sqes;
169 	u32 cmbsz;
170 	u32 cmbloc;
171 	struct nvme_ctrl ctrl;
172 	u32 last_ps;
173 	bool hmb;
174 	struct sg_table *hmb_sgt;
175 	mempool_t *dmavec_mempool;
176 
177 	/* shadow doorbell buffer support: */
178 	__le32 *dbbuf_dbs;
179 	dma_addr_t dbbuf_dbs_dma_addr;
180 	__le32 *dbbuf_eis;
181 	dma_addr_t dbbuf_eis_dma_addr;
182 
183 	/* host memory buffer support: */
184 	u64 host_mem_size;
185 	u32 nr_host_mem_descs;
186 	u32 host_mem_descs_size;
187 	dma_addr_t host_mem_descs_dma;
188 	struct nvme_host_mem_buf_desc *host_mem_descs;
189 	void **host_mem_desc_bufs;
190 	unsigned int nr_allocated_queues;
191 	unsigned int nr_write_queues;
192 	unsigned int nr_poll_queues;
193 	struct nvme_descriptor_pools descriptor_pools[];
194 };
195 
io_queue_depth_set(const char * val,const struct kernel_param * kp)196 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
197 {
198 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
199 			NVME_PCI_MAX_QUEUE_SIZE);
200 }
201 
sq_idx(unsigned int qid,u32 stride)202 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
203 {
204 	return qid * 2 * stride;
205 }
206 
cq_idx(unsigned int qid,u32 stride)207 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
208 {
209 	return (qid * 2 + 1) * stride;
210 }
211 
to_nvme_dev(struct nvme_ctrl * ctrl)212 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
213 {
214 	return container_of(ctrl, struct nvme_dev, ctrl);
215 }
216 
217 /*
218  * An NVM Express queue.  Each device has at least two (one for admin
219  * commands and one for I/O commands).
220  */
221 struct nvme_queue {
222 	struct nvme_dev *dev;
223 	struct nvme_descriptor_pools descriptor_pools;
224 	spinlock_t sq_lock;
225 	void *sq_cmds;
226 	 /* only used for poll queues: */
227 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
228 	struct nvme_completion *cqes;
229 	dma_addr_t sq_dma_addr;
230 	dma_addr_t cq_dma_addr;
231 	u32 __iomem *q_db;
232 	u32 q_depth;
233 	u16 cq_vector;
234 	u16 sq_tail;
235 	u16 last_sq_tail;
236 	u16 cq_head;
237 	u16 qid;
238 	u8 cq_phase;
239 	u8 sqes;
240 	unsigned long flags;
241 #define NVMEQ_ENABLED		0
242 #define NVMEQ_SQ_CMB		1
243 #define NVMEQ_DELETE_ERROR	2
244 #define NVMEQ_POLLED		3
245 	__le32 *dbbuf_sq_db;
246 	__le32 *dbbuf_cq_db;
247 	__le32 *dbbuf_sq_ei;
248 	__le32 *dbbuf_cq_ei;
249 	struct completion delete_done;
250 };
251 
252 /* bits for iod->flags */
253 enum nvme_iod_flags {
254 	/* this command has been aborted by the timeout handler */
255 	IOD_ABORTED		= 1U << 0,
256 
257 	/* uses the small descriptor pool */
258 	IOD_SMALL_DESCRIPTOR	= 1U << 1,
259 
260 	/* single segment dma mapping */
261 	IOD_SINGLE_SEGMENT	= 1U << 2,
262 
263 	/* Data payload contains p2p memory */
264 	IOD_DATA_P2P		= 1U << 3,
265 
266 	/* Metadata contains p2p memory */
267 	IOD_META_P2P		= 1U << 4,
268 
269 	/* Data payload contains MMIO memory */
270 	IOD_DATA_MMIO		= 1U << 5,
271 
272 	/* Metadata contains MMIO memory */
273 	IOD_META_MMIO		= 1U << 6,
274 
275 	/* Metadata using non-coalesced MPTR */
276 	IOD_SINGLE_META_SEGMENT	= 1U << 7,
277 };
278 
279 struct nvme_dma_vec {
280 	dma_addr_t addr;
281 	unsigned int len;
282 };
283 
284 /*
285  * The nvme_iod describes the data in an I/O.
286  */
287 struct nvme_iod {
288 	struct nvme_request req;
289 	struct nvme_command cmd;
290 	u8 flags;
291 	u8 nr_descriptors;
292 
293 	unsigned int total_len;
294 	struct dma_iova_state dma_state;
295 	void *descriptors[NVME_MAX_NR_DESCRIPTORS];
296 	struct nvme_dma_vec *dma_vecs;
297 	unsigned int nr_dma_vecs;
298 
299 	dma_addr_t meta_dma;
300 	unsigned int meta_total_len;
301 	struct dma_iova_state meta_dma_state;
302 	struct nvme_sgl_desc *meta_descriptor;
303 };
304 
nvme_dbbuf_size(struct nvme_dev * dev)305 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
306 {
307 	return dev->nr_allocated_queues * 8 * dev->db_stride;
308 }
309 
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)310 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
311 {
312 	unsigned int mem_size = nvme_dbbuf_size(dev);
313 
314 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
315 		return;
316 
317 	if (dev->dbbuf_dbs) {
318 		/*
319 		 * Clear the dbbuf memory so the driver doesn't observe stale
320 		 * values from the previous instantiation.
321 		 */
322 		memset(dev->dbbuf_dbs, 0, mem_size);
323 		memset(dev->dbbuf_eis, 0, mem_size);
324 		return;
325 	}
326 
327 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
328 					    &dev->dbbuf_dbs_dma_addr,
329 					    GFP_KERNEL);
330 	if (!dev->dbbuf_dbs)
331 		goto fail;
332 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
333 					    &dev->dbbuf_eis_dma_addr,
334 					    GFP_KERNEL);
335 	if (!dev->dbbuf_eis)
336 		goto fail_free_dbbuf_dbs;
337 	return;
338 
339 fail_free_dbbuf_dbs:
340 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
341 			  dev->dbbuf_dbs_dma_addr);
342 	dev->dbbuf_dbs = NULL;
343 fail:
344 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
345 }
346 
nvme_dbbuf_dma_free(struct nvme_dev * dev)347 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
348 {
349 	unsigned int mem_size = nvme_dbbuf_size(dev);
350 
351 	if (dev->dbbuf_dbs) {
352 		dma_free_coherent(dev->dev, mem_size,
353 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
354 		dev->dbbuf_dbs = NULL;
355 	}
356 	if (dev->dbbuf_eis) {
357 		dma_free_coherent(dev->dev, mem_size,
358 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
359 		dev->dbbuf_eis = NULL;
360 	}
361 }
362 
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)363 static void nvme_dbbuf_init(struct nvme_dev *dev,
364 			    struct nvme_queue *nvmeq, int qid)
365 {
366 	if (!dev->dbbuf_dbs || !qid)
367 		return;
368 
369 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
370 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
371 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
372 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
373 }
374 
nvme_dbbuf_free(struct nvme_queue * nvmeq)375 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
376 {
377 	if (!nvmeq->qid)
378 		return;
379 
380 	nvmeq->dbbuf_sq_db = NULL;
381 	nvmeq->dbbuf_cq_db = NULL;
382 	nvmeq->dbbuf_sq_ei = NULL;
383 	nvmeq->dbbuf_cq_ei = NULL;
384 }
385 
nvme_dbbuf_set(struct nvme_dev * dev)386 static void nvme_dbbuf_set(struct nvme_dev *dev)
387 {
388 	struct nvme_command c = { };
389 	unsigned int i;
390 
391 	if (!dev->dbbuf_dbs)
392 		return;
393 
394 	c.dbbuf.opcode = nvme_admin_dbbuf;
395 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
396 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
397 
398 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
399 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
400 		/* Free memory and continue on */
401 		nvme_dbbuf_dma_free(dev);
402 
403 		for (i = 1; i <= dev->online_queues; i++)
404 			nvme_dbbuf_free(&dev->queues[i]);
405 	}
406 }
407 
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)408 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
409 {
410 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
411 }
412 
413 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)414 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
415 					      volatile __le32 *dbbuf_ei)
416 {
417 	if (dbbuf_db) {
418 		u16 old_value, event_idx;
419 
420 		/*
421 		 * Ensure that the queue is written before updating
422 		 * the doorbell in memory
423 		 */
424 		wmb();
425 
426 		old_value = le32_to_cpu(*dbbuf_db);
427 		*dbbuf_db = cpu_to_le32(value);
428 
429 		/*
430 		 * Ensure that the doorbell is updated before reading the event
431 		 * index from memory.  The controller needs to provide similar
432 		 * ordering to ensure the event index is updated before reading
433 		 * the doorbell.
434 		 */
435 		mb();
436 
437 		event_idx = le32_to_cpu(*dbbuf_ei);
438 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
439 			return false;
440 	}
441 
442 	return true;
443 }
444 
445 static struct nvme_descriptor_pools *
nvme_setup_descriptor_pools(struct nvme_dev * dev,unsigned numa_node)446 nvme_setup_descriptor_pools(struct nvme_dev *dev, unsigned numa_node)
447 {
448 	struct nvme_descriptor_pools *pools = &dev->descriptor_pools[numa_node];
449 	size_t small_align = NVME_SMALL_POOL_SIZE;
450 
451 	if (pools->small)
452 		return pools; /* already initialized */
453 
454 	pools->large = dma_pool_create_node("nvme descriptor page", dev->dev,
455 			NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE, 0, numa_node);
456 	if (!pools->large)
457 		return ERR_PTR(-ENOMEM);
458 
459 	if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
460 		small_align = 512;
461 
462 	pools->small = dma_pool_create_node("nvme descriptor small", dev->dev,
463 			NVME_SMALL_POOL_SIZE, small_align, 0, numa_node);
464 	if (!pools->small) {
465 		dma_pool_destroy(pools->large);
466 		pools->large = NULL;
467 		return ERR_PTR(-ENOMEM);
468 	}
469 
470 	return pools;
471 }
472 
nvme_release_descriptor_pools(struct nvme_dev * dev)473 static void nvme_release_descriptor_pools(struct nvme_dev *dev)
474 {
475 	unsigned i;
476 
477 	for (i = 0; i < nr_node_ids; i++) {
478 		struct nvme_descriptor_pools *pools = &dev->descriptor_pools[i];
479 
480 		dma_pool_destroy(pools->large);
481 		dma_pool_destroy(pools->small);
482 	}
483 }
484 
nvme_init_hctx_common(struct blk_mq_hw_ctx * hctx,void * data,unsigned qid)485 static int nvme_init_hctx_common(struct blk_mq_hw_ctx *hctx, void *data,
486 		unsigned qid)
487 {
488 	struct nvme_dev *dev = to_nvme_dev(data);
489 	struct nvme_queue *nvmeq = &dev->queues[qid];
490 	struct nvme_descriptor_pools *pools;
491 	struct blk_mq_tags *tags;
492 
493 	tags = qid ? dev->tagset.tags[qid - 1] : dev->admin_tagset.tags[0];
494 	WARN_ON(tags != hctx->tags);
495 	pools = nvme_setup_descriptor_pools(dev, hctx->numa_node);
496 	if (IS_ERR(pools))
497 		return PTR_ERR(pools);
498 
499 	nvmeq->descriptor_pools = *pools;
500 	hctx->driver_data = nvmeq;
501 	return 0;
502 }
503 
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)504 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
505 				unsigned int hctx_idx)
506 {
507 	WARN_ON(hctx_idx != 0);
508 	return nvme_init_hctx_common(hctx, data, 0);
509 }
510 
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)511 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
512 			     unsigned int hctx_idx)
513 {
514 	return nvme_init_hctx_common(hctx, data, hctx_idx + 1);
515 }
516 
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)517 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
518 		struct request *req, unsigned int hctx_idx,
519 		unsigned int numa_node)
520 {
521 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
522 
523 	nvme_req(req)->ctrl = set->driver_data;
524 	nvme_req(req)->cmd = &iod->cmd;
525 	return 0;
526 }
527 
queue_irq_offset(struct nvme_dev * dev)528 static int queue_irq_offset(struct nvme_dev *dev)
529 {
530 	/* if we have more than 1 vec, admin queue offsets us by 1 */
531 	if (dev->num_vecs > 1)
532 		return 1;
533 
534 	return 0;
535 }
536 
nvme_pci_map_queues(struct blk_mq_tag_set * set)537 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
538 {
539 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
540 	int i, qoff, offset;
541 
542 	offset = queue_irq_offset(dev);
543 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
544 		struct blk_mq_queue_map *map = &set->map[i];
545 
546 		map->nr_queues = dev->io_queues[i];
547 		if (!map->nr_queues) {
548 			BUG_ON(i == HCTX_TYPE_DEFAULT);
549 			continue;
550 		}
551 
552 		/*
553 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
554 		 * affinity), so use the regular blk-mq cpu mapping
555 		 */
556 		map->queue_offset = qoff;
557 		if (i != HCTX_TYPE_POLL && offset)
558 			blk_mq_map_hw_queues(map, dev->dev, offset);
559 		else
560 			blk_mq_map_queues(map);
561 		qoff += map->nr_queues;
562 		offset += map->nr_queues;
563 	}
564 }
565 
566 /*
567  * Write sq tail if we are asked to, or if the next command would wrap.
568  */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)569 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
570 {
571 	if (!write_sq) {
572 		u16 next_tail = nvmeq->sq_tail + 1;
573 
574 		if (next_tail == nvmeq->q_depth)
575 			next_tail = 0;
576 		if (next_tail != nvmeq->last_sq_tail)
577 			return;
578 	}
579 
580 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
581 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
582 		writel(nvmeq->sq_tail, nvmeq->q_db);
583 	nvmeq->last_sq_tail = nvmeq->sq_tail;
584 }
585 
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)586 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
587 				    struct nvme_command *cmd)
588 {
589 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
590 		absolute_pointer(cmd), sizeof(*cmd));
591 	if (++nvmeq->sq_tail == nvmeq->q_depth)
592 		nvmeq->sq_tail = 0;
593 }
594 
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)595 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
596 {
597 	struct nvme_queue *nvmeq = hctx->driver_data;
598 
599 	spin_lock(&nvmeq->sq_lock);
600 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
601 		nvme_write_sq_db(nvmeq, true);
602 	spin_unlock(&nvmeq->sq_lock);
603 }
604 
605 enum nvme_use_sgl {
606 	SGL_UNSUPPORTED,
607 	SGL_SUPPORTED,
608 	SGL_FORCED,
609 };
610 
nvme_pci_metadata_use_sgls(struct request * req)611 static inline bool nvme_pci_metadata_use_sgls(struct request *req)
612 {
613 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
614 	struct nvme_dev *dev = nvmeq->dev;
615 
616 	if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
617 		return false;
618 	return req->nr_integrity_segments > 1 ||
619 		nvme_req(req)->flags & NVME_REQ_USERCMD;
620 }
621 
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)622 static inline enum nvme_use_sgl nvme_pci_use_sgls(struct nvme_dev *dev,
623 		struct request *req)
624 {
625 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
626 
627 	if (nvmeq->qid && nvme_ctrl_sgl_supported(&dev->ctrl)) {
628 		/*
629 		 * When the controller is capable of using SGL, there are
630 		 * several conditions that we force to use it:
631 		 *
632 		 * 1. A request containing page gaps within the controller's
633 		 *    mask can not use the PRP format.
634 		 *
635 		 * 2. User commands use SGL because that lets the device
636 		 *    validate the requested transfer lengths.
637 		 *
638 		 * 3. Multiple integrity segments must use SGL as that's the
639 		 *    only way to describe such a command in NVMe.
640 		 */
641 		if (req_phys_gap_mask(req) & (NVME_CTRL_PAGE_SIZE - 1) ||
642 		    nvme_req(req)->flags & NVME_REQ_USERCMD ||
643 		    req->nr_integrity_segments > 1)
644 			return SGL_FORCED;
645 		return SGL_SUPPORTED;
646 	}
647 
648 	return SGL_UNSUPPORTED;
649 }
650 
nvme_pci_avg_seg_size(struct request * req)651 static unsigned int nvme_pci_avg_seg_size(struct request *req)
652 {
653 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
654 	unsigned int nseg;
655 
656 	if (blk_rq_dma_map_coalesce(&iod->dma_state))
657 		nseg = 1;
658 	else
659 		nseg = blk_rq_nr_phys_segments(req);
660 	return DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
661 }
662 
nvme_dma_pool(struct nvme_queue * nvmeq,struct nvme_iod * iod)663 static inline struct dma_pool *nvme_dma_pool(struct nvme_queue *nvmeq,
664 		struct nvme_iod *iod)
665 {
666 	if (iod->flags & IOD_SMALL_DESCRIPTOR)
667 		return nvmeq->descriptor_pools.small;
668 	return nvmeq->descriptor_pools.large;
669 }
670 
nvme_pci_cmd_use_meta_sgl(struct nvme_command * cmd)671 static inline bool nvme_pci_cmd_use_meta_sgl(struct nvme_command *cmd)
672 {
673 	return (cmd->common.flags & NVME_CMD_SGL_ALL) == NVME_CMD_SGL_METASEG;
674 }
675 
nvme_pci_cmd_use_sgl(struct nvme_command * cmd)676 static inline bool nvme_pci_cmd_use_sgl(struct nvme_command *cmd)
677 {
678 	return cmd->common.flags &
679 		(NVME_CMD_SGL_METABUF | NVME_CMD_SGL_METASEG);
680 }
681 
nvme_pci_first_desc_dma_addr(struct nvme_command * cmd)682 static inline dma_addr_t nvme_pci_first_desc_dma_addr(struct nvme_command *cmd)
683 {
684 	if (nvme_pci_cmd_use_sgl(cmd))
685 		return le64_to_cpu(cmd->common.dptr.sgl.addr);
686 	return le64_to_cpu(cmd->common.dptr.prp2);
687 }
688 
nvme_free_descriptors(struct request * req)689 static void nvme_free_descriptors(struct request *req)
690 {
691 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
692 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
693 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
694 	dma_addr_t dma_addr = nvme_pci_first_desc_dma_addr(&iod->cmd);
695 	int i;
696 
697 	if (iod->nr_descriptors == 1) {
698 		dma_pool_free(nvme_dma_pool(nvmeq, iod), iod->descriptors[0],
699 				dma_addr);
700 		return;
701 	}
702 
703 	for (i = 0; i < iod->nr_descriptors; i++) {
704 		__le64 *prp_list = iod->descriptors[i];
705 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
706 
707 		dma_pool_free(nvmeq->descriptor_pools.large, prp_list,
708 				dma_addr);
709 		dma_addr = next_dma_addr;
710 	}
711 }
712 
nvme_free_prps(struct request * req,unsigned int attrs)713 static void nvme_free_prps(struct request *req, unsigned int attrs)
714 {
715 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
716 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
717 	unsigned int i;
718 
719 	for (i = 0; i < iod->nr_dma_vecs; i++)
720 		dma_unmap_phys(nvmeq->dev->dev, iod->dma_vecs[i].addr,
721 			       iod->dma_vecs[i].len, rq_dma_dir(req), attrs);
722 	mempool_free(iod->dma_vecs, nvmeq->dev->dmavec_mempool);
723 }
724 
nvme_free_sgls(struct request * req,struct nvme_sgl_desc * sge,struct nvme_sgl_desc * sg_list,unsigned int attrs)725 static void nvme_free_sgls(struct request *req, struct nvme_sgl_desc *sge,
726 		struct nvme_sgl_desc *sg_list, unsigned int attrs)
727 {
728 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
729 	enum dma_data_direction dir = rq_dma_dir(req);
730 	unsigned int len = le32_to_cpu(sge->length);
731 	struct device *dma_dev = nvmeq->dev->dev;
732 	unsigned int i;
733 
734 	if (sge->type == (NVME_SGL_FMT_DATA_DESC << 4)) {
735 		dma_unmap_phys(dma_dev, le64_to_cpu(sge->addr), len, dir,
736 			       attrs);
737 		return;
738 	}
739 
740 	for (i = 0; i < len / sizeof(*sg_list); i++)
741 		dma_unmap_phys(dma_dev, le64_to_cpu(sg_list[i].addr),
742 			le32_to_cpu(sg_list[i].length), dir, attrs);
743 }
744 
nvme_unmap_metadata(struct request * req)745 static void nvme_unmap_metadata(struct request *req)
746 {
747 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
748 	enum pci_p2pdma_map_type map = PCI_P2PDMA_MAP_NONE;
749 	enum dma_data_direction dir = rq_dma_dir(req);
750 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
751 	struct device *dma_dev = nvmeq->dev->dev;
752 	struct nvme_sgl_desc *sge = iod->meta_descriptor;
753 	unsigned int attrs = 0;
754 
755 	if (iod->flags & IOD_SINGLE_META_SEGMENT) {
756 		dma_unmap_page(dma_dev, iod->meta_dma,
757 			       rq_integrity_vec(req).bv_len,
758 			       rq_dma_dir(req));
759 		return;
760 	}
761 
762 	if (iod->flags & IOD_META_P2P)
763 		map = PCI_P2PDMA_MAP_BUS_ADDR;
764 	else if (iod->flags & IOD_META_MMIO) {
765 		map = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
766 		attrs |= DMA_ATTR_MMIO;
767 	}
768 
769 	if (!blk_rq_dma_unmap(req, dma_dev, &iod->meta_dma_state,
770 			      iod->meta_total_len, map)) {
771 		if (nvme_pci_cmd_use_meta_sgl(&iod->cmd))
772 			nvme_free_sgls(req, sge, &sge[1], attrs);
773 		else
774 			dma_unmap_phys(dma_dev, iod->meta_dma,
775 				       iod->meta_total_len, dir, attrs);
776 	}
777 
778 	if (iod->meta_descriptor)
779 		dma_pool_free(nvmeq->descriptor_pools.small,
780 			      iod->meta_descriptor, iod->meta_dma);
781 }
782 
nvme_unmap_data(struct request * req)783 static void nvme_unmap_data(struct request *req)
784 {
785 	enum pci_p2pdma_map_type map = PCI_P2PDMA_MAP_NONE;
786 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
787 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
788 	struct device *dma_dev = nvmeq->dev->dev;
789 	unsigned int attrs = 0;
790 
791 	if (iod->flags & IOD_SINGLE_SEGMENT) {
792 		static_assert(offsetof(union nvme_data_ptr, prp1) ==
793 				offsetof(union nvme_data_ptr, sgl.addr));
794 		dma_unmap_page(dma_dev, le64_to_cpu(iod->cmd.common.dptr.prp1),
795 				iod->total_len, rq_dma_dir(req));
796 		return;
797 	}
798 
799 	if (iod->flags & IOD_DATA_P2P)
800 		map = PCI_P2PDMA_MAP_BUS_ADDR;
801 	else if (iod->flags & IOD_DATA_MMIO) {
802 		map = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
803 		attrs |= DMA_ATTR_MMIO;
804 	}
805 
806 	if (!blk_rq_dma_unmap(req, dma_dev, &iod->dma_state, iod->total_len,
807 			      map)) {
808 		if (nvme_pci_cmd_use_sgl(&iod->cmd))
809 			nvme_free_sgls(req, iod->descriptors[0],
810 				       &iod->cmd.common.dptr.sgl, attrs);
811 		else
812 			nvme_free_prps(req, attrs);
813 	}
814 
815 	if (iod->nr_descriptors)
816 		nvme_free_descriptors(req);
817 }
818 
nvme_pci_prp_iter_next(struct request * req,struct device * dma_dev,struct blk_dma_iter * iter)819 static bool nvme_pci_prp_iter_next(struct request *req, struct device *dma_dev,
820 		struct blk_dma_iter *iter)
821 {
822 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
823 
824 	if (iter->len)
825 		return true;
826 	if (!blk_rq_dma_map_iter_next(req, dma_dev, &iod->dma_state, iter))
827 		return false;
828 	if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(dma_dev)) {
829 		iod->dma_vecs[iod->nr_dma_vecs].addr = iter->addr;
830 		iod->dma_vecs[iod->nr_dma_vecs].len = iter->len;
831 		iod->nr_dma_vecs++;
832 	}
833 	return true;
834 }
835 
nvme_pci_setup_data_prp(struct request * req,struct blk_dma_iter * iter)836 static blk_status_t nvme_pci_setup_data_prp(struct request *req,
837 		struct blk_dma_iter *iter)
838 {
839 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
840 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
841 	unsigned int length = blk_rq_payload_bytes(req);
842 	dma_addr_t prp1_dma, prp2_dma = 0;
843 	unsigned int prp_len, i;
844 	__le64 *prp_list;
845 
846 	if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(nvmeq->dev->dev)) {
847 		iod->dma_vecs = mempool_alloc(nvmeq->dev->dmavec_mempool,
848 				GFP_ATOMIC);
849 		if (!iod->dma_vecs)
850 			return BLK_STS_RESOURCE;
851 		iod->dma_vecs[0].addr = iter->addr;
852 		iod->dma_vecs[0].len = iter->len;
853 		iod->nr_dma_vecs = 1;
854 	}
855 
856 	/*
857 	 * PRP1 always points to the start of the DMA transfers.
858 	 *
859 	 * This is the only PRP (except for the list entries) that could be
860 	 * non-aligned.
861 	 */
862 	prp1_dma = iter->addr;
863 	prp_len = min(length, NVME_CTRL_PAGE_SIZE -
864 			(iter->addr & (NVME_CTRL_PAGE_SIZE - 1)));
865 	iod->total_len += prp_len;
866 	iter->addr += prp_len;
867 	iter->len -= prp_len;
868 	length -= prp_len;
869 	if (!length)
870 		goto done;
871 
872 	if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
873 		if (WARN_ON_ONCE(!iter->status))
874 			goto bad_sgl;
875 		goto done;
876 	}
877 
878 	/*
879 	 * PRP2 is usually a list, but can point to data if all data to be
880 	 * transferred fits into PRP1 + PRP2:
881 	 */
882 	if (length <= NVME_CTRL_PAGE_SIZE) {
883 		prp2_dma = iter->addr;
884 		iod->total_len += length;
885 		goto done;
886 	}
887 
888 	if (DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE) <=
889 	    NVME_SMALL_POOL_SIZE / sizeof(__le64))
890 		iod->flags |= IOD_SMALL_DESCRIPTOR;
891 
892 	prp_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
893 			&prp2_dma);
894 	if (!prp_list) {
895 		iter->status = BLK_STS_RESOURCE;
896 		goto done;
897 	}
898 	iod->descriptors[iod->nr_descriptors++] = prp_list;
899 
900 	i = 0;
901 	for (;;) {
902 		prp_list[i++] = cpu_to_le64(iter->addr);
903 		prp_len = min(length, NVME_CTRL_PAGE_SIZE);
904 		if (WARN_ON_ONCE(iter->len < prp_len))
905 			goto bad_sgl;
906 
907 		iod->total_len += prp_len;
908 		iter->addr += prp_len;
909 		iter->len -= prp_len;
910 		length -= prp_len;
911 		if (!length)
912 			break;
913 
914 		if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
915 			if (WARN_ON_ONCE(!iter->status))
916 				goto bad_sgl;
917 			goto done;
918 		}
919 
920 		/*
921 		 * If we've filled the entire descriptor, allocate a new that is
922 		 * pointed to be the last entry in the previous PRP list.  To
923 		 * accommodate for that move the last actual entry to the new
924 		 * descriptor.
925 		 */
926 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
927 			__le64 *old_prp_list = prp_list;
928 			dma_addr_t prp_list_dma;
929 
930 			prp_list = dma_pool_alloc(nvmeq->descriptor_pools.large,
931 					GFP_ATOMIC, &prp_list_dma);
932 			if (!prp_list) {
933 				iter->status = BLK_STS_RESOURCE;
934 				goto done;
935 			}
936 			iod->descriptors[iod->nr_descriptors++] = prp_list;
937 
938 			prp_list[0] = old_prp_list[i - 1];
939 			old_prp_list[i - 1] = cpu_to_le64(prp_list_dma);
940 			i = 1;
941 		}
942 	}
943 
944 done:
945 	/*
946 	 * nvme_unmap_data uses the DPT field in the SQE to tear down the
947 	 * mapping, so initialize it even for failures.
948 	 */
949 	iod->cmd.common.dptr.prp1 = cpu_to_le64(prp1_dma);
950 	iod->cmd.common.dptr.prp2 = cpu_to_le64(prp2_dma);
951 	if (unlikely(iter->status))
952 		nvme_unmap_data(req);
953 	return iter->status;
954 
955 bad_sgl:
956 	dev_err_once(nvmeq->dev->dev,
957 		"Incorrectly formed request for payload:%d nents:%d\n",
958 		blk_rq_payload_bytes(req), blk_rq_nr_phys_segments(req));
959 	return BLK_STS_IOERR;
960 }
961 
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct blk_dma_iter * iter)962 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
963 		struct blk_dma_iter *iter)
964 {
965 	sge->addr = cpu_to_le64(iter->addr);
966 	sge->length = cpu_to_le32(iter->len);
967 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
968 }
969 
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)970 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
971 		dma_addr_t dma_addr, int entries)
972 {
973 	sge->addr = cpu_to_le64(dma_addr);
974 	sge->length = cpu_to_le32(entries * sizeof(*sge));
975 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
976 }
977 
nvme_pci_setup_data_sgl(struct request * req,struct blk_dma_iter * iter)978 static blk_status_t nvme_pci_setup_data_sgl(struct request *req,
979 		struct blk_dma_iter *iter)
980 {
981 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
982 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
983 	unsigned int entries = blk_rq_nr_phys_segments(req);
984 	struct nvme_sgl_desc *sg_list;
985 	dma_addr_t sgl_dma;
986 	unsigned int mapped = 0;
987 
988 	/* set the transfer type as SGL */
989 	iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
990 
991 	if (entries == 1 || blk_rq_dma_map_coalesce(&iod->dma_state)) {
992 		nvme_pci_sgl_set_data(&iod->cmd.common.dptr.sgl, iter);
993 		iod->total_len += iter->len;
994 		return BLK_STS_OK;
995 	}
996 
997 	if (entries <= NVME_SMALL_POOL_SIZE / sizeof(*sg_list))
998 		iod->flags |= IOD_SMALL_DESCRIPTOR;
999 
1000 	sg_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
1001 			&sgl_dma);
1002 	if (!sg_list)
1003 		return BLK_STS_RESOURCE;
1004 	iod->descriptors[iod->nr_descriptors++] = sg_list;
1005 
1006 	do {
1007 		if (WARN_ON_ONCE(mapped == entries)) {
1008 			iter->status = BLK_STS_IOERR;
1009 			break;
1010 		}
1011 		nvme_pci_sgl_set_data(&sg_list[mapped++], iter);
1012 		iod->total_len += iter->len;
1013 	} while (blk_rq_dma_map_iter_next(req, nvmeq->dev->dev, &iod->dma_state,
1014 				iter));
1015 
1016 	nvme_pci_sgl_set_seg(&iod->cmd.common.dptr.sgl, sgl_dma, mapped);
1017 	if (unlikely(iter->status))
1018 		nvme_unmap_data(req);
1019 	return iter->status;
1020 }
1021 
nvme_pci_setup_data_simple(struct request * req,enum nvme_use_sgl use_sgl)1022 static blk_status_t nvme_pci_setup_data_simple(struct request *req,
1023 		enum nvme_use_sgl use_sgl)
1024 {
1025 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1026 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1027 	struct bio_vec bv = req_bvec(req);
1028 	unsigned int prp1_offset = bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
1029 	bool prp_possible = prp1_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2;
1030 	dma_addr_t dma_addr;
1031 
1032 	if (!use_sgl && !prp_possible)
1033 		return BLK_STS_AGAIN;
1034 	if (is_pci_p2pdma_page(bv.bv_page))
1035 		return BLK_STS_AGAIN;
1036 
1037 	dma_addr = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
1038 	if (dma_mapping_error(nvmeq->dev->dev, dma_addr))
1039 		return BLK_STS_RESOURCE;
1040 	iod->total_len = bv.bv_len;
1041 	iod->flags |= IOD_SINGLE_SEGMENT;
1042 
1043 	if (use_sgl == SGL_FORCED || !prp_possible) {
1044 		iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
1045 		iod->cmd.common.dptr.sgl.addr = cpu_to_le64(dma_addr);
1046 		iod->cmd.common.dptr.sgl.length = cpu_to_le32(bv.bv_len);
1047 		iod->cmd.common.dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
1048 	} else {
1049 		unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - prp1_offset;
1050 
1051 		iod->cmd.common.dptr.prp1 = cpu_to_le64(dma_addr);
1052 		iod->cmd.common.dptr.prp2 = 0;
1053 		if (bv.bv_len > first_prp_len)
1054 			iod->cmd.common.dptr.prp2 =
1055 				cpu_to_le64(dma_addr + first_prp_len);
1056 	}
1057 
1058 	return BLK_STS_OK;
1059 }
1060 
nvme_map_data(struct request * req)1061 static blk_status_t nvme_map_data(struct request *req)
1062 {
1063 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1064 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1065 	struct nvme_dev *dev = nvmeq->dev;
1066 	enum nvme_use_sgl use_sgl = nvme_pci_use_sgls(dev, req);
1067 	struct blk_dma_iter iter;
1068 	blk_status_t ret;
1069 
1070 	/*
1071 	 * Try to skip the DMA iterator for single segment requests, as that
1072 	 * significantly improves performances for small I/O sizes.
1073 	 */
1074 	if (blk_rq_nr_phys_segments(req) == 1) {
1075 		ret = nvme_pci_setup_data_simple(req, use_sgl);
1076 		if (ret != BLK_STS_AGAIN)
1077 			return ret;
1078 	}
1079 
1080 	if (!blk_rq_dma_map_iter_start(req, dev->dev, &iod->dma_state, &iter))
1081 		return iter.status;
1082 
1083 	switch (iter.p2pdma.map) {
1084 	case PCI_P2PDMA_MAP_BUS_ADDR:
1085 		iod->flags |= IOD_DATA_P2P;
1086 		break;
1087 	case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1088 		iod->flags |= IOD_DATA_MMIO;
1089 		break;
1090 	case PCI_P2PDMA_MAP_NONE:
1091 		break;
1092 	default:
1093 		return BLK_STS_RESOURCE;
1094 	}
1095 
1096 	if (use_sgl == SGL_FORCED ||
1097 	    (use_sgl == SGL_SUPPORTED &&
1098 	     (sgl_threshold && nvme_pci_avg_seg_size(req) >= sgl_threshold)))
1099 		return nvme_pci_setup_data_sgl(req, &iter);
1100 	return nvme_pci_setup_data_prp(req, &iter);
1101 }
1102 
nvme_pci_setup_meta_iter(struct request * req)1103 static blk_status_t nvme_pci_setup_meta_iter(struct request *req)
1104 {
1105 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1106 	unsigned int entries = req->nr_integrity_segments;
1107 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1108 	struct nvme_dev *dev = nvmeq->dev;
1109 	struct nvme_sgl_desc *sg_list;
1110 	struct blk_dma_iter iter;
1111 	dma_addr_t sgl_dma;
1112 	int i = 0;
1113 
1114 	if (!blk_rq_integrity_dma_map_iter_start(req, dev->dev,
1115 						&iod->meta_dma_state, &iter))
1116 		return iter.status;
1117 
1118 	switch (iter.p2pdma.map) {
1119 	case PCI_P2PDMA_MAP_BUS_ADDR:
1120 		iod->flags |= IOD_META_P2P;
1121 		break;
1122 	case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1123 		iod->flags |= IOD_META_MMIO;
1124 		break;
1125 	case PCI_P2PDMA_MAP_NONE:
1126 		break;
1127 	default:
1128 		return BLK_STS_RESOURCE;
1129 	}
1130 
1131 	if (blk_rq_dma_map_coalesce(&iod->meta_dma_state))
1132 		entries = 1;
1133 
1134 	/*
1135 	 * The NVMe MPTR descriptor has an implicit length that the host and
1136 	 * device must agree on to avoid data/memory corruption. We trust the
1137 	 * kernel allocated correctly based on the format's parameters, so use
1138 	 * the more efficient MPTR to avoid extra dma pool allocations for the
1139 	 * SGL indirection.
1140 	 *
1141 	 * But for user commands, we don't necessarily know what they do, so
1142 	 * the driver can't validate the metadata buffer size. The SGL
1143 	 * descriptor provides an explicit length, so we're relying on that
1144 	 * mechanism to catch any misunderstandings between the application and
1145 	 * device.
1146 	 *
1147 	 * P2P DMA also needs to use the blk_dma_iter method, so mptr setup
1148 	 * leverages this routine when that happens.
1149 	 */
1150 	if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl) ||
1151 	    (entries == 1 && !(nvme_req(req)->flags & NVME_REQ_USERCMD))) {
1152 		iod->cmd.common.metadata = cpu_to_le64(iter.addr);
1153 		iod->meta_total_len = iter.len;
1154 		iod->meta_dma = iter.addr;
1155 		iod->meta_descriptor = NULL;
1156 		return BLK_STS_OK;
1157 	}
1158 
1159 	sg_list = dma_pool_alloc(nvmeq->descriptor_pools.small, GFP_ATOMIC,
1160 			&sgl_dma);
1161 	if (!sg_list)
1162 		return BLK_STS_RESOURCE;
1163 
1164 	iod->meta_descriptor = sg_list;
1165 	iod->meta_dma = sgl_dma;
1166 	iod->cmd.common.flags = NVME_CMD_SGL_METASEG;
1167 	iod->cmd.common.metadata = cpu_to_le64(sgl_dma);
1168 	if (entries == 1) {
1169 		iod->meta_total_len = iter.len;
1170 		nvme_pci_sgl_set_data(sg_list, &iter);
1171 		return BLK_STS_OK;
1172 	}
1173 
1174 	sgl_dma += sizeof(*sg_list);
1175 	do {
1176 		nvme_pci_sgl_set_data(&sg_list[++i], &iter);
1177 		iod->meta_total_len += iter.len;
1178 	} while (blk_rq_integrity_dma_map_iter_next(req, dev->dev, &iter));
1179 
1180 	nvme_pci_sgl_set_seg(sg_list, sgl_dma, i);
1181 	if (unlikely(iter.status))
1182 		nvme_unmap_metadata(req);
1183 	return iter.status;
1184 }
1185 
nvme_pci_setup_meta_mptr(struct request * req)1186 static blk_status_t nvme_pci_setup_meta_mptr(struct request *req)
1187 {
1188 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1189 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1190 	struct bio_vec bv = rq_integrity_vec(req);
1191 
1192 	if (is_pci_p2pdma_page(bv.bv_page))
1193 		return nvme_pci_setup_meta_iter(req);
1194 
1195 	iod->meta_dma = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
1196 	if (dma_mapping_error(nvmeq->dev->dev, iod->meta_dma))
1197 		return BLK_STS_IOERR;
1198 	iod->cmd.common.metadata = cpu_to_le64(iod->meta_dma);
1199 	iod->flags |= IOD_SINGLE_META_SEGMENT;
1200 	return BLK_STS_OK;
1201 }
1202 
nvme_map_metadata(struct request * req)1203 static blk_status_t nvme_map_metadata(struct request *req)
1204 {
1205 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1206 
1207 	if ((iod->cmd.common.flags & NVME_CMD_SGL_METABUF) &&
1208 	    nvme_pci_metadata_use_sgls(req))
1209 		return nvme_pci_setup_meta_iter(req);
1210 	return nvme_pci_setup_meta_mptr(req);
1211 }
1212 
nvme_prep_rq(struct request * req)1213 static blk_status_t nvme_prep_rq(struct request *req)
1214 {
1215 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1216 	blk_status_t ret;
1217 
1218 	iod->flags = 0;
1219 	iod->nr_descriptors = 0;
1220 	iod->total_len = 0;
1221 	iod->meta_total_len = 0;
1222 
1223 	ret = nvme_setup_cmd(req->q->queuedata, req);
1224 	if (ret)
1225 		return ret;
1226 
1227 	if (blk_rq_nr_phys_segments(req)) {
1228 		ret = nvme_map_data(req);
1229 		if (ret)
1230 			goto out_free_cmd;
1231 	}
1232 
1233 	if (blk_integrity_rq(req)) {
1234 		ret = nvme_map_metadata(req);
1235 		if (ret)
1236 			goto out_unmap_data;
1237 	}
1238 
1239 	nvme_start_request(req);
1240 	return BLK_STS_OK;
1241 out_unmap_data:
1242 	if (blk_rq_nr_phys_segments(req))
1243 		nvme_unmap_data(req);
1244 out_free_cmd:
1245 	nvme_cleanup_cmd(req);
1246 	return ret;
1247 }
1248 
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1249 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
1250 			 const struct blk_mq_queue_data *bd)
1251 {
1252 	struct nvme_queue *nvmeq = hctx->driver_data;
1253 	struct nvme_dev *dev = nvmeq->dev;
1254 	struct request *req = bd->rq;
1255 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1256 	blk_status_t ret;
1257 
1258 	/*
1259 	 * We should not need to do this, but we're still using this to
1260 	 * ensure we can drain requests on a dying queue.
1261 	 */
1262 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1263 		return BLK_STS_IOERR;
1264 
1265 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
1266 		return nvme_fail_nonready_command(&dev->ctrl, req);
1267 
1268 	ret = nvme_prep_rq(req);
1269 	if (unlikely(ret))
1270 		return ret;
1271 	spin_lock(&nvmeq->sq_lock);
1272 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1273 	nvme_write_sq_db(nvmeq, bd->last);
1274 	spin_unlock(&nvmeq->sq_lock);
1275 	return BLK_STS_OK;
1276 }
1277 
nvme_submit_cmds(struct nvme_queue * nvmeq,struct rq_list * rqlist)1278 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
1279 {
1280 	struct request *req;
1281 
1282 	if (rq_list_empty(rqlist))
1283 		return;
1284 
1285 	spin_lock(&nvmeq->sq_lock);
1286 	while ((req = rq_list_pop(rqlist))) {
1287 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1288 
1289 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1290 	}
1291 	nvme_write_sq_db(nvmeq, true);
1292 	spin_unlock(&nvmeq->sq_lock);
1293 }
1294 
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)1295 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1296 {
1297 	/*
1298 	 * We should not need to do this, but we're still using this to
1299 	 * ensure we can drain requests on a dying queue.
1300 	 */
1301 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1302 		return false;
1303 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1304 		return false;
1305 
1306 	return nvme_prep_rq(req) == BLK_STS_OK;
1307 }
1308 
nvme_queue_rqs(struct rq_list * rqlist)1309 static void nvme_queue_rqs(struct rq_list *rqlist)
1310 {
1311 	struct rq_list submit_list = { };
1312 	struct rq_list requeue_list = { };
1313 	struct nvme_queue *nvmeq = NULL;
1314 	struct request *req;
1315 
1316 	while ((req = rq_list_pop(rqlist))) {
1317 		if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1318 			nvme_submit_cmds(nvmeq, &submit_list);
1319 		nvmeq = req->mq_hctx->driver_data;
1320 
1321 		if (nvme_prep_rq_batch(nvmeq, req))
1322 			rq_list_add_tail(&submit_list, req);
1323 		else
1324 			rq_list_add_tail(&requeue_list, req);
1325 	}
1326 
1327 	if (nvmeq)
1328 		nvme_submit_cmds(nvmeq, &submit_list);
1329 	*rqlist = requeue_list;
1330 }
1331 
nvme_pci_unmap_rq(struct request * req)1332 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1333 {
1334 	if (blk_integrity_rq(req))
1335 		nvme_unmap_metadata(req);
1336 	if (blk_rq_nr_phys_segments(req))
1337 		nvme_unmap_data(req);
1338 }
1339 
nvme_pci_complete_rq(struct request * req)1340 static void nvme_pci_complete_rq(struct request *req)
1341 {
1342 	nvme_pci_unmap_rq(req);
1343 	nvme_complete_rq(req);
1344 }
1345 
nvme_pci_complete_batch(struct io_comp_batch * iob)1346 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1347 {
1348 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1349 }
1350 
1351 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)1352 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1353 {
1354 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1355 
1356 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1357 }
1358 
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)1359 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1360 {
1361 	u16 head = nvmeq->cq_head;
1362 
1363 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1364 					      nvmeq->dbbuf_cq_ei))
1365 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1366 }
1367 
nvme_queue_tagset(struct nvme_queue * nvmeq)1368 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1369 {
1370 	if (!nvmeq->qid)
1371 		return nvmeq->dev->admin_tagset.tags[0];
1372 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1373 }
1374 
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1375 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1376 				   struct io_comp_batch *iob, u16 idx)
1377 {
1378 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1379 	__u16 command_id = READ_ONCE(cqe->command_id);
1380 	struct request *req;
1381 
1382 	/*
1383 	 * AEN requests are special as they don't time out and can
1384 	 * survive any kind of queue freeze and often don't respond to
1385 	 * aborts.  We don't even bother to allocate a struct request
1386 	 * for them but rather special case them here.
1387 	 */
1388 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1389 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1390 				cqe->status, &cqe->result);
1391 		return;
1392 	}
1393 
1394 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1395 	if (unlikely(!req)) {
1396 		dev_warn(nvmeq->dev->ctrl.device,
1397 			"invalid id %d completed on queue %d\n",
1398 			command_id, le16_to_cpu(cqe->sq_id));
1399 		return;
1400 	}
1401 
1402 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1403 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1404 	    !blk_mq_add_to_batch(req, iob,
1405 				 nvme_req(req)->status != NVME_SC_SUCCESS,
1406 				 nvme_pci_complete_batch))
1407 		nvme_pci_complete_rq(req);
1408 }
1409 
nvme_update_cq_head(struct nvme_queue * nvmeq)1410 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1411 {
1412 	u32 tmp = nvmeq->cq_head + 1;
1413 
1414 	if (tmp == nvmeq->q_depth) {
1415 		nvmeq->cq_head = 0;
1416 		nvmeq->cq_phase ^= 1;
1417 	} else {
1418 		nvmeq->cq_head = tmp;
1419 	}
1420 }
1421 
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1422 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1423 			        struct io_comp_batch *iob)
1424 {
1425 	bool found = false;
1426 
1427 	while (nvme_cqe_pending(nvmeq)) {
1428 		found = true;
1429 		/*
1430 		 * load-load control dependency between phase and the rest of
1431 		 * the cqe requires a full read memory barrier
1432 		 */
1433 		dma_rmb();
1434 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1435 		nvme_update_cq_head(nvmeq);
1436 	}
1437 
1438 	if (found)
1439 		nvme_ring_cq_doorbell(nvmeq);
1440 	return found;
1441 }
1442 
nvme_irq(int irq,void * data)1443 static irqreturn_t nvme_irq(int irq, void *data)
1444 {
1445 	struct nvme_queue *nvmeq = data;
1446 	DEFINE_IO_COMP_BATCH(iob);
1447 
1448 	if (nvme_poll_cq(nvmeq, &iob)) {
1449 		if (!rq_list_empty(&iob.req_list))
1450 			nvme_pci_complete_batch(&iob);
1451 		return IRQ_HANDLED;
1452 	}
1453 	return IRQ_NONE;
1454 }
1455 
nvme_irq_check(int irq,void * data)1456 static irqreturn_t nvme_irq_check(int irq, void *data)
1457 {
1458 	struct nvme_queue *nvmeq = data;
1459 
1460 	if (nvme_cqe_pending(nvmeq))
1461 		return IRQ_WAKE_THREAD;
1462 	return IRQ_NONE;
1463 }
1464 
1465 /*
1466  * Poll for completions for any interrupt driven queue
1467  * Can be called from any context.
1468  */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1469 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1470 {
1471 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1472 
1473 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1474 
1475 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1476 	spin_lock(&nvmeq->cq_poll_lock);
1477 	nvme_poll_cq(nvmeq, NULL);
1478 	spin_unlock(&nvmeq->cq_poll_lock);
1479 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1480 }
1481 
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1482 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1483 {
1484 	struct nvme_queue *nvmeq = hctx->driver_data;
1485 	bool found;
1486 
1487 	if (!nvme_cqe_pending(nvmeq))
1488 		return 0;
1489 
1490 	spin_lock(&nvmeq->cq_poll_lock);
1491 	found = nvme_poll_cq(nvmeq, iob);
1492 	spin_unlock(&nvmeq->cq_poll_lock);
1493 
1494 	return found;
1495 }
1496 
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1497 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1498 {
1499 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1500 	struct nvme_queue *nvmeq = &dev->queues[0];
1501 	struct nvme_command c = { };
1502 
1503 	c.common.opcode = nvme_admin_async_event;
1504 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1505 
1506 	spin_lock(&nvmeq->sq_lock);
1507 	nvme_sq_copy_cmd(nvmeq, &c);
1508 	nvme_write_sq_db(nvmeq, true);
1509 	spin_unlock(&nvmeq->sq_lock);
1510 }
1511 
nvme_pci_subsystem_reset(struct nvme_ctrl * ctrl)1512 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1513 {
1514 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1515 	int ret = 0;
1516 
1517 	/*
1518 	 * Taking the shutdown_lock ensures the BAR mapping is not being
1519 	 * altered by reset_work. Holding this lock before the RESETTING state
1520 	 * change, if successful, also ensures nvme_remove won't be able to
1521 	 * proceed to iounmap until we're done.
1522 	 */
1523 	mutex_lock(&dev->shutdown_lock);
1524 	if (!dev->bar_mapped_size) {
1525 		ret = -ENODEV;
1526 		goto unlock;
1527 	}
1528 
1529 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1530 		ret = -EBUSY;
1531 		goto unlock;
1532 	}
1533 
1534 	writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1535 	nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1536 
1537 	/*
1538 	 * Read controller status to flush the previous write and trigger a
1539 	 * pcie read error.
1540 	 */
1541 	readl(dev->bar + NVME_REG_CSTS);
1542 unlock:
1543 	mutex_unlock(&dev->shutdown_lock);
1544 	return ret;
1545 }
1546 
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1547 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1548 {
1549 	struct nvme_command c = { };
1550 
1551 	c.delete_queue.opcode = opcode;
1552 	c.delete_queue.qid = cpu_to_le16(id);
1553 
1554 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1555 }
1556 
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1557 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1558 		struct nvme_queue *nvmeq, s16 vector)
1559 {
1560 	struct nvme_command c = { };
1561 	int flags = NVME_QUEUE_PHYS_CONTIG;
1562 
1563 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1564 		flags |= NVME_CQ_IRQ_ENABLED;
1565 
1566 	/*
1567 	 * Note: we (ab)use the fact that the prp fields survive if no data
1568 	 * is attached to the request.
1569 	 */
1570 	c.create_cq.opcode = nvme_admin_create_cq;
1571 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1572 	c.create_cq.cqid = cpu_to_le16(qid);
1573 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1574 	c.create_cq.cq_flags = cpu_to_le16(flags);
1575 	c.create_cq.irq_vector = cpu_to_le16(vector);
1576 
1577 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1578 }
1579 
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1580 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1581 						struct nvme_queue *nvmeq)
1582 {
1583 	struct nvme_ctrl *ctrl = &dev->ctrl;
1584 	struct nvme_command c = { };
1585 	int flags = NVME_QUEUE_PHYS_CONTIG;
1586 
1587 	/*
1588 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1589 	 * set. Since URGENT priority is zeroes, it makes all queues
1590 	 * URGENT.
1591 	 */
1592 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1593 		flags |= NVME_SQ_PRIO_MEDIUM;
1594 
1595 	/*
1596 	 * Note: we (ab)use the fact that the prp fields survive if no data
1597 	 * is attached to the request.
1598 	 */
1599 	c.create_sq.opcode = nvme_admin_create_sq;
1600 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1601 	c.create_sq.sqid = cpu_to_le16(qid);
1602 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1603 	c.create_sq.sq_flags = cpu_to_le16(flags);
1604 	c.create_sq.cqid = cpu_to_le16(qid);
1605 
1606 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1607 }
1608 
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1609 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1610 {
1611 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1612 }
1613 
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1614 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1615 {
1616 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1617 }
1618 
abort_endio(struct request * req,blk_status_t error)1619 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1620 {
1621 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1622 
1623 	dev_warn(nvmeq->dev->ctrl.device,
1624 		 "Abort status: 0x%x", nvme_req(req)->status);
1625 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1626 	blk_mq_free_request(req);
1627 	return RQ_END_IO_NONE;
1628 }
1629 
nvme_should_reset(struct nvme_dev * dev,u32 csts)1630 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1631 {
1632 	/* If true, indicates loss of adapter communication, possibly by a
1633 	 * NVMe Subsystem reset.
1634 	 */
1635 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1636 
1637 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1638 	switch (nvme_ctrl_state(&dev->ctrl)) {
1639 	case NVME_CTRL_RESETTING:
1640 	case NVME_CTRL_CONNECTING:
1641 		return false;
1642 	default:
1643 		break;
1644 	}
1645 
1646 	/* We shouldn't reset unless the controller is on fatal error state
1647 	 * _or_ if we lost the communication with it.
1648 	 */
1649 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1650 		return false;
1651 
1652 	return true;
1653 }
1654 
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1655 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1656 {
1657 	/* Read a config register to help see what died. */
1658 	u16 pci_status;
1659 	int result;
1660 
1661 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1662 				      &pci_status);
1663 	if (result == PCIBIOS_SUCCESSFUL)
1664 		dev_warn(dev->ctrl.device,
1665 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1666 			 csts, pci_status);
1667 	else
1668 		dev_warn(dev->ctrl.device,
1669 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1670 			 csts, result);
1671 
1672 	if (csts != ~0)
1673 		return;
1674 
1675 	dev_warn(dev->ctrl.device,
1676 		 "Does your device have a faulty power saving mode enabled?\n");
1677 	dev_warn(dev->ctrl.device,
1678 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1679 }
1680 
nvme_timeout(struct request * req)1681 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1682 {
1683 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1684 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1685 	struct nvme_dev *dev = nvmeq->dev;
1686 	struct request *abort_req;
1687 	struct nvme_command cmd = { };
1688 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1689 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1690 	u8 opcode;
1691 
1692 	/*
1693 	 * Shutdown the device immediately if we see it is disconnected. This
1694 	 * unblocks PCIe error handling if the nvme driver is waiting in
1695 	 * error_resume for a device that has been removed. We can't unbind the
1696 	 * driver while the driver's error callback is waiting to complete, so
1697 	 * we're relying on a timeout to break that deadlock if a removal
1698 	 * occurs while reset work is running.
1699 	 */
1700 	if (pci_dev_is_disconnected(pdev))
1701 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1702 	if (nvme_state_terminal(&dev->ctrl))
1703 		goto disable;
1704 
1705 	/* If PCI error recovery process is happening, we cannot reset or
1706 	 * the recovery mechanism will surely fail.
1707 	 */
1708 	mb();
1709 	if (pci_channel_offline(pdev))
1710 		return BLK_EH_RESET_TIMER;
1711 
1712 	/*
1713 	 * Reset immediately if the controller is failed
1714 	 */
1715 	if (nvme_should_reset(dev, csts)) {
1716 		nvme_warn_reset(dev, csts);
1717 		goto disable;
1718 	}
1719 
1720 	/*
1721 	 * Did we miss an interrupt?
1722 	 */
1723 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1724 		nvme_poll(req->mq_hctx, NULL);
1725 	else
1726 		nvme_poll_irqdisable(nvmeq);
1727 
1728 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1729 		dev_warn(dev->ctrl.device,
1730 			 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1731 			 req->tag, nvme_cid(req), nvmeq->qid);
1732 		return BLK_EH_DONE;
1733 	}
1734 
1735 	/*
1736 	 * Shutdown immediately if controller times out while starting. The
1737 	 * reset work will see the pci device disabled when it gets the forced
1738 	 * cancellation error. All outstanding requests are completed on
1739 	 * shutdown, so we return BLK_EH_DONE.
1740 	 */
1741 	switch (nvme_ctrl_state(&dev->ctrl)) {
1742 	case NVME_CTRL_CONNECTING:
1743 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1744 		fallthrough;
1745 	case NVME_CTRL_DELETING:
1746 		dev_warn_ratelimited(dev->ctrl.device,
1747 			 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1748 			 req->tag, nvme_cid(req), nvmeq->qid);
1749 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1750 		nvme_dev_disable(dev, true);
1751 		return BLK_EH_DONE;
1752 	case NVME_CTRL_RESETTING:
1753 		return BLK_EH_RESET_TIMER;
1754 	default:
1755 		break;
1756 	}
1757 
1758 	/*
1759 	 * Shutdown the controller immediately and schedule a reset if the
1760 	 * command was already aborted once before and still hasn't been
1761 	 * returned to the driver, or if this is the admin queue.
1762 	 */
1763 	opcode = nvme_req(req)->cmd->common.opcode;
1764 	if (!nvmeq->qid || (iod->flags & IOD_ABORTED)) {
1765 		dev_warn(dev->ctrl.device,
1766 			 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1767 			 req->tag, nvme_cid(req), opcode,
1768 			 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1769 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1770 		goto disable;
1771 	}
1772 
1773 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1774 		atomic_inc(&dev->ctrl.abort_limit);
1775 		return BLK_EH_RESET_TIMER;
1776 	}
1777 	iod->flags |= IOD_ABORTED;
1778 
1779 	cmd.abort.opcode = nvme_admin_abort_cmd;
1780 	cmd.abort.cid = nvme_cid(req);
1781 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1782 
1783 	dev_warn(nvmeq->dev->ctrl.device,
1784 		 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1785 		 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1786 		 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1787 		 blk_rq_bytes(req));
1788 
1789 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1790 					 BLK_MQ_REQ_NOWAIT);
1791 	if (IS_ERR(abort_req)) {
1792 		atomic_inc(&dev->ctrl.abort_limit);
1793 		return BLK_EH_RESET_TIMER;
1794 	}
1795 	nvme_init_request(abort_req, &cmd);
1796 
1797 	abort_req->end_io = abort_endio;
1798 	abort_req->end_io_data = NULL;
1799 	blk_execute_rq_nowait(abort_req, false);
1800 
1801 	/*
1802 	 * The aborted req will be completed on receiving the abort req.
1803 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1804 	 * as the device then is in a faulty state.
1805 	 */
1806 	return BLK_EH_RESET_TIMER;
1807 
1808 disable:
1809 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1810 		if (nvme_state_terminal(&dev->ctrl))
1811 			nvme_dev_disable(dev, true);
1812 		return BLK_EH_DONE;
1813 	}
1814 
1815 	nvme_dev_disable(dev, false);
1816 	if (nvme_try_sched_reset(&dev->ctrl))
1817 		nvme_unquiesce_io_queues(&dev->ctrl);
1818 	return BLK_EH_DONE;
1819 }
1820 
nvme_free_queue(struct nvme_queue * nvmeq)1821 static void nvme_free_queue(struct nvme_queue *nvmeq)
1822 {
1823 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1824 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1825 	if (!nvmeq->sq_cmds)
1826 		return;
1827 
1828 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1829 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1830 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1831 	} else {
1832 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1833 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1834 	}
1835 }
1836 
nvme_free_queues(struct nvme_dev * dev,int lowest)1837 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1838 {
1839 	int i;
1840 
1841 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1842 		dev->ctrl.queue_count--;
1843 		nvme_free_queue(&dev->queues[i]);
1844 	}
1845 }
1846 
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1847 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1848 {
1849 	struct nvme_queue *nvmeq = &dev->queues[qid];
1850 
1851 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1852 		return;
1853 
1854 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1855 	mb();
1856 
1857 	nvmeq->dev->online_queues--;
1858 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1859 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1860 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1861 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1862 }
1863 
nvme_suspend_io_queues(struct nvme_dev * dev)1864 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1865 {
1866 	int i;
1867 
1868 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1869 		nvme_suspend_queue(dev, i);
1870 }
1871 
1872 /*
1873  * Called only on a device that has been disabled and after all other threads
1874  * that can check this device's completion queues have synced, except
1875  * nvme_poll(). This is the last chance for the driver to see a natural
1876  * completion before nvme_cancel_request() terminates all incomplete requests.
1877  */
nvme_reap_pending_cqes(struct nvme_dev * dev)1878 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1879 {
1880 	int i;
1881 
1882 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1883 		spin_lock(&dev->queues[i].cq_poll_lock);
1884 		nvme_poll_cq(&dev->queues[i], NULL);
1885 		spin_unlock(&dev->queues[i].cq_poll_lock);
1886 	}
1887 }
1888 
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1889 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1890 				int entry_size)
1891 {
1892 	int q_depth = dev->q_depth;
1893 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1894 					  NVME_CTRL_PAGE_SIZE);
1895 
1896 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1897 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1898 
1899 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1900 		q_depth = div_u64(mem_per_q, entry_size);
1901 
1902 		/*
1903 		 * Ensure the reduced q_depth is above some threshold where it
1904 		 * would be better to map queues in system memory with the
1905 		 * original depth
1906 		 */
1907 		if (q_depth < 64)
1908 			return -ENOMEM;
1909 	}
1910 
1911 	return q_depth;
1912 }
1913 
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1914 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1915 				int qid)
1916 {
1917 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1918 
1919 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1920 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1921 		if (nvmeq->sq_cmds) {
1922 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1923 							nvmeq->sq_cmds);
1924 			if (nvmeq->sq_dma_addr) {
1925 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1926 				return 0;
1927 			}
1928 
1929 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1930 		}
1931 	}
1932 
1933 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1934 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1935 	if (!nvmeq->sq_cmds)
1936 		return -ENOMEM;
1937 	return 0;
1938 }
1939 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1940 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1941 {
1942 	struct nvme_queue *nvmeq = &dev->queues[qid];
1943 
1944 	if (dev->ctrl.queue_count > qid)
1945 		return 0;
1946 
1947 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1948 	nvmeq->q_depth = depth;
1949 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1950 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1951 	if (!nvmeq->cqes)
1952 		goto free_nvmeq;
1953 
1954 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1955 		goto free_cqdma;
1956 
1957 	nvmeq->dev = dev;
1958 	spin_lock_init(&nvmeq->sq_lock);
1959 	spin_lock_init(&nvmeq->cq_poll_lock);
1960 	nvmeq->cq_head = 0;
1961 	nvmeq->cq_phase = 1;
1962 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1963 	nvmeq->qid = qid;
1964 	dev->ctrl.queue_count++;
1965 
1966 	return 0;
1967 
1968  free_cqdma:
1969 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1970 			  nvmeq->cq_dma_addr);
1971  free_nvmeq:
1972 	return -ENOMEM;
1973 }
1974 
queue_request_irq(struct nvme_queue * nvmeq)1975 static int queue_request_irq(struct nvme_queue *nvmeq)
1976 {
1977 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1978 	int nr = nvmeq->dev->ctrl.instance;
1979 
1980 	if (use_threaded_interrupts) {
1981 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1982 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1983 	} else {
1984 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1985 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1986 	}
1987 }
1988 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1989 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1990 {
1991 	struct nvme_dev *dev = nvmeq->dev;
1992 
1993 	nvmeq->sq_tail = 0;
1994 	nvmeq->last_sq_tail = 0;
1995 	nvmeq->cq_head = 0;
1996 	nvmeq->cq_phase = 1;
1997 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1998 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1999 	nvme_dbbuf_init(dev, nvmeq, qid);
2000 	dev->online_queues++;
2001 	wmb(); /* ensure the first interrupt sees the initialization */
2002 }
2003 
2004 /*
2005  * Try getting shutdown_lock while setting up IO queues.
2006  */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)2007 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
2008 {
2009 	/*
2010 	 * Give up if the lock is being held by nvme_dev_disable.
2011 	 */
2012 	if (!mutex_trylock(&dev->shutdown_lock))
2013 		return -ENODEV;
2014 
2015 	/*
2016 	 * Controller is in wrong state, fail early.
2017 	 */
2018 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
2019 		mutex_unlock(&dev->shutdown_lock);
2020 		return -ENODEV;
2021 	}
2022 
2023 	return 0;
2024 }
2025 
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)2026 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
2027 {
2028 	struct nvme_dev *dev = nvmeq->dev;
2029 	int result;
2030 	u16 vector = 0;
2031 
2032 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2033 
2034 	/*
2035 	 * A queue's vector matches the queue identifier unless the controller
2036 	 * has only one vector available.
2037 	 */
2038 	if (!polled)
2039 		vector = dev->num_vecs == 1 ? 0 : qid;
2040 	else
2041 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
2042 
2043 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
2044 	if (result)
2045 		return result;
2046 
2047 	result = adapter_alloc_sq(dev, qid, nvmeq);
2048 	if (result < 0)
2049 		return result;
2050 	if (result)
2051 		goto release_cq;
2052 
2053 	nvmeq->cq_vector = vector;
2054 
2055 	result = nvme_setup_io_queues_trylock(dev);
2056 	if (result)
2057 		return result;
2058 	nvme_init_queue(nvmeq, qid);
2059 	if (!polled) {
2060 		result = queue_request_irq(nvmeq);
2061 		if (result < 0)
2062 			goto release_sq;
2063 	}
2064 
2065 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
2066 	mutex_unlock(&dev->shutdown_lock);
2067 	return result;
2068 
2069 release_sq:
2070 	dev->online_queues--;
2071 	mutex_unlock(&dev->shutdown_lock);
2072 	adapter_delete_sq(dev, qid);
2073 release_cq:
2074 	adapter_delete_cq(dev, qid);
2075 	return result;
2076 }
2077 
2078 static const struct blk_mq_ops nvme_mq_admin_ops = {
2079 	.queue_rq	= nvme_queue_rq,
2080 	.complete	= nvme_pci_complete_rq,
2081 	.init_hctx	= nvme_admin_init_hctx,
2082 	.init_request	= nvme_pci_init_request,
2083 	.timeout	= nvme_timeout,
2084 };
2085 
2086 static const struct blk_mq_ops nvme_mq_ops = {
2087 	.queue_rq	= nvme_queue_rq,
2088 	.queue_rqs	= nvme_queue_rqs,
2089 	.complete	= nvme_pci_complete_rq,
2090 	.commit_rqs	= nvme_commit_rqs,
2091 	.init_hctx	= nvme_init_hctx,
2092 	.init_request	= nvme_pci_init_request,
2093 	.map_queues	= nvme_pci_map_queues,
2094 	.timeout	= nvme_timeout,
2095 	.poll		= nvme_poll,
2096 };
2097 
nvme_dev_remove_admin(struct nvme_dev * dev)2098 static void nvme_dev_remove_admin(struct nvme_dev *dev)
2099 {
2100 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
2101 		/*
2102 		 * If the controller was reset during removal, it's possible
2103 		 * user requests may be waiting on a stopped queue. Start the
2104 		 * queue to flush these to completion.
2105 		 */
2106 		nvme_unquiesce_admin_queue(&dev->ctrl);
2107 		nvme_remove_admin_tag_set(&dev->ctrl);
2108 	}
2109 }
2110 
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)2111 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2112 {
2113 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
2114 }
2115 
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)2116 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
2117 {
2118 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2119 
2120 	if (size <= dev->bar_mapped_size)
2121 		return 0;
2122 	if (size > pci_resource_len(pdev, 0))
2123 		return -ENOMEM;
2124 	if (dev->bar)
2125 		iounmap(dev->bar);
2126 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2127 	if (!dev->bar) {
2128 		dev->bar_mapped_size = 0;
2129 		return -ENOMEM;
2130 	}
2131 	dev->bar_mapped_size = size;
2132 	dev->dbs = dev->bar + NVME_REG_DBS;
2133 
2134 	return 0;
2135 }
2136 
nvme_pci_configure_admin_queue(struct nvme_dev * dev)2137 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
2138 {
2139 	int result;
2140 	u32 aqa;
2141 	struct nvme_queue *nvmeq;
2142 
2143 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
2144 	if (result < 0)
2145 		return result;
2146 
2147 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
2148 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
2149 
2150 	if (dev->subsystem &&
2151 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
2152 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
2153 
2154 	/*
2155 	 * If the device has been passed off to us in an enabled state, just
2156 	 * clear the enabled bit.  The spec says we should set the 'shutdown
2157 	 * notification bits', but doing so may cause the device to complete
2158 	 * commands to the admin queue ... and we don't know what memory that
2159 	 * might be pointing at!
2160 	 */
2161 	result = nvme_disable_ctrl(&dev->ctrl, false);
2162 	if (result < 0) {
2163 		struct pci_dev *pdev = to_pci_dev(dev->dev);
2164 
2165 		/*
2166 		 * The NVMe Controller Reset method did not get an expected
2167 		 * CSTS.RDY transition, so something with the device appears to
2168 		 * be stuck. Use the lower level and bigger hammer PCIe
2169 		 * Function Level Reset to attempt restoring the device to its
2170 		 * initial state, and try again.
2171 		 */
2172 		result = pcie_reset_flr(pdev, false);
2173 		if (result < 0)
2174 			return result;
2175 
2176 		pci_restore_state(pdev);
2177 		result = nvme_disable_ctrl(&dev->ctrl, false);
2178 		if (result < 0)
2179 			return result;
2180 
2181 		dev_info(dev->ctrl.device,
2182 			"controller reset completed after pcie flr\n");
2183 	}
2184 
2185 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
2186 	if (result)
2187 		return result;
2188 
2189 	dev->ctrl.numa_node = dev_to_node(dev->dev);
2190 
2191 	nvmeq = &dev->queues[0];
2192 	aqa = nvmeq->q_depth - 1;
2193 	aqa |= aqa << 16;
2194 
2195 	writel(aqa, dev->bar + NVME_REG_AQA);
2196 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
2197 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
2198 
2199 	result = nvme_enable_ctrl(&dev->ctrl);
2200 	if (result)
2201 		return result;
2202 
2203 	nvmeq->cq_vector = 0;
2204 	nvme_init_queue(nvmeq, 0);
2205 	result = queue_request_irq(nvmeq);
2206 	if (result) {
2207 		dev->online_queues--;
2208 		return result;
2209 	}
2210 
2211 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
2212 	return result;
2213 }
2214 
nvme_create_io_queues(struct nvme_dev * dev)2215 static int nvme_create_io_queues(struct nvme_dev *dev)
2216 {
2217 	unsigned i, max, rw_queues;
2218 	int ret = 0;
2219 
2220 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
2221 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
2222 			ret = -ENOMEM;
2223 			break;
2224 		}
2225 	}
2226 
2227 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
2228 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
2229 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
2230 				dev->io_queues[HCTX_TYPE_READ];
2231 	} else {
2232 		rw_queues = max;
2233 	}
2234 
2235 	for (i = dev->online_queues; i <= max; i++) {
2236 		bool polled = i > rw_queues;
2237 
2238 		ret = nvme_create_queue(&dev->queues[i], i, polled);
2239 		if (ret)
2240 			break;
2241 	}
2242 
2243 	/*
2244 	 * Ignore failing Create SQ/CQ commands, we can continue with less
2245 	 * than the desired amount of queues, and even a controller without
2246 	 * I/O queues can still be used to issue admin commands.  This might
2247 	 * be useful to upgrade a buggy firmware for example.
2248 	 */
2249 	return ret >= 0 ? 0 : ret;
2250 }
2251 
nvme_cmb_size_unit(struct nvme_dev * dev)2252 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
2253 {
2254 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
2255 
2256 	return 1ULL << (12 + 4 * szu);
2257 }
2258 
nvme_cmb_size(struct nvme_dev * dev)2259 static u32 nvme_cmb_size(struct nvme_dev *dev)
2260 {
2261 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
2262 }
2263 
nvme_map_cmb(struct nvme_dev * dev)2264 static void nvme_map_cmb(struct nvme_dev *dev)
2265 {
2266 	u64 size, offset;
2267 	resource_size_t bar_size;
2268 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2269 	int bar;
2270 
2271 	if (dev->cmb_size)
2272 		return;
2273 
2274 	if (NVME_CAP_CMBS(dev->ctrl.cap))
2275 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
2276 
2277 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
2278 	if (!dev->cmbsz)
2279 		return;
2280 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
2281 
2282 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
2283 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
2284 	bar = NVME_CMB_BIR(dev->cmbloc);
2285 	bar_size = pci_resource_len(pdev, bar);
2286 
2287 	if (offset > bar_size)
2288 		return;
2289 
2290 	/*
2291 	 * Controllers may support a CMB size larger than their BAR, for
2292 	 * example, due to being behind a bridge. Reduce the CMB to the
2293 	 * reported size of the BAR
2294 	 */
2295 	size = min(size, bar_size - offset);
2296 
2297 	if (!IS_ALIGNED(size, memremap_compat_align()) ||
2298 	    !IS_ALIGNED(pci_resource_start(pdev, bar),
2299 			memremap_compat_align()))
2300 		return;
2301 
2302 	/*
2303 	 * Tell the controller about the host side address mapping the CMB,
2304 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
2305 	 */
2306 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2307 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2308 			     (pci_bus_address(pdev, bar) + offset),
2309 			     dev->bar + NVME_REG_CMBMSC);
2310 	}
2311 
2312 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2313 		dev_warn(dev->ctrl.device,
2314 			 "failed to register the CMB\n");
2315 		hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2316 		return;
2317 	}
2318 
2319 	dev->cmb_size = size;
2320 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2321 
2322 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2323 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2324 		pci_p2pmem_publish(pdev, true);
2325 }
2326 
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)2327 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2328 {
2329 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2330 	u64 dma_addr = dev->host_mem_descs_dma;
2331 	struct nvme_command c = { };
2332 	int ret;
2333 
2334 	c.features.opcode	= nvme_admin_set_features;
2335 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2336 	c.features.dword11	= cpu_to_le32(bits);
2337 	c.features.dword12	= cpu_to_le32(host_mem_size);
2338 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
2339 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
2340 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
2341 
2342 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2343 	if (ret) {
2344 		dev_warn(dev->ctrl.device,
2345 			 "failed to set host mem (err %d, flags %#x).\n",
2346 			 ret, bits);
2347 	} else
2348 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2349 
2350 	return ret;
2351 }
2352 
nvme_free_host_mem_multi(struct nvme_dev * dev)2353 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2354 {
2355 	int i;
2356 
2357 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2358 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2359 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2360 
2361 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2362 			       le64_to_cpu(desc->addr),
2363 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2364 	}
2365 
2366 	kfree(dev->host_mem_desc_bufs);
2367 	dev->host_mem_desc_bufs = NULL;
2368 }
2369 
nvme_free_host_mem(struct nvme_dev * dev)2370 static void nvme_free_host_mem(struct nvme_dev *dev)
2371 {
2372 	if (dev->hmb_sgt)
2373 		dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2374 				dev->hmb_sgt, DMA_BIDIRECTIONAL);
2375 	else
2376 		nvme_free_host_mem_multi(dev);
2377 
2378 	dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2379 			dev->host_mem_descs, dev->host_mem_descs_dma);
2380 	dev->host_mem_descs = NULL;
2381 	dev->host_mem_descs_size = 0;
2382 	dev->nr_host_mem_descs = 0;
2383 }
2384 
nvme_alloc_host_mem_single(struct nvme_dev * dev,u64 size)2385 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2386 {
2387 	dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2388 				DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2389 	if (!dev->hmb_sgt)
2390 		return -ENOMEM;
2391 
2392 	dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2393 			sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2394 			GFP_KERNEL);
2395 	if (!dev->host_mem_descs) {
2396 		dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2397 				DMA_BIDIRECTIONAL);
2398 		dev->hmb_sgt = NULL;
2399 		return -ENOMEM;
2400 	}
2401 	dev->host_mem_size = size;
2402 	dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2403 	dev->nr_host_mem_descs = 1;
2404 
2405 	dev->host_mem_descs[0].addr =
2406 		cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2407 	dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2408 	return 0;
2409 }
2410 
nvme_alloc_host_mem_multi(struct nvme_dev * dev,u64 preferred,u32 chunk_size)2411 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2412 		u32 chunk_size)
2413 {
2414 	struct nvme_host_mem_buf_desc *descs;
2415 	u32 max_entries, len, descs_size;
2416 	dma_addr_t descs_dma;
2417 	int i = 0;
2418 	void **bufs;
2419 	u64 size, tmp;
2420 
2421 	tmp = (preferred + chunk_size - 1);
2422 	do_div(tmp, chunk_size);
2423 	max_entries = tmp;
2424 
2425 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2426 		max_entries = dev->ctrl.hmmaxd;
2427 
2428 	descs_size = max_entries * sizeof(*descs);
2429 	descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2430 			GFP_KERNEL);
2431 	if (!descs)
2432 		goto out;
2433 
2434 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2435 	if (!bufs)
2436 		goto out_free_descs;
2437 
2438 	for (size = 0; size < preferred && i < max_entries; size += len) {
2439 		dma_addr_t dma_addr;
2440 
2441 		len = min_t(u64, chunk_size, preferred - size);
2442 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2443 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2444 		if (!bufs[i])
2445 			break;
2446 
2447 		descs[i].addr = cpu_to_le64(dma_addr);
2448 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2449 		i++;
2450 	}
2451 
2452 	if (!size)
2453 		goto out_free_bufs;
2454 
2455 	dev->nr_host_mem_descs = i;
2456 	dev->host_mem_size = size;
2457 	dev->host_mem_descs = descs;
2458 	dev->host_mem_descs_dma = descs_dma;
2459 	dev->host_mem_descs_size = descs_size;
2460 	dev->host_mem_desc_bufs = bufs;
2461 	return 0;
2462 
2463 out_free_bufs:
2464 	kfree(bufs);
2465 out_free_descs:
2466 	dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2467 out:
2468 	dev->host_mem_descs = NULL;
2469 	return -ENOMEM;
2470 }
2471 
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2472 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2473 {
2474 	unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2475 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2476 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2477 	u64 chunk_size;
2478 
2479 	/*
2480 	 * If there is an IOMMU that can merge pages, try a virtually
2481 	 * non-contiguous allocation for a single segment first.
2482 	 */
2483 	if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2484 		if (!nvme_alloc_host_mem_single(dev, preferred))
2485 			return 0;
2486 	}
2487 
2488 	/* start big and work our way down */
2489 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2490 		if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2491 			if (!min || dev->host_mem_size >= min)
2492 				return 0;
2493 			nvme_free_host_mem(dev);
2494 		}
2495 	}
2496 
2497 	return -ENOMEM;
2498 }
2499 
nvme_setup_host_mem(struct nvme_dev * dev)2500 static int nvme_setup_host_mem(struct nvme_dev *dev)
2501 {
2502 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2503 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2504 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2505 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2506 	int ret;
2507 
2508 	if (!dev->ctrl.hmpre)
2509 		return 0;
2510 
2511 	preferred = min(preferred, max);
2512 	if (min > max) {
2513 		dev_warn(dev->ctrl.device,
2514 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2515 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2516 		nvme_free_host_mem(dev);
2517 		return 0;
2518 	}
2519 
2520 	/*
2521 	 * If we already have a buffer allocated check if we can reuse it.
2522 	 */
2523 	if (dev->host_mem_descs) {
2524 		if (dev->host_mem_size >= min)
2525 			enable_bits |= NVME_HOST_MEM_RETURN;
2526 		else
2527 			nvme_free_host_mem(dev);
2528 	}
2529 
2530 	if (!dev->host_mem_descs) {
2531 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2532 			dev_warn(dev->ctrl.device,
2533 				"failed to allocate host memory buffer.\n");
2534 			return 0; /* controller must work without HMB */
2535 		}
2536 
2537 		dev_info(dev->ctrl.device,
2538 			"allocated %lld MiB host memory buffer (%u segment%s).\n",
2539 			dev->host_mem_size >> ilog2(SZ_1M),
2540 			dev->nr_host_mem_descs,
2541 			str_plural(dev->nr_host_mem_descs));
2542 	}
2543 
2544 	ret = nvme_set_host_mem(dev, enable_bits);
2545 	if (ret)
2546 		nvme_free_host_mem(dev);
2547 	return ret;
2548 }
2549 
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2550 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2551 		char *buf)
2552 {
2553 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2554 
2555 	return sysfs_emit(buf, "cmbloc : 0x%08x\ncmbsz  : 0x%08x\n",
2556 		       ndev->cmbloc, ndev->cmbsz);
2557 }
2558 static DEVICE_ATTR_RO(cmb);
2559 
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2560 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2561 		char *buf)
2562 {
2563 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2564 
2565 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2566 }
2567 static DEVICE_ATTR_RO(cmbloc);
2568 
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2569 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2570 		char *buf)
2571 {
2572 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2573 
2574 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2575 }
2576 static DEVICE_ATTR_RO(cmbsz);
2577 
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2578 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2579 			char *buf)
2580 {
2581 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2582 
2583 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2584 }
2585 
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2586 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2587 			 const char *buf, size_t count)
2588 {
2589 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2590 	bool new;
2591 	int ret;
2592 
2593 	if (kstrtobool(buf, &new) < 0)
2594 		return -EINVAL;
2595 
2596 	if (new == ndev->hmb)
2597 		return count;
2598 
2599 	if (new) {
2600 		ret = nvme_setup_host_mem(ndev);
2601 	} else {
2602 		ret = nvme_set_host_mem(ndev, 0);
2603 		if (!ret)
2604 			nvme_free_host_mem(ndev);
2605 	}
2606 
2607 	if (ret < 0)
2608 		return ret;
2609 
2610 	return count;
2611 }
2612 static DEVICE_ATTR_RW(hmb);
2613 
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2614 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2615 		struct attribute *a, int n)
2616 {
2617 	struct nvme_ctrl *ctrl =
2618 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2619 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2620 
2621 	if (a == &dev_attr_cmb.attr ||
2622 	    a == &dev_attr_cmbloc.attr ||
2623 	    a == &dev_attr_cmbsz.attr) {
2624 	    	if (!dev->cmbsz)
2625 			return 0;
2626 	}
2627 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2628 		return 0;
2629 
2630 	return a->mode;
2631 }
2632 
2633 static struct attribute *nvme_pci_attrs[] = {
2634 	&dev_attr_cmb.attr,
2635 	&dev_attr_cmbloc.attr,
2636 	&dev_attr_cmbsz.attr,
2637 	&dev_attr_hmb.attr,
2638 	NULL,
2639 };
2640 
2641 static const struct attribute_group nvme_pci_dev_attrs_group = {
2642 	.attrs		= nvme_pci_attrs,
2643 	.is_visible	= nvme_pci_attrs_are_visible,
2644 };
2645 
2646 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2647 	&nvme_dev_attrs_group,
2648 	&nvme_pci_dev_attrs_group,
2649 	NULL,
2650 };
2651 
nvme_update_attrs(struct nvme_dev * dev)2652 static void nvme_update_attrs(struct nvme_dev *dev)
2653 {
2654 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2655 }
2656 
2657 /*
2658  * nirqs is the number of interrupts available for write and read
2659  * queues. The core already reserved an interrupt for the admin queue.
2660  */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2661 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2662 {
2663 	struct nvme_dev *dev = affd->priv;
2664 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2665 
2666 	/*
2667 	 * If there is no interrupt available for queues, ensure that
2668 	 * the default queue is set to 1. The affinity set size is
2669 	 * also set to one, but the irq core ignores it for this case.
2670 	 *
2671 	 * If only one interrupt is available or 'write_queue' == 0, combine
2672 	 * write and read queues.
2673 	 *
2674 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2675 	 * queue.
2676 	 */
2677 	if (!nrirqs) {
2678 		nrirqs = 1;
2679 		nr_read_queues = 0;
2680 	} else if (nrirqs == 1 || !nr_write_queues) {
2681 		nr_read_queues = 0;
2682 	} else if (nr_write_queues >= nrirqs) {
2683 		nr_read_queues = 1;
2684 	} else {
2685 		nr_read_queues = nrirqs - nr_write_queues;
2686 	}
2687 
2688 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2689 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2690 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2691 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2692 	affd->nr_sets = nr_read_queues ? 2 : 1;
2693 }
2694 
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2695 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2696 {
2697 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2698 	struct irq_affinity affd = {
2699 		.pre_vectors	= 1,
2700 		.calc_sets	= nvme_calc_irq_sets,
2701 		.priv		= dev,
2702 	};
2703 	unsigned int irq_queues, poll_queues;
2704 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2705 
2706 	/*
2707 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2708 	 * left over for non-polled I/O.
2709 	 */
2710 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2711 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2712 
2713 	/*
2714 	 * Initialize for the single interrupt case, will be updated in
2715 	 * nvme_calc_irq_sets().
2716 	 */
2717 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2718 	dev->io_queues[HCTX_TYPE_READ] = 0;
2719 
2720 	/*
2721 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2722 	 * but some Apple controllers require all queues to use the first
2723 	 * vector.
2724 	 */
2725 	irq_queues = 1;
2726 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2727 		irq_queues += (nr_io_queues - poll_queues);
2728 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2729 		flags &= ~PCI_IRQ_MSI;
2730 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2731 					      &affd);
2732 }
2733 
nvme_max_io_queues(struct nvme_dev * dev)2734 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2735 {
2736 	/*
2737 	 * If tags are shared with admin queue (Apple bug), then
2738 	 * make sure we only use one IO queue.
2739 	 */
2740 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2741 		return 1;
2742 	return blk_mq_num_possible_queues(0) + dev->nr_write_queues +
2743 		dev->nr_poll_queues;
2744 }
2745 
nvme_setup_io_queues(struct nvme_dev * dev)2746 static int nvme_setup_io_queues(struct nvme_dev *dev)
2747 {
2748 	struct nvme_queue *adminq = &dev->queues[0];
2749 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2750 	unsigned int nr_io_queues;
2751 	unsigned long size;
2752 	int result;
2753 
2754 	/*
2755 	 * Sample the module parameters once at reset time so that we have
2756 	 * stable values to work with.
2757 	 */
2758 	dev->nr_write_queues = write_queues;
2759 	dev->nr_poll_queues = poll_queues;
2760 
2761 	nr_io_queues = dev->nr_allocated_queues - 1;
2762 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2763 	if (result < 0)
2764 		return result;
2765 
2766 	if (nr_io_queues == 0)
2767 		return 0;
2768 
2769 	/*
2770 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2771 	 * from set to unset. If there is a window to it is truely freed,
2772 	 * pci_free_irq_vectors() jumping into this window will crash.
2773 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2774 	 * nvme_dev_disable() path.
2775 	 */
2776 	result = nvme_setup_io_queues_trylock(dev);
2777 	if (result)
2778 		return result;
2779 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2780 		pci_free_irq(pdev, 0, adminq);
2781 
2782 	if (dev->cmb_use_sqes) {
2783 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2784 				sizeof(struct nvme_command));
2785 		if (result > 0) {
2786 			dev->q_depth = result;
2787 			dev->ctrl.sqsize = result - 1;
2788 		} else {
2789 			dev->cmb_use_sqes = false;
2790 		}
2791 	}
2792 
2793 	do {
2794 		size = db_bar_size(dev, nr_io_queues);
2795 		result = nvme_remap_bar(dev, size);
2796 		if (!result)
2797 			break;
2798 		if (!--nr_io_queues) {
2799 			result = -ENOMEM;
2800 			goto out_unlock;
2801 		}
2802 	} while (1);
2803 	adminq->q_db = dev->dbs;
2804 
2805  retry:
2806 	/* Deregister the admin queue's interrupt */
2807 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2808 		pci_free_irq(pdev, 0, adminq);
2809 
2810 	/*
2811 	 * If we enable msix early due to not intx, disable it again before
2812 	 * setting up the full range we need.
2813 	 */
2814 	pci_free_irq_vectors(pdev);
2815 
2816 	result = nvme_setup_irqs(dev, nr_io_queues);
2817 	if (result <= 0) {
2818 		result = -EIO;
2819 		goto out_unlock;
2820 	}
2821 
2822 	dev->num_vecs = result;
2823 	result = max(result - 1, 1);
2824 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2825 
2826 	/*
2827 	 * Should investigate if there's a performance win from allocating
2828 	 * more queues than interrupt vectors; it might allow the submission
2829 	 * path to scale better, even if the receive path is limited by the
2830 	 * number of interrupts.
2831 	 */
2832 	result = queue_request_irq(adminq);
2833 	if (result)
2834 		goto out_unlock;
2835 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2836 	mutex_unlock(&dev->shutdown_lock);
2837 
2838 	result = nvme_create_io_queues(dev);
2839 	if (result || dev->online_queues < 2)
2840 		return result;
2841 
2842 	if (dev->online_queues - 1 < dev->max_qid) {
2843 		nr_io_queues = dev->online_queues - 1;
2844 		nvme_delete_io_queues(dev);
2845 		result = nvme_setup_io_queues_trylock(dev);
2846 		if (result)
2847 			return result;
2848 		nvme_suspend_io_queues(dev);
2849 		goto retry;
2850 	}
2851 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2852 					dev->io_queues[HCTX_TYPE_DEFAULT],
2853 					dev->io_queues[HCTX_TYPE_READ],
2854 					dev->io_queues[HCTX_TYPE_POLL]);
2855 	return 0;
2856 out_unlock:
2857 	mutex_unlock(&dev->shutdown_lock);
2858 	return result;
2859 }
2860 
nvme_del_queue_end(struct request * req,blk_status_t error)2861 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2862 					     blk_status_t error)
2863 {
2864 	struct nvme_queue *nvmeq = req->end_io_data;
2865 
2866 	blk_mq_free_request(req);
2867 	complete(&nvmeq->delete_done);
2868 	return RQ_END_IO_NONE;
2869 }
2870 
nvme_del_cq_end(struct request * req,blk_status_t error)2871 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2872 					  blk_status_t error)
2873 {
2874 	struct nvme_queue *nvmeq = req->end_io_data;
2875 
2876 	if (error)
2877 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2878 
2879 	return nvme_del_queue_end(req, error);
2880 }
2881 
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2882 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2883 {
2884 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2885 	struct request *req;
2886 	struct nvme_command cmd = { };
2887 
2888 	cmd.delete_queue.opcode = opcode;
2889 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2890 
2891 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2892 	if (IS_ERR(req))
2893 		return PTR_ERR(req);
2894 	nvme_init_request(req, &cmd);
2895 
2896 	if (opcode == nvme_admin_delete_cq)
2897 		req->end_io = nvme_del_cq_end;
2898 	else
2899 		req->end_io = nvme_del_queue_end;
2900 	req->end_io_data = nvmeq;
2901 
2902 	init_completion(&nvmeq->delete_done);
2903 	blk_execute_rq_nowait(req, false);
2904 	return 0;
2905 }
2906 
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2907 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2908 {
2909 	int nr_queues = dev->online_queues - 1, sent = 0;
2910 	unsigned long timeout;
2911 
2912  retry:
2913 	timeout = NVME_ADMIN_TIMEOUT;
2914 	while (nr_queues > 0) {
2915 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2916 			break;
2917 		nr_queues--;
2918 		sent++;
2919 	}
2920 	while (sent) {
2921 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2922 
2923 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2924 				timeout);
2925 		if (timeout == 0)
2926 			return false;
2927 
2928 		sent--;
2929 		if (nr_queues)
2930 			goto retry;
2931 	}
2932 	return true;
2933 }
2934 
nvme_delete_io_queues(struct nvme_dev * dev)2935 static void nvme_delete_io_queues(struct nvme_dev *dev)
2936 {
2937 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2938 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2939 }
2940 
nvme_pci_nr_maps(struct nvme_dev * dev)2941 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2942 {
2943 	if (dev->io_queues[HCTX_TYPE_POLL])
2944 		return 3;
2945 	if (dev->io_queues[HCTX_TYPE_READ])
2946 		return 2;
2947 	return 1;
2948 }
2949 
nvme_pci_update_nr_queues(struct nvme_dev * dev)2950 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2951 {
2952 	if (!dev->ctrl.tagset) {
2953 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2954 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2955 		return true;
2956 	}
2957 
2958 	/* Give up if we are racing with nvme_dev_disable() */
2959 	if (!mutex_trylock(&dev->shutdown_lock))
2960 		return false;
2961 
2962 	/* Check if nvme_dev_disable() has been executed already */
2963 	if (!dev->online_queues) {
2964 		mutex_unlock(&dev->shutdown_lock);
2965 		return false;
2966 	}
2967 
2968 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2969 	/* free previously allocated queues that are no longer usable */
2970 	nvme_free_queues(dev, dev->online_queues);
2971 	mutex_unlock(&dev->shutdown_lock);
2972 	return true;
2973 }
2974 
nvme_pci_enable(struct nvme_dev * dev)2975 static int nvme_pci_enable(struct nvme_dev *dev)
2976 {
2977 	int result = -ENOMEM;
2978 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2979 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2980 
2981 	if (pci_enable_device_mem(pdev))
2982 		return result;
2983 
2984 	pci_set_master(pdev);
2985 
2986 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2987 		result = -ENODEV;
2988 		goto disable;
2989 	}
2990 
2991 	/*
2992 	 * Some devices and/or platforms don't advertise or work with INTx
2993 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2994 	 * adjust this later.
2995 	 */
2996 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2997 		flags &= ~PCI_IRQ_MSI;
2998 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2999 	if (result < 0)
3000 		goto disable;
3001 
3002 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
3003 
3004 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
3005 				io_queue_depth);
3006 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
3007 	dev->dbs = dev->bar + 4096;
3008 
3009 	/*
3010 	 * Some Apple controllers require a non-standard SQE size.
3011 	 * Interestingly they also seem to ignore the CC:IOSQES register
3012 	 * so we don't bother updating it here.
3013 	 */
3014 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
3015 		dev->io_sqes = 7;
3016 	else
3017 		dev->io_sqes = NVME_NVM_IOSQES;
3018 
3019 	if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
3020 		dev->q_depth = 2;
3021 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
3022 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
3023 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
3024 		dev->q_depth = 64;
3025 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
3026                         "set queue depth=%u\n", dev->q_depth);
3027 	}
3028 
3029 	/*
3030 	 * Controllers with the shared tags quirk need the IO queue to be
3031 	 * big enough so that we get 32 tags for the admin queue
3032 	 */
3033 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
3034 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
3035 		dev->q_depth = NVME_AQ_DEPTH + 2;
3036 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
3037 			 dev->q_depth);
3038 	}
3039 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
3040 
3041 	nvme_map_cmb(dev);
3042 
3043 	pci_save_state(pdev);
3044 
3045 	result = nvme_pci_configure_admin_queue(dev);
3046 	if (result)
3047 		goto free_irq;
3048 	return result;
3049 
3050  free_irq:
3051 	pci_free_irq_vectors(pdev);
3052  disable:
3053 	pci_disable_device(pdev);
3054 	return result;
3055 }
3056 
nvme_dev_unmap(struct nvme_dev * dev)3057 static void nvme_dev_unmap(struct nvme_dev *dev)
3058 {
3059 	if (dev->bar)
3060 		iounmap(dev->bar);
3061 	pci_release_mem_regions(to_pci_dev(dev->dev));
3062 }
3063 
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)3064 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
3065 {
3066 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3067 	u32 csts;
3068 
3069 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
3070 		return true;
3071 	if (pdev->error_state != pci_channel_io_normal)
3072 		return true;
3073 
3074 	csts = readl(dev->bar + NVME_REG_CSTS);
3075 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
3076 }
3077 
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)3078 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
3079 {
3080 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
3081 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3082 	bool dead;
3083 
3084 	mutex_lock(&dev->shutdown_lock);
3085 	dead = nvme_pci_ctrl_is_dead(dev);
3086 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
3087 		if (pci_is_enabled(pdev))
3088 			nvme_start_freeze(&dev->ctrl);
3089 		/*
3090 		 * Give the controller a chance to complete all entered requests
3091 		 * if doing a safe shutdown.
3092 		 */
3093 		if (!dead && shutdown)
3094 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
3095 	}
3096 
3097 	nvme_quiesce_io_queues(&dev->ctrl);
3098 
3099 	if (!dead && dev->ctrl.queue_count > 0) {
3100 		nvme_delete_io_queues(dev);
3101 		nvme_disable_ctrl(&dev->ctrl, shutdown);
3102 		nvme_poll_irqdisable(&dev->queues[0]);
3103 	}
3104 	nvme_suspend_io_queues(dev);
3105 	nvme_suspend_queue(dev, 0);
3106 	pci_free_irq_vectors(pdev);
3107 	if (pci_is_enabled(pdev))
3108 		pci_disable_device(pdev);
3109 	nvme_reap_pending_cqes(dev);
3110 
3111 	nvme_cancel_tagset(&dev->ctrl);
3112 	nvme_cancel_admin_tagset(&dev->ctrl);
3113 
3114 	/*
3115 	 * The driver will not be starting up queues again if shutting down so
3116 	 * must flush all entered requests to their failed completion to avoid
3117 	 * deadlocking blk-mq hot-cpu notifier.
3118 	 */
3119 	if (shutdown) {
3120 		nvme_unquiesce_io_queues(&dev->ctrl);
3121 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
3122 			nvme_unquiesce_admin_queue(&dev->ctrl);
3123 	}
3124 	mutex_unlock(&dev->shutdown_lock);
3125 }
3126 
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)3127 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
3128 {
3129 	if (!nvme_wait_reset(&dev->ctrl))
3130 		return -EBUSY;
3131 	nvme_dev_disable(dev, shutdown);
3132 	return 0;
3133 }
3134 
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)3135 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
3136 {
3137 	size_t alloc_size = sizeof(struct nvme_dma_vec) * NVME_MAX_SEGS;
3138 
3139 	dev->dmavec_mempool = mempool_create_node(1,
3140 			mempool_kmalloc, mempool_kfree,
3141 			(void *)alloc_size, GFP_KERNEL,
3142 			dev_to_node(dev->dev));
3143 	if (!dev->dmavec_mempool)
3144 		return -ENOMEM;
3145 	return 0;
3146 }
3147 
nvme_free_tagset(struct nvme_dev * dev)3148 static void nvme_free_tagset(struct nvme_dev *dev)
3149 {
3150 	if (dev->tagset.tags)
3151 		nvme_remove_io_tag_set(&dev->ctrl);
3152 	dev->ctrl.tagset = NULL;
3153 }
3154 
3155 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)3156 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
3157 {
3158 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3159 
3160 	nvme_free_tagset(dev);
3161 	put_device(dev->dev);
3162 	kfree(dev->queues);
3163 	kfree(dev);
3164 }
3165 
nvme_reset_work(struct work_struct * work)3166 static void nvme_reset_work(struct work_struct *work)
3167 {
3168 	struct nvme_dev *dev =
3169 		container_of(work, struct nvme_dev, ctrl.reset_work);
3170 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
3171 	int result;
3172 
3173 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
3174 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
3175 			 dev->ctrl.state);
3176 		result = -ENODEV;
3177 		goto out;
3178 	}
3179 
3180 	/*
3181 	 * If we're called to reset a live controller first shut it down before
3182 	 * moving on.
3183 	 */
3184 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
3185 		nvme_dev_disable(dev, false);
3186 	nvme_sync_queues(&dev->ctrl);
3187 
3188 	mutex_lock(&dev->shutdown_lock);
3189 	result = nvme_pci_enable(dev);
3190 	if (result)
3191 		goto out_unlock;
3192 	nvme_unquiesce_admin_queue(&dev->ctrl);
3193 	mutex_unlock(&dev->shutdown_lock);
3194 
3195 	/*
3196 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
3197 	 * initializing procedure here.
3198 	 */
3199 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3200 		dev_warn(dev->ctrl.device,
3201 			"failed to mark controller CONNECTING\n");
3202 		result = -EBUSY;
3203 		goto out;
3204 	}
3205 
3206 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
3207 	if (result)
3208 		goto out;
3209 
3210 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3211 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3212 	else
3213 		dev->ctrl.max_integrity_segments = 1;
3214 
3215 	nvme_dbbuf_dma_alloc(dev);
3216 
3217 	result = nvme_setup_host_mem(dev);
3218 	if (result < 0)
3219 		goto out;
3220 
3221 	nvme_update_attrs(dev);
3222 
3223 	result = nvme_setup_io_queues(dev);
3224 	if (result)
3225 		goto out;
3226 
3227 	/*
3228 	 * Freeze and update the number of I/O queues as those might have
3229 	 * changed.  If there are no I/O queues left after this reset, keep the
3230 	 * controller around but remove all namespaces.
3231 	 */
3232 	if (dev->online_queues > 1) {
3233 		nvme_dbbuf_set(dev);
3234 		nvme_unquiesce_io_queues(&dev->ctrl);
3235 		nvme_wait_freeze(&dev->ctrl);
3236 		if (!nvme_pci_update_nr_queues(dev))
3237 			goto out;
3238 		nvme_unfreeze(&dev->ctrl);
3239 	} else {
3240 		dev_warn(dev->ctrl.device, "IO queues lost\n");
3241 		nvme_mark_namespaces_dead(&dev->ctrl);
3242 		nvme_unquiesce_io_queues(&dev->ctrl);
3243 		nvme_remove_namespaces(&dev->ctrl);
3244 		nvme_free_tagset(dev);
3245 	}
3246 
3247 	/*
3248 	 * If only admin queue live, keep it to do further investigation or
3249 	 * recovery.
3250 	 */
3251 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3252 		dev_warn(dev->ctrl.device,
3253 			"failed to mark controller live state\n");
3254 		result = -ENODEV;
3255 		goto out;
3256 	}
3257 
3258 	nvme_start_ctrl(&dev->ctrl);
3259 	return;
3260 
3261  out_unlock:
3262 	mutex_unlock(&dev->shutdown_lock);
3263  out:
3264 	/*
3265 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3266 	 * may be holding this pci_dev's device lock.
3267 	 */
3268 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3269 		 result);
3270 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3271 	nvme_dev_disable(dev, true);
3272 	nvme_sync_queues(&dev->ctrl);
3273 	nvme_mark_namespaces_dead(&dev->ctrl);
3274 	nvme_unquiesce_io_queues(&dev->ctrl);
3275 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3276 }
3277 
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)3278 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3279 {
3280 	*val = readl(to_nvme_dev(ctrl)->bar + off);
3281 	return 0;
3282 }
3283 
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)3284 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3285 {
3286 	writel(val, to_nvme_dev(ctrl)->bar + off);
3287 	return 0;
3288 }
3289 
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)3290 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3291 {
3292 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3293 	return 0;
3294 }
3295 
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)3296 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3297 {
3298 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3299 
3300 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3301 }
3302 
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)3303 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3304 {
3305 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3306 	struct nvme_subsystem *subsys = ctrl->subsys;
3307 
3308 	dev_err(ctrl->device,
3309 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3310 		pdev->vendor, pdev->device,
3311 		nvme_strlen(subsys->model, sizeof(subsys->model)),
3312 		subsys->model, nvme_strlen(subsys->firmware_rev,
3313 					   sizeof(subsys->firmware_rev)),
3314 		subsys->firmware_rev);
3315 }
3316 
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)3317 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3318 {
3319 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3320 
3321 	return dma_pci_p2pdma_supported(dev->dev);
3322 }
3323 
nvme_pci_get_virt_boundary(struct nvme_ctrl * ctrl,bool is_admin)3324 static unsigned long nvme_pci_get_virt_boundary(struct nvme_ctrl *ctrl,
3325 						bool is_admin)
3326 {
3327 	if (!nvme_ctrl_sgl_supported(ctrl) || is_admin)
3328 		return NVME_CTRL_PAGE_SIZE - 1;
3329 	return 0;
3330 }
3331 
3332 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3333 	.name			= "pcie",
3334 	.module			= THIS_MODULE,
3335 	.flags			= NVME_F_METADATA_SUPPORTED,
3336 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
3337 	.reg_read32		= nvme_pci_reg_read32,
3338 	.reg_write32		= nvme_pci_reg_write32,
3339 	.reg_read64		= nvme_pci_reg_read64,
3340 	.free_ctrl		= nvme_pci_free_ctrl,
3341 	.submit_async_event	= nvme_pci_submit_async_event,
3342 	.subsystem_reset	= nvme_pci_subsystem_reset,
3343 	.get_address		= nvme_pci_get_address,
3344 	.print_device_info	= nvme_pci_print_device_info,
3345 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
3346 	.get_virt_boundary	= nvme_pci_get_virt_boundary,
3347 };
3348 
nvme_dev_map(struct nvme_dev * dev)3349 static int nvme_dev_map(struct nvme_dev *dev)
3350 {
3351 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3352 
3353 	if (pci_request_mem_regions(pdev, "nvme"))
3354 		return -ENODEV;
3355 
3356 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3357 		goto release;
3358 
3359 	return 0;
3360   release:
3361 	pci_release_mem_regions(pdev);
3362 	return -ENODEV;
3363 }
3364 
check_vendor_combination_bug(struct pci_dev * pdev)3365 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3366 {
3367 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3368 		/*
3369 		 * Several Samsung devices seem to drop off the PCIe bus
3370 		 * randomly when APST is on and uses the deepest sleep state.
3371 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3372 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3373 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3374 		 * laptops.
3375 		 */
3376 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3377 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3378 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3379 			return NVME_QUIRK_NO_DEEPEST_PS;
3380 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3381 		/*
3382 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3383 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3384 		 * within few minutes after bootup on a Coffee Lake board -
3385 		 * ASUS PRIME Z370-A
3386 		 */
3387 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3388 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3389 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3390 			return NVME_QUIRK_NO_APST;
3391 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3392 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3393 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3394 		/*
3395 		 * Forcing to use host managed nvme power settings for
3396 		 * lowest idle power with quick resume latency on
3397 		 * Samsung and Toshiba SSDs based on suspend behavior
3398 		 * on Coffee Lake board for LENOVO C640
3399 		 */
3400 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3401 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3402 			return NVME_QUIRK_SIMPLE_SUSPEND;
3403 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3404 		   pdev->device == 0x500f)) {
3405 		/*
3406 		 * Exclude some Kingston NV1 and A2000 devices from
3407 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3408 		 * lot of energy with s2idle sleep on some TUXEDO platforms.
3409 		 */
3410 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3411 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3412 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3413 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3414 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3415 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3416 		/*
3417 		 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3418 		 * because of high power consumption (> 2 Watt) in s2idle
3419 		 * sleep. Only some boards with Intel CPU are affected.
3420 		 * (Note for testing: Samsung 990 Evo Plus has same PCI ID)
3421 		 */
3422 		if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3423 		    dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3424 		    dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3425 		    dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3426 		    dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3427 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3428 		    dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3429 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3430 	}
3431 
3432 	/*
3433 	 * NVMe SSD drops off the PCIe bus after system idle
3434 	 * for 10 hours on a Lenovo N60z board.
3435 	 */
3436 	if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3437 		return NVME_QUIRK_NO_APST;
3438 
3439 	return 0;
3440 }
3441 
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)3442 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3443 		const struct pci_device_id *id)
3444 {
3445 	unsigned long quirks = id->driver_data;
3446 	int node = dev_to_node(&pdev->dev);
3447 	struct nvme_dev *dev;
3448 	int ret = -ENOMEM;
3449 
3450 	dev = kzalloc_node(struct_size(dev, descriptor_pools, nr_node_ids),
3451 			GFP_KERNEL, node);
3452 	if (!dev)
3453 		return ERR_PTR(-ENOMEM);
3454 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3455 	mutex_init(&dev->shutdown_lock);
3456 
3457 	dev->nr_write_queues = write_queues;
3458 	dev->nr_poll_queues = poll_queues;
3459 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3460 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3461 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3462 	if (!dev->queues)
3463 		goto out_free_dev;
3464 
3465 	dev->dev = get_device(&pdev->dev);
3466 
3467 	quirks |= check_vendor_combination_bug(pdev);
3468 	if (!noacpi &&
3469 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3470 	    acpi_storage_d3(&pdev->dev)) {
3471 		/*
3472 		 * Some systems use a bios work around to ask for D3 on
3473 		 * platforms that support kernel managed suspend.
3474 		 */
3475 		dev_info(&pdev->dev,
3476 			 "platform quirk: setting simple suspend\n");
3477 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3478 	}
3479 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3480 			     quirks);
3481 	if (ret)
3482 		goto out_put_device;
3483 
3484 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3485 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3486 	else
3487 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3488 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3489 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3490 
3491 	/*
3492 	 * Limit the max command size to prevent iod->sg allocations going
3493 	 * over a single page.
3494 	 */
3495 	dev->ctrl.max_hw_sectors = min_t(u32,
3496 			NVME_MAX_BYTES >> SECTOR_SHIFT,
3497 			dma_opt_mapping_size(&pdev->dev) >> 9);
3498 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3499 	dev->ctrl.max_integrity_segments = 1;
3500 	return dev;
3501 
3502 out_put_device:
3503 	put_device(dev->dev);
3504 	kfree(dev->queues);
3505 out_free_dev:
3506 	kfree(dev);
3507 	return ERR_PTR(ret);
3508 }
3509 
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3510 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3511 {
3512 	struct nvme_dev *dev;
3513 	int result = -ENOMEM;
3514 
3515 	dev = nvme_pci_alloc_dev(pdev, id);
3516 	if (IS_ERR(dev))
3517 		return PTR_ERR(dev);
3518 
3519 	result = nvme_add_ctrl(&dev->ctrl);
3520 	if (result)
3521 		goto out_put_ctrl;
3522 
3523 	result = nvme_dev_map(dev);
3524 	if (result)
3525 		goto out_uninit_ctrl;
3526 
3527 	result = nvme_pci_alloc_iod_mempool(dev);
3528 	if (result)
3529 		goto out_dev_unmap;
3530 
3531 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3532 
3533 	result = nvme_pci_enable(dev);
3534 	if (result)
3535 		goto out_release_iod_mempool;
3536 
3537 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3538 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3539 	if (result)
3540 		goto out_disable;
3541 
3542 	/*
3543 	 * Mark the controller as connecting before sending admin commands to
3544 	 * allow the timeout handler to do the right thing.
3545 	 */
3546 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3547 		dev_warn(dev->ctrl.device,
3548 			"failed to mark controller CONNECTING\n");
3549 		result = -EBUSY;
3550 		goto out_disable;
3551 	}
3552 
3553 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3554 	if (result)
3555 		goto out_disable;
3556 
3557 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3558 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3559 	else
3560 		dev->ctrl.max_integrity_segments = 1;
3561 
3562 	nvme_dbbuf_dma_alloc(dev);
3563 
3564 	result = nvme_setup_host_mem(dev);
3565 	if (result < 0)
3566 		goto out_disable;
3567 
3568 	nvme_update_attrs(dev);
3569 
3570 	result = nvme_setup_io_queues(dev);
3571 	if (result)
3572 		goto out_disable;
3573 
3574 	if (dev->online_queues > 1) {
3575 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3576 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3577 		nvme_dbbuf_set(dev);
3578 	}
3579 
3580 	if (!dev->ctrl.tagset)
3581 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3582 
3583 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3584 		dev_warn(dev->ctrl.device,
3585 			"failed to mark controller live state\n");
3586 		result = -ENODEV;
3587 		goto out_disable;
3588 	}
3589 
3590 	pci_set_drvdata(pdev, dev);
3591 
3592 	nvme_start_ctrl(&dev->ctrl);
3593 	nvme_put_ctrl(&dev->ctrl);
3594 	flush_work(&dev->ctrl.scan_work);
3595 	return 0;
3596 
3597 out_disable:
3598 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3599 	nvme_dev_disable(dev, true);
3600 	nvme_free_host_mem(dev);
3601 	nvme_dev_remove_admin(dev);
3602 	nvme_dbbuf_dma_free(dev);
3603 	nvme_free_queues(dev, 0);
3604 out_release_iod_mempool:
3605 	mempool_destroy(dev->dmavec_mempool);
3606 out_dev_unmap:
3607 	nvme_dev_unmap(dev);
3608 out_uninit_ctrl:
3609 	nvme_uninit_ctrl(&dev->ctrl);
3610 out_put_ctrl:
3611 	nvme_put_ctrl(&dev->ctrl);
3612 	return result;
3613 }
3614 
nvme_reset_prepare(struct pci_dev * pdev)3615 static void nvme_reset_prepare(struct pci_dev *pdev)
3616 {
3617 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3618 
3619 	/*
3620 	 * We don't need to check the return value from waiting for the reset
3621 	 * state as pci_dev device lock is held, making it impossible to race
3622 	 * with ->remove().
3623 	 */
3624 	nvme_disable_prepare_reset(dev, false);
3625 	nvme_sync_queues(&dev->ctrl);
3626 }
3627 
nvme_reset_done(struct pci_dev * pdev)3628 static void nvme_reset_done(struct pci_dev *pdev)
3629 {
3630 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3631 
3632 	if (!nvme_try_sched_reset(&dev->ctrl))
3633 		flush_work(&dev->ctrl.reset_work);
3634 }
3635 
nvme_shutdown(struct pci_dev * pdev)3636 static void nvme_shutdown(struct pci_dev *pdev)
3637 {
3638 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3639 
3640 	nvme_disable_prepare_reset(dev, true);
3641 }
3642 
3643 /*
3644  * The driver's remove may be called on a device in a partially initialized
3645  * state. This function must not have any dependencies on the device state in
3646  * order to proceed.
3647  */
nvme_remove(struct pci_dev * pdev)3648 static void nvme_remove(struct pci_dev *pdev)
3649 {
3650 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3651 
3652 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3653 	pci_set_drvdata(pdev, NULL);
3654 
3655 	if (!pci_device_is_present(pdev)) {
3656 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3657 		nvme_dev_disable(dev, true);
3658 	}
3659 
3660 	flush_work(&dev->ctrl.reset_work);
3661 	nvme_stop_ctrl(&dev->ctrl);
3662 	nvme_remove_namespaces(&dev->ctrl);
3663 	nvme_dev_disable(dev, true);
3664 	nvme_free_host_mem(dev);
3665 	nvme_dev_remove_admin(dev);
3666 	nvme_dbbuf_dma_free(dev);
3667 	nvme_free_queues(dev, 0);
3668 	mempool_destroy(dev->dmavec_mempool);
3669 	nvme_release_descriptor_pools(dev);
3670 	nvme_dev_unmap(dev);
3671 	nvme_uninit_ctrl(&dev->ctrl);
3672 }
3673 
3674 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3675 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3676 {
3677 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3678 }
3679 
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3680 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3681 {
3682 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3683 }
3684 
nvme_resume(struct device * dev)3685 static int nvme_resume(struct device *dev)
3686 {
3687 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3688 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3689 
3690 	if (ndev->last_ps == U32_MAX ||
3691 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3692 		goto reset;
3693 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3694 		goto reset;
3695 
3696 	return 0;
3697 reset:
3698 	return nvme_try_sched_reset(ctrl);
3699 }
3700 
nvme_suspend(struct device * dev)3701 static int nvme_suspend(struct device *dev)
3702 {
3703 	struct pci_dev *pdev = to_pci_dev(dev);
3704 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3705 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3706 	int ret = -EBUSY;
3707 
3708 	ndev->last_ps = U32_MAX;
3709 
3710 	/*
3711 	 * The platform does not remove power for a kernel managed suspend so
3712 	 * use host managed nvme power settings for lowest idle power if
3713 	 * possible. This should have quicker resume latency than a full device
3714 	 * shutdown.  But if the firmware is involved after the suspend or the
3715 	 * device does not support any non-default power states, shut down the
3716 	 * device fully.
3717 	 *
3718 	 * If ASPM is not enabled for the device, shut down the device and allow
3719 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3720 	 * down, so as to allow the platform to achieve its minimum low-power
3721 	 * state (which may not be possible if the link is up).
3722 	 */
3723 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3724 	    !pcie_aspm_enabled(pdev) ||
3725 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3726 		return nvme_disable_prepare_reset(ndev, true);
3727 
3728 	nvme_start_freeze(ctrl);
3729 	nvme_wait_freeze(ctrl);
3730 	nvme_sync_queues(ctrl);
3731 
3732 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3733 		goto unfreeze;
3734 
3735 	/*
3736 	 * Host memory access may not be successful in a system suspend state,
3737 	 * but the specification allows the controller to access memory in a
3738 	 * non-operational power state.
3739 	 */
3740 	if (ndev->hmb) {
3741 		ret = nvme_set_host_mem(ndev, 0);
3742 		if (ret < 0)
3743 			goto unfreeze;
3744 	}
3745 
3746 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3747 	if (ret < 0)
3748 		goto unfreeze;
3749 
3750 	/*
3751 	 * A saved state prevents pci pm from generically controlling the
3752 	 * device's power. If we're using protocol specific settings, we don't
3753 	 * want pci interfering.
3754 	 */
3755 	pci_save_state(pdev);
3756 
3757 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3758 	if (ret < 0)
3759 		goto unfreeze;
3760 
3761 	if (ret) {
3762 		/* discard the saved state */
3763 		pci_load_saved_state(pdev, NULL);
3764 
3765 		/*
3766 		 * Clearing npss forces a controller reset on resume. The
3767 		 * correct value will be rediscovered then.
3768 		 */
3769 		ret = nvme_disable_prepare_reset(ndev, true);
3770 		ctrl->npss = 0;
3771 	}
3772 unfreeze:
3773 	nvme_unfreeze(ctrl);
3774 	return ret;
3775 }
3776 
nvme_simple_suspend(struct device * dev)3777 static int nvme_simple_suspend(struct device *dev)
3778 {
3779 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3780 
3781 	return nvme_disable_prepare_reset(ndev, true);
3782 }
3783 
nvme_simple_resume(struct device * dev)3784 static int nvme_simple_resume(struct device *dev)
3785 {
3786 	struct pci_dev *pdev = to_pci_dev(dev);
3787 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3788 
3789 	return nvme_try_sched_reset(&ndev->ctrl);
3790 }
3791 
3792 static const struct dev_pm_ops nvme_dev_pm_ops = {
3793 	.suspend	= nvme_suspend,
3794 	.resume		= nvme_resume,
3795 	.freeze		= nvme_simple_suspend,
3796 	.thaw		= nvme_simple_resume,
3797 	.poweroff	= nvme_simple_suspend,
3798 	.restore	= nvme_simple_resume,
3799 };
3800 #endif /* CONFIG_PM_SLEEP */
3801 
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3802 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3803 						pci_channel_state_t state)
3804 {
3805 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3806 
3807 	/*
3808 	 * A frozen channel requires a reset. When detected, this method will
3809 	 * shutdown the controller to quiesce. The controller will be restarted
3810 	 * after the slot reset through driver's slot_reset callback.
3811 	 */
3812 	switch (state) {
3813 	case pci_channel_io_normal:
3814 		return PCI_ERS_RESULT_CAN_RECOVER;
3815 	case pci_channel_io_frozen:
3816 		dev_warn(dev->ctrl.device,
3817 			"frozen state error detected, reset controller\n");
3818 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3819 			nvme_dev_disable(dev, true);
3820 			return PCI_ERS_RESULT_DISCONNECT;
3821 		}
3822 		nvme_dev_disable(dev, false);
3823 		return PCI_ERS_RESULT_NEED_RESET;
3824 	case pci_channel_io_perm_failure:
3825 		dev_warn(dev->ctrl.device,
3826 			"failure state error detected, request disconnect\n");
3827 		return PCI_ERS_RESULT_DISCONNECT;
3828 	}
3829 	return PCI_ERS_RESULT_NEED_RESET;
3830 }
3831 
nvme_slot_reset(struct pci_dev * pdev)3832 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3833 {
3834 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3835 
3836 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3837 	pci_restore_state(pdev);
3838 	if (nvme_try_sched_reset(&dev->ctrl))
3839 		nvme_unquiesce_io_queues(&dev->ctrl);
3840 	return PCI_ERS_RESULT_RECOVERED;
3841 }
3842 
nvme_error_resume(struct pci_dev * pdev)3843 static void nvme_error_resume(struct pci_dev *pdev)
3844 {
3845 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3846 
3847 	flush_work(&dev->ctrl.reset_work);
3848 }
3849 
3850 static const struct pci_error_handlers nvme_err_handler = {
3851 	.error_detected	= nvme_error_detected,
3852 	.slot_reset	= nvme_slot_reset,
3853 	.resume		= nvme_error_resume,
3854 	.reset_prepare	= nvme_reset_prepare,
3855 	.reset_done	= nvme_reset_done,
3856 };
3857 
3858 static const struct pci_device_id nvme_id_table[] = {
3859 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3860 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3861 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3862 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3863 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3864 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3865 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3866 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3867 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3868 				NVME_QUIRK_BOGUS_NID, },
3869 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3870 		.driver_data = NVME_QUIRK_STRIPE_SIZE, },
3871 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3872 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3873 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3874 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3875 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3876 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3877 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3878 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3879 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3880 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3881 				NVME_QUIRK_BOGUS_NID, },
3882 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3883 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3884 	{ PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3885 		.driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3886 	{ PCI_DEVICE(0x126f, 0x1001),	/* Silicon Motion generic */
3887 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3888 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3889 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3890 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3891 				NVME_QUIRK_BOGUS_NID, },
3892 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3893 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3894 				NVME_QUIRK_BOGUS_NID, },
3895 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3896 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3897 				NVME_QUIRK_NO_NS_DESC_LIST, },
3898 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3899 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3900 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3901 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3902 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3903 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3904 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3905 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3906 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3907 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3908 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3909 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3910 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3911 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3912 	{ PCI_DEVICE(0x15b7, 0x5009),   /* Sandisk SN550 */
3913 		.driver_data = NVME_QUIRK_BROKEN_MSI |
3914 				NVME_QUIRK_NO_DEEPEST_PS },
3915 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3916 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3917 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3918 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3919 				NVME_QUIRK_BOGUS_NID, },
3920 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3921 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3922 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3923 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3924 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3925 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3926 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3927 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3928 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3929 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3930 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3931 				NVME_QUIRK_BOGUS_NID, },
3932 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3933 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3934 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3935 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3936 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3937 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3938 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3939 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3940 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3941 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3942 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3943 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3944 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3945 	{ PCI_DEVICE(0x1c5c, 0x1D59),   /* SK Hynix BC901 */
3946 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3947 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3948 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3949 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3950 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3951 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3952 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3953 				NVME_QUIRK_BOGUS_NID, },
3954 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3955 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3956 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3957 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3958 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3959 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3960 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3961 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3962 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3963 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3964 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3965 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3966 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3967 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3968 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3969 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3970 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3971 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3972 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3973 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3974 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3975 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3976 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3977 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3978 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3979 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3980 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3981 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3982 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3983 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3984 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3985 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3986 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3987 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3988 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3989 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3990 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3991 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3992 	{ PCI_DEVICE(0x1dbe, 0x5216),   /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3993 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3994 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3995 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3996 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3997 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3998 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3999 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
4000 	{ PCI_DEVICE(0x025e, 0xf1ac),   /* SOLIDIGM  P44 pro SSDPFKKW020X7  */
4001 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
4002 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
4003 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4004 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
4005 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4006 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
4007 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4008 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
4009 		.driver_data = NVME_QUIRK_BOGUS_NID |
4010 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
4011 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
4012 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4013 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
4014 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4015 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
4016 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4017 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
4018 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4019 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
4020 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4021 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
4022 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4023 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
4024 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4025 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
4026 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4027 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
4028 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4029 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
4030 		/*
4031 		 * Fix for the Apple controller found in the MacBook8,1 and
4032 		 * some MacBook7,1 to avoid controller resets and data loss.
4033 		 */
4034 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
4035 				NVME_QUIRK_QDEPTH_ONE },
4036 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
4037 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
4038 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
4039 				NVME_QUIRK_128_BYTES_SQES |
4040 				NVME_QUIRK_SHARED_TAGS |
4041 				NVME_QUIRK_SKIP_CID_GEN |
4042 				NVME_QUIRK_IDENTIFY_CNS },
4043 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
4044 	{ 0, }
4045 };
4046 MODULE_DEVICE_TABLE(pci, nvme_id_table);
4047 
4048 static struct pci_driver nvme_driver = {
4049 	.name		= "nvme",
4050 	.id_table	= nvme_id_table,
4051 	.probe		= nvme_probe,
4052 	.remove		= nvme_remove,
4053 	.shutdown	= nvme_shutdown,
4054 	.driver		= {
4055 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4056 #ifdef CONFIG_PM_SLEEP
4057 		.pm		= &nvme_dev_pm_ops,
4058 #endif
4059 	},
4060 	.sriov_configure = pci_sriov_configure_simple,
4061 	.err_handler	= &nvme_err_handler,
4062 };
4063 
nvme_init(void)4064 static int __init nvme_init(void)
4065 {
4066 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
4067 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
4068 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
4069 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
4070 
4071 	return pci_register_driver(&nvme_driver);
4072 }
4073 
nvme_exit(void)4074 static void __exit nvme_exit(void)
4075 {
4076 	pci_unregister_driver(&nvme_driver);
4077 	flush_workqueue(nvme_wq);
4078 }
4079 
4080 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
4081 MODULE_LICENSE("GPL");
4082 MODULE_VERSION("1.0");
4083 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
4084 module_init(nvme_init);
4085 module_exit(nvme_exit);
4086