xref: /linux/mm/vmscan.c (revision 3349e275067f94ffb4141989aed9cbae7409429b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67 
68 #include "internal.h"
69 #include "swap.h"
70 
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73 
74 struct scan_control {
75 	/* How many pages shrink_list() should reclaim */
76 	unsigned long nr_to_reclaim;
77 
78 	/*
79 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 	 * are scanned.
81 	 */
82 	nodemask_t	*nodemask;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Scan pressure balancing between anon and file LRUs
92 	 */
93 	unsigned long	anon_cost;
94 	unsigned long	file_cost;
95 
96 #ifdef CONFIG_MEMCG
97 	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 	int *proactive_swappiness;
99 #endif
100 
101 	/* Can active folios be deactivated as part of reclaim? */
102 #define DEACTIVATE_ANON 1
103 #define DEACTIVATE_FILE 2
104 	unsigned int may_deactivate:2;
105 	unsigned int force_deactivate:1;
106 	unsigned int skipped_deactivate:1;
107 
108 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
109 	unsigned int may_writepage:1;
110 
111 	/* Can mapped folios be reclaimed? */
112 	unsigned int may_unmap:1;
113 
114 	/* Can folios be swapped as part of reclaim? */
115 	unsigned int may_swap:1;
116 
117 	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
118 	unsigned int no_cache_trim_mode:1;
119 
120 	/* Has cache_trim_mode failed at least once? */
121 	unsigned int cache_trim_mode_failed:1;
122 
123 	/* Proactive reclaim invoked by userspace through memory.reclaim */
124 	unsigned int proactive:1;
125 
126 	/*
127 	 * Cgroup memory below memory.low is protected as long as we
128 	 * don't threaten to OOM. If any cgroup is reclaimed at
129 	 * reduced force or passed over entirely due to its memory.low
130 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
131 	 * result, then go back for one more cycle that reclaims the protected
132 	 * memory (memcg_low_reclaim) to avert OOM.
133 	 */
134 	unsigned int memcg_low_reclaim:1;
135 	unsigned int memcg_low_skipped:1;
136 
137 	/* Shared cgroup tree walk failed, rescan the whole tree */
138 	unsigned int memcg_full_walk:1;
139 
140 	unsigned int hibernation_mode:1;
141 
142 	/* One of the zones is ready for compaction */
143 	unsigned int compaction_ready:1;
144 
145 	/* There is easily reclaimable cold cache in the current node */
146 	unsigned int cache_trim_mode:1;
147 
148 	/* The file folios on the current node are dangerously low */
149 	unsigned int file_is_tiny:1;
150 
151 	/* Always discard instead of demoting to lower tier memory */
152 	unsigned int no_demotion:1;
153 
154 	/* Allocation order */
155 	s8 order;
156 
157 	/* Scan (total_size >> priority) pages at once */
158 	s8 priority;
159 
160 	/* The highest zone to isolate folios for reclaim from */
161 	s8 reclaim_idx;
162 
163 	/* This context's GFP mask */
164 	gfp_t gfp_mask;
165 
166 	/* Incremented by the number of inactive pages that were scanned */
167 	unsigned long nr_scanned;
168 
169 	/* Number of pages freed so far during a call to shrink_zones() */
170 	unsigned long nr_reclaimed;
171 
172 	struct {
173 		unsigned int dirty;
174 		unsigned int unqueued_dirty;
175 		unsigned int congested;
176 		unsigned int writeback;
177 		unsigned int immediate;
178 		unsigned int file_taken;
179 		unsigned int taken;
180 	} nr;
181 
182 	/* for recording the reclaimed slab by now */
183 	struct reclaim_state reclaim_state;
184 };
185 
186 #ifdef ARCH_HAS_PREFETCHW
187 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
188 	do {								\
189 		if ((_folio)->lru.prev != _base) {			\
190 			struct folio *prev;				\
191 									\
192 			prev = lru_to_folio(&(_folio->lru));		\
193 			prefetchw(&prev->_field);			\
194 		}							\
195 	} while (0)
196 #else
197 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
198 #endif
199 
200 /*
201  * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
202  */
203 int vm_swappiness = 60;
204 
205 #ifdef CONFIG_MEMCG
206 
207 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)208 static bool cgroup_reclaim(struct scan_control *sc)
209 {
210 	return sc->target_mem_cgroup;
211 }
212 
213 /*
214  * Returns true for reclaim on the root cgroup. This is true for direct
215  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
216  */
root_reclaim(struct scan_control * sc)217 static bool root_reclaim(struct scan_control *sc)
218 {
219 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
220 }
221 
222 /**
223  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
224  * @sc: scan_control in question
225  *
226  * The normal page dirty throttling mechanism in balance_dirty_pages() is
227  * completely broken with the legacy memcg and direct stalling in
228  * shrink_folio_list() is used for throttling instead, which lacks all the
229  * niceties such as fairness, adaptive pausing, bandwidth proportional
230  * allocation and configurability.
231  *
232  * This function tests whether the vmscan currently in progress can assume
233  * that the normal dirty throttling mechanism is operational.
234  */
writeback_throttling_sane(struct scan_control * sc)235 static bool writeback_throttling_sane(struct scan_control *sc)
236 {
237 	if (!cgroup_reclaim(sc))
238 		return true;
239 #ifdef CONFIG_CGROUP_WRITEBACK
240 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
241 		return true;
242 #endif
243 	return false;
244 }
245 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)246 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
247 {
248 	if (sc->proactive && sc->proactive_swappiness)
249 		return *sc->proactive_swappiness;
250 	return mem_cgroup_swappiness(memcg);
251 }
252 #else
cgroup_reclaim(struct scan_control * sc)253 static bool cgroup_reclaim(struct scan_control *sc)
254 {
255 	return false;
256 }
257 
root_reclaim(struct scan_control * sc)258 static bool root_reclaim(struct scan_control *sc)
259 {
260 	return true;
261 }
262 
writeback_throttling_sane(struct scan_control * sc)263 static bool writeback_throttling_sane(struct scan_control *sc)
264 {
265 	return true;
266 }
267 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)268 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
269 {
270 	return READ_ONCE(vm_swappiness);
271 }
272 #endif
273 
274 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to
275  * and including the specified highidx
276  * @zone: The current zone in the iterator
277  * @pgdat: The pgdat which node_zones are being iterated
278  * @idx: The index variable
279  * @highidx: The index of the highest zone to return
280  *
281  * This macro iterates through all managed zones up to and including the specified highidx.
282  * The zone iterator enters an invalid state after macro call and must be reinitialized
283  * before it can be used again.
284  */
285 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx)	\
286 	for ((idx) = 0, (zone) = (pgdat)->node_zones;		\
287 	    (idx) <= (highidx);					\
288 	    (idx)++, (zone)++)					\
289 		if (!managed_zone(zone))			\
290 			continue;				\
291 		else
292 
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)293 static void set_task_reclaim_state(struct task_struct *task,
294 				   struct reclaim_state *rs)
295 {
296 	/* Check for an overwrite */
297 	WARN_ON_ONCE(rs && task->reclaim_state);
298 
299 	/* Check for the nulling of an already-nulled member */
300 	WARN_ON_ONCE(!rs && !task->reclaim_state);
301 
302 	task->reclaim_state = rs;
303 }
304 
305 /*
306  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
307  * scan_control->nr_reclaimed.
308  */
flush_reclaim_state(struct scan_control * sc)309 static void flush_reclaim_state(struct scan_control *sc)
310 {
311 	/*
312 	 * Currently, reclaim_state->reclaimed includes three types of pages
313 	 * freed outside of vmscan:
314 	 * (1) Slab pages.
315 	 * (2) Clean file pages from pruned inodes (on highmem systems).
316 	 * (3) XFS freed buffer pages.
317 	 *
318 	 * For all of these cases, we cannot universally link the pages to a
319 	 * single memcg. For example, a memcg-aware shrinker can free one object
320 	 * charged to the target memcg, causing an entire page to be freed.
321 	 * If we count the entire page as reclaimed from the memcg, we end up
322 	 * overestimating the reclaimed amount (potentially under-reclaiming).
323 	 *
324 	 * Only count such pages for global reclaim to prevent under-reclaiming
325 	 * from the target memcg; preventing unnecessary retries during memcg
326 	 * charging and false positives from proactive reclaim.
327 	 *
328 	 * For uncommon cases where the freed pages were actually mostly
329 	 * charged to the target memcg, we end up underestimating the reclaimed
330 	 * amount. This should be fine. The freed pages will be uncharged
331 	 * anyway, even if they are not counted here properly, and we will be
332 	 * able to make forward progress in charging (which is usually in a
333 	 * retry loop).
334 	 *
335 	 * We can go one step further, and report the uncharged objcg pages in
336 	 * memcg reclaim, to make reporting more accurate and reduce
337 	 * underestimation, but it's probably not worth the complexity for now.
338 	 */
339 	if (current->reclaim_state && root_reclaim(sc)) {
340 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
341 		current->reclaim_state->reclaimed = 0;
342 	}
343 }
344 
can_demote(int nid,struct scan_control * sc,struct mem_cgroup * memcg)345 static bool can_demote(int nid, struct scan_control *sc,
346 		       struct mem_cgroup *memcg)
347 {
348 	int demotion_nid;
349 
350 	if (!numa_demotion_enabled)
351 		return false;
352 	if (sc && sc->no_demotion)
353 		return false;
354 
355 	demotion_nid = next_demotion_node(nid);
356 	if (demotion_nid == NUMA_NO_NODE)
357 		return false;
358 
359 	/* If demotion node isn't in the cgroup's mems_allowed, fall back */
360 	return mem_cgroup_node_allowed(memcg, demotion_nid);
361 }
362 
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)363 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
364 					  int nid,
365 					  struct scan_control *sc)
366 {
367 	if (memcg == NULL) {
368 		/*
369 		 * For non-memcg reclaim, is there
370 		 * space in any swap device?
371 		 */
372 		if (get_nr_swap_pages() > 0)
373 			return true;
374 	} else {
375 		/* Is the memcg below its swap limit? */
376 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
377 			return true;
378 	}
379 
380 	/*
381 	 * The page can not be swapped.
382 	 *
383 	 * Can it be reclaimed from this node via demotion?
384 	 */
385 	return can_demote(nid, sc, memcg);
386 }
387 
388 /*
389  * This misses isolated folios which are not accounted for to save counters.
390  * As the data only determines if reclaim or compaction continues, it is
391  * not expected that isolated folios will be a dominating factor.
392  */
zone_reclaimable_pages(struct zone * zone)393 unsigned long zone_reclaimable_pages(struct zone *zone)
394 {
395 	unsigned long nr;
396 
397 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
398 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
399 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
400 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
401 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
402 	/*
403 	 * If there are no reclaimable file-backed or anonymous pages,
404 	 * ensure zones with sufficient free pages are not skipped.
405 	 * This prevents zones like DMA32 from being ignored in reclaim
406 	 * scenarios where they can still help alleviate memory pressure.
407 	 */
408 	if (nr == 0)
409 		nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
410 	return nr;
411 }
412 
413 /**
414  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
415  * @lruvec: lru vector
416  * @lru: lru to use
417  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
418  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)419 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
420 				     int zone_idx)
421 {
422 	unsigned long size = 0;
423 	int zid;
424 	struct zone *zone;
425 
426 	for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) {
427 		if (!mem_cgroup_disabled())
428 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
429 		else
430 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
431 	}
432 	return size;
433 }
434 
drop_slab_node(int nid)435 static unsigned long drop_slab_node(int nid)
436 {
437 	unsigned long freed = 0;
438 	struct mem_cgroup *memcg = NULL;
439 
440 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
441 	do {
442 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
443 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
444 
445 	return freed;
446 }
447 
drop_slab(void)448 void drop_slab(void)
449 {
450 	int nid;
451 	int shift = 0;
452 	unsigned long freed;
453 
454 	do {
455 		freed = 0;
456 		for_each_online_node(nid) {
457 			if (fatal_signal_pending(current))
458 				return;
459 
460 			freed += drop_slab_node(nid);
461 		}
462 	} while ((freed >> shift++) > 1);
463 }
464 
465 #define CHECK_RECLAIMER_OFFSET(type)					\
466 	do {								\
467 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
468 			     PGDEMOTE_##type - PGDEMOTE_KSWAPD);	\
469 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
470 			     PGSCAN_##type - PGSCAN_KSWAPD);		\
471 	} while (0)
472 
reclaimer_offset(struct scan_control * sc)473 static int reclaimer_offset(struct scan_control *sc)
474 {
475 	CHECK_RECLAIMER_OFFSET(DIRECT);
476 	CHECK_RECLAIMER_OFFSET(KHUGEPAGED);
477 	CHECK_RECLAIMER_OFFSET(PROACTIVE);
478 
479 	if (current_is_kswapd())
480 		return 0;
481 	if (current_is_khugepaged())
482 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
483 	if (sc->proactive)
484 		return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD;
485 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
486 }
487 
is_page_cache_freeable(struct folio * folio)488 static inline int is_page_cache_freeable(struct folio *folio)
489 {
490 	/*
491 	 * A freeable page cache folio is referenced only by the caller
492 	 * that isolated the folio, the page cache and optional filesystem
493 	 * private data at folio->private.
494 	 */
495 	return folio_ref_count(folio) - folio_test_private(folio) ==
496 		1 + folio_nr_pages(folio);
497 }
498 
499 /*
500  * We detected a synchronous write error writing a folio out.  Probably
501  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
502  * fsync(), msync() or close().
503  *
504  * The tricky part is that after writepage we cannot touch the mapping: nothing
505  * prevents it from being freed up.  But we have a ref on the folio and once
506  * that folio is locked, the mapping is pinned.
507  *
508  * We're allowed to run sleeping folio_lock() here because we know the caller has
509  * __GFP_FS.
510  */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)511 static void handle_write_error(struct address_space *mapping,
512 				struct folio *folio, int error)
513 {
514 	folio_lock(folio);
515 	if (folio_mapping(folio) == mapping)
516 		mapping_set_error(mapping, error);
517 	folio_unlock(folio);
518 }
519 
skip_throttle_noprogress(pg_data_t * pgdat)520 static bool skip_throttle_noprogress(pg_data_t *pgdat)
521 {
522 	int reclaimable = 0, write_pending = 0;
523 	int i;
524 	struct zone *zone;
525 	/*
526 	 * If kswapd is disabled, reschedule if necessary but do not
527 	 * throttle as the system is likely near OOM.
528 	 */
529 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
530 		return true;
531 
532 	/*
533 	 * If there are a lot of dirty/writeback folios then do not
534 	 * throttle as throttling will occur when the folios cycle
535 	 * towards the end of the LRU if still under writeback.
536 	 */
537 	for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) {
538 		reclaimable += zone_reclaimable_pages(zone);
539 		write_pending += zone_page_state_snapshot(zone,
540 						  NR_ZONE_WRITE_PENDING);
541 	}
542 	if (2 * write_pending <= reclaimable)
543 		return true;
544 
545 	return false;
546 }
547 
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)548 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
549 {
550 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
551 	long timeout, ret;
552 	DEFINE_WAIT(wait);
553 
554 	/*
555 	 * Do not throttle user workers, kthreads other than kswapd or
556 	 * workqueues. They may be required for reclaim to make
557 	 * forward progress (e.g. journalling workqueues or kthreads).
558 	 */
559 	if (!current_is_kswapd() &&
560 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
561 		cond_resched();
562 		return;
563 	}
564 
565 	/*
566 	 * These figures are pulled out of thin air.
567 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
568 	 * parallel reclaimers which is a short-lived event so the timeout is
569 	 * short. Failing to make progress or waiting on writeback are
570 	 * potentially long-lived events so use a longer timeout. This is shaky
571 	 * logic as a failure to make progress could be due to anything from
572 	 * writeback to a slow device to excessive referenced folios at the tail
573 	 * of the inactive LRU.
574 	 */
575 	switch(reason) {
576 	case VMSCAN_THROTTLE_WRITEBACK:
577 		timeout = HZ/10;
578 
579 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
580 			WRITE_ONCE(pgdat->nr_reclaim_start,
581 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
582 		}
583 
584 		break;
585 	case VMSCAN_THROTTLE_CONGESTED:
586 		fallthrough;
587 	case VMSCAN_THROTTLE_NOPROGRESS:
588 		if (skip_throttle_noprogress(pgdat)) {
589 			cond_resched();
590 			return;
591 		}
592 
593 		timeout = 1;
594 
595 		break;
596 	case VMSCAN_THROTTLE_ISOLATED:
597 		timeout = HZ/50;
598 		break;
599 	default:
600 		WARN_ON_ONCE(1);
601 		timeout = HZ;
602 		break;
603 	}
604 
605 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
606 	ret = schedule_timeout(timeout);
607 	finish_wait(wqh, &wait);
608 
609 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
610 		atomic_dec(&pgdat->nr_writeback_throttled);
611 
612 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
613 				jiffies_to_usecs(timeout - ret),
614 				reason);
615 }
616 
617 /*
618  * Account for folios written if tasks are throttled waiting on dirty
619  * folios to clean. If enough folios have been cleaned since throttling
620  * started then wakeup the throttled tasks.
621  */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)622 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
623 							int nr_throttled)
624 {
625 	unsigned long nr_written;
626 
627 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
628 
629 	/*
630 	 * This is an inaccurate read as the per-cpu deltas may not
631 	 * be synchronised. However, given that the system is
632 	 * writeback throttled, it is not worth taking the penalty
633 	 * of getting an accurate count. At worst, the throttle
634 	 * timeout guarantees forward progress.
635 	 */
636 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
637 		READ_ONCE(pgdat->nr_reclaim_start);
638 
639 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
640 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
641 }
642 
643 /* possible outcome of pageout() */
644 typedef enum {
645 	/* failed to write folio out, folio is locked */
646 	PAGE_KEEP,
647 	/* move folio to the active list, folio is locked */
648 	PAGE_ACTIVATE,
649 	/* folio has been sent to the disk successfully, folio is unlocked */
650 	PAGE_SUCCESS,
651 	/* folio is clean and locked */
652 	PAGE_CLEAN,
653 } pageout_t;
654 
655 /*
656  * pageout is called by shrink_folio_list() for each dirty folio.
657  */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)658 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
659 			 struct swap_iocb **plug, struct list_head *folio_list)
660 {
661 	int (*writeout)(struct folio *, struct writeback_control *);
662 
663 	/*
664 	 * We no longer attempt to writeback filesystem folios here, other
665 	 * than tmpfs/shmem.  That's taken care of in page-writeback.
666 	 * If we find a dirty filesystem folio at the end of the LRU list,
667 	 * typically that means the filesystem is saturating the storage
668 	 * with contiguous writes and telling it to write a folio here
669 	 * would only make the situation worse by injecting an element
670 	 * of random access.
671 	 *
672 	 * If the folio is swapcache, write it back even if that would
673 	 * block, for some throttling. This happens by accident, because
674 	 * swap_backing_dev_info is bust: it doesn't reflect the
675 	 * congestion state of the swapdevs.  Easy to fix, if needed.
676 	 */
677 	if (!is_page_cache_freeable(folio))
678 		return PAGE_KEEP;
679 	if (!mapping) {
680 		/*
681 		 * Some data journaling orphaned folios can have
682 		 * folio->mapping == NULL while being dirty with clean buffers.
683 		 */
684 		if (folio_test_private(folio)) {
685 			if (try_to_free_buffers(folio)) {
686 				folio_clear_dirty(folio);
687 				pr_info("%s: orphaned folio\n", __func__);
688 				return PAGE_CLEAN;
689 			}
690 		}
691 		return PAGE_KEEP;
692 	}
693 	if (shmem_mapping(mapping))
694 		writeout = shmem_writeout;
695 	else if (folio_test_anon(folio))
696 		writeout = swap_writeout;
697 	else
698 		return PAGE_ACTIVATE;
699 
700 	if (folio_clear_dirty_for_io(folio)) {
701 		int res;
702 		struct writeback_control wbc = {
703 			.sync_mode = WB_SYNC_NONE,
704 			.nr_to_write = SWAP_CLUSTER_MAX,
705 			.range_start = 0,
706 			.range_end = LLONG_MAX,
707 			.for_reclaim = 1,
708 			.swap_plug = plug,
709 		};
710 
711 		/*
712 		 * The large shmem folio can be split if CONFIG_THP_SWAP is
713 		 * not enabled or contiguous swap entries are failed to
714 		 * allocate.
715 		 */
716 		if (shmem_mapping(mapping) && folio_test_large(folio))
717 			wbc.list = folio_list;
718 
719 		folio_set_reclaim(folio);
720 		res = writeout(folio, &wbc);
721 		if (res < 0)
722 			handle_write_error(mapping, folio, res);
723 		if (res == AOP_WRITEPAGE_ACTIVATE) {
724 			folio_clear_reclaim(folio);
725 			return PAGE_ACTIVATE;
726 		}
727 
728 		if (!folio_test_writeback(folio)) {
729 			/* synchronous write? */
730 			folio_clear_reclaim(folio);
731 		}
732 		trace_mm_vmscan_write_folio(folio);
733 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
734 		return PAGE_SUCCESS;
735 	}
736 
737 	return PAGE_CLEAN;
738 }
739 
740 /*
741  * Same as remove_mapping, but if the folio is removed from the mapping, it
742  * gets returned with a refcount of 0.
743  */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)744 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
745 			    bool reclaimed, struct mem_cgroup *target_memcg)
746 {
747 	int refcount;
748 	void *shadow = NULL;
749 
750 	BUG_ON(!folio_test_locked(folio));
751 	BUG_ON(mapping != folio_mapping(folio));
752 
753 	if (!folio_test_swapcache(folio))
754 		spin_lock(&mapping->host->i_lock);
755 	xa_lock_irq(&mapping->i_pages);
756 	/*
757 	 * The non racy check for a busy folio.
758 	 *
759 	 * Must be careful with the order of the tests. When someone has
760 	 * a ref to the folio, it may be possible that they dirty it then
761 	 * drop the reference. So if the dirty flag is tested before the
762 	 * refcount here, then the following race may occur:
763 	 *
764 	 * get_user_pages(&page);
765 	 * [user mapping goes away]
766 	 * write_to(page);
767 	 *				!folio_test_dirty(folio)    [good]
768 	 * folio_set_dirty(folio);
769 	 * folio_put(folio);
770 	 *				!refcount(folio)   [good, discard it]
771 	 *
772 	 * [oops, our write_to data is lost]
773 	 *
774 	 * Reversing the order of the tests ensures such a situation cannot
775 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
776 	 * load is not satisfied before that of folio->_refcount.
777 	 *
778 	 * Note that if the dirty flag is always set via folio_mark_dirty,
779 	 * and thus under the i_pages lock, then this ordering is not required.
780 	 */
781 	refcount = 1 + folio_nr_pages(folio);
782 	if (!folio_ref_freeze(folio, refcount))
783 		goto cannot_free;
784 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
785 	if (unlikely(folio_test_dirty(folio))) {
786 		folio_ref_unfreeze(folio, refcount);
787 		goto cannot_free;
788 	}
789 
790 	if (folio_test_swapcache(folio)) {
791 		swp_entry_t swap = folio->swap;
792 
793 		if (reclaimed && !mapping_exiting(mapping))
794 			shadow = workingset_eviction(folio, target_memcg);
795 		__delete_from_swap_cache(folio, swap, shadow);
796 		memcg1_swapout(folio, swap);
797 		xa_unlock_irq(&mapping->i_pages);
798 		put_swap_folio(folio, swap);
799 	} else {
800 		void (*free_folio)(struct folio *);
801 
802 		free_folio = mapping->a_ops->free_folio;
803 		/*
804 		 * Remember a shadow entry for reclaimed file cache in
805 		 * order to detect refaults, thus thrashing, later on.
806 		 *
807 		 * But don't store shadows in an address space that is
808 		 * already exiting.  This is not just an optimization,
809 		 * inode reclaim needs to empty out the radix tree or
810 		 * the nodes are lost.  Don't plant shadows behind its
811 		 * back.
812 		 *
813 		 * We also don't store shadows for DAX mappings because the
814 		 * only page cache folios found in these are zero pages
815 		 * covering holes, and because we don't want to mix DAX
816 		 * exceptional entries and shadow exceptional entries in the
817 		 * same address_space.
818 		 */
819 		if (reclaimed && folio_is_file_lru(folio) &&
820 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
821 			shadow = workingset_eviction(folio, target_memcg);
822 		__filemap_remove_folio(folio, shadow);
823 		xa_unlock_irq(&mapping->i_pages);
824 		if (mapping_shrinkable(mapping))
825 			inode_add_lru(mapping->host);
826 		spin_unlock(&mapping->host->i_lock);
827 
828 		if (free_folio)
829 			free_folio(folio);
830 	}
831 
832 	return 1;
833 
834 cannot_free:
835 	xa_unlock_irq(&mapping->i_pages);
836 	if (!folio_test_swapcache(folio))
837 		spin_unlock(&mapping->host->i_lock);
838 	return 0;
839 }
840 
841 /**
842  * remove_mapping() - Attempt to remove a folio from its mapping.
843  * @mapping: The address space.
844  * @folio: The folio to remove.
845  *
846  * If the folio is dirty, under writeback or if someone else has a ref
847  * on it, removal will fail.
848  * Return: The number of pages removed from the mapping.  0 if the folio
849  * could not be removed.
850  * Context: The caller should have a single refcount on the folio and
851  * hold its lock.
852  */
remove_mapping(struct address_space * mapping,struct folio * folio)853 long remove_mapping(struct address_space *mapping, struct folio *folio)
854 {
855 	if (__remove_mapping(mapping, folio, false, NULL)) {
856 		/*
857 		 * Unfreezing the refcount with 1 effectively
858 		 * drops the pagecache ref for us without requiring another
859 		 * atomic operation.
860 		 */
861 		folio_ref_unfreeze(folio, 1);
862 		return folio_nr_pages(folio);
863 	}
864 	return 0;
865 }
866 
867 /**
868  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
869  * @folio: Folio to be returned to an LRU list.
870  *
871  * Add previously isolated @folio to appropriate LRU list.
872  * The folio may still be unevictable for other reasons.
873  *
874  * Context: lru_lock must not be held, interrupts must be enabled.
875  */
folio_putback_lru(struct folio * folio)876 void folio_putback_lru(struct folio *folio)
877 {
878 	folio_add_lru(folio);
879 	folio_put(folio);		/* drop ref from isolate */
880 }
881 
882 enum folio_references {
883 	FOLIOREF_RECLAIM,
884 	FOLIOREF_RECLAIM_CLEAN,
885 	FOLIOREF_KEEP,
886 	FOLIOREF_ACTIVATE,
887 };
888 
889 #ifdef CONFIG_LRU_GEN
890 /*
891  * Only used on a mapped folio in the eviction (rmap walk) path, where promotion
892  * needs to be done by taking the folio off the LRU list and then adding it back
893  * with PG_active set. In contrast, the aging (page table walk) path uses
894  * folio_update_gen().
895  */
lru_gen_set_refs(struct folio * folio)896 static bool lru_gen_set_refs(struct folio *folio)
897 {
898 	/* see the comment on LRU_REFS_FLAGS */
899 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
900 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
901 		return false;
902 	}
903 
904 	set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_workingset));
905 	return true;
906 }
907 #else
lru_gen_set_refs(struct folio * folio)908 static bool lru_gen_set_refs(struct folio *folio)
909 {
910 	return false;
911 }
912 #endif /* CONFIG_LRU_GEN */
913 
folio_check_references(struct folio * folio,struct scan_control * sc)914 static enum folio_references folio_check_references(struct folio *folio,
915 						  struct scan_control *sc)
916 {
917 	int referenced_ptes, referenced_folio;
918 	unsigned long vm_flags;
919 
920 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
921 					   &vm_flags);
922 
923 	/*
924 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
925 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
926 	 */
927 	if (vm_flags & VM_LOCKED)
928 		return FOLIOREF_ACTIVATE;
929 
930 	/*
931 	 * There are two cases to consider.
932 	 * 1) Rmap lock contention: rotate.
933 	 * 2) Skip the non-shared swapbacked folio mapped solely by
934 	 *    the exiting or OOM-reaped process.
935 	 */
936 	if (referenced_ptes == -1)
937 		return FOLIOREF_KEEP;
938 
939 	if (lru_gen_enabled()) {
940 		if (!referenced_ptes)
941 			return FOLIOREF_RECLAIM;
942 
943 		return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP;
944 	}
945 
946 	referenced_folio = folio_test_clear_referenced(folio);
947 
948 	if (referenced_ptes) {
949 		/*
950 		 * All mapped folios start out with page table
951 		 * references from the instantiating fault, so we need
952 		 * to look twice if a mapped file/anon folio is used more
953 		 * than once.
954 		 *
955 		 * Mark it and spare it for another trip around the
956 		 * inactive list.  Another page table reference will
957 		 * lead to its activation.
958 		 *
959 		 * Note: the mark is set for activated folios as well
960 		 * so that recently deactivated but used folios are
961 		 * quickly recovered.
962 		 */
963 		folio_set_referenced(folio);
964 
965 		if (referenced_folio || referenced_ptes > 1)
966 			return FOLIOREF_ACTIVATE;
967 
968 		/*
969 		 * Activate file-backed executable folios after first usage.
970 		 */
971 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
972 			return FOLIOREF_ACTIVATE;
973 
974 		return FOLIOREF_KEEP;
975 	}
976 
977 	/* Reclaim if clean, defer dirty folios to writeback */
978 	if (referenced_folio && folio_is_file_lru(folio))
979 		return FOLIOREF_RECLAIM_CLEAN;
980 
981 	return FOLIOREF_RECLAIM;
982 }
983 
984 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)985 static void folio_check_dirty_writeback(struct folio *folio,
986 				       bool *dirty, bool *writeback)
987 {
988 	struct address_space *mapping;
989 
990 	/*
991 	 * Anonymous folios are not handled by flushers and must be written
992 	 * from reclaim context. Do not stall reclaim based on them.
993 	 * MADV_FREE anonymous folios are put into inactive file list too.
994 	 * They could be mistakenly treated as file lru. So further anon
995 	 * test is needed.
996 	 */
997 	if (!folio_is_file_lru(folio) ||
998 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
999 		*dirty = false;
1000 		*writeback = false;
1001 		return;
1002 	}
1003 
1004 	/* By default assume that the folio flags are accurate */
1005 	*dirty = folio_test_dirty(folio);
1006 	*writeback = folio_test_writeback(folio);
1007 
1008 	/* Verify dirty/writeback state if the filesystem supports it */
1009 	if (!folio_test_private(folio))
1010 		return;
1011 
1012 	mapping = folio_mapping(folio);
1013 	if (mapping && mapping->a_ops->is_dirty_writeback)
1014 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1015 }
1016 
alloc_migrate_folio(struct folio * src,unsigned long private)1017 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
1018 {
1019 	struct folio *dst;
1020 	nodemask_t *allowed_mask;
1021 	struct migration_target_control *mtc;
1022 
1023 	mtc = (struct migration_target_control *)private;
1024 
1025 	allowed_mask = mtc->nmask;
1026 	/*
1027 	 * make sure we allocate from the target node first also trying to
1028 	 * demote or reclaim pages from the target node via kswapd if we are
1029 	 * low on free memory on target node. If we don't do this and if
1030 	 * we have free memory on the slower(lower) memtier, we would start
1031 	 * allocating pages from slower(lower) memory tiers without even forcing
1032 	 * a demotion of cold pages from the target memtier. This can result
1033 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1034 	 */
1035 	mtc->nmask = NULL;
1036 	mtc->gfp_mask |= __GFP_THISNODE;
1037 	dst = alloc_migration_target(src, (unsigned long)mtc);
1038 	if (dst)
1039 		return dst;
1040 
1041 	mtc->gfp_mask &= ~__GFP_THISNODE;
1042 	mtc->nmask = allowed_mask;
1043 
1044 	return alloc_migration_target(src, (unsigned long)mtc);
1045 }
1046 
1047 /*
1048  * Take folios on @demote_folios and attempt to demote them to another node.
1049  * Folios which are not demoted are left on @demote_folios.
1050  */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)1051 static unsigned int demote_folio_list(struct list_head *demote_folios,
1052 				     struct pglist_data *pgdat)
1053 {
1054 	int target_nid = next_demotion_node(pgdat->node_id);
1055 	unsigned int nr_succeeded;
1056 	nodemask_t allowed_mask;
1057 
1058 	struct migration_target_control mtc = {
1059 		/*
1060 		 * Allocate from 'node', or fail quickly and quietly.
1061 		 * When this happens, 'page' will likely just be discarded
1062 		 * instead of migrated.
1063 		 */
1064 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1065 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1066 		.nid = target_nid,
1067 		.nmask = &allowed_mask,
1068 		.reason = MR_DEMOTION,
1069 	};
1070 
1071 	if (list_empty(demote_folios))
1072 		return 0;
1073 
1074 	if (target_nid == NUMA_NO_NODE)
1075 		return 0;
1076 
1077 	node_get_allowed_targets(pgdat, &allowed_mask);
1078 
1079 	/* Demotion ignores all cpuset and mempolicy settings */
1080 	migrate_pages(demote_folios, alloc_migrate_folio, NULL,
1081 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1082 		      &nr_succeeded);
1083 
1084 	return nr_succeeded;
1085 }
1086 
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1087 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1088 {
1089 	if (gfp_mask & __GFP_FS)
1090 		return true;
1091 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1092 		return false;
1093 	/*
1094 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1095 	 * providing this isn't SWP_FS_OPS.
1096 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1097 	 * but that will never affect SWP_FS_OPS, so the data_race
1098 	 * is safe.
1099 	 */
1100 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1101 }
1102 
1103 /*
1104  * shrink_folio_list() returns the number of reclaimed pages
1105  */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references,struct mem_cgroup * memcg)1106 static unsigned int shrink_folio_list(struct list_head *folio_list,
1107 		struct pglist_data *pgdat, struct scan_control *sc,
1108 		struct reclaim_stat *stat, bool ignore_references,
1109 		struct mem_cgroup *memcg)
1110 {
1111 	struct folio_batch free_folios;
1112 	LIST_HEAD(ret_folios);
1113 	LIST_HEAD(demote_folios);
1114 	unsigned int nr_reclaimed = 0, nr_demoted = 0;
1115 	unsigned int pgactivate = 0;
1116 	bool do_demote_pass;
1117 	struct swap_iocb *plug = NULL;
1118 
1119 	folio_batch_init(&free_folios);
1120 	memset(stat, 0, sizeof(*stat));
1121 	cond_resched();
1122 	do_demote_pass = can_demote(pgdat->node_id, sc, memcg);
1123 
1124 retry:
1125 	while (!list_empty(folio_list)) {
1126 		struct address_space *mapping;
1127 		struct folio *folio;
1128 		enum folio_references references = FOLIOREF_RECLAIM;
1129 		bool dirty, writeback;
1130 		unsigned int nr_pages;
1131 
1132 		cond_resched();
1133 
1134 		folio = lru_to_folio(folio_list);
1135 		list_del(&folio->lru);
1136 
1137 		if (!folio_trylock(folio))
1138 			goto keep;
1139 
1140 		if (folio_contain_hwpoisoned_page(folio)) {
1141 			unmap_poisoned_folio(folio, folio_pfn(folio), false);
1142 			folio_unlock(folio);
1143 			folio_put(folio);
1144 			continue;
1145 		}
1146 
1147 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1148 
1149 		nr_pages = folio_nr_pages(folio);
1150 
1151 		/* Account the number of base pages */
1152 		sc->nr_scanned += nr_pages;
1153 
1154 		if (unlikely(!folio_evictable(folio)))
1155 			goto activate_locked;
1156 
1157 		if (!sc->may_unmap && folio_mapped(folio))
1158 			goto keep_locked;
1159 
1160 		/*
1161 		 * The number of dirty pages determines if a node is marked
1162 		 * reclaim_congested. kswapd will stall and start writing
1163 		 * folios if the tail of the LRU is all dirty unqueued folios.
1164 		 */
1165 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1166 		if (dirty || writeback)
1167 			stat->nr_dirty += nr_pages;
1168 
1169 		if (dirty && !writeback)
1170 			stat->nr_unqueued_dirty += nr_pages;
1171 
1172 		/*
1173 		 * Treat this folio as congested if folios are cycling
1174 		 * through the LRU so quickly that the folios marked
1175 		 * for immediate reclaim are making it to the end of
1176 		 * the LRU a second time.
1177 		 */
1178 		if (writeback && folio_test_reclaim(folio))
1179 			stat->nr_congested += nr_pages;
1180 
1181 		/*
1182 		 * If a folio at the tail of the LRU is under writeback, there
1183 		 * are three cases to consider.
1184 		 *
1185 		 * 1) If reclaim is encountering an excessive number
1186 		 *    of folios under writeback and this folio has both
1187 		 *    the writeback and reclaim flags set, then it
1188 		 *    indicates that folios are being queued for I/O but
1189 		 *    are being recycled through the LRU before the I/O
1190 		 *    can complete. Waiting on the folio itself risks an
1191 		 *    indefinite stall if it is impossible to writeback
1192 		 *    the folio due to I/O error or disconnected storage
1193 		 *    so instead note that the LRU is being scanned too
1194 		 *    quickly and the caller can stall after the folio
1195 		 *    list has been processed.
1196 		 *
1197 		 * 2) Global or new memcg reclaim encounters a folio that is
1198 		 *    not marked for immediate reclaim, or the caller does not
1199 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1200 		 *    not to fs), or the folio belongs to a mapping where
1201 		 *    waiting on writeback during reclaim may lead to a deadlock.
1202 		 *    In this case mark the folio for immediate reclaim and
1203 		 *    continue scanning.
1204 		 *
1205 		 *    Require may_enter_fs() because we would wait on fs, which
1206 		 *    may not have submitted I/O yet. And the loop driver might
1207 		 *    enter reclaim, and deadlock if it waits on a folio for
1208 		 *    which it is needed to do the write (loop masks off
1209 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1210 		 *    would probably show more reasons.
1211 		 *
1212 		 * 3) Legacy memcg encounters a folio that already has the
1213 		 *    reclaim flag set. memcg does not have any dirty folio
1214 		 *    throttling so we could easily OOM just because too many
1215 		 *    folios are in writeback and there is nothing else to
1216 		 *    reclaim. Wait for the writeback to complete.
1217 		 *
1218 		 * In cases 1) and 2) we activate the folios to get them out of
1219 		 * the way while we continue scanning for clean folios on the
1220 		 * inactive list and refilling from the active list. The
1221 		 * observation here is that waiting for disk writes is more
1222 		 * expensive than potentially causing reloads down the line.
1223 		 * Since they're marked for immediate reclaim, they won't put
1224 		 * memory pressure on the cache working set any longer than it
1225 		 * takes to write them to disk.
1226 		 */
1227 		if (folio_test_writeback(folio)) {
1228 			mapping = folio_mapping(folio);
1229 
1230 			/* Case 1 above */
1231 			if (current_is_kswapd() &&
1232 			    folio_test_reclaim(folio) &&
1233 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1234 				stat->nr_immediate += nr_pages;
1235 				goto activate_locked;
1236 
1237 			/* Case 2 above */
1238 			} else if (writeback_throttling_sane(sc) ||
1239 			    !folio_test_reclaim(folio) ||
1240 			    !may_enter_fs(folio, sc->gfp_mask) ||
1241 			    (mapping &&
1242 			     mapping_writeback_may_deadlock_on_reclaim(mapping))) {
1243 				/*
1244 				 * This is slightly racy -
1245 				 * folio_end_writeback() might have
1246 				 * just cleared the reclaim flag, then
1247 				 * setting the reclaim flag here ends up
1248 				 * interpreted as the readahead flag - but
1249 				 * that does not matter enough to care.
1250 				 * What we do want is for this folio to
1251 				 * have the reclaim flag set next time
1252 				 * memcg reclaim reaches the tests above,
1253 				 * so it will then wait for writeback to
1254 				 * avoid OOM; and it's also appropriate
1255 				 * in global reclaim.
1256 				 */
1257 				folio_set_reclaim(folio);
1258 				stat->nr_writeback += nr_pages;
1259 				goto activate_locked;
1260 
1261 			/* Case 3 above */
1262 			} else {
1263 				folio_unlock(folio);
1264 				folio_wait_writeback(folio);
1265 				/* then go back and try same folio again */
1266 				list_add_tail(&folio->lru, folio_list);
1267 				continue;
1268 			}
1269 		}
1270 
1271 		if (!ignore_references)
1272 			references = folio_check_references(folio, sc);
1273 
1274 		switch (references) {
1275 		case FOLIOREF_ACTIVATE:
1276 			goto activate_locked;
1277 		case FOLIOREF_KEEP:
1278 			stat->nr_ref_keep += nr_pages;
1279 			goto keep_locked;
1280 		case FOLIOREF_RECLAIM:
1281 		case FOLIOREF_RECLAIM_CLEAN:
1282 			; /* try to reclaim the folio below */
1283 		}
1284 
1285 		/*
1286 		 * Before reclaiming the folio, try to relocate
1287 		 * its contents to another node.
1288 		 */
1289 		if (do_demote_pass &&
1290 		    (thp_migration_supported() || !folio_test_large(folio))) {
1291 			list_add(&folio->lru, &demote_folios);
1292 			folio_unlock(folio);
1293 			continue;
1294 		}
1295 
1296 		/*
1297 		 * Anonymous process memory has backing store?
1298 		 * Try to allocate it some swap space here.
1299 		 * Lazyfree folio could be freed directly
1300 		 */
1301 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1302 			if (!folio_test_swapcache(folio)) {
1303 				if (!(sc->gfp_mask & __GFP_IO))
1304 					goto keep_locked;
1305 				if (folio_maybe_dma_pinned(folio))
1306 					goto keep_locked;
1307 				if (folio_test_large(folio)) {
1308 					/* cannot split folio, skip it */
1309 					if (!can_split_folio(folio, 1, NULL))
1310 						goto activate_locked;
1311 					/*
1312 					 * Split partially mapped folios right away.
1313 					 * We can free the unmapped pages without IO.
1314 					 */
1315 					if (data_race(!list_empty(&folio->_deferred_list) &&
1316 					    folio_test_partially_mapped(folio)) &&
1317 					    split_folio_to_list(folio, folio_list))
1318 						goto activate_locked;
1319 				}
1320 				if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) {
1321 					int __maybe_unused order = folio_order(folio);
1322 
1323 					if (!folio_test_large(folio))
1324 						goto activate_locked_split;
1325 					/* Fallback to swap normal pages */
1326 					if (split_folio_to_list(folio, folio_list))
1327 						goto activate_locked;
1328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1329 					if (nr_pages >= HPAGE_PMD_NR) {
1330 						count_memcg_folio_events(folio,
1331 							THP_SWPOUT_FALLBACK, 1);
1332 						count_vm_event(THP_SWPOUT_FALLBACK);
1333 					}
1334 #endif
1335 					count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1336 					if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN))
1337 						goto activate_locked_split;
1338 				}
1339 				/*
1340 				 * Normally the folio will be dirtied in unmap because its
1341 				 * pte should be dirty. A special case is MADV_FREE page. The
1342 				 * page's pte could have dirty bit cleared but the folio's
1343 				 * SwapBacked flag is still set because clearing the dirty bit
1344 				 * and SwapBacked flag has no lock protected. For such folio,
1345 				 * unmap will not set dirty bit for it, so folio reclaim will
1346 				 * not write the folio out. This can cause data corruption when
1347 				 * the folio is swapped in later. Always setting the dirty flag
1348 				 * for the folio solves the problem.
1349 				 */
1350 				folio_mark_dirty(folio);
1351 			}
1352 		}
1353 
1354 		/*
1355 		 * If the folio was split above, the tail pages will make
1356 		 * their own pass through this function and be accounted
1357 		 * then.
1358 		 */
1359 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1360 			sc->nr_scanned -= (nr_pages - 1);
1361 			nr_pages = 1;
1362 		}
1363 
1364 		/*
1365 		 * The folio is mapped into the page tables of one or more
1366 		 * processes. Try to unmap it here.
1367 		 */
1368 		if (folio_mapped(folio)) {
1369 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1370 			bool was_swapbacked = folio_test_swapbacked(folio);
1371 
1372 			if (folio_test_pmd_mappable(folio))
1373 				flags |= TTU_SPLIT_HUGE_PMD;
1374 			/*
1375 			 * Without TTU_SYNC, try_to_unmap will only begin to
1376 			 * hold PTL from the first present PTE within a large
1377 			 * folio. Some initial PTEs might be skipped due to
1378 			 * races with parallel PTE writes in which PTEs can be
1379 			 * cleared temporarily before being written new present
1380 			 * values. This will lead to a large folio is still
1381 			 * mapped while some subpages have been partially
1382 			 * unmapped after try_to_unmap; TTU_SYNC helps
1383 			 * try_to_unmap acquire PTL from the first PTE,
1384 			 * eliminating the influence of temporary PTE values.
1385 			 */
1386 			if (folio_test_large(folio))
1387 				flags |= TTU_SYNC;
1388 
1389 			try_to_unmap(folio, flags);
1390 			if (folio_mapped(folio)) {
1391 				stat->nr_unmap_fail += nr_pages;
1392 				if (!was_swapbacked &&
1393 				    folio_test_swapbacked(folio))
1394 					stat->nr_lazyfree_fail += nr_pages;
1395 				goto activate_locked;
1396 			}
1397 		}
1398 
1399 		/*
1400 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1401 		 * No point in trying to reclaim folio if it is pinned.
1402 		 * Furthermore we don't want to reclaim underlying fs metadata
1403 		 * if the folio is pinned and thus potentially modified by the
1404 		 * pinning process as that may upset the filesystem.
1405 		 */
1406 		if (folio_maybe_dma_pinned(folio))
1407 			goto activate_locked;
1408 
1409 		mapping = folio_mapping(folio);
1410 		if (folio_test_dirty(folio)) {
1411 			/*
1412 			 * Only kswapd can writeback filesystem folios
1413 			 * to avoid risk of stack overflow. But avoid
1414 			 * injecting inefficient single-folio I/O into
1415 			 * flusher writeback as much as possible: only
1416 			 * write folios when we've encountered many
1417 			 * dirty folios, and when we've already scanned
1418 			 * the rest of the LRU for clean folios and see
1419 			 * the same dirty folios again (with the reclaim
1420 			 * flag set).
1421 			 */
1422 			if (folio_is_file_lru(folio) &&
1423 			    (!current_is_kswapd() ||
1424 			     !folio_test_reclaim(folio) ||
1425 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1426 				/*
1427 				 * Immediately reclaim when written back.
1428 				 * Similar in principle to folio_deactivate()
1429 				 * except we already have the folio isolated
1430 				 * and know it's dirty
1431 				 */
1432 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1433 						nr_pages);
1434 				folio_set_reclaim(folio);
1435 
1436 				goto activate_locked;
1437 			}
1438 
1439 			if (references == FOLIOREF_RECLAIM_CLEAN)
1440 				goto keep_locked;
1441 			if (!may_enter_fs(folio, sc->gfp_mask))
1442 				goto keep_locked;
1443 			if (!sc->may_writepage)
1444 				goto keep_locked;
1445 
1446 			/*
1447 			 * Folio is dirty. Flush the TLB if a writable entry
1448 			 * potentially exists to avoid CPU writes after I/O
1449 			 * starts and then write it out here.
1450 			 */
1451 			try_to_unmap_flush_dirty();
1452 			switch (pageout(folio, mapping, &plug, folio_list)) {
1453 			case PAGE_KEEP:
1454 				goto keep_locked;
1455 			case PAGE_ACTIVATE:
1456 				/*
1457 				 * If shmem folio is split when writeback to swap,
1458 				 * the tail pages will make their own pass through
1459 				 * this function and be accounted then.
1460 				 */
1461 				if (nr_pages > 1 && !folio_test_large(folio)) {
1462 					sc->nr_scanned -= (nr_pages - 1);
1463 					nr_pages = 1;
1464 				}
1465 				goto activate_locked;
1466 			case PAGE_SUCCESS:
1467 				if (nr_pages > 1 && !folio_test_large(folio)) {
1468 					sc->nr_scanned -= (nr_pages - 1);
1469 					nr_pages = 1;
1470 				}
1471 				stat->nr_pageout += nr_pages;
1472 
1473 				if (folio_test_writeback(folio))
1474 					goto keep;
1475 				if (folio_test_dirty(folio))
1476 					goto keep;
1477 
1478 				/*
1479 				 * A synchronous write - probably a ramdisk.  Go
1480 				 * ahead and try to reclaim the folio.
1481 				 */
1482 				if (!folio_trylock(folio))
1483 					goto keep;
1484 				if (folio_test_dirty(folio) ||
1485 				    folio_test_writeback(folio))
1486 					goto keep_locked;
1487 				mapping = folio_mapping(folio);
1488 				fallthrough;
1489 			case PAGE_CLEAN:
1490 				; /* try to free the folio below */
1491 			}
1492 		}
1493 
1494 		/*
1495 		 * If the folio has buffers, try to free the buffer
1496 		 * mappings associated with this folio. If we succeed
1497 		 * we try to free the folio as well.
1498 		 *
1499 		 * We do this even if the folio is dirty.
1500 		 * filemap_release_folio() does not perform I/O, but it
1501 		 * is possible for a folio to have the dirty flag set,
1502 		 * but it is actually clean (all its buffers are clean).
1503 		 * This happens if the buffers were written out directly,
1504 		 * with submit_bh(). ext3 will do this, as well as
1505 		 * the blockdev mapping.  filemap_release_folio() will
1506 		 * discover that cleanness and will drop the buffers
1507 		 * and mark the folio clean - it can be freed.
1508 		 *
1509 		 * Rarely, folios can have buffers and no ->mapping.
1510 		 * These are the folios which were not successfully
1511 		 * invalidated in truncate_cleanup_folio().  We try to
1512 		 * drop those buffers here and if that worked, and the
1513 		 * folio is no longer mapped into process address space
1514 		 * (refcount == 1) it can be freed.  Otherwise, leave
1515 		 * the folio on the LRU so it is swappable.
1516 		 */
1517 		if (folio_needs_release(folio)) {
1518 			if (!filemap_release_folio(folio, sc->gfp_mask))
1519 				goto activate_locked;
1520 			if (!mapping && folio_ref_count(folio) == 1) {
1521 				folio_unlock(folio);
1522 				if (folio_put_testzero(folio))
1523 					goto free_it;
1524 				else {
1525 					/*
1526 					 * rare race with speculative reference.
1527 					 * the speculative reference will free
1528 					 * this folio shortly, so we may
1529 					 * increment nr_reclaimed here (and
1530 					 * leave it off the LRU).
1531 					 */
1532 					nr_reclaimed += nr_pages;
1533 					continue;
1534 				}
1535 			}
1536 		}
1537 
1538 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1539 			/* follow __remove_mapping for reference */
1540 			if (!folio_ref_freeze(folio, 1))
1541 				goto keep_locked;
1542 			/*
1543 			 * The folio has only one reference left, which is
1544 			 * from the isolation. After the caller puts the
1545 			 * folio back on the lru and drops the reference, the
1546 			 * folio will be freed anyway. It doesn't matter
1547 			 * which lru it goes on. So we don't bother checking
1548 			 * the dirty flag here.
1549 			 */
1550 			count_vm_events(PGLAZYFREED, nr_pages);
1551 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1552 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1553 							 sc->target_mem_cgroup))
1554 			goto keep_locked;
1555 
1556 		folio_unlock(folio);
1557 free_it:
1558 		/*
1559 		 * Folio may get swapped out as a whole, need to account
1560 		 * all pages in it.
1561 		 */
1562 		nr_reclaimed += nr_pages;
1563 
1564 		folio_unqueue_deferred_split(folio);
1565 		if (folio_batch_add(&free_folios, folio) == 0) {
1566 			mem_cgroup_uncharge_folios(&free_folios);
1567 			try_to_unmap_flush();
1568 			free_unref_folios(&free_folios);
1569 		}
1570 		continue;
1571 
1572 activate_locked_split:
1573 		/*
1574 		 * The tail pages that are failed to add into swap cache
1575 		 * reach here.  Fixup nr_scanned and nr_pages.
1576 		 */
1577 		if (nr_pages > 1) {
1578 			sc->nr_scanned -= (nr_pages - 1);
1579 			nr_pages = 1;
1580 		}
1581 activate_locked:
1582 		/* Not a candidate for swapping, so reclaim swap space. */
1583 		if (folio_test_swapcache(folio) &&
1584 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1585 			folio_free_swap(folio);
1586 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1587 		if (!folio_test_mlocked(folio)) {
1588 			int type = folio_is_file_lru(folio);
1589 			folio_set_active(folio);
1590 			stat->nr_activate[type] += nr_pages;
1591 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1592 		}
1593 keep_locked:
1594 		folio_unlock(folio);
1595 keep:
1596 		list_add(&folio->lru, &ret_folios);
1597 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1598 				folio_test_unevictable(folio), folio);
1599 	}
1600 	/* 'folio_list' is always empty here */
1601 
1602 	/* Migrate folios selected for demotion */
1603 	nr_demoted = demote_folio_list(&demote_folios, pgdat);
1604 	nr_reclaimed += nr_demoted;
1605 	stat->nr_demoted += nr_demoted;
1606 	/* Folios that could not be demoted are still in @demote_folios */
1607 	if (!list_empty(&demote_folios)) {
1608 		/* Folios which weren't demoted go back on @folio_list */
1609 		list_splice_init(&demote_folios, folio_list);
1610 
1611 		/*
1612 		 * goto retry to reclaim the undemoted folios in folio_list if
1613 		 * desired.
1614 		 *
1615 		 * Reclaiming directly from top tier nodes is not often desired
1616 		 * due to it breaking the LRU ordering: in general memory
1617 		 * should be reclaimed from lower tier nodes and demoted from
1618 		 * top tier nodes.
1619 		 *
1620 		 * However, disabling reclaim from top tier nodes entirely
1621 		 * would cause ooms in edge scenarios where lower tier memory
1622 		 * is unreclaimable for whatever reason, eg memory being
1623 		 * mlocked or too hot to reclaim. We can disable reclaim
1624 		 * from top tier nodes in proactive reclaim though as that is
1625 		 * not real memory pressure.
1626 		 */
1627 		if (!sc->proactive) {
1628 			do_demote_pass = false;
1629 			goto retry;
1630 		}
1631 	}
1632 
1633 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1634 
1635 	mem_cgroup_uncharge_folios(&free_folios);
1636 	try_to_unmap_flush();
1637 	free_unref_folios(&free_folios);
1638 
1639 	list_splice(&ret_folios, folio_list);
1640 	count_vm_events(PGACTIVATE, pgactivate);
1641 
1642 	if (plug)
1643 		swap_write_unplug(plug);
1644 	return nr_reclaimed;
1645 }
1646 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)1647 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1648 					   struct list_head *folio_list)
1649 {
1650 	struct scan_control sc = {
1651 		.gfp_mask = GFP_KERNEL,
1652 		.may_unmap = 1,
1653 	};
1654 	struct reclaim_stat stat;
1655 	unsigned int nr_reclaimed;
1656 	struct folio *folio, *next;
1657 	LIST_HEAD(clean_folios);
1658 	unsigned int noreclaim_flag;
1659 
1660 	list_for_each_entry_safe(folio, next, folio_list, lru) {
1661 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1662 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1663 		    !folio_test_unevictable(folio)) {
1664 			folio_clear_active(folio);
1665 			list_move(&folio->lru, &clean_folios);
1666 		}
1667 	}
1668 
1669 	/*
1670 	 * We should be safe here since we are only dealing with file pages and
1671 	 * we are not kswapd and therefore cannot write dirty file pages. But
1672 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1673 	 * change in the future.
1674 	 */
1675 	noreclaim_flag = memalloc_noreclaim_save();
1676 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1677 					&stat, true, NULL);
1678 	memalloc_noreclaim_restore(noreclaim_flag);
1679 
1680 	list_splice(&clean_folios, folio_list);
1681 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1682 			    -(long)nr_reclaimed);
1683 	/*
1684 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1685 	 * they will rotate back to anonymous LRU in the end if it failed to
1686 	 * discard so isolated count will be mismatched.
1687 	 * Compensate the isolated count for both LRU lists.
1688 	 */
1689 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1690 			    stat.nr_lazyfree_fail);
1691 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1692 			    -(long)stat.nr_lazyfree_fail);
1693 	return nr_reclaimed;
1694 }
1695 
1696 /*
1697  * Update LRU sizes after isolating pages. The LRU size updates must
1698  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1699  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1700 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1701 			enum lru_list lru, unsigned long *nr_zone_taken)
1702 {
1703 	int zid;
1704 
1705 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1706 		if (!nr_zone_taken[zid])
1707 			continue;
1708 
1709 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1710 	}
1711 
1712 }
1713 
1714 /*
1715  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1716  *
1717  * lruvec->lru_lock is heavily contended.  Some of the functions that
1718  * shrink the lists perform better by taking out a batch of pages
1719  * and working on them outside the LRU lock.
1720  *
1721  * For pagecache intensive workloads, this function is the hottest
1722  * spot in the kernel (apart from copy_*_user functions).
1723  *
1724  * Lru_lock must be held before calling this function.
1725  *
1726  * @nr_to_scan:	The number of eligible pages to look through on the list.
1727  * @lruvec:	The LRU vector to pull pages from.
1728  * @dst:	The temp list to put pages on to.
1729  * @nr_scanned:	The number of pages that were scanned.
1730  * @sc:		The scan_control struct for this reclaim session
1731  * @lru:	LRU list id for isolating
1732  *
1733  * returns how many pages were moved onto *@dst.
1734  */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1735 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1736 		struct lruvec *lruvec, struct list_head *dst,
1737 		unsigned long *nr_scanned, struct scan_control *sc,
1738 		enum lru_list lru)
1739 {
1740 	struct list_head *src = &lruvec->lists[lru];
1741 	unsigned long nr_taken = 0;
1742 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1743 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1744 	unsigned long skipped = 0, total_scan = 0, scan = 0;
1745 	unsigned long nr_pages;
1746 	unsigned long max_nr_skipped = 0;
1747 	LIST_HEAD(folios_skipped);
1748 
1749 	while (scan < nr_to_scan && !list_empty(src)) {
1750 		struct list_head *move_to = src;
1751 		struct folio *folio;
1752 
1753 		folio = lru_to_folio(src);
1754 		prefetchw_prev_lru_folio(folio, src, flags);
1755 
1756 		nr_pages = folio_nr_pages(folio);
1757 		total_scan += nr_pages;
1758 
1759 		/* Using max_nr_skipped to prevent hard LOCKUP*/
1760 		if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED &&
1761 		    (folio_zonenum(folio) > sc->reclaim_idx)) {
1762 			nr_skipped[folio_zonenum(folio)] += nr_pages;
1763 			move_to = &folios_skipped;
1764 			max_nr_skipped++;
1765 			goto move;
1766 		}
1767 
1768 		/*
1769 		 * Do not count skipped folios because that makes the function
1770 		 * return with no isolated folios if the LRU mostly contains
1771 		 * ineligible folios.  This causes the VM to not reclaim any
1772 		 * folios, triggering a premature OOM.
1773 		 * Account all pages in a folio.
1774 		 */
1775 		scan += nr_pages;
1776 
1777 		if (!folio_test_lru(folio))
1778 			goto move;
1779 		if (!sc->may_unmap && folio_mapped(folio))
1780 			goto move;
1781 
1782 		/*
1783 		 * Be careful not to clear the lru flag until after we're
1784 		 * sure the folio is not being freed elsewhere -- the
1785 		 * folio release code relies on it.
1786 		 */
1787 		if (unlikely(!folio_try_get(folio)))
1788 			goto move;
1789 
1790 		if (!folio_test_clear_lru(folio)) {
1791 			/* Another thread is already isolating this folio */
1792 			folio_put(folio);
1793 			goto move;
1794 		}
1795 
1796 		nr_taken += nr_pages;
1797 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1798 		move_to = dst;
1799 move:
1800 		list_move(&folio->lru, move_to);
1801 	}
1802 
1803 	/*
1804 	 * Splice any skipped folios to the start of the LRU list. Note that
1805 	 * this disrupts the LRU order when reclaiming for lower zones but
1806 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1807 	 * scanning would soon rescan the same folios to skip and waste lots
1808 	 * of cpu cycles.
1809 	 */
1810 	if (!list_empty(&folios_skipped)) {
1811 		int zid;
1812 
1813 		list_splice(&folios_skipped, src);
1814 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1815 			if (!nr_skipped[zid])
1816 				continue;
1817 
1818 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1819 			skipped += nr_skipped[zid];
1820 		}
1821 	}
1822 	*nr_scanned = total_scan;
1823 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1824 				    total_scan, skipped, nr_taken, lru);
1825 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1826 	return nr_taken;
1827 }
1828 
1829 /**
1830  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1831  * @folio: Folio to isolate from its LRU list.
1832  *
1833  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1834  * corresponding to whatever LRU list the folio was on.
1835  *
1836  * The folio will have its LRU flag cleared.  If it was found on the
1837  * active list, it will have the Active flag set.  If it was found on the
1838  * unevictable list, it will have the Unevictable flag set.  These flags
1839  * may need to be cleared by the caller before letting the page go.
1840  *
1841  * Context:
1842  *
1843  * (1) Must be called with an elevated refcount on the folio. This is a
1844  *     fundamental difference from isolate_lru_folios() (which is called
1845  *     without a stable reference).
1846  * (2) The lru_lock must not be held.
1847  * (3) Interrupts must be enabled.
1848  *
1849  * Return: true if the folio was removed from an LRU list.
1850  * false if the folio was not on an LRU list.
1851  */
folio_isolate_lru(struct folio * folio)1852 bool folio_isolate_lru(struct folio *folio)
1853 {
1854 	bool ret = false;
1855 
1856 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1857 
1858 	if (folio_test_clear_lru(folio)) {
1859 		struct lruvec *lruvec;
1860 
1861 		folio_get(folio);
1862 		lruvec = folio_lruvec_lock_irq(folio);
1863 		lruvec_del_folio(lruvec, folio);
1864 		unlock_page_lruvec_irq(lruvec);
1865 		ret = true;
1866 	}
1867 
1868 	return ret;
1869 }
1870 
1871 /*
1872  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1873  * then get rescheduled. When there are massive number of tasks doing page
1874  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1875  * the LRU list will go small and be scanned faster than necessary, leading to
1876  * unnecessary swapping, thrashing and OOM.
1877  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1878 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1879 		struct scan_control *sc)
1880 {
1881 	unsigned long inactive, isolated;
1882 	bool too_many;
1883 
1884 	if (current_is_kswapd())
1885 		return false;
1886 
1887 	if (!writeback_throttling_sane(sc))
1888 		return false;
1889 
1890 	if (file) {
1891 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1892 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1893 	} else {
1894 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1895 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1896 	}
1897 
1898 	/*
1899 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1900 	 * won't get blocked by normal direct-reclaimers, forming a circular
1901 	 * deadlock.
1902 	 */
1903 	if (gfp_has_io_fs(sc->gfp_mask))
1904 		inactive >>= 3;
1905 
1906 	too_many = isolated > inactive;
1907 
1908 	/* Wake up tasks throttled due to too_many_isolated. */
1909 	if (!too_many)
1910 		wake_throttle_isolated(pgdat);
1911 
1912 	return too_many;
1913 }
1914 
1915 /*
1916  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1917  *
1918  * Returns the number of pages moved to the given lruvec.
1919  */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)1920 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1921 		struct list_head *list)
1922 {
1923 	int nr_pages, nr_moved = 0;
1924 	struct folio_batch free_folios;
1925 
1926 	folio_batch_init(&free_folios);
1927 	while (!list_empty(list)) {
1928 		struct folio *folio = lru_to_folio(list);
1929 
1930 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1931 		list_del(&folio->lru);
1932 		if (unlikely(!folio_evictable(folio))) {
1933 			spin_unlock_irq(&lruvec->lru_lock);
1934 			folio_putback_lru(folio);
1935 			spin_lock_irq(&lruvec->lru_lock);
1936 			continue;
1937 		}
1938 
1939 		/*
1940 		 * The folio_set_lru needs to be kept here for list integrity.
1941 		 * Otherwise:
1942 		 *   #0 move_folios_to_lru             #1 release_pages
1943 		 *   if (!folio_put_testzero())
1944 		 *				      if (folio_put_testzero())
1945 		 *				        !lru //skip lru_lock
1946 		 *     folio_set_lru()
1947 		 *     list_add(&folio->lru,)
1948 		 *                                        list_add(&folio->lru,)
1949 		 */
1950 		folio_set_lru(folio);
1951 
1952 		if (unlikely(folio_put_testzero(folio))) {
1953 			__folio_clear_lru_flags(folio);
1954 
1955 			folio_unqueue_deferred_split(folio);
1956 			if (folio_batch_add(&free_folios, folio) == 0) {
1957 				spin_unlock_irq(&lruvec->lru_lock);
1958 				mem_cgroup_uncharge_folios(&free_folios);
1959 				free_unref_folios(&free_folios);
1960 				spin_lock_irq(&lruvec->lru_lock);
1961 			}
1962 
1963 			continue;
1964 		}
1965 
1966 		/*
1967 		 * All pages were isolated from the same lruvec (and isolation
1968 		 * inhibits memcg migration).
1969 		 */
1970 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1971 		lruvec_add_folio(lruvec, folio);
1972 		nr_pages = folio_nr_pages(folio);
1973 		nr_moved += nr_pages;
1974 		if (folio_test_active(folio))
1975 			workingset_age_nonresident(lruvec, nr_pages);
1976 	}
1977 
1978 	if (free_folios.nr) {
1979 		spin_unlock_irq(&lruvec->lru_lock);
1980 		mem_cgroup_uncharge_folios(&free_folios);
1981 		free_unref_folios(&free_folios);
1982 		spin_lock_irq(&lruvec->lru_lock);
1983 	}
1984 
1985 	return nr_moved;
1986 }
1987 
1988 /*
1989  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1990  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1991  * we should not throttle.  Otherwise it is safe to do so.
1992  */
current_may_throttle(void)1993 static int current_may_throttle(void)
1994 {
1995 	return !(current->flags & PF_LOCAL_THROTTLE);
1996 }
1997 
1998 /*
1999  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2000  * of reclaimed pages
2001  */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2002 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2003 		struct lruvec *lruvec, struct scan_control *sc,
2004 		enum lru_list lru)
2005 {
2006 	LIST_HEAD(folio_list);
2007 	unsigned long nr_scanned;
2008 	unsigned int nr_reclaimed = 0;
2009 	unsigned long nr_taken;
2010 	struct reclaim_stat stat;
2011 	bool file = is_file_lru(lru);
2012 	enum vm_event_item item;
2013 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2014 	bool stalled = false;
2015 
2016 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2017 		if (stalled)
2018 			return 0;
2019 
2020 		/* wait a bit for the reclaimer. */
2021 		stalled = true;
2022 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2023 
2024 		/* We are about to die and free our memory. Return now. */
2025 		if (fatal_signal_pending(current))
2026 			return SWAP_CLUSTER_MAX;
2027 	}
2028 
2029 	lru_add_drain();
2030 
2031 	spin_lock_irq(&lruvec->lru_lock);
2032 
2033 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2034 				     &nr_scanned, sc, lru);
2035 
2036 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2037 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
2038 	if (!cgroup_reclaim(sc))
2039 		__count_vm_events(item, nr_scanned);
2040 	count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2041 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2042 
2043 	spin_unlock_irq(&lruvec->lru_lock);
2044 
2045 	if (nr_taken == 0)
2046 		return 0;
2047 
2048 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false,
2049 					 lruvec_memcg(lruvec));
2050 
2051 	spin_lock_irq(&lruvec->lru_lock);
2052 	move_folios_to_lru(lruvec, &folio_list);
2053 
2054 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
2055 					stat.nr_demoted);
2056 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2057 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
2058 	if (!cgroup_reclaim(sc))
2059 		__count_vm_events(item, nr_reclaimed);
2060 	count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2061 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2062 	spin_unlock_irq(&lruvec->lru_lock);
2063 
2064 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2065 
2066 	/*
2067 	 * If dirty folios are scanned that are not queued for IO, it
2068 	 * implies that flushers are not doing their job. This can
2069 	 * happen when memory pressure pushes dirty folios to the end of
2070 	 * the LRU before the dirty limits are breached and the dirty
2071 	 * data has expired. It can also happen when the proportion of
2072 	 * dirty folios grows not through writes but through memory
2073 	 * pressure reclaiming all the clean cache. And in some cases,
2074 	 * the flushers simply cannot keep up with the allocation
2075 	 * rate. Nudge the flusher threads in case they are asleep.
2076 	 */
2077 	if (stat.nr_unqueued_dirty == nr_taken) {
2078 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2079 		/*
2080 		 * For cgroupv1 dirty throttling is achieved by waking up
2081 		 * the kernel flusher here and later waiting on folios
2082 		 * which are in writeback to finish (see shrink_folio_list()).
2083 		 *
2084 		 * Flusher may not be able to issue writeback quickly
2085 		 * enough for cgroupv1 writeback throttling to work
2086 		 * on a large system.
2087 		 */
2088 		if (!writeback_throttling_sane(sc))
2089 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2090 	}
2091 
2092 	sc->nr.dirty += stat.nr_dirty;
2093 	sc->nr.congested += stat.nr_congested;
2094 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2095 	sc->nr.writeback += stat.nr_writeback;
2096 	sc->nr.immediate += stat.nr_immediate;
2097 	sc->nr.taken += nr_taken;
2098 	if (file)
2099 		sc->nr.file_taken += nr_taken;
2100 
2101 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2102 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2103 	return nr_reclaimed;
2104 }
2105 
2106 /*
2107  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2108  *
2109  * We move them the other way if the folio is referenced by one or more
2110  * processes.
2111  *
2112  * If the folios are mostly unmapped, the processing is fast and it is
2113  * appropriate to hold lru_lock across the whole operation.  But if
2114  * the folios are mapped, the processing is slow (folio_referenced()), so
2115  * we should drop lru_lock around each folio.  It's impossible to balance
2116  * this, so instead we remove the folios from the LRU while processing them.
2117  * It is safe to rely on the active flag against the non-LRU folios in here
2118  * because nobody will play with that bit on a non-LRU folio.
2119  *
2120  * The downside is that we have to touch folio->_refcount against each folio.
2121  * But we had to alter folio->flags anyway.
2122  */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2123 static void shrink_active_list(unsigned long nr_to_scan,
2124 			       struct lruvec *lruvec,
2125 			       struct scan_control *sc,
2126 			       enum lru_list lru)
2127 {
2128 	unsigned long nr_taken;
2129 	unsigned long nr_scanned;
2130 	unsigned long vm_flags;
2131 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2132 	LIST_HEAD(l_active);
2133 	LIST_HEAD(l_inactive);
2134 	unsigned nr_deactivate, nr_activate;
2135 	unsigned nr_rotated = 0;
2136 	bool file = is_file_lru(lru);
2137 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2138 
2139 	lru_add_drain();
2140 
2141 	spin_lock_irq(&lruvec->lru_lock);
2142 
2143 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2144 				     &nr_scanned, sc, lru);
2145 
2146 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2147 
2148 	if (!cgroup_reclaim(sc))
2149 		__count_vm_events(PGREFILL, nr_scanned);
2150 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2151 
2152 	spin_unlock_irq(&lruvec->lru_lock);
2153 
2154 	while (!list_empty(&l_hold)) {
2155 		struct folio *folio;
2156 
2157 		cond_resched();
2158 		folio = lru_to_folio(&l_hold);
2159 		list_del(&folio->lru);
2160 
2161 		if (unlikely(!folio_evictable(folio))) {
2162 			folio_putback_lru(folio);
2163 			continue;
2164 		}
2165 
2166 		if (unlikely(buffer_heads_over_limit)) {
2167 			if (folio_needs_release(folio) &&
2168 			    folio_trylock(folio)) {
2169 				filemap_release_folio(folio, 0);
2170 				folio_unlock(folio);
2171 			}
2172 		}
2173 
2174 		/* Referenced or rmap lock contention: rotate */
2175 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2176 				     &vm_flags) != 0) {
2177 			/*
2178 			 * Identify referenced, file-backed active folios and
2179 			 * give them one more trip around the active list. So
2180 			 * that executable code get better chances to stay in
2181 			 * memory under moderate memory pressure.  Anon folios
2182 			 * are not likely to be evicted by use-once streaming
2183 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2184 			 * so we ignore them here.
2185 			 */
2186 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2187 				nr_rotated += folio_nr_pages(folio);
2188 				list_add(&folio->lru, &l_active);
2189 				continue;
2190 			}
2191 		}
2192 
2193 		folio_clear_active(folio);	/* we are de-activating */
2194 		folio_set_workingset(folio);
2195 		list_add(&folio->lru, &l_inactive);
2196 	}
2197 
2198 	/*
2199 	 * Move folios back to the lru list.
2200 	 */
2201 	spin_lock_irq(&lruvec->lru_lock);
2202 
2203 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2204 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2205 
2206 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2207 	count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2208 
2209 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2210 	spin_unlock_irq(&lruvec->lru_lock);
2211 
2212 	if (nr_rotated)
2213 		lru_note_cost(lruvec, file, 0, nr_rotated);
2214 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2215 			nr_deactivate, nr_rotated, sc->priority, file);
2216 }
2217 
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat)2218 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2219 				      struct pglist_data *pgdat)
2220 {
2221 	struct reclaim_stat stat;
2222 	unsigned int nr_reclaimed;
2223 	struct folio *folio;
2224 	struct scan_control sc = {
2225 		.gfp_mask = GFP_KERNEL,
2226 		.may_writepage = 1,
2227 		.may_unmap = 1,
2228 		.may_swap = 1,
2229 		.no_demotion = 1,
2230 	};
2231 
2232 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL);
2233 	while (!list_empty(folio_list)) {
2234 		folio = lru_to_folio(folio_list);
2235 		list_del(&folio->lru);
2236 		folio_putback_lru(folio);
2237 	}
2238 	trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2239 
2240 	return nr_reclaimed;
2241 }
2242 
reclaim_pages(struct list_head * folio_list)2243 unsigned long reclaim_pages(struct list_head *folio_list)
2244 {
2245 	int nid;
2246 	unsigned int nr_reclaimed = 0;
2247 	LIST_HEAD(node_folio_list);
2248 	unsigned int noreclaim_flag;
2249 
2250 	if (list_empty(folio_list))
2251 		return nr_reclaimed;
2252 
2253 	noreclaim_flag = memalloc_noreclaim_save();
2254 
2255 	nid = folio_nid(lru_to_folio(folio_list));
2256 	do {
2257 		struct folio *folio = lru_to_folio(folio_list);
2258 
2259 		if (nid == folio_nid(folio)) {
2260 			folio_clear_active(folio);
2261 			list_move(&folio->lru, &node_folio_list);
2262 			continue;
2263 		}
2264 
2265 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2266 		nid = folio_nid(lru_to_folio(folio_list));
2267 	} while (!list_empty(folio_list));
2268 
2269 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2270 
2271 	memalloc_noreclaim_restore(noreclaim_flag);
2272 
2273 	return nr_reclaimed;
2274 }
2275 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2276 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2277 				 struct lruvec *lruvec, struct scan_control *sc)
2278 {
2279 	if (is_active_lru(lru)) {
2280 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2281 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2282 		else
2283 			sc->skipped_deactivate = 1;
2284 		return 0;
2285 	}
2286 
2287 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2288 }
2289 
2290 /*
2291  * The inactive anon list should be small enough that the VM never has
2292  * to do too much work.
2293  *
2294  * The inactive file list should be small enough to leave most memory
2295  * to the established workingset on the scan-resistant active list,
2296  * but large enough to avoid thrashing the aggregate readahead window.
2297  *
2298  * Both inactive lists should also be large enough that each inactive
2299  * folio has a chance to be referenced again before it is reclaimed.
2300  *
2301  * If that fails and refaulting is observed, the inactive list grows.
2302  *
2303  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2304  * on this LRU, maintained by the pageout code. An inactive_ratio
2305  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2306  *
2307  * total     target    max
2308  * memory    ratio     inactive
2309  * -------------------------------------
2310  *   10MB       1         5MB
2311  *  100MB       1        50MB
2312  *    1GB       3       250MB
2313  *   10GB      10       0.9GB
2314  *  100GB      31         3GB
2315  *    1TB     101        10GB
2316  *   10TB     320        32GB
2317  */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2318 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2319 {
2320 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2321 	unsigned long inactive, active;
2322 	unsigned long inactive_ratio;
2323 	unsigned long gb;
2324 
2325 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2326 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2327 
2328 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2329 	if (gb)
2330 		inactive_ratio = int_sqrt(10 * gb);
2331 	else
2332 		inactive_ratio = 1;
2333 
2334 	return inactive * inactive_ratio < active;
2335 }
2336 
2337 enum scan_balance {
2338 	SCAN_EQUAL,
2339 	SCAN_FRACT,
2340 	SCAN_ANON,
2341 	SCAN_FILE,
2342 };
2343 
prepare_scan_control(pg_data_t * pgdat,struct scan_control * sc)2344 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2345 {
2346 	unsigned long file;
2347 	struct lruvec *target_lruvec;
2348 
2349 	if (lru_gen_enabled())
2350 		return;
2351 
2352 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2353 
2354 	/*
2355 	 * Flush the memory cgroup stats in rate-limited way as we don't need
2356 	 * most accurate stats here. We may switch to regular stats flushing
2357 	 * in the future once it is cheap enough.
2358 	 */
2359 	mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2360 
2361 	/*
2362 	 * Determine the scan balance between anon and file LRUs.
2363 	 */
2364 	spin_lock_irq(&target_lruvec->lru_lock);
2365 	sc->anon_cost = target_lruvec->anon_cost;
2366 	sc->file_cost = target_lruvec->file_cost;
2367 	spin_unlock_irq(&target_lruvec->lru_lock);
2368 
2369 	/*
2370 	 * Target desirable inactive:active list ratios for the anon
2371 	 * and file LRU lists.
2372 	 */
2373 	if (!sc->force_deactivate) {
2374 		unsigned long refaults;
2375 
2376 		/*
2377 		 * When refaults are being observed, it means a new
2378 		 * workingset is being established. Deactivate to get
2379 		 * rid of any stale active pages quickly.
2380 		 */
2381 		refaults = lruvec_page_state(target_lruvec,
2382 				WORKINGSET_ACTIVATE_ANON);
2383 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2384 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2385 			sc->may_deactivate |= DEACTIVATE_ANON;
2386 		else
2387 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2388 
2389 		refaults = lruvec_page_state(target_lruvec,
2390 				WORKINGSET_ACTIVATE_FILE);
2391 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2392 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2393 			sc->may_deactivate |= DEACTIVATE_FILE;
2394 		else
2395 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2396 	} else
2397 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2398 
2399 	/*
2400 	 * If we have plenty of inactive file pages that aren't
2401 	 * thrashing, try to reclaim those first before touching
2402 	 * anonymous pages.
2403 	 */
2404 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2405 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2406 	    !sc->no_cache_trim_mode)
2407 		sc->cache_trim_mode = 1;
2408 	else
2409 		sc->cache_trim_mode = 0;
2410 
2411 	/*
2412 	 * Prevent the reclaimer from falling into the cache trap: as
2413 	 * cache pages start out inactive, every cache fault will tip
2414 	 * the scan balance towards the file LRU.  And as the file LRU
2415 	 * shrinks, so does the window for rotation from references.
2416 	 * This means we have a runaway feedback loop where a tiny
2417 	 * thrashing file LRU becomes infinitely more attractive than
2418 	 * anon pages.  Try to detect this based on file LRU size.
2419 	 */
2420 	if (!cgroup_reclaim(sc)) {
2421 		unsigned long total_high_wmark = 0;
2422 		unsigned long free, anon;
2423 		int z;
2424 		struct zone *zone;
2425 
2426 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2427 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2428 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2429 
2430 		for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) {
2431 			total_high_wmark += high_wmark_pages(zone);
2432 		}
2433 
2434 		/*
2435 		 * Consider anon: if that's low too, this isn't a
2436 		 * runaway file reclaim problem, but rather just
2437 		 * extreme pressure. Reclaim as per usual then.
2438 		 */
2439 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2440 
2441 		sc->file_is_tiny =
2442 			file + free <= total_high_wmark &&
2443 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2444 			anon >> sc->priority;
2445 	}
2446 }
2447 
calculate_pressure_balance(struct scan_control * sc,int swappiness,u64 * fraction,u64 * denominator)2448 static inline void calculate_pressure_balance(struct scan_control *sc,
2449 			int swappiness, u64 *fraction, u64 *denominator)
2450 {
2451 	unsigned long anon_cost, file_cost, total_cost;
2452 	unsigned long ap, fp;
2453 
2454 	/*
2455 	 * Calculate the pressure balance between anon and file pages.
2456 	 *
2457 	 * The amount of pressure we put on each LRU is inversely
2458 	 * proportional to the cost of reclaiming each list, as
2459 	 * determined by the share of pages that are refaulting, times
2460 	 * the relative IO cost of bringing back a swapped out
2461 	 * anonymous page vs reloading a filesystem page (swappiness).
2462 	 *
2463 	 * Although we limit that influence to ensure no list gets
2464 	 * left behind completely: at least a third of the pressure is
2465 	 * applied, before swappiness.
2466 	 *
2467 	 * With swappiness at 100, anon and file have equal IO cost.
2468 	 */
2469 	total_cost = sc->anon_cost + sc->file_cost;
2470 	anon_cost = total_cost + sc->anon_cost;
2471 	file_cost = total_cost + sc->file_cost;
2472 	total_cost = anon_cost + file_cost;
2473 
2474 	ap = swappiness * (total_cost + 1);
2475 	ap /= anon_cost + 1;
2476 
2477 	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2478 	fp /= file_cost + 1;
2479 
2480 	fraction[WORKINGSET_ANON] = ap;
2481 	fraction[WORKINGSET_FILE] = fp;
2482 	*denominator = ap + fp;
2483 }
2484 
2485 /*
2486  * Determine how aggressively the anon and file LRU lists should be
2487  * scanned.
2488  *
2489  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2490  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2491  */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2492 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2493 			   unsigned long *nr)
2494 {
2495 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2496 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2497 	int swappiness = sc_swappiness(sc, memcg);
2498 	u64 fraction[ANON_AND_FILE];
2499 	u64 denominator = 0;	/* gcc */
2500 	enum scan_balance scan_balance;
2501 	enum lru_list lru;
2502 
2503 	/* If we have no swap space, do not bother scanning anon folios. */
2504 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2505 		scan_balance = SCAN_FILE;
2506 		goto out;
2507 	}
2508 
2509 	/*
2510 	 * Global reclaim will swap to prevent OOM even with no
2511 	 * swappiness, but memcg users want to use this knob to
2512 	 * disable swapping for individual groups completely when
2513 	 * using the memory controller's swap limit feature would be
2514 	 * too expensive.
2515 	 */
2516 	if (cgroup_reclaim(sc) && !swappiness) {
2517 		scan_balance = SCAN_FILE;
2518 		goto out;
2519 	}
2520 
2521 	/* Proactive reclaim initiated by userspace for anonymous memory only */
2522 	if (swappiness == SWAPPINESS_ANON_ONLY) {
2523 		WARN_ON_ONCE(!sc->proactive);
2524 		scan_balance = SCAN_ANON;
2525 		goto out;
2526 	}
2527 
2528 	/*
2529 	 * Do not apply any pressure balancing cleverness when the
2530 	 * system is close to OOM, scan both anon and file equally
2531 	 * (unless the swappiness setting disagrees with swapping).
2532 	 */
2533 	if (!sc->priority && swappiness) {
2534 		scan_balance = SCAN_EQUAL;
2535 		goto out;
2536 	}
2537 
2538 	/*
2539 	 * If the system is almost out of file pages, force-scan anon.
2540 	 */
2541 	if (sc->file_is_tiny) {
2542 		scan_balance = SCAN_ANON;
2543 		goto out;
2544 	}
2545 
2546 	/*
2547 	 * If there is enough inactive page cache, we do not reclaim
2548 	 * anything from the anonymous working right now to make sure
2549          * a streaming file access pattern doesn't cause swapping.
2550 	 */
2551 	if (sc->cache_trim_mode) {
2552 		scan_balance = SCAN_FILE;
2553 		goto out;
2554 	}
2555 
2556 	scan_balance = SCAN_FRACT;
2557 	calculate_pressure_balance(sc, swappiness, fraction, &denominator);
2558 
2559 out:
2560 	for_each_evictable_lru(lru) {
2561 		bool file = is_file_lru(lru);
2562 		unsigned long lruvec_size;
2563 		unsigned long low, min;
2564 		unsigned long scan;
2565 
2566 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2567 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2568 				      &min, &low);
2569 
2570 		if (min || low) {
2571 			/*
2572 			 * Scale a cgroup's reclaim pressure by proportioning
2573 			 * its current usage to its memory.low or memory.min
2574 			 * setting.
2575 			 *
2576 			 * This is important, as otherwise scanning aggression
2577 			 * becomes extremely binary -- from nothing as we
2578 			 * approach the memory protection threshold, to totally
2579 			 * nominal as we exceed it.  This results in requiring
2580 			 * setting extremely liberal protection thresholds. It
2581 			 * also means we simply get no protection at all if we
2582 			 * set it too low, which is not ideal.
2583 			 *
2584 			 * If there is any protection in place, we reduce scan
2585 			 * pressure by how much of the total memory used is
2586 			 * within protection thresholds.
2587 			 *
2588 			 * There is one special case: in the first reclaim pass,
2589 			 * we skip over all groups that are within their low
2590 			 * protection. If that fails to reclaim enough pages to
2591 			 * satisfy the reclaim goal, we come back and override
2592 			 * the best-effort low protection. However, we still
2593 			 * ideally want to honor how well-behaved groups are in
2594 			 * that case instead of simply punishing them all
2595 			 * equally. As such, we reclaim them based on how much
2596 			 * memory they are using, reducing the scan pressure
2597 			 * again by how much of the total memory used is under
2598 			 * hard protection.
2599 			 */
2600 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2601 			unsigned long protection;
2602 
2603 			/* memory.low scaling, make sure we retry before OOM */
2604 			if (!sc->memcg_low_reclaim && low > min) {
2605 				protection = low;
2606 				sc->memcg_low_skipped = 1;
2607 			} else {
2608 				protection = min;
2609 			}
2610 
2611 			/* Avoid TOCTOU with earlier protection check */
2612 			cgroup_size = max(cgroup_size, protection);
2613 
2614 			scan = lruvec_size - lruvec_size * protection /
2615 				(cgroup_size + 1);
2616 
2617 			/*
2618 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2619 			 * reclaim moving forwards, avoiding decrementing
2620 			 * sc->priority further than desirable.
2621 			 */
2622 			scan = max(scan, SWAP_CLUSTER_MAX);
2623 		} else {
2624 			scan = lruvec_size;
2625 		}
2626 
2627 		scan >>= sc->priority;
2628 
2629 		/*
2630 		 * If the cgroup's already been deleted, make sure to
2631 		 * scrape out the remaining cache.
2632 		 */
2633 		if (!scan && !mem_cgroup_online(memcg))
2634 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2635 
2636 		switch (scan_balance) {
2637 		case SCAN_EQUAL:
2638 			/* Scan lists relative to size */
2639 			break;
2640 		case SCAN_FRACT:
2641 			/*
2642 			 * Scan types proportional to swappiness and
2643 			 * their relative recent reclaim efficiency.
2644 			 * Make sure we don't miss the last page on
2645 			 * the offlined memory cgroups because of a
2646 			 * round-off error.
2647 			 */
2648 			scan = mem_cgroup_online(memcg) ?
2649 			       div64_u64(scan * fraction[file], denominator) :
2650 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2651 						  denominator);
2652 			break;
2653 		case SCAN_FILE:
2654 		case SCAN_ANON:
2655 			/* Scan one type exclusively */
2656 			if ((scan_balance == SCAN_FILE) != file)
2657 				scan = 0;
2658 			break;
2659 		default:
2660 			/* Look ma, no brain */
2661 			BUG();
2662 		}
2663 
2664 		nr[lru] = scan;
2665 	}
2666 }
2667 
2668 /*
2669  * Anonymous LRU management is a waste if there is
2670  * ultimately no way to reclaim the memory.
2671  */
can_age_anon_pages(struct lruvec * lruvec,struct scan_control * sc)2672 static bool can_age_anon_pages(struct lruvec *lruvec,
2673 			       struct scan_control *sc)
2674 {
2675 	/* Aging the anon LRU is valuable if swap is present: */
2676 	if (total_swap_pages > 0)
2677 		return true;
2678 
2679 	/* Also valuable if anon pages can be demoted: */
2680 	return can_demote(lruvec_pgdat(lruvec)->node_id, sc,
2681 			  lruvec_memcg(lruvec));
2682 }
2683 
2684 #ifdef CONFIG_LRU_GEN
2685 
2686 #ifdef CONFIG_LRU_GEN_ENABLED
2687 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2688 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2689 #else
2690 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2691 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2692 #endif
2693 
should_walk_mmu(void)2694 static bool should_walk_mmu(void)
2695 {
2696 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2697 }
2698 
should_clear_pmd_young(void)2699 static bool should_clear_pmd_young(void)
2700 {
2701 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2702 }
2703 
2704 /******************************************************************************
2705  *                          shorthand helpers
2706  ******************************************************************************/
2707 
2708 #define DEFINE_MAX_SEQ(lruvec)						\
2709 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2710 
2711 #define DEFINE_MIN_SEQ(lruvec)						\
2712 	unsigned long min_seq[ANON_AND_FILE] = {			\
2713 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2714 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2715 	}
2716 
2717 /* Get the min/max evictable type based on swappiness */
2718 #define min_type(swappiness) (!(swappiness))
2719 #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY)
2720 
2721 #define evictable_min_seq(min_seq, swappiness)				\
2722 	min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)])
2723 
2724 #define for_each_gen_type_zone(gen, type, zone)				\
2725 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2726 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2727 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2728 
2729 #define for_each_evictable_type(type, swappiness)			\
2730 	for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++)
2731 
2732 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2733 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2734 
get_lruvec(struct mem_cgroup * memcg,int nid)2735 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2736 {
2737 	struct pglist_data *pgdat = NODE_DATA(nid);
2738 
2739 #ifdef CONFIG_MEMCG
2740 	if (memcg) {
2741 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2742 
2743 		/* see the comment in mem_cgroup_lruvec() */
2744 		if (!lruvec->pgdat)
2745 			lruvec->pgdat = pgdat;
2746 
2747 		return lruvec;
2748 	}
2749 #endif
2750 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2751 
2752 	return &pgdat->__lruvec;
2753 }
2754 
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)2755 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2756 {
2757 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2758 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2759 
2760 	if (!sc->may_swap)
2761 		return 0;
2762 
2763 	if (!can_demote(pgdat->node_id, sc, memcg) &&
2764 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2765 		return 0;
2766 
2767 	return sc_swappiness(sc, memcg);
2768 }
2769 
get_nr_gens(struct lruvec * lruvec,int type)2770 static int get_nr_gens(struct lruvec *lruvec, int type)
2771 {
2772 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2773 }
2774 
seq_is_valid(struct lruvec * lruvec)2775 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2776 {
2777 	int type;
2778 
2779 	for (type = 0; type < ANON_AND_FILE; type++) {
2780 		int n = get_nr_gens(lruvec, type);
2781 
2782 		if (n < MIN_NR_GENS || n > MAX_NR_GENS)
2783 			return false;
2784 	}
2785 
2786 	return true;
2787 }
2788 
2789 /******************************************************************************
2790  *                          Bloom filters
2791  ******************************************************************************/
2792 
2793 /*
2794  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2795  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2796  * bits in a bitmap, k is the number of hash functions and n is the number of
2797  * inserted items.
2798  *
2799  * Page table walkers use one of the two filters to reduce their search space.
2800  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2801  * aging uses the double-buffering technique to flip to the other filter each
2802  * time it produces a new generation. For non-leaf entries that have enough
2803  * leaf entries, the aging carries them over to the next generation in
2804  * walk_pmd_range(); the eviction also report them when walking the rmap
2805  * in lru_gen_look_around().
2806  *
2807  * For future optimizations:
2808  * 1. It's not necessary to keep both filters all the time. The spare one can be
2809  *    freed after the RCU grace period and reallocated if needed again.
2810  * 2. And when reallocating, it's worth scaling its size according to the number
2811  *    of inserted entries in the other filter, to reduce the memory overhead on
2812  *    small systems and false positives on large systems.
2813  * 3. Jenkins' hash function is an alternative to Knuth's.
2814  */
2815 #define BLOOM_FILTER_SHIFT	15
2816 
filter_gen_from_seq(unsigned long seq)2817 static inline int filter_gen_from_seq(unsigned long seq)
2818 {
2819 	return seq % NR_BLOOM_FILTERS;
2820 }
2821 
get_item_key(void * item,int * key)2822 static void get_item_key(void *item, int *key)
2823 {
2824 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2825 
2826 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2827 
2828 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2829 	key[1] = hash >> BLOOM_FILTER_SHIFT;
2830 }
2831 
test_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2832 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2833 			      void *item)
2834 {
2835 	int key[2];
2836 	unsigned long *filter;
2837 	int gen = filter_gen_from_seq(seq);
2838 
2839 	filter = READ_ONCE(mm_state->filters[gen]);
2840 	if (!filter)
2841 		return true;
2842 
2843 	get_item_key(item, key);
2844 
2845 	return test_bit(key[0], filter) && test_bit(key[1], filter);
2846 }
2847 
update_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2848 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2849 				void *item)
2850 {
2851 	int key[2];
2852 	unsigned long *filter;
2853 	int gen = filter_gen_from_seq(seq);
2854 
2855 	filter = READ_ONCE(mm_state->filters[gen]);
2856 	if (!filter)
2857 		return;
2858 
2859 	get_item_key(item, key);
2860 
2861 	if (!test_bit(key[0], filter))
2862 		set_bit(key[0], filter);
2863 	if (!test_bit(key[1], filter))
2864 		set_bit(key[1], filter);
2865 }
2866 
reset_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq)2867 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2868 {
2869 	unsigned long *filter;
2870 	int gen = filter_gen_from_seq(seq);
2871 
2872 	filter = mm_state->filters[gen];
2873 	if (filter) {
2874 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2875 		return;
2876 	}
2877 
2878 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2879 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2880 	WRITE_ONCE(mm_state->filters[gen], filter);
2881 }
2882 
2883 /******************************************************************************
2884  *                          mm_struct list
2885  ******************************************************************************/
2886 
2887 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2888 
get_mm_list(struct mem_cgroup * memcg)2889 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2890 {
2891 	static struct lru_gen_mm_list mm_list = {
2892 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2893 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2894 	};
2895 
2896 #ifdef CONFIG_MEMCG
2897 	if (memcg)
2898 		return &memcg->mm_list;
2899 #endif
2900 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2901 
2902 	return &mm_list;
2903 }
2904 
get_mm_state(struct lruvec * lruvec)2905 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2906 {
2907 	return &lruvec->mm_state;
2908 }
2909 
get_next_mm(struct lru_gen_mm_walk * walk)2910 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2911 {
2912 	int key;
2913 	struct mm_struct *mm;
2914 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2915 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2916 
2917 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2918 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2919 
2920 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2921 		return NULL;
2922 
2923 	clear_bit(key, &mm->lru_gen.bitmap);
2924 
2925 	return mmget_not_zero(mm) ? mm : NULL;
2926 }
2927 
lru_gen_add_mm(struct mm_struct * mm)2928 void lru_gen_add_mm(struct mm_struct *mm)
2929 {
2930 	int nid;
2931 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2932 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2933 
2934 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2935 #ifdef CONFIG_MEMCG
2936 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2937 	mm->lru_gen.memcg = memcg;
2938 #endif
2939 	spin_lock(&mm_list->lock);
2940 
2941 	for_each_node_state(nid, N_MEMORY) {
2942 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2943 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2944 
2945 		/* the first addition since the last iteration */
2946 		if (mm_state->tail == &mm_list->fifo)
2947 			mm_state->tail = &mm->lru_gen.list;
2948 	}
2949 
2950 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2951 
2952 	spin_unlock(&mm_list->lock);
2953 }
2954 
lru_gen_del_mm(struct mm_struct * mm)2955 void lru_gen_del_mm(struct mm_struct *mm)
2956 {
2957 	int nid;
2958 	struct lru_gen_mm_list *mm_list;
2959 	struct mem_cgroup *memcg = NULL;
2960 
2961 	if (list_empty(&mm->lru_gen.list))
2962 		return;
2963 
2964 #ifdef CONFIG_MEMCG
2965 	memcg = mm->lru_gen.memcg;
2966 #endif
2967 	mm_list = get_mm_list(memcg);
2968 
2969 	spin_lock(&mm_list->lock);
2970 
2971 	for_each_node(nid) {
2972 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2973 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2974 
2975 		/* where the current iteration continues after */
2976 		if (mm_state->head == &mm->lru_gen.list)
2977 			mm_state->head = mm_state->head->prev;
2978 
2979 		/* where the last iteration ended before */
2980 		if (mm_state->tail == &mm->lru_gen.list)
2981 			mm_state->tail = mm_state->tail->next;
2982 	}
2983 
2984 	list_del_init(&mm->lru_gen.list);
2985 
2986 	spin_unlock(&mm_list->lock);
2987 
2988 #ifdef CONFIG_MEMCG
2989 	mem_cgroup_put(mm->lru_gen.memcg);
2990 	mm->lru_gen.memcg = NULL;
2991 #endif
2992 }
2993 
2994 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)2995 void lru_gen_migrate_mm(struct mm_struct *mm)
2996 {
2997 	struct mem_cgroup *memcg;
2998 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2999 
3000 	VM_WARN_ON_ONCE(task->mm != mm);
3001 	lockdep_assert_held(&task->alloc_lock);
3002 
3003 	/* for mm_update_next_owner() */
3004 	if (mem_cgroup_disabled())
3005 		return;
3006 
3007 	/* migration can happen before addition */
3008 	if (!mm->lru_gen.memcg)
3009 		return;
3010 
3011 	rcu_read_lock();
3012 	memcg = mem_cgroup_from_task(task);
3013 	rcu_read_unlock();
3014 	if (memcg == mm->lru_gen.memcg)
3015 		return;
3016 
3017 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3018 
3019 	lru_gen_del_mm(mm);
3020 	lru_gen_add_mm(mm);
3021 }
3022 #endif
3023 
3024 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
3025 
get_mm_list(struct mem_cgroup * memcg)3026 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3027 {
3028 	return NULL;
3029 }
3030 
get_mm_state(struct lruvec * lruvec)3031 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
3032 {
3033 	return NULL;
3034 }
3035 
get_next_mm(struct lru_gen_mm_walk * walk)3036 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
3037 {
3038 	return NULL;
3039 }
3040 
3041 #endif
3042 
reset_mm_stats(struct lru_gen_mm_walk * walk,bool last)3043 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
3044 {
3045 	int i;
3046 	int hist;
3047 	struct lruvec *lruvec = walk->lruvec;
3048 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3049 
3050 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3051 
3052 	hist = lru_hist_from_seq(walk->seq);
3053 
3054 	for (i = 0; i < NR_MM_STATS; i++) {
3055 		WRITE_ONCE(mm_state->stats[hist][i],
3056 			   mm_state->stats[hist][i] + walk->mm_stats[i]);
3057 		walk->mm_stats[i] = 0;
3058 	}
3059 
3060 	if (NR_HIST_GENS > 1 && last) {
3061 		hist = lru_hist_from_seq(walk->seq + 1);
3062 
3063 		for (i = 0; i < NR_MM_STATS; i++)
3064 			WRITE_ONCE(mm_state->stats[hist][i], 0);
3065 	}
3066 }
3067 
iterate_mm_list(struct lru_gen_mm_walk * walk,struct mm_struct ** iter)3068 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
3069 {
3070 	bool first = false;
3071 	bool last = false;
3072 	struct mm_struct *mm = NULL;
3073 	struct lruvec *lruvec = walk->lruvec;
3074 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3075 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3076 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3077 
3078 	/*
3079 	 * mm_state->seq is incremented after each iteration of mm_list. There
3080 	 * are three interesting cases for this page table walker:
3081 	 * 1. It tries to start a new iteration with a stale max_seq: there is
3082 	 *    nothing left to do.
3083 	 * 2. It started the next iteration: it needs to reset the Bloom filter
3084 	 *    so that a fresh set of PTE tables can be recorded.
3085 	 * 3. It ended the current iteration: it needs to reset the mm stats
3086 	 *    counters and tell its caller to increment max_seq.
3087 	 */
3088 	spin_lock(&mm_list->lock);
3089 
3090 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
3091 
3092 	if (walk->seq <= mm_state->seq)
3093 		goto done;
3094 
3095 	if (!mm_state->head)
3096 		mm_state->head = &mm_list->fifo;
3097 
3098 	if (mm_state->head == &mm_list->fifo)
3099 		first = true;
3100 
3101 	do {
3102 		mm_state->head = mm_state->head->next;
3103 		if (mm_state->head == &mm_list->fifo) {
3104 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3105 			last = true;
3106 			break;
3107 		}
3108 
3109 		/* force scan for those added after the last iteration */
3110 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3111 			mm_state->tail = mm_state->head->next;
3112 			walk->force_scan = true;
3113 		}
3114 	} while (!(mm = get_next_mm(walk)));
3115 done:
3116 	if (*iter || last)
3117 		reset_mm_stats(walk, last);
3118 
3119 	spin_unlock(&mm_list->lock);
3120 
3121 	if (mm && first)
3122 		reset_bloom_filter(mm_state, walk->seq + 1);
3123 
3124 	if (*iter)
3125 		mmput_async(*iter);
3126 
3127 	*iter = mm;
3128 
3129 	return last;
3130 }
3131 
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long seq)3132 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3133 {
3134 	bool success = false;
3135 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3136 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3137 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3138 
3139 	spin_lock(&mm_list->lock);
3140 
3141 	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3142 
3143 	if (seq > mm_state->seq) {
3144 		mm_state->head = NULL;
3145 		mm_state->tail = NULL;
3146 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3147 		success = true;
3148 	}
3149 
3150 	spin_unlock(&mm_list->lock);
3151 
3152 	return success;
3153 }
3154 
3155 /******************************************************************************
3156  *                          PID controller
3157  ******************************************************************************/
3158 
3159 /*
3160  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3161  *
3162  * The P term is refaulted/(evicted+protected) from a tier in the generation
3163  * currently being evicted; the I term is the exponential moving average of the
3164  * P term over the generations previously evicted, using the smoothing factor
3165  * 1/2; the D term isn't supported.
3166  *
3167  * The setpoint (SP) is always the first tier of one type; the process variable
3168  * (PV) is either any tier of the other type or any other tier of the same
3169  * type.
3170  *
3171  * The error is the difference between the SP and the PV; the correction is to
3172  * turn off protection when SP>PV or turn on protection when SP<PV.
3173  *
3174  * For future optimizations:
3175  * 1. The D term may discount the other two terms over time so that long-lived
3176  *    generations can resist stale information.
3177  */
3178 struct ctrl_pos {
3179 	unsigned long refaulted;
3180 	unsigned long total;
3181 	int gain;
3182 };
3183 
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3184 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3185 			  struct ctrl_pos *pos)
3186 {
3187 	int i;
3188 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3189 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3190 
3191 	pos->gain = gain;
3192 	pos->refaulted = pos->total = 0;
3193 
3194 	for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) {
3195 		pos->refaulted += lrugen->avg_refaulted[type][i] +
3196 				  atomic_long_read(&lrugen->refaulted[hist][type][i]);
3197 		pos->total += lrugen->avg_total[type][i] +
3198 			      lrugen->protected[hist][type][i] +
3199 			      atomic_long_read(&lrugen->evicted[hist][type][i]);
3200 	}
3201 }
3202 
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3203 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3204 {
3205 	int hist, tier;
3206 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3207 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3208 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3209 
3210 	lockdep_assert_held(&lruvec->lru_lock);
3211 
3212 	if (!carryover && !clear)
3213 		return;
3214 
3215 	hist = lru_hist_from_seq(seq);
3216 
3217 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3218 		if (carryover) {
3219 			unsigned long sum;
3220 
3221 			sum = lrugen->avg_refaulted[type][tier] +
3222 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3223 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3224 
3225 			sum = lrugen->avg_total[type][tier] +
3226 			      lrugen->protected[hist][type][tier] +
3227 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3228 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3229 		}
3230 
3231 		if (clear) {
3232 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3233 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3234 			WRITE_ONCE(lrugen->protected[hist][type][tier], 0);
3235 		}
3236 	}
3237 }
3238 
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3239 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3240 {
3241 	/*
3242 	 * Return true if the PV has a limited number of refaults or a lower
3243 	 * refaulted/total than the SP.
3244 	 */
3245 	return pv->refaulted < MIN_LRU_BATCH ||
3246 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3247 	       (sp->refaulted + 1) * pv->total * pv->gain;
3248 }
3249 
3250 /******************************************************************************
3251  *                          the aging
3252  ******************************************************************************/
3253 
3254 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3255 static int folio_update_gen(struct folio *folio, int gen)
3256 {
3257 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3258 
3259 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3260 
3261 	/* see the comment on LRU_REFS_FLAGS */
3262 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
3263 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
3264 		return -1;
3265 	}
3266 
3267 	do {
3268 		/* lru_gen_del_folio() has isolated this page? */
3269 		if (!(old_flags & LRU_GEN_MASK))
3270 			return -1;
3271 
3272 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3273 		new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset);
3274 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3275 
3276 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3277 }
3278 
3279 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3280 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3281 {
3282 	int type = folio_is_file_lru(folio);
3283 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3284 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3285 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3286 
3287 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3288 
3289 	do {
3290 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3291 		/* folio_update_gen() has promoted this page? */
3292 		if (new_gen >= 0 && new_gen != old_gen)
3293 			return new_gen;
3294 
3295 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3296 
3297 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3298 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3299 		/* for folio_end_writeback() */
3300 		if (reclaiming)
3301 			new_flags |= BIT(PG_reclaim);
3302 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3303 
3304 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3305 
3306 	return new_gen;
3307 }
3308 
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3309 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3310 			      int old_gen, int new_gen)
3311 {
3312 	int type = folio_is_file_lru(folio);
3313 	int zone = folio_zonenum(folio);
3314 	int delta = folio_nr_pages(folio);
3315 
3316 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3317 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3318 
3319 	walk->batched++;
3320 
3321 	walk->nr_pages[old_gen][type][zone] -= delta;
3322 	walk->nr_pages[new_gen][type][zone] += delta;
3323 }
3324 
reset_batch_size(struct lru_gen_mm_walk * walk)3325 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3326 {
3327 	int gen, type, zone;
3328 	struct lruvec *lruvec = walk->lruvec;
3329 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3330 
3331 	walk->batched = 0;
3332 
3333 	for_each_gen_type_zone(gen, type, zone) {
3334 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3335 		int delta = walk->nr_pages[gen][type][zone];
3336 
3337 		if (!delta)
3338 			continue;
3339 
3340 		walk->nr_pages[gen][type][zone] = 0;
3341 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3342 			   lrugen->nr_pages[gen][type][zone] + delta);
3343 
3344 		if (lru_gen_is_active(lruvec, gen))
3345 			lru += LRU_ACTIVE;
3346 		__update_lru_size(lruvec, lru, zone, delta);
3347 	}
3348 }
3349 
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3350 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3351 {
3352 	struct address_space *mapping;
3353 	struct vm_area_struct *vma = args->vma;
3354 	struct lru_gen_mm_walk *walk = args->private;
3355 
3356 	if (!vma_is_accessible(vma))
3357 		return true;
3358 
3359 	if (is_vm_hugetlb_page(vma))
3360 		return true;
3361 
3362 	if (!vma_has_recency(vma))
3363 		return true;
3364 
3365 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3366 		return true;
3367 
3368 	if (vma == get_gate_vma(vma->vm_mm))
3369 		return true;
3370 
3371 	if (vma_is_anonymous(vma))
3372 		return !walk->swappiness;
3373 
3374 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3375 		return true;
3376 
3377 	mapping = vma->vm_file->f_mapping;
3378 	if (mapping_unevictable(mapping))
3379 		return true;
3380 
3381 	if (shmem_mapping(mapping))
3382 		return !walk->swappiness;
3383 
3384 	if (walk->swappiness > MAX_SWAPPINESS)
3385 		return true;
3386 
3387 	/* to exclude special mappings like dax, etc. */
3388 	return !mapping->a_ops->read_folio;
3389 }
3390 
3391 /*
3392  * Some userspace memory allocators map many single-page VMAs. Instead of
3393  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3394  * table to reduce zigzags and improve cache performance.
3395  */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3396 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3397 			 unsigned long *vm_start, unsigned long *vm_end)
3398 {
3399 	unsigned long start = round_up(*vm_end, size);
3400 	unsigned long end = (start | ~mask) + 1;
3401 	VMA_ITERATOR(vmi, args->mm, start);
3402 
3403 	VM_WARN_ON_ONCE(mask & size);
3404 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3405 
3406 	for_each_vma(vmi, args->vma) {
3407 		if (end && end <= args->vma->vm_start)
3408 			return false;
3409 
3410 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3411 			continue;
3412 
3413 		*vm_start = max(start, args->vma->vm_start);
3414 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3415 
3416 		return true;
3417 	}
3418 
3419 	return false;
3420 }
3421 
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3422 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3423 				 struct pglist_data *pgdat)
3424 {
3425 	unsigned long pfn = pte_pfn(pte);
3426 
3427 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3428 
3429 	if (!pte_present(pte) || is_zero_pfn(pfn))
3430 		return -1;
3431 
3432 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3433 		return -1;
3434 
3435 	if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3436 		return -1;
3437 
3438 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3439 		return -1;
3440 
3441 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3442 		return -1;
3443 
3444 	return pfn;
3445 }
3446 
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3447 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3448 				 struct pglist_data *pgdat)
3449 {
3450 	unsigned long pfn = pmd_pfn(pmd);
3451 
3452 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3453 
3454 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3455 		return -1;
3456 
3457 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3458 		return -1;
3459 
3460 	if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3461 		return -1;
3462 
3463 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3464 		return -1;
3465 
3466 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3467 		return -1;
3468 
3469 	return pfn;
3470 }
3471 
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat)3472 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3473 				   struct pglist_data *pgdat)
3474 {
3475 	struct folio *folio = pfn_folio(pfn);
3476 
3477 	if (folio_lru_gen(folio) < 0)
3478 		return NULL;
3479 
3480 	if (folio_nid(folio) != pgdat->node_id)
3481 		return NULL;
3482 
3483 	if (folio_memcg(folio) != memcg)
3484 		return NULL;
3485 
3486 	return folio;
3487 }
3488 
suitable_to_scan(int total,int young)3489 static bool suitable_to_scan(int total, int young)
3490 {
3491 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3492 
3493 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3494 	return young * n >= total;
3495 }
3496 
walk_update_folio(struct lru_gen_mm_walk * walk,struct folio * folio,int new_gen,bool dirty)3497 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio,
3498 			      int new_gen, bool dirty)
3499 {
3500 	int old_gen;
3501 
3502 	if (!folio)
3503 		return;
3504 
3505 	if (dirty && !folio_test_dirty(folio) &&
3506 	    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3507 	      !folio_test_swapcache(folio)))
3508 		folio_mark_dirty(folio);
3509 
3510 	if (walk) {
3511 		old_gen = folio_update_gen(folio, new_gen);
3512 		if (old_gen >= 0 && old_gen != new_gen)
3513 			update_batch_size(walk, folio, old_gen, new_gen);
3514 	} else if (lru_gen_set_refs(folio)) {
3515 		old_gen = folio_lru_gen(folio);
3516 		if (old_gen >= 0 && old_gen != new_gen)
3517 			folio_activate(folio);
3518 	}
3519 }
3520 
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3521 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3522 			   struct mm_walk *args)
3523 {
3524 	int i;
3525 	bool dirty;
3526 	pte_t *pte;
3527 	spinlock_t *ptl;
3528 	unsigned long addr;
3529 	int total = 0;
3530 	int young = 0;
3531 	struct folio *last = NULL;
3532 	struct lru_gen_mm_walk *walk = args->private;
3533 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3534 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3535 	DEFINE_MAX_SEQ(walk->lruvec);
3536 	int gen = lru_gen_from_seq(max_seq);
3537 	pmd_t pmdval;
3538 
3539 	pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl);
3540 	if (!pte)
3541 		return false;
3542 
3543 	if (!spin_trylock(ptl)) {
3544 		pte_unmap(pte);
3545 		return true;
3546 	}
3547 
3548 	if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3549 		pte_unmap_unlock(pte, ptl);
3550 		return false;
3551 	}
3552 
3553 	arch_enter_lazy_mmu_mode();
3554 restart:
3555 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3556 		unsigned long pfn;
3557 		struct folio *folio;
3558 		pte_t ptent = ptep_get(pte + i);
3559 
3560 		total++;
3561 		walk->mm_stats[MM_LEAF_TOTAL]++;
3562 
3563 		pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3564 		if (pfn == -1)
3565 			continue;
3566 
3567 		folio = get_pfn_folio(pfn, memcg, pgdat);
3568 		if (!folio)
3569 			continue;
3570 
3571 		if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3572 			continue;
3573 
3574 		if (last != folio) {
3575 			walk_update_folio(walk, last, gen, dirty);
3576 
3577 			last = folio;
3578 			dirty = false;
3579 		}
3580 
3581 		if (pte_dirty(ptent))
3582 			dirty = true;
3583 
3584 		young++;
3585 		walk->mm_stats[MM_LEAF_YOUNG]++;
3586 	}
3587 
3588 	walk_update_folio(walk, last, gen, dirty);
3589 	last = NULL;
3590 
3591 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3592 		goto restart;
3593 
3594 	arch_leave_lazy_mmu_mode();
3595 	pte_unmap_unlock(pte, ptl);
3596 
3597 	return suitable_to_scan(total, young);
3598 }
3599 
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)3600 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3601 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3602 {
3603 	int i;
3604 	bool dirty;
3605 	pmd_t *pmd;
3606 	spinlock_t *ptl;
3607 	struct folio *last = NULL;
3608 	struct lru_gen_mm_walk *walk = args->private;
3609 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3610 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3611 	DEFINE_MAX_SEQ(walk->lruvec);
3612 	int gen = lru_gen_from_seq(max_seq);
3613 
3614 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3615 
3616 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3617 	if (*first == -1) {
3618 		*first = addr;
3619 		bitmap_zero(bitmap, MIN_LRU_BATCH);
3620 		return;
3621 	}
3622 
3623 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3624 	if (i && i <= MIN_LRU_BATCH) {
3625 		__set_bit(i - 1, bitmap);
3626 		return;
3627 	}
3628 
3629 	pmd = pmd_offset(pud, *first);
3630 
3631 	ptl = pmd_lockptr(args->mm, pmd);
3632 	if (!spin_trylock(ptl))
3633 		goto done;
3634 
3635 	arch_enter_lazy_mmu_mode();
3636 
3637 	do {
3638 		unsigned long pfn;
3639 		struct folio *folio;
3640 
3641 		/* don't round down the first address */
3642 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3643 
3644 		if (!pmd_present(pmd[i]))
3645 			goto next;
3646 
3647 		if (!pmd_trans_huge(pmd[i])) {
3648 			if (!walk->force_scan && should_clear_pmd_young() &&
3649 			    !mm_has_notifiers(args->mm))
3650 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3651 			goto next;
3652 		}
3653 
3654 		pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3655 		if (pfn == -1)
3656 			goto next;
3657 
3658 		folio = get_pfn_folio(pfn, memcg, pgdat);
3659 		if (!folio)
3660 			goto next;
3661 
3662 		if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3663 			goto next;
3664 
3665 		if (last != folio) {
3666 			walk_update_folio(walk, last, gen, dirty);
3667 
3668 			last = folio;
3669 			dirty = false;
3670 		}
3671 
3672 		if (pmd_dirty(pmd[i]))
3673 			dirty = true;
3674 
3675 		walk->mm_stats[MM_LEAF_YOUNG]++;
3676 next:
3677 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3678 	} while (i <= MIN_LRU_BATCH);
3679 
3680 	walk_update_folio(walk, last, gen, dirty);
3681 
3682 	arch_leave_lazy_mmu_mode();
3683 	spin_unlock(ptl);
3684 done:
3685 	*first = -1;
3686 }
3687 
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)3688 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3689 			   struct mm_walk *args)
3690 {
3691 	int i;
3692 	pmd_t *pmd;
3693 	unsigned long next;
3694 	unsigned long addr;
3695 	struct vm_area_struct *vma;
3696 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3697 	unsigned long first = -1;
3698 	struct lru_gen_mm_walk *walk = args->private;
3699 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3700 
3701 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3702 
3703 	/*
3704 	 * Finish an entire PMD in two passes: the first only reaches to PTE
3705 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3706 	 * the PMD lock to clear the accessed bit in PMD entries.
3707 	 */
3708 	pmd = pmd_offset(pud, start & PUD_MASK);
3709 restart:
3710 	/* walk_pte_range() may call get_next_vma() */
3711 	vma = args->vma;
3712 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3713 		pmd_t val = pmdp_get_lockless(pmd + i);
3714 
3715 		next = pmd_addr_end(addr, end);
3716 
3717 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3718 			walk->mm_stats[MM_LEAF_TOTAL]++;
3719 			continue;
3720 		}
3721 
3722 		if (pmd_trans_huge(val)) {
3723 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3724 			unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3725 
3726 			walk->mm_stats[MM_LEAF_TOTAL]++;
3727 
3728 			if (pfn != -1)
3729 				walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3730 			continue;
3731 		}
3732 
3733 		if (!walk->force_scan && should_clear_pmd_young() &&
3734 		    !mm_has_notifiers(args->mm)) {
3735 			if (!pmd_young(val))
3736 				continue;
3737 
3738 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3739 		}
3740 
3741 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3742 			continue;
3743 
3744 		walk->mm_stats[MM_NONLEAF_FOUND]++;
3745 
3746 		if (!walk_pte_range(&val, addr, next, args))
3747 			continue;
3748 
3749 		walk->mm_stats[MM_NONLEAF_ADDED]++;
3750 
3751 		/* carry over to the next generation */
3752 		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3753 	}
3754 
3755 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3756 
3757 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3758 		goto restart;
3759 }
3760 
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)3761 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3762 			  struct mm_walk *args)
3763 {
3764 	int i;
3765 	pud_t *pud;
3766 	unsigned long addr;
3767 	unsigned long next;
3768 	struct lru_gen_mm_walk *walk = args->private;
3769 
3770 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3771 
3772 	pud = pud_offset(p4d, start & P4D_MASK);
3773 restart:
3774 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3775 		pud_t val = READ_ONCE(pud[i]);
3776 
3777 		next = pud_addr_end(addr, end);
3778 
3779 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3780 			continue;
3781 
3782 		walk_pmd_range(&val, addr, next, args);
3783 
3784 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3785 			end = (addr | ~PUD_MASK) + 1;
3786 			goto done;
3787 		}
3788 	}
3789 
3790 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3791 		goto restart;
3792 
3793 	end = round_up(end, P4D_SIZE);
3794 done:
3795 	if (!end || !args->vma)
3796 		return 1;
3797 
3798 	walk->next_addr = max(end, args->vma->vm_start);
3799 
3800 	return -EAGAIN;
3801 }
3802 
walk_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3803 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3804 {
3805 	static const struct mm_walk_ops mm_walk_ops = {
3806 		.test_walk = should_skip_vma,
3807 		.p4d_entry = walk_pud_range,
3808 		.walk_lock = PGWALK_RDLOCK,
3809 	};
3810 	int err;
3811 	struct lruvec *lruvec = walk->lruvec;
3812 
3813 	walk->next_addr = FIRST_USER_ADDRESS;
3814 
3815 	do {
3816 		DEFINE_MAX_SEQ(lruvec);
3817 
3818 		err = -EBUSY;
3819 
3820 		/* another thread might have called inc_max_seq() */
3821 		if (walk->seq != max_seq)
3822 			break;
3823 
3824 		/* the caller might be holding the lock for write */
3825 		if (mmap_read_trylock(mm)) {
3826 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3827 
3828 			mmap_read_unlock(mm);
3829 		}
3830 
3831 		if (walk->batched) {
3832 			spin_lock_irq(&lruvec->lru_lock);
3833 			reset_batch_size(walk);
3834 			spin_unlock_irq(&lruvec->lru_lock);
3835 		}
3836 
3837 		cond_resched();
3838 	} while (err == -EAGAIN);
3839 }
3840 
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)3841 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3842 {
3843 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3844 
3845 	if (pgdat && current_is_kswapd()) {
3846 		VM_WARN_ON_ONCE(walk);
3847 
3848 		walk = &pgdat->mm_walk;
3849 	} else if (!walk && force_alloc) {
3850 		VM_WARN_ON_ONCE(current_is_kswapd());
3851 
3852 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3853 	}
3854 
3855 	current->reclaim_state->mm_walk = walk;
3856 
3857 	return walk;
3858 }
3859 
clear_mm_walk(void)3860 static void clear_mm_walk(void)
3861 {
3862 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3863 
3864 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3865 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3866 
3867 	current->reclaim_state->mm_walk = NULL;
3868 
3869 	if (!current_is_kswapd())
3870 		kfree(walk);
3871 }
3872 
inc_min_seq(struct lruvec * lruvec,int type,int swappiness)3873 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness)
3874 {
3875 	int zone;
3876 	int remaining = MAX_LRU_BATCH;
3877 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3878 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3879 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3880 
3881 	/* For file type, skip the check if swappiness is anon only */
3882 	if (type && (swappiness == SWAPPINESS_ANON_ONLY))
3883 		goto done;
3884 
3885 	/* For anon type, skip the check if swappiness is zero (file only) */
3886 	if (!type && !swappiness)
3887 		goto done;
3888 
3889 	/* prevent cold/hot inversion if the type is evictable */
3890 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3891 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3892 
3893 		while (!list_empty(head)) {
3894 			struct folio *folio = lru_to_folio(head);
3895 			int refs = folio_lru_refs(folio);
3896 			bool workingset = folio_test_workingset(folio);
3897 
3898 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3899 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3900 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3901 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3902 
3903 			new_gen = folio_inc_gen(lruvec, folio, false);
3904 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3905 
3906 			/* don't count the workingset being lazily promoted */
3907 			if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
3908 				int tier = lru_tier_from_refs(refs, workingset);
3909 				int delta = folio_nr_pages(folio);
3910 
3911 				WRITE_ONCE(lrugen->protected[hist][type][tier],
3912 					   lrugen->protected[hist][type][tier] + delta);
3913 			}
3914 
3915 			if (!--remaining)
3916 				return false;
3917 		}
3918 	}
3919 done:
3920 	reset_ctrl_pos(lruvec, type, true);
3921 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3922 
3923 	return true;
3924 }
3925 
try_to_inc_min_seq(struct lruvec * lruvec,int swappiness)3926 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness)
3927 {
3928 	int gen, type, zone;
3929 	bool success = false;
3930 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3931 	DEFINE_MIN_SEQ(lruvec);
3932 
3933 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3934 
3935 	/* find the oldest populated generation */
3936 	for_each_evictable_type(type, swappiness) {
3937 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3938 			gen = lru_gen_from_seq(min_seq[type]);
3939 
3940 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3941 				if (!list_empty(&lrugen->folios[gen][type][zone]))
3942 					goto next;
3943 			}
3944 
3945 			min_seq[type]++;
3946 		}
3947 next:
3948 		;
3949 	}
3950 
3951 	/* see the comment on lru_gen_folio */
3952 	if (swappiness && swappiness <= MAX_SWAPPINESS) {
3953 		unsigned long seq = lrugen->max_seq - MIN_NR_GENS;
3954 
3955 		if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq)
3956 			min_seq[LRU_GEN_ANON] = seq;
3957 		else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq)
3958 			min_seq[LRU_GEN_FILE] = seq;
3959 	}
3960 
3961 	for_each_evictable_type(type, swappiness) {
3962 		if (min_seq[type] <= lrugen->min_seq[type])
3963 			continue;
3964 
3965 		reset_ctrl_pos(lruvec, type, true);
3966 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3967 		success = true;
3968 	}
3969 
3970 	return success;
3971 }
3972 
inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness)3973 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness)
3974 {
3975 	bool success;
3976 	int prev, next;
3977 	int type, zone;
3978 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3979 restart:
3980 	if (seq < READ_ONCE(lrugen->max_seq))
3981 		return false;
3982 
3983 	spin_lock_irq(&lruvec->lru_lock);
3984 
3985 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3986 
3987 	success = seq == lrugen->max_seq;
3988 	if (!success)
3989 		goto unlock;
3990 
3991 	for (type = 0; type < ANON_AND_FILE; type++) {
3992 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3993 			continue;
3994 
3995 		if (inc_min_seq(lruvec, type, swappiness))
3996 			continue;
3997 
3998 		spin_unlock_irq(&lruvec->lru_lock);
3999 		cond_resched();
4000 		goto restart;
4001 	}
4002 
4003 	/*
4004 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4005 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4006 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4007 	 * overlap, cold/hot inversion happens.
4008 	 */
4009 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4010 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4011 
4012 	for (type = 0; type < ANON_AND_FILE; type++) {
4013 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4014 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4015 			long delta = lrugen->nr_pages[prev][type][zone] -
4016 				     lrugen->nr_pages[next][type][zone];
4017 
4018 			if (!delta)
4019 				continue;
4020 
4021 			__update_lru_size(lruvec, lru, zone, delta);
4022 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4023 		}
4024 	}
4025 
4026 	for (type = 0; type < ANON_AND_FILE; type++)
4027 		reset_ctrl_pos(lruvec, type, false);
4028 
4029 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4030 	/* make sure preceding modifications appear */
4031 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4032 unlock:
4033 	spin_unlock_irq(&lruvec->lru_lock);
4034 
4035 	return success;
4036 }
4037 
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)4038 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
4039 			       int swappiness, bool force_scan)
4040 {
4041 	bool success;
4042 	struct lru_gen_mm_walk *walk;
4043 	struct mm_struct *mm = NULL;
4044 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4045 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4046 
4047 	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
4048 
4049 	if (!mm_state)
4050 		return inc_max_seq(lruvec, seq, swappiness);
4051 
4052 	/* see the comment in iterate_mm_list() */
4053 	if (seq <= READ_ONCE(mm_state->seq))
4054 		return false;
4055 
4056 	/*
4057 	 * If the hardware doesn't automatically set the accessed bit, fallback
4058 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4059 	 * handful of PTEs. Spreading the work out over a period of time usually
4060 	 * is less efficient, but it avoids bursty page faults.
4061 	 */
4062 	if (!should_walk_mmu()) {
4063 		success = iterate_mm_list_nowalk(lruvec, seq);
4064 		goto done;
4065 	}
4066 
4067 	walk = set_mm_walk(NULL, true);
4068 	if (!walk) {
4069 		success = iterate_mm_list_nowalk(lruvec, seq);
4070 		goto done;
4071 	}
4072 
4073 	walk->lruvec = lruvec;
4074 	walk->seq = seq;
4075 	walk->swappiness = swappiness;
4076 	walk->force_scan = force_scan;
4077 
4078 	do {
4079 		success = iterate_mm_list(walk, &mm);
4080 		if (mm)
4081 			walk_mm(mm, walk);
4082 	} while (mm);
4083 done:
4084 	if (success) {
4085 		success = inc_max_seq(lruvec, seq, swappiness);
4086 		WARN_ON_ONCE(!success);
4087 	}
4088 
4089 	return success;
4090 }
4091 
4092 /******************************************************************************
4093  *                          working set protection
4094  ******************************************************************************/
4095 
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)4096 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4097 {
4098 	int priority;
4099 	unsigned long reclaimable;
4100 
4101 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4102 		return;
4103 	/*
4104 	 * Determine the initial priority based on
4105 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4106 	 * where reclaimed_to_scanned_ratio = inactive / total.
4107 	 */
4108 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4109 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4110 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4111 
4112 	/* round down reclaimable and round up sc->nr_to_reclaim */
4113 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4114 
4115 	/*
4116 	 * The estimation is based on LRU pages only, so cap it to prevent
4117 	 * overshoots of shrinker objects by large margins.
4118 	 */
4119 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4120 }
4121 
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)4122 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4123 {
4124 	int gen, type, zone;
4125 	unsigned long total = 0;
4126 	int swappiness = get_swappiness(lruvec, sc);
4127 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4128 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4129 	DEFINE_MAX_SEQ(lruvec);
4130 	DEFINE_MIN_SEQ(lruvec);
4131 
4132 	for_each_evictable_type(type, swappiness) {
4133 		unsigned long seq;
4134 
4135 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4136 			gen = lru_gen_from_seq(seq);
4137 
4138 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4139 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4140 		}
4141 	}
4142 
4143 	/* whether the size is big enough to be helpful */
4144 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4145 }
4146 
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4147 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4148 				  unsigned long min_ttl)
4149 {
4150 	int gen;
4151 	unsigned long birth;
4152 	int swappiness = get_swappiness(lruvec, sc);
4153 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4154 	DEFINE_MIN_SEQ(lruvec);
4155 
4156 	if (mem_cgroup_below_min(NULL, memcg))
4157 		return false;
4158 
4159 	if (!lruvec_is_sizable(lruvec, sc))
4160 		return false;
4161 
4162 	gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness));
4163 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4164 
4165 	return time_is_before_jiffies(birth + min_ttl);
4166 }
4167 
4168 /* to protect the working set of the last N jiffies */
4169 static unsigned long lru_gen_min_ttl __read_mostly;
4170 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4171 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4172 {
4173 	struct mem_cgroup *memcg;
4174 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4175 	bool reclaimable = !min_ttl;
4176 
4177 	VM_WARN_ON_ONCE(!current_is_kswapd());
4178 
4179 	set_initial_priority(pgdat, sc);
4180 
4181 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4182 	do {
4183 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4184 
4185 		mem_cgroup_calculate_protection(NULL, memcg);
4186 
4187 		if (!reclaimable)
4188 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4189 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4190 
4191 	/*
4192 	 * The main goal is to OOM kill if every generation from all memcgs is
4193 	 * younger than min_ttl. However, another possibility is all memcgs are
4194 	 * either too small or below min.
4195 	 */
4196 	if (!reclaimable && mutex_trylock(&oom_lock)) {
4197 		struct oom_control oc = {
4198 			.gfp_mask = sc->gfp_mask,
4199 		};
4200 
4201 		out_of_memory(&oc);
4202 
4203 		mutex_unlock(&oom_lock);
4204 	}
4205 }
4206 
4207 /******************************************************************************
4208  *                          rmap/PT walk feedback
4209  ******************************************************************************/
4210 
4211 /*
4212  * This function exploits spatial locality when shrink_folio_list() walks the
4213  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4214  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4215  * the PTE table to the Bloom filter. This forms a feedback loop between the
4216  * eviction and the aging.
4217  */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4218 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4219 {
4220 	int i;
4221 	bool dirty;
4222 	unsigned long start;
4223 	unsigned long end;
4224 	struct lru_gen_mm_walk *walk;
4225 	struct folio *last = NULL;
4226 	int young = 1;
4227 	pte_t *pte = pvmw->pte;
4228 	unsigned long addr = pvmw->address;
4229 	struct vm_area_struct *vma = pvmw->vma;
4230 	struct folio *folio = pfn_folio(pvmw->pfn);
4231 	struct mem_cgroup *memcg = folio_memcg(folio);
4232 	struct pglist_data *pgdat = folio_pgdat(folio);
4233 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4234 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4235 	DEFINE_MAX_SEQ(lruvec);
4236 	int gen = lru_gen_from_seq(max_seq);
4237 
4238 	lockdep_assert_held(pvmw->ptl);
4239 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4240 
4241 	if (!ptep_clear_young_notify(vma, addr, pte))
4242 		return false;
4243 
4244 	if (spin_is_contended(pvmw->ptl))
4245 		return true;
4246 
4247 	/* exclude special VMAs containing anon pages from COW */
4248 	if (vma->vm_flags & VM_SPECIAL)
4249 		return true;
4250 
4251 	/* avoid taking the LRU lock under the PTL when possible */
4252 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4253 
4254 	start = max(addr & PMD_MASK, vma->vm_start);
4255 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4256 
4257 	if (end - start == PAGE_SIZE)
4258 		return true;
4259 
4260 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4261 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4262 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4263 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4264 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4265 		else {
4266 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4267 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4268 		}
4269 	}
4270 
4271 	arch_enter_lazy_mmu_mode();
4272 
4273 	pte -= (addr - start) / PAGE_SIZE;
4274 
4275 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4276 		unsigned long pfn;
4277 		pte_t ptent = ptep_get(pte + i);
4278 
4279 		pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4280 		if (pfn == -1)
4281 			continue;
4282 
4283 		folio = get_pfn_folio(pfn, memcg, pgdat);
4284 		if (!folio)
4285 			continue;
4286 
4287 		if (!ptep_clear_young_notify(vma, addr, pte + i))
4288 			continue;
4289 
4290 		if (last != folio) {
4291 			walk_update_folio(walk, last, gen, dirty);
4292 
4293 			last = folio;
4294 			dirty = false;
4295 		}
4296 
4297 		if (pte_dirty(ptent))
4298 			dirty = true;
4299 
4300 		young++;
4301 	}
4302 
4303 	walk_update_folio(walk, last, gen, dirty);
4304 
4305 	arch_leave_lazy_mmu_mode();
4306 
4307 	/* feedback from rmap walkers to page table walkers */
4308 	if (mm_state && suitable_to_scan(i, young))
4309 		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4310 
4311 	return true;
4312 }
4313 
4314 /******************************************************************************
4315  *                          memcg LRU
4316  ******************************************************************************/
4317 
4318 /* see the comment on MEMCG_NR_GENS */
4319 enum {
4320 	MEMCG_LRU_NOP,
4321 	MEMCG_LRU_HEAD,
4322 	MEMCG_LRU_TAIL,
4323 	MEMCG_LRU_OLD,
4324 	MEMCG_LRU_YOUNG,
4325 };
4326 
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4327 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4328 {
4329 	int seg;
4330 	int old, new;
4331 	unsigned long flags;
4332 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4333 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4334 
4335 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4336 
4337 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4338 
4339 	seg = 0;
4340 	new = old = lruvec->lrugen.gen;
4341 
4342 	/* see the comment on MEMCG_NR_GENS */
4343 	if (op == MEMCG_LRU_HEAD)
4344 		seg = MEMCG_LRU_HEAD;
4345 	else if (op == MEMCG_LRU_TAIL)
4346 		seg = MEMCG_LRU_TAIL;
4347 	else if (op == MEMCG_LRU_OLD)
4348 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4349 	else if (op == MEMCG_LRU_YOUNG)
4350 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4351 	else
4352 		VM_WARN_ON_ONCE(true);
4353 
4354 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4355 	WRITE_ONCE(lruvec->lrugen.gen, new);
4356 
4357 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4358 
4359 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4360 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4361 	else
4362 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4363 
4364 	pgdat->memcg_lru.nr_memcgs[old]--;
4365 	pgdat->memcg_lru.nr_memcgs[new]++;
4366 
4367 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4368 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4369 
4370 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4371 }
4372 
4373 #ifdef CONFIG_MEMCG
4374 
lru_gen_online_memcg(struct mem_cgroup * memcg)4375 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4376 {
4377 	int gen;
4378 	int nid;
4379 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4380 
4381 	for_each_node(nid) {
4382 		struct pglist_data *pgdat = NODE_DATA(nid);
4383 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4384 
4385 		spin_lock_irq(&pgdat->memcg_lru.lock);
4386 
4387 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4388 
4389 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4390 
4391 		lruvec->lrugen.gen = gen;
4392 
4393 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4394 		pgdat->memcg_lru.nr_memcgs[gen]++;
4395 
4396 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4397 	}
4398 }
4399 
lru_gen_offline_memcg(struct mem_cgroup * memcg)4400 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4401 {
4402 	int nid;
4403 
4404 	for_each_node(nid) {
4405 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4406 
4407 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4408 	}
4409 }
4410 
lru_gen_release_memcg(struct mem_cgroup * memcg)4411 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4412 {
4413 	int gen;
4414 	int nid;
4415 
4416 	for_each_node(nid) {
4417 		struct pglist_data *pgdat = NODE_DATA(nid);
4418 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4419 
4420 		spin_lock_irq(&pgdat->memcg_lru.lock);
4421 
4422 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4423 			goto unlock;
4424 
4425 		gen = lruvec->lrugen.gen;
4426 
4427 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4428 		pgdat->memcg_lru.nr_memcgs[gen]--;
4429 
4430 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4431 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4432 unlock:
4433 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4434 	}
4435 }
4436 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4437 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4438 {
4439 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4440 
4441 	/* see the comment on MEMCG_NR_GENS */
4442 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4443 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4444 }
4445 
4446 #endif /* CONFIG_MEMCG */
4447 
4448 /******************************************************************************
4449  *                          the eviction
4450  ******************************************************************************/
4451 
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4452 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4453 		       int tier_idx)
4454 {
4455 	bool success;
4456 	bool dirty, writeback;
4457 	int gen = folio_lru_gen(folio);
4458 	int type = folio_is_file_lru(folio);
4459 	int zone = folio_zonenum(folio);
4460 	int delta = folio_nr_pages(folio);
4461 	int refs = folio_lru_refs(folio);
4462 	bool workingset = folio_test_workingset(folio);
4463 	int tier = lru_tier_from_refs(refs, workingset);
4464 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4465 
4466 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4467 
4468 	/* unevictable */
4469 	if (!folio_evictable(folio)) {
4470 		success = lru_gen_del_folio(lruvec, folio, true);
4471 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4472 		folio_set_unevictable(folio);
4473 		lruvec_add_folio(lruvec, folio);
4474 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4475 		return true;
4476 	}
4477 
4478 	/* promoted */
4479 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4480 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4481 		return true;
4482 	}
4483 
4484 	/* protected */
4485 	if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) {
4486 		gen = folio_inc_gen(lruvec, folio, false);
4487 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4488 
4489 		/* don't count the workingset being lazily promoted */
4490 		if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
4491 			int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4492 
4493 			WRITE_ONCE(lrugen->protected[hist][type][tier],
4494 				   lrugen->protected[hist][type][tier] + delta);
4495 		}
4496 		return true;
4497 	}
4498 
4499 	/* ineligible */
4500 	if (!folio_test_lru(folio) || zone > sc->reclaim_idx) {
4501 		gen = folio_inc_gen(lruvec, folio, false);
4502 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4503 		return true;
4504 	}
4505 
4506 	dirty = folio_test_dirty(folio);
4507 	writeback = folio_test_writeback(folio);
4508 	if (type == LRU_GEN_FILE && dirty) {
4509 		sc->nr.file_taken += delta;
4510 		if (!writeback)
4511 			sc->nr.unqueued_dirty += delta;
4512 	}
4513 
4514 	/* waiting for writeback */
4515 	if (writeback || (type == LRU_GEN_FILE && dirty)) {
4516 		gen = folio_inc_gen(lruvec, folio, true);
4517 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4518 		return true;
4519 	}
4520 
4521 	return false;
4522 }
4523 
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4524 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4525 {
4526 	bool success;
4527 
4528 	/* swap constrained */
4529 	if (!(sc->gfp_mask & __GFP_IO) &&
4530 	    (folio_test_dirty(folio) ||
4531 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4532 		return false;
4533 
4534 	/* raced with release_pages() */
4535 	if (!folio_try_get(folio))
4536 		return false;
4537 
4538 	/* raced with another isolation */
4539 	if (!folio_test_clear_lru(folio)) {
4540 		folio_put(folio);
4541 		return false;
4542 	}
4543 
4544 	/* see the comment on LRU_REFS_FLAGS */
4545 	if (!folio_test_referenced(folio))
4546 		set_mask_bits(&folio->flags, LRU_REFS_MASK, 0);
4547 
4548 	/* for shrink_folio_list() */
4549 	folio_clear_reclaim(folio);
4550 
4551 	success = lru_gen_del_folio(lruvec, folio, true);
4552 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4553 
4554 	return true;
4555 }
4556 
scan_folios(struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4557 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4558 		       int type, int tier, struct list_head *list)
4559 {
4560 	int i;
4561 	int gen;
4562 	enum vm_event_item item;
4563 	int sorted = 0;
4564 	int scanned = 0;
4565 	int isolated = 0;
4566 	int skipped = 0;
4567 	int remaining = MAX_LRU_BATCH;
4568 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4569 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4570 
4571 	VM_WARN_ON_ONCE(!list_empty(list));
4572 
4573 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4574 		return 0;
4575 
4576 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4577 
4578 	for (i = MAX_NR_ZONES; i > 0; i--) {
4579 		LIST_HEAD(moved);
4580 		int skipped_zone = 0;
4581 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4582 		struct list_head *head = &lrugen->folios[gen][type][zone];
4583 
4584 		while (!list_empty(head)) {
4585 			struct folio *folio = lru_to_folio(head);
4586 			int delta = folio_nr_pages(folio);
4587 
4588 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4589 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4590 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4591 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4592 
4593 			scanned += delta;
4594 
4595 			if (sort_folio(lruvec, folio, sc, tier))
4596 				sorted += delta;
4597 			else if (isolate_folio(lruvec, folio, sc)) {
4598 				list_add(&folio->lru, list);
4599 				isolated += delta;
4600 			} else {
4601 				list_move(&folio->lru, &moved);
4602 				skipped_zone += delta;
4603 			}
4604 
4605 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4606 				break;
4607 		}
4608 
4609 		if (skipped_zone) {
4610 			list_splice(&moved, head);
4611 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4612 			skipped += skipped_zone;
4613 		}
4614 
4615 		if (!remaining || isolated >= MIN_LRU_BATCH)
4616 			break;
4617 	}
4618 
4619 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
4620 	if (!cgroup_reclaim(sc)) {
4621 		__count_vm_events(item, isolated);
4622 		__count_vm_events(PGREFILL, sorted);
4623 	}
4624 	count_memcg_events(memcg, item, isolated);
4625 	count_memcg_events(memcg, PGREFILL, sorted);
4626 	__count_vm_events(PGSCAN_ANON + type, isolated);
4627 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4628 				scanned, skipped, isolated,
4629 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4630 	if (type == LRU_GEN_FILE)
4631 		sc->nr.file_taken += isolated;
4632 	/*
4633 	 * There might not be eligible folios due to reclaim_idx. Check the
4634 	 * remaining to prevent livelock if it's not making progress.
4635 	 */
4636 	return isolated || !remaining ? scanned : 0;
4637 }
4638 
get_tier_idx(struct lruvec * lruvec,int type)4639 static int get_tier_idx(struct lruvec *lruvec, int type)
4640 {
4641 	int tier;
4642 	struct ctrl_pos sp, pv;
4643 
4644 	/*
4645 	 * To leave a margin for fluctuations, use a larger gain factor (2:3).
4646 	 * This value is chosen because any other tier would have at least twice
4647 	 * as many refaults as the first tier.
4648 	 */
4649 	read_ctrl_pos(lruvec, type, 0, 2, &sp);
4650 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4651 		read_ctrl_pos(lruvec, type, tier, 3, &pv);
4652 		if (!positive_ctrl_err(&sp, &pv))
4653 			break;
4654 	}
4655 
4656 	return tier - 1;
4657 }
4658 
get_type_to_scan(struct lruvec * lruvec,int swappiness)4659 static int get_type_to_scan(struct lruvec *lruvec, int swappiness)
4660 {
4661 	struct ctrl_pos sp, pv;
4662 
4663 	if (swappiness <= MIN_SWAPPINESS + 1)
4664 		return LRU_GEN_FILE;
4665 
4666 	if (swappiness >= MAX_SWAPPINESS)
4667 		return LRU_GEN_ANON;
4668 	/*
4669 	 * Compare the sum of all tiers of anon with that of file to determine
4670 	 * which type to scan.
4671 	 */
4672 	read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp);
4673 	read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv);
4674 
4675 	return positive_ctrl_err(&sp, &pv);
4676 }
4677 
isolate_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)4678 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4679 			  int *type_scanned, struct list_head *list)
4680 {
4681 	int i;
4682 	int type = get_type_to_scan(lruvec, swappiness);
4683 
4684 	for_each_evictable_type(i, swappiness) {
4685 		int scanned;
4686 		int tier = get_tier_idx(lruvec, type);
4687 
4688 		*type_scanned = type;
4689 
4690 		scanned = scan_folios(lruvec, sc, type, tier, list);
4691 		if (scanned)
4692 			return scanned;
4693 
4694 		type = !type;
4695 	}
4696 
4697 	return 0;
4698 }
4699 
evict_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4700 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4701 {
4702 	int type;
4703 	int scanned;
4704 	int reclaimed;
4705 	LIST_HEAD(list);
4706 	LIST_HEAD(clean);
4707 	struct folio *folio;
4708 	struct folio *next;
4709 	enum vm_event_item item;
4710 	struct reclaim_stat stat;
4711 	struct lru_gen_mm_walk *walk;
4712 	bool skip_retry = false;
4713 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4714 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4715 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4716 
4717 	spin_lock_irq(&lruvec->lru_lock);
4718 
4719 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4720 
4721 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4722 
4723 	if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq)
4724 		scanned = 0;
4725 
4726 	spin_unlock_irq(&lruvec->lru_lock);
4727 
4728 	if (list_empty(&list))
4729 		return scanned;
4730 retry:
4731 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg);
4732 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4733 	sc->nr_reclaimed += reclaimed;
4734 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4735 			scanned, reclaimed, &stat, sc->priority,
4736 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4737 
4738 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4739 		DEFINE_MIN_SEQ(lruvec);
4740 
4741 		if (!folio_evictable(folio)) {
4742 			list_del(&folio->lru);
4743 			folio_putback_lru(folio);
4744 			continue;
4745 		}
4746 
4747 		/* retry folios that may have missed folio_rotate_reclaimable() */
4748 		if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) &&
4749 		    !folio_test_dirty(folio) && !folio_test_writeback(folio)) {
4750 			list_move(&folio->lru, &clean);
4751 			continue;
4752 		}
4753 
4754 		/* don't add rejected folios to the oldest generation */
4755 		if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type])
4756 			set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_active));
4757 	}
4758 
4759 	spin_lock_irq(&lruvec->lru_lock);
4760 
4761 	move_folios_to_lru(lruvec, &list);
4762 
4763 	walk = current->reclaim_state->mm_walk;
4764 	if (walk && walk->batched) {
4765 		walk->lruvec = lruvec;
4766 		reset_batch_size(walk);
4767 	}
4768 
4769 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
4770 					stat.nr_demoted);
4771 
4772 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
4773 	if (!cgroup_reclaim(sc))
4774 		__count_vm_events(item, reclaimed);
4775 	count_memcg_events(memcg, item, reclaimed);
4776 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4777 
4778 	spin_unlock_irq(&lruvec->lru_lock);
4779 
4780 	list_splice_init(&clean, &list);
4781 
4782 	if (!list_empty(&list)) {
4783 		skip_retry = true;
4784 		goto retry;
4785 	}
4786 
4787 	return scanned;
4788 }
4789 
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,int swappiness,unsigned long * nr_to_scan)4790 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4791 			     int swappiness, unsigned long *nr_to_scan)
4792 {
4793 	int gen, type, zone;
4794 	unsigned long size = 0;
4795 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4796 	DEFINE_MIN_SEQ(lruvec);
4797 
4798 	*nr_to_scan = 0;
4799 	/* have to run aging, since eviction is not possible anymore */
4800 	if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq)
4801 		return true;
4802 
4803 	for_each_evictable_type(type, swappiness) {
4804 		unsigned long seq;
4805 
4806 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4807 			gen = lru_gen_from_seq(seq);
4808 
4809 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4810 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4811 		}
4812 	}
4813 
4814 	*nr_to_scan = size;
4815 	/* better to run aging even though eviction is still possible */
4816 	return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq;
4817 }
4818 
4819 /*
4820  * For future optimizations:
4821  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4822  *    reclaim.
4823  */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4824 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4825 {
4826 	bool success;
4827 	unsigned long nr_to_scan;
4828 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4829 	DEFINE_MAX_SEQ(lruvec);
4830 
4831 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4832 		return -1;
4833 
4834 	success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan);
4835 
4836 	/* try to scrape all its memory if this memcg was deleted */
4837 	if (nr_to_scan && !mem_cgroup_online(memcg))
4838 		return nr_to_scan;
4839 
4840 	/* try to get away with not aging at the default priority */
4841 	if (!success || sc->priority == DEF_PRIORITY)
4842 		return nr_to_scan >> sc->priority;
4843 
4844 	/* stop scanning this lruvec as it's low on cold folios */
4845 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0;
4846 }
4847 
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)4848 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4849 {
4850 	int i;
4851 	enum zone_watermarks mark;
4852 
4853 	/* don't abort memcg reclaim to ensure fairness */
4854 	if (!root_reclaim(sc))
4855 		return false;
4856 
4857 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4858 		return true;
4859 
4860 	/* check the order to exclude compaction-induced reclaim */
4861 	if (!current_is_kswapd() || sc->order)
4862 		return false;
4863 
4864 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4865 	       WMARK_PROMO : WMARK_HIGH;
4866 
4867 	for (i = 0; i <= sc->reclaim_idx; i++) {
4868 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4869 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4870 
4871 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4872 			return false;
4873 	}
4874 
4875 	/* kswapd should abort if all eligible zones are safe */
4876 	return true;
4877 }
4878 
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4879 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4880 {
4881 	long nr_to_scan;
4882 	unsigned long scanned = 0;
4883 	int swappiness = get_swappiness(lruvec, sc);
4884 
4885 	while (true) {
4886 		int delta;
4887 
4888 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4889 		if (nr_to_scan <= 0)
4890 			break;
4891 
4892 		delta = evict_folios(lruvec, sc, swappiness);
4893 		if (!delta)
4894 			break;
4895 
4896 		scanned += delta;
4897 		if (scanned >= nr_to_scan)
4898 			break;
4899 
4900 		if (should_abort_scan(lruvec, sc))
4901 			break;
4902 
4903 		cond_resched();
4904 	}
4905 
4906 	/*
4907 	 * If too many file cache in the coldest generation can't be evicted
4908 	 * due to being dirty, wake up the flusher.
4909 	 */
4910 	if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4911 		wakeup_flusher_threads(WB_REASON_VMSCAN);
4912 
4913 	/* whether this lruvec should be rotated */
4914 	return nr_to_scan < 0;
4915 }
4916 
shrink_one(struct lruvec * lruvec,struct scan_control * sc)4917 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4918 {
4919 	bool success;
4920 	unsigned long scanned = sc->nr_scanned;
4921 	unsigned long reclaimed = sc->nr_reclaimed;
4922 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4923 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4924 
4925 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4926 	if (mem_cgroup_below_min(NULL, memcg))
4927 		return MEMCG_LRU_YOUNG;
4928 
4929 	if (mem_cgroup_below_low(NULL, memcg)) {
4930 		/* see the comment on MEMCG_NR_GENS */
4931 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4932 			return MEMCG_LRU_TAIL;
4933 
4934 		memcg_memory_event(memcg, MEMCG_LOW);
4935 	}
4936 
4937 	success = try_to_shrink_lruvec(lruvec, sc);
4938 
4939 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4940 
4941 	if (!sc->proactive)
4942 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4943 			   sc->nr_reclaimed - reclaimed);
4944 
4945 	flush_reclaim_state(sc);
4946 
4947 	if (success && mem_cgroup_online(memcg))
4948 		return MEMCG_LRU_YOUNG;
4949 
4950 	if (!success && lruvec_is_sizable(lruvec, sc))
4951 		return 0;
4952 
4953 	/* one retry if offlined or too small */
4954 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4955 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4956 }
4957 
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)4958 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4959 {
4960 	int op;
4961 	int gen;
4962 	int bin;
4963 	int first_bin;
4964 	struct lruvec *lruvec;
4965 	struct lru_gen_folio *lrugen;
4966 	struct mem_cgroup *memcg;
4967 	struct hlist_nulls_node *pos;
4968 
4969 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4970 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4971 restart:
4972 	op = 0;
4973 	memcg = NULL;
4974 
4975 	rcu_read_lock();
4976 
4977 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4978 		if (op) {
4979 			lru_gen_rotate_memcg(lruvec, op);
4980 			op = 0;
4981 		}
4982 
4983 		mem_cgroup_put(memcg);
4984 		memcg = NULL;
4985 
4986 		if (gen != READ_ONCE(lrugen->gen))
4987 			continue;
4988 
4989 		lruvec = container_of(lrugen, struct lruvec, lrugen);
4990 		memcg = lruvec_memcg(lruvec);
4991 
4992 		if (!mem_cgroup_tryget(memcg)) {
4993 			lru_gen_release_memcg(memcg);
4994 			memcg = NULL;
4995 			continue;
4996 		}
4997 
4998 		rcu_read_unlock();
4999 
5000 		op = shrink_one(lruvec, sc);
5001 
5002 		rcu_read_lock();
5003 
5004 		if (should_abort_scan(lruvec, sc))
5005 			break;
5006 	}
5007 
5008 	rcu_read_unlock();
5009 
5010 	if (op)
5011 		lru_gen_rotate_memcg(lruvec, op);
5012 
5013 	mem_cgroup_put(memcg);
5014 
5015 	if (!is_a_nulls(pos))
5016 		return;
5017 
5018 	/* restart if raced with lru_gen_rotate_memcg() */
5019 	if (gen != get_nulls_value(pos))
5020 		goto restart;
5021 
5022 	/* try the rest of the bins of the current generation */
5023 	bin = get_memcg_bin(bin + 1);
5024 	if (bin != first_bin)
5025 		goto restart;
5026 }
5027 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5028 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5029 {
5030 	struct blk_plug plug;
5031 
5032 	VM_WARN_ON_ONCE(root_reclaim(sc));
5033 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5034 
5035 	lru_add_drain();
5036 
5037 	blk_start_plug(&plug);
5038 
5039 	set_mm_walk(NULL, sc->proactive);
5040 
5041 	if (try_to_shrink_lruvec(lruvec, sc))
5042 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5043 
5044 	clear_mm_walk();
5045 
5046 	blk_finish_plug(&plug);
5047 }
5048 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5049 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5050 {
5051 	struct blk_plug plug;
5052 	unsigned long reclaimed = sc->nr_reclaimed;
5053 
5054 	VM_WARN_ON_ONCE(!root_reclaim(sc));
5055 
5056 	/*
5057 	 * Unmapped clean folios are already prioritized. Scanning for more of
5058 	 * them is likely futile and can cause high reclaim latency when there
5059 	 * is a large number of memcgs.
5060 	 */
5061 	if (!sc->may_writepage || !sc->may_unmap)
5062 		goto done;
5063 
5064 	lru_add_drain();
5065 
5066 	blk_start_plug(&plug);
5067 
5068 	set_mm_walk(pgdat, sc->proactive);
5069 
5070 	set_initial_priority(pgdat, sc);
5071 
5072 	if (current_is_kswapd())
5073 		sc->nr_reclaimed = 0;
5074 
5075 	if (mem_cgroup_disabled())
5076 		shrink_one(&pgdat->__lruvec, sc);
5077 	else
5078 		shrink_many(pgdat, sc);
5079 
5080 	if (current_is_kswapd())
5081 		sc->nr_reclaimed += reclaimed;
5082 
5083 	clear_mm_walk();
5084 
5085 	blk_finish_plug(&plug);
5086 done:
5087 	if (sc->nr_reclaimed > reclaimed)
5088 		pgdat->kswapd_failures = 0;
5089 }
5090 
5091 /******************************************************************************
5092  *                          state change
5093  ******************************************************************************/
5094 
state_is_valid(struct lruvec * lruvec)5095 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5096 {
5097 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5098 
5099 	if (lrugen->enabled) {
5100 		enum lru_list lru;
5101 
5102 		for_each_evictable_lru(lru) {
5103 			if (!list_empty(&lruvec->lists[lru]))
5104 				return false;
5105 		}
5106 	} else {
5107 		int gen, type, zone;
5108 
5109 		for_each_gen_type_zone(gen, type, zone) {
5110 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5111 				return false;
5112 		}
5113 	}
5114 
5115 	return true;
5116 }
5117 
fill_evictable(struct lruvec * lruvec)5118 static bool fill_evictable(struct lruvec *lruvec)
5119 {
5120 	enum lru_list lru;
5121 	int remaining = MAX_LRU_BATCH;
5122 
5123 	for_each_evictable_lru(lru) {
5124 		int type = is_file_lru(lru);
5125 		bool active = is_active_lru(lru);
5126 		struct list_head *head = &lruvec->lists[lru];
5127 
5128 		while (!list_empty(head)) {
5129 			bool success;
5130 			struct folio *folio = lru_to_folio(head);
5131 
5132 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5133 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5134 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5135 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5136 
5137 			lruvec_del_folio(lruvec, folio);
5138 			success = lru_gen_add_folio(lruvec, folio, false);
5139 			VM_WARN_ON_ONCE(!success);
5140 
5141 			if (!--remaining)
5142 				return false;
5143 		}
5144 	}
5145 
5146 	return true;
5147 }
5148 
drain_evictable(struct lruvec * lruvec)5149 static bool drain_evictable(struct lruvec *lruvec)
5150 {
5151 	int gen, type, zone;
5152 	int remaining = MAX_LRU_BATCH;
5153 
5154 	for_each_gen_type_zone(gen, type, zone) {
5155 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5156 
5157 		while (!list_empty(head)) {
5158 			bool success;
5159 			struct folio *folio = lru_to_folio(head);
5160 
5161 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5162 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5163 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5164 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5165 
5166 			success = lru_gen_del_folio(lruvec, folio, false);
5167 			VM_WARN_ON_ONCE(!success);
5168 			lruvec_add_folio(lruvec, folio);
5169 
5170 			if (!--remaining)
5171 				return false;
5172 		}
5173 	}
5174 
5175 	return true;
5176 }
5177 
lru_gen_change_state(bool enabled)5178 static void lru_gen_change_state(bool enabled)
5179 {
5180 	static DEFINE_MUTEX(state_mutex);
5181 
5182 	struct mem_cgroup *memcg;
5183 
5184 	cgroup_lock();
5185 	cpus_read_lock();
5186 	get_online_mems();
5187 	mutex_lock(&state_mutex);
5188 
5189 	if (enabled == lru_gen_enabled())
5190 		goto unlock;
5191 
5192 	if (enabled)
5193 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5194 	else
5195 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5196 
5197 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5198 	do {
5199 		int nid;
5200 
5201 		for_each_node(nid) {
5202 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5203 
5204 			spin_lock_irq(&lruvec->lru_lock);
5205 
5206 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5207 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5208 
5209 			lruvec->lrugen.enabled = enabled;
5210 
5211 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5212 				spin_unlock_irq(&lruvec->lru_lock);
5213 				cond_resched();
5214 				spin_lock_irq(&lruvec->lru_lock);
5215 			}
5216 
5217 			spin_unlock_irq(&lruvec->lru_lock);
5218 		}
5219 
5220 		cond_resched();
5221 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5222 unlock:
5223 	mutex_unlock(&state_mutex);
5224 	put_online_mems();
5225 	cpus_read_unlock();
5226 	cgroup_unlock();
5227 }
5228 
5229 /******************************************************************************
5230  *                          sysfs interface
5231  ******************************************************************************/
5232 
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5233 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5234 {
5235 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5236 }
5237 
5238 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5239 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5240 				const char *buf, size_t len)
5241 {
5242 	unsigned int msecs;
5243 
5244 	if (kstrtouint(buf, 0, &msecs))
5245 		return -EINVAL;
5246 
5247 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5248 
5249 	return len;
5250 }
5251 
5252 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5253 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5254 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5255 {
5256 	unsigned int caps = 0;
5257 
5258 	if (get_cap(LRU_GEN_CORE))
5259 		caps |= BIT(LRU_GEN_CORE);
5260 
5261 	if (should_walk_mmu())
5262 		caps |= BIT(LRU_GEN_MM_WALK);
5263 
5264 	if (should_clear_pmd_young())
5265 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5266 
5267 	return sysfs_emit(buf, "0x%04x\n", caps);
5268 }
5269 
5270 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5271 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5272 			     const char *buf, size_t len)
5273 {
5274 	int i;
5275 	unsigned int caps;
5276 
5277 	if (tolower(*buf) == 'n')
5278 		caps = 0;
5279 	else if (tolower(*buf) == 'y')
5280 		caps = -1;
5281 	else if (kstrtouint(buf, 0, &caps))
5282 		return -EINVAL;
5283 
5284 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5285 		bool enabled = caps & BIT(i);
5286 
5287 		if (i == LRU_GEN_CORE)
5288 			lru_gen_change_state(enabled);
5289 		else if (enabled)
5290 			static_branch_enable(&lru_gen_caps[i]);
5291 		else
5292 			static_branch_disable(&lru_gen_caps[i]);
5293 	}
5294 
5295 	return len;
5296 }
5297 
5298 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5299 
5300 static struct attribute *lru_gen_attrs[] = {
5301 	&lru_gen_min_ttl_attr.attr,
5302 	&lru_gen_enabled_attr.attr,
5303 	NULL
5304 };
5305 
5306 static const struct attribute_group lru_gen_attr_group = {
5307 	.name = "lru_gen",
5308 	.attrs = lru_gen_attrs,
5309 };
5310 
5311 /******************************************************************************
5312  *                          debugfs interface
5313  ******************************************************************************/
5314 
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5315 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5316 {
5317 	struct mem_cgroup *memcg;
5318 	loff_t nr_to_skip = *pos;
5319 
5320 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5321 	if (!m->private)
5322 		return ERR_PTR(-ENOMEM);
5323 
5324 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5325 	do {
5326 		int nid;
5327 
5328 		for_each_node_state(nid, N_MEMORY) {
5329 			if (!nr_to_skip--)
5330 				return get_lruvec(memcg, nid);
5331 		}
5332 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5333 
5334 	return NULL;
5335 }
5336 
lru_gen_seq_stop(struct seq_file * m,void * v)5337 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5338 {
5339 	if (!IS_ERR_OR_NULL(v))
5340 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5341 
5342 	kvfree(m->private);
5343 	m->private = NULL;
5344 }
5345 
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5346 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5347 {
5348 	int nid = lruvec_pgdat(v)->node_id;
5349 	struct mem_cgroup *memcg = lruvec_memcg(v);
5350 
5351 	++*pos;
5352 
5353 	nid = next_memory_node(nid);
5354 	if (nid == MAX_NUMNODES) {
5355 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5356 		if (!memcg)
5357 			return NULL;
5358 
5359 		nid = first_memory_node;
5360 	}
5361 
5362 	return get_lruvec(memcg, nid);
5363 }
5364 
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5365 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5366 				  unsigned long max_seq, unsigned long *min_seq,
5367 				  unsigned long seq)
5368 {
5369 	int i;
5370 	int type, tier;
5371 	int hist = lru_hist_from_seq(seq);
5372 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5373 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5374 
5375 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5376 		seq_printf(m, "            %10d", tier);
5377 		for (type = 0; type < ANON_AND_FILE; type++) {
5378 			const char *s = "xxx";
5379 			unsigned long n[3] = {};
5380 
5381 			if (seq == max_seq) {
5382 				s = "RTx";
5383 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5384 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5385 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5386 				s = "rep";
5387 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5388 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5389 				n[2] = READ_ONCE(lrugen->protected[hist][type][tier]);
5390 			}
5391 
5392 			for (i = 0; i < 3; i++)
5393 				seq_printf(m, " %10lu%c", n[i], s[i]);
5394 		}
5395 		seq_putc(m, '\n');
5396 	}
5397 
5398 	if (!mm_state)
5399 		return;
5400 
5401 	seq_puts(m, "                      ");
5402 	for (i = 0; i < NR_MM_STATS; i++) {
5403 		const char *s = "xxxx";
5404 		unsigned long n = 0;
5405 
5406 		if (seq == max_seq && NR_HIST_GENS == 1) {
5407 			s = "TYFA";
5408 			n = READ_ONCE(mm_state->stats[hist][i]);
5409 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5410 			s = "tyfa";
5411 			n = READ_ONCE(mm_state->stats[hist][i]);
5412 		}
5413 
5414 		seq_printf(m, " %10lu%c", n, s[i]);
5415 	}
5416 	seq_putc(m, '\n');
5417 }
5418 
5419 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5420 static int lru_gen_seq_show(struct seq_file *m, void *v)
5421 {
5422 	unsigned long seq;
5423 	bool full = !debugfs_real_fops(m->file)->write;
5424 	struct lruvec *lruvec = v;
5425 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5426 	int nid = lruvec_pgdat(lruvec)->node_id;
5427 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5428 	DEFINE_MAX_SEQ(lruvec);
5429 	DEFINE_MIN_SEQ(lruvec);
5430 
5431 	if (nid == first_memory_node) {
5432 		const char *path = memcg ? m->private : "";
5433 
5434 #ifdef CONFIG_MEMCG
5435 		if (memcg)
5436 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5437 #endif
5438 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5439 	}
5440 
5441 	seq_printf(m, " node %5d\n", nid);
5442 
5443 	if (!full)
5444 		seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2);
5445 	else if (max_seq >= MAX_NR_GENS)
5446 		seq = max_seq - MAX_NR_GENS + 1;
5447 	else
5448 		seq = 0;
5449 
5450 	for (; seq <= max_seq; seq++) {
5451 		int type, zone;
5452 		int gen = lru_gen_from_seq(seq);
5453 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5454 
5455 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5456 
5457 		for (type = 0; type < ANON_AND_FILE; type++) {
5458 			unsigned long size = 0;
5459 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5460 
5461 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5462 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5463 
5464 			seq_printf(m, " %10lu%c", size, mark);
5465 		}
5466 
5467 		seq_putc(m, '\n');
5468 
5469 		if (full)
5470 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5471 	}
5472 
5473 	return 0;
5474 }
5475 
5476 static const struct seq_operations lru_gen_seq_ops = {
5477 	.start = lru_gen_seq_start,
5478 	.stop = lru_gen_seq_stop,
5479 	.next = lru_gen_seq_next,
5480 	.show = lru_gen_seq_show,
5481 };
5482 
run_aging(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)5483 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5484 		     int swappiness, bool force_scan)
5485 {
5486 	DEFINE_MAX_SEQ(lruvec);
5487 
5488 	if (seq > max_seq)
5489 		return -EINVAL;
5490 
5491 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST;
5492 }
5493 
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5494 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5495 			int swappiness, unsigned long nr_to_reclaim)
5496 {
5497 	DEFINE_MAX_SEQ(lruvec);
5498 
5499 	if (seq + MIN_NR_GENS > max_seq)
5500 		return -EINVAL;
5501 
5502 	sc->nr_reclaimed = 0;
5503 
5504 	while (!signal_pending(current)) {
5505 		DEFINE_MIN_SEQ(lruvec);
5506 
5507 		if (seq < evictable_min_seq(min_seq, swappiness))
5508 			return 0;
5509 
5510 		if (sc->nr_reclaimed >= nr_to_reclaim)
5511 			return 0;
5512 
5513 		if (!evict_folios(lruvec, sc, swappiness))
5514 			return 0;
5515 
5516 		cond_resched();
5517 	}
5518 
5519 	return -EINTR;
5520 }
5521 
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)5522 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5523 		   struct scan_control *sc, int swappiness, unsigned long opt)
5524 {
5525 	struct lruvec *lruvec;
5526 	int err = -EINVAL;
5527 	struct mem_cgroup *memcg = NULL;
5528 
5529 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5530 		return -EINVAL;
5531 
5532 	if (!mem_cgroup_disabled()) {
5533 		rcu_read_lock();
5534 
5535 		memcg = mem_cgroup_from_id(memcg_id);
5536 		if (!mem_cgroup_tryget(memcg))
5537 			memcg = NULL;
5538 
5539 		rcu_read_unlock();
5540 
5541 		if (!memcg)
5542 			return -EINVAL;
5543 	}
5544 
5545 	if (memcg_id != mem_cgroup_id(memcg))
5546 		goto done;
5547 
5548 	lruvec = get_lruvec(memcg, nid);
5549 
5550 	if (swappiness < MIN_SWAPPINESS)
5551 		swappiness = get_swappiness(lruvec, sc);
5552 	else if (swappiness > SWAPPINESS_ANON_ONLY)
5553 		goto done;
5554 
5555 	switch (cmd) {
5556 	case '+':
5557 		err = run_aging(lruvec, seq, swappiness, opt);
5558 		break;
5559 	case '-':
5560 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5561 		break;
5562 	}
5563 done:
5564 	mem_cgroup_put(memcg);
5565 
5566 	return err;
5567 }
5568 
5569 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)5570 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5571 				 size_t len, loff_t *pos)
5572 {
5573 	void *buf;
5574 	char *cur, *next;
5575 	unsigned int flags;
5576 	struct blk_plug plug;
5577 	int err = -EINVAL;
5578 	struct scan_control sc = {
5579 		.may_writepage = true,
5580 		.may_unmap = true,
5581 		.may_swap = true,
5582 		.reclaim_idx = MAX_NR_ZONES - 1,
5583 		.gfp_mask = GFP_KERNEL,
5584 	};
5585 
5586 	buf = kvmalloc(len + 1, GFP_KERNEL);
5587 	if (!buf)
5588 		return -ENOMEM;
5589 
5590 	if (copy_from_user(buf, src, len)) {
5591 		kvfree(buf);
5592 		return -EFAULT;
5593 	}
5594 
5595 	set_task_reclaim_state(current, &sc.reclaim_state);
5596 	flags = memalloc_noreclaim_save();
5597 	blk_start_plug(&plug);
5598 	if (!set_mm_walk(NULL, true)) {
5599 		err = -ENOMEM;
5600 		goto done;
5601 	}
5602 
5603 	next = buf;
5604 	next[len] = '\0';
5605 
5606 	while ((cur = strsep(&next, ",;\n"))) {
5607 		int n;
5608 		int end;
5609 		char cmd, swap_string[5];
5610 		unsigned int memcg_id;
5611 		unsigned int nid;
5612 		unsigned long seq;
5613 		unsigned int swappiness;
5614 		unsigned long opt = -1;
5615 
5616 		cur = skip_spaces(cur);
5617 		if (!*cur)
5618 			continue;
5619 
5620 		n = sscanf(cur, "%c %u %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid,
5621 			   &seq, &end, swap_string, &end, &opt, &end);
5622 		if (n < 4 || cur[end]) {
5623 			err = -EINVAL;
5624 			break;
5625 		}
5626 
5627 		if (n == 4) {
5628 			swappiness = -1;
5629 		} else if (!strcmp("max", swap_string)) {
5630 			/* set by userspace for anonymous memory only */
5631 			swappiness = SWAPPINESS_ANON_ONLY;
5632 		} else {
5633 			err = kstrtouint(swap_string, 0, &swappiness);
5634 			if (err)
5635 				break;
5636 		}
5637 
5638 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5639 		if (err)
5640 			break;
5641 	}
5642 done:
5643 	clear_mm_walk();
5644 	blk_finish_plug(&plug);
5645 	memalloc_noreclaim_restore(flags);
5646 	set_task_reclaim_state(current, NULL);
5647 
5648 	kvfree(buf);
5649 
5650 	return err ? : len;
5651 }
5652 
lru_gen_seq_open(struct inode * inode,struct file * file)5653 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5654 {
5655 	return seq_open(file, &lru_gen_seq_ops);
5656 }
5657 
5658 static const struct file_operations lru_gen_rw_fops = {
5659 	.open = lru_gen_seq_open,
5660 	.read = seq_read,
5661 	.write = lru_gen_seq_write,
5662 	.llseek = seq_lseek,
5663 	.release = seq_release,
5664 };
5665 
5666 static const struct file_operations lru_gen_ro_fops = {
5667 	.open = lru_gen_seq_open,
5668 	.read = seq_read,
5669 	.llseek = seq_lseek,
5670 	.release = seq_release,
5671 };
5672 
5673 /******************************************************************************
5674  *                          initialization
5675  ******************************************************************************/
5676 
lru_gen_init_pgdat(struct pglist_data * pgdat)5677 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5678 {
5679 	int i, j;
5680 
5681 	spin_lock_init(&pgdat->memcg_lru.lock);
5682 
5683 	for (i = 0; i < MEMCG_NR_GENS; i++) {
5684 		for (j = 0; j < MEMCG_NR_BINS; j++)
5685 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5686 	}
5687 }
5688 
lru_gen_init_lruvec(struct lruvec * lruvec)5689 void lru_gen_init_lruvec(struct lruvec *lruvec)
5690 {
5691 	int i;
5692 	int gen, type, zone;
5693 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5694 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5695 
5696 	lrugen->max_seq = MIN_NR_GENS + 1;
5697 	lrugen->enabled = lru_gen_enabled();
5698 
5699 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5700 		lrugen->timestamps[i] = jiffies;
5701 
5702 	for_each_gen_type_zone(gen, type, zone)
5703 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5704 
5705 	if (mm_state)
5706 		mm_state->seq = MIN_NR_GENS;
5707 }
5708 
5709 #ifdef CONFIG_MEMCG
5710 
lru_gen_init_memcg(struct mem_cgroup * memcg)5711 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5712 {
5713 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5714 
5715 	if (!mm_list)
5716 		return;
5717 
5718 	INIT_LIST_HEAD(&mm_list->fifo);
5719 	spin_lock_init(&mm_list->lock);
5720 }
5721 
lru_gen_exit_memcg(struct mem_cgroup * memcg)5722 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5723 {
5724 	int i;
5725 	int nid;
5726 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5727 
5728 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5729 
5730 	for_each_node(nid) {
5731 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5732 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5733 
5734 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5735 					   sizeof(lruvec->lrugen.nr_pages)));
5736 
5737 		lruvec->lrugen.list.next = LIST_POISON1;
5738 
5739 		if (!mm_state)
5740 			continue;
5741 
5742 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5743 			bitmap_free(mm_state->filters[i]);
5744 			mm_state->filters[i] = NULL;
5745 		}
5746 	}
5747 }
5748 
5749 #endif /* CONFIG_MEMCG */
5750 
init_lru_gen(void)5751 static int __init init_lru_gen(void)
5752 {
5753 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5754 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5755 
5756 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5757 		pr_err("lru_gen: failed to create sysfs group\n");
5758 
5759 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5760 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5761 
5762 	return 0;
5763 };
5764 late_initcall(init_lru_gen);
5765 
5766 #else /* !CONFIG_LRU_GEN */
5767 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)5768 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5769 {
5770 	BUILD_BUG();
5771 }
5772 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5773 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5774 {
5775 	BUILD_BUG();
5776 }
5777 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5778 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5779 {
5780 	BUILD_BUG();
5781 }
5782 
5783 #endif /* CONFIG_LRU_GEN */
5784 
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5785 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5786 {
5787 	unsigned long nr[NR_LRU_LISTS];
5788 	unsigned long targets[NR_LRU_LISTS];
5789 	unsigned long nr_to_scan;
5790 	enum lru_list lru;
5791 	unsigned long nr_reclaimed = 0;
5792 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5793 	bool proportional_reclaim;
5794 	struct blk_plug plug;
5795 
5796 	if (lru_gen_enabled() && !root_reclaim(sc)) {
5797 		lru_gen_shrink_lruvec(lruvec, sc);
5798 		return;
5799 	}
5800 
5801 	get_scan_count(lruvec, sc, nr);
5802 
5803 	/* Record the original scan target for proportional adjustments later */
5804 	memcpy(targets, nr, sizeof(nr));
5805 
5806 	/*
5807 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5808 	 * event that can occur when there is little memory pressure e.g.
5809 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5810 	 * when the requested number of pages are reclaimed when scanning at
5811 	 * DEF_PRIORITY on the assumption that the fact we are direct
5812 	 * reclaiming implies that kswapd is not keeping up and it is best to
5813 	 * do a batch of work at once. For memcg reclaim one check is made to
5814 	 * abort proportional reclaim if either the file or anon lru has already
5815 	 * dropped to zero at the first pass.
5816 	 */
5817 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5818 				sc->priority == DEF_PRIORITY);
5819 
5820 	blk_start_plug(&plug);
5821 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5822 					nr[LRU_INACTIVE_FILE]) {
5823 		unsigned long nr_anon, nr_file, percentage;
5824 		unsigned long nr_scanned;
5825 
5826 		for_each_evictable_lru(lru) {
5827 			if (nr[lru]) {
5828 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5829 				nr[lru] -= nr_to_scan;
5830 
5831 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5832 							    lruvec, sc);
5833 			}
5834 		}
5835 
5836 		cond_resched();
5837 
5838 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5839 			continue;
5840 
5841 		/*
5842 		 * For kswapd and memcg, reclaim at least the number of pages
5843 		 * requested. Ensure that the anon and file LRUs are scanned
5844 		 * proportionally what was requested by get_scan_count(). We
5845 		 * stop reclaiming one LRU and reduce the amount scanning
5846 		 * proportional to the original scan target.
5847 		 */
5848 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5849 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5850 
5851 		/*
5852 		 * It's just vindictive to attack the larger once the smaller
5853 		 * has gone to zero.  And given the way we stop scanning the
5854 		 * smaller below, this makes sure that we only make one nudge
5855 		 * towards proportionality once we've got nr_to_reclaim.
5856 		 */
5857 		if (!nr_file || !nr_anon)
5858 			break;
5859 
5860 		if (nr_file > nr_anon) {
5861 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5862 						targets[LRU_ACTIVE_ANON] + 1;
5863 			lru = LRU_BASE;
5864 			percentage = nr_anon * 100 / scan_target;
5865 		} else {
5866 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5867 						targets[LRU_ACTIVE_FILE] + 1;
5868 			lru = LRU_FILE;
5869 			percentage = nr_file * 100 / scan_target;
5870 		}
5871 
5872 		/* Stop scanning the smaller of the LRU */
5873 		nr[lru] = 0;
5874 		nr[lru + LRU_ACTIVE] = 0;
5875 
5876 		/*
5877 		 * Recalculate the other LRU scan count based on its original
5878 		 * scan target and the percentage scanning already complete
5879 		 */
5880 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5881 		nr_scanned = targets[lru] - nr[lru];
5882 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5883 		nr[lru] -= min(nr[lru], nr_scanned);
5884 
5885 		lru += LRU_ACTIVE;
5886 		nr_scanned = targets[lru] - nr[lru];
5887 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5888 		nr[lru] -= min(nr[lru], nr_scanned);
5889 	}
5890 	blk_finish_plug(&plug);
5891 	sc->nr_reclaimed += nr_reclaimed;
5892 
5893 	/*
5894 	 * Even if we did not try to evict anon pages at all, we want to
5895 	 * rebalance the anon lru active/inactive ratio.
5896 	 */
5897 	if (can_age_anon_pages(lruvec, sc) &&
5898 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5899 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5900 				   sc, LRU_ACTIVE_ANON);
5901 }
5902 
5903 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)5904 static bool in_reclaim_compaction(struct scan_control *sc)
5905 {
5906 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5907 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5908 			 sc->priority < DEF_PRIORITY - 2))
5909 		return true;
5910 
5911 	return false;
5912 }
5913 
5914 /*
5915  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5916  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5917  * true if more pages should be reclaimed such that when the page allocator
5918  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5919  * It will give up earlier than that if there is difficulty reclaiming pages.
5920  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)5921 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5922 					unsigned long nr_reclaimed,
5923 					struct scan_control *sc)
5924 {
5925 	unsigned long pages_for_compaction;
5926 	unsigned long inactive_lru_pages;
5927 	int z;
5928 	struct zone *zone;
5929 
5930 	/* If not in reclaim/compaction mode, stop */
5931 	if (!in_reclaim_compaction(sc))
5932 		return false;
5933 
5934 	/*
5935 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5936 	 * number of pages that were scanned. This will return to the caller
5937 	 * with the risk reclaim/compaction and the resulting allocation attempt
5938 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5939 	 * allocations through requiring that the full LRU list has been scanned
5940 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5941 	 * scan, but that approximation was wrong, and there were corner cases
5942 	 * where always a non-zero amount of pages were scanned.
5943 	 */
5944 	if (!nr_reclaimed)
5945 		return false;
5946 
5947 	/* If compaction would go ahead or the allocation would succeed, stop */
5948 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
5949 		unsigned long watermark = min_wmark_pages(zone);
5950 
5951 		/* Allocation can already succeed, nothing to do */
5952 		if (zone_watermark_ok(zone, sc->order, watermark,
5953 				      sc->reclaim_idx, 0))
5954 			return false;
5955 
5956 		if (compaction_suitable(zone, sc->order, watermark,
5957 					sc->reclaim_idx))
5958 			return false;
5959 	}
5960 
5961 	/*
5962 	 * If we have not reclaimed enough pages for compaction and the
5963 	 * inactive lists are large enough, continue reclaiming
5964 	 */
5965 	pages_for_compaction = compact_gap(sc->order);
5966 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5967 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5968 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5969 
5970 	return inactive_lru_pages > pages_for_compaction;
5971 }
5972 
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)5973 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5974 {
5975 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5976 	struct mem_cgroup_reclaim_cookie reclaim = {
5977 		.pgdat = pgdat,
5978 	};
5979 	struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5980 	struct mem_cgroup *memcg;
5981 
5982 	/*
5983 	 * In most cases, direct reclaimers can do partial walks
5984 	 * through the cgroup tree, using an iterator state that
5985 	 * persists across invocations. This strikes a balance between
5986 	 * fairness and allocation latency.
5987 	 *
5988 	 * For kswapd, reliable forward progress is more important
5989 	 * than a quick return to idle. Always do full walks.
5990 	 */
5991 	if (current_is_kswapd() || sc->memcg_full_walk)
5992 		partial = NULL;
5993 
5994 	memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5995 	do {
5996 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5997 		unsigned long reclaimed;
5998 		unsigned long scanned;
5999 
6000 		/*
6001 		 * This loop can become CPU-bound when target memcgs
6002 		 * aren't eligible for reclaim - either because they
6003 		 * don't have any reclaimable pages, or because their
6004 		 * memory is explicitly protected. Avoid soft lockups.
6005 		 */
6006 		cond_resched();
6007 
6008 		mem_cgroup_calculate_protection(target_memcg, memcg);
6009 
6010 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6011 			/*
6012 			 * Hard protection.
6013 			 * If there is no reclaimable memory, OOM.
6014 			 */
6015 			continue;
6016 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6017 			/*
6018 			 * Soft protection.
6019 			 * Respect the protection only as long as
6020 			 * there is an unprotected supply
6021 			 * of reclaimable memory from other cgroups.
6022 			 */
6023 			if (!sc->memcg_low_reclaim) {
6024 				sc->memcg_low_skipped = 1;
6025 				continue;
6026 			}
6027 			memcg_memory_event(memcg, MEMCG_LOW);
6028 		}
6029 
6030 		reclaimed = sc->nr_reclaimed;
6031 		scanned = sc->nr_scanned;
6032 
6033 		shrink_lruvec(lruvec, sc);
6034 
6035 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6036 			    sc->priority);
6037 
6038 		/* Record the group's reclaim efficiency */
6039 		if (!sc->proactive)
6040 			vmpressure(sc->gfp_mask, memcg, false,
6041 				   sc->nr_scanned - scanned,
6042 				   sc->nr_reclaimed - reclaimed);
6043 
6044 		/* If partial walks are allowed, bail once goal is reached */
6045 		if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
6046 			mem_cgroup_iter_break(target_memcg, memcg);
6047 			break;
6048 		}
6049 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
6050 }
6051 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)6052 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6053 {
6054 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6055 	struct lruvec *target_lruvec;
6056 	bool reclaimable = false;
6057 
6058 	if (lru_gen_enabled() && root_reclaim(sc)) {
6059 		memset(&sc->nr, 0, sizeof(sc->nr));
6060 		lru_gen_shrink_node(pgdat, sc);
6061 		return;
6062 	}
6063 
6064 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6065 
6066 again:
6067 	memset(&sc->nr, 0, sizeof(sc->nr));
6068 
6069 	nr_reclaimed = sc->nr_reclaimed;
6070 	nr_scanned = sc->nr_scanned;
6071 
6072 	prepare_scan_control(pgdat, sc);
6073 
6074 	shrink_node_memcgs(pgdat, sc);
6075 
6076 	flush_reclaim_state(sc);
6077 
6078 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6079 
6080 	/* Record the subtree's reclaim efficiency */
6081 	if (!sc->proactive)
6082 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6083 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6084 
6085 	if (nr_node_reclaimed)
6086 		reclaimable = true;
6087 
6088 	if (current_is_kswapd()) {
6089 		/*
6090 		 * If reclaim is isolating dirty pages under writeback,
6091 		 * it implies that the long-lived page allocation rate
6092 		 * is exceeding the page laundering rate. Either the
6093 		 * global limits are not being effective at throttling
6094 		 * processes due to the page distribution throughout
6095 		 * zones or there is heavy usage of a slow backing
6096 		 * device. The only option is to throttle from reclaim
6097 		 * context which is not ideal as there is no guarantee
6098 		 * the dirtying process is throttled in the same way
6099 		 * balance_dirty_pages() manages.
6100 		 *
6101 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6102 		 * count the number of pages under pages flagged for
6103 		 * immediate reclaim and stall if any are encountered
6104 		 * in the nr_immediate check below.
6105 		 */
6106 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6107 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6108 
6109 		/* Allow kswapd to start writing pages during reclaim.*/
6110 		if (sc->nr.unqueued_dirty &&
6111 			sc->nr.unqueued_dirty == sc->nr.file_taken)
6112 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6113 
6114 		/*
6115 		 * If kswapd scans pages marked for immediate
6116 		 * reclaim and under writeback (nr_immediate), it
6117 		 * implies that pages are cycling through the LRU
6118 		 * faster than they are written so forcibly stall
6119 		 * until some pages complete writeback.
6120 		 */
6121 		if (sc->nr.immediate)
6122 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6123 	}
6124 
6125 	/*
6126 	 * Tag a node/memcg as congested if all the dirty pages were marked
6127 	 * for writeback and immediate reclaim (counted in nr.congested).
6128 	 *
6129 	 * Legacy memcg will stall in page writeback so avoid forcibly
6130 	 * stalling in reclaim_throttle().
6131 	 */
6132 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6133 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6134 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6135 
6136 		if (current_is_kswapd())
6137 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6138 	}
6139 
6140 	/*
6141 	 * Stall direct reclaim for IO completions if the lruvec is
6142 	 * node is congested. Allow kswapd to continue until it
6143 	 * starts encountering unqueued dirty pages or cycling through
6144 	 * the LRU too quickly.
6145 	 */
6146 	if (!current_is_kswapd() && current_may_throttle() &&
6147 	    !sc->hibernation_mode &&
6148 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6149 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6150 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6151 
6152 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6153 		goto again;
6154 
6155 	/*
6156 	 * Kswapd gives up on balancing particular nodes after too
6157 	 * many failures to reclaim anything from them and goes to
6158 	 * sleep. On reclaim progress, reset the failure counter. A
6159 	 * successful direct reclaim run will revive a dormant kswapd.
6160 	 */
6161 	if (reclaimable)
6162 		pgdat->kswapd_failures = 0;
6163 	else if (sc->cache_trim_mode)
6164 		sc->cache_trim_mode_failed = 1;
6165 }
6166 
6167 /*
6168  * Returns true if compaction should go ahead for a costly-order request, or
6169  * the allocation would already succeed without compaction. Return false if we
6170  * should reclaim first.
6171  */
compaction_ready(struct zone * zone,struct scan_control * sc)6172 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6173 {
6174 	unsigned long watermark;
6175 
6176 	if (!gfp_compaction_allowed(sc->gfp_mask))
6177 		return false;
6178 
6179 	/* Allocation can already succeed, nothing to do */
6180 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6181 			      sc->reclaim_idx, 0))
6182 		return true;
6183 
6184 	/*
6185 	 * Direct reclaim usually targets the min watermark, but compaction
6186 	 * takes time to run and there are potentially other callers using the
6187 	 * pages just freed. So target a higher buffer to give compaction a
6188 	 * reasonable chance of completing and allocating the pages.
6189 	 *
6190 	 * Note that we won't actually reclaim the whole buffer in one attempt
6191 	 * as the target watermark in should_continue_reclaim() is lower. But if
6192 	 * we are already above the high+gap watermark, don't reclaim at all.
6193 	 */
6194 	watermark = high_wmark_pages(zone);
6195 	if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx))
6196 		return true;
6197 
6198 	return false;
6199 }
6200 
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6201 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6202 {
6203 	/*
6204 	 * If reclaim is making progress greater than 12% efficiency then
6205 	 * wake all the NOPROGRESS throttled tasks.
6206 	 */
6207 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6208 		wait_queue_head_t *wqh;
6209 
6210 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6211 		if (waitqueue_active(wqh))
6212 			wake_up(wqh);
6213 
6214 		return;
6215 	}
6216 
6217 	/*
6218 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6219 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6220 	 * under writeback and marked for immediate reclaim at the tail of the
6221 	 * LRU.
6222 	 */
6223 	if (current_is_kswapd() || cgroup_reclaim(sc))
6224 		return;
6225 
6226 	/* Throttle if making no progress at high prioities. */
6227 	if (sc->priority == 1 && !sc->nr_reclaimed)
6228 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6229 }
6230 
6231 /*
6232  * This is the direct reclaim path, for page-allocating processes.  We only
6233  * try to reclaim pages from zones which will satisfy the caller's allocation
6234  * request.
6235  *
6236  * If a zone is deemed to be full of pinned pages then just give it a light
6237  * scan then give up on it.
6238  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6239 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6240 {
6241 	struct zoneref *z;
6242 	struct zone *zone;
6243 	unsigned long nr_soft_reclaimed;
6244 	unsigned long nr_soft_scanned;
6245 	gfp_t orig_mask;
6246 	pg_data_t *last_pgdat = NULL;
6247 	pg_data_t *first_pgdat = NULL;
6248 
6249 	/*
6250 	 * If the number of buffer_heads in the machine exceeds the maximum
6251 	 * allowed level, force direct reclaim to scan the highmem zone as
6252 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6253 	 */
6254 	orig_mask = sc->gfp_mask;
6255 	if (buffer_heads_over_limit) {
6256 		sc->gfp_mask |= __GFP_HIGHMEM;
6257 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6258 	}
6259 
6260 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6261 					sc->reclaim_idx, sc->nodemask) {
6262 		/*
6263 		 * Take care memory controller reclaiming has small influence
6264 		 * to global LRU.
6265 		 */
6266 		if (!cgroup_reclaim(sc)) {
6267 			if (!cpuset_zone_allowed(zone,
6268 						 GFP_KERNEL | __GFP_HARDWALL))
6269 				continue;
6270 
6271 			/*
6272 			 * If we already have plenty of memory free for
6273 			 * compaction in this zone, don't free any more.
6274 			 * Even though compaction is invoked for any
6275 			 * non-zero order, only frequent costly order
6276 			 * reclamation is disruptive enough to become a
6277 			 * noticeable problem, like transparent huge
6278 			 * page allocations.
6279 			 */
6280 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6281 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6282 			    compaction_ready(zone, sc)) {
6283 				sc->compaction_ready = true;
6284 				continue;
6285 			}
6286 
6287 			/*
6288 			 * Shrink each node in the zonelist once. If the
6289 			 * zonelist is ordered by zone (not the default) then a
6290 			 * node may be shrunk multiple times but in that case
6291 			 * the user prefers lower zones being preserved.
6292 			 */
6293 			if (zone->zone_pgdat == last_pgdat)
6294 				continue;
6295 
6296 			/*
6297 			 * This steals pages from memory cgroups over softlimit
6298 			 * and returns the number of reclaimed pages and
6299 			 * scanned pages. This works for global memory pressure
6300 			 * and balancing, not for a memcg's limit.
6301 			 */
6302 			nr_soft_scanned = 0;
6303 			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6304 								      sc->order, sc->gfp_mask,
6305 								      &nr_soft_scanned);
6306 			sc->nr_reclaimed += nr_soft_reclaimed;
6307 			sc->nr_scanned += nr_soft_scanned;
6308 			/* need some check for avoid more shrink_zone() */
6309 		}
6310 
6311 		if (!first_pgdat)
6312 			first_pgdat = zone->zone_pgdat;
6313 
6314 		/* See comment about same check for global reclaim above */
6315 		if (zone->zone_pgdat == last_pgdat)
6316 			continue;
6317 		last_pgdat = zone->zone_pgdat;
6318 		shrink_node(zone->zone_pgdat, sc);
6319 	}
6320 
6321 	if (first_pgdat)
6322 		consider_reclaim_throttle(first_pgdat, sc);
6323 
6324 	/*
6325 	 * Restore to original mask to avoid the impact on the caller if we
6326 	 * promoted it to __GFP_HIGHMEM.
6327 	 */
6328 	sc->gfp_mask = orig_mask;
6329 }
6330 
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6331 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6332 {
6333 	struct lruvec *target_lruvec;
6334 	unsigned long refaults;
6335 
6336 	if (lru_gen_enabled())
6337 		return;
6338 
6339 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6340 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6341 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6342 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6343 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6344 }
6345 
6346 /*
6347  * This is the main entry point to direct page reclaim.
6348  *
6349  * If a full scan of the inactive list fails to free enough memory then we
6350  * are "out of memory" and something needs to be killed.
6351  *
6352  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6353  * high - the zone may be full of dirty or under-writeback pages, which this
6354  * caller can't do much about.  We kick the writeback threads and take explicit
6355  * naps in the hope that some of these pages can be written.  But if the
6356  * allocating task holds filesystem locks which prevent writeout this might not
6357  * work, and the allocation attempt will fail.
6358  *
6359  * returns:	0, if no pages reclaimed
6360  * 		else, the number of pages reclaimed
6361  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6362 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6363 					  struct scan_control *sc)
6364 {
6365 	int initial_priority = sc->priority;
6366 	pg_data_t *last_pgdat;
6367 	struct zoneref *z;
6368 	struct zone *zone;
6369 retry:
6370 	delayacct_freepages_start();
6371 
6372 	if (!cgroup_reclaim(sc))
6373 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6374 
6375 	do {
6376 		if (!sc->proactive)
6377 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6378 					sc->priority);
6379 		sc->nr_scanned = 0;
6380 		shrink_zones(zonelist, sc);
6381 
6382 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6383 			break;
6384 
6385 		if (sc->compaction_ready)
6386 			break;
6387 
6388 		/*
6389 		 * If we're getting trouble reclaiming, start doing
6390 		 * writepage even in laptop mode.
6391 		 */
6392 		if (sc->priority < DEF_PRIORITY - 2)
6393 			sc->may_writepage = 1;
6394 	} while (--sc->priority >= 0);
6395 
6396 	last_pgdat = NULL;
6397 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6398 					sc->nodemask) {
6399 		if (zone->zone_pgdat == last_pgdat)
6400 			continue;
6401 		last_pgdat = zone->zone_pgdat;
6402 
6403 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6404 
6405 		if (cgroup_reclaim(sc)) {
6406 			struct lruvec *lruvec;
6407 
6408 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6409 						   zone->zone_pgdat);
6410 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6411 		}
6412 	}
6413 
6414 	delayacct_freepages_end();
6415 
6416 	if (sc->nr_reclaimed)
6417 		return sc->nr_reclaimed;
6418 
6419 	/* Aborted reclaim to try compaction? don't OOM, then */
6420 	if (sc->compaction_ready)
6421 		return 1;
6422 
6423 	/*
6424 	 * In most cases, direct reclaimers can do partial walks
6425 	 * through the cgroup tree to meet the reclaim goal while
6426 	 * keeping latency low. Since the iterator state is shared
6427 	 * among all direct reclaim invocations (to retain fairness
6428 	 * among cgroups), though, high concurrency can result in
6429 	 * individual threads not seeing enough cgroups to make
6430 	 * meaningful forward progress. Avoid false OOMs in this case.
6431 	 */
6432 	if (!sc->memcg_full_walk) {
6433 		sc->priority = initial_priority;
6434 		sc->memcg_full_walk = 1;
6435 		goto retry;
6436 	}
6437 
6438 	/*
6439 	 * We make inactive:active ratio decisions based on the node's
6440 	 * composition of memory, but a restrictive reclaim_idx or a
6441 	 * memory.low cgroup setting can exempt large amounts of
6442 	 * memory from reclaim. Neither of which are very common, so
6443 	 * instead of doing costly eligibility calculations of the
6444 	 * entire cgroup subtree up front, we assume the estimates are
6445 	 * good, and retry with forcible deactivation if that fails.
6446 	 */
6447 	if (sc->skipped_deactivate) {
6448 		sc->priority = initial_priority;
6449 		sc->force_deactivate = 1;
6450 		sc->skipped_deactivate = 0;
6451 		goto retry;
6452 	}
6453 
6454 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6455 	if (sc->memcg_low_skipped) {
6456 		sc->priority = initial_priority;
6457 		sc->force_deactivate = 0;
6458 		sc->memcg_low_reclaim = 1;
6459 		sc->memcg_low_skipped = 0;
6460 		goto retry;
6461 	}
6462 
6463 	return 0;
6464 }
6465 
allow_direct_reclaim(pg_data_t * pgdat)6466 static bool allow_direct_reclaim(pg_data_t *pgdat)
6467 {
6468 	struct zone *zone;
6469 	unsigned long pfmemalloc_reserve = 0;
6470 	unsigned long free_pages = 0;
6471 	int i;
6472 	bool wmark_ok;
6473 
6474 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6475 		return true;
6476 
6477 	for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) {
6478 		if (!zone_reclaimable_pages(zone))
6479 			continue;
6480 
6481 		pfmemalloc_reserve += min_wmark_pages(zone);
6482 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6483 	}
6484 
6485 	/* If there are no reserves (unexpected config) then do not throttle */
6486 	if (!pfmemalloc_reserve)
6487 		return true;
6488 
6489 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6490 
6491 	/* kswapd must be awake if processes are being throttled */
6492 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6493 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6494 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6495 
6496 		wake_up_interruptible(&pgdat->kswapd_wait);
6497 	}
6498 
6499 	return wmark_ok;
6500 }
6501 
6502 /*
6503  * Throttle direct reclaimers if backing storage is backed by the network
6504  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6505  * depleted. kswapd will continue to make progress and wake the processes
6506  * when the low watermark is reached.
6507  *
6508  * Returns true if a fatal signal was delivered during throttling. If this
6509  * happens, the page allocator should not consider triggering the OOM killer.
6510  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6511 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6512 					nodemask_t *nodemask)
6513 {
6514 	struct zoneref *z;
6515 	struct zone *zone;
6516 	pg_data_t *pgdat = NULL;
6517 
6518 	/*
6519 	 * Kernel threads should not be throttled as they may be indirectly
6520 	 * responsible for cleaning pages necessary for reclaim to make forward
6521 	 * progress. kjournald for example may enter direct reclaim while
6522 	 * committing a transaction where throttling it could forcing other
6523 	 * processes to block on log_wait_commit().
6524 	 */
6525 	if (current->flags & PF_KTHREAD)
6526 		goto out;
6527 
6528 	/*
6529 	 * If a fatal signal is pending, this process should not throttle.
6530 	 * It should return quickly so it can exit and free its memory
6531 	 */
6532 	if (fatal_signal_pending(current))
6533 		goto out;
6534 
6535 	/*
6536 	 * Check if the pfmemalloc reserves are ok by finding the first node
6537 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6538 	 * GFP_KERNEL will be required for allocating network buffers when
6539 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6540 	 *
6541 	 * Throttling is based on the first usable node and throttled processes
6542 	 * wait on a queue until kswapd makes progress and wakes them. There
6543 	 * is an affinity then between processes waking up and where reclaim
6544 	 * progress has been made assuming the process wakes on the same node.
6545 	 * More importantly, processes running on remote nodes will not compete
6546 	 * for remote pfmemalloc reserves and processes on different nodes
6547 	 * should make reasonable progress.
6548 	 */
6549 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6550 					gfp_zone(gfp_mask), nodemask) {
6551 		if (zone_idx(zone) > ZONE_NORMAL)
6552 			continue;
6553 
6554 		/* Throttle based on the first usable node */
6555 		pgdat = zone->zone_pgdat;
6556 		if (allow_direct_reclaim(pgdat))
6557 			goto out;
6558 		break;
6559 	}
6560 
6561 	/* If no zone was usable by the allocation flags then do not throttle */
6562 	if (!pgdat)
6563 		goto out;
6564 
6565 	/* Account for the throttling */
6566 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6567 
6568 	/*
6569 	 * If the caller cannot enter the filesystem, it's possible that it
6570 	 * is due to the caller holding an FS lock or performing a journal
6571 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6572 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6573 	 * blocked waiting on the same lock. Instead, throttle for up to a
6574 	 * second before continuing.
6575 	 */
6576 	if (!(gfp_mask & __GFP_FS))
6577 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6578 			allow_direct_reclaim(pgdat), HZ);
6579 	else
6580 		/* Throttle until kswapd wakes the process */
6581 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6582 			allow_direct_reclaim(pgdat));
6583 
6584 	if (fatal_signal_pending(current))
6585 		return true;
6586 
6587 out:
6588 	return false;
6589 }
6590 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)6591 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6592 				gfp_t gfp_mask, nodemask_t *nodemask)
6593 {
6594 	unsigned long nr_reclaimed;
6595 	struct scan_control sc = {
6596 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6597 		.gfp_mask = current_gfp_context(gfp_mask),
6598 		.reclaim_idx = gfp_zone(gfp_mask),
6599 		.order = order,
6600 		.nodemask = nodemask,
6601 		.priority = DEF_PRIORITY,
6602 		.may_writepage = !laptop_mode,
6603 		.may_unmap = 1,
6604 		.may_swap = 1,
6605 	};
6606 
6607 	/*
6608 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6609 	 * Confirm they are large enough for max values.
6610 	 */
6611 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6612 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6613 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6614 
6615 	/*
6616 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6617 	 * 1 is returned so that the page allocator does not OOM kill at this
6618 	 * point.
6619 	 */
6620 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6621 		return 1;
6622 
6623 	set_task_reclaim_state(current, &sc.reclaim_state);
6624 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6625 
6626 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6627 
6628 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6629 	set_task_reclaim_state(current, NULL);
6630 
6631 	return nr_reclaimed;
6632 }
6633 
6634 #ifdef CONFIG_MEMCG
6635 
6636 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)6637 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6638 						gfp_t gfp_mask, bool noswap,
6639 						pg_data_t *pgdat,
6640 						unsigned long *nr_scanned)
6641 {
6642 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6643 	struct scan_control sc = {
6644 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6645 		.target_mem_cgroup = memcg,
6646 		.may_writepage = !laptop_mode,
6647 		.may_unmap = 1,
6648 		.reclaim_idx = MAX_NR_ZONES - 1,
6649 		.may_swap = !noswap,
6650 	};
6651 
6652 	WARN_ON_ONCE(!current->reclaim_state);
6653 
6654 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6655 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6656 
6657 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6658 						      sc.gfp_mask);
6659 
6660 	/*
6661 	 * NOTE: Although we can get the priority field, using it
6662 	 * here is not a good idea, since it limits the pages we can scan.
6663 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6664 	 * will pick up pages from other mem cgroup's as well. We hack
6665 	 * the priority and make it zero.
6666 	 */
6667 	shrink_lruvec(lruvec, &sc);
6668 
6669 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6670 
6671 	*nr_scanned = sc.nr_scanned;
6672 
6673 	return sc.nr_reclaimed;
6674 }
6675 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6676 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6677 					   unsigned long nr_pages,
6678 					   gfp_t gfp_mask,
6679 					   unsigned int reclaim_options,
6680 					   int *swappiness)
6681 {
6682 	unsigned long nr_reclaimed;
6683 	unsigned int noreclaim_flag;
6684 	struct scan_control sc = {
6685 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6686 		.proactive_swappiness = swappiness,
6687 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6688 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6689 		.reclaim_idx = MAX_NR_ZONES - 1,
6690 		.target_mem_cgroup = memcg,
6691 		.priority = DEF_PRIORITY,
6692 		.may_writepage = !laptop_mode,
6693 		.may_unmap = 1,
6694 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6695 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6696 	};
6697 	/*
6698 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6699 	 * equal pressure on all the nodes. This is based on the assumption that
6700 	 * the reclaim does not bail out early.
6701 	 */
6702 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6703 
6704 	set_task_reclaim_state(current, &sc.reclaim_state);
6705 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6706 	noreclaim_flag = memalloc_noreclaim_save();
6707 
6708 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6709 
6710 	memalloc_noreclaim_restore(noreclaim_flag);
6711 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6712 	set_task_reclaim_state(current, NULL);
6713 
6714 	return nr_reclaimed;
6715 }
6716 #endif
6717 
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)6718 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6719 {
6720 	struct mem_cgroup *memcg;
6721 	struct lruvec *lruvec;
6722 
6723 	if (lru_gen_enabled()) {
6724 		lru_gen_age_node(pgdat, sc);
6725 		return;
6726 	}
6727 
6728 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6729 	if (!can_age_anon_pages(lruvec, sc))
6730 		return;
6731 
6732 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6733 		return;
6734 
6735 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6736 	do {
6737 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6738 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6739 				   sc, LRU_ACTIVE_ANON);
6740 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6741 	} while (memcg);
6742 }
6743 
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)6744 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6745 {
6746 	int i;
6747 	struct zone *zone;
6748 
6749 	/*
6750 	 * Check for watermark boosts top-down as the higher zones
6751 	 * are more likely to be boosted. Both watermarks and boosts
6752 	 * should not be checked at the same time as reclaim would
6753 	 * start prematurely when there is no boosting and a lower
6754 	 * zone is balanced.
6755 	 */
6756 	for (i = highest_zoneidx; i >= 0; i--) {
6757 		zone = pgdat->node_zones + i;
6758 		if (!managed_zone(zone))
6759 			continue;
6760 
6761 		if (zone->watermark_boost)
6762 			return true;
6763 	}
6764 
6765 	return false;
6766 }
6767 
6768 /*
6769  * Returns true if there is an eligible zone balanced for the request order
6770  * and highest_zoneidx
6771  */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)6772 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6773 {
6774 	int i;
6775 	unsigned long mark = -1;
6776 	struct zone *zone;
6777 
6778 	/*
6779 	 * Check watermarks bottom-up as lower zones are more likely to
6780 	 * meet watermarks.
6781 	 */
6782 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6783 		enum zone_stat_item item;
6784 		unsigned long free_pages;
6785 
6786 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6787 			mark = promo_wmark_pages(zone);
6788 		else
6789 			mark = high_wmark_pages(zone);
6790 
6791 		/*
6792 		 * In defrag_mode, watermarks must be met in whole
6793 		 * blocks to avoid polluting allocator fallbacks.
6794 		 *
6795 		 * However, kswapd usually cannot accomplish this on
6796 		 * its own and needs kcompactd support. Once it's
6797 		 * reclaimed a compaction gap, and kswapd_shrink_node
6798 		 * has dropped order, simply ensure there are enough
6799 		 * base pages for compaction, wake kcompactd & sleep.
6800 		 */
6801 		if (defrag_mode && order)
6802 			item = NR_FREE_PAGES_BLOCKS;
6803 		else
6804 			item = NR_FREE_PAGES;
6805 
6806 		/*
6807 		 * When there is a high number of CPUs in the system,
6808 		 * the cumulative error from the vmstat per-cpu cache
6809 		 * can blur the line between the watermarks. In that
6810 		 * case, be safe and get an accurate snapshot.
6811 		 *
6812 		 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of
6813 		 * pageblock_nr_pages, while the vmstat pcp threshold
6814 		 * is limited to 125. On many configurations that
6815 		 * counter won't actually be per-cpu cached. But keep
6816 		 * things simple for now; revisit when somebody cares.
6817 		 */
6818 		free_pages = zone_page_state(zone, item);
6819 		if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark)
6820 			free_pages = zone_page_state_snapshot(zone, item);
6821 
6822 		if (__zone_watermark_ok(zone, order, mark, highest_zoneidx,
6823 					0, free_pages))
6824 			return true;
6825 	}
6826 
6827 	/*
6828 	 * If a node has no managed zone within highest_zoneidx, it does not
6829 	 * need balancing by definition. This can happen if a zone-restricted
6830 	 * allocation tries to wake a remote kswapd.
6831 	 */
6832 	if (mark == -1)
6833 		return true;
6834 
6835 	return false;
6836 }
6837 
6838 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)6839 static void clear_pgdat_congested(pg_data_t *pgdat)
6840 {
6841 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6842 
6843 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6844 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6845 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6846 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6847 }
6848 
6849 /*
6850  * Prepare kswapd for sleeping. This verifies that there are no processes
6851  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6852  *
6853  * Returns true if kswapd is ready to sleep
6854  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)6855 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6856 				int highest_zoneidx)
6857 {
6858 	/*
6859 	 * The throttled processes are normally woken up in balance_pgdat() as
6860 	 * soon as allow_direct_reclaim() is true. But there is a potential
6861 	 * race between when kswapd checks the watermarks and a process gets
6862 	 * throttled. There is also a potential race if processes get
6863 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6864 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6865 	 * the wake up checks. If kswapd is going to sleep, no process should
6866 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6867 	 * the wake up is premature, processes will wake kswapd and get
6868 	 * throttled again. The difference from wake ups in balance_pgdat() is
6869 	 * that here we are under prepare_to_wait().
6870 	 */
6871 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6872 		wake_up_all(&pgdat->pfmemalloc_wait);
6873 
6874 	/* Hopeless node, leave it to direct reclaim */
6875 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6876 		return true;
6877 
6878 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6879 		clear_pgdat_congested(pgdat);
6880 		return true;
6881 	}
6882 
6883 	return false;
6884 }
6885 
6886 /*
6887  * kswapd shrinks a node of pages that are at or below the highest usable
6888  * zone that is currently unbalanced.
6889  *
6890  * Returns true if kswapd scanned at least the requested number of pages to
6891  * reclaim or if the lack of progress was due to pages under writeback.
6892  * This is used to determine if the scanning priority needs to be raised.
6893  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)6894 static bool kswapd_shrink_node(pg_data_t *pgdat,
6895 			       struct scan_control *sc)
6896 {
6897 	struct zone *zone;
6898 	int z;
6899 	unsigned long nr_reclaimed = sc->nr_reclaimed;
6900 
6901 	/* Reclaim a number of pages proportional to the number of zones */
6902 	sc->nr_to_reclaim = 0;
6903 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
6904 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6905 	}
6906 
6907 	/*
6908 	 * Historically care was taken to put equal pressure on all zones but
6909 	 * now pressure is applied based on node LRU order.
6910 	 */
6911 	shrink_node(pgdat, sc);
6912 
6913 	/*
6914 	 * Fragmentation may mean that the system cannot be rebalanced for
6915 	 * high-order allocations. If twice the allocation size has been
6916 	 * reclaimed then recheck watermarks only at order-0 to prevent
6917 	 * excessive reclaim. Assume that a process requested a high-order
6918 	 * can direct reclaim/compact.
6919 	 */
6920 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6921 		sc->order = 0;
6922 
6923 	/* account for progress from mm_account_reclaimed_pages() */
6924 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6925 }
6926 
6927 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6928 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)6929 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6930 {
6931 	int i;
6932 	struct zone *zone;
6933 
6934 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6935 		if (active)
6936 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6937 		else
6938 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6939 	}
6940 }
6941 
6942 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6943 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6944 {
6945 	update_reclaim_active(pgdat, highest_zoneidx, true);
6946 }
6947 
6948 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6949 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6950 {
6951 	update_reclaim_active(pgdat, highest_zoneidx, false);
6952 }
6953 
6954 /*
6955  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6956  * that are eligible for use by the caller until at least one zone is
6957  * balanced.
6958  *
6959  * Returns the order kswapd finished reclaiming at.
6960  *
6961  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6962  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6963  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6964  * or lower is eligible for reclaim until at least one usable zone is
6965  * balanced.
6966  */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)6967 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6968 {
6969 	int i;
6970 	unsigned long nr_soft_reclaimed;
6971 	unsigned long nr_soft_scanned;
6972 	unsigned long pflags;
6973 	unsigned long nr_boost_reclaim;
6974 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6975 	bool boosted;
6976 	struct zone *zone;
6977 	struct scan_control sc = {
6978 		.gfp_mask = GFP_KERNEL,
6979 		.order = order,
6980 		.may_unmap = 1,
6981 	};
6982 
6983 	set_task_reclaim_state(current, &sc.reclaim_state);
6984 	psi_memstall_enter(&pflags);
6985 	__fs_reclaim_acquire(_THIS_IP_);
6986 
6987 	count_vm_event(PAGEOUTRUN);
6988 
6989 	/*
6990 	 * Account for the reclaim boost. Note that the zone boost is left in
6991 	 * place so that parallel allocations that are near the watermark will
6992 	 * stall or direct reclaim until kswapd is finished.
6993 	 */
6994 	nr_boost_reclaim = 0;
6995 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6996 		nr_boost_reclaim += zone->watermark_boost;
6997 		zone_boosts[i] = zone->watermark_boost;
6998 	}
6999 	boosted = nr_boost_reclaim;
7000 
7001 restart:
7002 	set_reclaim_active(pgdat, highest_zoneidx);
7003 	sc.priority = DEF_PRIORITY;
7004 	do {
7005 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7006 		bool raise_priority = true;
7007 		bool balanced;
7008 		bool ret;
7009 		bool was_frozen;
7010 
7011 		sc.reclaim_idx = highest_zoneidx;
7012 
7013 		/*
7014 		 * If the number of buffer_heads exceeds the maximum allowed
7015 		 * then consider reclaiming from all zones. This has a dual
7016 		 * purpose -- on 64-bit systems it is expected that
7017 		 * buffer_heads are stripped during active rotation. On 32-bit
7018 		 * systems, highmem pages can pin lowmem memory and shrinking
7019 		 * buffers can relieve lowmem pressure. Reclaim may still not
7020 		 * go ahead if all eligible zones for the original allocation
7021 		 * request are balanced to avoid excessive reclaim from kswapd.
7022 		 */
7023 		if (buffer_heads_over_limit) {
7024 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7025 				zone = pgdat->node_zones + i;
7026 				if (!managed_zone(zone))
7027 					continue;
7028 
7029 				sc.reclaim_idx = i;
7030 				break;
7031 			}
7032 		}
7033 
7034 		/*
7035 		 * If the pgdat is imbalanced then ignore boosting and preserve
7036 		 * the watermarks for a later time and restart. Note that the
7037 		 * zone watermarks will be still reset at the end of balancing
7038 		 * on the grounds that the normal reclaim should be enough to
7039 		 * re-evaluate if boosting is required when kswapd next wakes.
7040 		 */
7041 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7042 		if (!balanced && nr_boost_reclaim) {
7043 			nr_boost_reclaim = 0;
7044 			goto restart;
7045 		}
7046 
7047 		/*
7048 		 * If boosting is not active then only reclaim if there are no
7049 		 * eligible zones. Note that sc.reclaim_idx is not used as
7050 		 * buffer_heads_over_limit may have adjusted it.
7051 		 */
7052 		if (!nr_boost_reclaim && balanced)
7053 			goto out;
7054 
7055 		/* Limit the priority of boosting to avoid reclaim writeback */
7056 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7057 			raise_priority = false;
7058 
7059 		/*
7060 		 * Do not writeback or swap pages for boosted reclaim. The
7061 		 * intent is to relieve pressure not issue sub-optimal IO
7062 		 * from reclaim context. If no pages are reclaimed, the
7063 		 * reclaim will be aborted.
7064 		 */
7065 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7066 		sc.may_swap = !nr_boost_reclaim;
7067 
7068 		/*
7069 		 * Do some background aging, to give pages a chance to be
7070 		 * referenced before reclaiming. All pages are rotated
7071 		 * regardless of classzone as this is about consistent aging.
7072 		 */
7073 		kswapd_age_node(pgdat, &sc);
7074 
7075 		/*
7076 		 * If we're getting trouble reclaiming, start doing writepage
7077 		 * even in laptop mode.
7078 		 */
7079 		if (sc.priority < DEF_PRIORITY - 2)
7080 			sc.may_writepage = 1;
7081 
7082 		/* Call soft limit reclaim before calling shrink_node. */
7083 		sc.nr_scanned = 0;
7084 		nr_soft_scanned = 0;
7085 		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
7086 							      sc.gfp_mask, &nr_soft_scanned);
7087 		sc.nr_reclaimed += nr_soft_reclaimed;
7088 
7089 		/*
7090 		 * There should be no need to raise the scanning priority if
7091 		 * enough pages are already being scanned that that high
7092 		 * watermark would be met at 100% efficiency.
7093 		 */
7094 		if (kswapd_shrink_node(pgdat, &sc))
7095 			raise_priority = false;
7096 
7097 		/*
7098 		 * If the low watermark is met there is no need for processes
7099 		 * to be throttled on pfmemalloc_wait as they should not be
7100 		 * able to safely make forward progress. Wake them
7101 		 */
7102 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7103 				allow_direct_reclaim(pgdat))
7104 			wake_up_all(&pgdat->pfmemalloc_wait);
7105 
7106 		/* Check if kswapd should be suspending */
7107 		__fs_reclaim_release(_THIS_IP_);
7108 		ret = kthread_freezable_should_stop(&was_frozen);
7109 		__fs_reclaim_acquire(_THIS_IP_);
7110 		if (was_frozen || ret)
7111 			break;
7112 
7113 		/*
7114 		 * Raise priority if scanning rate is too low or there was no
7115 		 * progress in reclaiming pages
7116 		 */
7117 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7118 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7119 
7120 		/*
7121 		 * If reclaim made no progress for a boost, stop reclaim as
7122 		 * IO cannot be queued and it could be an infinite loop in
7123 		 * extreme circumstances.
7124 		 */
7125 		if (nr_boost_reclaim && !nr_reclaimed)
7126 			break;
7127 
7128 		if (raise_priority || !nr_reclaimed)
7129 			sc.priority--;
7130 	} while (sc.priority >= 1);
7131 
7132 	/*
7133 	 * Restart only if it went through the priority loop all the way,
7134 	 * but cache_trim_mode didn't work.
7135 	 */
7136 	if (!sc.nr_reclaimed && sc.priority < 1 &&
7137 	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7138 		sc.no_cache_trim_mode = 1;
7139 		goto restart;
7140 	}
7141 
7142 	if (!sc.nr_reclaimed)
7143 		pgdat->kswapd_failures++;
7144 
7145 out:
7146 	clear_reclaim_active(pgdat, highest_zoneidx);
7147 
7148 	/* If reclaim was boosted, account for the reclaim done in this pass */
7149 	if (boosted) {
7150 		unsigned long flags;
7151 
7152 		for (i = 0; i <= highest_zoneidx; i++) {
7153 			if (!zone_boosts[i])
7154 				continue;
7155 
7156 			/* Increments are under the zone lock */
7157 			zone = pgdat->node_zones + i;
7158 			spin_lock_irqsave(&zone->lock, flags);
7159 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7160 			spin_unlock_irqrestore(&zone->lock, flags);
7161 		}
7162 
7163 		/*
7164 		 * As there is now likely space, wakeup kcompact to defragment
7165 		 * pageblocks.
7166 		 */
7167 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7168 	}
7169 
7170 	snapshot_refaults(NULL, pgdat);
7171 	__fs_reclaim_release(_THIS_IP_);
7172 	psi_memstall_leave(&pflags);
7173 	set_task_reclaim_state(current, NULL);
7174 
7175 	/*
7176 	 * Return the order kswapd stopped reclaiming at as
7177 	 * prepare_kswapd_sleep() takes it into account. If another caller
7178 	 * entered the allocator slow path while kswapd was awake, order will
7179 	 * remain at the higher level.
7180 	 */
7181 	return sc.order;
7182 }
7183 
7184 /*
7185  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7186  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7187  * not a valid index then either kswapd runs for first time or kswapd couldn't
7188  * sleep after previous reclaim attempt (node is still unbalanced). In that
7189  * case return the zone index of the previous kswapd reclaim cycle.
7190  */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7191 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7192 					   enum zone_type prev_highest_zoneidx)
7193 {
7194 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7195 
7196 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7197 }
7198 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7199 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7200 				unsigned int highest_zoneidx)
7201 {
7202 	long remaining = 0;
7203 	DEFINE_WAIT(wait);
7204 
7205 	if (freezing(current) || kthread_should_stop())
7206 		return;
7207 
7208 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7209 
7210 	/*
7211 	 * Try to sleep for a short interval. Note that kcompactd will only be
7212 	 * woken if it is possible to sleep for a short interval. This is
7213 	 * deliberate on the assumption that if reclaim cannot keep an
7214 	 * eligible zone balanced that it's also unlikely that compaction will
7215 	 * succeed.
7216 	 */
7217 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7218 		/*
7219 		 * Compaction records what page blocks it recently failed to
7220 		 * isolate pages from and skips them in the future scanning.
7221 		 * When kswapd is going to sleep, it is reasonable to assume
7222 		 * that pages and compaction may succeed so reset the cache.
7223 		 */
7224 		reset_isolation_suitable(pgdat);
7225 
7226 		/*
7227 		 * We have freed the memory, now we should compact it to make
7228 		 * allocation of the requested order possible.
7229 		 */
7230 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7231 
7232 		remaining = schedule_timeout(HZ/10);
7233 
7234 		/*
7235 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7236 		 * order. The values will either be from a wakeup request or
7237 		 * the previous request that slept prematurely.
7238 		 */
7239 		if (remaining) {
7240 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7241 					kswapd_highest_zoneidx(pgdat,
7242 							highest_zoneidx));
7243 
7244 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7245 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7246 		}
7247 
7248 		finish_wait(&pgdat->kswapd_wait, &wait);
7249 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7250 	}
7251 
7252 	/*
7253 	 * After a short sleep, check if it was a premature sleep. If not, then
7254 	 * go fully to sleep until explicitly woken up.
7255 	 */
7256 	if (!remaining &&
7257 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7258 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7259 
7260 		/*
7261 		 * vmstat counters are not perfectly accurate and the estimated
7262 		 * value for counters such as NR_FREE_PAGES can deviate from the
7263 		 * true value by nr_online_cpus * threshold. To avoid the zone
7264 		 * watermarks being breached while under pressure, we reduce the
7265 		 * per-cpu vmstat threshold while kswapd is awake and restore
7266 		 * them before going back to sleep.
7267 		 */
7268 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7269 
7270 		if (!kthread_should_stop())
7271 			schedule();
7272 
7273 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7274 	} else {
7275 		if (remaining)
7276 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7277 		else
7278 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7279 	}
7280 	finish_wait(&pgdat->kswapd_wait, &wait);
7281 }
7282 
7283 /*
7284  * The background pageout daemon, started as a kernel thread
7285  * from the init process.
7286  *
7287  * This basically trickles out pages so that we have _some_
7288  * free memory available even if there is no other activity
7289  * that frees anything up. This is needed for things like routing
7290  * etc, where we otherwise might have all activity going on in
7291  * asynchronous contexts that cannot page things out.
7292  *
7293  * If there are applications that are active memory-allocators
7294  * (most normal use), this basically shouldn't matter.
7295  */
kswapd(void * p)7296 static int kswapd(void *p)
7297 {
7298 	unsigned int alloc_order, reclaim_order;
7299 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7300 	pg_data_t *pgdat = (pg_data_t *)p;
7301 	struct task_struct *tsk = current;
7302 
7303 	/*
7304 	 * Tell the memory management that we're a "memory allocator",
7305 	 * and that if we need more memory we should get access to it
7306 	 * regardless (see "__alloc_pages()"). "kswapd" should
7307 	 * never get caught in the normal page freeing logic.
7308 	 *
7309 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7310 	 * you need a small amount of memory in order to be able to
7311 	 * page out something else, and this flag essentially protects
7312 	 * us from recursively trying to free more memory as we're
7313 	 * trying to free the first piece of memory in the first place).
7314 	 */
7315 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7316 	set_freezable();
7317 
7318 	WRITE_ONCE(pgdat->kswapd_order, 0);
7319 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7320 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7321 	for ( ; ; ) {
7322 		bool was_frozen;
7323 
7324 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7325 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7326 							highest_zoneidx);
7327 
7328 kswapd_try_sleep:
7329 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7330 					highest_zoneidx);
7331 
7332 		/* Read the new order and highest_zoneidx */
7333 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7334 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7335 							highest_zoneidx);
7336 		WRITE_ONCE(pgdat->kswapd_order, 0);
7337 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7338 
7339 		if (kthread_freezable_should_stop(&was_frozen))
7340 			break;
7341 
7342 		/*
7343 		 * We can speed up thawing tasks if we don't call balance_pgdat
7344 		 * after returning from the refrigerator
7345 		 */
7346 		if (was_frozen)
7347 			continue;
7348 
7349 		/*
7350 		 * Reclaim begins at the requested order but if a high-order
7351 		 * reclaim fails then kswapd falls back to reclaiming for
7352 		 * order-0. If that happens, kswapd will consider sleeping
7353 		 * for the order it finished reclaiming at (reclaim_order)
7354 		 * but kcompactd is woken to compact for the original
7355 		 * request (alloc_order).
7356 		 */
7357 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7358 						alloc_order);
7359 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7360 						highest_zoneidx);
7361 		if (reclaim_order < alloc_order)
7362 			goto kswapd_try_sleep;
7363 	}
7364 
7365 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7366 
7367 	return 0;
7368 }
7369 
7370 /*
7371  * A zone is low on free memory or too fragmented for high-order memory.  If
7372  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7373  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7374  * has failed or is not needed, still wake up kcompactd if only compaction is
7375  * needed.
7376  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7377 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7378 		   enum zone_type highest_zoneidx)
7379 {
7380 	pg_data_t *pgdat;
7381 	enum zone_type curr_idx;
7382 
7383 	if (!managed_zone(zone))
7384 		return;
7385 
7386 	if (!cpuset_zone_allowed(zone, gfp_flags))
7387 		return;
7388 
7389 	pgdat = zone->zone_pgdat;
7390 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7391 
7392 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7393 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7394 
7395 	if (READ_ONCE(pgdat->kswapd_order) < order)
7396 		WRITE_ONCE(pgdat->kswapd_order, order);
7397 
7398 	if (!waitqueue_active(&pgdat->kswapd_wait))
7399 		return;
7400 
7401 	/* Hopeless node, leave it to direct reclaim if possible */
7402 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7403 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7404 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7405 		/*
7406 		 * There may be plenty of free memory available, but it's too
7407 		 * fragmented for high-order allocations.  Wake up kcompactd
7408 		 * and rely on compaction_suitable() to determine if it's
7409 		 * needed.  If it fails, it will defer subsequent attempts to
7410 		 * ratelimit its work.
7411 		 */
7412 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7413 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7414 		return;
7415 	}
7416 
7417 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7418 				      gfp_flags);
7419 	wake_up_interruptible(&pgdat->kswapd_wait);
7420 }
7421 
7422 #ifdef CONFIG_HIBERNATION
7423 /*
7424  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7425  * freed pages.
7426  *
7427  * Rather than trying to age LRUs the aim is to preserve the overall
7428  * LRU order by reclaiming preferentially
7429  * inactive > active > active referenced > active mapped
7430  */
shrink_all_memory(unsigned long nr_to_reclaim)7431 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7432 {
7433 	struct scan_control sc = {
7434 		.nr_to_reclaim = nr_to_reclaim,
7435 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7436 		.reclaim_idx = MAX_NR_ZONES - 1,
7437 		.priority = DEF_PRIORITY,
7438 		.may_writepage = 1,
7439 		.may_unmap = 1,
7440 		.may_swap = 1,
7441 		.hibernation_mode = 1,
7442 	};
7443 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7444 	unsigned long nr_reclaimed;
7445 	unsigned int noreclaim_flag;
7446 
7447 	fs_reclaim_acquire(sc.gfp_mask);
7448 	noreclaim_flag = memalloc_noreclaim_save();
7449 	set_task_reclaim_state(current, &sc.reclaim_state);
7450 
7451 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7452 
7453 	set_task_reclaim_state(current, NULL);
7454 	memalloc_noreclaim_restore(noreclaim_flag);
7455 	fs_reclaim_release(sc.gfp_mask);
7456 
7457 	return nr_reclaimed;
7458 }
7459 #endif /* CONFIG_HIBERNATION */
7460 
7461 /*
7462  * This kswapd start function will be called by init and node-hot-add.
7463  */
kswapd_run(int nid)7464 void __meminit kswapd_run(int nid)
7465 {
7466 	pg_data_t *pgdat = NODE_DATA(nid);
7467 
7468 	pgdat_kswapd_lock(pgdat);
7469 	if (!pgdat->kswapd) {
7470 		pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid);
7471 		if (IS_ERR(pgdat->kswapd)) {
7472 			/* failure at boot is fatal */
7473 			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7474 				   nid, PTR_ERR(pgdat->kswapd));
7475 			BUG_ON(system_state < SYSTEM_RUNNING);
7476 			pgdat->kswapd = NULL;
7477 		} else {
7478 			wake_up_process(pgdat->kswapd);
7479 		}
7480 	}
7481 	pgdat_kswapd_unlock(pgdat);
7482 }
7483 
7484 /*
7485  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7486  * be holding mem_hotplug_begin/done().
7487  */
kswapd_stop(int nid)7488 void __meminit kswapd_stop(int nid)
7489 {
7490 	pg_data_t *pgdat = NODE_DATA(nid);
7491 	struct task_struct *kswapd;
7492 
7493 	pgdat_kswapd_lock(pgdat);
7494 	kswapd = pgdat->kswapd;
7495 	if (kswapd) {
7496 		kthread_stop(kswapd);
7497 		pgdat->kswapd = NULL;
7498 	}
7499 	pgdat_kswapd_unlock(pgdat);
7500 }
7501 
7502 static const struct ctl_table vmscan_sysctl_table[] = {
7503 	{
7504 		.procname	= "swappiness",
7505 		.data		= &vm_swappiness,
7506 		.maxlen		= sizeof(vm_swappiness),
7507 		.mode		= 0644,
7508 		.proc_handler	= proc_dointvec_minmax,
7509 		.extra1		= SYSCTL_ZERO,
7510 		.extra2		= SYSCTL_TWO_HUNDRED,
7511 	},
7512 #ifdef CONFIG_NUMA
7513 	{
7514 		.procname	= "zone_reclaim_mode",
7515 		.data		= &node_reclaim_mode,
7516 		.maxlen		= sizeof(node_reclaim_mode),
7517 		.mode		= 0644,
7518 		.proc_handler	= proc_dointvec_minmax,
7519 		.extra1		= SYSCTL_ZERO,
7520 	}
7521 #endif
7522 };
7523 
kswapd_init(void)7524 static int __init kswapd_init(void)
7525 {
7526 	int nid;
7527 
7528 	swap_setup();
7529 	for_each_node_state(nid, N_MEMORY)
7530  		kswapd_run(nid);
7531 	register_sysctl_init("vm", vmscan_sysctl_table);
7532 	return 0;
7533 }
7534 
7535 module_init(kswapd_init)
7536 
7537 #ifdef CONFIG_NUMA
7538 /*
7539  * Node reclaim mode
7540  *
7541  * If non-zero call node_reclaim when the number of free pages falls below
7542  * the watermarks.
7543  */
7544 int node_reclaim_mode __read_mostly;
7545 
7546 /*
7547  * Priority for NODE_RECLAIM. This determines the fraction of pages
7548  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7549  * a zone.
7550  */
7551 #define NODE_RECLAIM_PRIORITY 4
7552 
7553 /*
7554  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7555  * occur.
7556  */
7557 int sysctl_min_unmapped_ratio = 1;
7558 
7559 /*
7560  * If the number of slab pages in a zone grows beyond this percentage then
7561  * slab reclaim needs to occur.
7562  */
7563 int sysctl_min_slab_ratio = 5;
7564 
node_unmapped_file_pages(struct pglist_data * pgdat)7565 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7566 {
7567 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7568 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7569 		node_page_state(pgdat, NR_ACTIVE_FILE);
7570 
7571 	/*
7572 	 * It's possible for there to be more file mapped pages than
7573 	 * accounted for by the pages on the file LRU lists because
7574 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7575 	 */
7576 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7577 }
7578 
7579 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7580 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7581 {
7582 	unsigned long nr_pagecache_reclaimable;
7583 	unsigned long delta = 0;
7584 
7585 	/*
7586 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7587 	 * potentially reclaimable. Otherwise, we have to worry about
7588 	 * pages like swapcache and node_unmapped_file_pages() provides
7589 	 * a better estimate
7590 	 */
7591 	if (node_reclaim_mode & RECLAIM_UNMAP)
7592 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7593 	else
7594 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7595 
7596 	/* If we can't clean pages, remove dirty pages from consideration */
7597 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7598 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7599 
7600 	/* Watch for any possible underflows due to delta */
7601 	if (unlikely(delta > nr_pagecache_reclaimable))
7602 		delta = nr_pagecache_reclaimable;
7603 
7604 	return nr_pagecache_reclaimable - delta;
7605 }
7606 
7607 /*
7608  * Try to free up some pages from this node through reclaim.
7609  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7610 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7611 {
7612 	/* Minimum pages needed in order to stay on node */
7613 	const unsigned long nr_pages = 1 << order;
7614 	struct task_struct *p = current;
7615 	unsigned int noreclaim_flag;
7616 	struct scan_control sc = {
7617 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7618 		.gfp_mask = current_gfp_context(gfp_mask),
7619 		.order = order,
7620 		.priority = NODE_RECLAIM_PRIORITY,
7621 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7622 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7623 		.may_swap = 1,
7624 		.reclaim_idx = gfp_zone(gfp_mask),
7625 	};
7626 	unsigned long pflags;
7627 
7628 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7629 					   sc.gfp_mask);
7630 
7631 	cond_resched();
7632 	psi_memstall_enter(&pflags);
7633 	delayacct_freepages_start();
7634 	fs_reclaim_acquire(sc.gfp_mask);
7635 	/*
7636 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7637 	 */
7638 	noreclaim_flag = memalloc_noreclaim_save();
7639 	set_task_reclaim_state(p, &sc.reclaim_state);
7640 
7641 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7642 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7643 		/*
7644 		 * Free memory by calling shrink node with increasing
7645 		 * priorities until we have enough memory freed.
7646 		 */
7647 		do {
7648 			shrink_node(pgdat, &sc);
7649 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7650 	}
7651 
7652 	set_task_reclaim_state(p, NULL);
7653 	memalloc_noreclaim_restore(noreclaim_flag);
7654 	fs_reclaim_release(sc.gfp_mask);
7655 	psi_memstall_leave(&pflags);
7656 	delayacct_freepages_end();
7657 
7658 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7659 
7660 	return sc.nr_reclaimed >= nr_pages;
7661 }
7662 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7663 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7664 {
7665 	int ret;
7666 
7667 	/*
7668 	 * Node reclaim reclaims unmapped file backed pages and
7669 	 * slab pages if we are over the defined limits.
7670 	 *
7671 	 * A small portion of unmapped file backed pages is needed for
7672 	 * file I/O otherwise pages read by file I/O will be immediately
7673 	 * thrown out if the node is overallocated. So we do not reclaim
7674 	 * if less than a specified percentage of the node is used by
7675 	 * unmapped file backed pages.
7676 	 */
7677 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7678 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7679 	    pgdat->min_slab_pages)
7680 		return NODE_RECLAIM_FULL;
7681 
7682 	/*
7683 	 * Do not scan if the allocation should not be delayed.
7684 	 */
7685 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7686 		return NODE_RECLAIM_NOSCAN;
7687 
7688 	/*
7689 	 * Only run node reclaim on the local node or on nodes that do not
7690 	 * have associated processors. This will favor the local processor
7691 	 * over remote processors and spread off node memory allocations
7692 	 * as wide as possible.
7693 	 */
7694 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7695 		return NODE_RECLAIM_NOSCAN;
7696 
7697 	if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7698 		return NODE_RECLAIM_NOSCAN;
7699 
7700 	ret = __node_reclaim(pgdat, gfp_mask, order);
7701 	clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7702 
7703 	if (ret)
7704 		count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7705 	else
7706 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7707 
7708 	return ret;
7709 }
7710 #endif
7711 
7712 /**
7713  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7714  * lru list
7715  * @fbatch: Batch of lru folios to check.
7716  *
7717  * Checks folios for evictability, if an evictable folio is in the unevictable
7718  * lru list, moves it to the appropriate evictable lru list. This function
7719  * should be only used for lru folios.
7720  */
check_move_unevictable_folios(struct folio_batch * fbatch)7721 void check_move_unevictable_folios(struct folio_batch *fbatch)
7722 {
7723 	struct lruvec *lruvec = NULL;
7724 	int pgscanned = 0;
7725 	int pgrescued = 0;
7726 	int i;
7727 
7728 	for (i = 0; i < fbatch->nr; i++) {
7729 		struct folio *folio = fbatch->folios[i];
7730 		int nr_pages = folio_nr_pages(folio);
7731 
7732 		pgscanned += nr_pages;
7733 
7734 		/* block memcg migration while the folio moves between lrus */
7735 		if (!folio_test_clear_lru(folio))
7736 			continue;
7737 
7738 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7739 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7740 			lruvec_del_folio(lruvec, folio);
7741 			folio_clear_unevictable(folio);
7742 			lruvec_add_folio(lruvec, folio);
7743 			pgrescued += nr_pages;
7744 		}
7745 		folio_set_lru(folio);
7746 	}
7747 
7748 	if (lruvec) {
7749 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7750 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7751 		unlock_page_lruvec_irq(lruvec);
7752 	} else if (pgscanned) {
7753 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7754 	}
7755 }
7756 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7757