1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq-dma.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/nodemask.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30
31 #include "trace.h"
32 #include "nvme.h"
33
34 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
36
37 /* Optimisation for I/Os between 4k and 128k */
38 #define NVME_SMALL_POOL_SIZE 256
39
40 /*
41 * Arbitrary upper bound.
42 */
43 #define NVME_MAX_BYTES SZ_8M
44 #define NVME_MAX_NR_DESCRIPTORS 5
45
46 /*
47 * For data SGLs we support a single descriptors worth of SGL entries.
48 * For PRPs, segments don't matter at all.
49 */
50 #define NVME_MAX_SEGS \
51 (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
52
53 /*
54 * For metadata SGLs, only the small descriptor is supported, and the first
55 * entry is the segment descriptor, which for the data pointer sits in the SQE.
56 */
57 #define NVME_MAX_META_SEGS \
58 ((NVME_SMALL_POOL_SIZE / sizeof(struct nvme_sgl_desc)) - 1)
59
60 /*
61 * The last entry is used to link to the next descriptor.
62 */
63 #define PRPS_PER_PAGE \
64 (((NVME_CTRL_PAGE_SIZE / sizeof(__le64))) - 1)
65
66 /*
67 * I/O could be non-aligned both at the beginning and end.
68 */
69 #define MAX_PRP_RANGE \
70 (NVME_MAX_BYTES + 2 * (NVME_CTRL_PAGE_SIZE - 1))
71
72 static_assert(MAX_PRP_RANGE / NVME_CTRL_PAGE_SIZE <=
73 (1 /* prp1 */ + NVME_MAX_NR_DESCRIPTORS * PRPS_PER_PAGE));
74
75 static int use_threaded_interrupts;
76 module_param(use_threaded_interrupts, int, 0444);
77
78 static bool use_cmb_sqes = true;
79 module_param(use_cmb_sqes, bool, 0444);
80 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
81
82 static unsigned int max_host_mem_size_mb = 128;
83 module_param(max_host_mem_size_mb, uint, 0444);
84 MODULE_PARM_DESC(max_host_mem_size_mb,
85 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
86
87 static unsigned int sgl_threshold = SZ_32K;
88 module_param(sgl_threshold, uint, 0644);
89 MODULE_PARM_DESC(sgl_threshold,
90 "Use SGLs when average request segment size is larger or equal to "
91 "this size. Use 0 to disable SGLs.");
92
93 #define NVME_PCI_MIN_QUEUE_SIZE 2
94 #define NVME_PCI_MAX_QUEUE_SIZE 4095
95 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
96 static const struct kernel_param_ops io_queue_depth_ops = {
97 .set = io_queue_depth_set,
98 .get = param_get_uint,
99 };
100
101 static unsigned int io_queue_depth = 1024;
102 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
103 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
104
io_queue_count_set(const char * val,const struct kernel_param * kp)105 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
106 {
107 unsigned int n;
108 int ret;
109
110 ret = kstrtouint(val, 10, &n);
111 if (ret != 0 || n > blk_mq_num_possible_queues(0))
112 return -EINVAL;
113 return param_set_uint(val, kp);
114 }
115
116 static const struct kernel_param_ops io_queue_count_ops = {
117 .set = io_queue_count_set,
118 .get = param_get_uint,
119 };
120
121 static unsigned int write_queues;
122 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
123 MODULE_PARM_DESC(write_queues,
124 "Number of queues to use for writes. If not set, reads and writes "
125 "will share a queue set.");
126
127 static unsigned int poll_queues;
128 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
129 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
130
131 static bool noacpi;
132 module_param(noacpi, bool, 0444);
133 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
134
135 struct nvme_dev;
136 struct nvme_queue;
137
138 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
139 static void nvme_delete_io_queues(struct nvme_dev *dev);
140 static void nvme_update_attrs(struct nvme_dev *dev);
141
142 struct nvme_descriptor_pools {
143 struct dma_pool *large;
144 struct dma_pool *small;
145 };
146
147 /*
148 * Represents an NVM Express device. Each nvme_dev is a PCI function.
149 */
150 struct nvme_dev {
151 struct nvme_queue *queues;
152 struct blk_mq_tag_set tagset;
153 struct blk_mq_tag_set admin_tagset;
154 u32 __iomem *dbs;
155 struct device *dev;
156 unsigned online_queues;
157 unsigned max_qid;
158 unsigned io_queues[HCTX_MAX_TYPES];
159 unsigned int num_vecs;
160 u32 q_depth;
161 int io_sqes;
162 u32 db_stride;
163 void __iomem *bar;
164 unsigned long bar_mapped_size;
165 struct mutex shutdown_lock;
166 bool subsystem;
167 u64 cmb_size;
168 bool cmb_use_sqes;
169 u32 cmbsz;
170 u32 cmbloc;
171 struct nvme_ctrl ctrl;
172 u32 last_ps;
173 bool hmb;
174 struct sg_table *hmb_sgt;
175 mempool_t *dmavec_mempool;
176
177 /* shadow doorbell buffer support: */
178 __le32 *dbbuf_dbs;
179 dma_addr_t dbbuf_dbs_dma_addr;
180 __le32 *dbbuf_eis;
181 dma_addr_t dbbuf_eis_dma_addr;
182
183 /* host memory buffer support: */
184 u64 host_mem_size;
185 u32 nr_host_mem_descs;
186 u32 host_mem_descs_size;
187 dma_addr_t host_mem_descs_dma;
188 struct nvme_host_mem_buf_desc *host_mem_descs;
189 void **host_mem_desc_bufs;
190 unsigned int nr_allocated_queues;
191 unsigned int nr_write_queues;
192 unsigned int nr_poll_queues;
193 struct nvme_descriptor_pools descriptor_pools[];
194 };
195
io_queue_depth_set(const char * val,const struct kernel_param * kp)196 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
197 {
198 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
199 NVME_PCI_MAX_QUEUE_SIZE);
200 }
201
sq_idx(unsigned int qid,u32 stride)202 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
203 {
204 return qid * 2 * stride;
205 }
206
cq_idx(unsigned int qid,u32 stride)207 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
208 {
209 return (qid * 2 + 1) * stride;
210 }
211
to_nvme_dev(struct nvme_ctrl * ctrl)212 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
213 {
214 return container_of(ctrl, struct nvme_dev, ctrl);
215 }
216
217 /*
218 * An NVM Express queue. Each device has at least two (one for admin
219 * commands and one for I/O commands).
220 */
221 struct nvme_queue {
222 struct nvme_dev *dev;
223 struct nvme_descriptor_pools descriptor_pools;
224 spinlock_t sq_lock;
225 void *sq_cmds;
226 /* only used for poll queues: */
227 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
228 struct nvme_completion *cqes;
229 dma_addr_t sq_dma_addr;
230 dma_addr_t cq_dma_addr;
231 u32 __iomem *q_db;
232 u32 q_depth;
233 u16 cq_vector;
234 u16 sq_tail;
235 u16 last_sq_tail;
236 u16 cq_head;
237 u16 qid;
238 u8 cq_phase;
239 u8 sqes;
240 unsigned long flags;
241 #define NVMEQ_ENABLED 0
242 #define NVMEQ_SQ_CMB 1
243 #define NVMEQ_DELETE_ERROR 2
244 #define NVMEQ_POLLED 3
245 __le32 *dbbuf_sq_db;
246 __le32 *dbbuf_cq_db;
247 __le32 *dbbuf_sq_ei;
248 __le32 *dbbuf_cq_ei;
249 struct completion delete_done;
250 };
251
252 /* bits for iod->flags */
253 enum nvme_iod_flags {
254 /* this command has been aborted by the timeout handler */
255 IOD_ABORTED = 1U << 0,
256
257 /* uses the small descriptor pool */
258 IOD_SMALL_DESCRIPTOR = 1U << 1,
259
260 /* single segment dma mapping */
261 IOD_SINGLE_SEGMENT = 1U << 2,
262
263 /* Data payload contains p2p memory */
264 IOD_DATA_P2P = 1U << 3,
265
266 /* Metadata contains p2p memory */
267 IOD_META_P2P = 1U << 4,
268
269 /* Data payload contains MMIO memory */
270 IOD_DATA_MMIO = 1U << 5,
271
272 /* Metadata contains MMIO memory */
273 IOD_META_MMIO = 1U << 6,
274
275 /* Metadata using non-coalesced MPTR */
276 IOD_SINGLE_META_SEGMENT = 1U << 7,
277 };
278
279 struct nvme_dma_vec {
280 dma_addr_t addr;
281 unsigned int len;
282 };
283
284 /*
285 * The nvme_iod describes the data in an I/O.
286 */
287 struct nvme_iod {
288 struct nvme_request req;
289 struct nvme_command cmd;
290 u8 flags;
291 u8 nr_descriptors;
292
293 unsigned int total_len;
294 struct dma_iova_state dma_state;
295 void *descriptors[NVME_MAX_NR_DESCRIPTORS];
296 struct nvme_dma_vec *dma_vecs;
297 unsigned int nr_dma_vecs;
298
299 dma_addr_t meta_dma;
300 unsigned int meta_total_len;
301 struct dma_iova_state meta_dma_state;
302 struct nvme_sgl_desc *meta_descriptor;
303 };
304
nvme_dbbuf_size(struct nvme_dev * dev)305 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
306 {
307 return dev->nr_allocated_queues * 8 * dev->db_stride;
308 }
309
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)310 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
311 {
312 unsigned int mem_size = nvme_dbbuf_size(dev);
313
314 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
315 return;
316
317 if (dev->dbbuf_dbs) {
318 /*
319 * Clear the dbbuf memory so the driver doesn't observe stale
320 * values from the previous instantiation.
321 */
322 memset(dev->dbbuf_dbs, 0, mem_size);
323 memset(dev->dbbuf_eis, 0, mem_size);
324 return;
325 }
326
327 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
328 &dev->dbbuf_dbs_dma_addr,
329 GFP_KERNEL);
330 if (!dev->dbbuf_dbs)
331 goto fail;
332 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
333 &dev->dbbuf_eis_dma_addr,
334 GFP_KERNEL);
335 if (!dev->dbbuf_eis)
336 goto fail_free_dbbuf_dbs;
337 return;
338
339 fail_free_dbbuf_dbs:
340 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
341 dev->dbbuf_dbs_dma_addr);
342 dev->dbbuf_dbs = NULL;
343 fail:
344 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
345 }
346
nvme_dbbuf_dma_free(struct nvme_dev * dev)347 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
348 {
349 unsigned int mem_size = nvme_dbbuf_size(dev);
350
351 if (dev->dbbuf_dbs) {
352 dma_free_coherent(dev->dev, mem_size,
353 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
354 dev->dbbuf_dbs = NULL;
355 }
356 if (dev->dbbuf_eis) {
357 dma_free_coherent(dev->dev, mem_size,
358 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
359 dev->dbbuf_eis = NULL;
360 }
361 }
362
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)363 static void nvme_dbbuf_init(struct nvme_dev *dev,
364 struct nvme_queue *nvmeq, int qid)
365 {
366 if (!dev->dbbuf_dbs || !qid)
367 return;
368
369 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
370 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
371 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
372 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
373 }
374
nvme_dbbuf_free(struct nvme_queue * nvmeq)375 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
376 {
377 if (!nvmeq->qid)
378 return;
379
380 nvmeq->dbbuf_sq_db = NULL;
381 nvmeq->dbbuf_cq_db = NULL;
382 nvmeq->dbbuf_sq_ei = NULL;
383 nvmeq->dbbuf_cq_ei = NULL;
384 }
385
nvme_dbbuf_set(struct nvme_dev * dev)386 static void nvme_dbbuf_set(struct nvme_dev *dev)
387 {
388 struct nvme_command c = { };
389 unsigned int i;
390
391 if (!dev->dbbuf_dbs)
392 return;
393
394 c.dbbuf.opcode = nvme_admin_dbbuf;
395 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
396 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
397
398 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
399 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
400 /* Free memory and continue on */
401 nvme_dbbuf_dma_free(dev);
402
403 for (i = 1; i <= dev->online_queues; i++)
404 nvme_dbbuf_free(&dev->queues[i]);
405 }
406 }
407
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)408 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
409 {
410 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
411 }
412
413 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)414 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
415 volatile __le32 *dbbuf_ei)
416 {
417 if (dbbuf_db) {
418 u16 old_value, event_idx;
419
420 /*
421 * Ensure that the queue is written before updating
422 * the doorbell in memory
423 */
424 wmb();
425
426 old_value = le32_to_cpu(*dbbuf_db);
427 *dbbuf_db = cpu_to_le32(value);
428
429 /*
430 * Ensure that the doorbell is updated before reading the event
431 * index from memory. The controller needs to provide similar
432 * ordering to ensure the event index is updated before reading
433 * the doorbell.
434 */
435 mb();
436
437 event_idx = le32_to_cpu(*dbbuf_ei);
438 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
439 return false;
440 }
441
442 return true;
443 }
444
445 static struct nvme_descriptor_pools *
nvme_setup_descriptor_pools(struct nvme_dev * dev,unsigned numa_node)446 nvme_setup_descriptor_pools(struct nvme_dev *dev, unsigned numa_node)
447 {
448 struct nvme_descriptor_pools *pools = &dev->descriptor_pools[numa_node];
449 size_t small_align = NVME_SMALL_POOL_SIZE;
450
451 if (pools->small)
452 return pools; /* already initialized */
453
454 pools->large = dma_pool_create_node("nvme descriptor page", dev->dev,
455 NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE, 0, numa_node);
456 if (!pools->large)
457 return ERR_PTR(-ENOMEM);
458
459 if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
460 small_align = 512;
461
462 pools->small = dma_pool_create_node("nvme descriptor small", dev->dev,
463 NVME_SMALL_POOL_SIZE, small_align, 0, numa_node);
464 if (!pools->small) {
465 dma_pool_destroy(pools->large);
466 pools->large = NULL;
467 return ERR_PTR(-ENOMEM);
468 }
469
470 return pools;
471 }
472
nvme_release_descriptor_pools(struct nvme_dev * dev)473 static void nvme_release_descriptor_pools(struct nvme_dev *dev)
474 {
475 unsigned i;
476
477 for (i = 0; i < nr_node_ids; i++) {
478 struct nvme_descriptor_pools *pools = &dev->descriptor_pools[i];
479
480 dma_pool_destroy(pools->large);
481 dma_pool_destroy(pools->small);
482 }
483 }
484
nvme_init_hctx_common(struct blk_mq_hw_ctx * hctx,void * data,unsigned qid)485 static int nvme_init_hctx_common(struct blk_mq_hw_ctx *hctx, void *data,
486 unsigned qid)
487 {
488 struct nvme_dev *dev = to_nvme_dev(data);
489 struct nvme_queue *nvmeq = &dev->queues[qid];
490 struct nvme_descriptor_pools *pools;
491 struct blk_mq_tags *tags;
492
493 tags = qid ? dev->tagset.tags[qid - 1] : dev->admin_tagset.tags[0];
494 WARN_ON(tags != hctx->tags);
495 pools = nvme_setup_descriptor_pools(dev, hctx->numa_node);
496 if (IS_ERR(pools))
497 return PTR_ERR(pools);
498
499 nvmeq->descriptor_pools = *pools;
500 hctx->driver_data = nvmeq;
501 return 0;
502 }
503
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)504 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
505 unsigned int hctx_idx)
506 {
507 WARN_ON(hctx_idx != 0);
508 return nvme_init_hctx_common(hctx, data, 0);
509 }
510
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)511 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
512 unsigned int hctx_idx)
513 {
514 return nvme_init_hctx_common(hctx, data, hctx_idx + 1);
515 }
516
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)517 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
518 struct request *req, unsigned int hctx_idx,
519 unsigned int numa_node)
520 {
521 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
522
523 nvme_req(req)->ctrl = set->driver_data;
524 nvme_req(req)->cmd = &iod->cmd;
525 return 0;
526 }
527
queue_irq_offset(struct nvme_dev * dev)528 static int queue_irq_offset(struct nvme_dev *dev)
529 {
530 /* if we have more than 1 vec, admin queue offsets us by 1 */
531 if (dev->num_vecs > 1)
532 return 1;
533
534 return 0;
535 }
536
nvme_pci_map_queues(struct blk_mq_tag_set * set)537 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
538 {
539 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
540 int i, qoff, offset;
541
542 offset = queue_irq_offset(dev);
543 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
544 struct blk_mq_queue_map *map = &set->map[i];
545
546 map->nr_queues = dev->io_queues[i];
547 if (!map->nr_queues) {
548 BUG_ON(i == HCTX_TYPE_DEFAULT);
549 continue;
550 }
551
552 /*
553 * The poll queue(s) doesn't have an IRQ (and hence IRQ
554 * affinity), so use the regular blk-mq cpu mapping
555 */
556 map->queue_offset = qoff;
557 if (i != HCTX_TYPE_POLL && offset)
558 blk_mq_map_hw_queues(map, dev->dev, offset);
559 else
560 blk_mq_map_queues(map);
561 qoff += map->nr_queues;
562 offset += map->nr_queues;
563 }
564 }
565
566 /*
567 * Write sq tail if we are asked to, or if the next command would wrap.
568 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)569 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
570 {
571 if (!write_sq) {
572 u16 next_tail = nvmeq->sq_tail + 1;
573
574 if (next_tail == nvmeq->q_depth)
575 next_tail = 0;
576 if (next_tail != nvmeq->last_sq_tail)
577 return;
578 }
579
580 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
581 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
582 writel(nvmeq->sq_tail, nvmeq->q_db);
583 nvmeq->last_sq_tail = nvmeq->sq_tail;
584 }
585
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)586 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
587 struct nvme_command *cmd)
588 {
589 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
590 absolute_pointer(cmd), sizeof(*cmd));
591 if (++nvmeq->sq_tail == nvmeq->q_depth)
592 nvmeq->sq_tail = 0;
593 }
594
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)595 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
596 {
597 struct nvme_queue *nvmeq = hctx->driver_data;
598
599 spin_lock(&nvmeq->sq_lock);
600 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
601 nvme_write_sq_db(nvmeq, true);
602 spin_unlock(&nvmeq->sq_lock);
603 }
604
605 enum nvme_use_sgl {
606 SGL_UNSUPPORTED,
607 SGL_SUPPORTED,
608 SGL_FORCED,
609 };
610
nvme_pci_metadata_use_sgls(struct request * req)611 static inline bool nvme_pci_metadata_use_sgls(struct request *req)
612 {
613 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
614 struct nvme_dev *dev = nvmeq->dev;
615
616 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
617 return false;
618 return req->nr_integrity_segments > 1 ||
619 nvme_req(req)->flags & NVME_REQ_USERCMD;
620 }
621
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)622 static inline enum nvme_use_sgl nvme_pci_use_sgls(struct nvme_dev *dev,
623 struct request *req)
624 {
625 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
626
627 if (nvmeq->qid && nvme_ctrl_sgl_supported(&dev->ctrl)) {
628 /*
629 * When the controller is capable of using SGL, there are
630 * several conditions that we force to use it:
631 *
632 * 1. A request containing page gaps within the controller's
633 * mask can not use the PRP format.
634 *
635 * 2. User commands use SGL because that lets the device
636 * validate the requested transfer lengths.
637 *
638 * 3. Multiple integrity segments must use SGL as that's the
639 * only way to describe such a command in NVMe.
640 */
641 if (req_phys_gap_mask(req) & (NVME_CTRL_PAGE_SIZE - 1) ||
642 nvme_req(req)->flags & NVME_REQ_USERCMD ||
643 req->nr_integrity_segments > 1)
644 return SGL_FORCED;
645 return SGL_SUPPORTED;
646 }
647
648 return SGL_UNSUPPORTED;
649 }
650
nvme_pci_avg_seg_size(struct request * req)651 static unsigned int nvme_pci_avg_seg_size(struct request *req)
652 {
653 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
654 unsigned int nseg;
655
656 if (blk_rq_dma_map_coalesce(&iod->dma_state))
657 nseg = 1;
658 else
659 nseg = blk_rq_nr_phys_segments(req);
660 return DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
661 }
662
nvme_dma_pool(struct nvme_queue * nvmeq,struct nvme_iod * iod)663 static inline struct dma_pool *nvme_dma_pool(struct nvme_queue *nvmeq,
664 struct nvme_iod *iod)
665 {
666 if (iod->flags & IOD_SMALL_DESCRIPTOR)
667 return nvmeq->descriptor_pools.small;
668 return nvmeq->descriptor_pools.large;
669 }
670
nvme_pci_cmd_use_meta_sgl(struct nvme_command * cmd)671 static inline bool nvme_pci_cmd_use_meta_sgl(struct nvme_command *cmd)
672 {
673 return (cmd->common.flags & NVME_CMD_SGL_ALL) == NVME_CMD_SGL_METASEG;
674 }
675
nvme_pci_cmd_use_sgl(struct nvme_command * cmd)676 static inline bool nvme_pci_cmd_use_sgl(struct nvme_command *cmd)
677 {
678 return cmd->common.flags &
679 (NVME_CMD_SGL_METABUF | NVME_CMD_SGL_METASEG);
680 }
681
nvme_pci_first_desc_dma_addr(struct nvme_command * cmd)682 static inline dma_addr_t nvme_pci_first_desc_dma_addr(struct nvme_command *cmd)
683 {
684 if (nvme_pci_cmd_use_sgl(cmd))
685 return le64_to_cpu(cmd->common.dptr.sgl.addr);
686 return le64_to_cpu(cmd->common.dptr.prp2);
687 }
688
nvme_free_descriptors(struct request * req)689 static void nvme_free_descriptors(struct request *req)
690 {
691 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
692 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
693 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
694 dma_addr_t dma_addr = nvme_pci_first_desc_dma_addr(&iod->cmd);
695 int i;
696
697 if (iod->nr_descriptors == 1) {
698 dma_pool_free(nvme_dma_pool(nvmeq, iod), iod->descriptors[0],
699 dma_addr);
700 return;
701 }
702
703 for (i = 0; i < iod->nr_descriptors; i++) {
704 __le64 *prp_list = iod->descriptors[i];
705 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
706
707 dma_pool_free(nvmeq->descriptor_pools.large, prp_list,
708 dma_addr);
709 dma_addr = next_dma_addr;
710 }
711 }
712
nvme_free_prps(struct request * req,unsigned int attrs)713 static void nvme_free_prps(struct request *req, unsigned int attrs)
714 {
715 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
716 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
717 unsigned int i;
718
719 for (i = 0; i < iod->nr_dma_vecs; i++)
720 dma_unmap_phys(nvmeq->dev->dev, iod->dma_vecs[i].addr,
721 iod->dma_vecs[i].len, rq_dma_dir(req), attrs);
722 mempool_free(iod->dma_vecs, nvmeq->dev->dmavec_mempool);
723 }
724
nvme_free_sgls(struct request * req,struct nvme_sgl_desc * sge,struct nvme_sgl_desc * sg_list,unsigned int attrs)725 static void nvme_free_sgls(struct request *req, struct nvme_sgl_desc *sge,
726 struct nvme_sgl_desc *sg_list, unsigned int attrs)
727 {
728 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
729 enum dma_data_direction dir = rq_dma_dir(req);
730 unsigned int len = le32_to_cpu(sge->length);
731 struct device *dma_dev = nvmeq->dev->dev;
732 unsigned int i;
733
734 if (sge->type == (NVME_SGL_FMT_DATA_DESC << 4)) {
735 dma_unmap_phys(dma_dev, le64_to_cpu(sge->addr), len, dir,
736 attrs);
737 return;
738 }
739
740 for (i = 0; i < len / sizeof(*sg_list); i++)
741 dma_unmap_phys(dma_dev, le64_to_cpu(sg_list[i].addr),
742 le32_to_cpu(sg_list[i].length), dir, attrs);
743 }
744
nvme_unmap_metadata(struct request * req)745 static void nvme_unmap_metadata(struct request *req)
746 {
747 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
748 enum pci_p2pdma_map_type map = PCI_P2PDMA_MAP_NONE;
749 enum dma_data_direction dir = rq_dma_dir(req);
750 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
751 struct device *dma_dev = nvmeq->dev->dev;
752 struct nvme_sgl_desc *sge = iod->meta_descriptor;
753 unsigned int attrs = 0;
754
755 if (iod->flags & IOD_SINGLE_META_SEGMENT) {
756 dma_unmap_page(dma_dev, iod->meta_dma,
757 rq_integrity_vec(req).bv_len,
758 rq_dma_dir(req));
759 return;
760 }
761
762 if (iod->flags & IOD_META_P2P)
763 map = PCI_P2PDMA_MAP_BUS_ADDR;
764 else if (iod->flags & IOD_META_MMIO) {
765 map = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
766 attrs |= DMA_ATTR_MMIO;
767 }
768
769 if (!blk_rq_dma_unmap(req, dma_dev, &iod->meta_dma_state,
770 iod->meta_total_len, map)) {
771 if (nvme_pci_cmd_use_meta_sgl(&iod->cmd))
772 nvme_free_sgls(req, sge, &sge[1], attrs);
773 else
774 dma_unmap_phys(dma_dev, iod->meta_dma,
775 iod->meta_total_len, dir, attrs);
776 }
777
778 if (iod->meta_descriptor)
779 dma_pool_free(nvmeq->descriptor_pools.small,
780 iod->meta_descriptor, iod->meta_dma);
781 }
782
nvme_unmap_data(struct request * req)783 static void nvme_unmap_data(struct request *req)
784 {
785 enum pci_p2pdma_map_type map = PCI_P2PDMA_MAP_NONE;
786 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
787 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
788 struct device *dma_dev = nvmeq->dev->dev;
789 unsigned int attrs = 0;
790
791 if (iod->flags & IOD_SINGLE_SEGMENT) {
792 static_assert(offsetof(union nvme_data_ptr, prp1) ==
793 offsetof(union nvme_data_ptr, sgl.addr));
794 dma_unmap_page(dma_dev, le64_to_cpu(iod->cmd.common.dptr.prp1),
795 iod->total_len, rq_dma_dir(req));
796 return;
797 }
798
799 if (iod->flags & IOD_DATA_P2P)
800 map = PCI_P2PDMA_MAP_BUS_ADDR;
801 else if (iod->flags & IOD_DATA_MMIO) {
802 map = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
803 attrs |= DMA_ATTR_MMIO;
804 }
805
806 if (!blk_rq_dma_unmap(req, dma_dev, &iod->dma_state, iod->total_len,
807 map)) {
808 if (nvme_pci_cmd_use_sgl(&iod->cmd))
809 nvme_free_sgls(req, iod->descriptors[0],
810 &iod->cmd.common.dptr.sgl, attrs);
811 else
812 nvme_free_prps(req, attrs);
813 }
814
815 if (iod->nr_descriptors)
816 nvme_free_descriptors(req);
817 }
818
nvme_pci_prp_iter_next(struct request * req,struct device * dma_dev,struct blk_dma_iter * iter)819 static bool nvme_pci_prp_iter_next(struct request *req, struct device *dma_dev,
820 struct blk_dma_iter *iter)
821 {
822 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
823
824 if (iter->len)
825 return true;
826 if (!blk_rq_dma_map_iter_next(req, dma_dev, &iod->dma_state, iter))
827 return false;
828 if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(dma_dev)) {
829 iod->dma_vecs[iod->nr_dma_vecs].addr = iter->addr;
830 iod->dma_vecs[iod->nr_dma_vecs].len = iter->len;
831 iod->nr_dma_vecs++;
832 }
833 return true;
834 }
835
nvme_pci_setup_data_prp(struct request * req,struct blk_dma_iter * iter)836 static blk_status_t nvme_pci_setup_data_prp(struct request *req,
837 struct blk_dma_iter *iter)
838 {
839 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
840 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
841 unsigned int length = blk_rq_payload_bytes(req);
842 dma_addr_t prp1_dma, prp2_dma = 0;
843 unsigned int prp_len, i;
844 __le64 *prp_list;
845
846 if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(nvmeq->dev->dev)) {
847 iod->dma_vecs = mempool_alloc(nvmeq->dev->dmavec_mempool,
848 GFP_ATOMIC);
849 if (!iod->dma_vecs)
850 return BLK_STS_RESOURCE;
851 iod->dma_vecs[0].addr = iter->addr;
852 iod->dma_vecs[0].len = iter->len;
853 iod->nr_dma_vecs = 1;
854 }
855
856 /*
857 * PRP1 always points to the start of the DMA transfers.
858 *
859 * This is the only PRP (except for the list entries) that could be
860 * non-aligned.
861 */
862 prp1_dma = iter->addr;
863 prp_len = min(length, NVME_CTRL_PAGE_SIZE -
864 (iter->addr & (NVME_CTRL_PAGE_SIZE - 1)));
865 iod->total_len += prp_len;
866 iter->addr += prp_len;
867 iter->len -= prp_len;
868 length -= prp_len;
869 if (!length)
870 goto done;
871
872 if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
873 if (WARN_ON_ONCE(!iter->status))
874 goto bad_sgl;
875 goto done;
876 }
877
878 /*
879 * PRP2 is usually a list, but can point to data if all data to be
880 * transferred fits into PRP1 + PRP2:
881 */
882 if (length <= NVME_CTRL_PAGE_SIZE) {
883 prp2_dma = iter->addr;
884 iod->total_len += length;
885 goto done;
886 }
887
888 if (DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE) <=
889 NVME_SMALL_POOL_SIZE / sizeof(__le64))
890 iod->flags |= IOD_SMALL_DESCRIPTOR;
891
892 prp_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
893 &prp2_dma);
894 if (!prp_list) {
895 iter->status = BLK_STS_RESOURCE;
896 goto done;
897 }
898 iod->descriptors[iod->nr_descriptors++] = prp_list;
899
900 i = 0;
901 for (;;) {
902 prp_list[i++] = cpu_to_le64(iter->addr);
903 prp_len = min(length, NVME_CTRL_PAGE_SIZE);
904 if (WARN_ON_ONCE(iter->len < prp_len))
905 goto bad_sgl;
906
907 iod->total_len += prp_len;
908 iter->addr += prp_len;
909 iter->len -= prp_len;
910 length -= prp_len;
911 if (!length)
912 break;
913
914 if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
915 if (WARN_ON_ONCE(!iter->status))
916 goto bad_sgl;
917 goto done;
918 }
919
920 /*
921 * If we've filled the entire descriptor, allocate a new that is
922 * pointed to be the last entry in the previous PRP list. To
923 * accommodate for that move the last actual entry to the new
924 * descriptor.
925 */
926 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
927 __le64 *old_prp_list = prp_list;
928 dma_addr_t prp_list_dma;
929
930 prp_list = dma_pool_alloc(nvmeq->descriptor_pools.large,
931 GFP_ATOMIC, &prp_list_dma);
932 if (!prp_list) {
933 iter->status = BLK_STS_RESOURCE;
934 goto done;
935 }
936 iod->descriptors[iod->nr_descriptors++] = prp_list;
937
938 prp_list[0] = old_prp_list[i - 1];
939 old_prp_list[i - 1] = cpu_to_le64(prp_list_dma);
940 i = 1;
941 }
942 }
943
944 done:
945 /*
946 * nvme_unmap_data uses the DPT field in the SQE to tear down the
947 * mapping, so initialize it even for failures.
948 */
949 iod->cmd.common.dptr.prp1 = cpu_to_le64(prp1_dma);
950 iod->cmd.common.dptr.prp2 = cpu_to_le64(prp2_dma);
951 if (unlikely(iter->status))
952 nvme_unmap_data(req);
953 return iter->status;
954
955 bad_sgl:
956 dev_err_once(nvmeq->dev->dev,
957 "Incorrectly formed request for payload:%d nents:%d\n",
958 blk_rq_payload_bytes(req), blk_rq_nr_phys_segments(req));
959 return BLK_STS_IOERR;
960 }
961
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct blk_dma_iter * iter)962 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
963 struct blk_dma_iter *iter)
964 {
965 sge->addr = cpu_to_le64(iter->addr);
966 sge->length = cpu_to_le32(iter->len);
967 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
968 }
969
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)970 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
971 dma_addr_t dma_addr, int entries)
972 {
973 sge->addr = cpu_to_le64(dma_addr);
974 sge->length = cpu_to_le32(entries * sizeof(*sge));
975 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
976 }
977
nvme_pci_setup_data_sgl(struct request * req,struct blk_dma_iter * iter)978 static blk_status_t nvme_pci_setup_data_sgl(struct request *req,
979 struct blk_dma_iter *iter)
980 {
981 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
982 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
983 unsigned int entries = blk_rq_nr_phys_segments(req);
984 struct nvme_sgl_desc *sg_list;
985 dma_addr_t sgl_dma;
986 unsigned int mapped = 0;
987
988 /* set the transfer type as SGL */
989 iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
990
991 if (entries == 1 || blk_rq_dma_map_coalesce(&iod->dma_state)) {
992 nvme_pci_sgl_set_data(&iod->cmd.common.dptr.sgl, iter);
993 iod->total_len += iter->len;
994 return BLK_STS_OK;
995 }
996
997 if (entries <= NVME_SMALL_POOL_SIZE / sizeof(*sg_list))
998 iod->flags |= IOD_SMALL_DESCRIPTOR;
999
1000 sg_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
1001 &sgl_dma);
1002 if (!sg_list)
1003 return BLK_STS_RESOURCE;
1004 iod->descriptors[iod->nr_descriptors++] = sg_list;
1005
1006 do {
1007 if (WARN_ON_ONCE(mapped == entries)) {
1008 iter->status = BLK_STS_IOERR;
1009 break;
1010 }
1011 nvme_pci_sgl_set_data(&sg_list[mapped++], iter);
1012 iod->total_len += iter->len;
1013 } while (blk_rq_dma_map_iter_next(req, nvmeq->dev->dev, &iod->dma_state,
1014 iter));
1015
1016 nvme_pci_sgl_set_seg(&iod->cmd.common.dptr.sgl, sgl_dma, mapped);
1017 if (unlikely(iter->status))
1018 nvme_unmap_data(req);
1019 return iter->status;
1020 }
1021
nvme_pci_setup_data_simple(struct request * req,enum nvme_use_sgl use_sgl)1022 static blk_status_t nvme_pci_setup_data_simple(struct request *req,
1023 enum nvme_use_sgl use_sgl)
1024 {
1025 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1026 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1027 struct bio_vec bv = req_bvec(req);
1028 unsigned int prp1_offset = bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
1029 bool prp_possible = prp1_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2;
1030 dma_addr_t dma_addr;
1031
1032 if (!use_sgl && !prp_possible)
1033 return BLK_STS_AGAIN;
1034 if (is_pci_p2pdma_page(bv.bv_page))
1035 return BLK_STS_AGAIN;
1036
1037 dma_addr = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
1038 if (dma_mapping_error(nvmeq->dev->dev, dma_addr))
1039 return BLK_STS_RESOURCE;
1040 iod->total_len = bv.bv_len;
1041 iod->flags |= IOD_SINGLE_SEGMENT;
1042
1043 if (use_sgl == SGL_FORCED || !prp_possible) {
1044 iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
1045 iod->cmd.common.dptr.sgl.addr = cpu_to_le64(dma_addr);
1046 iod->cmd.common.dptr.sgl.length = cpu_to_le32(bv.bv_len);
1047 iod->cmd.common.dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
1048 } else {
1049 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - prp1_offset;
1050
1051 iod->cmd.common.dptr.prp1 = cpu_to_le64(dma_addr);
1052 iod->cmd.common.dptr.prp2 = 0;
1053 if (bv.bv_len > first_prp_len)
1054 iod->cmd.common.dptr.prp2 =
1055 cpu_to_le64(dma_addr + first_prp_len);
1056 }
1057
1058 return BLK_STS_OK;
1059 }
1060
nvme_map_data(struct request * req)1061 static blk_status_t nvme_map_data(struct request *req)
1062 {
1063 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1064 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1065 struct nvme_dev *dev = nvmeq->dev;
1066 enum nvme_use_sgl use_sgl = nvme_pci_use_sgls(dev, req);
1067 struct blk_dma_iter iter;
1068 blk_status_t ret;
1069
1070 /*
1071 * Try to skip the DMA iterator for single segment requests, as that
1072 * significantly improves performances for small I/O sizes.
1073 */
1074 if (blk_rq_nr_phys_segments(req) == 1) {
1075 ret = nvme_pci_setup_data_simple(req, use_sgl);
1076 if (ret != BLK_STS_AGAIN)
1077 return ret;
1078 }
1079
1080 if (!blk_rq_dma_map_iter_start(req, dev->dev, &iod->dma_state, &iter))
1081 return iter.status;
1082
1083 switch (iter.p2pdma.map) {
1084 case PCI_P2PDMA_MAP_BUS_ADDR:
1085 iod->flags |= IOD_DATA_P2P;
1086 break;
1087 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1088 iod->flags |= IOD_DATA_MMIO;
1089 break;
1090 case PCI_P2PDMA_MAP_NONE:
1091 break;
1092 default:
1093 return BLK_STS_RESOURCE;
1094 }
1095
1096 if (use_sgl == SGL_FORCED ||
1097 (use_sgl == SGL_SUPPORTED &&
1098 (sgl_threshold && nvme_pci_avg_seg_size(req) >= sgl_threshold)))
1099 return nvme_pci_setup_data_sgl(req, &iter);
1100 return nvme_pci_setup_data_prp(req, &iter);
1101 }
1102
nvme_pci_setup_meta_iter(struct request * req)1103 static blk_status_t nvme_pci_setup_meta_iter(struct request *req)
1104 {
1105 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1106 unsigned int entries = req->nr_integrity_segments;
1107 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1108 struct nvme_dev *dev = nvmeq->dev;
1109 struct nvme_sgl_desc *sg_list;
1110 struct blk_dma_iter iter;
1111 dma_addr_t sgl_dma;
1112 int i = 0;
1113
1114 if (!blk_rq_integrity_dma_map_iter_start(req, dev->dev,
1115 &iod->meta_dma_state, &iter))
1116 return iter.status;
1117
1118 switch (iter.p2pdma.map) {
1119 case PCI_P2PDMA_MAP_BUS_ADDR:
1120 iod->flags |= IOD_META_P2P;
1121 break;
1122 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1123 iod->flags |= IOD_META_MMIO;
1124 break;
1125 case PCI_P2PDMA_MAP_NONE:
1126 break;
1127 default:
1128 return BLK_STS_RESOURCE;
1129 }
1130
1131 if (blk_rq_dma_map_coalesce(&iod->meta_dma_state))
1132 entries = 1;
1133
1134 /*
1135 * The NVMe MPTR descriptor has an implicit length that the host and
1136 * device must agree on to avoid data/memory corruption. We trust the
1137 * kernel allocated correctly based on the format's parameters, so use
1138 * the more efficient MPTR to avoid extra dma pool allocations for the
1139 * SGL indirection.
1140 *
1141 * But for user commands, we don't necessarily know what they do, so
1142 * the driver can't validate the metadata buffer size. The SGL
1143 * descriptor provides an explicit length, so we're relying on that
1144 * mechanism to catch any misunderstandings between the application and
1145 * device.
1146 *
1147 * P2P DMA also needs to use the blk_dma_iter method, so mptr setup
1148 * leverages this routine when that happens.
1149 */
1150 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl) ||
1151 (entries == 1 && !(nvme_req(req)->flags & NVME_REQ_USERCMD))) {
1152 iod->cmd.common.metadata = cpu_to_le64(iter.addr);
1153 iod->meta_total_len = iter.len;
1154 iod->meta_dma = iter.addr;
1155 iod->meta_descriptor = NULL;
1156 return BLK_STS_OK;
1157 }
1158
1159 sg_list = dma_pool_alloc(nvmeq->descriptor_pools.small, GFP_ATOMIC,
1160 &sgl_dma);
1161 if (!sg_list)
1162 return BLK_STS_RESOURCE;
1163
1164 iod->meta_descriptor = sg_list;
1165 iod->meta_dma = sgl_dma;
1166 iod->cmd.common.flags = NVME_CMD_SGL_METASEG;
1167 iod->cmd.common.metadata = cpu_to_le64(sgl_dma);
1168 if (entries == 1) {
1169 iod->meta_total_len = iter.len;
1170 nvme_pci_sgl_set_data(sg_list, &iter);
1171 return BLK_STS_OK;
1172 }
1173
1174 sgl_dma += sizeof(*sg_list);
1175 do {
1176 nvme_pci_sgl_set_data(&sg_list[++i], &iter);
1177 iod->meta_total_len += iter.len;
1178 } while (blk_rq_integrity_dma_map_iter_next(req, dev->dev, &iter));
1179
1180 nvme_pci_sgl_set_seg(sg_list, sgl_dma, i);
1181 if (unlikely(iter.status))
1182 nvme_unmap_metadata(req);
1183 return iter.status;
1184 }
1185
nvme_pci_setup_meta_mptr(struct request * req)1186 static blk_status_t nvme_pci_setup_meta_mptr(struct request *req)
1187 {
1188 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1189 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1190 struct bio_vec bv = rq_integrity_vec(req);
1191
1192 if (is_pci_p2pdma_page(bv.bv_page))
1193 return nvme_pci_setup_meta_iter(req);
1194
1195 iod->meta_dma = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
1196 if (dma_mapping_error(nvmeq->dev->dev, iod->meta_dma))
1197 return BLK_STS_IOERR;
1198 iod->cmd.common.metadata = cpu_to_le64(iod->meta_dma);
1199 iod->flags |= IOD_SINGLE_META_SEGMENT;
1200 return BLK_STS_OK;
1201 }
1202
nvme_map_metadata(struct request * req)1203 static blk_status_t nvme_map_metadata(struct request *req)
1204 {
1205 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1206
1207 if ((iod->cmd.common.flags & NVME_CMD_SGL_METABUF) &&
1208 nvme_pci_metadata_use_sgls(req))
1209 return nvme_pci_setup_meta_iter(req);
1210 return nvme_pci_setup_meta_mptr(req);
1211 }
1212
nvme_prep_rq(struct request * req)1213 static blk_status_t nvme_prep_rq(struct request *req)
1214 {
1215 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1216 blk_status_t ret;
1217
1218 iod->flags = 0;
1219 iod->nr_descriptors = 0;
1220 iod->total_len = 0;
1221 iod->meta_total_len = 0;
1222
1223 ret = nvme_setup_cmd(req->q->queuedata, req);
1224 if (ret)
1225 return ret;
1226
1227 if (blk_rq_nr_phys_segments(req)) {
1228 ret = nvme_map_data(req);
1229 if (ret)
1230 goto out_free_cmd;
1231 }
1232
1233 if (blk_integrity_rq(req)) {
1234 ret = nvme_map_metadata(req);
1235 if (ret)
1236 goto out_unmap_data;
1237 }
1238
1239 nvme_start_request(req);
1240 return BLK_STS_OK;
1241 out_unmap_data:
1242 if (blk_rq_nr_phys_segments(req))
1243 nvme_unmap_data(req);
1244 out_free_cmd:
1245 nvme_cleanup_cmd(req);
1246 return ret;
1247 }
1248
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1249 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
1250 const struct blk_mq_queue_data *bd)
1251 {
1252 struct nvme_queue *nvmeq = hctx->driver_data;
1253 struct nvme_dev *dev = nvmeq->dev;
1254 struct request *req = bd->rq;
1255 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1256 blk_status_t ret;
1257
1258 /*
1259 * We should not need to do this, but we're still using this to
1260 * ensure we can drain requests on a dying queue.
1261 */
1262 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1263 return BLK_STS_IOERR;
1264
1265 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
1266 return nvme_fail_nonready_command(&dev->ctrl, req);
1267
1268 ret = nvme_prep_rq(req);
1269 if (unlikely(ret))
1270 return ret;
1271 spin_lock(&nvmeq->sq_lock);
1272 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1273 nvme_write_sq_db(nvmeq, bd->last);
1274 spin_unlock(&nvmeq->sq_lock);
1275 return BLK_STS_OK;
1276 }
1277
nvme_submit_cmds(struct nvme_queue * nvmeq,struct rq_list * rqlist)1278 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
1279 {
1280 struct request *req;
1281
1282 if (rq_list_empty(rqlist))
1283 return;
1284
1285 spin_lock(&nvmeq->sq_lock);
1286 while ((req = rq_list_pop(rqlist))) {
1287 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1288
1289 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1290 }
1291 nvme_write_sq_db(nvmeq, true);
1292 spin_unlock(&nvmeq->sq_lock);
1293 }
1294
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)1295 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1296 {
1297 /*
1298 * We should not need to do this, but we're still using this to
1299 * ensure we can drain requests on a dying queue.
1300 */
1301 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1302 return false;
1303 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1304 return false;
1305
1306 return nvme_prep_rq(req) == BLK_STS_OK;
1307 }
1308
nvme_queue_rqs(struct rq_list * rqlist)1309 static void nvme_queue_rqs(struct rq_list *rqlist)
1310 {
1311 struct rq_list submit_list = { };
1312 struct rq_list requeue_list = { };
1313 struct nvme_queue *nvmeq = NULL;
1314 struct request *req;
1315
1316 while ((req = rq_list_pop(rqlist))) {
1317 if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1318 nvme_submit_cmds(nvmeq, &submit_list);
1319 nvmeq = req->mq_hctx->driver_data;
1320
1321 if (nvme_prep_rq_batch(nvmeq, req))
1322 rq_list_add_tail(&submit_list, req);
1323 else
1324 rq_list_add_tail(&requeue_list, req);
1325 }
1326
1327 if (nvmeq)
1328 nvme_submit_cmds(nvmeq, &submit_list);
1329 *rqlist = requeue_list;
1330 }
1331
nvme_pci_unmap_rq(struct request * req)1332 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1333 {
1334 if (blk_integrity_rq(req))
1335 nvme_unmap_metadata(req);
1336 if (blk_rq_nr_phys_segments(req))
1337 nvme_unmap_data(req);
1338 }
1339
nvme_pci_complete_rq(struct request * req)1340 static void nvme_pci_complete_rq(struct request *req)
1341 {
1342 nvme_pci_unmap_rq(req);
1343 nvme_complete_rq(req);
1344 }
1345
nvme_pci_complete_batch(struct io_comp_batch * iob)1346 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1347 {
1348 nvme_complete_batch(iob, nvme_pci_unmap_rq);
1349 }
1350
1351 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)1352 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1353 {
1354 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1355
1356 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1357 }
1358
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)1359 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1360 {
1361 u16 head = nvmeq->cq_head;
1362
1363 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1364 nvmeq->dbbuf_cq_ei))
1365 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1366 }
1367
nvme_queue_tagset(struct nvme_queue * nvmeq)1368 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1369 {
1370 if (!nvmeq->qid)
1371 return nvmeq->dev->admin_tagset.tags[0];
1372 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1373 }
1374
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1375 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1376 struct io_comp_batch *iob, u16 idx)
1377 {
1378 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1379 __u16 command_id = READ_ONCE(cqe->command_id);
1380 struct request *req;
1381
1382 /*
1383 * AEN requests are special as they don't time out and can
1384 * survive any kind of queue freeze and often don't respond to
1385 * aborts. We don't even bother to allocate a struct request
1386 * for them but rather special case them here.
1387 */
1388 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1389 nvme_complete_async_event(&nvmeq->dev->ctrl,
1390 cqe->status, &cqe->result);
1391 return;
1392 }
1393
1394 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1395 if (unlikely(!req)) {
1396 dev_warn(nvmeq->dev->ctrl.device,
1397 "invalid id %d completed on queue %d\n",
1398 command_id, le16_to_cpu(cqe->sq_id));
1399 return;
1400 }
1401
1402 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1403 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1404 !blk_mq_add_to_batch(req, iob,
1405 nvme_req(req)->status != NVME_SC_SUCCESS,
1406 nvme_pci_complete_batch))
1407 nvme_pci_complete_rq(req);
1408 }
1409
nvme_update_cq_head(struct nvme_queue * nvmeq)1410 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1411 {
1412 u32 tmp = nvmeq->cq_head + 1;
1413
1414 if (tmp == nvmeq->q_depth) {
1415 nvmeq->cq_head = 0;
1416 nvmeq->cq_phase ^= 1;
1417 } else {
1418 nvmeq->cq_head = tmp;
1419 }
1420 }
1421
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1422 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1423 struct io_comp_batch *iob)
1424 {
1425 bool found = false;
1426
1427 while (nvme_cqe_pending(nvmeq)) {
1428 found = true;
1429 /*
1430 * load-load control dependency between phase and the rest of
1431 * the cqe requires a full read memory barrier
1432 */
1433 dma_rmb();
1434 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1435 nvme_update_cq_head(nvmeq);
1436 }
1437
1438 if (found)
1439 nvme_ring_cq_doorbell(nvmeq);
1440 return found;
1441 }
1442
nvme_irq(int irq,void * data)1443 static irqreturn_t nvme_irq(int irq, void *data)
1444 {
1445 struct nvme_queue *nvmeq = data;
1446 DEFINE_IO_COMP_BATCH(iob);
1447
1448 if (nvme_poll_cq(nvmeq, &iob)) {
1449 if (!rq_list_empty(&iob.req_list))
1450 nvme_pci_complete_batch(&iob);
1451 return IRQ_HANDLED;
1452 }
1453 return IRQ_NONE;
1454 }
1455
nvme_irq_check(int irq,void * data)1456 static irqreturn_t nvme_irq_check(int irq, void *data)
1457 {
1458 struct nvme_queue *nvmeq = data;
1459
1460 if (nvme_cqe_pending(nvmeq))
1461 return IRQ_WAKE_THREAD;
1462 return IRQ_NONE;
1463 }
1464
1465 /*
1466 * Poll for completions for any interrupt driven queue
1467 * Can be called from any context.
1468 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1469 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1470 {
1471 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1472
1473 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1474
1475 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1476 spin_lock(&nvmeq->cq_poll_lock);
1477 nvme_poll_cq(nvmeq, NULL);
1478 spin_unlock(&nvmeq->cq_poll_lock);
1479 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1480 }
1481
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1482 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1483 {
1484 struct nvme_queue *nvmeq = hctx->driver_data;
1485 bool found;
1486
1487 if (!nvme_cqe_pending(nvmeq))
1488 return 0;
1489
1490 spin_lock(&nvmeq->cq_poll_lock);
1491 found = nvme_poll_cq(nvmeq, iob);
1492 spin_unlock(&nvmeq->cq_poll_lock);
1493
1494 return found;
1495 }
1496
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1497 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1498 {
1499 struct nvme_dev *dev = to_nvme_dev(ctrl);
1500 struct nvme_queue *nvmeq = &dev->queues[0];
1501 struct nvme_command c = { };
1502
1503 c.common.opcode = nvme_admin_async_event;
1504 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1505
1506 spin_lock(&nvmeq->sq_lock);
1507 nvme_sq_copy_cmd(nvmeq, &c);
1508 nvme_write_sq_db(nvmeq, true);
1509 spin_unlock(&nvmeq->sq_lock);
1510 }
1511
nvme_pci_subsystem_reset(struct nvme_ctrl * ctrl)1512 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1513 {
1514 struct nvme_dev *dev = to_nvme_dev(ctrl);
1515 int ret = 0;
1516
1517 /*
1518 * Taking the shutdown_lock ensures the BAR mapping is not being
1519 * altered by reset_work. Holding this lock before the RESETTING state
1520 * change, if successful, also ensures nvme_remove won't be able to
1521 * proceed to iounmap until we're done.
1522 */
1523 mutex_lock(&dev->shutdown_lock);
1524 if (!dev->bar_mapped_size) {
1525 ret = -ENODEV;
1526 goto unlock;
1527 }
1528
1529 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1530 ret = -EBUSY;
1531 goto unlock;
1532 }
1533
1534 writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1535 nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1536
1537 /*
1538 * Read controller status to flush the previous write and trigger a
1539 * pcie read error.
1540 */
1541 readl(dev->bar + NVME_REG_CSTS);
1542 unlock:
1543 mutex_unlock(&dev->shutdown_lock);
1544 return ret;
1545 }
1546
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1547 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1548 {
1549 struct nvme_command c = { };
1550
1551 c.delete_queue.opcode = opcode;
1552 c.delete_queue.qid = cpu_to_le16(id);
1553
1554 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1555 }
1556
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1557 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1558 struct nvme_queue *nvmeq, s16 vector)
1559 {
1560 struct nvme_command c = { };
1561 int flags = NVME_QUEUE_PHYS_CONTIG;
1562
1563 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1564 flags |= NVME_CQ_IRQ_ENABLED;
1565
1566 /*
1567 * Note: we (ab)use the fact that the prp fields survive if no data
1568 * is attached to the request.
1569 */
1570 c.create_cq.opcode = nvme_admin_create_cq;
1571 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1572 c.create_cq.cqid = cpu_to_le16(qid);
1573 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1574 c.create_cq.cq_flags = cpu_to_le16(flags);
1575 c.create_cq.irq_vector = cpu_to_le16(vector);
1576
1577 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1578 }
1579
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1580 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1581 struct nvme_queue *nvmeq)
1582 {
1583 struct nvme_ctrl *ctrl = &dev->ctrl;
1584 struct nvme_command c = { };
1585 int flags = NVME_QUEUE_PHYS_CONTIG;
1586
1587 /*
1588 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1589 * set. Since URGENT priority is zeroes, it makes all queues
1590 * URGENT.
1591 */
1592 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1593 flags |= NVME_SQ_PRIO_MEDIUM;
1594
1595 /*
1596 * Note: we (ab)use the fact that the prp fields survive if no data
1597 * is attached to the request.
1598 */
1599 c.create_sq.opcode = nvme_admin_create_sq;
1600 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1601 c.create_sq.sqid = cpu_to_le16(qid);
1602 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1603 c.create_sq.sq_flags = cpu_to_le16(flags);
1604 c.create_sq.cqid = cpu_to_le16(qid);
1605
1606 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1607 }
1608
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1609 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1610 {
1611 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1612 }
1613
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1614 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1615 {
1616 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1617 }
1618
abort_endio(struct request * req,blk_status_t error)1619 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1620 {
1621 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1622
1623 dev_warn(nvmeq->dev->ctrl.device,
1624 "Abort status: 0x%x", nvme_req(req)->status);
1625 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1626 blk_mq_free_request(req);
1627 return RQ_END_IO_NONE;
1628 }
1629
nvme_should_reset(struct nvme_dev * dev,u32 csts)1630 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1631 {
1632 /* If true, indicates loss of adapter communication, possibly by a
1633 * NVMe Subsystem reset.
1634 */
1635 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1636
1637 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1638 switch (nvme_ctrl_state(&dev->ctrl)) {
1639 case NVME_CTRL_RESETTING:
1640 case NVME_CTRL_CONNECTING:
1641 return false;
1642 default:
1643 break;
1644 }
1645
1646 /* We shouldn't reset unless the controller is on fatal error state
1647 * _or_ if we lost the communication with it.
1648 */
1649 if (!(csts & NVME_CSTS_CFS) && !nssro)
1650 return false;
1651
1652 return true;
1653 }
1654
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1655 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1656 {
1657 /* Read a config register to help see what died. */
1658 u16 pci_status;
1659 int result;
1660
1661 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1662 &pci_status);
1663 if (result == PCIBIOS_SUCCESSFUL)
1664 dev_warn(dev->ctrl.device,
1665 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1666 csts, pci_status);
1667 else
1668 dev_warn(dev->ctrl.device,
1669 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1670 csts, result);
1671
1672 if (csts != ~0)
1673 return;
1674
1675 dev_warn(dev->ctrl.device,
1676 "Does your device have a faulty power saving mode enabled?\n");
1677 dev_warn(dev->ctrl.device,
1678 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1679 }
1680
nvme_timeout(struct request * req)1681 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1682 {
1683 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1684 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1685 struct nvme_dev *dev = nvmeq->dev;
1686 struct request *abort_req;
1687 struct nvme_command cmd = { };
1688 struct pci_dev *pdev = to_pci_dev(dev->dev);
1689 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1690 u8 opcode;
1691
1692 /*
1693 * Shutdown the device immediately if we see it is disconnected. This
1694 * unblocks PCIe error handling if the nvme driver is waiting in
1695 * error_resume for a device that has been removed. We can't unbind the
1696 * driver while the driver's error callback is waiting to complete, so
1697 * we're relying on a timeout to break that deadlock if a removal
1698 * occurs while reset work is running.
1699 */
1700 if (pci_dev_is_disconnected(pdev))
1701 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1702 if (nvme_state_terminal(&dev->ctrl))
1703 goto disable;
1704
1705 /* If PCI error recovery process is happening, we cannot reset or
1706 * the recovery mechanism will surely fail.
1707 */
1708 mb();
1709 if (pci_channel_offline(pdev))
1710 return BLK_EH_RESET_TIMER;
1711
1712 /*
1713 * Reset immediately if the controller is failed
1714 */
1715 if (nvme_should_reset(dev, csts)) {
1716 nvme_warn_reset(dev, csts);
1717 goto disable;
1718 }
1719
1720 /*
1721 * Did we miss an interrupt?
1722 */
1723 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1724 nvme_poll(req->mq_hctx, NULL);
1725 else
1726 nvme_poll_irqdisable(nvmeq);
1727
1728 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1729 dev_warn(dev->ctrl.device,
1730 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1731 req->tag, nvme_cid(req), nvmeq->qid);
1732 return BLK_EH_DONE;
1733 }
1734
1735 /*
1736 * Shutdown immediately if controller times out while starting. The
1737 * reset work will see the pci device disabled when it gets the forced
1738 * cancellation error. All outstanding requests are completed on
1739 * shutdown, so we return BLK_EH_DONE.
1740 */
1741 switch (nvme_ctrl_state(&dev->ctrl)) {
1742 case NVME_CTRL_CONNECTING:
1743 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1744 fallthrough;
1745 case NVME_CTRL_DELETING:
1746 dev_warn_ratelimited(dev->ctrl.device,
1747 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1748 req->tag, nvme_cid(req), nvmeq->qid);
1749 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1750 nvme_dev_disable(dev, true);
1751 return BLK_EH_DONE;
1752 case NVME_CTRL_RESETTING:
1753 return BLK_EH_RESET_TIMER;
1754 default:
1755 break;
1756 }
1757
1758 /*
1759 * Shutdown the controller immediately and schedule a reset if the
1760 * command was already aborted once before and still hasn't been
1761 * returned to the driver, or if this is the admin queue.
1762 */
1763 opcode = nvme_req(req)->cmd->common.opcode;
1764 if (!nvmeq->qid || (iod->flags & IOD_ABORTED)) {
1765 dev_warn(dev->ctrl.device,
1766 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1767 req->tag, nvme_cid(req), opcode,
1768 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1769 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1770 goto disable;
1771 }
1772
1773 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1774 atomic_inc(&dev->ctrl.abort_limit);
1775 return BLK_EH_RESET_TIMER;
1776 }
1777 iod->flags |= IOD_ABORTED;
1778
1779 cmd.abort.opcode = nvme_admin_abort_cmd;
1780 cmd.abort.cid = nvme_cid(req);
1781 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1782
1783 dev_warn(nvmeq->dev->ctrl.device,
1784 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1785 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1786 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1787 blk_rq_bytes(req));
1788
1789 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1790 BLK_MQ_REQ_NOWAIT);
1791 if (IS_ERR(abort_req)) {
1792 atomic_inc(&dev->ctrl.abort_limit);
1793 return BLK_EH_RESET_TIMER;
1794 }
1795 nvme_init_request(abort_req, &cmd);
1796
1797 abort_req->end_io = abort_endio;
1798 abort_req->end_io_data = NULL;
1799 blk_execute_rq_nowait(abort_req, false);
1800
1801 /*
1802 * The aborted req will be completed on receiving the abort req.
1803 * We enable the timer again. If hit twice, it'll cause a device reset,
1804 * as the device then is in a faulty state.
1805 */
1806 return BLK_EH_RESET_TIMER;
1807
1808 disable:
1809 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1810 if (nvme_state_terminal(&dev->ctrl))
1811 nvme_dev_disable(dev, true);
1812 return BLK_EH_DONE;
1813 }
1814
1815 nvme_dev_disable(dev, false);
1816 if (nvme_try_sched_reset(&dev->ctrl))
1817 nvme_unquiesce_io_queues(&dev->ctrl);
1818 return BLK_EH_DONE;
1819 }
1820
nvme_free_queue(struct nvme_queue * nvmeq)1821 static void nvme_free_queue(struct nvme_queue *nvmeq)
1822 {
1823 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1824 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1825 if (!nvmeq->sq_cmds)
1826 return;
1827
1828 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1829 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1830 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1831 } else {
1832 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1833 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1834 }
1835 }
1836
nvme_free_queues(struct nvme_dev * dev,int lowest)1837 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1838 {
1839 int i;
1840
1841 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1842 dev->ctrl.queue_count--;
1843 nvme_free_queue(&dev->queues[i]);
1844 }
1845 }
1846
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1847 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1848 {
1849 struct nvme_queue *nvmeq = &dev->queues[qid];
1850
1851 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1852 return;
1853
1854 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1855 mb();
1856
1857 nvmeq->dev->online_queues--;
1858 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1859 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1860 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1861 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1862 }
1863
nvme_suspend_io_queues(struct nvme_dev * dev)1864 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1865 {
1866 int i;
1867
1868 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1869 nvme_suspend_queue(dev, i);
1870 }
1871
1872 /*
1873 * Called only on a device that has been disabled and after all other threads
1874 * that can check this device's completion queues have synced, except
1875 * nvme_poll(). This is the last chance for the driver to see a natural
1876 * completion before nvme_cancel_request() terminates all incomplete requests.
1877 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1878 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1879 {
1880 int i;
1881
1882 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1883 spin_lock(&dev->queues[i].cq_poll_lock);
1884 nvme_poll_cq(&dev->queues[i], NULL);
1885 spin_unlock(&dev->queues[i].cq_poll_lock);
1886 }
1887 }
1888
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1889 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1890 int entry_size)
1891 {
1892 int q_depth = dev->q_depth;
1893 unsigned q_size_aligned = roundup(q_depth * entry_size,
1894 NVME_CTRL_PAGE_SIZE);
1895
1896 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1897 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1898
1899 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1900 q_depth = div_u64(mem_per_q, entry_size);
1901
1902 /*
1903 * Ensure the reduced q_depth is above some threshold where it
1904 * would be better to map queues in system memory with the
1905 * original depth
1906 */
1907 if (q_depth < 64)
1908 return -ENOMEM;
1909 }
1910
1911 return q_depth;
1912 }
1913
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1914 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1915 int qid)
1916 {
1917 struct pci_dev *pdev = to_pci_dev(dev->dev);
1918
1919 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1920 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1921 if (nvmeq->sq_cmds) {
1922 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1923 nvmeq->sq_cmds);
1924 if (nvmeq->sq_dma_addr) {
1925 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1926 return 0;
1927 }
1928
1929 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1930 }
1931 }
1932
1933 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1934 &nvmeq->sq_dma_addr, GFP_KERNEL);
1935 if (!nvmeq->sq_cmds)
1936 return -ENOMEM;
1937 return 0;
1938 }
1939
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1940 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1941 {
1942 struct nvme_queue *nvmeq = &dev->queues[qid];
1943
1944 if (dev->ctrl.queue_count > qid)
1945 return 0;
1946
1947 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1948 nvmeq->q_depth = depth;
1949 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1950 &nvmeq->cq_dma_addr, GFP_KERNEL);
1951 if (!nvmeq->cqes)
1952 goto free_nvmeq;
1953
1954 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1955 goto free_cqdma;
1956
1957 nvmeq->dev = dev;
1958 spin_lock_init(&nvmeq->sq_lock);
1959 spin_lock_init(&nvmeq->cq_poll_lock);
1960 nvmeq->cq_head = 0;
1961 nvmeq->cq_phase = 1;
1962 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1963 nvmeq->qid = qid;
1964 dev->ctrl.queue_count++;
1965
1966 return 0;
1967
1968 free_cqdma:
1969 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1970 nvmeq->cq_dma_addr);
1971 free_nvmeq:
1972 return -ENOMEM;
1973 }
1974
queue_request_irq(struct nvme_queue * nvmeq)1975 static int queue_request_irq(struct nvme_queue *nvmeq)
1976 {
1977 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1978 int nr = nvmeq->dev->ctrl.instance;
1979
1980 if (use_threaded_interrupts) {
1981 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1982 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1983 } else {
1984 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1985 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1986 }
1987 }
1988
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1989 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1990 {
1991 struct nvme_dev *dev = nvmeq->dev;
1992
1993 nvmeq->sq_tail = 0;
1994 nvmeq->last_sq_tail = 0;
1995 nvmeq->cq_head = 0;
1996 nvmeq->cq_phase = 1;
1997 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1998 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1999 nvme_dbbuf_init(dev, nvmeq, qid);
2000 dev->online_queues++;
2001 wmb(); /* ensure the first interrupt sees the initialization */
2002 }
2003
2004 /*
2005 * Try getting shutdown_lock while setting up IO queues.
2006 */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)2007 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
2008 {
2009 /*
2010 * Give up if the lock is being held by nvme_dev_disable.
2011 */
2012 if (!mutex_trylock(&dev->shutdown_lock))
2013 return -ENODEV;
2014
2015 /*
2016 * Controller is in wrong state, fail early.
2017 */
2018 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
2019 mutex_unlock(&dev->shutdown_lock);
2020 return -ENODEV;
2021 }
2022
2023 return 0;
2024 }
2025
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)2026 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
2027 {
2028 struct nvme_dev *dev = nvmeq->dev;
2029 int result;
2030 u16 vector = 0;
2031
2032 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2033
2034 /*
2035 * A queue's vector matches the queue identifier unless the controller
2036 * has only one vector available.
2037 */
2038 if (!polled)
2039 vector = dev->num_vecs == 1 ? 0 : qid;
2040 else
2041 set_bit(NVMEQ_POLLED, &nvmeq->flags);
2042
2043 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
2044 if (result)
2045 return result;
2046
2047 result = adapter_alloc_sq(dev, qid, nvmeq);
2048 if (result < 0)
2049 return result;
2050 if (result)
2051 goto release_cq;
2052
2053 nvmeq->cq_vector = vector;
2054
2055 result = nvme_setup_io_queues_trylock(dev);
2056 if (result)
2057 return result;
2058 nvme_init_queue(nvmeq, qid);
2059 if (!polled) {
2060 result = queue_request_irq(nvmeq);
2061 if (result < 0)
2062 goto release_sq;
2063 }
2064
2065 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
2066 mutex_unlock(&dev->shutdown_lock);
2067 return result;
2068
2069 release_sq:
2070 dev->online_queues--;
2071 mutex_unlock(&dev->shutdown_lock);
2072 adapter_delete_sq(dev, qid);
2073 release_cq:
2074 adapter_delete_cq(dev, qid);
2075 return result;
2076 }
2077
2078 static const struct blk_mq_ops nvme_mq_admin_ops = {
2079 .queue_rq = nvme_queue_rq,
2080 .complete = nvme_pci_complete_rq,
2081 .init_hctx = nvme_admin_init_hctx,
2082 .init_request = nvme_pci_init_request,
2083 .timeout = nvme_timeout,
2084 };
2085
2086 static const struct blk_mq_ops nvme_mq_ops = {
2087 .queue_rq = nvme_queue_rq,
2088 .queue_rqs = nvme_queue_rqs,
2089 .complete = nvme_pci_complete_rq,
2090 .commit_rqs = nvme_commit_rqs,
2091 .init_hctx = nvme_init_hctx,
2092 .init_request = nvme_pci_init_request,
2093 .map_queues = nvme_pci_map_queues,
2094 .timeout = nvme_timeout,
2095 .poll = nvme_poll,
2096 };
2097
nvme_dev_remove_admin(struct nvme_dev * dev)2098 static void nvme_dev_remove_admin(struct nvme_dev *dev)
2099 {
2100 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
2101 /*
2102 * If the controller was reset during removal, it's possible
2103 * user requests may be waiting on a stopped queue. Start the
2104 * queue to flush these to completion.
2105 */
2106 nvme_unquiesce_admin_queue(&dev->ctrl);
2107 nvme_remove_admin_tag_set(&dev->ctrl);
2108 }
2109 }
2110
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)2111 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2112 {
2113 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
2114 }
2115
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)2116 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
2117 {
2118 struct pci_dev *pdev = to_pci_dev(dev->dev);
2119
2120 if (size <= dev->bar_mapped_size)
2121 return 0;
2122 if (size > pci_resource_len(pdev, 0))
2123 return -ENOMEM;
2124 if (dev->bar)
2125 iounmap(dev->bar);
2126 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2127 if (!dev->bar) {
2128 dev->bar_mapped_size = 0;
2129 return -ENOMEM;
2130 }
2131 dev->bar_mapped_size = size;
2132 dev->dbs = dev->bar + NVME_REG_DBS;
2133
2134 return 0;
2135 }
2136
nvme_pci_configure_admin_queue(struct nvme_dev * dev)2137 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
2138 {
2139 int result;
2140 u32 aqa;
2141 struct nvme_queue *nvmeq;
2142
2143 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
2144 if (result < 0)
2145 return result;
2146
2147 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
2148 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
2149
2150 if (dev->subsystem &&
2151 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
2152 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
2153
2154 /*
2155 * If the device has been passed off to us in an enabled state, just
2156 * clear the enabled bit. The spec says we should set the 'shutdown
2157 * notification bits', but doing so may cause the device to complete
2158 * commands to the admin queue ... and we don't know what memory that
2159 * might be pointing at!
2160 */
2161 result = nvme_disable_ctrl(&dev->ctrl, false);
2162 if (result < 0) {
2163 struct pci_dev *pdev = to_pci_dev(dev->dev);
2164
2165 /*
2166 * The NVMe Controller Reset method did not get an expected
2167 * CSTS.RDY transition, so something with the device appears to
2168 * be stuck. Use the lower level and bigger hammer PCIe
2169 * Function Level Reset to attempt restoring the device to its
2170 * initial state, and try again.
2171 */
2172 result = pcie_reset_flr(pdev, false);
2173 if (result < 0)
2174 return result;
2175
2176 pci_restore_state(pdev);
2177 result = nvme_disable_ctrl(&dev->ctrl, false);
2178 if (result < 0)
2179 return result;
2180
2181 dev_info(dev->ctrl.device,
2182 "controller reset completed after pcie flr\n");
2183 }
2184
2185 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
2186 if (result)
2187 return result;
2188
2189 dev->ctrl.numa_node = dev_to_node(dev->dev);
2190
2191 nvmeq = &dev->queues[0];
2192 aqa = nvmeq->q_depth - 1;
2193 aqa |= aqa << 16;
2194
2195 writel(aqa, dev->bar + NVME_REG_AQA);
2196 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
2197 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
2198
2199 result = nvme_enable_ctrl(&dev->ctrl);
2200 if (result)
2201 return result;
2202
2203 nvmeq->cq_vector = 0;
2204 nvme_init_queue(nvmeq, 0);
2205 result = queue_request_irq(nvmeq);
2206 if (result) {
2207 dev->online_queues--;
2208 return result;
2209 }
2210
2211 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
2212 return result;
2213 }
2214
nvme_create_io_queues(struct nvme_dev * dev)2215 static int nvme_create_io_queues(struct nvme_dev *dev)
2216 {
2217 unsigned i, max, rw_queues;
2218 int ret = 0;
2219
2220 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
2221 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
2222 ret = -ENOMEM;
2223 break;
2224 }
2225 }
2226
2227 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
2228 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
2229 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
2230 dev->io_queues[HCTX_TYPE_READ];
2231 } else {
2232 rw_queues = max;
2233 }
2234
2235 for (i = dev->online_queues; i <= max; i++) {
2236 bool polled = i > rw_queues;
2237
2238 ret = nvme_create_queue(&dev->queues[i], i, polled);
2239 if (ret)
2240 break;
2241 }
2242
2243 /*
2244 * Ignore failing Create SQ/CQ commands, we can continue with less
2245 * than the desired amount of queues, and even a controller without
2246 * I/O queues can still be used to issue admin commands. This might
2247 * be useful to upgrade a buggy firmware for example.
2248 */
2249 return ret >= 0 ? 0 : ret;
2250 }
2251
nvme_cmb_size_unit(struct nvme_dev * dev)2252 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
2253 {
2254 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
2255
2256 return 1ULL << (12 + 4 * szu);
2257 }
2258
nvme_cmb_size(struct nvme_dev * dev)2259 static u32 nvme_cmb_size(struct nvme_dev *dev)
2260 {
2261 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
2262 }
2263
nvme_map_cmb(struct nvme_dev * dev)2264 static void nvme_map_cmb(struct nvme_dev *dev)
2265 {
2266 u64 size, offset;
2267 resource_size_t bar_size;
2268 struct pci_dev *pdev = to_pci_dev(dev->dev);
2269 int bar;
2270
2271 if (dev->cmb_size)
2272 return;
2273
2274 if (NVME_CAP_CMBS(dev->ctrl.cap))
2275 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
2276
2277 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
2278 if (!dev->cmbsz)
2279 return;
2280 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
2281
2282 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
2283 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
2284 bar = NVME_CMB_BIR(dev->cmbloc);
2285 bar_size = pci_resource_len(pdev, bar);
2286
2287 if (offset > bar_size)
2288 return;
2289
2290 /*
2291 * Controllers may support a CMB size larger than their BAR, for
2292 * example, due to being behind a bridge. Reduce the CMB to the
2293 * reported size of the BAR
2294 */
2295 size = min(size, bar_size - offset);
2296
2297 if (!IS_ALIGNED(size, memremap_compat_align()) ||
2298 !IS_ALIGNED(pci_resource_start(pdev, bar),
2299 memremap_compat_align()))
2300 return;
2301
2302 /*
2303 * Tell the controller about the host side address mapping the CMB,
2304 * and enable CMB decoding for the NVMe 1.4+ scheme:
2305 */
2306 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2307 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2308 (pci_bus_address(pdev, bar) + offset),
2309 dev->bar + NVME_REG_CMBMSC);
2310 }
2311
2312 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2313 dev_warn(dev->ctrl.device,
2314 "failed to register the CMB\n");
2315 hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2316 return;
2317 }
2318
2319 dev->cmb_size = size;
2320 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2321
2322 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2323 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2324 pci_p2pmem_publish(pdev, true);
2325 }
2326
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)2327 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2328 {
2329 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2330 u64 dma_addr = dev->host_mem_descs_dma;
2331 struct nvme_command c = { };
2332 int ret;
2333
2334 c.features.opcode = nvme_admin_set_features;
2335 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2336 c.features.dword11 = cpu_to_le32(bits);
2337 c.features.dword12 = cpu_to_le32(host_mem_size);
2338 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
2339 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
2340 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
2341
2342 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2343 if (ret) {
2344 dev_warn(dev->ctrl.device,
2345 "failed to set host mem (err %d, flags %#x).\n",
2346 ret, bits);
2347 } else
2348 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2349
2350 return ret;
2351 }
2352
nvme_free_host_mem_multi(struct nvme_dev * dev)2353 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2354 {
2355 int i;
2356
2357 for (i = 0; i < dev->nr_host_mem_descs; i++) {
2358 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2359 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2360
2361 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2362 le64_to_cpu(desc->addr),
2363 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2364 }
2365
2366 kfree(dev->host_mem_desc_bufs);
2367 dev->host_mem_desc_bufs = NULL;
2368 }
2369
nvme_free_host_mem(struct nvme_dev * dev)2370 static void nvme_free_host_mem(struct nvme_dev *dev)
2371 {
2372 if (dev->hmb_sgt)
2373 dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2374 dev->hmb_sgt, DMA_BIDIRECTIONAL);
2375 else
2376 nvme_free_host_mem_multi(dev);
2377
2378 dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2379 dev->host_mem_descs, dev->host_mem_descs_dma);
2380 dev->host_mem_descs = NULL;
2381 dev->host_mem_descs_size = 0;
2382 dev->nr_host_mem_descs = 0;
2383 }
2384
nvme_alloc_host_mem_single(struct nvme_dev * dev,u64 size)2385 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2386 {
2387 dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2388 DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2389 if (!dev->hmb_sgt)
2390 return -ENOMEM;
2391
2392 dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2393 sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2394 GFP_KERNEL);
2395 if (!dev->host_mem_descs) {
2396 dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2397 DMA_BIDIRECTIONAL);
2398 dev->hmb_sgt = NULL;
2399 return -ENOMEM;
2400 }
2401 dev->host_mem_size = size;
2402 dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2403 dev->nr_host_mem_descs = 1;
2404
2405 dev->host_mem_descs[0].addr =
2406 cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2407 dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2408 return 0;
2409 }
2410
nvme_alloc_host_mem_multi(struct nvme_dev * dev,u64 preferred,u32 chunk_size)2411 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2412 u32 chunk_size)
2413 {
2414 struct nvme_host_mem_buf_desc *descs;
2415 u32 max_entries, len, descs_size;
2416 dma_addr_t descs_dma;
2417 int i = 0;
2418 void **bufs;
2419 u64 size, tmp;
2420
2421 tmp = (preferred + chunk_size - 1);
2422 do_div(tmp, chunk_size);
2423 max_entries = tmp;
2424
2425 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2426 max_entries = dev->ctrl.hmmaxd;
2427
2428 descs_size = max_entries * sizeof(*descs);
2429 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2430 GFP_KERNEL);
2431 if (!descs)
2432 goto out;
2433
2434 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2435 if (!bufs)
2436 goto out_free_descs;
2437
2438 for (size = 0; size < preferred && i < max_entries; size += len) {
2439 dma_addr_t dma_addr;
2440
2441 len = min_t(u64, chunk_size, preferred - size);
2442 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2443 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2444 if (!bufs[i])
2445 break;
2446
2447 descs[i].addr = cpu_to_le64(dma_addr);
2448 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2449 i++;
2450 }
2451
2452 if (!size)
2453 goto out_free_bufs;
2454
2455 dev->nr_host_mem_descs = i;
2456 dev->host_mem_size = size;
2457 dev->host_mem_descs = descs;
2458 dev->host_mem_descs_dma = descs_dma;
2459 dev->host_mem_descs_size = descs_size;
2460 dev->host_mem_desc_bufs = bufs;
2461 return 0;
2462
2463 out_free_bufs:
2464 kfree(bufs);
2465 out_free_descs:
2466 dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2467 out:
2468 dev->host_mem_descs = NULL;
2469 return -ENOMEM;
2470 }
2471
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2472 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2473 {
2474 unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2475 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2476 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2477 u64 chunk_size;
2478
2479 /*
2480 * If there is an IOMMU that can merge pages, try a virtually
2481 * non-contiguous allocation for a single segment first.
2482 */
2483 if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2484 if (!nvme_alloc_host_mem_single(dev, preferred))
2485 return 0;
2486 }
2487
2488 /* start big and work our way down */
2489 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2490 if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2491 if (!min || dev->host_mem_size >= min)
2492 return 0;
2493 nvme_free_host_mem(dev);
2494 }
2495 }
2496
2497 return -ENOMEM;
2498 }
2499
nvme_setup_host_mem(struct nvme_dev * dev)2500 static int nvme_setup_host_mem(struct nvme_dev *dev)
2501 {
2502 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2503 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2504 u64 min = (u64)dev->ctrl.hmmin * 4096;
2505 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2506 int ret;
2507
2508 if (!dev->ctrl.hmpre)
2509 return 0;
2510
2511 preferred = min(preferred, max);
2512 if (min > max) {
2513 dev_warn(dev->ctrl.device,
2514 "min host memory (%lld MiB) above limit (%d MiB).\n",
2515 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2516 nvme_free_host_mem(dev);
2517 return 0;
2518 }
2519
2520 /*
2521 * If we already have a buffer allocated check if we can reuse it.
2522 */
2523 if (dev->host_mem_descs) {
2524 if (dev->host_mem_size >= min)
2525 enable_bits |= NVME_HOST_MEM_RETURN;
2526 else
2527 nvme_free_host_mem(dev);
2528 }
2529
2530 if (!dev->host_mem_descs) {
2531 if (nvme_alloc_host_mem(dev, min, preferred)) {
2532 dev_warn(dev->ctrl.device,
2533 "failed to allocate host memory buffer.\n");
2534 return 0; /* controller must work without HMB */
2535 }
2536
2537 dev_info(dev->ctrl.device,
2538 "allocated %lld MiB host memory buffer (%u segment%s).\n",
2539 dev->host_mem_size >> ilog2(SZ_1M),
2540 dev->nr_host_mem_descs,
2541 str_plural(dev->nr_host_mem_descs));
2542 }
2543
2544 ret = nvme_set_host_mem(dev, enable_bits);
2545 if (ret)
2546 nvme_free_host_mem(dev);
2547 return ret;
2548 }
2549
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2550 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2551 char *buf)
2552 {
2553 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2554
2555 return sysfs_emit(buf, "cmbloc : 0x%08x\ncmbsz : 0x%08x\n",
2556 ndev->cmbloc, ndev->cmbsz);
2557 }
2558 static DEVICE_ATTR_RO(cmb);
2559
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2560 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2561 char *buf)
2562 {
2563 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2564
2565 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2566 }
2567 static DEVICE_ATTR_RO(cmbloc);
2568
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2569 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2570 char *buf)
2571 {
2572 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2573
2574 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2575 }
2576 static DEVICE_ATTR_RO(cmbsz);
2577
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2578 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2579 char *buf)
2580 {
2581 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2582
2583 return sysfs_emit(buf, "%d\n", ndev->hmb);
2584 }
2585
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2586 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2587 const char *buf, size_t count)
2588 {
2589 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2590 bool new;
2591 int ret;
2592
2593 if (kstrtobool(buf, &new) < 0)
2594 return -EINVAL;
2595
2596 if (new == ndev->hmb)
2597 return count;
2598
2599 if (new) {
2600 ret = nvme_setup_host_mem(ndev);
2601 } else {
2602 ret = nvme_set_host_mem(ndev, 0);
2603 if (!ret)
2604 nvme_free_host_mem(ndev);
2605 }
2606
2607 if (ret < 0)
2608 return ret;
2609
2610 return count;
2611 }
2612 static DEVICE_ATTR_RW(hmb);
2613
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2614 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2615 struct attribute *a, int n)
2616 {
2617 struct nvme_ctrl *ctrl =
2618 dev_get_drvdata(container_of(kobj, struct device, kobj));
2619 struct nvme_dev *dev = to_nvme_dev(ctrl);
2620
2621 if (a == &dev_attr_cmb.attr ||
2622 a == &dev_attr_cmbloc.attr ||
2623 a == &dev_attr_cmbsz.attr) {
2624 if (!dev->cmbsz)
2625 return 0;
2626 }
2627 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2628 return 0;
2629
2630 return a->mode;
2631 }
2632
2633 static struct attribute *nvme_pci_attrs[] = {
2634 &dev_attr_cmb.attr,
2635 &dev_attr_cmbloc.attr,
2636 &dev_attr_cmbsz.attr,
2637 &dev_attr_hmb.attr,
2638 NULL,
2639 };
2640
2641 static const struct attribute_group nvme_pci_dev_attrs_group = {
2642 .attrs = nvme_pci_attrs,
2643 .is_visible = nvme_pci_attrs_are_visible,
2644 };
2645
2646 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2647 &nvme_dev_attrs_group,
2648 &nvme_pci_dev_attrs_group,
2649 NULL,
2650 };
2651
nvme_update_attrs(struct nvme_dev * dev)2652 static void nvme_update_attrs(struct nvme_dev *dev)
2653 {
2654 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2655 }
2656
2657 /*
2658 * nirqs is the number of interrupts available for write and read
2659 * queues. The core already reserved an interrupt for the admin queue.
2660 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2661 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2662 {
2663 struct nvme_dev *dev = affd->priv;
2664 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2665
2666 /*
2667 * If there is no interrupt available for queues, ensure that
2668 * the default queue is set to 1. The affinity set size is
2669 * also set to one, but the irq core ignores it for this case.
2670 *
2671 * If only one interrupt is available or 'write_queue' == 0, combine
2672 * write and read queues.
2673 *
2674 * If 'write_queues' > 0, ensure it leaves room for at least one read
2675 * queue.
2676 */
2677 if (!nrirqs) {
2678 nrirqs = 1;
2679 nr_read_queues = 0;
2680 } else if (nrirqs == 1 || !nr_write_queues) {
2681 nr_read_queues = 0;
2682 } else if (nr_write_queues >= nrirqs) {
2683 nr_read_queues = 1;
2684 } else {
2685 nr_read_queues = nrirqs - nr_write_queues;
2686 }
2687
2688 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2689 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2690 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2691 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2692 affd->nr_sets = nr_read_queues ? 2 : 1;
2693 }
2694
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2695 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2696 {
2697 struct pci_dev *pdev = to_pci_dev(dev->dev);
2698 struct irq_affinity affd = {
2699 .pre_vectors = 1,
2700 .calc_sets = nvme_calc_irq_sets,
2701 .priv = dev,
2702 };
2703 unsigned int irq_queues, poll_queues;
2704 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2705
2706 /*
2707 * Poll queues don't need interrupts, but we need at least one I/O queue
2708 * left over for non-polled I/O.
2709 */
2710 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2711 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2712
2713 /*
2714 * Initialize for the single interrupt case, will be updated in
2715 * nvme_calc_irq_sets().
2716 */
2717 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2718 dev->io_queues[HCTX_TYPE_READ] = 0;
2719
2720 /*
2721 * We need interrupts for the admin queue and each non-polled I/O queue,
2722 * but some Apple controllers require all queues to use the first
2723 * vector.
2724 */
2725 irq_queues = 1;
2726 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2727 irq_queues += (nr_io_queues - poll_queues);
2728 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2729 flags &= ~PCI_IRQ_MSI;
2730 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2731 &affd);
2732 }
2733
nvme_max_io_queues(struct nvme_dev * dev)2734 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2735 {
2736 /*
2737 * If tags are shared with admin queue (Apple bug), then
2738 * make sure we only use one IO queue.
2739 */
2740 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2741 return 1;
2742 return blk_mq_num_possible_queues(0) + dev->nr_write_queues +
2743 dev->nr_poll_queues;
2744 }
2745
nvme_setup_io_queues(struct nvme_dev * dev)2746 static int nvme_setup_io_queues(struct nvme_dev *dev)
2747 {
2748 struct nvme_queue *adminq = &dev->queues[0];
2749 struct pci_dev *pdev = to_pci_dev(dev->dev);
2750 unsigned int nr_io_queues;
2751 unsigned long size;
2752 int result;
2753
2754 /*
2755 * Sample the module parameters once at reset time so that we have
2756 * stable values to work with.
2757 */
2758 dev->nr_write_queues = write_queues;
2759 dev->nr_poll_queues = poll_queues;
2760
2761 nr_io_queues = dev->nr_allocated_queues - 1;
2762 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2763 if (result < 0)
2764 return result;
2765
2766 if (nr_io_queues == 0)
2767 return 0;
2768
2769 /*
2770 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2771 * from set to unset. If there is a window to it is truely freed,
2772 * pci_free_irq_vectors() jumping into this window will crash.
2773 * And take lock to avoid racing with pci_free_irq_vectors() in
2774 * nvme_dev_disable() path.
2775 */
2776 result = nvme_setup_io_queues_trylock(dev);
2777 if (result)
2778 return result;
2779 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2780 pci_free_irq(pdev, 0, adminq);
2781
2782 if (dev->cmb_use_sqes) {
2783 result = nvme_cmb_qdepth(dev, nr_io_queues,
2784 sizeof(struct nvme_command));
2785 if (result > 0) {
2786 dev->q_depth = result;
2787 dev->ctrl.sqsize = result - 1;
2788 } else {
2789 dev->cmb_use_sqes = false;
2790 }
2791 }
2792
2793 do {
2794 size = db_bar_size(dev, nr_io_queues);
2795 result = nvme_remap_bar(dev, size);
2796 if (!result)
2797 break;
2798 if (!--nr_io_queues) {
2799 result = -ENOMEM;
2800 goto out_unlock;
2801 }
2802 } while (1);
2803 adminq->q_db = dev->dbs;
2804
2805 retry:
2806 /* Deregister the admin queue's interrupt */
2807 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2808 pci_free_irq(pdev, 0, adminq);
2809
2810 /*
2811 * If we enable msix early due to not intx, disable it again before
2812 * setting up the full range we need.
2813 */
2814 pci_free_irq_vectors(pdev);
2815
2816 result = nvme_setup_irqs(dev, nr_io_queues);
2817 if (result <= 0) {
2818 result = -EIO;
2819 goto out_unlock;
2820 }
2821
2822 dev->num_vecs = result;
2823 result = max(result - 1, 1);
2824 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2825
2826 /*
2827 * Should investigate if there's a performance win from allocating
2828 * more queues than interrupt vectors; it might allow the submission
2829 * path to scale better, even if the receive path is limited by the
2830 * number of interrupts.
2831 */
2832 result = queue_request_irq(adminq);
2833 if (result)
2834 goto out_unlock;
2835 set_bit(NVMEQ_ENABLED, &adminq->flags);
2836 mutex_unlock(&dev->shutdown_lock);
2837
2838 result = nvme_create_io_queues(dev);
2839 if (result || dev->online_queues < 2)
2840 return result;
2841
2842 if (dev->online_queues - 1 < dev->max_qid) {
2843 nr_io_queues = dev->online_queues - 1;
2844 nvme_delete_io_queues(dev);
2845 result = nvme_setup_io_queues_trylock(dev);
2846 if (result)
2847 return result;
2848 nvme_suspend_io_queues(dev);
2849 goto retry;
2850 }
2851 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2852 dev->io_queues[HCTX_TYPE_DEFAULT],
2853 dev->io_queues[HCTX_TYPE_READ],
2854 dev->io_queues[HCTX_TYPE_POLL]);
2855 return 0;
2856 out_unlock:
2857 mutex_unlock(&dev->shutdown_lock);
2858 return result;
2859 }
2860
nvme_del_queue_end(struct request * req,blk_status_t error)2861 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2862 blk_status_t error)
2863 {
2864 struct nvme_queue *nvmeq = req->end_io_data;
2865
2866 blk_mq_free_request(req);
2867 complete(&nvmeq->delete_done);
2868 return RQ_END_IO_NONE;
2869 }
2870
nvme_del_cq_end(struct request * req,blk_status_t error)2871 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2872 blk_status_t error)
2873 {
2874 struct nvme_queue *nvmeq = req->end_io_data;
2875
2876 if (error)
2877 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2878
2879 return nvme_del_queue_end(req, error);
2880 }
2881
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2882 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2883 {
2884 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2885 struct request *req;
2886 struct nvme_command cmd = { };
2887
2888 cmd.delete_queue.opcode = opcode;
2889 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2890
2891 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2892 if (IS_ERR(req))
2893 return PTR_ERR(req);
2894 nvme_init_request(req, &cmd);
2895
2896 if (opcode == nvme_admin_delete_cq)
2897 req->end_io = nvme_del_cq_end;
2898 else
2899 req->end_io = nvme_del_queue_end;
2900 req->end_io_data = nvmeq;
2901
2902 init_completion(&nvmeq->delete_done);
2903 blk_execute_rq_nowait(req, false);
2904 return 0;
2905 }
2906
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2907 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2908 {
2909 int nr_queues = dev->online_queues - 1, sent = 0;
2910 unsigned long timeout;
2911
2912 retry:
2913 timeout = NVME_ADMIN_TIMEOUT;
2914 while (nr_queues > 0) {
2915 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2916 break;
2917 nr_queues--;
2918 sent++;
2919 }
2920 while (sent) {
2921 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2922
2923 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2924 timeout);
2925 if (timeout == 0)
2926 return false;
2927
2928 sent--;
2929 if (nr_queues)
2930 goto retry;
2931 }
2932 return true;
2933 }
2934
nvme_delete_io_queues(struct nvme_dev * dev)2935 static void nvme_delete_io_queues(struct nvme_dev *dev)
2936 {
2937 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2938 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2939 }
2940
nvme_pci_nr_maps(struct nvme_dev * dev)2941 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2942 {
2943 if (dev->io_queues[HCTX_TYPE_POLL])
2944 return 3;
2945 if (dev->io_queues[HCTX_TYPE_READ])
2946 return 2;
2947 return 1;
2948 }
2949
nvme_pci_update_nr_queues(struct nvme_dev * dev)2950 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2951 {
2952 if (!dev->ctrl.tagset) {
2953 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2954 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2955 return true;
2956 }
2957
2958 /* Give up if we are racing with nvme_dev_disable() */
2959 if (!mutex_trylock(&dev->shutdown_lock))
2960 return false;
2961
2962 /* Check if nvme_dev_disable() has been executed already */
2963 if (!dev->online_queues) {
2964 mutex_unlock(&dev->shutdown_lock);
2965 return false;
2966 }
2967
2968 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2969 /* free previously allocated queues that are no longer usable */
2970 nvme_free_queues(dev, dev->online_queues);
2971 mutex_unlock(&dev->shutdown_lock);
2972 return true;
2973 }
2974
nvme_pci_enable(struct nvme_dev * dev)2975 static int nvme_pci_enable(struct nvme_dev *dev)
2976 {
2977 int result = -ENOMEM;
2978 struct pci_dev *pdev = to_pci_dev(dev->dev);
2979 unsigned int flags = PCI_IRQ_ALL_TYPES;
2980
2981 if (pci_enable_device_mem(pdev))
2982 return result;
2983
2984 pci_set_master(pdev);
2985
2986 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2987 result = -ENODEV;
2988 goto disable;
2989 }
2990
2991 /*
2992 * Some devices and/or platforms don't advertise or work with INTx
2993 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2994 * adjust this later.
2995 */
2996 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2997 flags &= ~PCI_IRQ_MSI;
2998 result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2999 if (result < 0)
3000 goto disable;
3001
3002 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
3003
3004 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
3005 io_queue_depth);
3006 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
3007 dev->dbs = dev->bar + 4096;
3008
3009 /*
3010 * Some Apple controllers require a non-standard SQE size.
3011 * Interestingly they also seem to ignore the CC:IOSQES register
3012 * so we don't bother updating it here.
3013 */
3014 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
3015 dev->io_sqes = 7;
3016 else
3017 dev->io_sqes = NVME_NVM_IOSQES;
3018
3019 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
3020 dev->q_depth = 2;
3021 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
3022 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
3023 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
3024 dev->q_depth = 64;
3025 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
3026 "set queue depth=%u\n", dev->q_depth);
3027 }
3028
3029 /*
3030 * Controllers with the shared tags quirk need the IO queue to be
3031 * big enough so that we get 32 tags for the admin queue
3032 */
3033 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
3034 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
3035 dev->q_depth = NVME_AQ_DEPTH + 2;
3036 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
3037 dev->q_depth);
3038 }
3039 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
3040
3041 nvme_map_cmb(dev);
3042
3043 pci_save_state(pdev);
3044
3045 result = nvme_pci_configure_admin_queue(dev);
3046 if (result)
3047 goto free_irq;
3048 return result;
3049
3050 free_irq:
3051 pci_free_irq_vectors(pdev);
3052 disable:
3053 pci_disable_device(pdev);
3054 return result;
3055 }
3056
nvme_dev_unmap(struct nvme_dev * dev)3057 static void nvme_dev_unmap(struct nvme_dev *dev)
3058 {
3059 if (dev->bar)
3060 iounmap(dev->bar);
3061 pci_release_mem_regions(to_pci_dev(dev->dev));
3062 }
3063
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)3064 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
3065 {
3066 struct pci_dev *pdev = to_pci_dev(dev->dev);
3067 u32 csts;
3068
3069 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
3070 return true;
3071 if (pdev->error_state != pci_channel_io_normal)
3072 return true;
3073
3074 csts = readl(dev->bar + NVME_REG_CSTS);
3075 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
3076 }
3077
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)3078 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
3079 {
3080 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
3081 struct pci_dev *pdev = to_pci_dev(dev->dev);
3082 bool dead;
3083
3084 mutex_lock(&dev->shutdown_lock);
3085 dead = nvme_pci_ctrl_is_dead(dev);
3086 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
3087 if (pci_is_enabled(pdev))
3088 nvme_start_freeze(&dev->ctrl);
3089 /*
3090 * Give the controller a chance to complete all entered requests
3091 * if doing a safe shutdown.
3092 */
3093 if (!dead && shutdown)
3094 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
3095 }
3096
3097 nvme_quiesce_io_queues(&dev->ctrl);
3098
3099 if (!dead && dev->ctrl.queue_count > 0) {
3100 nvme_delete_io_queues(dev);
3101 nvme_disable_ctrl(&dev->ctrl, shutdown);
3102 nvme_poll_irqdisable(&dev->queues[0]);
3103 }
3104 nvme_suspend_io_queues(dev);
3105 nvme_suspend_queue(dev, 0);
3106 pci_free_irq_vectors(pdev);
3107 if (pci_is_enabled(pdev))
3108 pci_disable_device(pdev);
3109 nvme_reap_pending_cqes(dev);
3110
3111 nvme_cancel_tagset(&dev->ctrl);
3112 nvme_cancel_admin_tagset(&dev->ctrl);
3113
3114 /*
3115 * The driver will not be starting up queues again if shutting down so
3116 * must flush all entered requests to their failed completion to avoid
3117 * deadlocking blk-mq hot-cpu notifier.
3118 */
3119 if (shutdown) {
3120 nvme_unquiesce_io_queues(&dev->ctrl);
3121 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
3122 nvme_unquiesce_admin_queue(&dev->ctrl);
3123 }
3124 mutex_unlock(&dev->shutdown_lock);
3125 }
3126
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)3127 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
3128 {
3129 if (!nvme_wait_reset(&dev->ctrl))
3130 return -EBUSY;
3131 nvme_dev_disable(dev, shutdown);
3132 return 0;
3133 }
3134
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)3135 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
3136 {
3137 size_t alloc_size = sizeof(struct nvme_dma_vec) * NVME_MAX_SEGS;
3138
3139 dev->dmavec_mempool = mempool_create_node(1,
3140 mempool_kmalloc, mempool_kfree,
3141 (void *)alloc_size, GFP_KERNEL,
3142 dev_to_node(dev->dev));
3143 if (!dev->dmavec_mempool)
3144 return -ENOMEM;
3145 return 0;
3146 }
3147
nvme_free_tagset(struct nvme_dev * dev)3148 static void nvme_free_tagset(struct nvme_dev *dev)
3149 {
3150 if (dev->tagset.tags)
3151 nvme_remove_io_tag_set(&dev->ctrl);
3152 dev->ctrl.tagset = NULL;
3153 }
3154
3155 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)3156 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
3157 {
3158 struct nvme_dev *dev = to_nvme_dev(ctrl);
3159
3160 nvme_free_tagset(dev);
3161 put_device(dev->dev);
3162 kfree(dev->queues);
3163 kfree(dev);
3164 }
3165
nvme_reset_work(struct work_struct * work)3166 static void nvme_reset_work(struct work_struct *work)
3167 {
3168 struct nvme_dev *dev =
3169 container_of(work, struct nvme_dev, ctrl.reset_work);
3170 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
3171 int result;
3172
3173 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
3174 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
3175 dev->ctrl.state);
3176 result = -ENODEV;
3177 goto out;
3178 }
3179
3180 /*
3181 * If we're called to reset a live controller first shut it down before
3182 * moving on.
3183 */
3184 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
3185 nvme_dev_disable(dev, false);
3186 nvme_sync_queues(&dev->ctrl);
3187
3188 mutex_lock(&dev->shutdown_lock);
3189 result = nvme_pci_enable(dev);
3190 if (result)
3191 goto out_unlock;
3192 nvme_unquiesce_admin_queue(&dev->ctrl);
3193 mutex_unlock(&dev->shutdown_lock);
3194
3195 /*
3196 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
3197 * initializing procedure here.
3198 */
3199 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3200 dev_warn(dev->ctrl.device,
3201 "failed to mark controller CONNECTING\n");
3202 result = -EBUSY;
3203 goto out;
3204 }
3205
3206 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
3207 if (result)
3208 goto out;
3209
3210 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3211 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3212 else
3213 dev->ctrl.max_integrity_segments = 1;
3214
3215 nvme_dbbuf_dma_alloc(dev);
3216
3217 result = nvme_setup_host_mem(dev);
3218 if (result < 0)
3219 goto out;
3220
3221 nvme_update_attrs(dev);
3222
3223 result = nvme_setup_io_queues(dev);
3224 if (result)
3225 goto out;
3226
3227 /*
3228 * Freeze and update the number of I/O queues as those might have
3229 * changed. If there are no I/O queues left after this reset, keep the
3230 * controller around but remove all namespaces.
3231 */
3232 if (dev->online_queues > 1) {
3233 nvme_dbbuf_set(dev);
3234 nvme_unquiesce_io_queues(&dev->ctrl);
3235 nvme_wait_freeze(&dev->ctrl);
3236 if (!nvme_pci_update_nr_queues(dev))
3237 goto out;
3238 nvme_unfreeze(&dev->ctrl);
3239 } else {
3240 dev_warn(dev->ctrl.device, "IO queues lost\n");
3241 nvme_mark_namespaces_dead(&dev->ctrl);
3242 nvme_unquiesce_io_queues(&dev->ctrl);
3243 nvme_remove_namespaces(&dev->ctrl);
3244 nvme_free_tagset(dev);
3245 }
3246
3247 /*
3248 * If only admin queue live, keep it to do further investigation or
3249 * recovery.
3250 */
3251 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3252 dev_warn(dev->ctrl.device,
3253 "failed to mark controller live state\n");
3254 result = -ENODEV;
3255 goto out;
3256 }
3257
3258 nvme_start_ctrl(&dev->ctrl);
3259 return;
3260
3261 out_unlock:
3262 mutex_unlock(&dev->shutdown_lock);
3263 out:
3264 /*
3265 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3266 * may be holding this pci_dev's device lock.
3267 */
3268 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3269 result);
3270 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3271 nvme_dev_disable(dev, true);
3272 nvme_sync_queues(&dev->ctrl);
3273 nvme_mark_namespaces_dead(&dev->ctrl);
3274 nvme_unquiesce_io_queues(&dev->ctrl);
3275 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3276 }
3277
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)3278 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3279 {
3280 *val = readl(to_nvme_dev(ctrl)->bar + off);
3281 return 0;
3282 }
3283
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)3284 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3285 {
3286 writel(val, to_nvme_dev(ctrl)->bar + off);
3287 return 0;
3288 }
3289
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)3290 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3291 {
3292 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3293 return 0;
3294 }
3295
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)3296 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3297 {
3298 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3299
3300 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3301 }
3302
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)3303 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3304 {
3305 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3306 struct nvme_subsystem *subsys = ctrl->subsys;
3307
3308 dev_err(ctrl->device,
3309 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3310 pdev->vendor, pdev->device,
3311 nvme_strlen(subsys->model, sizeof(subsys->model)),
3312 subsys->model, nvme_strlen(subsys->firmware_rev,
3313 sizeof(subsys->firmware_rev)),
3314 subsys->firmware_rev);
3315 }
3316
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)3317 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3318 {
3319 struct nvme_dev *dev = to_nvme_dev(ctrl);
3320
3321 return dma_pci_p2pdma_supported(dev->dev);
3322 }
3323
nvme_pci_get_virt_boundary(struct nvme_ctrl * ctrl,bool is_admin)3324 static unsigned long nvme_pci_get_virt_boundary(struct nvme_ctrl *ctrl,
3325 bool is_admin)
3326 {
3327 if (!nvme_ctrl_sgl_supported(ctrl) || is_admin)
3328 return NVME_CTRL_PAGE_SIZE - 1;
3329 return 0;
3330 }
3331
3332 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3333 .name = "pcie",
3334 .module = THIS_MODULE,
3335 .flags = NVME_F_METADATA_SUPPORTED,
3336 .dev_attr_groups = nvme_pci_dev_attr_groups,
3337 .reg_read32 = nvme_pci_reg_read32,
3338 .reg_write32 = nvme_pci_reg_write32,
3339 .reg_read64 = nvme_pci_reg_read64,
3340 .free_ctrl = nvme_pci_free_ctrl,
3341 .submit_async_event = nvme_pci_submit_async_event,
3342 .subsystem_reset = nvme_pci_subsystem_reset,
3343 .get_address = nvme_pci_get_address,
3344 .print_device_info = nvme_pci_print_device_info,
3345 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
3346 .get_virt_boundary = nvme_pci_get_virt_boundary,
3347 };
3348
nvme_dev_map(struct nvme_dev * dev)3349 static int nvme_dev_map(struct nvme_dev *dev)
3350 {
3351 struct pci_dev *pdev = to_pci_dev(dev->dev);
3352
3353 if (pci_request_mem_regions(pdev, "nvme"))
3354 return -ENODEV;
3355
3356 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3357 goto release;
3358
3359 return 0;
3360 release:
3361 pci_release_mem_regions(pdev);
3362 return -ENODEV;
3363 }
3364
check_vendor_combination_bug(struct pci_dev * pdev)3365 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3366 {
3367 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3368 /*
3369 * Several Samsung devices seem to drop off the PCIe bus
3370 * randomly when APST is on and uses the deepest sleep state.
3371 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3372 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3373 * 950 PRO 256GB", but it seems to be restricted to two Dell
3374 * laptops.
3375 */
3376 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3377 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3378 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3379 return NVME_QUIRK_NO_DEEPEST_PS;
3380 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3381 /*
3382 * Samsung SSD 960 EVO drops off the PCIe bus after system
3383 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3384 * within few minutes after bootup on a Coffee Lake board -
3385 * ASUS PRIME Z370-A
3386 */
3387 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3388 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3389 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3390 return NVME_QUIRK_NO_APST;
3391 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3392 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3393 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3394 /*
3395 * Forcing to use host managed nvme power settings for
3396 * lowest idle power with quick resume latency on
3397 * Samsung and Toshiba SSDs based on suspend behavior
3398 * on Coffee Lake board for LENOVO C640
3399 */
3400 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3401 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3402 return NVME_QUIRK_SIMPLE_SUSPEND;
3403 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3404 pdev->device == 0x500f)) {
3405 /*
3406 * Exclude some Kingston NV1 and A2000 devices from
3407 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3408 * lot of energy with s2idle sleep on some TUXEDO platforms.
3409 */
3410 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3411 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3412 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3413 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3414 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3415 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3416 /*
3417 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3418 * because of high power consumption (> 2 Watt) in s2idle
3419 * sleep. Only some boards with Intel CPU are affected.
3420 * (Note for testing: Samsung 990 Evo Plus has same PCI ID)
3421 */
3422 if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3423 dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3424 dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3425 dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3426 dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3427 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3428 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3429 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3430 }
3431
3432 /*
3433 * NVMe SSD drops off the PCIe bus after system idle
3434 * for 10 hours on a Lenovo N60z board.
3435 */
3436 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3437 return NVME_QUIRK_NO_APST;
3438
3439 return 0;
3440 }
3441
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)3442 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3443 const struct pci_device_id *id)
3444 {
3445 unsigned long quirks = id->driver_data;
3446 int node = dev_to_node(&pdev->dev);
3447 struct nvme_dev *dev;
3448 int ret = -ENOMEM;
3449
3450 dev = kzalloc_node(struct_size(dev, descriptor_pools, nr_node_ids),
3451 GFP_KERNEL, node);
3452 if (!dev)
3453 return ERR_PTR(-ENOMEM);
3454 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3455 mutex_init(&dev->shutdown_lock);
3456
3457 dev->nr_write_queues = write_queues;
3458 dev->nr_poll_queues = poll_queues;
3459 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3460 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3461 sizeof(struct nvme_queue), GFP_KERNEL, node);
3462 if (!dev->queues)
3463 goto out_free_dev;
3464
3465 dev->dev = get_device(&pdev->dev);
3466
3467 quirks |= check_vendor_combination_bug(pdev);
3468 if (!noacpi &&
3469 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3470 acpi_storage_d3(&pdev->dev)) {
3471 /*
3472 * Some systems use a bios work around to ask for D3 on
3473 * platforms that support kernel managed suspend.
3474 */
3475 dev_info(&pdev->dev,
3476 "platform quirk: setting simple suspend\n");
3477 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3478 }
3479 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3480 quirks);
3481 if (ret)
3482 goto out_put_device;
3483
3484 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3485 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3486 else
3487 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3488 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3489 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3490
3491 /*
3492 * Limit the max command size to prevent iod->sg allocations going
3493 * over a single page.
3494 */
3495 dev->ctrl.max_hw_sectors = min_t(u32,
3496 NVME_MAX_BYTES >> SECTOR_SHIFT,
3497 dma_opt_mapping_size(&pdev->dev) >> 9);
3498 dev->ctrl.max_segments = NVME_MAX_SEGS;
3499 dev->ctrl.max_integrity_segments = 1;
3500 return dev;
3501
3502 out_put_device:
3503 put_device(dev->dev);
3504 kfree(dev->queues);
3505 out_free_dev:
3506 kfree(dev);
3507 return ERR_PTR(ret);
3508 }
3509
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3510 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3511 {
3512 struct nvme_dev *dev;
3513 int result = -ENOMEM;
3514
3515 dev = nvme_pci_alloc_dev(pdev, id);
3516 if (IS_ERR(dev))
3517 return PTR_ERR(dev);
3518
3519 result = nvme_add_ctrl(&dev->ctrl);
3520 if (result)
3521 goto out_put_ctrl;
3522
3523 result = nvme_dev_map(dev);
3524 if (result)
3525 goto out_uninit_ctrl;
3526
3527 result = nvme_pci_alloc_iod_mempool(dev);
3528 if (result)
3529 goto out_dev_unmap;
3530
3531 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3532
3533 result = nvme_pci_enable(dev);
3534 if (result)
3535 goto out_release_iod_mempool;
3536
3537 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3538 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
3539 if (result)
3540 goto out_disable;
3541
3542 /*
3543 * Mark the controller as connecting before sending admin commands to
3544 * allow the timeout handler to do the right thing.
3545 */
3546 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3547 dev_warn(dev->ctrl.device,
3548 "failed to mark controller CONNECTING\n");
3549 result = -EBUSY;
3550 goto out_disable;
3551 }
3552
3553 result = nvme_init_ctrl_finish(&dev->ctrl, false);
3554 if (result)
3555 goto out_disable;
3556
3557 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3558 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3559 else
3560 dev->ctrl.max_integrity_segments = 1;
3561
3562 nvme_dbbuf_dma_alloc(dev);
3563
3564 result = nvme_setup_host_mem(dev);
3565 if (result < 0)
3566 goto out_disable;
3567
3568 nvme_update_attrs(dev);
3569
3570 result = nvme_setup_io_queues(dev);
3571 if (result)
3572 goto out_disable;
3573
3574 if (dev->online_queues > 1) {
3575 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3576 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3577 nvme_dbbuf_set(dev);
3578 }
3579
3580 if (!dev->ctrl.tagset)
3581 dev_warn(dev->ctrl.device, "IO queues not created\n");
3582
3583 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3584 dev_warn(dev->ctrl.device,
3585 "failed to mark controller live state\n");
3586 result = -ENODEV;
3587 goto out_disable;
3588 }
3589
3590 pci_set_drvdata(pdev, dev);
3591
3592 nvme_start_ctrl(&dev->ctrl);
3593 nvme_put_ctrl(&dev->ctrl);
3594 flush_work(&dev->ctrl.scan_work);
3595 return 0;
3596
3597 out_disable:
3598 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3599 nvme_dev_disable(dev, true);
3600 nvme_free_host_mem(dev);
3601 nvme_dev_remove_admin(dev);
3602 nvme_dbbuf_dma_free(dev);
3603 nvme_free_queues(dev, 0);
3604 out_release_iod_mempool:
3605 mempool_destroy(dev->dmavec_mempool);
3606 out_dev_unmap:
3607 nvme_dev_unmap(dev);
3608 out_uninit_ctrl:
3609 nvme_uninit_ctrl(&dev->ctrl);
3610 out_put_ctrl:
3611 nvme_put_ctrl(&dev->ctrl);
3612 return result;
3613 }
3614
nvme_reset_prepare(struct pci_dev * pdev)3615 static void nvme_reset_prepare(struct pci_dev *pdev)
3616 {
3617 struct nvme_dev *dev = pci_get_drvdata(pdev);
3618
3619 /*
3620 * We don't need to check the return value from waiting for the reset
3621 * state as pci_dev device lock is held, making it impossible to race
3622 * with ->remove().
3623 */
3624 nvme_disable_prepare_reset(dev, false);
3625 nvme_sync_queues(&dev->ctrl);
3626 }
3627
nvme_reset_done(struct pci_dev * pdev)3628 static void nvme_reset_done(struct pci_dev *pdev)
3629 {
3630 struct nvme_dev *dev = pci_get_drvdata(pdev);
3631
3632 if (!nvme_try_sched_reset(&dev->ctrl))
3633 flush_work(&dev->ctrl.reset_work);
3634 }
3635
nvme_shutdown(struct pci_dev * pdev)3636 static void nvme_shutdown(struct pci_dev *pdev)
3637 {
3638 struct nvme_dev *dev = pci_get_drvdata(pdev);
3639
3640 nvme_disable_prepare_reset(dev, true);
3641 }
3642
3643 /*
3644 * The driver's remove may be called on a device in a partially initialized
3645 * state. This function must not have any dependencies on the device state in
3646 * order to proceed.
3647 */
nvme_remove(struct pci_dev * pdev)3648 static void nvme_remove(struct pci_dev *pdev)
3649 {
3650 struct nvme_dev *dev = pci_get_drvdata(pdev);
3651
3652 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3653 pci_set_drvdata(pdev, NULL);
3654
3655 if (!pci_device_is_present(pdev)) {
3656 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3657 nvme_dev_disable(dev, true);
3658 }
3659
3660 flush_work(&dev->ctrl.reset_work);
3661 nvme_stop_ctrl(&dev->ctrl);
3662 nvme_remove_namespaces(&dev->ctrl);
3663 nvme_dev_disable(dev, true);
3664 nvme_free_host_mem(dev);
3665 nvme_dev_remove_admin(dev);
3666 nvme_dbbuf_dma_free(dev);
3667 nvme_free_queues(dev, 0);
3668 mempool_destroy(dev->dmavec_mempool);
3669 nvme_release_descriptor_pools(dev);
3670 nvme_dev_unmap(dev);
3671 nvme_uninit_ctrl(&dev->ctrl);
3672 }
3673
3674 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3675 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3676 {
3677 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3678 }
3679
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3680 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3681 {
3682 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3683 }
3684
nvme_resume(struct device * dev)3685 static int nvme_resume(struct device *dev)
3686 {
3687 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3688 struct nvme_ctrl *ctrl = &ndev->ctrl;
3689
3690 if (ndev->last_ps == U32_MAX ||
3691 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3692 goto reset;
3693 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3694 goto reset;
3695
3696 return 0;
3697 reset:
3698 return nvme_try_sched_reset(ctrl);
3699 }
3700
nvme_suspend(struct device * dev)3701 static int nvme_suspend(struct device *dev)
3702 {
3703 struct pci_dev *pdev = to_pci_dev(dev);
3704 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3705 struct nvme_ctrl *ctrl = &ndev->ctrl;
3706 int ret = -EBUSY;
3707
3708 ndev->last_ps = U32_MAX;
3709
3710 /*
3711 * The platform does not remove power for a kernel managed suspend so
3712 * use host managed nvme power settings for lowest idle power if
3713 * possible. This should have quicker resume latency than a full device
3714 * shutdown. But if the firmware is involved after the suspend or the
3715 * device does not support any non-default power states, shut down the
3716 * device fully.
3717 *
3718 * If ASPM is not enabled for the device, shut down the device and allow
3719 * the PCI bus layer to put it into D3 in order to take the PCIe link
3720 * down, so as to allow the platform to achieve its minimum low-power
3721 * state (which may not be possible if the link is up).
3722 */
3723 if (pm_suspend_via_firmware() || !ctrl->npss ||
3724 !pcie_aspm_enabled(pdev) ||
3725 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3726 return nvme_disable_prepare_reset(ndev, true);
3727
3728 nvme_start_freeze(ctrl);
3729 nvme_wait_freeze(ctrl);
3730 nvme_sync_queues(ctrl);
3731
3732 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3733 goto unfreeze;
3734
3735 /*
3736 * Host memory access may not be successful in a system suspend state,
3737 * but the specification allows the controller to access memory in a
3738 * non-operational power state.
3739 */
3740 if (ndev->hmb) {
3741 ret = nvme_set_host_mem(ndev, 0);
3742 if (ret < 0)
3743 goto unfreeze;
3744 }
3745
3746 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3747 if (ret < 0)
3748 goto unfreeze;
3749
3750 /*
3751 * A saved state prevents pci pm from generically controlling the
3752 * device's power. If we're using protocol specific settings, we don't
3753 * want pci interfering.
3754 */
3755 pci_save_state(pdev);
3756
3757 ret = nvme_set_power_state(ctrl, ctrl->npss);
3758 if (ret < 0)
3759 goto unfreeze;
3760
3761 if (ret) {
3762 /* discard the saved state */
3763 pci_load_saved_state(pdev, NULL);
3764
3765 /*
3766 * Clearing npss forces a controller reset on resume. The
3767 * correct value will be rediscovered then.
3768 */
3769 ret = nvme_disable_prepare_reset(ndev, true);
3770 ctrl->npss = 0;
3771 }
3772 unfreeze:
3773 nvme_unfreeze(ctrl);
3774 return ret;
3775 }
3776
nvme_simple_suspend(struct device * dev)3777 static int nvme_simple_suspend(struct device *dev)
3778 {
3779 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3780
3781 return nvme_disable_prepare_reset(ndev, true);
3782 }
3783
nvme_simple_resume(struct device * dev)3784 static int nvme_simple_resume(struct device *dev)
3785 {
3786 struct pci_dev *pdev = to_pci_dev(dev);
3787 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3788
3789 return nvme_try_sched_reset(&ndev->ctrl);
3790 }
3791
3792 static const struct dev_pm_ops nvme_dev_pm_ops = {
3793 .suspend = nvme_suspend,
3794 .resume = nvme_resume,
3795 .freeze = nvme_simple_suspend,
3796 .thaw = nvme_simple_resume,
3797 .poweroff = nvme_simple_suspend,
3798 .restore = nvme_simple_resume,
3799 };
3800 #endif /* CONFIG_PM_SLEEP */
3801
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3802 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3803 pci_channel_state_t state)
3804 {
3805 struct nvme_dev *dev = pci_get_drvdata(pdev);
3806
3807 /*
3808 * A frozen channel requires a reset. When detected, this method will
3809 * shutdown the controller to quiesce. The controller will be restarted
3810 * after the slot reset through driver's slot_reset callback.
3811 */
3812 switch (state) {
3813 case pci_channel_io_normal:
3814 return PCI_ERS_RESULT_CAN_RECOVER;
3815 case pci_channel_io_frozen:
3816 dev_warn(dev->ctrl.device,
3817 "frozen state error detected, reset controller\n");
3818 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3819 nvme_dev_disable(dev, true);
3820 return PCI_ERS_RESULT_DISCONNECT;
3821 }
3822 nvme_dev_disable(dev, false);
3823 return PCI_ERS_RESULT_NEED_RESET;
3824 case pci_channel_io_perm_failure:
3825 dev_warn(dev->ctrl.device,
3826 "failure state error detected, request disconnect\n");
3827 return PCI_ERS_RESULT_DISCONNECT;
3828 }
3829 return PCI_ERS_RESULT_NEED_RESET;
3830 }
3831
nvme_slot_reset(struct pci_dev * pdev)3832 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3833 {
3834 struct nvme_dev *dev = pci_get_drvdata(pdev);
3835
3836 dev_info(dev->ctrl.device, "restart after slot reset\n");
3837 pci_restore_state(pdev);
3838 if (nvme_try_sched_reset(&dev->ctrl))
3839 nvme_unquiesce_io_queues(&dev->ctrl);
3840 return PCI_ERS_RESULT_RECOVERED;
3841 }
3842
nvme_error_resume(struct pci_dev * pdev)3843 static void nvme_error_resume(struct pci_dev *pdev)
3844 {
3845 struct nvme_dev *dev = pci_get_drvdata(pdev);
3846
3847 flush_work(&dev->ctrl.reset_work);
3848 }
3849
3850 static const struct pci_error_handlers nvme_err_handler = {
3851 .error_detected = nvme_error_detected,
3852 .slot_reset = nvme_slot_reset,
3853 .resume = nvme_error_resume,
3854 .reset_prepare = nvme_reset_prepare,
3855 .reset_done = nvme_reset_done,
3856 };
3857
3858 static const struct pci_device_id nvme_id_table[] = {
3859 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3860 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3861 NVME_QUIRK_DEALLOCATE_ZEROES, },
3862 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3863 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3864 NVME_QUIRK_DEALLOCATE_ZEROES, },
3865 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3866 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3867 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3868 NVME_QUIRK_BOGUS_NID, },
3869 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3870 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
3871 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3872 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3873 NVME_QUIRK_MEDIUM_PRIO_SQ |
3874 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3875 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3876 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3877 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3878 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3879 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3880 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3881 NVME_QUIRK_BOGUS_NID, },
3882 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3883 .driver_data = NVME_QUIRK_BOGUS_NID, },
3884 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3885 .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3886 { PCI_DEVICE(0x126f, 0x1001), /* Silicon Motion generic */
3887 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3888 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3889 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */
3890 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3891 NVME_QUIRK_BOGUS_NID, },
3892 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3893 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3894 NVME_QUIRK_BOGUS_NID, },
3895 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3896 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3897 NVME_QUIRK_NO_NS_DESC_LIST, },
3898 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3899 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3900 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3901 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3902 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3903 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3904 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3905 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3906 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3907 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3908 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3909 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3910 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */
3911 .driver_data = NVME_QUIRK_BROKEN_MSI },
3912 { PCI_DEVICE(0x15b7, 0x5009), /* Sandisk SN550 */
3913 .driver_data = NVME_QUIRK_BROKEN_MSI |
3914 NVME_QUIRK_NO_DEEPEST_PS },
3915 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3916 .driver_data = NVME_QUIRK_BOGUS_NID, },
3917 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3918 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3919 NVME_QUIRK_BOGUS_NID, },
3920 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3921 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3922 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3923 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3924 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3925 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3926 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3927 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3928 .driver_data = NVME_QUIRK_BOGUS_NID, },
3929 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3930 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3931 NVME_QUIRK_BOGUS_NID, },
3932 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3933 .driver_data = NVME_QUIRK_BOGUS_NID, },
3934 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3935 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3936 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3937 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3938 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3939 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3940 .driver_data = NVME_QUIRK_BOGUS_NID, },
3941 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3942 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3943 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3944 .driver_data = NVME_QUIRK_BOGUS_NID, },
3945 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */
3946 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3947 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3948 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3949 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3950 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3951 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3952 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3953 NVME_QUIRK_BOGUS_NID, },
3954 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3955 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3956 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
3957 .driver_data = NVME_QUIRK_BOGUS_NID, },
3958 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3959 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3960 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3961 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3962 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3963 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3964 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3965 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3966 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3967 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3968 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3969 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3970 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3971 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3972 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3973 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3974 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3975 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3976 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3977 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3978 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3979 .driver_data = NVME_QUIRK_BOGUS_NID, },
3980 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3981 .driver_data = NVME_QUIRK_BOGUS_NID, },
3982 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3983 .driver_data = NVME_QUIRK_BOGUS_NID, },
3984 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3985 .driver_data = NVME_QUIRK_BOGUS_NID, },
3986 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3987 .driver_data = NVME_QUIRK_BOGUS_NID, },
3988 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
3989 .driver_data = NVME_QUIRK_BOGUS_NID, },
3990 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3991 .driver_data = NVME_QUIRK_BOGUS_NID, },
3992 { PCI_DEVICE(0x1dbe, 0x5216), /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3993 .driver_data = NVME_QUIRK_BOGUS_NID, },
3994 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3995 .driver_data = NVME_QUIRK_BOGUS_NID, },
3996 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3997 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3998 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3999 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
4000 { PCI_DEVICE(0x025e, 0xf1ac), /* SOLIDIGM P44 pro SSDPFKKW020X7 */
4001 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
4002 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
4003 .driver_data = NVME_QUIRK_BOGUS_NID, },
4004 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
4005 .driver_data = NVME_QUIRK_BOGUS_NID, },
4006 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
4007 .driver_data = NVME_QUIRK_BOGUS_NID, },
4008 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
4009 .driver_data = NVME_QUIRK_BOGUS_NID |
4010 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
4011 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
4012 .driver_data = NVME_QUIRK_BOGUS_NID, },
4013 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
4014 .driver_data = NVME_QUIRK_BOGUS_NID, },
4015 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
4016 .driver_data = NVME_QUIRK_BOGUS_NID, },
4017 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
4018 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4019 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
4020 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4021 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
4022 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4023 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
4024 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4025 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
4026 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4027 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
4028 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4029 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
4030 /*
4031 * Fix for the Apple controller found in the MacBook8,1 and
4032 * some MacBook7,1 to avoid controller resets and data loss.
4033 */
4034 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
4035 NVME_QUIRK_QDEPTH_ONE },
4036 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
4037 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
4038 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
4039 NVME_QUIRK_128_BYTES_SQES |
4040 NVME_QUIRK_SHARED_TAGS |
4041 NVME_QUIRK_SKIP_CID_GEN |
4042 NVME_QUIRK_IDENTIFY_CNS },
4043 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
4044 { 0, }
4045 };
4046 MODULE_DEVICE_TABLE(pci, nvme_id_table);
4047
4048 static struct pci_driver nvme_driver = {
4049 .name = "nvme",
4050 .id_table = nvme_id_table,
4051 .probe = nvme_probe,
4052 .remove = nvme_remove,
4053 .shutdown = nvme_shutdown,
4054 .driver = {
4055 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
4056 #ifdef CONFIG_PM_SLEEP
4057 .pm = &nvme_dev_pm_ops,
4058 #endif
4059 },
4060 .sriov_configure = pci_sriov_configure_simple,
4061 .err_handler = &nvme_err_handler,
4062 };
4063
nvme_init(void)4064 static int __init nvme_init(void)
4065 {
4066 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
4067 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
4068 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
4069 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
4070
4071 return pci_register_driver(&nvme_driver);
4072 }
4073
nvme_exit(void)4074 static void __exit nvme_exit(void)
4075 {
4076 pci_unregister_driver(&nvme_driver);
4077 flush_workqueue(nvme_wq);
4078 }
4079
4080 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
4081 MODULE_LICENSE("GPL");
4082 MODULE_VERSION("1.0");
4083 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
4084 module_init(nvme_init);
4085 module_exit(nvme_exit);
4086