xref: /linux/arch/x86/kvm/svm/svm.c (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12 
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 #include <linux/string_choices.h>
32 #include <linux/mutex.h>
33 
34 #include <asm/apic.h>
35 #include <asm/msr.h>
36 #include <asm/perf_event.h>
37 #include <asm/tlbflush.h>
38 #include <asm/desc.h>
39 #include <asm/debugreg.h>
40 #include <asm/kvm_para.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/cpu_device_id.h>
44 #include <asm/traps.h>
45 #include <asm/reboot.h>
46 #include <asm/fpu/api.h>
47 
48 #include <trace/events/ipi.h>
49 
50 #include "trace.h"
51 
52 #include "svm.h"
53 #include "svm_ops.h"
54 
55 #include "kvm_onhyperv.h"
56 #include "svm_onhyperv.h"
57 
58 MODULE_AUTHOR("Qumranet");
59 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
60 MODULE_LICENSE("GPL");
61 
62 #ifdef MODULE
63 static const struct x86_cpu_id svm_cpu_id[] = {
64 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
65 	{}
66 };
67 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
68 #endif
69 
70 #define SEG_TYPE_LDT 2
71 #define SEG_TYPE_BUSY_TSS16 3
72 
73 static bool erratum_383_found __read_mostly;
74 
75 /*
76  * Set osvw_len to higher value when updated Revision Guides
77  * are published and we know what the new status bits are
78  */
79 static uint64_t osvw_len = 4, osvw_status;
80 
81 static DEFINE_PER_CPU(u64, current_tsc_ratio);
82 
83 /*
84  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
85  * pause_filter_count: On processors that support Pause filtering(indicated
86  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
87  *	count value. On VMRUN this value is loaded into an internal counter.
88  *	Each time a pause instruction is executed, this counter is decremented
89  *	until it reaches zero at which time a #VMEXIT is generated if pause
90  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
91  *	Intercept Filtering for more details.
92  *	This also indicate if ple logic enabled.
93  *
94  * pause_filter_thresh: In addition, some processor families support advanced
95  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
96  *	the amount of time a guest is allowed to execute in a pause loop.
97  *	In this mode, a 16-bit pause filter threshold field is added in the
98  *	VMCB. The threshold value is a cycle count that is used to reset the
99  *	pause counter. As with simple pause filtering, VMRUN loads the pause
100  *	count value from VMCB into an internal counter. Then, on each pause
101  *	instruction the hardware checks the elapsed number of cycles since
102  *	the most recent pause instruction against the pause filter threshold.
103  *	If the elapsed cycle count is greater than the pause filter threshold,
104  *	then the internal pause count is reloaded from the VMCB and execution
105  *	continues. If the elapsed cycle count is less than the pause filter
106  *	threshold, then the internal pause count is decremented. If the count
107  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
108  *	triggered. If advanced pause filtering is supported and pause filter
109  *	threshold field is set to zero, the filter will operate in the simpler,
110  *	count only mode.
111  */
112 
113 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
114 module_param(pause_filter_thresh, ushort, 0444);
115 
116 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
117 module_param(pause_filter_count, ushort, 0444);
118 
119 /* Default doubles per-vcpu window every exit. */
120 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
121 module_param(pause_filter_count_grow, ushort, 0444);
122 
123 /* Default resets per-vcpu window every exit to pause_filter_count. */
124 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
125 module_param(pause_filter_count_shrink, ushort, 0444);
126 
127 /* Default is to compute the maximum so we can never overflow. */
128 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
129 module_param(pause_filter_count_max, ushort, 0444);
130 
131 /*
132  * Use nested page tables by default.  Note, NPT may get forced off by
133  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
134  */
135 bool npt_enabled = true;
136 module_param_named(npt, npt_enabled, bool, 0444);
137 
138 /* allow nested virtualization in KVM/SVM */
139 static int nested = true;
140 module_param(nested, int, 0444);
141 
142 /* enable/disable Next RIP Save */
143 int nrips = true;
144 module_param(nrips, int, 0444);
145 
146 /* enable/disable Virtual VMLOAD VMSAVE */
147 static int vls = true;
148 module_param(vls, int, 0444);
149 
150 /* enable/disable Virtual GIF */
151 int vgif = true;
152 module_param(vgif, int, 0444);
153 
154 /* enable/disable LBR virtualization */
155 int lbrv = true;
156 module_param(lbrv, int, 0444);
157 
158 static int tsc_scaling = true;
159 module_param(tsc_scaling, int, 0444);
160 
161 module_param(enable_device_posted_irqs, bool, 0444);
162 
163 bool __read_mostly dump_invalid_vmcb;
164 module_param(dump_invalid_vmcb, bool, 0644);
165 
166 
167 bool intercept_smi = true;
168 module_param(intercept_smi, bool, 0444);
169 
170 bool vnmi = true;
171 module_param(vnmi, bool, 0444);
172 
173 static bool svm_gp_erratum_intercept = true;
174 
175 static u8 rsm_ins_bytes[] = "\x0f\xaa";
176 
177 static unsigned long iopm_base;
178 
179 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
180 
181 static DEFINE_MUTEX(vmcb_dump_mutex);
182 
183 /*
184  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
185  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
186  *
187  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
188  * defer the restoration of TSC_AUX until the CPU returns to userspace.
189  */
190 int tsc_aux_uret_slot __ro_after_init = -1;
191 
get_npt_level(void)192 static int get_npt_level(void)
193 {
194 #ifdef CONFIG_X86_64
195 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
196 #else
197 	return PT32E_ROOT_LEVEL;
198 #endif
199 }
200 
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)201 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
202 {
203 	struct vcpu_svm *svm = to_svm(vcpu);
204 	u64 old_efer = vcpu->arch.efer;
205 	vcpu->arch.efer = efer;
206 
207 	if (!npt_enabled) {
208 		/* Shadow paging assumes NX to be available.  */
209 		efer |= EFER_NX;
210 
211 		if (!(efer & EFER_LMA))
212 			efer &= ~EFER_LME;
213 	}
214 
215 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
216 		if (!(efer & EFER_SVME)) {
217 			svm_leave_nested(vcpu);
218 			svm_set_gif(svm, true);
219 			/* #GP intercept is still needed for vmware backdoor */
220 			if (!enable_vmware_backdoor)
221 				clr_exception_intercept(svm, GP_VECTOR);
222 
223 			/*
224 			 * Free the nested guest state, unless we are in SMM.
225 			 * In this case we will return to the nested guest
226 			 * as soon as we leave SMM.
227 			 */
228 			if (!is_smm(vcpu))
229 				svm_free_nested(svm);
230 
231 		} else {
232 			int ret = svm_allocate_nested(svm);
233 
234 			if (ret) {
235 				vcpu->arch.efer = old_efer;
236 				return ret;
237 			}
238 
239 			/*
240 			 * Never intercept #GP for SEV guests, KVM can't
241 			 * decrypt guest memory to workaround the erratum.
242 			 */
243 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
244 				set_exception_intercept(svm, GP_VECTOR);
245 		}
246 	}
247 
248 	svm->vmcb->save.efer = efer | EFER_SVME;
249 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
250 	return 0;
251 }
252 
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)253 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
254 {
255 	struct vcpu_svm *svm = to_svm(vcpu);
256 	u32 ret = 0;
257 
258 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
259 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
260 	return ret;
261 }
262 
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)263 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
264 {
265 	struct vcpu_svm *svm = to_svm(vcpu);
266 
267 	if (mask == 0)
268 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
269 	else
270 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
271 
272 }
273 
__svm_skip_emulated_instruction(struct kvm_vcpu * vcpu,int emul_type,bool commit_side_effects)274 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
275 					   int emul_type,
276 					   bool commit_side_effects)
277 {
278 	struct vcpu_svm *svm = to_svm(vcpu);
279 	unsigned long old_rflags;
280 
281 	/*
282 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
283 	 * the type of exit and the #VC handler in the guest.
284 	 */
285 	if (sev_es_guest(vcpu->kvm))
286 		goto done;
287 
288 	if (nrips && svm->vmcb->control.next_rip != 0) {
289 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
290 		svm->next_rip = svm->vmcb->control.next_rip;
291 	}
292 
293 	if (!svm->next_rip) {
294 		if (unlikely(!commit_side_effects))
295 			old_rflags = svm->vmcb->save.rflags;
296 
297 		if (!kvm_emulate_instruction(vcpu, emul_type))
298 			return 0;
299 
300 		if (unlikely(!commit_side_effects))
301 			svm->vmcb->save.rflags = old_rflags;
302 	} else {
303 		kvm_rip_write(vcpu, svm->next_rip);
304 	}
305 
306 done:
307 	if (likely(commit_side_effects))
308 		svm_set_interrupt_shadow(vcpu, 0);
309 
310 	return 1;
311 }
312 
svm_skip_emulated_instruction(struct kvm_vcpu * vcpu)313 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
314 {
315 	return __svm_skip_emulated_instruction(vcpu, EMULTYPE_SKIP, true);
316 }
317 
svm_update_soft_interrupt_rip(struct kvm_vcpu * vcpu,u8 vector)318 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu, u8 vector)
319 {
320 	const int emul_type = EMULTYPE_SKIP | EMULTYPE_SKIP_SOFT_INT |
321 			      EMULTYPE_SET_SOFT_INT_VECTOR(vector);
322 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
323 	struct vcpu_svm *svm = to_svm(vcpu);
324 
325 	/*
326 	 * Due to architectural shortcomings, the CPU doesn't always provide
327 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
328 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
329 	 * the instruction even if NextRIP is supported to acquire the next
330 	 * RIP so that it can be shoved into the NextRIP field, otherwise
331 	 * hardware will fail to advance guest RIP during event injection.
332 	 * Drop the exception/interrupt if emulation fails and effectively
333 	 * retry the instruction, it's the least awful option.  If NRIPS is
334 	 * in use, the skip must not commit any side effects such as clearing
335 	 * the interrupt shadow or RFLAGS.RF.
336 	 */
337 	if (!__svm_skip_emulated_instruction(vcpu, emul_type, !nrips))
338 		return -EIO;
339 
340 	rip = kvm_rip_read(vcpu);
341 
342 	/*
343 	 * Save the injection information, even when using next_rip, as the
344 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
345 	 * doesn't complete due to a VM-Exit occurring while the CPU is
346 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
347 	 * work as there may be no backing instruction, e.g. if the event is
348 	 * being injected by L1 for L2, or if the guest is patching INT3 into
349 	 * a different instruction.
350 	 */
351 	svm->soft_int_injected = true;
352 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
353 	svm->soft_int_old_rip = old_rip;
354 	svm->soft_int_next_rip = rip;
355 
356 	if (nrips)
357 		kvm_rip_write(vcpu, old_rip);
358 
359 	if (static_cpu_has(X86_FEATURE_NRIPS))
360 		svm->vmcb->control.next_rip = rip;
361 
362 	return 0;
363 }
364 
svm_inject_exception(struct kvm_vcpu * vcpu)365 static void svm_inject_exception(struct kvm_vcpu *vcpu)
366 {
367 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
368 	struct vcpu_svm *svm = to_svm(vcpu);
369 
370 	kvm_deliver_exception_payload(vcpu, ex);
371 
372 	if (kvm_exception_is_soft(ex->vector) &&
373 	    svm_update_soft_interrupt_rip(vcpu, ex->vector))
374 		return;
375 
376 	svm->vmcb->control.event_inj = ex->vector
377 		| SVM_EVTINJ_VALID
378 		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
379 		| SVM_EVTINJ_TYPE_EXEPT;
380 	svm->vmcb->control.event_inj_err = ex->error_code;
381 }
382 
svm_init_erratum_383(void)383 static void svm_init_erratum_383(void)
384 {
385 	u64 val;
386 
387 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
388 		return;
389 
390 	/* Use _safe variants to not break nested virtualization */
391 	if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val))
392 		return;
393 
394 	val |= (1ULL << 47);
395 
396 	native_write_msr_safe(MSR_AMD64_DC_CFG, val);
397 
398 	erratum_383_found = true;
399 }
400 
svm_init_osvw(struct kvm_vcpu * vcpu)401 static void svm_init_osvw(struct kvm_vcpu *vcpu)
402 {
403 	/*
404 	 * Guests should see errata 400 and 415 as fixed (assuming that
405 	 * HLT and IO instructions are intercepted).
406 	 */
407 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
408 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
409 
410 	/*
411 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
412 	 * all osvw.status bits inside that length, including bit 0 (which is
413 	 * reserved for erratum 298), are valid. However, if host processor's
414 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
415 	 * be conservative here and therefore we tell the guest that erratum 298
416 	 * is present (because we really don't know).
417 	 */
418 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
419 		vcpu->arch.osvw.status |= 1;
420 }
421 
__kvm_is_svm_supported(void)422 static bool __kvm_is_svm_supported(void)
423 {
424 	int cpu = smp_processor_id();
425 	struct cpuinfo_x86 *c = &cpu_data(cpu);
426 
427 	if (c->x86_vendor != X86_VENDOR_AMD &&
428 	    c->x86_vendor != X86_VENDOR_HYGON) {
429 		pr_err("CPU %d isn't AMD or Hygon\n", cpu);
430 		return false;
431 	}
432 
433 	if (!cpu_has(c, X86_FEATURE_SVM)) {
434 		pr_err("SVM not supported by CPU %d\n", cpu);
435 		return false;
436 	}
437 
438 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
439 		pr_info("KVM is unsupported when running as an SEV guest\n");
440 		return false;
441 	}
442 
443 	return true;
444 }
445 
kvm_is_svm_supported(void)446 static bool kvm_is_svm_supported(void)
447 {
448 	bool supported;
449 
450 	migrate_disable();
451 	supported = __kvm_is_svm_supported();
452 	migrate_enable();
453 
454 	return supported;
455 }
456 
svm_check_processor_compat(void)457 static int svm_check_processor_compat(void)
458 {
459 	if (!__kvm_is_svm_supported())
460 		return -EIO;
461 
462 	return 0;
463 }
464 
__svm_write_tsc_multiplier(u64 multiplier)465 static void __svm_write_tsc_multiplier(u64 multiplier)
466 {
467 	if (multiplier == __this_cpu_read(current_tsc_ratio))
468 		return;
469 
470 	wrmsrq(MSR_AMD64_TSC_RATIO, multiplier);
471 	__this_cpu_write(current_tsc_ratio, multiplier);
472 }
473 
sev_es_host_save_area(struct svm_cpu_data * sd)474 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
475 {
476 	return &sd->save_area->host_sev_es_save;
477 }
478 
kvm_cpu_svm_disable(void)479 static inline void kvm_cpu_svm_disable(void)
480 {
481 	uint64_t efer;
482 
483 	wrmsrq(MSR_VM_HSAVE_PA, 0);
484 	rdmsrq(MSR_EFER, efer);
485 	if (efer & EFER_SVME) {
486 		/*
487 		 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
488 		 * NMI aren't blocked.
489 		 */
490 		stgi();
491 		wrmsrq(MSR_EFER, efer & ~EFER_SVME);
492 	}
493 }
494 
svm_emergency_disable_virtualization_cpu(void)495 static void svm_emergency_disable_virtualization_cpu(void)
496 {
497 	kvm_rebooting = true;
498 
499 	kvm_cpu_svm_disable();
500 }
501 
svm_disable_virtualization_cpu(void)502 static void svm_disable_virtualization_cpu(void)
503 {
504 	/* Make sure we clean up behind us */
505 	if (tsc_scaling)
506 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
507 
508 	kvm_cpu_svm_disable();
509 
510 	amd_pmu_disable_virt();
511 }
512 
svm_enable_virtualization_cpu(void)513 static int svm_enable_virtualization_cpu(void)
514 {
515 
516 	struct svm_cpu_data *sd;
517 	uint64_t efer;
518 	int me = raw_smp_processor_id();
519 
520 	rdmsrq(MSR_EFER, efer);
521 	if (efer & EFER_SVME)
522 		return -EBUSY;
523 
524 	sd = per_cpu_ptr(&svm_data, me);
525 	sd->asid_generation = 1;
526 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
527 	sd->next_asid = sd->max_asid + 1;
528 	sd->min_asid = max_sev_asid + 1;
529 
530 	wrmsrq(MSR_EFER, efer | EFER_SVME);
531 
532 	wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa);
533 
534 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
535 		/*
536 		 * Set the default value, even if we don't use TSC scaling
537 		 * to avoid having stale value in the msr
538 		 */
539 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
540 	}
541 
542 
543 	/*
544 	 * Get OSVW bits.
545 	 *
546 	 * Note that it is possible to have a system with mixed processor
547 	 * revisions and therefore different OSVW bits. If bits are not the same
548 	 * on different processors then choose the worst case (i.e. if erratum
549 	 * is present on one processor and not on another then assume that the
550 	 * erratum is present everywhere).
551 	 */
552 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
553 		u64 len, status = 0;
554 		int err;
555 
556 		err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len);
557 		if (!err)
558 			err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status);
559 
560 		if (err)
561 			osvw_status = osvw_len = 0;
562 		else {
563 			if (len < osvw_len)
564 				osvw_len = len;
565 			osvw_status |= status;
566 			osvw_status &= (1ULL << osvw_len) - 1;
567 		}
568 	} else
569 		osvw_status = osvw_len = 0;
570 
571 	svm_init_erratum_383();
572 
573 	amd_pmu_enable_virt();
574 
575 	return 0;
576 }
577 
svm_cpu_uninit(int cpu)578 static void svm_cpu_uninit(int cpu)
579 {
580 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
581 
582 	if (!sd->save_area)
583 		return;
584 
585 	kfree(sd->sev_vmcbs);
586 	__free_page(__sme_pa_to_page(sd->save_area_pa));
587 	sd->save_area_pa = 0;
588 	sd->save_area = NULL;
589 }
590 
svm_cpu_init(int cpu)591 static int svm_cpu_init(int cpu)
592 {
593 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
594 	struct page *save_area_page;
595 	int ret = -ENOMEM;
596 
597 	memset(sd, 0, sizeof(struct svm_cpu_data));
598 	save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
599 	if (!save_area_page)
600 		return ret;
601 
602 	ret = sev_cpu_init(sd);
603 	if (ret)
604 		goto free_save_area;
605 
606 	sd->save_area = page_address(save_area_page);
607 	sd->save_area_pa = __sme_page_pa(save_area_page);
608 	return 0;
609 
610 free_save_area:
611 	__free_page(save_area_page);
612 	return ret;
613 
614 }
615 
set_dr_intercepts(struct vcpu_svm * svm)616 static void set_dr_intercepts(struct vcpu_svm *svm)
617 {
618 	struct vmcb *vmcb = svm->vmcb01.ptr;
619 
620 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
621 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
622 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
623 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
624 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
625 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
626 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
627 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
628 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
629 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
630 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
631 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
632 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
633 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
634 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
635 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
636 
637 	recalc_intercepts(svm);
638 }
639 
clr_dr_intercepts(struct vcpu_svm * svm)640 static void clr_dr_intercepts(struct vcpu_svm *svm)
641 {
642 	struct vmcb *vmcb = svm->vmcb01.ptr;
643 
644 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
645 
646 	recalc_intercepts(svm);
647 }
648 
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)649 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
650 {
651 	/*
652 	 * For non-nested case:
653 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
654 	 * save it.
655 	 *
656 	 * For nested case:
657 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
658 	 * save it.
659 	 */
660 	void *msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm :
661 					    to_svm(vcpu)->msrpm;
662 
663 	return svm_test_msr_bitmap_write(msrpm, msr);
664 }
665 
svm_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool set)666 void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
667 {
668 	struct vcpu_svm *svm = to_svm(vcpu);
669 	void *msrpm = svm->msrpm;
670 
671 	/* Don't disable interception for MSRs userspace wants to handle. */
672 	if (type & MSR_TYPE_R) {
673 		if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
674 			svm_clear_msr_bitmap_read(msrpm, msr);
675 		else
676 			svm_set_msr_bitmap_read(msrpm, msr);
677 	}
678 
679 	if (type & MSR_TYPE_W) {
680 		if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
681 			svm_clear_msr_bitmap_write(msrpm, msr);
682 		else
683 			svm_set_msr_bitmap_write(msrpm, msr);
684 	}
685 
686 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
687 	svm->nested.force_msr_bitmap_recalc = true;
688 }
689 
svm_alloc_permissions_map(unsigned long size,gfp_t gfp_mask)690 void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask)
691 {
692 	unsigned int order = get_order(size);
693 	struct page *pages = alloc_pages(gfp_mask, order);
694 	void *pm;
695 
696 	if (!pages)
697 		return NULL;
698 
699 	/*
700 	 * Set all bits in the permissions map so that all MSR and I/O accesses
701 	 * are intercepted by default.
702 	 */
703 	pm = page_address(pages);
704 	memset(pm, 0xff, PAGE_SIZE * (1 << order));
705 
706 	return pm;
707 }
708 
svm_recalc_lbr_msr_intercepts(struct kvm_vcpu * vcpu)709 static void svm_recalc_lbr_msr_intercepts(struct kvm_vcpu *vcpu)
710 {
711 	struct vcpu_svm *svm = to_svm(vcpu);
712 	bool intercept = !(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK);
713 
714 	if (intercept == svm->lbr_msrs_intercepted)
715 		return;
716 
717 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHFROMIP, MSR_TYPE_RW, intercept);
718 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHTOIP, MSR_TYPE_RW, intercept);
719 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTFROMIP, MSR_TYPE_RW, intercept);
720 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTTOIP, MSR_TYPE_RW, intercept);
721 
722 	if (sev_es_guest(vcpu->kvm))
723 		svm_set_intercept_for_msr(vcpu, MSR_IA32_DEBUGCTLMSR, MSR_TYPE_RW, intercept);
724 
725 	svm->lbr_msrs_intercepted = intercept;
726 }
727 
svm_vcpu_free_msrpm(void * msrpm)728 void svm_vcpu_free_msrpm(void *msrpm)
729 {
730 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
731 }
732 
svm_recalc_msr_intercepts(struct kvm_vcpu * vcpu)733 static void svm_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
734 {
735 	struct vcpu_svm *svm = to_svm(vcpu);
736 
737 	svm_disable_intercept_for_msr(vcpu, MSR_STAR, MSR_TYPE_RW);
738 	svm_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
739 
740 #ifdef CONFIG_X86_64
741 	svm_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
742 	svm_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
743 	svm_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
744 	svm_disable_intercept_for_msr(vcpu, MSR_LSTAR, MSR_TYPE_RW);
745 	svm_disable_intercept_for_msr(vcpu, MSR_CSTAR, MSR_TYPE_RW);
746 	svm_disable_intercept_for_msr(vcpu, MSR_SYSCALL_MASK, MSR_TYPE_RW);
747 #endif
748 
749 	if (lbrv)
750 		svm_recalc_lbr_msr_intercepts(vcpu);
751 
752 	if (cpu_feature_enabled(X86_FEATURE_IBPB))
753 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
754 					  !guest_has_pred_cmd_msr(vcpu));
755 
756 	if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
757 		svm_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
758 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
759 
760 	/*
761 	 * Disable interception of SPEC_CTRL if KVM doesn't need to manually
762 	 * context switch the MSR (SPEC_CTRL is virtualized by the CPU), or if
763 	 * the guest has a non-zero SPEC_CTRL value, i.e. is likely actively
764 	 * using SPEC_CTRL.
765 	 */
766 	if (cpu_feature_enabled(X86_FEATURE_V_SPEC_CTRL))
767 		svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
768 					  !guest_has_spec_ctrl_msr(vcpu));
769 	else
770 		svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
771 					  !svm->spec_ctrl);
772 
773 	/*
774 	 * Intercept SYSENTER_EIP and SYSENTER_ESP when emulating an Intel CPU,
775 	 * as AMD hardware only store 32 bits, whereas Intel CPUs track 64 bits.
776 	 */
777 	svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW,
778 				  guest_cpuid_is_intel_compatible(vcpu));
779 	svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW,
780 				  guest_cpuid_is_intel_compatible(vcpu));
781 
782 	if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
783 		svm_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
784 		svm_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
785 	}
786 
787 	if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
788 		bool shstk_enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
789 
790 		svm_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, !shstk_enabled);
791 		svm_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, !shstk_enabled);
792 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, !shstk_enabled);
793 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, !shstk_enabled);
794 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, !shstk_enabled);
795 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, !shstk_enabled);
796 	}
797 
798 	if (sev_es_guest(vcpu->kvm))
799 		sev_es_recalc_msr_intercepts(vcpu);
800 
801 	/*
802 	 * x2APIC intercepts are modified on-demand and cannot be filtered by
803 	 * userspace.
804 	 */
805 }
806 
svm_copy_lbrs(struct vmcb * to_vmcb,struct vmcb * from_vmcb)807 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
808 {
809 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
810 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
811 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
812 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
813 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
814 
815 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
816 }
817 
__svm_enable_lbrv(struct kvm_vcpu * vcpu)818 static void __svm_enable_lbrv(struct kvm_vcpu *vcpu)
819 {
820 	to_svm(vcpu)->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
821 }
822 
svm_enable_lbrv(struct kvm_vcpu * vcpu)823 void svm_enable_lbrv(struct kvm_vcpu *vcpu)
824 {
825 	__svm_enable_lbrv(vcpu);
826 	svm_recalc_lbr_msr_intercepts(vcpu);
827 }
828 
__svm_disable_lbrv(struct kvm_vcpu * vcpu)829 static void __svm_disable_lbrv(struct kvm_vcpu *vcpu)
830 {
831 	KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
832 	to_svm(vcpu)->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
833 }
834 
svm_update_lbrv(struct kvm_vcpu * vcpu)835 void svm_update_lbrv(struct kvm_vcpu *vcpu)
836 {
837 	struct vcpu_svm *svm = to_svm(vcpu);
838 	bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
839 	bool enable_lbrv = (svm->vmcb->save.dbgctl & DEBUGCTLMSR_LBR) ||
840 			    (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
841 			    (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
842 
843 	if (enable_lbrv && !current_enable_lbrv)
844 		__svm_enable_lbrv(vcpu);
845 	else if (!enable_lbrv && current_enable_lbrv)
846 		__svm_disable_lbrv(vcpu);
847 
848 	/*
849 	 * During nested transitions, it is possible that the current VMCB has
850 	 * LBR_CTL set, but the previous LBR_CTL had it cleared (or vice versa).
851 	 * In this case, even though LBR_CTL does not need an update, intercepts
852 	 * do, so always recalculate the intercepts here.
853 	 */
854 	svm_recalc_lbr_msr_intercepts(vcpu);
855 }
856 
disable_nmi_singlestep(struct vcpu_svm * svm)857 void disable_nmi_singlestep(struct vcpu_svm *svm)
858 {
859 	svm->nmi_singlestep = false;
860 
861 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
862 		/* Clear our flags if they were not set by the guest */
863 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
864 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
865 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
866 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
867 	}
868 }
869 
grow_ple_window(struct kvm_vcpu * vcpu)870 static void grow_ple_window(struct kvm_vcpu *vcpu)
871 {
872 	struct vcpu_svm *svm = to_svm(vcpu);
873 	struct vmcb_control_area *control = &svm->vmcb->control;
874 	int old = control->pause_filter_count;
875 
876 	if (kvm_pause_in_guest(vcpu->kvm))
877 		return;
878 
879 	control->pause_filter_count = __grow_ple_window(old,
880 							pause_filter_count,
881 							pause_filter_count_grow,
882 							pause_filter_count_max);
883 
884 	if (control->pause_filter_count != old) {
885 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
886 		trace_kvm_ple_window_update(vcpu->vcpu_id,
887 					    control->pause_filter_count, old);
888 	}
889 }
890 
shrink_ple_window(struct kvm_vcpu * vcpu)891 static void shrink_ple_window(struct kvm_vcpu *vcpu)
892 {
893 	struct vcpu_svm *svm = to_svm(vcpu);
894 	struct vmcb_control_area *control = &svm->vmcb->control;
895 	int old = control->pause_filter_count;
896 
897 	if (kvm_pause_in_guest(vcpu->kvm))
898 		return;
899 
900 	control->pause_filter_count =
901 				__shrink_ple_window(old,
902 						    pause_filter_count,
903 						    pause_filter_count_shrink,
904 						    pause_filter_count);
905 	if (control->pause_filter_count != old) {
906 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
907 		trace_kvm_ple_window_update(vcpu->vcpu_id,
908 					    control->pause_filter_count, old);
909 	}
910 }
911 
svm_hardware_unsetup(void)912 static void svm_hardware_unsetup(void)
913 {
914 	int cpu;
915 
916 	avic_hardware_unsetup();
917 
918 	sev_hardware_unsetup();
919 
920 	for_each_possible_cpu(cpu)
921 		svm_cpu_uninit(cpu);
922 
923 	__free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
924 	iopm_base = 0;
925 }
926 
init_seg(struct vmcb_seg * seg)927 static void init_seg(struct vmcb_seg *seg)
928 {
929 	seg->selector = 0;
930 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
931 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
932 	seg->limit = 0xffff;
933 	seg->base = 0;
934 }
935 
init_sys_seg(struct vmcb_seg * seg,uint32_t type)936 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
937 {
938 	seg->selector = 0;
939 	seg->attrib = SVM_SELECTOR_P_MASK | type;
940 	seg->limit = 0xffff;
941 	seg->base = 0;
942 }
943 
svm_get_l2_tsc_offset(struct kvm_vcpu * vcpu)944 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
945 {
946 	struct vcpu_svm *svm = to_svm(vcpu);
947 
948 	return svm->nested.ctl.tsc_offset;
949 }
950 
svm_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)951 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
952 {
953 	struct vcpu_svm *svm = to_svm(vcpu);
954 
955 	return svm->tsc_ratio_msr;
956 }
957 
svm_write_tsc_offset(struct kvm_vcpu * vcpu)958 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
959 {
960 	struct vcpu_svm *svm = to_svm(vcpu);
961 
962 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
963 	svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
964 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
965 }
966 
svm_write_tsc_multiplier(struct kvm_vcpu * vcpu)967 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
968 {
969 	preempt_disable();
970 	if (to_svm(vcpu)->guest_state_loaded)
971 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
972 	preempt_enable();
973 }
974 
975 /* Evaluate instruction intercepts that depend on guest CPUID features. */
svm_recalc_instruction_intercepts(struct kvm_vcpu * vcpu)976 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu)
977 {
978 	struct vcpu_svm *svm = to_svm(vcpu);
979 
980 	/*
981 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
982 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
983 	 */
984 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
985 		if (!npt_enabled ||
986 		    !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID))
987 			svm_set_intercept(svm, INTERCEPT_INVPCID);
988 		else
989 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
990 	}
991 
992 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
993 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP))
994 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
995 		else
996 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
997 	}
998 
999 	if (guest_cpuid_is_intel_compatible(vcpu)) {
1000 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1001 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1002 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1003 	} else {
1004 		/*
1005 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1006 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1007 		 */
1008 		if (vls) {
1009 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1010 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1011 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1012 		}
1013 	}
1014 }
1015 
svm_recalc_intercepts(struct kvm_vcpu * vcpu)1016 static void svm_recalc_intercepts(struct kvm_vcpu *vcpu)
1017 {
1018 	svm_recalc_instruction_intercepts(vcpu);
1019 	svm_recalc_msr_intercepts(vcpu);
1020 }
1021 
init_vmcb(struct kvm_vcpu * vcpu,bool init_event)1022 static void init_vmcb(struct kvm_vcpu *vcpu, bool init_event)
1023 {
1024 	struct vcpu_svm *svm = to_svm(vcpu);
1025 	struct vmcb *vmcb = svm->vmcb01.ptr;
1026 	struct vmcb_control_area *control = &vmcb->control;
1027 	struct vmcb_save_area *save = &vmcb->save;
1028 
1029 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1030 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1031 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1032 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1033 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1034 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1035 	if (!kvm_vcpu_apicv_active(vcpu))
1036 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1037 
1038 	set_dr_intercepts(svm);
1039 
1040 	set_exception_intercept(svm, PF_VECTOR);
1041 	set_exception_intercept(svm, UD_VECTOR);
1042 	set_exception_intercept(svm, MC_VECTOR);
1043 	set_exception_intercept(svm, AC_VECTOR);
1044 	set_exception_intercept(svm, DB_VECTOR);
1045 	/*
1046 	 * Guest access to VMware backdoor ports could legitimately
1047 	 * trigger #GP because of TSS I/O permission bitmap.
1048 	 * We intercept those #GP and allow access to them anyway
1049 	 * as VMware does.
1050 	 */
1051 	if (enable_vmware_backdoor)
1052 		set_exception_intercept(svm, GP_VECTOR);
1053 
1054 	svm_set_intercept(svm, INTERCEPT_INTR);
1055 	svm_set_intercept(svm, INTERCEPT_NMI);
1056 
1057 	if (intercept_smi)
1058 		svm_set_intercept(svm, INTERCEPT_SMI);
1059 
1060 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1061 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1062 	svm_set_intercept(svm, INTERCEPT_CPUID);
1063 	svm_set_intercept(svm, INTERCEPT_INVD);
1064 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1065 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1066 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1067 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1068 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1069 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1070 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1071 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1072 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1073 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1074 	svm_set_intercept(svm, INTERCEPT_STGI);
1075 	svm_set_intercept(svm, INTERCEPT_CLGI);
1076 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1077 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1078 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1079 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1080 	svm_set_intercept(svm, INTERCEPT_RSM);
1081 
1082 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1083 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1084 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1085 	}
1086 
1087 	if (!kvm_hlt_in_guest(vcpu->kvm)) {
1088 		if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT))
1089 			svm_set_intercept(svm, INTERCEPT_IDLE_HLT);
1090 		else
1091 			svm_set_intercept(svm, INTERCEPT_HLT);
1092 	}
1093 
1094 	control->iopm_base_pa = iopm_base;
1095 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1096 	control->int_ctl = V_INTR_MASKING_MASK;
1097 
1098 	init_seg(&save->es);
1099 	init_seg(&save->ss);
1100 	init_seg(&save->ds);
1101 	init_seg(&save->fs);
1102 	init_seg(&save->gs);
1103 
1104 	save->cs.selector = 0xf000;
1105 	save->cs.base = 0xffff0000;
1106 	/* Executable/Readable Code Segment */
1107 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1108 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1109 	save->cs.limit = 0xffff;
1110 
1111 	save->gdtr.base = 0;
1112 	save->gdtr.limit = 0xffff;
1113 	save->idtr.base = 0;
1114 	save->idtr.limit = 0xffff;
1115 
1116 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1117 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1118 
1119 	if (npt_enabled) {
1120 		/* Setup VMCB for Nested Paging */
1121 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1122 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1123 		clr_exception_intercept(svm, PF_VECTOR);
1124 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1125 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1126 		save->g_pat = vcpu->arch.pat;
1127 		save->cr3 = 0;
1128 	}
1129 	svm->current_vmcb->asid_generation = 0;
1130 	svm->asid = 0;
1131 
1132 	svm->nested.vmcb12_gpa = INVALID_GPA;
1133 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1134 
1135 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1136 		control->pause_filter_count = pause_filter_count;
1137 		if (pause_filter_thresh)
1138 			control->pause_filter_thresh = pause_filter_thresh;
1139 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1140 	} else {
1141 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1142 	}
1143 
1144 	if (kvm_vcpu_apicv_active(vcpu))
1145 		avic_init_vmcb(svm, vmcb);
1146 
1147 	if (vnmi)
1148 		svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1149 
1150 	if (vgif) {
1151 		svm_clr_intercept(svm, INTERCEPT_STGI);
1152 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1153 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1154 	}
1155 
1156 	if (vcpu->kvm->arch.bus_lock_detection_enabled)
1157 		svm_set_intercept(svm, INTERCEPT_BUSLOCK);
1158 
1159 	if (sev_guest(vcpu->kvm))
1160 		sev_init_vmcb(svm, init_event);
1161 
1162 	svm_hv_init_vmcb(vmcb);
1163 
1164 	kvm_make_request(KVM_REQ_RECALC_INTERCEPTS, vcpu);
1165 
1166 	vmcb_mark_all_dirty(vmcb);
1167 
1168 	enable_gif(svm);
1169 }
1170 
__svm_vcpu_reset(struct kvm_vcpu * vcpu)1171 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1172 {
1173 	struct vcpu_svm *svm = to_svm(vcpu);
1174 
1175 	svm_init_osvw(vcpu);
1176 
1177 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
1178 		vcpu->arch.microcode_version = 0x01000065;
1179 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1180 
1181 	svm->nmi_masked = false;
1182 	svm->awaiting_iret_completion = false;
1183 }
1184 
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1185 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1186 {
1187 	struct vcpu_svm *svm = to_svm(vcpu);
1188 
1189 	svm->spec_ctrl = 0;
1190 	svm->virt_spec_ctrl = 0;
1191 
1192 	init_vmcb(vcpu, init_event);
1193 
1194 	if (!init_event)
1195 		__svm_vcpu_reset(vcpu);
1196 }
1197 
svm_switch_vmcb(struct vcpu_svm * svm,struct kvm_vmcb_info * target_vmcb)1198 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1199 {
1200 	svm->current_vmcb = target_vmcb;
1201 	svm->vmcb = target_vmcb->ptr;
1202 }
1203 
svm_vcpu_precreate(struct kvm * kvm)1204 static int svm_vcpu_precreate(struct kvm *kvm)
1205 {
1206 	return avic_alloc_physical_id_table(kvm);
1207 }
1208 
svm_vcpu_create(struct kvm_vcpu * vcpu)1209 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1210 {
1211 	struct vcpu_svm *svm;
1212 	struct page *vmcb01_page;
1213 	int err;
1214 
1215 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1216 	svm = to_svm(vcpu);
1217 
1218 	err = -ENOMEM;
1219 	vmcb01_page = snp_safe_alloc_page();
1220 	if (!vmcb01_page)
1221 		goto out;
1222 
1223 	err = sev_vcpu_create(vcpu);
1224 	if (err)
1225 		goto error_free_vmcb_page;
1226 
1227 	err = avic_init_vcpu(svm);
1228 	if (err)
1229 		goto error_free_sev;
1230 
1231 	svm->msrpm = svm_vcpu_alloc_msrpm();
1232 	if (!svm->msrpm) {
1233 		err = -ENOMEM;
1234 		goto error_free_sev;
1235 	}
1236 
1237 	svm->x2avic_msrs_intercepted = true;
1238 	svm->lbr_msrs_intercepted = true;
1239 
1240 	svm->vmcb01.ptr = page_address(vmcb01_page);
1241 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1242 	svm_switch_vmcb(svm, &svm->vmcb01);
1243 
1244 	svm->guest_state_loaded = false;
1245 
1246 	return 0;
1247 
1248 error_free_sev:
1249 	sev_free_vcpu(vcpu);
1250 error_free_vmcb_page:
1251 	__free_page(vmcb01_page);
1252 out:
1253 	return err;
1254 }
1255 
svm_vcpu_free(struct kvm_vcpu * vcpu)1256 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1257 {
1258 	struct vcpu_svm *svm = to_svm(vcpu);
1259 
1260 	WARN_ON_ONCE(!list_empty(&svm->ir_list));
1261 
1262 	svm_leave_nested(vcpu);
1263 	svm_free_nested(svm);
1264 
1265 	sev_free_vcpu(vcpu);
1266 
1267 	__free_page(__sme_pa_to_page(svm->vmcb01.pa));
1268 	svm_vcpu_free_msrpm(svm->msrpm);
1269 }
1270 
1271 #ifdef CONFIG_CPU_MITIGATIONS
1272 static DEFINE_SPINLOCK(srso_lock);
1273 static atomic_t srso_nr_vms;
1274 
svm_srso_clear_bp_spec_reduce(void * ign)1275 static void svm_srso_clear_bp_spec_reduce(void *ign)
1276 {
1277 	struct svm_cpu_data *sd = this_cpu_ptr(&svm_data);
1278 
1279 	if (!sd->bp_spec_reduce_set)
1280 		return;
1281 
1282 	msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1283 	sd->bp_spec_reduce_set = false;
1284 }
1285 
svm_srso_vm_destroy(void)1286 static void svm_srso_vm_destroy(void)
1287 {
1288 	if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1289 		return;
1290 
1291 	if (atomic_dec_return(&srso_nr_vms))
1292 		return;
1293 
1294 	guard(spinlock)(&srso_lock);
1295 
1296 	/*
1297 	 * Verify a new VM didn't come along, acquire the lock, and increment
1298 	 * the count before this task acquired the lock.
1299 	 */
1300 	if (atomic_read(&srso_nr_vms))
1301 		return;
1302 
1303 	on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1);
1304 }
1305 
svm_srso_vm_init(void)1306 static void svm_srso_vm_init(void)
1307 {
1308 	if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1309 		return;
1310 
1311 	/*
1312 	 * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0
1313 	 * transition, i.e. destroying the last VM, is fully complete, e.g. so
1314 	 * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs.
1315 	 */
1316 	if (atomic_inc_not_zero(&srso_nr_vms))
1317 		return;
1318 
1319 	guard(spinlock)(&srso_lock);
1320 
1321 	atomic_inc(&srso_nr_vms);
1322 }
1323 #else
svm_srso_vm_init(void)1324 static void svm_srso_vm_init(void) { }
svm_srso_vm_destroy(void)1325 static void svm_srso_vm_destroy(void) { }
1326 #endif
1327 
svm_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1328 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1329 {
1330 	struct vcpu_svm *svm = to_svm(vcpu);
1331 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1332 
1333 	if (sev_es_guest(vcpu->kvm))
1334 		sev_es_unmap_ghcb(svm);
1335 
1336 	if (svm->guest_state_loaded)
1337 		return;
1338 
1339 	/*
1340 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1341 	 * or subsequent vmload of host save area.
1342 	 */
1343 	vmsave(sd->save_area_pa);
1344 	if (sev_es_guest(vcpu->kvm))
1345 		sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
1346 
1347 	if (tsc_scaling)
1348 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1349 
1350 	/*
1351 	 * TSC_AUX is always virtualized (context switched by hardware) for
1352 	 * SEV-ES guests when the feature is available.  For non-SEV-ES guests,
1353 	 * context switch TSC_AUX via the user_return MSR infrastructure (not
1354 	 * all CPUs support TSC_AUX virtualization).
1355 	 */
1356 	if (likely(tsc_aux_uret_slot >= 0) &&
1357 	    (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1358 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1359 
1360 	if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) &&
1361 	    !sd->bp_spec_reduce_set) {
1362 		sd->bp_spec_reduce_set = true;
1363 		msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1364 	}
1365 	svm->guest_state_loaded = true;
1366 }
1367 
svm_prepare_host_switch(struct kvm_vcpu * vcpu)1368 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1369 {
1370 	to_svm(vcpu)->guest_state_loaded = false;
1371 }
1372 
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1373 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1374 {
1375 	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1376 		shrink_ple_window(vcpu);
1377 
1378 	if (kvm_vcpu_apicv_active(vcpu))
1379 		avic_vcpu_load(vcpu, cpu);
1380 }
1381 
svm_vcpu_put(struct kvm_vcpu * vcpu)1382 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1383 {
1384 	if (kvm_vcpu_apicv_active(vcpu))
1385 		avic_vcpu_put(vcpu);
1386 
1387 	svm_prepare_host_switch(vcpu);
1388 
1389 	++vcpu->stat.host_state_reload;
1390 }
1391 
svm_get_rflags(struct kvm_vcpu * vcpu)1392 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1393 {
1394 	struct vcpu_svm *svm = to_svm(vcpu);
1395 	unsigned long rflags = svm->vmcb->save.rflags;
1396 
1397 	if (svm->nmi_singlestep) {
1398 		/* Hide our flags if they were not set by the guest */
1399 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1400 			rflags &= ~X86_EFLAGS_TF;
1401 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1402 			rflags &= ~X86_EFLAGS_RF;
1403 	}
1404 	return rflags;
1405 }
1406 
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1407 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1408 {
1409 	if (to_svm(vcpu)->nmi_singlestep)
1410 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1411 
1412        /*
1413         * Any change of EFLAGS.VM is accompanied by a reload of SS
1414         * (caused by either a task switch or an inter-privilege IRET),
1415         * so we do not need to update the CPL here.
1416         */
1417 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1418 }
1419 
svm_get_if_flag(struct kvm_vcpu * vcpu)1420 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1421 {
1422 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1423 
1424 	return sev_es_guest(vcpu->kvm)
1425 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1426 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1427 }
1428 
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1429 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1430 {
1431 	kvm_register_mark_available(vcpu, reg);
1432 
1433 	switch (reg) {
1434 	case VCPU_EXREG_PDPTR:
1435 		/*
1436 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1437 		 * it is always updated per SDM when moving to CRs.
1438 		 */
1439 		if (npt_enabled)
1440 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1441 		break;
1442 	default:
1443 		KVM_BUG_ON(1, vcpu->kvm);
1444 	}
1445 }
1446 
svm_set_vintr(struct vcpu_svm * svm)1447 static void svm_set_vintr(struct vcpu_svm *svm)
1448 {
1449 	struct vmcb_control_area *control;
1450 
1451 	/*
1452 	 * The following fields are ignored when AVIC is enabled
1453 	 */
1454 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1455 
1456 	svm_set_intercept(svm, INTERCEPT_VINTR);
1457 
1458 	/*
1459 	 * Recalculating intercepts may have cleared the VINTR intercept.  If
1460 	 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1461 	 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1462 	 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1463 	 * interrupts will never be unblocked while L2 is running.
1464 	 */
1465 	if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1466 		return;
1467 
1468 	/*
1469 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1470 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1471 	 */
1472 	control = &svm->vmcb->control;
1473 	control->int_vector = 0x0;
1474 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1475 	control->int_ctl |= V_IRQ_MASK |
1476 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1477 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1478 }
1479 
svm_clear_vintr(struct vcpu_svm * svm)1480 static void svm_clear_vintr(struct vcpu_svm *svm)
1481 {
1482 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1483 
1484 	/* Drop int_ctl fields related to VINTR injection.  */
1485 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1486 	if (is_guest_mode(&svm->vcpu)) {
1487 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1488 
1489 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1490 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1491 
1492 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1493 			V_IRQ_INJECTION_BITS_MASK;
1494 
1495 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1496 	}
1497 
1498 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1499 }
1500 
svm_seg(struct kvm_vcpu * vcpu,int seg)1501 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1502 {
1503 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1504 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1505 
1506 	switch (seg) {
1507 	case VCPU_SREG_CS: return &save->cs;
1508 	case VCPU_SREG_DS: return &save->ds;
1509 	case VCPU_SREG_ES: return &save->es;
1510 	case VCPU_SREG_FS: return &save01->fs;
1511 	case VCPU_SREG_GS: return &save01->gs;
1512 	case VCPU_SREG_SS: return &save->ss;
1513 	case VCPU_SREG_TR: return &save01->tr;
1514 	case VCPU_SREG_LDTR: return &save01->ldtr;
1515 	}
1516 	BUG();
1517 	return NULL;
1518 }
1519 
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1520 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1521 {
1522 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1523 
1524 	return s->base;
1525 }
1526 
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1527 static void svm_get_segment(struct kvm_vcpu *vcpu,
1528 			    struct kvm_segment *var, int seg)
1529 {
1530 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1531 
1532 	var->base = s->base;
1533 	var->limit = s->limit;
1534 	var->selector = s->selector;
1535 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1536 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1537 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1538 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1539 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1540 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1541 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1542 
1543 	/*
1544 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1545 	 * However, the SVM spec states that the G bit is not observed by the
1546 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1547 	 * So let's synthesize a legal G bit for all segments, this helps
1548 	 * running KVM nested. It also helps cross-vendor migration, because
1549 	 * Intel's vmentry has a check on the 'G' bit.
1550 	 */
1551 	var->g = s->limit > 0xfffff;
1552 
1553 	/*
1554 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1555 	 * for cross vendor migration purposes by "not present"
1556 	 */
1557 	var->unusable = !var->present;
1558 
1559 	switch (seg) {
1560 	case VCPU_SREG_TR:
1561 		/*
1562 		 * Work around a bug where the busy flag in the tr selector
1563 		 * isn't exposed
1564 		 */
1565 		var->type |= 0x2;
1566 		break;
1567 	case VCPU_SREG_DS:
1568 	case VCPU_SREG_ES:
1569 	case VCPU_SREG_FS:
1570 	case VCPU_SREG_GS:
1571 		/*
1572 		 * The accessed bit must always be set in the segment
1573 		 * descriptor cache, although it can be cleared in the
1574 		 * descriptor, the cached bit always remains at 1. Since
1575 		 * Intel has a check on this, set it here to support
1576 		 * cross-vendor migration.
1577 		 */
1578 		if (!var->unusable)
1579 			var->type |= 0x1;
1580 		break;
1581 	case VCPU_SREG_SS:
1582 		/*
1583 		 * On AMD CPUs sometimes the DB bit in the segment
1584 		 * descriptor is left as 1, although the whole segment has
1585 		 * been made unusable. Clear it here to pass an Intel VMX
1586 		 * entry check when cross vendor migrating.
1587 		 */
1588 		if (var->unusable)
1589 			var->db = 0;
1590 		/* This is symmetric with svm_set_segment() */
1591 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1592 		break;
1593 	}
1594 }
1595 
svm_get_cpl(struct kvm_vcpu * vcpu)1596 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1597 {
1598 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1599 
1600 	return save->cpl;
1601 }
1602 
svm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)1603 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1604 {
1605 	struct kvm_segment cs;
1606 
1607 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1608 	*db = cs.db;
1609 	*l = cs.l;
1610 }
1611 
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1612 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1613 {
1614 	struct vcpu_svm *svm = to_svm(vcpu);
1615 
1616 	dt->size = svm->vmcb->save.idtr.limit;
1617 	dt->address = svm->vmcb->save.idtr.base;
1618 }
1619 
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1620 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1621 {
1622 	struct vcpu_svm *svm = to_svm(vcpu);
1623 
1624 	svm->vmcb->save.idtr.limit = dt->size;
1625 	svm->vmcb->save.idtr.base = dt->address ;
1626 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1627 }
1628 
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1629 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1630 {
1631 	struct vcpu_svm *svm = to_svm(vcpu);
1632 
1633 	dt->size = svm->vmcb->save.gdtr.limit;
1634 	dt->address = svm->vmcb->save.gdtr.base;
1635 }
1636 
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1637 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1638 {
1639 	struct vcpu_svm *svm = to_svm(vcpu);
1640 
1641 	svm->vmcb->save.gdtr.limit = dt->size;
1642 	svm->vmcb->save.gdtr.base = dt->address ;
1643 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1644 }
1645 
sev_post_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1646 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1647 {
1648 	struct vcpu_svm *svm = to_svm(vcpu);
1649 
1650 	/*
1651 	 * For guests that don't set guest_state_protected, the cr3 update is
1652 	 * handled via kvm_mmu_load() while entering the guest. For guests
1653 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1654 	 * VMCB save area now, since the save area will become the initial
1655 	 * contents of the VMSA, and future VMCB save area updates won't be
1656 	 * seen.
1657 	 */
1658 	if (sev_es_guest(vcpu->kvm)) {
1659 		svm->vmcb->save.cr3 = cr3;
1660 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1661 	}
1662 }
1663 
svm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1664 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1665 {
1666 	return true;
1667 }
1668 
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1669 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1670 {
1671 	struct vcpu_svm *svm = to_svm(vcpu);
1672 	u64 hcr0 = cr0;
1673 	bool old_paging = is_paging(vcpu);
1674 
1675 #ifdef CONFIG_X86_64
1676 	if (vcpu->arch.efer & EFER_LME) {
1677 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1678 			vcpu->arch.efer |= EFER_LMA;
1679 			if (!vcpu->arch.guest_state_protected)
1680 				svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1681 		}
1682 
1683 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1684 			vcpu->arch.efer &= ~EFER_LMA;
1685 			if (!vcpu->arch.guest_state_protected)
1686 				svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1687 		}
1688 	}
1689 #endif
1690 	vcpu->arch.cr0 = cr0;
1691 
1692 	if (!npt_enabled) {
1693 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1694 		if (old_paging != is_paging(vcpu))
1695 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1696 	}
1697 
1698 	/*
1699 	 * re-enable caching here because the QEMU bios
1700 	 * does not do it - this results in some delay at
1701 	 * reboot
1702 	 */
1703 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1704 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1705 
1706 	svm->vmcb->save.cr0 = hcr0;
1707 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1708 
1709 	/*
1710 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1711 	 * tracking is done using the CR write traps.
1712 	 */
1713 	if (sev_es_guest(vcpu->kvm))
1714 		return;
1715 
1716 	if (hcr0 == cr0) {
1717 		/* Selective CR0 write remains on.  */
1718 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1719 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1720 	} else {
1721 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1722 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1723 	}
1724 }
1725 
svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1726 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1727 {
1728 	return true;
1729 }
1730 
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1731 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1732 {
1733 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1734 	unsigned long old_cr4 = vcpu->arch.cr4;
1735 
1736 	vcpu->arch.cr4 = cr4;
1737 	if (!npt_enabled) {
1738 		cr4 |= X86_CR4_PAE;
1739 
1740 		if (!is_paging(vcpu))
1741 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1742 	}
1743 	cr4 |= host_cr4_mce;
1744 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1745 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1746 
1747 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1748 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
1749 }
1750 
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1751 static void svm_set_segment(struct kvm_vcpu *vcpu,
1752 			    struct kvm_segment *var, int seg)
1753 {
1754 	struct vcpu_svm *svm = to_svm(vcpu);
1755 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1756 
1757 	s->base = var->base;
1758 	s->limit = var->limit;
1759 	s->selector = var->selector;
1760 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1761 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1762 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1763 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1764 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1765 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1766 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1767 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1768 
1769 	/*
1770 	 * This is always accurate, except if SYSRET returned to a segment
1771 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1772 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1773 	 * would entail passing the CPL to userspace and back.
1774 	 */
1775 	if (seg == VCPU_SREG_SS)
1776 		/* This is symmetric with svm_get_segment() */
1777 		svm->vmcb->save.cpl = (var->dpl & 3);
1778 
1779 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1780 }
1781 
svm_update_exception_bitmap(struct kvm_vcpu * vcpu)1782 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1783 {
1784 	struct vcpu_svm *svm = to_svm(vcpu);
1785 
1786 	clr_exception_intercept(svm, BP_VECTOR);
1787 
1788 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1789 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1790 			set_exception_intercept(svm, BP_VECTOR);
1791 	}
1792 }
1793 
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1794 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1795 {
1796 	if (sd->next_asid > sd->max_asid) {
1797 		++sd->asid_generation;
1798 		sd->next_asid = sd->min_asid;
1799 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1800 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1801 	}
1802 
1803 	svm->current_vmcb->asid_generation = sd->asid_generation;
1804 	svm->asid = sd->next_asid++;
1805 }
1806 
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)1807 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1808 {
1809 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1810 
1811 	if (vcpu->arch.guest_state_protected)
1812 		return;
1813 
1814 	if (unlikely(value != vmcb->save.dr6)) {
1815 		vmcb->save.dr6 = value;
1816 		vmcb_mark_dirty(vmcb, VMCB_DR);
1817 	}
1818 }
1819 
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)1820 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1821 {
1822 	struct vcpu_svm *svm = to_svm(vcpu);
1823 
1824 	if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
1825 		return;
1826 
1827 	get_debugreg(vcpu->arch.db[0], 0);
1828 	get_debugreg(vcpu->arch.db[1], 1);
1829 	get_debugreg(vcpu->arch.db[2], 2);
1830 	get_debugreg(vcpu->arch.db[3], 3);
1831 	/*
1832 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1833 	 * because db_interception might need it.  We can do it before vmentry.
1834 	 */
1835 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1836 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1837 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1838 	set_dr_intercepts(svm);
1839 }
1840 
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)1841 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1842 {
1843 	struct vcpu_svm *svm = to_svm(vcpu);
1844 
1845 	if (vcpu->arch.guest_state_protected)
1846 		return;
1847 
1848 	svm->vmcb->save.dr7 = value;
1849 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1850 }
1851 
pf_interception(struct kvm_vcpu * vcpu)1852 static int pf_interception(struct kvm_vcpu *vcpu)
1853 {
1854 	struct vcpu_svm *svm = to_svm(vcpu);
1855 
1856 	u64 fault_address = svm->vmcb->control.exit_info_2;
1857 	u64 error_code = svm->vmcb->control.exit_info_1;
1858 
1859 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1860 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1861 			svm->vmcb->control.insn_bytes : NULL,
1862 			svm->vmcb->control.insn_len);
1863 }
1864 
npf_interception(struct kvm_vcpu * vcpu)1865 static int npf_interception(struct kvm_vcpu *vcpu)
1866 {
1867 	struct vcpu_svm *svm = to_svm(vcpu);
1868 	int rc;
1869 
1870 	u64 fault_address = svm->vmcb->control.exit_info_2;
1871 	u64 error_code = svm->vmcb->control.exit_info_1;
1872 
1873 	/*
1874 	 * WARN if hardware generates a fault with an error code that collides
1875 	 * with KVM-defined sythentic flags.  Clear the flags and continue on,
1876 	 * i.e. don't terminate the VM, as KVM can't possibly be relying on a
1877 	 * flag that KVM doesn't know about.
1878 	 */
1879 	if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
1880 		error_code &= ~PFERR_SYNTHETIC_MASK;
1881 
1882 	if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
1883 		error_code |= PFERR_PRIVATE_ACCESS;
1884 
1885 	trace_kvm_page_fault(vcpu, fault_address, error_code);
1886 	rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
1887 				static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1888 				svm->vmcb->control.insn_bytes : NULL,
1889 				svm->vmcb->control.insn_len);
1890 
1891 	if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
1892 		sev_handle_rmp_fault(vcpu, fault_address, error_code);
1893 
1894 	return rc;
1895 }
1896 
db_interception(struct kvm_vcpu * vcpu)1897 static int db_interception(struct kvm_vcpu *vcpu)
1898 {
1899 	struct kvm_run *kvm_run = vcpu->run;
1900 	struct vcpu_svm *svm = to_svm(vcpu);
1901 
1902 	if (!(vcpu->guest_debug &
1903 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1904 		!svm->nmi_singlestep) {
1905 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1906 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1907 		return 1;
1908 	}
1909 
1910 	if (svm->nmi_singlestep) {
1911 		disable_nmi_singlestep(svm);
1912 		/* Make sure we check for pending NMIs upon entry */
1913 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1914 	}
1915 
1916 	if (vcpu->guest_debug &
1917 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1918 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1919 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1920 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1921 		kvm_run->debug.arch.pc =
1922 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1923 		kvm_run->debug.arch.exception = DB_VECTOR;
1924 		return 0;
1925 	}
1926 
1927 	return 1;
1928 }
1929 
bp_interception(struct kvm_vcpu * vcpu)1930 static int bp_interception(struct kvm_vcpu *vcpu)
1931 {
1932 	struct vcpu_svm *svm = to_svm(vcpu);
1933 	struct kvm_run *kvm_run = vcpu->run;
1934 
1935 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1936 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1937 	kvm_run->debug.arch.exception = BP_VECTOR;
1938 	return 0;
1939 }
1940 
ud_interception(struct kvm_vcpu * vcpu)1941 static int ud_interception(struct kvm_vcpu *vcpu)
1942 {
1943 	return handle_ud(vcpu);
1944 }
1945 
ac_interception(struct kvm_vcpu * vcpu)1946 static int ac_interception(struct kvm_vcpu *vcpu)
1947 {
1948 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1949 	return 1;
1950 }
1951 
is_erratum_383(void)1952 static bool is_erratum_383(void)
1953 {
1954 	int i;
1955 	u64 value;
1956 
1957 	if (!erratum_383_found)
1958 		return false;
1959 
1960 	if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value))
1961 		return false;
1962 
1963 	/* Bit 62 may or may not be set for this mce */
1964 	value &= ~(1ULL << 62);
1965 
1966 	if (value != 0xb600000000010015ULL)
1967 		return false;
1968 
1969 	/* Clear MCi_STATUS registers */
1970 	for (i = 0; i < 6; ++i)
1971 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0);
1972 
1973 	if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) {
1974 		value &= ~(1ULL << 2);
1975 		native_write_msr_safe(MSR_IA32_MCG_STATUS, value);
1976 	}
1977 
1978 	/* Flush tlb to evict multi-match entries */
1979 	__flush_tlb_all();
1980 
1981 	return true;
1982 }
1983 
svm_handle_mce(struct kvm_vcpu * vcpu)1984 static void svm_handle_mce(struct kvm_vcpu *vcpu)
1985 {
1986 	if (is_erratum_383()) {
1987 		/*
1988 		 * Erratum 383 triggered. Guest state is corrupt so kill the
1989 		 * guest.
1990 		 */
1991 		pr_err("Guest triggered AMD Erratum 383\n");
1992 
1993 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1994 
1995 		return;
1996 	}
1997 
1998 	/*
1999 	 * On an #MC intercept the MCE handler is not called automatically in
2000 	 * the host. So do it by hand here.
2001 	 */
2002 	kvm_machine_check();
2003 }
2004 
mc_interception(struct kvm_vcpu * vcpu)2005 static int mc_interception(struct kvm_vcpu *vcpu)
2006 {
2007 	return 1;
2008 }
2009 
shutdown_interception(struct kvm_vcpu * vcpu)2010 static int shutdown_interception(struct kvm_vcpu *vcpu)
2011 {
2012 	struct kvm_run *kvm_run = vcpu->run;
2013 	struct vcpu_svm *svm = to_svm(vcpu);
2014 
2015 
2016 	/*
2017 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2018 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2019 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2020 	 * userspace.  At a platform view, INIT is acceptable behavior as
2021 	 * there exist bare metal platforms that automatically INIT the CPU
2022 	 * in response to shutdown.
2023 	 *
2024 	 * The VM save area for SEV-ES guests has already been encrypted so it
2025 	 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2026 	 */
2027 	if (!sev_es_guest(vcpu->kvm)) {
2028 		clear_page(svm->vmcb);
2029 #ifdef CONFIG_KVM_SMM
2030 		if (is_smm(vcpu))
2031 			kvm_smm_changed(vcpu, false);
2032 #endif
2033 		kvm_vcpu_reset(vcpu, true);
2034 	}
2035 
2036 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2037 	return 0;
2038 }
2039 
io_interception(struct kvm_vcpu * vcpu)2040 static int io_interception(struct kvm_vcpu *vcpu)
2041 {
2042 	struct vcpu_svm *svm = to_svm(vcpu);
2043 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2044 	int size, in, string;
2045 	unsigned port;
2046 
2047 	++vcpu->stat.io_exits;
2048 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2049 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2050 	port = io_info >> 16;
2051 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2052 
2053 	if (string) {
2054 		if (sev_es_guest(vcpu->kvm))
2055 			return sev_es_string_io(svm, size, port, in);
2056 		else
2057 			return kvm_emulate_instruction(vcpu, 0);
2058 	}
2059 
2060 	svm->next_rip = svm->vmcb->control.exit_info_2;
2061 
2062 	return kvm_fast_pio(vcpu, size, port, in);
2063 }
2064 
nmi_interception(struct kvm_vcpu * vcpu)2065 static int nmi_interception(struct kvm_vcpu *vcpu)
2066 {
2067 	return 1;
2068 }
2069 
smi_interception(struct kvm_vcpu * vcpu)2070 static int smi_interception(struct kvm_vcpu *vcpu)
2071 {
2072 	return 1;
2073 }
2074 
intr_interception(struct kvm_vcpu * vcpu)2075 static int intr_interception(struct kvm_vcpu *vcpu)
2076 {
2077 	++vcpu->stat.irq_exits;
2078 	return 1;
2079 }
2080 
vmload_vmsave_interception(struct kvm_vcpu * vcpu,bool vmload)2081 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2082 {
2083 	struct vcpu_svm *svm = to_svm(vcpu);
2084 	struct vmcb *vmcb12;
2085 	struct kvm_host_map map;
2086 	int ret;
2087 
2088 	if (nested_svm_check_permissions(vcpu))
2089 		return 1;
2090 
2091 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2092 	if (ret) {
2093 		if (ret == -EINVAL)
2094 			kvm_inject_gp(vcpu, 0);
2095 		return 1;
2096 	}
2097 
2098 	vmcb12 = map.hva;
2099 
2100 	ret = kvm_skip_emulated_instruction(vcpu);
2101 
2102 	if (vmload) {
2103 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2104 		svm->sysenter_eip_hi = 0;
2105 		svm->sysenter_esp_hi = 0;
2106 	} else {
2107 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2108 	}
2109 
2110 	kvm_vcpu_unmap(vcpu, &map);
2111 
2112 	return ret;
2113 }
2114 
vmload_interception(struct kvm_vcpu * vcpu)2115 static int vmload_interception(struct kvm_vcpu *vcpu)
2116 {
2117 	return vmload_vmsave_interception(vcpu, true);
2118 }
2119 
vmsave_interception(struct kvm_vcpu * vcpu)2120 static int vmsave_interception(struct kvm_vcpu *vcpu)
2121 {
2122 	return vmload_vmsave_interception(vcpu, false);
2123 }
2124 
vmrun_interception(struct kvm_vcpu * vcpu)2125 static int vmrun_interception(struct kvm_vcpu *vcpu)
2126 {
2127 	if (nested_svm_check_permissions(vcpu))
2128 		return 1;
2129 
2130 	return nested_svm_vmrun(vcpu);
2131 }
2132 
2133 enum {
2134 	NONE_SVM_INSTR,
2135 	SVM_INSTR_VMRUN,
2136 	SVM_INSTR_VMLOAD,
2137 	SVM_INSTR_VMSAVE,
2138 };
2139 
2140 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
svm_instr_opcode(struct kvm_vcpu * vcpu)2141 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2142 {
2143 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2144 
2145 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2146 		return NONE_SVM_INSTR;
2147 
2148 	switch (ctxt->modrm) {
2149 	case 0xd8: /* VMRUN */
2150 		return SVM_INSTR_VMRUN;
2151 	case 0xda: /* VMLOAD */
2152 		return SVM_INSTR_VMLOAD;
2153 	case 0xdb: /* VMSAVE */
2154 		return SVM_INSTR_VMSAVE;
2155 	default:
2156 		break;
2157 	}
2158 
2159 	return NONE_SVM_INSTR;
2160 }
2161 
emulate_svm_instr(struct kvm_vcpu * vcpu,int opcode)2162 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2163 {
2164 	const int guest_mode_exit_codes[] = {
2165 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2166 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2167 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2168 	};
2169 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2170 		[SVM_INSTR_VMRUN] = vmrun_interception,
2171 		[SVM_INSTR_VMLOAD] = vmload_interception,
2172 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2173 	};
2174 	struct vcpu_svm *svm = to_svm(vcpu);
2175 	int ret;
2176 
2177 	if (is_guest_mode(vcpu)) {
2178 		/* Returns '1' or -errno on failure, '0' on success. */
2179 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2180 		if (ret)
2181 			return ret;
2182 		return 1;
2183 	}
2184 	return svm_instr_handlers[opcode](vcpu);
2185 }
2186 
2187 /*
2188  * #GP handling code. Note that #GP can be triggered under the following two
2189  * cases:
2190  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2191  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2192  *      regions (e.g. SMM memory on host).
2193  *   2) VMware backdoor
2194  */
gp_interception(struct kvm_vcpu * vcpu)2195 static int gp_interception(struct kvm_vcpu *vcpu)
2196 {
2197 	struct vcpu_svm *svm = to_svm(vcpu);
2198 	u32 error_code = svm->vmcb->control.exit_info_1;
2199 	int opcode;
2200 
2201 	/* Both #GP cases have zero error_code */
2202 	if (error_code)
2203 		goto reinject;
2204 
2205 	/* Decode the instruction for usage later */
2206 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2207 		goto reinject;
2208 
2209 	opcode = svm_instr_opcode(vcpu);
2210 
2211 	if (opcode == NONE_SVM_INSTR) {
2212 		if (!enable_vmware_backdoor)
2213 			goto reinject;
2214 
2215 		/*
2216 		 * VMware backdoor emulation on #GP interception only handles
2217 		 * IN{S}, OUT{S}, and RDPMC.
2218 		 */
2219 		if (!is_guest_mode(vcpu))
2220 			return kvm_emulate_instruction(vcpu,
2221 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2222 	} else {
2223 		/* All SVM instructions expect page aligned RAX */
2224 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2225 			goto reinject;
2226 
2227 		return emulate_svm_instr(vcpu, opcode);
2228 	}
2229 
2230 reinject:
2231 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2232 	return 1;
2233 }
2234 
svm_set_gif(struct vcpu_svm * svm,bool value)2235 void svm_set_gif(struct vcpu_svm *svm, bool value)
2236 {
2237 	if (value) {
2238 		/*
2239 		 * If VGIF is enabled, the STGI intercept is only added to
2240 		 * detect the opening of the SMI/NMI window; remove it now.
2241 		 * Likewise, clear the VINTR intercept, we will set it
2242 		 * again while processing KVM_REQ_EVENT if needed.
2243 		 */
2244 		if (vgif)
2245 			svm_clr_intercept(svm, INTERCEPT_STGI);
2246 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2247 			svm_clear_vintr(svm);
2248 
2249 		enable_gif(svm);
2250 		if (svm->vcpu.arch.smi_pending ||
2251 		    svm->vcpu.arch.nmi_pending ||
2252 		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2253 		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2254 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2255 	} else {
2256 		disable_gif(svm);
2257 
2258 		/*
2259 		 * After a CLGI no interrupts should come.  But if vGIF is
2260 		 * in use, we still rely on the VINTR intercept (rather than
2261 		 * STGI) to detect an open interrupt window.
2262 		*/
2263 		if (!vgif)
2264 			svm_clear_vintr(svm);
2265 	}
2266 }
2267 
stgi_interception(struct kvm_vcpu * vcpu)2268 static int stgi_interception(struct kvm_vcpu *vcpu)
2269 {
2270 	int ret;
2271 
2272 	if (nested_svm_check_permissions(vcpu))
2273 		return 1;
2274 
2275 	ret = kvm_skip_emulated_instruction(vcpu);
2276 	svm_set_gif(to_svm(vcpu), true);
2277 	return ret;
2278 }
2279 
clgi_interception(struct kvm_vcpu * vcpu)2280 static int clgi_interception(struct kvm_vcpu *vcpu)
2281 {
2282 	int ret;
2283 
2284 	if (nested_svm_check_permissions(vcpu))
2285 		return 1;
2286 
2287 	ret = kvm_skip_emulated_instruction(vcpu);
2288 	svm_set_gif(to_svm(vcpu), false);
2289 	return ret;
2290 }
2291 
invlpga_interception(struct kvm_vcpu * vcpu)2292 static int invlpga_interception(struct kvm_vcpu *vcpu)
2293 {
2294 	gva_t gva = kvm_rax_read(vcpu);
2295 	u32 asid = kvm_rcx_read(vcpu);
2296 
2297 	/* FIXME: Handle an address size prefix. */
2298 	if (!is_long_mode(vcpu))
2299 		gva = (u32)gva;
2300 
2301 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2302 
2303 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2304 	kvm_mmu_invlpg(vcpu, gva);
2305 
2306 	return kvm_skip_emulated_instruction(vcpu);
2307 }
2308 
skinit_interception(struct kvm_vcpu * vcpu)2309 static int skinit_interception(struct kvm_vcpu *vcpu)
2310 {
2311 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2312 
2313 	kvm_queue_exception(vcpu, UD_VECTOR);
2314 	return 1;
2315 }
2316 
task_switch_interception(struct kvm_vcpu * vcpu)2317 static int task_switch_interception(struct kvm_vcpu *vcpu)
2318 {
2319 	struct vcpu_svm *svm = to_svm(vcpu);
2320 	u16 tss_selector;
2321 	int reason;
2322 	int int_type = svm->vmcb->control.exit_int_info &
2323 		SVM_EXITINTINFO_TYPE_MASK;
2324 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2325 	uint32_t type =
2326 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2327 	uint32_t idt_v =
2328 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2329 	bool has_error_code = false;
2330 	u32 error_code = 0;
2331 
2332 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2333 
2334 	if (svm->vmcb->control.exit_info_2 &
2335 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2336 		reason = TASK_SWITCH_IRET;
2337 	else if (svm->vmcb->control.exit_info_2 &
2338 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2339 		reason = TASK_SWITCH_JMP;
2340 	else if (idt_v)
2341 		reason = TASK_SWITCH_GATE;
2342 	else
2343 		reason = TASK_SWITCH_CALL;
2344 
2345 	if (reason == TASK_SWITCH_GATE) {
2346 		switch (type) {
2347 		case SVM_EXITINTINFO_TYPE_NMI:
2348 			vcpu->arch.nmi_injected = false;
2349 			break;
2350 		case SVM_EXITINTINFO_TYPE_EXEPT:
2351 			if (svm->vmcb->control.exit_info_2 &
2352 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2353 				has_error_code = true;
2354 				error_code =
2355 					(u32)svm->vmcb->control.exit_info_2;
2356 			}
2357 			kvm_clear_exception_queue(vcpu);
2358 			break;
2359 		case SVM_EXITINTINFO_TYPE_INTR:
2360 		case SVM_EXITINTINFO_TYPE_SOFT:
2361 			kvm_clear_interrupt_queue(vcpu);
2362 			break;
2363 		default:
2364 			break;
2365 		}
2366 	}
2367 
2368 	if (reason != TASK_SWITCH_GATE ||
2369 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2370 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2371 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2372 		if (!svm_skip_emulated_instruction(vcpu))
2373 			return 0;
2374 	}
2375 
2376 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2377 		int_vec = -1;
2378 
2379 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2380 			       has_error_code, error_code);
2381 }
2382 
svm_clr_iret_intercept(struct vcpu_svm * svm)2383 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2384 {
2385 	if (!sev_es_guest(svm->vcpu.kvm))
2386 		svm_clr_intercept(svm, INTERCEPT_IRET);
2387 }
2388 
svm_set_iret_intercept(struct vcpu_svm * svm)2389 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2390 {
2391 	if (!sev_es_guest(svm->vcpu.kvm))
2392 		svm_set_intercept(svm, INTERCEPT_IRET);
2393 }
2394 
iret_interception(struct kvm_vcpu * vcpu)2395 static int iret_interception(struct kvm_vcpu *vcpu)
2396 {
2397 	struct vcpu_svm *svm = to_svm(vcpu);
2398 
2399 	WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2400 
2401 	++vcpu->stat.nmi_window_exits;
2402 	svm->awaiting_iret_completion = true;
2403 
2404 	svm_clr_iret_intercept(svm);
2405 	svm->nmi_iret_rip = kvm_rip_read(vcpu);
2406 
2407 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2408 	return 1;
2409 }
2410 
invlpg_interception(struct kvm_vcpu * vcpu)2411 static int invlpg_interception(struct kvm_vcpu *vcpu)
2412 {
2413 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2414 		return kvm_emulate_instruction(vcpu, 0);
2415 
2416 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2417 	return kvm_skip_emulated_instruction(vcpu);
2418 }
2419 
emulate_on_interception(struct kvm_vcpu * vcpu)2420 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2421 {
2422 	return kvm_emulate_instruction(vcpu, 0);
2423 }
2424 
rsm_interception(struct kvm_vcpu * vcpu)2425 static int rsm_interception(struct kvm_vcpu *vcpu)
2426 {
2427 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2428 }
2429 
check_selective_cr0_intercepted(struct kvm_vcpu * vcpu,unsigned long val)2430 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2431 					    unsigned long val)
2432 {
2433 	struct vcpu_svm *svm = to_svm(vcpu);
2434 	unsigned long cr0 = vcpu->arch.cr0;
2435 	bool ret = false;
2436 
2437 	if (!is_guest_mode(vcpu) ||
2438 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2439 		return false;
2440 
2441 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2442 	val &= ~SVM_CR0_SELECTIVE_MASK;
2443 
2444 	if (cr0 ^ val) {
2445 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2446 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2447 	}
2448 
2449 	return ret;
2450 }
2451 
2452 #define CR_VALID (1ULL << 63)
2453 
cr_interception(struct kvm_vcpu * vcpu)2454 static int cr_interception(struct kvm_vcpu *vcpu)
2455 {
2456 	struct vcpu_svm *svm = to_svm(vcpu);
2457 	int reg, cr;
2458 	unsigned long val;
2459 	int err;
2460 
2461 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2462 		return emulate_on_interception(vcpu);
2463 
2464 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2465 		return emulate_on_interception(vcpu);
2466 
2467 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2468 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2469 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2470 	else
2471 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2472 
2473 	err = 0;
2474 	if (cr >= 16) { /* mov to cr */
2475 		cr -= 16;
2476 		val = kvm_register_read(vcpu, reg);
2477 		trace_kvm_cr_write(cr, val);
2478 		switch (cr) {
2479 		case 0:
2480 			if (!check_selective_cr0_intercepted(vcpu, val))
2481 				err = kvm_set_cr0(vcpu, val);
2482 			else
2483 				return 1;
2484 
2485 			break;
2486 		case 3:
2487 			err = kvm_set_cr3(vcpu, val);
2488 			break;
2489 		case 4:
2490 			err = kvm_set_cr4(vcpu, val);
2491 			break;
2492 		case 8:
2493 			err = kvm_set_cr8(vcpu, val);
2494 			break;
2495 		default:
2496 			WARN(1, "unhandled write to CR%d", cr);
2497 			kvm_queue_exception(vcpu, UD_VECTOR);
2498 			return 1;
2499 		}
2500 	} else { /* mov from cr */
2501 		switch (cr) {
2502 		case 0:
2503 			val = kvm_read_cr0(vcpu);
2504 			break;
2505 		case 2:
2506 			val = vcpu->arch.cr2;
2507 			break;
2508 		case 3:
2509 			val = kvm_read_cr3(vcpu);
2510 			break;
2511 		case 4:
2512 			val = kvm_read_cr4(vcpu);
2513 			break;
2514 		case 8:
2515 			val = kvm_get_cr8(vcpu);
2516 			break;
2517 		default:
2518 			WARN(1, "unhandled read from CR%d", cr);
2519 			kvm_queue_exception(vcpu, UD_VECTOR);
2520 			return 1;
2521 		}
2522 		kvm_register_write(vcpu, reg, val);
2523 		trace_kvm_cr_read(cr, val);
2524 	}
2525 	return kvm_complete_insn_gp(vcpu, err);
2526 }
2527 
cr_trap(struct kvm_vcpu * vcpu)2528 static int cr_trap(struct kvm_vcpu *vcpu)
2529 {
2530 	struct vcpu_svm *svm = to_svm(vcpu);
2531 	unsigned long old_value, new_value;
2532 	unsigned int cr;
2533 	int ret = 0;
2534 
2535 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2536 
2537 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2538 	switch (cr) {
2539 	case 0:
2540 		old_value = kvm_read_cr0(vcpu);
2541 		svm_set_cr0(vcpu, new_value);
2542 
2543 		kvm_post_set_cr0(vcpu, old_value, new_value);
2544 		break;
2545 	case 4:
2546 		old_value = kvm_read_cr4(vcpu);
2547 		svm_set_cr4(vcpu, new_value);
2548 
2549 		kvm_post_set_cr4(vcpu, old_value, new_value);
2550 		break;
2551 	case 8:
2552 		ret = kvm_set_cr8(vcpu, new_value);
2553 		break;
2554 	default:
2555 		WARN(1, "unhandled CR%d write trap", cr);
2556 		kvm_queue_exception(vcpu, UD_VECTOR);
2557 		return 1;
2558 	}
2559 
2560 	return kvm_complete_insn_gp(vcpu, ret);
2561 }
2562 
dr_interception(struct kvm_vcpu * vcpu)2563 static int dr_interception(struct kvm_vcpu *vcpu)
2564 {
2565 	struct vcpu_svm *svm = to_svm(vcpu);
2566 	int reg, dr;
2567 	int err = 0;
2568 
2569 	/*
2570 	 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2571 	 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2572 	 */
2573 	if (sev_es_guest(vcpu->kvm))
2574 		return 1;
2575 
2576 	if (vcpu->guest_debug == 0) {
2577 		/*
2578 		 * No more DR vmexits; force a reload of the debug registers
2579 		 * and reenter on this instruction.  The next vmexit will
2580 		 * retrieve the full state of the debug registers.
2581 		 */
2582 		clr_dr_intercepts(svm);
2583 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2584 		return 1;
2585 	}
2586 
2587 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2588 		return emulate_on_interception(vcpu);
2589 
2590 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2591 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2592 	if (dr >= 16) { /* mov to DRn  */
2593 		dr -= 16;
2594 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2595 	} else {
2596 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2597 	}
2598 
2599 	return kvm_complete_insn_gp(vcpu, err);
2600 }
2601 
cr8_write_interception(struct kvm_vcpu * vcpu)2602 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2603 {
2604 	int r;
2605 
2606 	u8 cr8_prev = kvm_get_cr8(vcpu);
2607 	/* instruction emulation calls kvm_set_cr8() */
2608 	r = cr_interception(vcpu);
2609 	if (lapic_in_kernel(vcpu))
2610 		return r;
2611 	if (cr8_prev <= kvm_get_cr8(vcpu))
2612 		return r;
2613 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2614 	return 0;
2615 }
2616 
efer_trap(struct kvm_vcpu * vcpu)2617 static int efer_trap(struct kvm_vcpu *vcpu)
2618 {
2619 	struct msr_data msr_info;
2620 	int ret;
2621 
2622 	/*
2623 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2624 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2625 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2626 	 * the guest doesn't have X86_FEATURE_SVM.
2627 	 */
2628 	msr_info.host_initiated = false;
2629 	msr_info.index = MSR_EFER;
2630 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2631 	ret = kvm_set_msr_common(vcpu, &msr_info);
2632 
2633 	return kvm_complete_insn_gp(vcpu, ret);
2634 }
2635 
svm_get_feature_msr(u32 msr,u64 * data)2636 static int svm_get_feature_msr(u32 msr, u64 *data)
2637 {
2638 	*data = 0;
2639 
2640 	switch (msr) {
2641 	case MSR_AMD64_DE_CFG:
2642 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2643 			*data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2644 		break;
2645 	default:
2646 		return KVM_MSR_RET_UNSUPPORTED;
2647 	}
2648 
2649 	return 0;
2650 }
2651 
sev_es_prevent_msr_access(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2652 static bool sev_es_prevent_msr_access(struct kvm_vcpu *vcpu,
2653 				      struct msr_data *msr_info)
2654 {
2655 	return sev_es_guest(vcpu->kvm) && vcpu->arch.guest_state_protected &&
2656 	       msr_info->index != MSR_IA32_XSS &&
2657 	       !msr_write_intercepted(vcpu, msr_info->index);
2658 }
2659 
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2660 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2661 {
2662 	struct vcpu_svm *svm = to_svm(vcpu);
2663 
2664 	if (sev_es_prevent_msr_access(vcpu, msr_info)) {
2665 		msr_info->data = 0;
2666 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2667 	}
2668 
2669 	switch (msr_info->index) {
2670 	case MSR_AMD64_TSC_RATIO:
2671 		if (!msr_info->host_initiated &&
2672 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR))
2673 			return 1;
2674 		msr_info->data = svm->tsc_ratio_msr;
2675 		break;
2676 	case MSR_STAR:
2677 		msr_info->data = svm->vmcb01.ptr->save.star;
2678 		break;
2679 #ifdef CONFIG_X86_64
2680 	case MSR_LSTAR:
2681 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2682 		break;
2683 	case MSR_CSTAR:
2684 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2685 		break;
2686 	case MSR_GS_BASE:
2687 		msr_info->data = svm->vmcb01.ptr->save.gs.base;
2688 		break;
2689 	case MSR_FS_BASE:
2690 		msr_info->data = svm->vmcb01.ptr->save.fs.base;
2691 		break;
2692 	case MSR_KERNEL_GS_BASE:
2693 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2694 		break;
2695 	case MSR_SYSCALL_MASK:
2696 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2697 		break;
2698 #endif
2699 	case MSR_IA32_SYSENTER_CS:
2700 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2701 		break;
2702 	case MSR_IA32_SYSENTER_EIP:
2703 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2704 		if (guest_cpuid_is_intel_compatible(vcpu))
2705 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2706 		break;
2707 	case MSR_IA32_SYSENTER_ESP:
2708 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2709 		if (guest_cpuid_is_intel_compatible(vcpu))
2710 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2711 		break;
2712 	case MSR_IA32_S_CET:
2713 		msr_info->data = svm->vmcb->save.s_cet;
2714 		break;
2715 	case MSR_IA32_INT_SSP_TAB:
2716 		msr_info->data = svm->vmcb->save.isst_addr;
2717 		break;
2718 	case MSR_KVM_INTERNAL_GUEST_SSP:
2719 		msr_info->data = svm->vmcb->save.ssp;
2720 		break;
2721 	case MSR_TSC_AUX:
2722 		msr_info->data = svm->tsc_aux;
2723 		break;
2724 	case MSR_IA32_DEBUGCTLMSR:
2725 		msr_info->data = svm->vmcb->save.dbgctl;
2726 		break;
2727 	case MSR_IA32_LASTBRANCHFROMIP:
2728 		msr_info->data = svm->vmcb->save.br_from;
2729 		break;
2730 	case MSR_IA32_LASTBRANCHTOIP:
2731 		msr_info->data = svm->vmcb->save.br_to;
2732 		break;
2733 	case MSR_IA32_LASTINTFROMIP:
2734 		msr_info->data = svm->vmcb->save.last_excp_from;
2735 		break;
2736 	case MSR_IA32_LASTINTTOIP:
2737 		msr_info->data = svm->vmcb->save.last_excp_to;
2738 		break;
2739 	case MSR_VM_HSAVE_PA:
2740 		msr_info->data = svm->nested.hsave_msr;
2741 		break;
2742 	case MSR_VM_CR:
2743 		msr_info->data = svm->nested.vm_cr_msr;
2744 		break;
2745 	case MSR_IA32_SPEC_CTRL:
2746 		if (!msr_info->host_initiated &&
2747 		    !guest_has_spec_ctrl_msr(vcpu))
2748 			return 1;
2749 
2750 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2751 			msr_info->data = svm->vmcb->save.spec_ctrl;
2752 		else
2753 			msr_info->data = svm->spec_ctrl;
2754 		break;
2755 	case MSR_AMD64_VIRT_SPEC_CTRL:
2756 		if (!msr_info->host_initiated &&
2757 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2758 			return 1;
2759 
2760 		msr_info->data = svm->virt_spec_ctrl;
2761 		break;
2762 	case MSR_F15H_IC_CFG: {
2763 
2764 		int family, model;
2765 
2766 		family = guest_cpuid_family(vcpu);
2767 		model  = guest_cpuid_model(vcpu);
2768 
2769 		if (family < 0 || model < 0)
2770 			return kvm_get_msr_common(vcpu, msr_info);
2771 
2772 		msr_info->data = 0;
2773 
2774 		if (family == 0x15 &&
2775 		    (model >= 0x2 && model < 0x20))
2776 			msr_info->data = 0x1E;
2777 		}
2778 		break;
2779 	case MSR_AMD64_DE_CFG:
2780 		msr_info->data = svm->msr_decfg;
2781 		break;
2782 	default:
2783 		return kvm_get_msr_common(vcpu, msr_info);
2784 	}
2785 	return 0;
2786 }
2787 
svm_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)2788 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2789 {
2790 	struct vcpu_svm *svm = to_svm(vcpu);
2791 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2792 		return kvm_complete_insn_gp(vcpu, err);
2793 
2794 	svm_vmgexit_inject_exception(svm, X86_TRAP_GP);
2795 	return 1;
2796 }
2797 
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2798 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2799 {
2800 	struct vcpu_svm *svm = to_svm(vcpu);
2801 	int svm_dis, chg_mask;
2802 
2803 	if (data & ~SVM_VM_CR_VALID_MASK)
2804 		return 1;
2805 
2806 	chg_mask = SVM_VM_CR_VALID_MASK;
2807 
2808 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2809 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2810 
2811 	svm->nested.vm_cr_msr &= ~chg_mask;
2812 	svm->nested.vm_cr_msr |= (data & chg_mask);
2813 
2814 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2815 
2816 	/* check for svm_disable while efer.svme is set */
2817 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2818 		return 1;
2819 
2820 	return 0;
2821 }
2822 
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2823 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2824 {
2825 	struct vcpu_svm *svm = to_svm(vcpu);
2826 	int ret = 0;
2827 
2828 	u32 ecx = msr->index;
2829 	u64 data = msr->data;
2830 
2831 	if (sev_es_prevent_msr_access(vcpu, msr))
2832 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2833 
2834 	switch (ecx) {
2835 	case MSR_AMD64_TSC_RATIO:
2836 
2837 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) {
2838 
2839 			if (!msr->host_initiated)
2840 				return 1;
2841 			/*
2842 			 * In case TSC scaling is not enabled, always
2843 			 * leave this MSR at the default value.
2844 			 *
2845 			 * Due to bug in qemu 6.2.0, it would try to set
2846 			 * this msr to 0 if tsc scaling is not enabled.
2847 			 * Ignore this value as well.
2848 			 */
2849 			if (data != 0 && data != svm->tsc_ratio_msr)
2850 				return 1;
2851 			break;
2852 		}
2853 
2854 		if (data & SVM_TSC_RATIO_RSVD)
2855 			return 1;
2856 
2857 		svm->tsc_ratio_msr = data;
2858 
2859 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
2860 		    is_guest_mode(vcpu))
2861 			nested_svm_update_tsc_ratio_msr(vcpu);
2862 
2863 		break;
2864 	case MSR_IA32_CR_PAT:
2865 		ret = kvm_set_msr_common(vcpu, msr);
2866 		if (ret)
2867 			break;
2868 
2869 		svm->vmcb01.ptr->save.g_pat = data;
2870 		if (is_guest_mode(vcpu))
2871 			nested_vmcb02_compute_g_pat(svm);
2872 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2873 		break;
2874 	case MSR_IA32_SPEC_CTRL:
2875 		if (!msr->host_initiated &&
2876 		    !guest_has_spec_ctrl_msr(vcpu))
2877 			return 1;
2878 
2879 		if (kvm_spec_ctrl_test_value(data))
2880 			return 1;
2881 
2882 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2883 			svm->vmcb->save.spec_ctrl = data;
2884 		else
2885 			svm->spec_ctrl = data;
2886 		if (!data)
2887 			break;
2888 
2889 		/*
2890 		 * For non-nested:
2891 		 * When it's written (to non-zero) for the first time, pass
2892 		 * it through.
2893 		 *
2894 		 * For nested:
2895 		 * The handling of the MSR bitmap for L2 guests is done in
2896 		 * nested_svm_merge_msrpm().
2897 		 * We update the L1 MSR bit as well since it will end up
2898 		 * touching the MSR anyway now.
2899 		 */
2900 		svm_disable_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
2901 		break;
2902 	case MSR_AMD64_VIRT_SPEC_CTRL:
2903 		if (!msr->host_initiated &&
2904 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2905 			return 1;
2906 
2907 		if (data & ~SPEC_CTRL_SSBD)
2908 			return 1;
2909 
2910 		svm->virt_spec_ctrl = data;
2911 		break;
2912 	case MSR_STAR:
2913 		svm->vmcb01.ptr->save.star = data;
2914 		break;
2915 #ifdef CONFIG_X86_64
2916 	case MSR_LSTAR:
2917 		svm->vmcb01.ptr->save.lstar = data;
2918 		break;
2919 	case MSR_CSTAR:
2920 		svm->vmcb01.ptr->save.cstar = data;
2921 		break;
2922 	case MSR_GS_BASE:
2923 		svm->vmcb01.ptr->save.gs.base = data;
2924 		break;
2925 	case MSR_FS_BASE:
2926 		svm->vmcb01.ptr->save.fs.base = data;
2927 		break;
2928 	case MSR_KERNEL_GS_BASE:
2929 		svm->vmcb01.ptr->save.kernel_gs_base = data;
2930 		break;
2931 	case MSR_SYSCALL_MASK:
2932 		svm->vmcb01.ptr->save.sfmask = data;
2933 		break;
2934 #endif
2935 	case MSR_IA32_SYSENTER_CS:
2936 		svm->vmcb01.ptr->save.sysenter_cs = data;
2937 		break;
2938 	case MSR_IA32_SYSENTER_EIP:
2939 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2940 		/*
2941 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2942 		 * when we spoof an Intel vendor ID (for cross vendor migration).
2943 		 * In this case we use this intercept to track the high
2944 		 * 32 bit part of these msrs to support Intel's
2945 		 * implementation of SYSENTER/SYSEXIT.
2946 		 */
2947 		svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
2948 		break;
2949 	case MSR_IA32_SYSENTER_ESP:
2950 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2951 		svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
2952 		break;
2953 	case MSR_IA32_S_CET:
2954 		svm->vmcb->save.s_cet = data;
2955 		vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2956 		break;
2957 	case MSR_IA32_INT_SSP_TAB:
2958 		svm->vmcb->save.isst_addr = data;
2959 		vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2960 		break;
2961 	case MSR_KVM_INTERNAL_GUEST_SSP:
2962 		svm->vmcb->save.ssp = data;
2963 		vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2964 		break;
2965 	case MSR_TSC_AUX:
2966 		/*
2967 		 * TSC_AUX is always virtualized for SEV-ES guests when the
2968 		 * feature is available. The user return MSR support is not
2969 		 * required in this case because TSC_AUX is restored on #VMEXIT
2970 		 * from the host save area.
2971 		 */
2972 		if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
2973 			break;
2974 
2975 		/*
2976 		 * TSC_AUX is usually changed only during boot and never read
2977 		 * directly.  Intercept TSC_AUX and switch it via user return.
2978 		 */
2979 		preempt_disable();
2980 		ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2981 		preempt_enable();
2982 		if (ret)
2983 			break;
2984 
2985 		svm->tsc_aux = data;
2986 		break;
2987 	case MSR_IA32_DEBUGCTLMSR:
2988 		if (!lbrv) {
2989 			kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
2990 			break;
2991 		}
2992 
2993 		/*
2994 		 * Suppress BTF as KVM doesn't virtualize BTF, but there's no
2995 		 * way to communicate lack of support to the guest.
2996 		 */
2997 		if (data & DEBUGCTLMSR_BTF) {
2998 			kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
2999 			data &= ~DEBUGCTLMSR_BTF;
3000 		}
3001 
3002 		if (data & DEBUGCTL_RESERVED_BITS)
3003 			return 1;
3004 
3005 		if (svm->vmcb->save.dbgctl == data)
3006 			break;
3007 
3008 		svm->vmcb->save.dbgctl = data;
3009 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
3010 		svm_update_lbrv(vcpu);
3011 		break;
3012 	case MSR_VM_HSAVE_PA:
3013 		/*
3014 		 * Old kernels did not validate the value written to
3015 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3016 		 * value to allow live migrating buggy or malicious guests
3017 		 * originating from those kernels.
3018 		 */
3019 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3020 			return 1;
3021 
3022 		svm->nested.hsave_msr = data & PAGE_MASK;
3023 		break;
3024 	case MSR_VM_CR:
3025 		return svm_set_vm_cr(vcpu, data);
3026 	case MSR_VM_IGNNE:
3027 		kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3028 		break;
3029 	case MSR_AMD64_DE_CFG: {
3030 		u64 supported_de_cfg;
3031 
3032 		if (svm_get_feature_msr(ecx, &supported_de_cfg))
3033 			return 1;
3034 
3035 		if (data & ~supported_de_cfg)
3036 			return 1;
3037 
3038 		svm->msr_decfg = data;
3039 		break;
3040 	}
3041 	default:
3042 		return kvm_set_msr_common(vcpu, msr);
3043 	}
3044 	return ret;
3045 }
3046 
msr_interception(struct kvm_vcpu * vcpu)3047 static int msr_interception(struct kvm_vcpu *vcpu)
3048 {
3049 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3050 		return kvm_emulate_wrmsr(vcpu);
3051 	else
3052 		return kvm_emulate_rdmsr(vcpu);
3053 }
3054 
interrupt_window_interception(struct kvm_vcpu * vcpu)3055 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3056 {
3057 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3058 	svm_clear_vintr(to_svm(vcpu));
3059 
3060 	/*
3061 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3062 	 * In this case AVIC was temporarily disabled for
3063 	 * requesting the IRQ window and we have to re-enable it.
3064 	 *
3065 	 * If running nested, still remove the VM wide AVIC inhibit to
3066 	 * support case in which the interrupt window was requested when the
3067 	 * vCPU was not running nested.
3068 
3069 	 * All vCPUs which run still run nested, will remain to have their
3070 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3071 	 */
3072 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3073 
3074 	++vcpu->stat.irq_window_exits;
3075 	return 1;
3076 }
3077 
pause_interception(struct kvm_vcpu * vcpu)3078 static int pause_interception(struct kvm_vcpu *vcpu)
3079 {
3080 	bool in_kernel;
3081 	/*
3082 	 * CPL is not made available for an SEV-ES guest, therefore
3083 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3084 	 * set in_kernel to false as well.
3085 	 */
3086 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3087 
3088 	grow_ple_window(vcpu);
3089 
3090 	kvm_vcpu_on_spin(vcpu, in_kernel);
3091 	return kvm_skip_emulated_instruction(vcpu);
3092 }
3093 
invpcid_interception(struct kvm_vcpu * vcpu)3094 static int invpcid_interception(struct kvm_vcpu *vcpu)
3095 {
3096 	struct vcpu_svm *svm = to_svm(vcpu);
3097 	unsigned long type;
3098 	gva_t gva;
3099 
3100 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
3101 		kvm_queue_exception(vcpu, UD_VECTOR);
3102 		return 1;
3103 	}
3104 
3105 	/*
3106 	 * For an INVPCID intercept:
3107 	 * EXITINFO1 provides the linear address of the memory operand.
3108 	 * EXITINFO2 provides the contents of the register operand.
3109 	 */
3110 	type = svm->vmcb->control.exit_info_2;
3111 	gva = svm->vmcb->control.exit_info_1;
3112 
3113 	/*
3114 	 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the
3115 	 *        stack segment is used.  The intercept takes priority over all
3116 	 *        #GP checks except CPL>0, but somehow still generates a linear
3117 	 *        address?  The APM is sorely lacking.
3118 	 */
3119 	if (is_noncanonical_address(gva, vcpu, 0)) {
3120 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3121 		return 1;
3122 	}
3123 
3124 	return kvm_handle_invpcid(vcpu, type, gva);
3125 }
3126 
complete_userspace_buslock(struct kvm_vcpu * vcpu)3127 static inline int complete_userspace_buslock(struct kvm_vcpu *vcpu)
3128 {
3129 	struct vcpu_svm *svm = to_svm(vcpu);
3130 
3131 	/*
3132 	 * If userspace has NOT changed RIP, then KVM's ABI is to let the guest
3133 	 * execute the bus-locking instruction.  Set the bus lock counter to '1'
3134 	 * to effectively step past the bus lock.
3135 	 */
3136 	if (kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))
3137 		svm->vmcb->control.bus_lock_counter = 1;
3138 
3139 	return 1;
3140 }
3141 
bus_lock_exit(struct kvm_vcpu * vcpu)3142 static int bus_lock_exit(struct kvm_vcpu *vcpu)
3143 {
3144 	struct vcpu_svm *svm = to_svm(vcpu);
3145 
3146 	vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
3147 	vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
3148 
3149 	vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
3150 	vcpu->arch.complete_userspace_io = complete_userspace_buslock;
3151 
3152 	if (is_guest_mode(vcpu))
3153 		svm->nested.ctl.bus_lock_rip = vcpu->arch.cui_linear_rip;
3154 
3155 	return 0;
3156 }
3157 
3158 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3159 	[SVM_EXIT_READ_CR0]			= cr_interception,
3160 	[SVM_EXIT_READ_CR3]			= cr_interception,
3161 	[SVM_EXIT_READ_CR4]			= cr_interception,
3162 	[SVM_EXIT_READ_CR8]			= cr_interception,
3163 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3164 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3165 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3166 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3167 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3168 	[SVM_EXIT_READ_DR0]			= dr_interception,
3169 	[SVM_EXIT_READ_DR1]			= dr_interception,
3170 	[SVM_EXIT_READ_DR2]			= dr_interception,
3171 	[SVM_EXIT_READ_DR3]			= dr_interception,
3172 	[SVM_EXIT_READ_DR4]			= dr_interception,
3173 	[SVM_EXIT_READ_DR5]			= dr_interception,
3174 	[SVM_EXIT_READ_DR6]			= dr_interception,
3175 	[SVM_EXIT_READ_DR7]			= dr_interception,
3176 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3177 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3178 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3179 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3180 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3181 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3182 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3183 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3184 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3185 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3186 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3187 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3188 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3189 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3190 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3191 	[SVM_EXIT_INTR]				= intr_interception,
3192 	[SVM_EXIT_NMI]				= nmi_interception,
3193 	[SVM_EXIT_SMI]				= smi_interception,
3194 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3195 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3196 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3197 	[SVM_EXIT_IRET]                         = iret_interception,
3198 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3199 	[SVM_EXIT_PAUSE]			= pause_interception,
3200 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3201 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3202 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3203 	[SVM_EXIT_IOIO]				= io_interception,
3204 	[SVM_EXIT_MSR]				= msr_interception,
3205 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3206 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3207 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3208 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3209 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3210 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3211 	[SVM_EXIT_STGI]				= stgi_interception,
3212 	[SVM_EXIT_CLGI]				= clgi_interception,
3213 	[SVM_EXIT_SKINIT]			= skinit_interception,
3214 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3215 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3216 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3217 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3218 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3219 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3220 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3221 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3222 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3223 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3224 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3225 	[SVM_EXIT_IDLE_HLT]			= kvm_emulate_halt,
3226 	[SVM_EXIT_NPF]				= npf_interception,
3227 	[SVM_EXIT_BUS_LOCK]			= bus_lock_exit,
3228 	[SVM_EXIT_RSM]                          = rsm_interception,
3229 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3230 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3231 #ifdef CONFIG_KVM_AMD_SEV
3232 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3233 #endif
3234 };
3235 
dump_vmcb(struct kvm_vcpu * vcpu)3236 static void dump_vmcb(struct kvm_vcpu *vcpu)
3237 {
3238 	struct vcpu_svm *svm = to_svm(vcpu);
3239 	struct vmcb_control_area *control = &svm->vmcb->control;
3240 	struct vmcb_save_area *save = &svm->vmcb->save;
3241 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3242 	char *vm_type;
3243 
3244 	if (!dump_invalid_vmcb) {
3245 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3246 		return;
3247 	}
3248 
3249 	guard(mutex)(&vmcb_dump_mutex);
3250 
3251 	vm_type = sev_snp_guest(vcpu->kvm) ? "SEV-SNP" :
3252 		  sev_es_guest(vcpu->kvm) ? "SEV-ES" :
3253 		  sev_guest(vcpu->kvm) ? "SEV" : "SVM";
3254 
3255 	pr_err("%s vCPU%u VMCB %p, last attempted VMRUN on CPU %d\n",
3256 	       vm_type, vcpu->vcpu_id, svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3257 	pr_err("VMCB Control Area:\n");
3258 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3259 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3260 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3261 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3262 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3263 	pr_err("%-20s%08x %08x\n", "intercepts:",
3264               control->intercepts[INTERCEPT_WORD3],
3265 	       control->intercepts[INTERCEPT_WORD4]);
3266 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3267 	pr_err("%-20s%d\n", "pause filter threshold:",
3268 	       control->pause_filter_thresh);
3269 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3270 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3271 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3272 	pr_err("%-20s%d\n", "asid:", control->asid);
3273 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3274 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3275 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3276 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3277 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3278 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3279 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3280 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3281 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3282 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3283 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3284 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3285 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3286 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3287 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3288 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3289 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3290 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3291 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3292 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3293 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3294 	pr_err("%-20s%016llx\n", "allowed_sev_features:", control->allowed_sev_features);
3295 	pr_err("%-20s%016llx\n", "guest_sev_features:", control->guest_sev_features);
3296 
3297 	if (sev_es_guest(vcpu->kvm)) {
3298 		save = sev_decrypt_vmsa(vcpu);
3299 		if (!save)
3300 			goto no_vmsa;
3301 
3302 		save01 = save;
3303 	}
3304 
3305 	pr_err("VMCB State Save Area:\n");
3306 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3307 	       "es:",
3308 	       save->es.selector, save->es.attrib,
3309 	       save->es.limit, save->es.base);
3310 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3311 	       "cs:",
3312 	       save->cs.selector, save->cs.attrib,
3313 	       save->cs.limit, save->cs.base);
3314 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3315 	       "ss:",
3316 	       save->ss.selector, save->ss.attrib,
3317 	       save->ss.limit, save->ss.base);
3318 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3319 	       "ds:",
3320 	       save->ds.selector, save->ds.attrib,
3321 	       save->ds.limit, save->ds.base);
3322 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3323 	       "fs:",
3324 	       save01->fs.selector, save01->fs.attrib,
3325 	       save01->fs.limit, save01->fs.base);
3326 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3327 	       "gs:",
3328 	       save01->gs.selector, save01->gs.attrib,
3329 	       save01->gs.limit, save01->gs.base);
3330 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3331 	       "gdtr:",
3332 	       save->gdtr.selector, save->gdtr.attrib,
3333 	       save->gdtr.limit, save->gdtr.base);
3334 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3335 	       "ldtr:",
3336 	       save01->ldtr.selector, save01->ldtr.attrib,
3337 	       save01->ldtr.limit, save01->ldtr.base);
3338 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3339 	       "idtr:",
3340 	       save->idtr.selector, save->idtr.attrib,
3341 	       save->idtr.limit, save->idtr.base);
3342 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3343 	       "tr:",
3344 	       save01->tr.selector, save01->tr.attrib,
3345 	       save01->tr.limit, save01->tr.base);
3346 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3347 	       save->vmpl, save->cpl, save->efer);
3348 	pr_err("%-15s %016llx %-13s %016llx\n",
3349 	       "cr0:", save->cr0, "cr2:", save->cr2);
3350 	pr_err("%-15s %016llx %-13s %016llx\n",
3351 	       "cr3:", save->cr3, "cr4:", save->cr4);
3352 	pr_err("%-15s %016llx %-13s %016llx\n",
3353 	       "dr6:", save->dr6, "dr7:", save->dr7);
3354 	pr_err("%-15s %016llx %-13s %016llx\n",
3355 	       "rip:", save->rip, "rflags:", save->rflags);
3356 	pr_err("%-15s %016llx %-13s %016llx\n",
3357 	       "rsp:", save->rsp, "rax:", save->rax);
3358 	pr_err("%-15s %016llx %-13s %016llx\n",
3359 	       "s_cet:", save->s_cet, "ssp:", save->ssp);
3360 	pr_err("%-15s %016llx\n",
3361 	       "isst_addr:", save->isst_addr);
3362 	pr_err("%-15s %016llx %-13s %016llx\n",
3363 	       "star:", save01->star, "lstar:", save01->lstar);
3364 	pr_err("%-15s %016llx %-13s %016llx\n",
3365 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3366 	pr_err("%-15s %016llx %-13s %016llx\n",
3367 	       "kernel_gs_base:", save01->kernel_gs_base,
3368 	       "sysenter_cs:", save01->sysenter_cs);
3369 	pr_err("%-15s %016llx %-13s %016llx\n",
3370 	       "sysenter_esp:", save01->sysenter_esp,
3371 	       "sysenter_eip:", save01->sysenter_eip);
3372 	pr_err("%-15s %016llx %-13s %016llx\n",
3373 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3374 	pr_err("%-15s %016llx %-13s %016llx\n",
3375 	       "br_from:", save->br_from, "br_to:", save->br_to);
3376 	pr_err("%-15s %016llx %-13s %016llx\n",
3377 	       "excp_from:", save->last_excp_from,
3378 	       "excp_to:", save->last_excp_to);
3379 
3380 	if (sev_es_guest(vcpu->kvm)) {
3381 		struct sev_es_save_area *vmsa = (struct sev_es_save_area *)save;
3382 
3383 		pr_err("%-15s %016llx\n",
3384 		       "sev_features", vmsa->sev_features);
3385 
3386 		pr_err("%-15s %016llx %-13s %016llx\n",
3387 		       "pl0_ssp:", vmsa->pl0_ssp, "pl1_ssp:", vmsa->pl1_ssp);
3388 		pr_err("%-15s %016llx %-13s %016llx\n",
3389 		       "pl2_ssp:", vmsa->pl2_ssp, "pl3_ssp:", vmsa->pl3_ssp);
3390 		pr_err("%-15s %016llx\n",
3391 		       "u_cet:", vmsa->u_cet);
3392 
3393 		pr_err("%-15s %016llx %-13s %016llx\n",
3394 		       "rax:", vmsa->rax, "rbx:", vmsa->rbx);
3395 		pr_err("%-15s %016llx %-13s %016llx\n",
3396 		       "rcx:", vmsa->rcx, "rdx:", vmsa->rdx);
3397 		pr_err("%-15s %016llx %-13s %016llx\n",
3398 		       "rsi:", vmsa->rsi, "rdi:", vmsa->rdi);
3399 		pr_err("%-15s %016llx %-13s %016llx\n",
3400 		       "rbp:", vmsa->rbp, "rsp:", vmsa->rsp);
3401 		pr_err("%-15s %016llx %-13s %016llx\n",
3402 		       "r8:", vmsa->r8, "r9:", vmsa->r9);
3403 		pr_err("%-15s %016llx %-13s %016llx\n",
3404 		       "r10:", vmsa->r10, "r11:", vmsa->r11);
3405 		pr_err("%-15s %016llx %-13s %016llx\n",
3406 		       "r12:", vmsa->r12, "r13:", vmsa->r13);
3407 		pr_err("%-15s %016llx %-13s %016llx\n",
3408 		       "r14:", vmsa->r14, "r15:", vmsa->r15);
3409 		pr_err("%-15s %016llx %-13s %016llx\n",
3410 		       "xcr0:", vmsa->xcr0, "xss:", vmsa->xss);
3411 	} else {
3412 		pr_err("%-15s %016llx %-13s %016lx\n",
3413 		       "rax:", save->rax, "rbx:",
3414 		       vcpu->arch.regs[VCPU_REGS_RBX]);
3415 		pr_err("%-15s %016lx %-13s %016lx\n",
3416 		       "rcx:", vcpu->arch.regs[VCPU_REGS_RCX],
3417 		       "rdx:", vcpu->arch.regs[VCPU_REGS_RDX]);
3418 		pr_err("%-15s %016lx %-13s %016lx\n",
3419 		       "rsi:", vcpu->arch.regs[VCPU_REGS_RSI],
3420 		       "rdi:", vcpu->arch.regs[VCPU_REGS_RDI]);
3421 		pr_err("%-15s %016lx %-13s %016llx\n",
3422 		       "rbp:", vcpu->arch.regs[VCPU_REGS_RBP],
3423 		       "rsp:", save->rsp);
3424 #ifdef CONFIG_X86_64
3425 		pr_err("%-15s %016lx %-13s %016lx\n",
3426 		       "r8:", vcpu->arch.regs[VCPU_REGS_R8],
3427 		       "r9:", vcpu->arch.regs[VCPU_REGS_R9]);
3428 		pr_err("%-15s %016lx %-13s %016lx\n",
3429 		       "r10:", vcpu->arch.regs[VCPU_REGS_R10],
3430 		       "r11:", vcpu->arch.regs[VCPU_REGS_R11]);
3431 		pr_err("%-15s %016lx %-13s %016lx\n",
3432 		       "r12:", vcpu->arch.regs[VCPU_REGS_R12],
3433 		       "r13:", vcpu->arch.regs[VCPU_REGS_R13]);
3434 		pr_err("%-15s %016lx %-13s %016lx\n",
3435 		       "r14:", vcpu->arch.regs[VCPU_REGS_R14],
3436 		       "r15:", vcpu->arch.regs[VCPU_REGS_R15]);
3437 #endif
3438 	}
3439 
3440 no_vmsa:
3441 	if (sev_es_guest(vcpu->kvm))
3442 		sev_free_decrypted_vmsa(vcpu, save);
3443 }
3444 
svm_check_exit_valid(u64 exit_code)3445 static bool svm_check_exit_valid(u64 exit_code)
3446 {
3447 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3448 		svm_exit_handlers[exit_code]);
3449 }
3450 
svm_handle_invalid_exit(struct kvm_vcpu * vcpu,u64 exit_code)3451 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3452 {
3453 	dump_vmcb(vcpu);
3454 	kvm_prepare_unexpected_reason_exit(vcpu, exit_code);
3455 	return 0;
3456 }
3457 
svm_invoke_exit_handler(struct kvm_vcpu * vcpu,u64 exit_code)3458 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3459 {
3460 	if (!svm_check_exit_valid(exit_code))
3461 		return svm_handle_invalid_exit(vcpu, exit_code);
3462 
3463 #ifdef CONFIG_MITIGATION_RETPOLINE
3464 	if (exit_code == SVM_EXIT_MSR)
3465 		return msr_interception(vcpu);
3466 	else if (exit_code == SVM_EXIT_VINTR)
3467 		return interrupt_window_interception(vcpu);
3468 	else if (exit_code == SVM_EXIT_INTR)
3469 		return intr_interception(vcpu);
3470 	else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT)
3471 		return kvm_emulate_halt(vcpu);
3472 	else if (exit_code == SVM_EXIT_NPF)
3473 		return npf_interception(vcpu);
3474 #ifdef CONFIG_KVM_AMD_SEV
3475 	else if (exit_code == SVM_EXIT_VMGEXIT)
3476 		return sev_handle_vmgexit(vcpu);
3477 #endif
3478 #endif
3479 	return svm_exit_handlers[exit_code](vcpu);
3480 }
3481 
svm_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3482 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3483 			      u64 *info1, u64 *info2,
3484 			      u32 *intr_info, u32 *error_code)
3485 {
3486 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3487 
3488 	*reason = control->exit_code;
3489 	*info1 = control->exit_info_1;
3490 	*info2 = control->exit_info_2;
3491 	*intr_info = control->exit_int_info;
3492 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3493 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3494 		*error_code = control->exit_int_info_err;
3495 	else
3496 		*error_code = 0;
3497 }
3498 
svm_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)3499 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info,
3500 			       u32 *error_code)
3501 {
3502 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3503 
3504 	*intr_info = control->event_inj;
3505 
3506 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3507 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3508 		*error_code = control->event_inj_err;
3509 	else
3510 		*error_code = 0;
3511 
3512 }
3513 
svm_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3514 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3515 {
3516 	struct vcpu_svm *svm = to_svm(vcpu);
3517 	struct kvm_run *kvm_run = vcpu->run;
3518 	u32 exit_code = svm->vmcb->control.exit_code;
3519 
3520 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3521 	if (!sev_es_guest(vcpu->kvm)) {
3522 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3523 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3524 		if (npt_enabled)
3525 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3526 	}
3527 
3528 	if (is_guest_mode(vcpu)) {
3529 		int vmexit;
3530 
3531 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3532 
3533 		vmexit = nested_svm_exit_special(svm);
3534 
3535 		if (vmexit == NESTED_EXIT_CONTINUE)
3536 			vmexit = nested_svm_exit_handled(svm);
3537 
3538 		if (vmexit == NESTED_EXIT_DONE)
3539 			return 1;
3540 	}
3541 
3542 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3543 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3544 		kvm_run->fail_entry.hardware_entry_failure_reason
3545 			= svm->vmcb->control.exit_code;
3546 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3547 		dump_vmcb(vcpu);
3548 		return 0;
3549 	}
3550 
3551 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3552 		return 1;
3553 
3554 	return svm_invoke_exit_handler(vcpu, exit_code);
3555 }
3556 
pre_svm_run(struct kvm_vcpu * vcpu)3557 static int pre_svm_run(struct kvm_vcpu *vcpu)
3558 {
3559 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3560 	struct vcpu_svm *svm = to_svm(vcpu);
3561 
3562 	/*
3563 	 * If the previous vmrun of the vmcb occurred on a different physical
3564 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3565 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3566 	 */
3567 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3568 		svm->current_vmcb->asid_generation = 0;
3569 		vmcb_mark_all_dirty(svm->vmcb);
3570 		svm->current_vmcb->cpu = vcpu->cpu;
3571         }
3572 
3573 	if (sev_guest(vcpu->kvm))
3574 		return pre_sev_run(svm, vcpu->cpu);
3575 
3576 	/* FIXME: handle wraparound of asid_generation */
3577 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3578 		new_asid(svm, sd);
3579 
3580 	return 0;
3581 }
3582 
svm_inject_nmi(struct kvm_vcpu * vcpu)3583 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3584 {
3585 	struct vcpu_svm *svm = to_svm(vcpu);
3586 
3587 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3588 
3589 	if (svm->nmi_l1_to_l2)
3590 		return;
3591 
3592 	/*
3593 	 * No need to manually track NMI masking when vNMI is enabled, hardware
3594 	 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3595 	 * case where software directly injects an NMI.
3596 	 */
3597 	if (!is_vnmi_enabled(svm)) {
3598 		svm->nmi_masked = true;
3599 		svm_set_iret_intercept(svm);
3600 	}
3601 	++vcpu->stat.nmi_injections;
3602 }
3603 
svm_is_vnmi_pending(struct kvm_vcpu * vcpu)3604 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3605 {
3606 	struct vcpu_svm *svm = to_svm(vcpu);
3607 
3608 	if (!is_vnmi_enabled(svm))
3609 		return false;
3610 
3611 	return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3612 }
3613 
svm_set_vnmi_pending(struct kvm_vcpu * vcpu)3614 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3615 {
3616 	struct vcpu_svm *svm = to_svm(vcpu);
3617 
3618 	if (!is_vnmi_enabled(svm))
3619 		return false;
3620 
3621 	if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3622 		return false;
3623 
3624 	svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3625 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3626 
3627 	/*
3628 	 * Because the pending NMI is serviced by hardware, KVM can't know when
3629 	 * the NMI is "injected", but for all intents and purposes, passing the
3630 	 * NMI off to hardware counts as injection.
3631 	 */
3632 	++vcpu->stat.nmi_injections;
3633 
3634 	return true;
3635 }
3636 
svm_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)3637 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3638 {
3639 	struct kvm_queued_interrupt *intr = &vcpu->arch.interrupt;
3640 	struct vcpu_svm *svm = to_svm(vcpu);
3641 	u32 type;
3642 
3643 	if (intr->soft) {
3644 		if (svm_update_soft_interrupt_rip(vcpu, intr->nr))
3645 			return;
3646 
3647 		type = SVM_EVTINJ_TYPE_SOFT;
3648 	} else {
3649 		type = SVM_EVTINJ_TYPE_INTR;
3650 	}
3651 
3652 	trace_kvm_inj_virq(intr->nr, intr->soft, reinjected);
3653 	++vcpu->stat.irq_injections;
3654 
3655 	svm->vmcb->control.event_inj = intr->nr | SVM_EVTINJ_VALID | type;
3656 }
3657 
svm_complete_interrupt_delivery(struct kvm_vcpu * vcpu,int delivery_mode,int trig_mode,int vector)3658 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3659 				     int trig_mode, int vector)
3660 {
3661 	/*
3662 	 * apic->apicv_active must be read after vcpu->mode.
3663 	 * Pairs with smp_store_release in vcpu_enter_guest.
3664 	 */
3665 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3666 
3667 	/* Note, this is called iff the local APIC is in-kernel. */
3668 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3669 		/* Process the interrupt via kvm_check_and_inject_events(). */
3670 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3671 		kvm_vcpu_kick(vcpu);
3672 		return;
3673 	}
3674 
3675 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3676 	if (in_guest_mode) {
3677 		/*
3678 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3679 		 * the vCPU exits the guest before the doorbell chimes, hardware
3680 		 * will automatically process AVIC interrupts at the next VMRUN.
3681 		 */
3682 		avic_ring_doorbell(vcpu);
3683 	} else {
3684 		/*
3685 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3686 		 * pending IRQ when checking if the vCPU has a wake event.
3687 		 */
3688 		kvm_vcpu_wake_up(vcpu);
3689 	}
3690 }
3691 
svm_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)3692 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3693 				  int trig_mode, int vector)
3694 {
3695 	kvm_lapic_set_irr(vector, apic);
3696 
3697 	/*
3698 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3699 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3700 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3701 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3702 	 * will signal the doorbell if the CPU has already entered the guest.
3703 	 */
3704 	smp_mb__after_atomic();
3705 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3706 }
3707 
svm_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3708 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3709 {
3710 	struct vcpu_svm *svm = to_svm(vcpu);
3711 
3712 	/*
3713 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3714 	 * tracking is done using the CR write traps.
3715 	 */
3716 	if (sev_es_guest(vcpu->kvm))
3717 		return;
3718 
3719 	if (nested_svm_virtualize_tpr(vcpu))
3720 		return;
3721 
3722 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3723 
3724 	if (irr == -1)
3725 		return;
3726 
3727 	if (tpr >= irr)
3728 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3729 }
3730 
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3731 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3732 {
3733 	struct vcpu_svm *svm = to_svm(vcpu);
3734 
3735 	if (is_vnmi_enabled(svm))
3736 		return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3737 	else
3738 		return svm->nmi_masked;
3739 }
3740 
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3741 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3742 {
3743 	struct vcpu_svm *svm = to_svm(vcpu);
3744 
3745 	if (is_vnmi_enabled(svm)) {
3746 		if (masked)
3747 			svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3748 		else
3749 			svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3750 
3751 	} else {
3752 		svm->nmi_masked = masked;
3753 		if (masked)
3754 			svm_set_iret_intercept(svm);
3755 		else
3756 			svm_clr_iret_intercept(svm);
3757 	}
3758 }
3759 
svm_nmi_blocked(struct kvm_vcpu * vcpu)3760 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3761 {
3762 	struct vcpu_svm *svm = to_svm(vcpu);
3763 	struct vmcb *vmcb = svm->vmcb;
3764 
3765 	if (!gif_set(svm))
3766 		return true;
3767 
3768 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3769 		return false;
3770 
3771 	if (svm_get_nmi_mask(vcpu))
3772 		return true;
3773 
3774 	return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3775 }
3776 
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3777 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3778 {
3779 	struct vcpu_svm *svm = to_svm(vcpu);
3780 	if (svm->nested.nested_run_pending)
3781 		return -EBUSY;
3782 
3783 	if (svm_nmi_blocked(vcpu))
3784 		return 0;
3785 
3786 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3787 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3788 		return -EBUSY;
3789 	return 1;
3790 }
3791 
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3792 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3793 {
3794 	struct vcpu_svm *svm = to_svm(vcpu);
3795 	struct vmcb *vmcb = svm->vmcb;
3796 
3797 	if (!gif_set(svm))
3798 		return true;
3799 
3800 	if (is_guest_mode(vcpu)) {
3801 		/* As long as interrupts are being delivered...  */
3802 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3803 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3804 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3805 			return true;
3806 
3807 		/* ... vmexits aren't blocked by the interrupt shadow  */
3808 		if (nested_exit_on_intr(svm))
3809 			return false;
3810 	} else {
3811 		if (!svm_get_if_flag(vcpu))
3812 			return true;
3813 	}
3814 
3815 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3816 }
3817 
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3818 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3819 {
3820 	struct vcpu_svm *svm = to_svm(vcpu);
3821 
3822 	if (svm->nested.nested_run_pending)
3823 		return -EBUSY;
3824 
3825 	if (svm_interrupt_blocked(vcpu))
3826 		return 0;
3827 
3828 	/*
3829 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3830 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3831 	 */
3832 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3833 		return -EBUSY;
3834 
3835 	return 1;
3836 }
3837 
svm_enable_irq_window(struct kvm_vcpu * vcpu)3838 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3839 {
3840 	struct vcpu_svm *svm = to_svm(vcpu);
3841 
3842 	/*
3843 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3844 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3845 	 * get that intercept, this function will be called again though and
3846 	 * we'll get the vintr intercept. However, if the vGIF feature is
3847 	 * enabled, the STGI interception will not occur. Enable the irq
3848 	 * window under the assumption that the hardware will set the GIF.
3849 	 */
3850 	if (vgif || gif_set(svm)) {
3851 		/*
3852 		 * IRQ window is not needed when AVIC is enabled,
3853 		 * unless we have pending ExtINT since it cannot be injected
3854 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3855 		 * and fallback to injecting IRQ via V_IRQ.
3856 		 *
3857 		 * If running nested, AVIC is already locally inhibited
3858 		 * on this vCPU, therefore there is no need to request
3859 		 * the VM wide AVIC inhibition.
3860 		 */
3861 		if (!is_guest_mode(vcpu))
3862 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3863 
3864 		svm_set_vintr(svm);
3865 	}
3866 }
3867 
svm_enable_nmi_window(struct kvm_vcpu * vcpu)3868 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3869 {
3870 	struct vcpu_svm *svm = to_svm(vcpu);
3871 
3872 	/*
3873 	 * If NMIs are outright masked, i.e. the vCPU is already handling an
3874 	 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
3875 	 * more to do at this time as KVM has already enabled IRET intercepts.
3876 	 * If KVM has already intercepted IRET, then single-step over the IRET,
3877 	 * as NMIs aren't architecturally unmasked until the IRET completes.
3878 	 *
3879 	 * If vNMI is enabled, KVM should never request an NMI window if NMIs
3880 	 * are masked, as KVM allows at most one to-be-injected NMI and one
3881 	 * pending NMI.  If two NMIs arrive simultaneously, KVM will inject one
3882 	 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3883 	 * unmasked.  KVM _will_ request an NMI window in some situations, e.g.
3884 	 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3885 	 * inject the NMI.  In those situations, KVM needs to single-step over
3886 	 * the STI shadow or intercept STGI.
3887 	 */
3888 	if (svm_get_nmi_mask(vcpu)) {
3889 		WARN_ON_ONCE(is_vnmi_enabled(svm));
3890 
3891 		if (!svm->awaiting_iret_completion)
3892 			return; /* IRET will cause a vm exit */
3893 	}
3894 
3895 	/*
3896 	 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3897 	 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3898 	 * KVM can't intercept and single-step IRET to detect when NMIs are
3899 	 * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
3900 	 *
3901 	 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3902 	 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3903 	 * supported NAEs in the GHCB protocol.
3904 	 */
3905 	if (sev_es_guest(vcpu->kvm))
3906 		return;
3907 
3908 	if (!gif_set(svm)) {
3909 		if (vgif)
3910 			svm_set_intercept(svm, INTERCEPT_STGI);
3911 		return; /* STGI will cause a vm exit */
3912 	}
3913 
3914 	/*
3915 	 * Something prevents NMI from been injected. Single step over possible
3916 	 * problem (IRET or exception injection or interrupt shadow)
3917 	 */
3918 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3919 	svm->nmi_singlestep = true;
3920 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3921 }
3922 
svm_flush_tlb_asid(struct kvm_vcpu * vcpu)3923 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3924 {
3925 	struct vcpu_svm *svm = to_svm(vcpu);
3926 
3927 	/*
3928 	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3929 	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3930 	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3931 	 */
3932 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3933 
3934 	/*
3935 	 * Flush only the current ASID even if the TLB flush was invoked via
3936 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3937 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3938 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3939 	 * VM-Exit (via kvm_mmu_reset_context()).
3940 	 */
3941 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3942 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3943 	else
3944 		svm->current_vmcb->asid_generation--;
3945 }
3946 
svm_flush_tlb_current(struct kvm_vcpu * vcpu)3947 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3948 {
3949 	hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3950 
3951 	/*
3952 	 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3953 	 * flush the NPT mappings via hypercall as flushing the ASID only
3954 	 * affects virtual to physical mappings, it does not invalidate guest
3955 	 * physical to host physical mappings.
3956 	 */
3957 	if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3958 		hyperv_flush_guest_mapping(root_tdp);
3959 
3960 	svm_flush_tlb_asid(vcpu);
3961 }
3962 
svm_flush_tlb_all(struct kvm_vcpu * vcpu)3963 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3964 {
3965 	/*
3966 	 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3967 	 * flushes should be routed to hv_flush_remote_tlbs() without requesting
3968 	 * a "regular" remote flush.  Reaching this point means either there's
3969 	 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3970 	 * which might be fatal to the guest.  Yell, but try to recover.
3971 	 */
3972 	if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3973 		hv_flush_remote_tlbs(vcpu->kvm);
3974 
3975 	svm_flush_tlb_asid(vcpu);
3976 }
3977 
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)3978 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3979 {
3980 	struct vcpu_svm *svm = to_svm(vcpu);
3981 
3982 	invlpga(gva, svm->vmcb->control.asid);
3983 }
3984 
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)3985 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3986 {
3987 	struct vcpu_svm *svm = to_svm(vcpu);
3988 
3989 	if (nested_svm_virtualize_tpr(vcpu))
3990 		return;
3991 
3992 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3993 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3994 		kvm_set_cr8(vcpu, cr8);
3995 	}
3996 }
3997 
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)3998 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3999 {
4000 	struct vcpu_svm *svm = to_svm(vcpu);
4001 	u64 cr8;
4002 
4003 	if (nested_svm_virtualize_tpr(vcpu))
4004 		return;
4005 
4006 	cr8 = kvm_get_cr8(vcpu);
4007 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4008 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4009 }
4010 
svm_complete_soft_interrupt(struct kvm_vcpu * vcpu,u8 vector,int type)4011 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4012 					int type)
4013 {
4014 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4015 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4016 	struct vcpu_svm *svm = to_svm(vcpu);
4017 
4018 	/*
4019 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4020 	 * associated with the original soft exception/interrupt.  next_rip is
4021 	 * cleared on all exits that can occur while vectoring an event, so KVM
4022 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
4023 	 * case below, this needs to be done if and only if KVM is re-injecting
4024 	 * the same event, i.e. if the event is a soft exception/interrupt,
4025 	 * otherwise next_rip is unused on VMRUN.
4026 	 */
4027 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4028 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4029 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4030 	/*
4031 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4032 	 * injecting the soft exception/interrupt.  That advancement needs to
4033 	 * be unwound if vectoring didn't complete.  Note, the new event may
4034 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4035 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4036 	 * be the reported vectored event, but RIP still needs to be unwound.
4037 	 */
4038 	else if (!nrips && (is_soft || is_exception) &&
4039 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4040 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
4041 }
4042 
svm_complete_interrupts(struct kvm_vcpu * vcpu)4043 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4044 {
4045 	struct vcpu_svm *svm = to_svm(vcpu);
4046 	u8 vector;
4047 	int type;
4048 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
4049 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4050 	bool soft_int_injected = svm->soft_int_injected;
4051 
4052 	svm->nmi_l1_to_l2 = false;
4053 	svm->soft_int_injected = false;
4054 
4055 	/*
4056 	 * If we've made progress since setting awaiting_iret_completion, we've
4057 	 * executed an IRET and can allow NMI injection.
4058 	 */
4059 	if (svm->awaiting_iret_completion &&
4060 	    kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4061 		svm->awaiting_iret_completion = false;
4062 		svm->nmi_masked = false;
4063 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4064 	}
4065 
4066 	vcpu->arch.nmi_injected = false;
4067 	kvm_clear_exception_queue(vcpu);
4068 	kvm_clear_interrupt_queue(vcpu);
4069 
4070 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4071 		return;
4072 
4073 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4074 
4075 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4076 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4077 
4078 	if (soft_int_injected)
4079 		svm_complete_soft_interrupt(vcpu, vector, type);
4080 
4081 	switch (type) {
4082 	case SVM_EXITINTINFO_TYPE_NMI:
4083 		vcpu->arch.nmi_injected = true;
4084 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4085 		break;
4086 	case SVM_EXITINTINFO_TYPE_EXEPT: {
4087 		u32 error_code = 0;
4088 
4089 		/*
4090 		 * Never re-inject a #VC exception.
4091 		 */
4092 		if (vector == X86_TRAP_VC)
4093 			break;
4094 
4095 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR)
4096 			error_code = svm->vmcb->control.exit_int_info_err;
4097 
4098 		kvm_requeue_exception(vcpu, vector,
4099 				      exitintinfo & SVM_EXITINTINFO_VALID_ERR,
4100 				      error_code);
4101 		break;
4102 	}
4103 	case SVM_EXITINTINFO_TYPE_INTR:
4104 		kvm_queue_interrupt(vcpu, vector, false);
4105 		break;
4106 	case SVM_EXITINTINFO_TYPE_SOFT:
4107 		kvm_queue_interrupt(vcpu, vector, true);
4108 		break;
4109 	default:
4110 		break;
4111 	}
4112 
4113 }
4114 
svm_cancel_injection(struct kvm_vcpu * vcpu)4115 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4116 {
4117 	struct vcpu_svm *svm = to_svm(vcpu);
4118 	struct vmcb_control_area *control = &svm->vmcb->control;
4119 
4120 	control->exit_int_info = control->event_inj;
4121 	control->exit_int_info_err = control->event_inj_err;
4122 	control->event_inj = 0;
4123 	svm_complete_interrupts(vcpu);
4124 }
4125 
svm_vcpu_pre_run(struct kvm_vcpu * vcpu)4126 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4127 {
4128 	if (to_kvm_sev_info(vcpu->kvm)->need_init)
4129 		return -EINVAL;
4130 
4131 	return 1;
4132 }
4133 
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)4134 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4135 {
4136 	struct vcpu_svm *svm = to_svm(vcpu);
4137 	struct vmcb_control_area *control = &svm->vmcb->control;
4138 
4139 	/*
4140 	 * Next RIP must be provided as IRQs are disabled, and accessing guest
4141 	 * memory to decode the instruction might fault, i.e. might sleep.
4142 	 */
4143 	if (!nrips || !control->next_rip)
4144 		return EXIT_FASTPATH_NONE;
4145 
4146 	if (is_guest_mode(vcpu))
4147 		return EXIT_FASTPATH_NONE;
4148 
4149 	switch (control->exit_code) {
4150 	case SVM_EXIT_MSR:
4151 		if (!control->exit_info_1)
4152 			break;
4153 		return handle_fastpath_wrmsr(vcpu);
4154 	case SVM_EXIT_HLT:
4155 		return handle_fastpath_hlt(vcpu);
4156 	case SVM_EXIT_INVD:
4157 		return handle_fastpath_invd(vcpu);
4158 	default:
4159 		break;
4160 	}
4161 
4162 	return EXIT_FASTPATH_NONE;
4163 }
4164 
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,bool spec_ctrl_intercepted)4165 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4166 {
4167 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4168 	struct vcpu_svm *svm = to_svm(vcpu);
4169 
4170 	guest_state_enter_irqoff();
4171 
4172 	/*
4173 	 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of
4174 	 * VMRUN controls whether or not physical IRQs are masked (KVM always
4175 	 * runs with V_INTR_MASKING_MASK).  Toggle RFLAGS.IF here to avoid the
4176 	 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow
4177 	 * into guest state if delivery of an event during VMRUN triggers a
4178 	 * #VMEXIT, and the guest_state transitions already tell lockdep that
4179 	 * IRQs are being enabled/disabled.  Note!  GIF=0 for the entirety of
4180 	 * this path, so IRQs aren't actually unmasked while running host code.
4181 	 */
4182 	raw_local_irq_enable();
4183 
4184 	amd_clear_divider();
4185 
4186 	if (sev_es_guest(vcpu->kvm))
4187 		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4188 				      sev_es_host_save_area(sd));
4189 	else
4190 		__svm_vcpu_run(svm, spec_ctrl_intercepted);
4191 
4192 	raw_local_irq_disable();
4193 
4194 	guest_state_exit_irqoff();
4195 }
4196 
svm_vcpu_run(struct kvm_vcpu * vcpu,u64 run_flags)4197 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
4198 {
4199 	bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
4200 	struct vcpu_svm *svm = to_svm(vcpu);
4201 	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4202 
4203 	trace_kvm_entry(vcpu, force_immediate_exit);
4204 
4205 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4206 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4207 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4208 
4209 	/*
4210 	 * Disable singlestep if we're injecting an interrupt/exception.
4211 	 * We don't want our modified rflags to be pushed on the stack where
4212 	 * we might not be able to easily reset them if we disabled NMI
4213 	 * singlestep later.
4214 	 */
4215 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4216 		/*
4217 		 * Event injection happens before external interrupts cause a
4218 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
4219 		 * is enough to force an immediate vmexit.
4220 		 */
4221 		disable_nmi_singlestep(svm);
4222 		force_immediate_exit = true;
4223 	}
4224 
4225 	if (force_immediate_exit)
4226 		smp_send_reschedule(vcpu->cpu);
4227 
4228 	if (pre_svm_run(vcpu)) {
4229 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4230 		vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR;
4231 		vcpu->run->fail_entry.cpu = vcpu->cpu;
4232 		return EXIT_FASTPATH_EXIT_USERSPACE;
4233 	}
4234 
4235 	sync_lapic_to_cr8(vcpu);
4236 
4237 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4238 		svm->vmcb->control.asid = svm->asid;
4239 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4240 	}
4241 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4242 
4243 	svm_hv_update_vp_id(svm->vmcb, vcpu);
4244 
4245 	/*
4246 	 * Run with all-zero DR6 unless the guest can write DR6 freely, so that
4247 	 * KVM can get the exact cause of a #DB.  Note, loading guest DR6 from
4248 	 * KVM's snapshot is only necessary when DR accesses won't exit.
4249 	 */
4250 	if (unlikely(run_flags & KVM_RUN_LOAD_GUEST_DR6))
4251 		svm_set_dr6(vcpu, vcpu->arch.dr6);
4252 	else if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)))
4253 		svm_set_dr6(vcpu, DR6_ACTIVE_LOW);
4254 
4255 	clgi();
4256 
4257 	/*
4258 	 * Hardware only context switches DEBUGCTL if LBR virtualization is
4259 	 * enabled.  Manually load DEBUGCTL if necessary (and restore it after
4260 	 * VM-Exit), as running with the host's DEBUGCTL can negatively affect
4261 	 * guest state and can even be fatal, e.g. due to Bus Lock Detect.
4262 	 */
4263 	if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4264 	    vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4265 		update_debugctlmsr(svm->vmcb->save.dbgctl);
4266 
4267 	kvm_wait_lapic_expire(vcpu);
4268 
4269 	/*
4270 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4271 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4272 	 * is no need to worry about the conditional branch over the wrmsr
4273 	 * being speculatively taken.
4274 	 */
4275 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4276 		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4277 
4278 	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4279 
4280 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4281 		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4282 
4283 	if (!sev_es_guest(vcpu->kvm)) {
4284 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4285 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4286 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4287 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4288 	}
4289 	vcpu->arch.regs_dirty = 0;
4290 
4291 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4292 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4293 
4294 	if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4295 	    vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4296 		update_debugctlmsr(vcpu->arch.host_debugctl);
4297 
4298 	stgi();
4299 
4300 	/* Any pending NMI will happen here */
4301 
4302 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4303 		kvm_after_interrupt(vcpu);
4304 
4305 	sync_cr8_to_lapic(vcpu);
4306 
4307 	svm->next_rip = 0;
4308 	if (is_guest_mode(vcpu)) {
4309 		nested_sync_control_from_vmcb02(svm);
4310 
4311 		/* Track VMRUNs that have made past consistency checking */
4312 		if (svm->nested.nested_run_pending &&
4313 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4314                         ++vcpu->stat.nested_run;
4315 
4316 		svm->nested.nested_run_pending = 0;
4317 	}
4318 
4319 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4320 	vmcb_mark_all_clean(svm->vmcb);
4321 
4322 	/* if exit due to PF check for async PF */
4323 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4324 		vcpu->arch.apf.host_apf_flags =
4325 			kvm_read_and_reset_apf_flags();
4326 
4327 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4328 
4329 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
4330 
4331 	svm_complete_interrupts(vcpu);
4332 
4333 	return svm_exit_handlers_fastpath(vcpu);
4334 }
4335 
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)4336 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4337 			     int root_level)
4338 {
4339 	struct vcpu_svm *svm = to_svm(vcpu);
4340 	unsigned long cr3;
4341 
4342 	if (npt_enabled) {
4343 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4344 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4345 
4346 		hv_track_root_tdp(vcpu, root_hpa);
4347 
4348 		cr3 = vcpu->arch.cr3;
4349 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4350 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4351 	} else {
4352 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4353 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4354 		cr3 = root_hpa;
4355 	}
4356 
4357 	svm->vmcb->save.cr3 = cr3;
4358 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4359 }
4360 
4361 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4362 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4363 {
4364 	/*
4365 	 * Patch in the VMMCALL instruction:
4366 	 */
4367 	hypercall[0] = 0x0f;
4368 	hypercall[1] = 0x01;
4369 	hypercall[2] = 0xd9;
4370 }
4371 
4372 /*
4373  * The kvm parameter can be NULL (module initialization, or invocation before
4374  * VM creation). Be sure to check the kvm parameter before using it.
4375  */
svm_has_emulated_msr(struct kvm * kvm,u32 index)4376 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4377 {
4378 	switch (index) {
4379 	case MSR_IA32_MCG_EXT_CTL:
4380 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4381 		return false;
4382 	case MSR_IA32_SMBASE:
4383 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4384 			return false;
4385 		/* SEV-ES guests do not support SMM, so report false */
4386 		if (kvm && sev_es_guest(kvm))
4387 			return false;
4388 		break;
4389 	default:
4390 		break;
4391 	}
4392 
4393 	return true;
4394 }
4395 
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)4396 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4397 {
4398 	struct vcpu_svm *svm = to_svm(vcpu);
4399 
4400 	/*
4401 	 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4402 	 * can only disable all variants of by disallowing CR4.OSXSAVE from
4403 	 * being set.  As a result, if the host has XSAVE and XSAVES, and the
4404 	 * guest has XSAVE enabled, the guest can execute XSAVES without
4405 	 * faulting.  Treat XSAVES as enabled in this case regardless of
4406 	 * whether it's advertised to the guest so that KVM context switches
4407 	 * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
4408 	 * the guest read/write access to the host's XSS.
4409 	 */
4410 	guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES,
4411 			     boot_cpu_has(X86_FEATURE_XSAVES) &&
4412 			     guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE));
4413 
4414 	/*
4415 	 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that
4416 	 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4417 	 * SVM on Intel is bonkers and extremely unlikely to work).
4418 	 */
4419 	if (guest_cpuid_is_intel_compatible(vcpu))
4420 		guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4421 
4422 	if (sev_guest(vcpu->kvm))
4423 		sev_vcpu_after_set_cpuid(svm);
4424 }
4425 
svm_has_wbinvd_exit(void)4426 static bool svm_has_wbinvd_exit(void)
4427 {
4428 	return true;
4429 }
4430 
4431 #define PRE_EX(exit)  { .exit_code = (exit), \
4432 			.stage = X86_ICPT_PRE_EXCEPT, }
4433 #define POST_EX(exit) { .exit_code = (exit), \
4434 			.stage = X86_ICPT_POST_EXCEPT, }
4435 #define POST_MEM(exit) { .exit_code = (exit), \
4436 			.stage = X86_ICPT_POST_MEMACCESS, }
4437 
4438 static const struct __x86_intercept {
4439 	u32 exit_code;
4440 	enum x86_intercept_stage stage;
4441 } x86_intercept_map[] = {
4442 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4443 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4444 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4445 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4446 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4447 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4448 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4449 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4450 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4451 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4452 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4453 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4454 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4455 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4456 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4457 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4458 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4459 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4460 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4461 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4462 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4463 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4464 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4465 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4466 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4467 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4468 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4469 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4470 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4471 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4472 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4473 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4474 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4475 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4476 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4477 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4478 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4479 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4480 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4481 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4482 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4483 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4484 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4485 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4486 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4487 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4488 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4489 };
4490 
4491 #undef PRE_EX
4492 #undef POST_EX
4493 #undef POST_MEM
4494 
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)4495 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4496 			       struct x86_instruction_info *info,
4497 			       enum x86_intercept_stage stage,
4498 			       struct x86_exception *exception)
4499 {
4500 	struct vcpu_svm *svm = to_svm(vcpu);
4501 	int vmexit, ret = X86EMUL_CONTINUE;
4502 	struct __x86_intercept icpt_info;
4503 	struct vmcb *vmcb = svm->vmcb;
4504 
4505 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4506 		goto out;
4507 
4508 	icpt_info = x86_intercept_map[info->intercept];
4509 
4510 	if (stage != icpt_info.stage)
4511 		goto out;
4512 
4513 	switch (icpt_info.exit_code) {
4514 	case SVM_EXIT_READ_CR0:
4515 		if (info->intercept == x86_intercept_cr_read)
4516 			icpt_info.exit_code += info->modrm_reg;
4517 		break;
4518 	case SVM_EXIT_WRITE_CR0: {
4519 		unsigned long cr0, val;
4520 
4521 		/*
4522 		 * Adjust the exit code accordingly if a CR other than CR0 is
4523 		 * being written, and skip straight to the common handling as
4524 		 * only CR0 has an additional selective intercept.
4525 		 */
4526 		if (info->intercept == x86_intercept_cr_write && info->modrm_reg) {
4527 			icpt_info.exit_code += info->modrm_reg;
4528 			break;
4529 		}
4530 
4531 		/*
4532 		 * Convert the exit_code to SVM_EXIT_CR0_SEL_WRITE if a
4533 		 * selective CR0 intercept is triggered (the common logic will
4534 		 * treat the selective intercept as being enabled).  Note, the
4535 		 * unconditional intercept has higher priority, i.e. this is
4536 		 * only relevant if *only* the selective intercept is enabled.
4537 		 */
4538 		if (vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_CR0_WRITE) ||
4539 		    !(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))
4540 			break;
4541 
4542 		/* CLTS never triggers INTERCEPT_SELECTIVE_CR0 */
4543 		if (info->intercept == x86_intercept_clts)
4544 			break;
4545 
4546 		/* LMSW always triggers INTERCEPT_SELECTIVE_CR0 */
4547 		if (info->intercept == x86_intercept_lmsw) {
4548 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4549 			break;
4550 		}
4551 
4552 		/*
4553 		 * MOV-to-CR0 only triggers INTERCEPT_SELECTIVE_CR0 if any bit
4554 		 * other than SVM_CR0_SELECTIVE_MASK is changed.
4555 		 */
4556 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4557 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4558 		if (cr0 ^ val)
4559 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4560 		break;
4561 	}
4562 	case SVM_EXIT_READ_DR0:
4563 	case SVM_EXIT_WRITE_DR0:
4564 		icpt_info.exit_code += info->modrm_reg;
4565 		break;
4566 	case SVM_EXIT_MSR:
4567 		if (info->intercept == x86_intercept_wrmsr)
4568 			vmcb->control.exit_info_1 = 1;
4569 		else
4570 			vmcb->control.exit_info_1 = 0;
4571 		break;
4572 	case SVM_EXIT_PAUSE:
4573 		/*
4574 		 * We get this for NOP only, but pause
4575 		 * is rep not, check this here
4576 		 */
4577 		if (info->rep_prefix != REPE_PREFIX)
4578 			goto out;
4579 		break;
4580 	case SVM_EXIT_IOIO: {
4581 		u64 exit_info;
4582 		u32 bytes;
4583 
4584 		if (info->intercept == x86_intercept_in ||
4585 		    info->intercept == x86_intercept_ins) {
4586 			exit_info = ((info->src_val & 0xffff) << 16) |
4587 				SVM_IOIO_TYPE_MASK;
4588 			bytes = info->dst_bytes;
4589 		} else {
4590 			exit_info = (info->dst_val & 0xffff) << 16;
4591 			bytes = info->src_bytes;
4592 		}
4593 
4594 		if (info->intercept == x86_intercept_outs ||
4595 		    info->intercept == x86_intercept_ins)
4596 			exit_info |= SVM_IOIO_STR_MASK;
4597 
4598 		if (info->rep_prefix)
4599 			exit_info |= SVM_IOIO_REP_MASK;
4600 
4601 		bytes = min(bytes, 4u);
4602 
4603 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4604 
4605 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4606 
4607 		vmcb->control.exit_info_1 = exit_info;
4608 		vmcb->control.exit_info_2 = info->next_rip;
4609 
4610 		break;
4611 	}
4612 	default:
4613 		break;
4614 	}
4615 
4616 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4617 	if (static_cpu_has(X86_FEATURE_NRIPS))
4618 		vmcb->control.next_rip  = info->next_rip;
4619 	vmcb->control.exit_code = icpt_info.exit_code;
4620 	vmexit = nested_svm_exit_handled(svm);
4621 
4622 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4623 					   : X86EMUL_CONTINUE;
4624 
4625 out:
4626 	return ret;
4627 }
4628 
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)4629 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4630 {
4631 	switch (to_svm(vcpu)->vmcb->control.exit_code) {
4632 	case SVM_EXIT_EXCP_BASE + MC_VECTOR:
4633 		svm_handle_mce(vcpu);
4634 		break;
4635 	case SVM_EXIT_INTR:
4636 		vcpu->arch.at_instruction_boundary = true;
4637 		break;
4638 	default:
4639 		break;
4640 	}
4641 }
4642 
svm_setup_mce(struct kvm_vcpu * vcpu)4643 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4644 {
4645 	/* [63:9] are reserved. */
4646 	vcpu->arch.mcg_cap &= 0x1ff;
4647 }
4648 
4649 #ifdef CONFIG_KVM_SMM
svm_smi_blocked(struct kvm_vcpu * vcpu)4650 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4651 {
4652 	struct vcpu_svm *svm = to_svm(vcpu);
4653 
4654 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4655 	if (!gif_set(svm))
4656 		return true;
4657 
4658 	return is_smm(vcpu);
4659 }
4660 
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4661 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4662 {
4663 	struct vcpu_svm *svm = to_svm(vcpu);
4664 	if (svm->nested.nested_run_pending)
4665 		return -EBUSY;
4666 
4667 	if (svm_smi_blocked(vcpu))
4668 		return 0;
4669 
4670 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4671 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4672 		return -EBUSY;
4673 
4674 	return 1;
4675 }
4676 
svm_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)4677 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4678 {
4679 	struct vcpu_svm *svm = to_svm(vcpu);
4680 	struct kvm_host_map map_save;
4681 	int ret;
4682 
4683 	if (!is_guest_mode(vcpu))
4684 		return 0;
4685 
4686 	/*
4687 	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4688 	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4689 	 */
4690 
4691 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4692 		return 1;
4693 
4694 	smram->smram64.svm_guest_flag = 1;
4695 	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4696 
4697 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4698 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4699 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4700 
4701 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4702 	if (ret)
4703 		return ret;
4704 
4705 	/*
4706 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4707 	 * VMCB01 is going to be used during SMM and thus the state will
4708 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4709 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4710 	 * format of the area is identical to guest save area offsetted
4711 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4712 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4713 	 * L1 hypervisor to save additional host context (e.g. KVM does
4714 	 * that, see svm_prepare_switch_to_guest()) which must be
4715 	 * preserved.
4716 	 */
4717 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4718 		return 1;
4719 
4720 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4721 
4722 	svm_copy_vmrun_state(map_save.hva + 0x400,
4723 			     &svm->vmcb01.ptr->save);
4724 
4725 	kvm_vcpu_unmap(vcpu, &map_save);
4726 	return 0;
4727 }
4728 
svm_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)4729 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4730 {
4731 	struct vcpu_svm *svm = to_svm(vcpu);
4732 	struct kvm_host_map map, map_save;
4733 	struct vmcb *vmcb12;
4734 	int ret;
4735 
4736 	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4737 
4738 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4739 		return 0;
4740 
4741 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4742 	if (!smram64->svm_guest_flag)
4743 		return 0;
4744 
4745 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
4746 		return 1;
4747 
4748 	if (!(smram64->efer & EFER_SVME))
4749 		return 1;
4750 
4751 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4752 		return 1;
4753 
4754 	ret = 1;
4755 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4756 		goto unmap_map;
4757 
4758 	if (svm_allocate_nested(svm))
4759 		goto unmap_save;
4760 
4761 	/*
4762 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4763 	 * used during SMM (see svm_enter_smm())
4764 	 */
4765 
4766 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4767 
4768 	/*
4769 	 * Enter the nested guest now
4770 	 */
4771 
4772 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4773 
4774 	vmcb12 = map.hva;
4775 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4776 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4777 	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4778 
4779 	if (ret)
4780 		goto unmap_save;
4781 
4782 	svm->nested.nested_run_pending = 1;
4783 
4784 unmap_save:
4785 	kvm_vcpu_unmap(vcpu, &map_save);
4786 unmap_map:
4787 	kvm_vcpu_unmap(vcpu, &map);
4788 	return ret;
4789 }
4790 
svm_enable_smi_window(struct kvm_vcpu * vcpu)4791 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4792 {
4793 	struct vcpu_svm *svm = to_svm(vcpu);
4794 
4795 	if (!gif_set(svm)) {
4796 		if (vgif)
4797 			svm_set_intercept(svm, INTERCEPT_STGI);
4798 		/* STGI will cause a vm exit */
4799 	} else {
4800 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4801 	}
4802 }
4803 #endif
4804 
svm_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)4805 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4806 					 void *insn, int insn_len)
4807 {
4808 	struct vcpu_svm *svm = to_svm(vcpu);
4809 	bool smep, smap, is_user;
4810 	u64 error_code;
4811 
4812 	/* Check that emulation is possible during event vectoring */
4813 	if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) &&
4814 	    !kvm_can_emulate_event_vectoring(emul_type))
4815 		return X86EMUL_UNHANDLEABLE_VECTORING;
4816 
4817 	/* Emulation is always possible when KVM has access to all guest state. */
4818 	if (!sev_guest(vcpu->kvm))
4819 		return X86EMUL_CONTINUE;
4820 
4821 	/* #UD and #GP should never be intercepted for SEV guests. */
4822 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4823 				  EMULTYPE_TRAP_UD_FORCED |
4824 				  EMULTYPE_VMWARE_GP));
4825 
4826 	/*
4827 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4828 	 * to guest register state.
4829 	 */
4830 	if (sev_es_guest(vcpu->kvm))
4831 		return X86EMUL_RETRY_INSTR;
4832 
4833 	/*
4834 	 * Emulation is possible if the instruction is already decoded, e.g.
4835 	 * when completing I/O after returning from userspace.
4836 	 */
4837 	if (emul_type & EMULTYPE_NO_DECODE)
4838 		return X86EMUL_CONTINUE;
4839 
4840 	/*
4841 	 * Emulation is possible for SEV guests if and only if a prefilled
4842 	 * buffer containing the bytes of the intercepted instruction is
4843 	 * available. SEV guest memory is encrypted with a guest specific key
4844 	 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4845 	 * decode garbage.
4846 	 *
4847 	 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4848 	 * KVM reached this point without an instruction buffer.  In practice,
4849 	 * this path should never be hit by a well-behaved guest, e.g. KVM
4850 	 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4851 	 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4852 	 * access, and needs to be handled by KVM to avoid putting the guest
4853 	 * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
4854 	 * its the least awful option given lack of insight into the guest.
4855 	 *
4856 	 * If KVM is trying to skip an instruction, simply resume the guest.
4857 	 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4858 	 * will attempt to re-inject the INT3/INTO and skip the instruction.
4859 	 * In that scenario, retrying the INT3/INTO and hoping the guest will
4860 	 * make forward progress is the only option that has a chance of
4861 	 * success (and in practice it will work the vast majority of the time).
4862 	 */
4863 	if (unlikely(!insn)) {
4864 		if (emul_type & EMULTYPE_SKIP)
4865 			return X86EMUL_UNHANDLEABLE;
4866 
4867 		kvm_queue_exception(vcpu, UD_VECTOR);
4868 		return X86EMUL_PROPAGATE_FAULT;
4869 	}
4870 
4871 	/*
4872 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4873 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4874 	 * the faulting instruction because the code fetch itself faulted, e.g.
4875 	 * the guest attempted to fetch from emulated MMIO or a guest page
4876 	 * table used to translate CS:RIP resides in emulated MMIO.
4877 	 */
4878 	if (likely(insn_len))
4879 		return X86EMUL_CONTINUE;
4880 
4881 	/*
4882 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4883 	 *
4884 	 * Errata:
4885 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4886 	 * possible that CPU microcode implementing DecodeAssist will fail to
4887 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4888 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4889 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4890 	 * gives up and does not fill the instruction bytes buffer.
4891 	 *
4892 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4893 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4894 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4895 	 * GuestIntrBytes field of the VMCB.
4896 	 *
4897 	 * This does _not_ mean that the erratum has been encountered, as the
4898 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4899 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4900 	 * encountered a reserved/not-present #PF.
4901 	 *
4902 	 * To hit the erratum, the following conditions must be true:
4903 	 *    1. CR4.SMAP=1 (obviously).
4904 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4905 	 *       have been hit as the guest would have encountered a SMEP
4906 	 *       violation #PF, not a #NPF.
4907 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4908 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4909 	 *
4910 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4911 	 * while translating guest page tables (see below).
4912 	 */
4913 	error_code = svm->vmcb->control.exit_info_1;
4914 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4915 		goto resume_guest;
4916 
4917 	smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4918 	smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4919 	is_user = svm_get_cpl(vcpu) == 3;
4920 	if (smap && (!smep || is_user)) {
4921 		pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4922 
4923 		/*
4924 		 * If the fault occurred in userspace, arbitrarily inject #GP
4925 		 * to avoid killing the guest and to hopefully avoid confusing
4926 		 * the guest kernel too much, e.g. injecting #PF would not be
4927 		 * coherent with respect to the guest's page tables.  Request
4928 		 * triple fault if the fault occurred in the kernel as there's
4929 		 * no fault that KVM can inject without confusing the guest.
4930 		 * In practice, the triple fault is moot as no sane SEV kernel
4931 		 * will execute from user memory while also running with SMAP=1.
4932 		 */
4933 		if (is_user)
4934 			kvm_inject_gp(vcpu, 0);
4935 		else
4936 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4937 		return X86EMUL_PROPAGATE_FAULT;
4938 	}
4939 
4940 resume_guest:
4941 	/*
4942 	 * If the erratum was not hit, simply resume the guest and let it fault
4943 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4944 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4945 	 * userspace will kill the guest, and letting the emulator read garbage
4946 	 * will yield random behavior and potentially corrupt the guest.
4947 	 *
4948 	 * Simply resuming the guest is technically not a violation of the SEV
4949 	 * architecture.  AMD's APM states that all code fetches and page table
4950 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4951 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4952 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4953 	 * the guest spin is technically "ignoring" the access.
4954 	 */
4955 	return X86EMUL_RETRY_INSTR;
4956 }
4957 
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)4958 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4959 {
4960 	struct vcpu_svm *svm = to_svm(vcpu);
4961 
4962 	return !gif_set(svm);
4963 }
4964 
svm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4965 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4966 {
4967 	if (!sev_es_guest(vcpu->kvm))
4968 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4969 
4970 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4971 }
4972 
svm_vm_destroy(struct kvm * kvm)4973 static void svm_vm_destroy(struct kvm *kvm)
4974 {
4975 	avic_vm_destroy(kvm);
4976 	sev_vm_destroy(kvm);
4977 
4978 	svm_srso_vm_destroy();
4979 }
4980 
svm_vm_init(struct kvm * kvm)4981 static int svm_vm_init(struct kvm *kvm)
4982 {
4983 	int type = kvm->arch.vm_type;
4984 
4985 	if (type != KVM_X86_DEFAULT_VM &&
4986 	    type != KVM_X86_SW_PROTECTED_VM) {
4987 		kvm->arch.has_protected_state =
4988 			(type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
4989 		to_kvm_sev_info(kvm)->need_init = true;
4990 
4991 		kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
4992 		kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
4993 	}
4994 
4995 	if (!pause_filter_count || !pause_filter_thresh)
4996 		kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
4997 
4998 	if (enable_apicv) {
4999 		int ret = avic_vm_init(kvm);
5000 		if (ret)
5001 			return ret;
5002 	}
5003 
5004 	svm_srso_vm_init();
5005 	return 0;
5006 }
5007 
svm_alloc_apic_backing_page(struct kvm_vcpu * vcpu)5008 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
5009 {
5010 	struct page *page = snp_safe_alloc_page();
5011 
5012 	if (!page)
5013 		return NULL;
5014 
5015 	return page_address(page);
5016 }
5017 
5018 struct kvm_x86_ops svm_x86_ops __initdata = {
5019 	.name = KBUILD_MODNAME,
5020 
5021 	.check_processor_compatibility = svm_check_processor_compat,
5022 
5023 	.hardware_unsetup = svm_hardware_unsetup,
5024 	.enable_virtualization_cpu = svm_enable_virtualization_cpu,
5025 	.disable_virtualization_cpu = svm_disable_virtualization_cpu,
5026 	.emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
5027 	.has_emulated_msr = svm_has_emulated_msr,
5028 
5029 	.vcpu_precreate = svm_vcpu_precreate,
5030 	.vcpu_create = svm_vcpu_create,
5031 	.vcpu_free = svm_vcpu_free,
5032 	.vcpu_reset = svm_vcpu_reset,
5033 
5034 	.vm_size = sizeof(struct kvm_svm),
5035 	.vm_init = svm_vm_init,
5036 	.vm_destroy = svm_vm_destroy,
5037 
5038 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
5039 	.vcpu_load = svm_vcpu_load,
5040 	.vcpu_put = svm_vcpu_put,
5041 	.vcpu_blocking = avic_vcpu_blocking,
5042 	.vcpu_unblocking = avic_vcpu_unblocking,
5043 
5044 	.update_exception_bitmap = svm_update_exception_bitmap,
5045 	.get_feature_msr = svm_get_feature_msr,
5046 	.get_msr = svm_get_msr,
5047 	.set_msr = svm_set_msr,
5048 	.get_segment_base = svm_get_segment_base,
5049 	.get_segment = svm_get_segment,
5050 	.set_segment = svm_set_segment,
5051 	.get_cpl = svm_get_cpl,
5052 	.get_cpl_no_cache = svm_get_cpl,
5053 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
5054 	.is_valid_cr0 = svm_is_valid_cr0,
5055 	.set_cr0 = svm_set_cr0,
5056 	.post_set_cr3 = sev_post_set_cr3,
5057 	.is_valid_cr4 = svm_is_valid_cr4,
5058 	.set_cr4 = svm_set_cr4,
5059 	.set_efer = svm_set_efer,
5060 	.get_idt = svm_get_idt,
5061 	.set_idt = svm_set_idt,
5062 	.get_gdt = svm_get_gdt,
5063 	.set_gdt = svm_set_gdt,
5064 	.set_dr7 = svm_set_dr7,
5065 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5066 	.cache_reg = svm_cache_reg,
5067 	.get_rflags = svm_get_rflags,
5068 	.set_rflags = svm_set_rflags,
5069 	.get_if_flag = svm_get_if_flag,
5070 
5071 	.flush_tlb_all = svm_flush_tlb_all,
5072 	.flush_tlb_current = svm_flush_tlb_current,
5073 	.flush_tlb_gva = svm_flush_tlb_gva,
5074 	.flush_tlb_guest = svm_flush_tlb_asid,
5075 
5076 	.vcpu_pre_run = svm_vcpu_pre_run,
5077 	.vcpu_run = svm_vcpu_run,
5078 	.handle_exit = svm_handle_exit,
5079 	.skip_emulated_instruction = svm_skip_emulated_instruction,
5080 	.update_emulated_instruction = NULL,
5081 	.set_interrupt_shadow = svm_set_interrupt_shadow,
5082 	.get_interrupt_shadow = svm_get_interrupt_shadow,
5083 	.patch_hypercall = svm_patch_hypercall,
5084 	.inject_irq = svm_inject_irq,
5085 	.inject_nmi = svm_inject_nmi,
5086 	.is_vnmi_pending = svm_is_vnmi_pending,
5087 	.set_vnmi_pending = svm_set_vnmi_pending,
5088 	.inject_exception = svm_inject_exception,
5089 	.cancel_injection = svm_cancel_injection,
5090 	.interrupt_allowed = svm_interrupt_allowed,
5091 	.nmi_allowed = svm_nmi_allowed,
5092 	.get_nmi_mask = svm_get_nmi_mask,
5093 	.set_nmi_mask = svm_set_nmi_mask,
5094 	.enable_nmi_window = svm_enable_nmi_window,
5095 	.enable_irq_window = svm_enable_irq_window,
5096 	.update_cr8_intercept = svm_update_cr8_intercept,
5097 
5098 	.x2apic_icr_is_split = true,
5099 	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5100 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5101 	.apicv_post_state_restore = avic_apicv_post_state_restore,
5102 	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5103 
5104 	.get_exit_info = svm_get_exit_info,
5105 	.get_entry_info = svm_get_entry_info,
5106 
5107 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5108 
5109 	.has_wbinvd_exit = svm_has_wbinvd_exit,
5110 
5111 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
5112 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5113 	.write_tsc_offset = svm_write_tsc_offset,
5114 	.write_tsc_multiplier = svm_write_tsc_multiplier,
5115 
5116 	.load_mmu_pgd = svm_load_mmu_pgd,
5117 
5118 	.check_intercept = svm_check_intercept,
5119 	.handle_exit_irqoff = svm_handle_exit_irqoff,
5120 
5121 	.nested_ops = &svm_nested_ops,
5122 
5123 	.deliver_interrupt = svm_deliver_interrupt,
5124 	.pi_update_irte = avic_pi_update_irte,
5125 	.setup_mce = svm_setup_mce,
5126 
5127 #ifdef CONFIG_KVM_SMM
5128 	.smi_allowed = svm_smi_allowed,
5129 	.enter_smm = svm_enter_smm,
5130 	.leave_smm = svm_leave_smm,
5131 	.enable_smi_window = svm_enable_smi_window,
5132 #endif
5133 
5134 #ifdef CONFIG_KVM_AMD_SEV
5135 	.dev_get_attr = sev_dev_get_attr,
5136 	.mem_enc_ioctl = sev_mem_enc_ioctl,
5137 	.mem_enc_register_region = sev_mem_enc_register_region,
5138 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
5139 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
5140 
5141 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5142 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
5143 #endif
5144 	.check_emulate_instruction = svm_check_emulate_instruction,
5145 
5146 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
5147 
5148 	.recalc_intercepts = svm_recalc_intercepts,
5149 	.complete_emulated_msr = svm_complete_emulated_msr,
5150 
5151 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5152 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5153 	.alloc_apic_backing_page = svm_alloc_apic_backing_page,
5154 
5155 	.gmem_prepare = sev_gmem_prepare,
5156 	.gmem_invalidate = sev_gmem_invalidate,
5157 	.gmem_max_mapping_level = sev_gmem_max_mapping_level,
5158 };
5159 
5160 /*
5161  * The default MMIO mask is a single bit (excluding the present bit),
5162  * which could conflict with the memory encryption bit. Check for
5163  * memory encryption support and override the default MMIO mask if
5164  * memory encryption is enabled.
5165  */
svm_adjust_mmio_mask(void)5166 static __init void svm_adjust_mmio_mask(void)
5167 {
5168 	unsigned int enc_bit, mask_bit;
5169 	u64 msr, mask;
5170 
5171 	/* If there is no memory encryption support, use existing mask */
5172 	if (cpuid_eax(0x80000000) < 0x8000001f)
5173 		return;
5174 
5175 	/* If memory encryption is not enabled, use existing mask */
5176 	rdmsrq(MSR_AMD64_SYSCFG, msr);
5177 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5178 		return;
5179 
5180 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5181 	mask_bit = boot_cpu_data.x86_phys_bits;
5182 
5183 	/* Increment the mask bit if it is the same as the encryption bit */
5184 	if (enc_bit == mask_bit)
5185 		mask_bit++;
5186 
5187 	/*
5188 	 * If the mask bit location is below 52, then some bits above the
5189 	 * physical addressing limit will always be reserved, so use the
5190 	 * rsvd_bits() function to generate the mask. This mask, along with
5191 	 * the present bit, will be used to generate a page fault with
5192 	 * PFER.RSV = 1.
5193 	 *
5194 	 * If the mask bit location is 52 (or above), then clear the mask.
5195 	 */
5196 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5197 
5198 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5199 }
5200 
svm_set_cpu_caps(void)5201 static __init void svm_set_cpu_caps(void)
5202 {
5203 	kvm_set_cpu_caps();
5204 
5205 	kvm_caps.supported_perf_cap = 0;
5206 
5207 	kvm_cpu_cap_clear(X86_FEATURE_IBT);
5208 
5209 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
5210 	if (nested) {
5211 		kvm_cpu_cap_set(X86_FEATURE_SVM);
5212 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5213 
5214 		/*
5215 		 * KVM currently flushes TLBs on *every* nested SVM transition,
5216 		 * and so for all intents and purposes KVM supports flushing by
5217 		 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5218 		 */
5219 		kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5220 
5221 		if (nrips)
5222 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5223 
5224 		if (npt_enabled)
5225 			kvm_cpu_cap_set(X86_FEATURE_NPT);
5226 
5227 		if (tsc_scaling)
5228 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5229 
5230 		if (vls)
5231 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5232 		if (lbrv)
5233 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
5234 
5235 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5236 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5237 
5238 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5239 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5240 
5241 		if (vgif)
5242 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
5243 
5244 		if (vnmi)
5245 			kvm_cpu_cap_set(X86_FEATURE_VNMI);
5246 
5247 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
5248 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5249 	}
5250 
5251 	if (cpu_feature_enabled(X86_FEATURE_BUS_LOCK_THRESHOLD))
5252 		kvm_caps.has_bus_lock_exit = true;
5253 
5254 	/* CPUID 0x80000008 */
5255 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5256 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
5257 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5258 
5259 	if (enable_pmu) {
5260 		/*
5261 		 * Enumerate support for PERFCTR_CORE if and only if KVM has
5262 		 * access to enough counters to virtualize "core" support,
5263 		 * otherwise limit vPMU support to the legacy number of counters.
5264 		 */
5265 		if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5266 			kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5267 							  kvm_pmu_cap.num_counters_gp);
5268 		else
5269 			kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5270 
5271 		if (kvm_pmu_cap.version != 2 ||
5272 		    !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5273 			kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5274 	}
5275 
5276 	/* CPUID 0x8000001F (SME/SEV features) */
5277 	sev_set_cpu_caps();
5278 
5279 	/*
5280 	 * Clear capabilities that are automatically configured by common code,
5281 	 * but that require explicit SVM support (that isn't yet implemented).
5282 	 */
5283 	kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5284 	kvm_cpu_cap_clear(X86_FEATURE_MSR_IMM);
5285 }
5286 
svm_hardware_setup(void)5287 static __init int svm_hardware_setup(void)
5288 {
5289 	void *iopm_va;
5290 	int cpu, r;
5291 
5292 	/*
5293 	 * NX is required for shadow paging and for NPT if the NX huge pages
5294 	 * mitigation is enabled.
5295 	 */
5296 	if (!boot_cpu_has(X86_FEATURE_NX)) {
5297 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
5298 		return -EOPNOTSUPP;
5299 	}
5300 	kvm_enable_efer_bits(EFER_NX);
5301 
5302 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5303 				     XFEATURE_MASK_BNDCSR);
5304 
5305 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5306 		kvm_enable_efer_bits(EFER_FFXSR);
5307 
5308 	if (tsc_scaling) {
5309 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5310 			tsc_scaling = false;
5311 		} else {
5312 			pr_info("TSC scaling supported\n");
5313 			kvm_caps.has_tsc_control = true;
5314 		}
5315 	}
5316 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5317 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5318 
5319 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5320 
5321 	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5322 		kvm_enable_efer_bits(EFER_AUTOIBRS);
5323 
5324 	/* Check for pause filtering support */
5325 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5326 		pause_filter_count = 0;
5327 		pause_filter_thresh = 0;
5328 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5329 		pause_filter_thresh = 0;
5330 	}
5331 
5332 	if (nested) {
5333 		pr_info("Nested Virtualization enabled\n");
5334 		kvm_enable_efer_bits(EFER_SVME);
5335 		if (!boot_cpu_has(X86_FEATURE_EFER_LMSLE_MBZ))
5336 			kvm_enable_efer_bits(EFER_LMSLE);
5337 
5338 		r = nested_svm_init_msrpm_merge_offsets();
5339 		if (r)
5340 			return r;
5341 	}
5342 
5343 	/*
5344 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5345 	 * NPT isn't supported if the host is using 2-level paging since host
5346 	 * CR4 is unchanged on VMRUN.
5347 	 */
5348 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5349 		npt_enabled = false;
5350 
5351 	if (!boot_cpu_has(X86_FEATURE_NPT))
5352 		npt_enabled = false;
5353 
5354 	/* Force VM NPT level equal to the host's paging level */
5355 	kvm_configure_mmu(npt_enabled, get_npt_level(),
5356 			  get_npt_level(), PG_LEVEL_1G);
5357 	pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled));
5358 
5359 	/*
5360 	 * It seems that on AMD processors PTE's accessed bit is
5361 	 * being set by the CPU hardware before the NPF vmexit.
5362 	 * This is not expected behaviour and our tests fail because
5363 	 * of it.
5364 	 * A workaround here is to disable support for
5365 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5366 	 * In this case userspace can know if there is support using
5367 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5368 	 * it
5369 	 * If future AMD CPU models change the behaviour described above,
5370 	 * this variable can be changed accordingly
5371 	 */
5372 	allow_smaller_maxphyaddr = !npt_enabled;
5373 
5374 	/* Setup shadow_me_value and shadow_me_mask */
5375 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5376 
5377 	svm_adjust_mmio_mask();
5378 
5379 	nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5380 
5381 	if (lbrv) {
5382 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5383 			lbrv = false;
5384 		else
5385 			pr_info("LBR virtualization supported\n");
5386 	}
5387 
5388 	iopm_va = svm_alloc_permissions_map(IOPM_SIZE, GFP_KERNEL);
5389 	if (!iopm_va)
5390 		return -ENOMEM;
5391 
5392 	iopm_base = __sme_set(__pa(iopm_va));
5393 
5394 	/*
5395 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5396 	 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5397 	 */
5398 	sev_hardware_setup();
5399 
5400 	svm_hv_hardware_setup();
5401 
5402 	enable_apicv = avic_hardware_setup();
5403 	if (!enable_apicv) {
5404 		enable_ipiv = false;
5405 		svm_x86_ops.vcpu_blocking = NULL;
5406 		svm_x86_ops.vcpu_unblocking = NULL;
5407 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5408 	}
5409 
5410 	if (vls) {
5411 		if (!npt_enabled ||
5412 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5413 		    !IS_ENABLED(CONFIG_X86_64)) {
5414 			vls = false;
5415 		} else {
5416 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5417 		}
5418 	}
5419 
5420 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5421 		svm_gp_erratum_intercept = false;
5422 
5423 	if (vgif) {
5424 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5425 			vgif = false;
5426 		else
5427 			pr_info("Virtual GIF supported\n");
5428 	}
5429 
5430 	vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5431 	if (vnmi)
5432 		pr_info("Virtual NMI enabled\n");
5433 
5434 	if (!vnmi) {
5435 		svm_x86_ops.is_vnmi_pending = NULL;
5436 		svm_x86_ops.set_vnmi_pending = NULL;
5437 	}
5438 
5439 	if (!enable_pmu)
5440 		pr_info("PMU virtualization is disabled\n");
5441 
5442 	svm_set_cpu_caps();
5443 
5444 	kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_CD_NW_CLEARED;
5445 
5446 	for_each_possible_cpu(cpu) {
5447 		r = svm_cpu_init(cpu);
5448 		if (r)
5449 			goto err;
5450 	}
5451 
5452 	return 0;
5453 
5454 err:
5455 	svm_hardware_unsetup();
5456 	return r;
5457 }
5458 
5459 
5460 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5461 	.hardware_setup = svm_hardware_setup,
5462 
5463 	.runtime_ops = &svm_x86_ops,
5464 	.pmu_ops = &amd_pmu_ops,
5465 };
5466 
__svm_exit(void)5467 static void __svm_exit(void)
5468 {
5469 	kvm_x86_vendor_exit();
5470 }
5471 
svm_init(void)5472 static int __init svm_init(void)
5473 {
5474 	int r;
5475 
5476 	KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_svm);
5477 
5478 	__unused_size_checks();
5479 
5480 	if (!kvm_is_svm_supported())
5481 		return -EOPNOTSUPP;
5482 
5483 	r = kvm_x86_vendor_init(&svm_init_ops);
5484 	if (r)
5485 		return r;
5486 
5487 	/*
5488 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5489 	 * exposed to userspace!
5490 	 */
5491 	r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5492 		     THIS_MODULE);
5493 	if (r)
5494 		goto err_kvm_init;
5495 
5496 	return 0;
5497 
5498 err_kvm_init:
5499 	__svm_exit();
5500 	return r;
5501 }
5502 
svm_exit(void)5503 static void __exit svm_exit(void)
5504 {
5505 	kvm_exit();
5506 	__svm_exit();
5507 }
5508 
5509 module_init(svm_init)
5510 module_exit(svm_exit)
5511