1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45
46 static struct vfsmount *shm_mnt __ro_after_init;
47
48 #ifdef CONFIG_SHMEM
49 /*
50 * This virtual memory filesystem is heavily based on the ramfs. It
51 * extends ramfs by the ability to use swap and honor resource limits
52 * which makes it a completely usable filesystem.
53 */
54
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/leafops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84
85 #include <linux/uaccess.h>
86
87 #include "internal.h"
88
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99
100 /*
101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via
102 * inode->i_private (with i_rwsem making sure that it has only one user at
103 * a time): we would prefer not to enlarge the shmem inode just for that.
104 */
105 struct shmem_falloc {
106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 pgoff_t start; /* start of range currently being fallocated */
108 pgoff_t next; /* the next page offset to be fallocated */
109 pgoff_t nr_falloced; /* how many new pages have been fallocated */
110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */
111 };
112
113 struct shmem_options {
114 unsigned long long blocks;
115 unsigned long long inodes;
116 struct mempolicy *mpol;
117 kuid_t uid;
118 kgid_t gid;
119 umode_t mode;
120 bool full_inums;
121 int huge;
122 int seen;
123 bool noswap;
124 unsigned short quota_types;
125 struct shmem_quota_limits qlimits;
126 #if IS_ENABLED(CONFIG_UNICODE)
127 struct unicode_map *encoding;
128 bool strict_encoding;
129 #endif
130 #define SHMEM_SEEN_BLOCKS 1
131 #define SHMEM_SEEN_INODES 2
132 #define SHMEM_SEEN_HUGE 4
133 #define SHMEM_SEEN_INUMS 8
134 #define SHMEM_SEEN_QUOTA 16
135 };
136
137 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
138 static unsigned long huge_shmem_orders_always __read_mostly;
139 static unsigned long huge_shmem_orders_madvise __read_mostly;
140 static unsigned long huge_shmem_orders_inherit __read_mostly;
141 static unsigned long huge_shmem_orders_within_size __read_mostly;
142 static bool shmem_orders_configured __initdata;
143 #endif
144
145 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)146 static unsigned long shmem_default_max_blocks(void)
147 {
148 return totalram_pages() / 2;
149 }
150
shmem_default_max_inodes(void)151 static unsigned long shmem_default_max_inodes(void)
152 {
153 unsigned long nr_pages = totalram_pages();
154
155 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
156 ULONG_MAX / BOGO_INODE_SIZE);
157 }
158 #endif
159
160 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
161 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
162 struct vm_area_struct *vma, vm_fault_t *fault_type);
163
SHMEM_SB(struct super_block * sb)164 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
165 {
166 return sb->s_fs_info;
167 }
168
169 /*
170 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
171 * for shared memory and for shared anonymous (/dev/zero) mappings
172 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
173 * consistent with the pre-accounting of private mappings ...
174 */
shmem_acct_size(unsigned long flags,loff_t size)175 static inline int shmem_acct_size(unsigned long flags, loff_t size)
176 {
177 return (flags & VM_NORESERVE) ?
178 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
179 }
180
shmem_unacct_size(unsigned long flags,loff_t size)181 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
182 {
183 if (!(flags & VM_NORESERVE))
184 vm_unacct_memory(VM_ACCT(size));
185 }
186
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)187 static inline int shmem_reacct_size(unsigned long flags,
188 loff_t oldsize, loff_t newsize)
189 {
190 if (!(flags & VM_NORESERVE)) {
191 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
192 return security_vm_enough_memory_mm(current->mm,
193 VM_ACCT(newsize) - VM_ACCT(oldsize));
194 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
195 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
196 }
197 return 0;
198 }
199
200 /*
201 * ... whereas tmpfs objects are accounted incrementally as
202 * pages are allocated, in order to allow large sparse files.
203 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
204 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
205 */
shmem_acct_blocks(unsigned long flags,long pages)206 static inline int shmem_acct_blocks(unsigned long flags, long pages)
207 {
208 if (!(flags & VM_NORESERVE))
209 return 0;
210
211 return security_vm_enough_memory_mm(current->mm,
212 pages * VM_ACCT(PAGE_SIZE));
213 }
214
shmem_unacct_blocks(unsigned long flags,long pages)215 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
216 {
217 if (flags & VM_NORESERVE)
218 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
219 }
220
shmem_inode_acct_blocks(struct inode * inode,long pages)221 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
222 {
223 struct shmem_inode_info *info = SHMEM_I(inode);
224 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
225 int err = -ENOSPC;
226
227 if (shmem_acct_blocks(info->flags, pages))
228 return err;
229
230 might_sleep(); /* when quotas */
231 if (sbinfo->max_blocks) {
232 if (!percpu_counter_limited_add(&sbinfo->used_blocks,
233 sbinfo->max_blocks, pages))
234 goto unacct;
235
236 err = dquot_alloc_block_nodirty(inode, pages);
237 if (err) {
238 percpu_counter_sub(&sbinfo->used_blocks, pages);
239 goto unacct;
240 }
241 } else {
242 err = dquot_alloc_block_nodirty(inode, pages);
243 if (err)
244 goto unacct;
245 }
246
247 return 0;
248
249 unacct:
250 shmem_unacct_blocks(info->flags, pages);
251 return err;
252 }
253
shmem_inode_unacct_blocks(struct inode * inode,long pages)254 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
255 {
256 struct shmem_inode_info *info = SHMEM_I(inode);
257 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
258
259 might_sleep(); /* when quotas */
260 dquot_free_block_nodirty(inode, pages);
261
262 if (sbinfo->max_blocks)
263 percpu_counter_sub(&sbinfo->used_blocks, pages);
264 shmem_unacct_blocks(info->flags, pages);
265 }
266
267 static const struct super_operations shmem_ops;
268 static const struct address_space_operations shmem_aops;
269 static const struct file_operations shmem_file_operations;
270 static const struct inode_operations shmem_inode_operations;
271 static const struct inode_operations shmem_dir_inode_operations;
272 static const struct inode_operations shmem_special_inode_operations;
273 static const struct vm_operations_struct shmem_vm_ops;
274 static const struct vm_operations_struct shmem_anon_vm_ops;
275 static struct file_system_type shmem_fs_type;
276
shmem_mapping(const struct address_space * mapping)277 bool shmem_mapping(const struct address_space *mapping)
278 {
279 return mapping->a_ops == &shmem_aops;
280 }
281 EXPORT_SYMBOL_GPL(shmem_mapping);
282
vma_is_anon_shmem(const struct vm_area_struct * vma)283 bool vma_is_anon_shmem(const struct vm_area_struct *vma)
284 {
285 return vma->vm_ops == &shmem_anon_vm_ops;
286 }
287
vma_is_shmem(const struct vm_area_struct * vma)288 bool vma_is_shmem(const struct vm_area_struct *vma)
289 {
290 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
291 }
292
293 static LIST_HEAD(shmem_swaplist);
294 static DEFINE_SPINLOCK(shmem_swaplist_lock);
295
296 #ifdef CONFIG_TMPFS_QUOTA
297
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)298 static int shmem_enable_quotas(struct super_block *sb,
299 unsigned short quota_types)
300 {
301 int type, err = 0;
302
303 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
304 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
305 if (!(quota_types & (1 << type)))
306 continue;
307 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
308 DQUOT_USAGE_ENABLED |
309 DQUOT_LIMITS_ENABLED);
310 if (err)
311 goto out_err;
312 }
313 return 0;
314
315 out_err:
316 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
317 type, err);
318 for (type--; type >= 0; type--)
319 dquot_quota_off(sb, type);
320 return err;
321 }
322
shmem_disable_quotas(struct super_block * sb)323 static void shmem_disable_quotas(struct super_block *sb)
324 {
325 int type;
326
327 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
328 dquot_quota_off(sb, type);
329 }
330
shmem_get_dquots(struct inode * inode)331 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
332 {
333 return SHMEM_I(inode)->i_dquot;
334 }
335 #endif /* CONFIG_TMPFS_QUOTA */
336
337 /*
338 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
339 * produces a novel ino for the newly allocated inode.
340 *
341 * It may also be called when making a hard link to permit the space needed by
342 * each dentry. However, in that case, no new inode number is needed since that
343 * internally draws from another pool of inode numbers (currently global
344 * get_next_ino()). This case is indicated by passing NULL as inop.
345 */
346 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)347 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
348 {
349 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
350 ino_t ino;
351
352 if (!(sb->s_flags & SB_KERNMOUNT)) {
353 raw_spin_lock(&sbinfo->stat_lock);
354 if (sbinfo->max_inodes) {
355 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
356 raw_spin_unlock(&sbinfo->stat_lock);
357 return -ENOSPC;
358 }
359 sbinfo->free_ispace -= BOGO_INODE_SIZE;
360 }
361 if (inop) {
362 ino = sbinfo->next_ino++;
363 if (unlikely(is_zero_ino(ino)))
364 ino = sbinfo->next_ino++;
365 if (unlikely(!sbinfo->full_inums &&
366 ino > UINT_MAX)) {
367 /*
368 * Emulate get_next_ino uint wraparound for
369 * compatibility
370 */
371 if (IS_ENABLED(CONFIG_64BIT))
372 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
373 __func__, MINOR(sb->s_dev));
374 sbinfo->next_ino = 1;
375 ino = sbinfo->next_ino++;
376 }
377 *inop = ino;
378 }
379 raw_spin_unlock(&sbinfo->stat_lock);
380 } else if (inop) {
381 /*
382 * __shmem_file_setup, one of our callers, is lock-free: it
383 * doesn't hold stat_lock in shmem_reserve_inode since
384 * max_inodes is always 0, and is called from potentially
385 * unknown contexts. As such, use a per-cpu batched allocator
386 * which doesn't require the per-sb stat_lock unless we are at
387 * the batch boundary.
388 *
389 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
390 * shmem mounts are not exposed to userspace, so we don't need
391 * to worry about things like glibc compatibility.
392 */
393 ino_t *next_ino;
394
395 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
396 ino = *next_ino;
397 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
398 raw_spin_lock(&sbinfo->stat_lock);
399 ino = sbinfo->next_ino;
400 sbinfo->next_ino += SHMEM_INO_BATCH;
401 raw_spin_unlock(&sbinfo->stat_lock);
402 if (unlikely(is_zero_ino(ino)))
403 ino++;
404 }
405 *inop = ino;
406 *next_ino = ++ino;
407 put_cpu();
408 }
409
410 return 0;
411 }
412
shmem_free_inode(struct super_block * sb,size_t freed_ispace)413 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
414 {
415 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
416 if (sbinfo->max_inodes) {
417 raw_spin_lock(&sbinfo->stat_lock);
418 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
419 raw_spin_unlock(&sbinfo->stat_lock);
420 }
421 }
422
423 /**
424 * shmem_recalc_inode - recalculate the block usage of an inode
425 * @inode: inode to recalc
426 * @alloced: the change in number of pages allocated to inode
427 * @swapped: the change in number of pages swapped from inode
428 *
429 * We have to calculate the free blocks since the mm can drop
430 * undirtied hole pages behind our back.
431 *
432 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
433 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
434 *
435 * Return: true if swapped was incremented from 0, for shmem_writeout().
436 */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)437 static bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
438 {
439 struct shmem_inode_info *info = SHMEM_I(inode);
440 bool first_swapped = false;
441 long freed;
442
443 spin_lock(&info->lock);
444 info->alloced += alloced;
445 info->swapped += swapped;
446 freed = info->alloced - info->swapped -
447 READ_ONCE(inode->i_mapping->nrpages);
448 /*
449 * Special case: whereas normally shmem_recalc_inode() is called
450 * after i_mapping->nrpages has already been adjusted (up or down),
451 * shmem_writeout() has to raise swapped before nrpages is lowered -
452 * to stop a racing shmem_recalc_inode() from thinking that a page has
453 * been freed. Compensate here, to avoid the need for a followup call.
454 */
455 if (swapped > 0) {
456 if (info->swapped == swapped)
457 first_swapped = true;
458 freed += swapped;
459 }
460 if (freed > 0)
461 info->alloced -= freed;
462 spin_unlock(&info->lock);
463
464 /* The quota case may block */
465 if (freed > 0)
466 shmem_inode_unacct_blocks(inode, freed);
467 return first_swapped;
468 }
469
shmem_charge(struct inode * inode,long pages)470 bool shmem_charge(struct inode *inode, long pages)
471 {
472 struct address_space *mapping = inode->i_mapping;
473
474 if (shmem_inode_acct_blocks(inode, pages))
475 return false;
476
477 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
478 xa_lock_irq(&mapping->i_pages);
479 mapping->nrpages += pages;
480 xa_unlock_irq(&mapping->i_pages);
481
482 shmem_recalc_inode(inode, pages, 0);
483 return true;
484 }
485
shmem_uncharge(struct inode * inode,long pages)486 void shmem_uncharge(struct inode *inode, long pages)
487 {
488 /* pages argument is currently unused: keep it to help debugging */
489 /* nrpages adjustment done by __filemap_remove_folio() or caller */
490
491 shmem_recalc_inode(inode, 0, 0);
492 }
493
494 /*
495 * Replace item expected in xarray by a new item, while holding xa_lock.
496 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)497 static int shmem_replace_entry(struct address_space *mapping,
498 pgoff_t index, void *expected, void *replacement)
499 {
500 XA_STATE(xas, &mapping->i_pages, index);
501 void *item;
502
503 VM_BUG_ON(!expected);
504 VM_BUG_ON(!replacement);
505 item = xas_load(&xas);
506 if (item != expected)
507 return -ENOENT;
508 xas_store(&xas, replacement);
509 return 0;
510 }
511
512 /*
513 * Sometimes, before we decide whether to proceed or to fail, we must check
514 * that an entry was not already brought back or split by a racing thread.
515 *
516 * Checking folio is not enough: by the time a swapcache folio is locked, it
517 * might be reused, and again be swapcache, using the same swap as before.
518 * Returns the swap entry's order if it still presents, else returns -1.
519 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)520 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index,
521 swp_entry_t swap)
522 {
523 XA_STATE(xas, &mapping->i_pages, index);
524 int ret = -1;
525 void *entry;
526
527 rcu_read_lock();
528 do {
529 entry = xas_load(&xas);
530 if (entry == swp_to_radix_entry(swap))
531 ret = xas_get_order(&xas);
532 } while (xas_retry(&xas, entry));
533 rcu_read_unlock();
534 return ret;
535 }
536
537 /*
538 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
539 *
540 * SHMEM_HUGE_NEVER:
541 * disables huge pages for the mount;
542 * SHMEM_HUGE_ALWAYS:
543 * enables huge pages for the mount;
544 * SHMEM_HUGE_WITHIN_SIZE:
545 * only allocate huge pages if the page will be fully within i_size,
546 * also respect madvise() hints;
547 * SHMEM_HUGE_ADVISE:
548 * only allocate huge pages if requested with madvise();
549 */
550
551 #define SHMEM_HUGE_NEVER 0
552 #define SHMEM_HUGE_ALWAYS 1
553 #define SHMEM_HUGE_WITHIN_SIZE 2
554 #define SHMEM_HUGE_ADVISE 3
555
556 /*
557 * Special values.
558 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
559 *
560 * SHMEM_HUGE_DENY:
561 * disables huge on shm_mnt and all mounts, for emergency use;
562 * SHMEM_HUGE_FORCE:
563 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
564 *
565 */
566 #define SHMEM_HUGE_DENY (-1)
567 #define SHMEM_HUGE_FORCE (-2)
568
569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
570 /* ifdef here to avoid bloating shmem.o when not necessary */
571
572 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_NEVER)
573 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER
574 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ALWAYS)
575 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ALWAYS
576 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_WITHIN_SIZE)
577 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE
578 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ADVISE)
579 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ADVISE
580 #else
581 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER
582 #endif
583
584 static int shmem_huge __read_mostly = SHMEM_HUGE_DEFAULT;
585
586 #undef SHMEM_HUGE_DEFAULT
587
588 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_NEVER)
589 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER
590 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ALWAYS)
591 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ALWAYS
592 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_WITHIN_SIZE)
593 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE
594 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ADVISE)
595 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ADVISE
596 #else
597 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER
598 #endif
599
600 static int tmpfs_huge __read_mostly = TMPFS_HUGE_DEFAULT;
601
602 #undef TMPFS_HUGE_DEFAULT
603
shmem_get_orders_within_size(struct inode * inode,unsigned long within_size_orders,pgoff_t index,loff_t write_end)604 static unsigned int shmem_get_orders_within_size(struct inode *inode,
605 unsigned long within_size_orders, pgoff_t index,
606 loff_t write_end)
607 {
608 pgoff_t aligned_index;
609 unsigned long order;
610 loff_t i_size;
611
612 order = highest_order(within_size_orders);
613 while (within_size_orders) {
614 aligned_index = round_up(index + 1, 1 << order);
615 i_size = max(write_end, i_size_read(inode));
616 i_size = round_up(i_size, PAGE_SIZE);
617 if (i_size >> PAGE_SHIFT >= aligned_index)
618 return within_size_orders;
619
620 order = next_order(&within_size_orders, order);
621 }
622
623 return 0;
624 }
625
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,vm_flags_t vm_flags)626 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
627 loff_t write_end, bool shmem_huge_force,
628 struct vm_area_struct *vma,
629 vm_flags_t vm_flags)
630 {
631 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
632 0 : BIT(HPAGE_PMD_ORDER);
633 unsigned long within_size_orders;
634
635 if (!S_ISREG(inode->i_mode))
636 return 0;
637 if (shmem_huge == SHMEM_HUGE_DENY)
638 return 0;
639 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
640 return maybe_pmd_order;
641
642 /*
643 * The huge order allocation for anon shmem is controlled through
644 * the mTHP interface, so we still use PMD-sized huge order to
645 * check whether global control is enabled.
646 *
647 * For tmpfs with 'huge=always' or 'huge=within_size' mount option,
648 * we will always try PMD-sized order first. If that failed, it will
649 * fall back to small large folios.
650 */
651 switch (SHMEM_SB(inode->i_sb)->huge) {
652 case SHMEM_HUGE_ALWAYS:
653 return THP_ORDERS_ALL_FILE_DEFAULT;
654 case SHMEM_HUGE_WITHIN_SIZE:
655 within_size_orders = shmem_get_orders_within_size(inode,
656 THP_ORDERS_ALL_FILE_DEFAULT, index, write_end);
657 if (within_size_orders > 0)
658 return within_size_orders;
659
660 fallthrough;
661 case SHMEM_HUGE_ADVISE:
662 if (vm_flags & VM_HUGEPAGE)
663 return THP_ORDERS_ALL_FILE_DEFAULT;
664 fallthrough;
665 default:
666 return 0;
667 }
668 }
669
shmem_parse_huge(const char * str)670 static int shmem_parse_huge(const char *str)
671 {
672 int huge;
673
674 if (!str)
675 return -EINVAL;
676
677 if (!strcmp(str, "never"))
678 huge = SHMEM_HUGE_NEVER;
679 else if (!strcmp(str, "always"))
680 huge = SHMEM_HUGE_ALWAYS;
681 else if (!strcmp(str, "within_size"))
682 huge = SHMEM_HUGE_WITHIN_SIZE;
683 else if (!strcmp(str, "advise"))
684 huge = SHMEM_HUGE_ADVISE;
685 else if (!strcmp(str, "deny"))
686 huge = SHMEM_HUGE_DENY;
687 else if (!strcmp(str, "force"))
688 huge = SHMEM_HUGE_FORCE;
689 else
690 return -EINVAL;
691
692 if (!has_transparent_hugepage() &&
693 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
694 return -EINVAL;
695
696 /* Do not override huge allocation policy with non-PMD sized mTHP */
697 if (huge == SHMEM_HUGE_FORCE &&
698 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
699 return -EINVAL;
700
701 return huge;
702 }
703
704 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)705 static const char *shmem_format_huge(int huge)
706 {
707 switch (huge) {
708 case SHMEM_HUGE_NEVER:
709 return "never";
710 case SHMEM_HUGE_ALWAYS:
711 return "always";
712 case SHMEM_HUGE_WITHIN_SIZE:
713 return "within_size";
714 case SHMEM_HUGE_ADVISE:
715 return "advise";
716 case SHMEM_HUGE_DENY:
717 return "deny";
718 case SHMEM_HUGE_FORCE:
719 return "force";
720 default:
721 VM_BUG_ON(1);
722 return "bad_val";
723 }
724 }
725 #endif
726
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)727 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
728 struct shrink_control *sc, unsigned long nr_to_free)
729 {
730 LIST_HEAD(list), *pos, *next;
731 struct inode *inode;
732 struct shmem_inode_info *info;
733 struct folio *folio;
734 unsigned long batch = sc ? sc->nr_to_scan : 128;
735 unsigned long split = 0, freed = 0;
736
737 if (list_empty(&sbinfo->shrinklist))
738 return SHRINK_STOP;
739
740 spin_lock(&sbinfo->shrinklist_lock);
741 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
742 info = list_entry(pos, struct shmem_inode_info, shrinklist);
743
744 /* pin the inode */
745 inode = igrab(&info->vfs_inode);
746
747 /* inode is about to be evicted */
748 if (!inode) {
749 list_del_init(&info->shrinklist);
750 goto next;
751 }
752
753 list_move(&info->shrinklist, &list);
754 next:
755 sbinfo->shrinklist_len--;
756 if (!--batch)
757 break;
758 }
759 spin_unlock(&sbinfo->shrinklist_lock);
760
761 list_for_each_safe(pos, next, &list) {
762 pgoff_t next, end;
763 loff_t i_size;
764 int ret;
765
766 info = list_entry(pos, struct shmem_inode_info, shrinklist);
767 inode = &info->vfs_inode;
768
769 if (nr_to_free && freed >= nr_to_free)
770 goto move_back;
771
772 i_size = i_size_read(inode);
773 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
774 if (!folio || xa_is_value(folio))
775 goto drop;
776
777 /* No large folio at the end of the file: nothing to split */
778 if (!folio_test_large(folio)) {
779 folio_put(folio);
780 goto drop;
781 }
782
783 /* Check if there is anything to gain from splitting */
784 next = folio_next_index(folio);
785 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
786 if (end <= folio->index || end >= next) {
787 folio_put(folio);
788 goto drop;
789 }
790
791 /*
792 * Move the inode on the list back to shrinklist if we failed
793 * to lock the page at this time.
794 *
795 * Waiting for the lock may lead to deadlock in the
796 * reclaim path.
797 */
798 if (!folio_trylock(folio)) {
799 folio_put(folio);
800 goto move_back;
801 }
802
803 ret = split_folio(folio);
804 folio_unlock(folio);
805 folio_put(folio);
806
807 /* If split failed move the inode on the list back to shrinklist */
808 if (ret)
809 goto move_back;
810
811 freed += next - end;
812 split++;
813 drop:
814 list_del_init(&info->shrinklist);
815 goto put;
816 move_back:
817 /*
818 * Make sure the inode is either on the global list or deleted
819 * from any local list before iput() since it could be deleted
820 * in another thread once we put the inode (then the local list
821 * is corrupted).
822 */
823 spin_lock(&sbinfo->shrinklist_lock);
824 list_move(&info->shrinklist, &sbinfo->shrinklist);
825 sbinfo->shrinklist_len++;
826 spin_unlock(&sbinfo->shrinklist_lock);
827 put:
828 iput(inode);
829 }
830
831 return split;
832 }
833
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)834 static long shmem_unused_huge_scan(struct super_block *sb,
835 struct shrink_control *sc)
836 {
837 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
838
839 if (!READ_ONCE(sbinfo->shrinklist_len))
840 return SHRINK_STOP;
841
842 return shmem_unused_huge_shrink(sbinfo, sc, 0);
843 }
844
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)845 static long shmem_unused_huge_count(struct super_block *sb,
846 struct shrink_control *sc)
847 {
848 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
849 return READ_ONCE(sbinfo->shrinklist_len);
850 }
851 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
852
853 #define shmem_huge SHMEM_HUGE_DENY
854
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)855 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
856 struct shrink_control *sc, unsigned long nr_to_free)
857 {
858 return 0;
859 }
860
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,vm_flags_t vm_flags)861 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
862 loff_t write_end, bool shmem_huge_force,
863 struct vm_area_struct *vma,
864 vm_flags_t vm_flags)
865 {
866 return 0;
867 }
868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
869
shmem_update_stats(struct folio * folio,int nr_pages)870 static void shmem_update_stats(struct folio *folio, int nr_pages)
871 {
872 if (folio_test_pmd_mappable(folio))
873 lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
874 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
875 lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
876 }
877
878 /*
879 * Somewhat like filemap_add_folio, but error if expected item has gone.
880 */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)881 static int shmem_add_to_page_cache(struct folio *folio,
882 struct address_space *mapping,
883 pgoff_t index, void *expected, gfp_t gfp)
884 {
885 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
886 unsigned long nr = folio_nr_pages(folio);
887 swp_entry_t iter, swap;
888 void *entry;
889
890 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
891 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
892 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
893
894 folio_ref_add(folio, nr);
895 folio->mapping = mapping;
896 folio->index = index;
897
898 gfp &= GFP_RECLAIM_MASK;
899 folio_throttle_swaprate(folio, gfp);
900 swap = radix_to_swp_entry(expected);
901
902 do {
903 iter = swap;
904 xas_lock_irq(&xas);
905 xas_for_each_conflict(&xas, entry) {
906 /*
907 * The range must either be empty, or filled with
908 * expected swap entries. Shmem swap entries are never
909 * partially freed without split of both entry and
910 * folio, so there shouldn't be any holes.
911 */
912 if (!expected || entry != swp_to_radix_entry(iter)) {
913 xas_set_err(&xas, -EEXIST);
914 goto unlock;
915 }
916 iter.val += 1 << xas_get_order(&xas);
917 }
918 if (expected && iter.val - nr != swap.val) {
919 xas_set_err(&xas, -EEXIST);
920 goto unlock;
921 }
922 xas_store(&xas, folio);
923 if (xas_error(&xas))
924 goto unlock;
925 shmem_update_stats(folio, nr);
926 mapping->nrpages += nr;
927 unlock:
928 xas_unlock_irq(&xas);
929 } while (xas_nomem(&xas, gfp));
930
931 if (xas_error(&xas)) {
932 folio->mapping = NULL;
933 folio_ref_sub(folio, nr);
934 return xas_error(&xas);
935 }
936
937 return 0;
938 }
939
940 /*
941 * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
942 */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)943 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
944 {
945 struct address_space *mapping = folio->mapping;
946 long nr = folio_nr_pages(folio);
947 int error;
948
949 xa_lock_irq(&mapping->i_pages);
950 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
951 folio->mapping = NULL;
952 mapping->nrpages -= nr;
953 shmem_update_stats(folio, -nr);
954 xa_unlock_irq(&mapping->i_pages);
955 folio_put_refs(folio, nr);
956 BUG_ON(error);
957 }
958
959 /*
960 * Remove swap entry from page cache, free the swap and its page cache. Returns
961 * the number of pages being freed. 0 means entry not found in XArray (0 pages
962 * being freed).
963 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)964 static long shmem_free_swap(struct address_space *mapping,
965 pgoff_t index, void *radswap)
966 {
967 int order = xa_get_order(&mapping->i_pages, index);
968 void *old;
969
970 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
971 if (old != radswap)
972 return 0;
973 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
974
975 return 1 << order;
976 }
977
978 /*
979 * Determine (in bytes) how many of the shmem object's pages mapped by the
980 * given offsets are swapped out.
981 *
982 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
983 * as long as the inode doesn't go away and racy results are not a problem.
984 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)985 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
986 pgoff_t start, pgoff_t end)
987 {
988 XA_STATE(xas, &mapping->i_pages, start);
989 struct folio *folio;
990 unsigned long swapped = 0;
991 unsigned long max = end - 1;
992
993 rcu_read_lock();
994 xas_for_each(&xas, folio, max) {
995 if (xas_retry(&xas, folio))
996 continue;
997 if (xa_is_value(folio))
998 swapped += 1 << xas_get_order(&xas);
999 if (xas.xa_index == max)
1000 break;
1001 if (need_resched()) {
1002 xas_pause(&xas);
1003 cond_resched_rcu();
1004 }
1005 }
1006 rcu_read_unlock();
1007
1008 return swapped << PAGE_SHIFT;
1009 }
1010
1011 /*
1012 * Determine (in bytes) how many of the shmem object's pages mapped by the
1013 * given vma is swapped out.
1014 *
1015 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
1016 * as long as the inode doesn't go away and racy results are not a problem.
1017 */
shmem_swap_usage(struct vm_area_struct * vma)1018 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
1019 {
1020 struct inode *inode = file_inode(vma->vm_file);
1021 struct shmem_inode_info *info = SHMEM_I(inode);
1022 struct address_space *mapping = inode->i_mapping;
1023 unsigned long swapped;
1024
1025 /* Be careful as we don't hold info->lock */
1026 swapped = READ_ONCE(info->swapped);
1027
1028 /*
1029 * The easier cases are when the shmem object has nothing in swap, or
1030 * the vma maps it whole. Then we can simply use the stats that we
1031 * already track.
1032 */
1033 if (!swapped)
1034 return 0;
1035
1036 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
1037 return swapped << PAGE_SHIFT;
1038
1039 /* Here comes the more involved part */
1040 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
1041 vma->vm_pgoff + vma_pages(vma));
1042 }
1043
1044 /*
1045 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
1046 */
shmem_unlock_mapping(struct address_space * mapping)1047 void shmem_unlock_mapping(struct address_space *mapping)
1048 {
1049 struct folio_batch fbatch;
1050 pgoff_t index = 0;
1051
1052 folio_batch_init(&fbatch);
1053 /*
1054 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
1055 */
1056 while (!mapping_unevictable(mapping) &&
1057 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
1058 check_move_unevictable_folios(&fbatch);
1059 folio_batch_release(&fbatch);
1060 cond_resched();
1061 }
1062 }
1063
shmem_get_partial_folio(struct inode * inode,pgoff_t index)1064 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
1065 {
1066 struct folio *folio;
1067
1068 /*
1069 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
1070 * beyond i_size, and reports fallocated folios as holes.
1071 */
1072 folio = filemap_get_entry(inode->i_mapping, index);
1073 if (!folio)
1074 return folio;
1075 if (!xa_is_value(folio)) {
1076 folio_lock(folio);
1077 if (folio->mapping == inode->i_mapping)
1078 return folio;
1079 /* The folio has been swapped out */
1080 folio_unlock(folio);
1081 folio_put(folio);
1082 }
1083 /*
1084 * But read a folio back from swap if any of it is within i_size
1085 * (although in some cases this is just a waste of time).
1086 */
1087 folio = NULL;
1088 shmem_get_folio(inode, index, 0, &folio, SGP_READ);
1089 return folio;
1090 }
1091
1092 /*
1093 * Remove range of pages and swap entries from page cache, and free them.
1094 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1095 */
shmem_undo_range(struct inode * inode,loff_t lstart,uoff_t lend,bool unfalloc)1096 static void shmem_undo_range(struct inode *inode, loff_t lstart, uoff_t lend,
1097 bool unfalloc)
1098 {
1099 struct address_space *mapping = inode->i_mapping;
1100 struct shmem_inode_info *info = SHMEM_I(inode);
1101 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1102 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1103 struct folio_batch fbatch;
1104 pgoff_t indices[PAGEVEC_SIZE];
1105 struct folio *folio;
1106 bool same_folio;
1107 long nr_swaps_freed = 0;
1108 pgoff_t index;
1109 int i;
1110
1111 if (lend == -1)
1112 end = -1; /* unsigned, so actually very big */
1113
1114 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1115 info->fallocend = start;
1116
1117 folio_batch_init(&fbatch);
1118 index = start;
1119 while (index < end && find_lock_entries(mapping, &index, end - 1,
1120 &fbatch, indices)) {
1121 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1122 folio = fbatch.folios[i];
1123
1124 if (xa_is_value(folio)) {
1125 if (unfalloc)
1126 continue;
1127 nr_swaps_freed += shmem_free_swap(mapping,
1128 indices[i], folio);
1129 continue;
1130 }
1131
1132 if (!unfalloc || !folio_test_uptodate(folio))
1133 truncate_inode_folio(mapping, folio);
1134 folio_unlock(folio);
1135 }
1136 folio_batch_remove_exceptionals(&fbatch);
1137 folio_batch_release(&fbatch);
1138 cond_resched();
1139 }
1140
1141 /*
1142 * When undoing a failed fallocate, we want none of the partial folio
1143 * zeroing and splitting below, but shall want to truncate the whole
1144 * folio when !uptodate indicates that it was added by this fallocate,
1145 * even when [lstart, lend] covers only a part of the folio.
1146 */
1147 if (unfalloc)
1148 goto whole_folios;
1149
1150 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1151 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1152 if (folio) {
1153 same_folio = lend < folio_next_pos(folio);
1154 folio_mark_dirty(folio);
1155 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1156 start = folio_next_index(folio);
1157 if (same_folio)
1158 end = folio->index;
1159 }
1160 folio_unlock(folio);
1161 folio_put(folio);
1162 folio = NULL;
1163 }
1164
1165 if (!same_folio)
1166 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1167 if (folio) {
1168 folio_mark_dirty(folio);
1169 if (!truncate_inode_partial_folio(folio, lstart, lend))
1170 end = folio->index;
1171 folio_unlock(folio);
1172 folio_put(folio);
1173 }
1174
1175 whole_folios:
1176
1177 index = start;
1178 while (index < end) {
1179 cond_resched();
1180
1181 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1182 indices)) {
1183 /* If all gone or hole-punch or unfalloc, we're done */
1184 if (index == start || end != -1)
1185 break;
1186 /* But if truncating, restart to make sure all gone */
1187 index = start;
1188 continue;
1189 }
1190 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1191 folio = fbatch.folios[i];
1192
1193 if (xa_is_value(folio)) {
1194 long swaps_freed;
1195
1196 if (unfalloc)
1197 continue;
1198 swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1199 if (!swaps_freed) {
1200 /* Swap was replaced by page: retry */
1201 index = indices[i];
1202 break;
1203 }
1204 nr_swaps_freed += swaps_freed;
1205 continue;
1206 }
1207
1208 folio_lock(folio);
1209
1210 if (!unfalloc || !folio_test_uptodate(folio)) {
1211 if (folio_mapping(folio) != mapping) {
1212 /* Page was replaced by swap: retry */
1213 folio_unlock(folio);
1214 index = indices[i];
1215 break;
1216 }
1217 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1218 folio);
1219
1220 if (!folio_test_large(folio)) {
1221 truncate_inode_folio(mapping, folio);
1222 } else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1223 /*
1224 * If we split a page, reset the loop so
1225 * that we pick up the new sub pages.
1226 * Otherwise the THP was entirely
1227 * dropped or the target range was
1228 * zeroed, so just continue the loop as
1229 * is.
1230 */
1231 if (!folio_test_large(folio)) {
1232 folio_unlock(folio);
1233 index = start;
1234 break;
1235 }
1236 }
1237 }
1238 folio_unlock(folio);
1239 }
1240 folio_batch_remove_exceptionals(&fbatch);
1241 folio_batch_release(&fbatch);
1242 }
1243
1244 shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1245 }
1246
shmem_truncate_range(struct inode * inode,loff_t lstart,uoff_t lend)1247 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend)
1248 {
1249 shmem_undo_range(inode, lstart, lend, false);
1250 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1251 inode_inc_iversion(inode);
1252 }
1253 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1254
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1255 static int shmem_getattr(struct mnt_idmap *idmap,
1256 const struct path *path, struct kstat *stat,
1257 u32 request_mask, unsigned int query_flags)
1258 {
1259 struct inode *inode = path->dentry->d_inode;
1260 struct shmem_inode_info *info = SHMEM_I(inode);
1261
1262 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1263 shmem_recalc_inode(inode, 0, 0);
1264
1265 if (info->fsflags & FS_APPEND_FL)
1266 stat->attributes |= STATX_ATTR_APPEND;
1267 if (info->fsflags & FS_IMMUTABLE_FL)
1268 stat->attributes |= STATX_ATTR_IMMUTABLE;
1269 if (info->fsflags & FS_NODUMP_FL)
1270 stat->attributes |= STATX_ATTR_NODUMP;
1271 stat->attributes_mask |= (STATX_ATTR_APPEND |
1272 STATX_ATTR_IMMUTABLE |
1273 STATX_ATTR_NODUMP);
1274 generic_fillattr(idmap, request_mask, inode, stat);
1275
1276 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1277 stat->blksize = HPAGE_PMD_SIZE;
1278
1279 if (request_mask & STATX_BTIME) {
1280 stat->result_mask |= STATX_BTIME;
1281 stat->btime.tv_sec = info->i_crtime.tv_sec;
1282 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1283 }
1284
1285 return 0;
1286 }
1287
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1288 static int shmem_setattr(struct mnt_idmap *idmap,
1289 struct dentry *dentry, struct iattr *attr)
1290 {
1291 struct inode *inode = d_inode(dentry);
1292 struct shmem_inode_info *info = SHMEM_I(inode);
1293 int error;
1294 bool update_mtime = false;
1295 bool update_ctime = true;
1296
1297 error = setattr_prepare(idmap, dentry, attr);
1298 if (error)
1299 return error;
1300
1301 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1302 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1303 return -EPERM;
1304 }
1305 }
1306
1307 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1308 loff_t oldsize = inode->i_size;
1309 loff_t newsize = attr->ia_size;
1310
1311 /* protected by i_rwsem */
1312 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1313 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1314 return -EPERM;
1315
1316 if (newsize != oldsize) {
1317 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1318 oldsize, newsize);
1319 if (error)
1320 return error;
1321 i_size_write(inode, newsize);
1322 update_mtime = true;
1323 } else {
1324 update_ctime = false;
1325 }
1326 if (newsize <= oldsize) {
1327 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1328 if (oldsize > holebegin)
1329 unmap_mapping_range(inode->i_mapping,
1330 holebegin, 0, 1);
1331 if (info->alloced)
1332 shmem_truncate_range(inode,
1333 newsize, (loff_t)-1);
1334 /* unmap again to remove racily COWed private pages */
1335 if (oldsize > holebegin)
1336 unmap_mapping_range(inode->i_mapping,
1337 holebegin, 0, 1);
1338 }
1339 }
1340
1341 if (is_quota_modification(idmap, inode, attr)) {
1342 error = dquot_initialize(inode);
1343 if (error)
1344 return error;
1345 }
1346
1347 /* Transfer quota accounting */
1348 if (i_uid_needs_update(idmap, attr, inode) ||
1349 i_gid_needs_update(idmap, attr, inode)) {
1350 error = dquot_transfer(idmap, inode, attr);
1351 if (error)
1352 return error;
1353 }
1354
1355 setattr_copy(idmap, inode, attr);
1356 if (attr->ia_valid & ATTR_MODE)
1357 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1358 if (!error && update_ctime) {
1359 inode_set_ctime_current(inode);
1360 if (update_mtime)
1361 inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1362 inode_inc_iversion(inode);
1363 }
1364 return error;
1365 }
1366
shmem_evict_inode(struct inode * inode)1367 static void shmem_evict_inode(struct inode *inode)
1368 {
1369 struct shmem_inode_info *info = SHMEM_I(inode);
1370 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1371 size_t freed = 0;
1372
1373 if (shmem_mapping(inode->i_mapping)) {
1374 shmem_unacct_size(info->flags, inode->i_size);
1375 inode->i_size = 0;
1376 mapping_set_exiting(inode->i_mapping);
1377 shmem_truncate_range(inode, 0, (loff_t)-1);
1378 if (!list_empty(&info->shrinklist)) {
1379 spin_lock(&sbinfo->shrinklist_lock);
1380 if (!list_empty(&info->shrinklist)) {
1381 list_del_init(&info->shrinklist);
1382 sbinfo->shrinklist_len--;
1383 }
1384 spin_unlock(&sbinfo->shrinklist_lock);
1385 }
1386 while (!list_empty(&info->swaplist)) {
1387 /* Wait while shmem_unuse() is scanning this inode... */
1388 wait_var_event(&info->stop_eviction,
1389 !atomic_read(&info->stop_eviction));
1390 spin_lock(&shmem_swaplist_lock);
1391 /* ...but beware of the race if we peeked too early */
1392 if (!atomic_read(&info->stop_eviction))
1393 list_del_init(&info->swaplist);
1394 spin_unlock(&shmem_swaplist_lock);
1395 }
1396 }
1397
1398 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1399 shmem_free_inode(inode->i_sb, freed);
1400 WARN_ON(inode->i_blocks);
1401 clear_inode(inode);
1402 #ifdef CONFIG_TMPFS_QUOTA
1403 dquot_free_inode(inode);
1404 dquot_drop(inode);
1405 #endif
1406 }
1407
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1408 static unsigned int shmem_find_swap_entries(struct address_space *mapping,
1409 pgoff_t start, struct folio_batch *fbatch,
1410 pgoff_t *indices, unsigned int type)
1411 {
1412 XA_STATE(xas, &mapping->i_pages, start);
1413 struct folio *folio;
1414 swp_entry_t entry;
1415
1416 rcu_read_lock();
1417 xas_for_each(&xas, folio, ULONG_MAX) {
1418 if (xas_retry(&xas, folio))
1419 continue;
1420
1421 if (!xa_is_value(folio))
1422 continue;
1423
1424 entry = radix_to_swp_entry(folio);
1425 /*
1426 * swapin error entries can be found in the mapping. But they're
1427 * deliberately ignored here as we've done everything we can do.
1428 */
1429 if (swp_type(entry) != type)
1430 continue;
1431
1432 indices[folio_batch_count(fbatch)] = xas.xa_index;
1433 if (!folio_batch_add(fbatch, folio))
1434 break;
1435
1436 if (need_resched()) {
1437 xas_pause(&xas);
1438 cond_resched_rcu();
1439 }
1440 }
1441 rcu_read_unlock();
1442
1443 return folio_batch_count(fbatch);
1444 }
1445
1446 /*
1447 * Move the swapped pages for an inode to page cache. Returns the count
1448 * of pages swapped in, or the error in case of failure.
1449 */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1450 static int shmem_unuse_swap_entries(struct inode *inode,
1451 struct folio_batch *fbatch, pgoff_t *indices)
1452 {
1453 int i = 0;
1454 int ret = 0;
1455 int error = 0;
1456 struct address_space *mapping = inode->i_mapping;
1457
1458 for (i = 0; i < folio_batch_count(fbatch); i++) {
1459 struct folio *folio = fbatch->folios[i];
1460
1461 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1462 mapping_gfp_mask(mapping), NULL, NULL);
1463 if (error == 0) {
1464 folio_unlock(folio);
1465 folio_put(folio);
1466 ret++;
1467 }
1468 if (error == -ENOMEM)
1469 break;
1470 error = 0;
1471 }
1472 return error ? error : ret;
1473 }
1474
1475 /*
1476 * If swap found in inode, free it and move page from swapcache to filecache.
1477 */
shmem_unuse_inode(struct inode * inode,unsigned int type)1478 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1479 {
1480 struct address_space *mapping = inode->i_mapping;
1481 pgoff_t start = 0;
1482 struct folio_batch fbatch;
1483 pgoff_t indices[PAGEVEC_SIZE];
1484 int ret = 0;
1485
1486 do {
1487 folio_batch_init(&fbatch);
1488 if (!shmem_find_swap_entries(mapping, start, &fbatch,
1489 indices, type)) {
1490 ret = 0;
1491 break;
1492 }
1493
1494 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1495 if (ret < 0)
1496 break;
1497
1498 start = indices[folio_batch_count(&fbatch) - 1];
1499 } while (true);
1500
1501 return ret;
1502 }
1503
1504 /*
1505 * Read all the shared memory data that resides in the swap
1506 * device 'type' back into memory, so the swap device can be
1507 * unused.
1508 */
shmem_unuse(unsigned int type)1509 int shmem_unuse(unsigned int type)
1510 {
1511 struct shmem_inode_info *info, *next;
1512 int error = 0;
1513
1514 if (list_empty(&shmem_swaplist))
1515 return 0;
1516
1517 spin_lock(&shmem_swaplist_lock);
1518 start_over:
1519 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1520 if (!info->swapped) {
1521 list_del_init(&info->swaplist);
1522 continue;
1523 }
1524 /*
1525 * Drop the swaplist mutex while searching the inode for swap;
1526 * but before doing so, make sure shmem_evict_inode() will not
1527 * remove placeholder inode from swaplist, nor let it be freed
1528 * (igrab() would protect from unlink, but not from unmount).
1529 */
1530 atomic_inc(&info->stop_eviction);
1531 spin_unlock(&shmem_swaplist_lock);
1532
1533 error = shmem_unuse_inode(&info->vfs_inode, type);
1534 cond_resched();
1535
1536 spin_lock(&shmem_swaplist_lock);
1537 if (atomic_dec_and_test(&info->stop_eviction))
1538 wake_up_var(&info->stop_eviction);
1539 if (error)
1540 break;
1541 if (list_empty(&info->swaplist))
1542 goto start_over;
1543 next = list_next_entry(info, swaplist);
1544 if (!info->swapped)
1545 list_del_init(&info->swaplist);
1546 }
1547 spin_unlock(&shmem_swaplist_lock);
1548
1549 return error;
1550 }
1551
1552 /**
1553 * shmem_writeout - Write the folio to swap
1554 * @folio: The folio to write
1555 * @plug: swap plug
1556 * @folio_list: list to put back folios on split
1557 *
1558 * Move the folio from the page cache to the swap cache.
1559 */
shmem_writeout(struct folio * folio,struct swap_iocb ** plug,struct list_head * folio_list)1560 int shmem_writeout(struct folio *folio, struct swap_iocb **plug,
1561 struct list_head *folio_list)
1562 {
1563 struct address_space *mapping = folio->mapping;
1564 struct inode *inode = mapping->host;
1565 struct shmem_inode_info *info = SHMEM_I(inode);
1566 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1567 pgoff_t index;
1568 int nr_pages;
1569 bool split = false;
1570
1571 if ((info->flags & VM_LOCKED) || sbinfo->noswap)
1572 goto redirty;
1573
1574 if (!total_swap_pages)
1575 goto redirty;
1576
1577 /*
1578 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1579 * split when swapping.
1580 *
1581 * And shrinkage of pages beyond i_size does not split swap, so
1582 * swapout of a large folio crossing i_size needs to split too
1583 * (unless fallocate has been used to preallocate beyond EOF).
1584 */
1585 if (folio_test_large(folio)) {
1586 index = shmem_fallocend(inode,
1587 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1588 if ((index > folio->index && index < folio_next_index(folio)) ||
1589 !IS_ENABLED(CONFIG_THP_SWAP))
1590 split = true;
1591 }
1592
1593 if (split) {
1594 try_split:
1595 /* Ensure the subpages are still dirty */
1596 folio_test_set_dirty(folio);
1597 if (split_folio_to_list(folio, folio_list))
1598 goto redirty;
1599 folio_clear_dirty(folio);
1600 }
1601
1602 index = folio->index;
1603 nr_pages = folio_nr_pages(folio);
1604
1605 /*
1606 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1607 * value into swapfile.c, the only way we can correctly account for a
1608 * fallocated folio arriving here is now to initialize it and write it.
1609 *
1610 * That's okay for a folio already fallocated earlier, but if we have
1611 * not yet completed the fallocation, then (a) we want to keep track
1612 * of this folio in case we have to undo it, and (b) it may not be a
1613 * good idea to continue anyway, once we're pushing into swap. So
1614 * reactivate the folio, and let shmem_fallocate() quit when too many.
1615 */
1616 if (!folio_test_uptodate(folio)) {
1617 if (inode->i_private) {
1618 struct shmem_falloc *shmem_falloc;
1619 spin_lock(&inode->i_lock);
1620 shmem_falloc = inode->i_private;
1621 if (shmem_falloc &&
1622 !shmem_falloc->waitq &&
1623 index >= shmem_falloc->start &&
1624 index < shmem_falloc->next)
1625 shmem_falloc->nr_unswapped += nr_pages;
1626 else
1627 shmem_falloc = NULL;
1628 spin_unlock(&inode->i_lock);
1629 if (shmem_falloc)
1630 goto redirty;
1631 }
1632 folio_zero_range(folio, 0, folio_size(folio));
1633 flush_dcache_folio(folio);
1634 folio_mark_uptodate(folio);
1635 }
1636
1637 if (!folio_alloc_swap(folio)) {
1638 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages);
1639 int error;
1640
1641 /*
1642 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1643 * if it's not already there. Do it now before the folio is
1644 * removed from page cache, when its pagelock no longer
1645 * protects the inode from eviction. And do it now, after
1646 * we've incremented swapped, because shmem_unuse() will
1647 * prune a !swapped inode from the swaplist.
1648 */
1649 if (first_swapped) {
1650 spin_lock(&shmem_swaplist_lock);
1651 if (list_empty(&info->swaplist))
1652 list_add(&info->swaplist, &shmem_swaplist);
1653 spin_unlock(&shmem_swaplist_lock);
1654 }
1655
1656 swap_shmem_alloc(folio->swap, nr_pages);
1657 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap));
1658
1659 BUG_ON(folio_mapped(folio));
1660 error = swap_writeout(folio, plug);
1661 if (error != AOP_WRITEPAGE_ACTIVATE) {
1662 /* folio has been unlocked */
1663 return error;
1664 }
1665
1666 /*
1667 * The intention here is to avoid holding on to the swap when
1668 * zswap was unable to compress and unable to writeback; but
1669 * it will be appropriate if other reactivate cases are added.
1670 */
1671 error = shmem_add_to_page_cache(folio, mapping, index,
1672 swp_to_radix_entry(folio->swap),
1673 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
1674 /* Swap entry might be erased by racing shmem_free_swap() */
1675 if (!error) {
1676 shmem_recalc_inode(inode, 0, -nr_pages);
1677 swap_free_nr(folio->swap, nr_pages);
1678 }
1679
1680 /*
1681 * The swap_cache_del_folio() below could be left for
1682 * shrink_folio_list()'s folio_free_swap() to dispose of;
1683 * but I'm a little nervous about letting this folio out of
1684 * shmem_writeout() in a hybrid half-tmpfs-half-swap state
1685 * e.g. folio_mapping(folio) might give an unexpected answer.
1686 */
1687 swap_cache_del_folio(folio);
1688 goto redirty;
1689 }
1690 if (nr_pages > 1)
1691 goto try_split;
1692 redirty:
1693 folio_mark_dirty(folio);
1694 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1695 }
1696 EXPORT_SYMBOL_GPL(shmem_writeout);
1697
1698 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1699 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1700 {
1701 char buffer[64];
1702
1703 if (!mpol || mpol->mode == MPOL_DEFAULT)
1704 return; /* show nothing */
1705
1706 mpol_to_str(buffer, sizeof(buffer), mpol);
1707
1708 seq_printf(seq, ",mpol=%s", buffer);
1709 }
1710
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1711 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1712 {
1713 struct mempolicy *mpol = NULL;
1714 if (sbinfo->mpol) {
1715 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1716 mpol = sbinfo->mpol;
1717 mpol_get(mpol);
1718 raw_spin_unlock(&sbinfo->stat_lock);
1719 }
1720 return mpol;
1721 }
1722 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1723 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1724 {
1725 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1726 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1727 {
1728 return NULL;
1729 }
1730 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1731
1732 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1733 pgoff_t index, unsigned int order, pgoff_t *ilx);
1734
shmem_swapin_cluster(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1735 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1736 struct shmem_inode_info *info, pgoff_t index)
1737 {
1738 struct mempolicy *mpol;
1739 pgoff_t ilx;
1740 struct folio *folio;
1741
1742 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1743 folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1744 mpol_cond_put(mpol);
1745
1746 return folio;
1747 }
1748
1749 /*
1750 * Make sure huge_gfp is always more limited than limit_gfp.
1751 * Some of the flags set permissions, while others set limitations.
1752 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1753 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1754 {
1755 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1756 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1757 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1758 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1759
1760 /* Allow allocations only from the originally specified zones. */
1761 result |= zoneflags;
1762
1763 /*
1764 * Minimize the result gfp by taking the union with the deny flags,
1765 * and the intersection of the allow flags.
1766 */
1767 result |= (limit_gfp & denyflags);
1768 result |= (huge_gfp & limit_gfp) & allowflags;
1769
1770 return result;
1771 }
1772
1773 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_hpage_pmd_enabled(void)1774 bool shmem_hpage_pmd_enabled(void)
1775 {
1776 if (shmem_huge == SHMEM_HUGE_DENY)
1777 return false;
1778 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1779 return true;
1780 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1781 return true;
1782 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1783 return true;
1784 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1785 shmem_huge != SHMEM_HUGE_NEVER)
1786 return true;
1787
1788 return false;
1789 }
1790
shmem_allowable_huge_orders(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,loff_t write_end,bool shmem_huge_force)1791 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1792 struct vm_area_struct *vma, pgoff_t index,
1793 loff_t write_end, bool shmem_huge_force)
1794 {
1795 unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1796 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1797 vm_flags_t vm_flags = vma ? vma->vm_flags : 0;
1798 unsigned int global_orders;
1799
1800 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force)))
1801 return 0;
1802
1803 global_orders = shmem_huge_global_enabled(inode, index, write_end,
1804 shmem_huge_force, vma, vm_flags);
1805 /* Tmpfs huge pages allocation */
1806 if (!vma || !vma_is_anon_shmem(vma))
1807 return global_orders;
1808
1809 /*
1810 * Following the 'deny' semantics of the top level, force the huge
1811 * option off from all mounts.
1812 */
1813 if (shmem_huge == SHMEM_HUGE_DENY)
1814 return 0;
1815
1816 /*
1817 * Only allow inherit orders if the top-level value is 'force', which
1818 * means non-PMD sized THP can not override 'huge' mount option now.
1819 */
1820 if (shmem_huge == SHMEM_HUGE_FORCE)
1821 return READ_ONCE(huge_shmem_orders_inherit);
1822
1823 /* Allow mTHP that will be fully within i_size. */
1824 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0);
1825
1826 if (vm_flags & VM_HUGEPAGE)
1827 mask |= READ_ONCE(huge_shmem_orders_madvise);
1828
1829 if (global_orders > 0)
1830 mask |= READ_ONCE(huge_shmem_orders_inherit);
1831
1832 return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1833 }
1834
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1835 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1836 struct address_space *mapping, pgoff_t index,
1837 unsigned long orders)
1838 {
1839 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1840 pgoff_t aligned_index;
1841 unsigned long pages;
1842 int order;
1843
1844 if (vma) {
1845 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1846 if (!orders)
1847 return 0;
1848 }
1849
1850 /* Find the highest order that can add into the page cache */
1851 order = highest_order(orders);
1852 while (orders) {
1853 pages = 1UL << order;
1854 aligned_index = round_down(index, pages);
1855 /*
1856 * Check for conflict before waiting on a huge allocation.
1857 * Conflict might be that a huge page has just been allocated
1858 * and added to page cache by a racing thread, or that there
1859 * is already at least one small page in the huge extent.
1860 * Be careful to retry when appropriate, but not forever!
1861 * Elsewhere -EEXIST would be the right code, but not here.
1862 */
1863 if (!xa_find(&mapping->i_pages, &aligned_index,
1864 aligned_index + pages - 1, XA_PRESENT))
1865 break;
1866 order = next_order(&orders, order);
1867 }
1868
1869 return orders;
1870 }
1871 #else
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1872 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1873 struct address_space *mapping, pgoff_t index,
1874 unsigned long orders)
1875 {
1876 return 0;
1877 }
1878 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1879
shmem_alloc_folio(gfp_t gfp,int order,struct shmem_inode_info * info,pgoff_t index)1880 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1881 struct shmem_inode_info *info, pgoff_t index)
1882 {
1883 struct mempolicy *mpol;
1884 pgoff_t ilx;
1885 struct folio *folio;
1886
1887 mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1888 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1889 mpol_cond_put(mpol);
1890
1891 return folio;
1892 }
1893
shmem_alloc_and_add_folio(struct vm_fault * vmf,gfp_t gfp,struct inode * inode,pgoff_t index,struct mm_struct * fault_mm,unsigned long orders)1894 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1895 gfp_t gfp, struct inode *inode, pgoff_t index,
1896 struct mm_struct *fault_mm, unsigned long orders)
1897 {
1898 struct address_space *mapping = inode->i_mapping;
1899 struct shmem_inode_info *info = SHMEM_I(inode);
1900 unsigned long suitable_orders = 0;
1901 struct folio *folio = NULL;
1902 pgoff_t aligned_index;
1903 long pages;
1904 int error, order;
1905
1906 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1907 orders = 0;
1908
1909 if (orders > 0) {
1910 suitable_orders = shmem_suitable_orders(inode, vmf,
1911 mapping, index, orders);
1912
1913 order = highest_order(suitable_orders);
1914 while (suitable_orders) {
1915 pages = 1UL << order;
1916 aligned_index = round_down(index, pages);
1917 folio = shmem_alloc_folio(gfp, order, info, aligned_index);
1918 if (folio) {
1919 index = aligned_index;
1920 goto allocated;
1921 }
1922
1923 if (pages == HPAGE_PMD_NR)
1924 count_vm_event(THP_FILE_FALLBACK);
1925 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1926 order = next_order(&suitable_orders, order);
1927 }
1928 } else {
1929 pages = 1;
1930 folio = shmem_alloc_folio(gfp, 0, info, index);
1931 }
1932 if (!folio)
1933 return ERR_PTR(-ENOMEM);
1934
1935 allocated:
1936 __folio_set_locked(folio);
1937 __folio_set_swapbacked(folio);
1938
1939 gfp &= GFP_RECLAIM_MASK;
1940 error = mem_cgroup_charge(folio, fault_mm, gfp);
1941 if (error) {
1942 if (xa_find(&mapping->i_pages, &index,
1943 index + pages - 1, XA_PRESENT)) {
1944 error = -EEXIST;
1945 } else if (pages > 1) {
1946 if (pages == HPAGE_PMD_NR) {
1947 count_vm_event(THP_FILE_FALLBACK);
1948 count_vm_event(THP_FILE_FALLBACK_CHARGE);
1949 }
1950 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1951 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1952 }
1953 goto unlock;
1954 }
1955
1956 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1957 if (error)
1958 goto unlock;
1959
1960 error = shmem_inode_acct_blocks(inode, pages);
1961 if (error) {
1962 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1963 long freed;
1964 /*
1965 * Try to reclaim some space by splitting a few
1966 * large folios beyond i_size on the filesystem.
1967 */
1968 shmem_unused_huge_shrink(sbinfo, NULL, pages);
1969 /*
1970 * And do a shmem_recalc_inode() to account for freed pages:
1971 * except our folio is there in cache, so not quite balanced.
1972 */
1973 spin_lock(&info->lock);
1974 freed = pages + info->alloced - info->swapped -
1975 READ_ONCE(mapping->nrpages);
1976 if (freed > 0)
1977 info->alloced -= freed;
1978 spin_unlock(&info->lock);
1979 if (freed > 0)
1980 shmem_inode_unacct_blocks(inode, freed);
1981 error = shmem_inode_acct_blocks(inode, pages);
1982 if (error) {
1983 filemap_remove_folio(folio);
1984 goto unlock;
1985 }
1986 }
1987
1988 shmem_recalc_inode(inode, pages, 0);
1989 folio_add_lru(folio);
1990 return folio;
1991
1992 unlock:
1993 folio_unlock(folio);
1994 folio_put(folio);
1995 return ERR_PTR(error);
1996 }
1997
shmem_swap_alloc_folio(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,swp_entry_t entry,int order,gfp_t gfp)1998 static struct folio *shmem_swap_alloc_folio(struct inode *inode,
1999 struct vm_area_struct *vma, pgoff_t index,
2000 swp_entry_t entry, int order, gfp_t gfp)
2001 {
2002 struct shmem_inode_info *info = SHMEM_I(inode);
2003 int nr_pages = 1 << order;
2004 struct folio *new;
2005 gfp_t alloc_gfp;
2006 void *shadow;
2007
2008 /*
2009 * We have arrived here because our zones are constrained, so don't
2010 * limit chance of success with further cpuset and node constraints.
2011 */
2012 gfp &= ~GFP_CONSTRAINT_MASK;
2013 alloc_gfp = gfp;
2014 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
2015 if (WARN_ON_ONCE(order))
2016 return ERR_PTR(-EINVAL);
2017 } else if (order) {
2018 /*
2019 * If uffd is active for the vma, we need per-page fault
2020 * fidelity to maintain the uffd semantics, then fallback
2021 * to swapin order-0 folio, as well as for zswap case.
2022 * Any existing sub folio in the swap cache also blocks
2023 * mTHP swapin.
2024 */
2025 if ((vma && unlikely(userfaultfd_armed(vma))) ||
2026 !zswap_never_enabled() ||
2027 non_swapcache_batch(entry, nr_pages) != nr_pages)
2028 goto fallback;
2029
2030 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp);
2031 }
2032 retry:
2033 new = shmem_alloc_folio(alloc_gfp, order, info, index);
2034 if (!new) {
2035 new = ERR_PTR(-ENOMEM);
2036 goto fallback;
2037 }
2038
2039 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL,
2040 alloc_gfp, entry)) {
2041 folio_put(new);
2042 new = ERR_PTR(-ENOMEM);
2043 goto fallback;
2044 }
2045
2046 /*
2047 * Prevent parallel swapin from proceeding with the swap cache flag.
2048 *
2049 * Of course there is another possible concurrent scenario as well,
2050 * that is to say, the swap cache flag of a large folio has already
2051 * been set by swapcache_prepare(), while another thread may have
2052 * already split the large swap entry stored in the shmem mapping.
2053 * In this case, shmem_add_to_page_cache() will help identify the
2054 * concurrent swapin and return -EEXIST.
2055 */
2056 if (swapcache_prepare(entry, nr_pages)) {
2057 folio_put(new);
2058 new = ERR_PTR(-EEXIST);
2059 /* Try smaller folio to avoid cache conflict */
2060 goto fallback;
2061 }
2062
2063 __folio_set_locked(new);
2064 __folio_set_swapbacked(new);
2065 new->swap = entry;
2066
2067 memcg1_swapin(entry, nr_pages);
2068 shadow = swap_cache_get_shadow(entry);
2069 if (shadow)
2070 workingset_refault(new, shadow);
2071 folio_add_lru(new);
2072 swap_read_folio(new, NULL);
2073 return new;
2074 fallback:
2075 /* Order 0 swapin failed, nothing to fallback to, abort */
2076 if (!order)
2077 return new;
2078 entry.val += index - round_down(index, nr_pages);
2079 alloc_gfp = gfp;
2080 nr_pages = 1;
2081 order = 0;
2082 goto retry;
2083 }
2084
2085 /*
2086 * When a page is moved from swapcache to shmem filecache (either by the
2087 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
2088 * shmem_unuse_inode()), it may have been read in earlier from swap, in
2089 * ignorance of the mapping it belongs to. If that mapping has special
2090 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
2091 * we may need to copy to a suitable page before moving to filecache.
2092 *
2093 * In a future release, this may well be extended to respect cpuset and
2094 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
2095 * but for now it is a simple matter of zone.
2096 */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)2097 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
2098 {
2099 return folio_zonenum(folio) > gfp_zone(gfp);
2100 }
2101
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index,struct vm_area_struct * vma)2102 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
2103 struct shmem_inode_info *info, pgoff_t index,
2104 struct vm_area_struct *vma)
2105 {
2106 struct swap_cluster_info *ci;
2107 struct folio *new, *old = *foliop;
2108 swp_entry_t entry = old->swap;
2109 int nr_pages = folio_nr_pages(old);
2110 int error = 0;
2111
2112 /*
2113 * We have arrived here because our zones are constrained, so don't
2114 * limit chance of success by further cpuset and node constraints.
2115 */
2116 gfp &= ~GFP_CONSTRAINT_MASK;
2117 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2118 if (nr_pages > 1) {
2119 gfp_t huge_gfp = vma_thp_gfp_mask(vma);
2120
2121 gfp = limit_gfp_mask(huge_gfp, gfp);
2122 }
2123 #endif
2124
2125 new = shmem_alloc_folio(gfp, folio_order(old), info, index);
2126 if (!new)
2127 return -ENOMEM;
2128
2129 folio_ref_add(new, nr_pages);
2130 folio_copy(new, old);
2131 flush_dcache_folio(new);
2132
2133 __folio_set_locked(new);
2134 __folio_set_swapbacked(new);
2135 folio_mark_uptodate(new);
2136 new->swap = entry;
2137 folio_set_swapcache(new);
2138
2139 ci = swap_cluster_get_and_lock_irq(old);
2140 __swap_cache_replace_folio(ci, old, new);
2141 mem_cgroup_replace_folio(old, new);
2142 shmem_update_stats(new, nr_pages);
2143 shmem_update_stats(old, -nr_pages);
2144 swap_cluster_unlock_irq(ci);
2145
2146 folio_add_lru(new);
2147 *foliop = new;
2148
2149 folio_clear_swapcache(old);
2150 old->private = NULL;
2151
2152 folio_unlock(old);
2153 /*
2154 * The old folio are removed from swap cache, drop the 'nr_pages'
2155 * reference, as well as one temporary reference getting from swap
2156 * cache.
2157 */
2158 folio_put_refs(old, nr_pages + 1);
2159 return error;
2160 }
2161
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap,bool skip_swapcache)2162 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2163 struct folio *folio, swp_entry_t swap,
2164 bool skip_swapcache)
2165 {
2166 struct address_space *mapping = inode->i_mapping;
2167 swp_entry_t swapin_error;
2168 void *old;
2169 int nr_pages;
2170
2171 swapin_error = make_poisoned_swp_entry();
2172 old = xa_cmpxchg_irq(&mapping->i_pages, index,
2173 swp_to_radix_entry(swap),
2174 swp_to_radix_entry(swapin_error), 0);
2175 if (old != swp_to_radix_entry(swap))
2176 return;
2177
2178 nr_pages = folio_nr_pages(folio);
2179 folio_wait_writeback(folio);
2180 if (!skip_swapcache)
2181 swap_cache_del_folio(folio);
2182 /*
2183 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2184 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2185 * in shmem_evict_inode().
2186 */
2187 shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2188 swap_free_nr(swap, nr_pages);
2189 }
2190
shmem_split_large_entry(struct inode * inode,pgoff_t index,swp_entry_t swap,gfp_t gfp)2191 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2192 swp_entry_t swap, gfp_t gfp)
2193 {
2194 struct address_space *mapping = inode->i_mapping;
2195 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2196 int split_order = 0;
2197 int i;
2198
2199 /* Convert user data gfp flags to xarray node gfp flags */
2200 gfp &= GFP_RECLAIM_MASK;
2201
2202 for (;;) {
2203 void *old = NULL;
2204 int cur_order;
2205 pgoff_t swap_index;
2206
2207 xas_lock_irq(&xas);
2208 old = xas_load(&xas);
2209 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2210 xas_set_err(&xas, -EEXIST);
2211 goto unlock;
2212 }
2213
2214 cur_order = xas_get_order(&xas);
2215 if (!cur_order)
2216 goto unlock;
2217
2218 /* Try to split large swap entry in pagecache */
2219 swap_index = round_down(index, 1 << cur_order);
2220 split_order = xas_try_split_min_order(cur_order);
2221
2222 while (cur_order > 0) {
2223 pgoff_t aligned_index =
2224 round_down(index, 1 << cur_order);
2225 pgoff_t swap_offset = aligned_index - swap_index;
2226
2227 xas_set_order(&xas, index, split_order);
2228 xas_try_split(&xas, old, cur_order);
2229 if (xas_error(&xas))
2230 goto unlock;
2231
2232 /*
2233 * Re-set the swap entry after splitting, and the swap
2234 * offset of the original large entry must be continuous.
2235 */
2236 for (i = 0; i < 1 << cur_order;
2237 i += (1 << split_order)) {
2238 swp_entry_t tmp;
2239
2240 tmp = swp_entry(swp_type(swap),
2241 swp_offset(swap) + swap_offset +
2242 i);
2243 __xa_store(&mapping->i_pages, aligned_index + i,
2244 swp_to_radix_entry(tmp), 0);
2245 }
2246 cur_order = split_order;
2247 split_order = xas_try_split_min_order(split_order);
2248 }
2249
2250 unlock:
2251 xas_unlock_irq(&xas);
2252
2253 if (!xas_nomem(&xas, gfp))
2254 break;
2255 }
2256
2257 if (xas_error(&xas))
2258 return xas_error(&xas);
2259
2260 return 0;
2261 }
2262
2263 /*
2264 * Swap in the folio pointed to by *foliop.
2265 * Caller has to make sure that *foliop contains a valid swapped folio.
2266 * Returns 0 and the folio in foliop if success. On failure, returns the
2267 * error code and NULL in *foliop.
2268 */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)2269 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2270 struct folio **foliop, enum sgp_type sgp,
2271 gfp_t gfp, struct vm_area_struct *vma,
2272 vm_fault_t *fault_type)
2273 {
2274 struct address_space *mapping = inode->i_mapping;
2275 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2276 struct shmem_inode_info *info = SHMEM_I(inode);
2277 swp_entry_t swap;
2278 softleaf_t index_entry;
2279 struct swap_info_struct *si;
2280 struct folio *folio = NULL;
2281 bool skip_swapcache = false;
2282 int error, nr_pages, order;
2283 pgoff_t offset;
2284
2285 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2286 index_entry = radix_to_swp_entry(*foliop);
2287 swap = index_entry;
2288 *foliop = NULL;
2289
2290 if (softleaf_is_poison_marker(index_entry))
2291 return -EIO;
2292
2293 si = get_swap_device(index_entry);
2294 order = shmem_confirm_swap(mapping, index, index_entry);
2295 if (unlikely(!si)) {
2296 if (order < 0)
2297 return -EEXIST;
2298 else
2299 return -EINVAL;
2300 }
2301 if (unlikely(order < 0)) {
2302 put_swap_device(si);
2303 return -EEXIST;
2304 }
2305
2306 /* index may point to the middle of a large entry, get the sub entry */
2307 if (order) {
2308 offset = index - round_down(index, 1 << order);
2309 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2310 }
2311
2312 /* Look it up and read it in.. */
2313 folio = swap_cache_get_folio(swap);
2314 if (!folio) {
2315 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
2316 /* Direct swapin skipping swap cache & readahead */
2317 folio = shmem_swap_alloc_folio(inode, vma, index,
2318 index_entry, order, gfp);
2319 if (IS_ERR(folio)) {
2320 error = PTR_ERR(folio);
2321 folio = NULL;
2322 goto failed;
2323 }
2324 skip_swapcache = true;
2325 } else {
2326 /* Cached swapin only supports order 0 folio */
2327 folio = shmem_swapin_cluster(swap, gfp, info, index);
2328 if (!folio) {
2329 error = -ENOMEM;
2330 goto failed;
2331 }
2332 }
2333 if (fault_type) {
2334 *fault_type |= VM_FAULT_MAJOR;
2335 count_vm_event(PGMAJFAULT);
2336 count_memcg_event_mm(fault_mm, PGMAJFAULT);
2337 }
2338 } else {
2339 swap_update_readahead(folio, NULL, 0);
2340 }
2341
2342 if (order > folio_order(folio)) {
2343 /*
2344 * Swapin may get smaller folios due to various reasons:
2345 * It may fallback to order 0 due to memory pressure or race,
2346 * swap readahead may swap in order 0 folios into swapcache
2347 * asynchronously, while the shmem mapping can still stores
2348 * large swap entries. In such cases, we should split the
2349 * large swap entry to prevent possible data corruption.
2350 */
2351 error = shmem_split_large_entry(inode, index, index_entry, gfp);
2352 if (error)
2353 goto failed_nolock;
2354 }
2355
2356 /*
2357 * If the folio is large, round down swap and index by folio size.
2358 * No matter what race occurs, the swap layer ensures we either get
2359 * a valid folio that has its swap entry aligned by size, or a
2360 * temporarily invalid one which we'll abort very soon and retry.
2361 *
2362 * shmem_add_to_page_cache ensures the whole range contains expected
2363 * entries and prevents any corruption, so any race split is fine
2364 * too, it will succeed as long as the entries are still there.
2365 */
2366 nr_pages = folio_nr_pages(folio);
2367 if (nr_pages > 1) {
2368 swap.val = round_down(swap.val, nr_pages);
2369 index = round_down(index, nr_pages);
2370 }
2371
2372 /*
2373 * We have to do this with the folio locked to prevent races.
2374 * The shmem_confirm_swap below only checks if the first swap
2375 * entry matches the folio, that's enough to ensure the folio
2376 * is not used outside of shmem, as shmem swap entries
2377 * and swap cache folios are never partially freed.
2378 */
2379 folio_lock(folio);
2380 if ((!skip_swapcache && !folio_test_swapcache(folio)) ||
2381 shmem_confirm_swap(mapping, index, swap) < 0 ||
2382 folio->swap.val != swap.val) {
2383 error = -EEXIST;
2384 goto unlock;
2385 }
2386 if (!folio_test_uptodate(folio)) {
2387 error = -EIO;
2388 goto failed;
2389 }
2390 folio_wait_writeback(folio);
2391
2392 /*
2393 * Some architectures may have to restore extra metadata to the
2394 * folio after reading from swap.
2395 */
2396 arch_swap_restore(folio_swap(swap, folio), folio);
2397
2398 if (shmem_should_replace_folio(folio, gfp)) {
2399 error = shmem_replace_folio(&folio, gfp, info, index, vma);
2400 if (error)
2401 goto failed;
2402 }
2403
2404 error = shmem_add_to_page_cache(folio, mapping, index,
2405 swp_to_radix_entry(swap), gfp);
2406 if (error)
2407 goto failed;
2408
2409 shmem_recalc_inode(inode, 0, -nr_pages);
2410
2411 if (sgp == SGP_WRITE)
2412 folio_mark_accessed(folio);
2413
2414 if (skip_swapcache) {
2415 folio->swap.val = 0;
2416 swapcache_clear(si, swap, nr_pages);
2417 } else {
2418 swap_cache_del_folio(folio);
2419 }
2420 folio_mark_dirty(folio);
2421 swap_free_nr(swap, nr_pages);
2422 put_swap_device(si);
2423
2424 *foliop = folio;
2425 return 0;
2426 failed:
2427 if (shmem_confirm_swap(mapping, index, swap) < 0)
2428 error = -EEXIST;
2429 if (error == -EIO)
2430 shmem_set_folio_swapin_error(inode, index, folio, swap,
2431 skip_swapcache);
2432 unlock:
2433 if (folio)
2434 folio_unlock(folio);
2435 failed_nolock:
2436 if (skip_swapcache)
2437 swapcache_clear(si, folio->swap, folio_nr_pages(folio));
2438 if (folio)
2439 folio_put(folio);
2440 put_swap_device(si);
2441
2442 return error;
2443 }
2444
2445 /*
2446 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2447 *
2448 * If we allocate a new one we do not mark it dirty. That's up to the
2449 * vm. If we swap it in we mark it dirty since we also free the swap
2450 * entry since a page cannot live in both the swap and page cache.
2451 *
2452 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2453 */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_fault * vmf,vm_fault_t * fault_type)2454 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2455 loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2456 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2457 {
2458 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2459 struct mm_struct *fault_mm;
2460 struct folio *folio;
2461 int error;
2462 bool alloced;
2463 unsigned long orders = 0;
2464
2465 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2466 return -EINVAL;
2467
2468 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2469 return -EFBIG;
2470 repeat:
2471 if (sgp <= SGP_CACHE &&
2472 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2473 return -EINVAL;
2474
2475 alloced = false;
2476 fault_mm = vma ? vma->vm_mm : NULL;
2477
2478 folio = filemap_get_entry(inode->i_mapping, index);
2479 if (folio && vma && userfaultfd_minor(vma)) {
2480 if (!xa_is_value(folio))
2481 folio_put(folio);
2482 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2483 return 0;
2484 }
2485
2486 if (xa_is_value(folio)) {
2487 error = shmem_swapin_folio(inode, index, &folio,
2488 sgp, gfp, vma, fault_type);
2489 if (error == -EEXIST)
2490 goto repeat;
2491
2492 *foliop = folio;
2493 return error;
2494 }
2495
2496 if (folio) {
2497 folio_lock(folio);
2498
2499 /* Has the folio been truncated or swapped out? */
2500 if (unlikely(folio->mapping != inode->i_mapping)) {
2501 folio_unlock(folio);
2502 folio_put(folio);
2503 goto repeat;
2504 }
2505 if (sgp == SGP_WRITE)
2506 folio_mark_accessed(folio);
2507 if (folio_test_uptodate(folio))
2508 goto out;
2509 /* fallocated folio */
2510 if (sgp != SGP_READ)
2511 goto clear;
2512 folio_unlock(folio);
2513 folio_put(folio);
2514 }
2515
2516 /*
2517 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2518 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2519 */
2520 *foliop = NULL;
2521 if (sgp == SGP_READ)
2522 return 0;
2523 if (sgp == SGP_NOALLOC)
2524 return -ENOENT;
2525
2526 /*
2527 * Fast cache lookup and swap lookup did not find it: allocate.
2528 */
2529
2530 if (vma && userfaultfd_missing(vma)) {
2531 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2532 return 0;
2533 }
2534
2535 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2536 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2537 if (orders > 0) {
2538 gfp_t huge_gfp;
2539
2540 huge_gfp = vma_thp_gfp_mask(vma);
2541 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2542 folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2543 inode, index, fault_mm, orders);
2544 if (!IS_ERR(folio)) {
2545 if (folio_test_pmd_mappable(folio))
2546 count_vm_event(THP_FILE_ALLOC);
2547 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2548 goto alloced;
2549 }
2550 if (PTR_ERR(folio) == -EEXIST)
2551 goto repeat;
2552 }
2553
2554 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2555 if (IS_ERR(folio)) {
2556 error = PTR_ERR(folio);
2557 if (error == -EEXIST)
2558 goto repeat;
2559 folio = NULL;
2560 goto unlock;
2561 }
2562
2563 alloced:
2564 alloced = true;
2565 if (folio_test_large(folio) &&
2566 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2567 folio_next_index(folio)) {
2568 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2569 struct shmem_inode_info *info = SHMEM_I(inode);
2570 /*
2571 * Part of the large folio is beyond i_size: subject
2572 * to shrink under memory pressure.
2573 */
2574 spin_lock(&sbinfo->shrinklist_lock);
2575 /*
2576 * _careful to defend against unlocked access to
2577 * ->shrink_list in shmem_unused_huge_shrink()
2578 */
2579 if (list_empty_careful(&info->shrinklist)) {
2580 list_add_tail(&info->shrinklist,
2581 &sbinfo->shrinklist);
2582 sbinfo->shrinklist_len++;
2583 }
2584 spin_unlock(&sbinfo->shrinklist_lock);
2585 }
2586
2587 if (sgp == SGP_WRITE)
2588 folio_set_referenced(folio);
2589 /*
2590 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2591 */
2592 if (sgp == SGP_FALLOC)
2593 sgp = SGP_WRITE;
2594 clear:
2595 /*
2596 * Let SGP_WRITE caller clear ends if write does not fill folio;
2597 * but SGP_FALLOC on a folio fallocated earlier must initialize
2598 * it now, lest undo on failure cancel our earlier guarantee.
2599 */
2600 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2601 long i, n = folio_nr_pages(folio);
2602
2603 for (i = 0; i < n; i++)
2604 clear_highpage(folio_page(folio, i));
2605 flush_dcache_folio(folio);
2606 folio_mark_uptodate(folio);
2607 }
2608
2609 /* Perhaps the file has been truncated since we checked */
2610 if (sgp <= SGP_CACHE &&
2611 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2612 error = -EINVAL;
2613 goto unlock;
2614 }
2615 out:
2616 *foliop = folio;
2617 return 0;
2618
2619 /*
2620 * Error recovery.
2621 */
2622 unlock:
2623 if (alloced)
2624 filemap_remove_folio(folio);
2625 shmem_recalc_inode(inode, 0, 0);
2626 if (folio) {
2627 folio_unlock(folio);
2628 folio_put(folio);
2629 }
2630 return error;
2631 }
2632
2633 /**
2634 * shmem_get_folio - find, and lock a shmem folio.
2635 * @inode: inode to search
2636 * @index: the page index.
2637 * @write_end: end of a write, could extend inode size
2638 * @foliop: pointer to the folio if found
2639 * @sgp: SGP_* flags to control behavior
2640 *
2641 * Looks up the page cache entry at @inode & @index. If a folio is
2642 * present, it is returned locked with an increased refcount.
2643 *
2644 * If the caller modifies data in the folio, it must call folio_mark_dirty()
2645 * before unlocking the folio to ensure that the folio is not reclaimed.
2646 * There is no need to reserve space before calling folio_mark_dirty().
2647 *
2648 * When no folio is found, the behavior depends on @sgp:
2649 * - for SGP_READ, *@foliop is %NULL and 0 is returned
2650 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2651 * - for all other flags a new folio is allocated, inserted into the
2652 * page cache and returned locked in @foliop.
2653 *
2654 * Context: May sleep.
2655 * Return: 0 if successful, else a negative error code.
2656 */
shmem_get_folio(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp)2657 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2658 struct folio **foliop, enum sgp_type sgp)
2659 {
2660 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2661 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2662 }
2663 EXPORT_SYMBOL_GPL(shmem_get_folio);
2664
2665 /*
2666 * This is like autoremove_wake_function, but it removes the wait queue
2667 * entry unconditionally - even if something else had already woken the
2668 * target.
2669 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)2670 static int synchronous_wake_function(wait_queue_entry_t *wait,
2671 unsigned int mode, int sync, void *key)
2672 {
2673 int ret = default_wake_function(wait, mode, sync, key);
2674 list_del_init(&wait->entry);
2675 return ret;
2676 }
2677
2678 /*
2679 * Trinity finds that probing a hole which tmpfs is punching can
2680 * prevent the hole-punch from ever completing: which in turn
2681 * locks writers out with its hold on i_rwsem. So refrain from
2682 * faulting pages into the hole while it's being punched. Although
2683 * shmem_undo_range() does remove the additions, it may be unable to
2684 * keep up, as each new page needs its own unmap_mapping_range() call,
2685 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2686 *
2687 * It does not matter if we sometimes reach this check just before the
2688 * hole-punch begins, so that one fault then races with the punch:
2689 * we just need to make racing faults a rare case.
2690 *
2691 * The implementation below would be much simpler if we just used a
2692 * standard mutex or completion: but we cannot take i_rwsem in fault,
2693 * and bloating every shmem inode for this unlikely case would be sad.
2694 */
shmem_falloc_wait(struct vm_fault * vmf,struct inode * inode)2695 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2696 {
2697 struct shmem_falloc *shmem_falloc;
2698 struct file *fpin = NULL;
2699 vm_fault_t ret = 0;
2700
2701 spin_lock(&inode->i_lock);
2702 shmem_falloc = inode->i_private;
2703 if (shmem_falloc &&
2704 shmem_falloc->waitq &&
2705 vmf->pgoff >= shmem_falloc->start &&
2706 vmf->pgoff < shmem_falloc->next) {
2707 wait_queue_head_t *shmem_falloc_waitq;
2708 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2709
2710 ret = VM_FAULT_NOPAGE;
2711 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2712 shmem_falloc_waitq = shmem_falloc->waitq;
2713 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2714 TASK_UNINTERRUPTIBLE);
2715 spin_unlock(&inode->i_lock);
2716 schedule();
2717
2718 /*
2719 * shmem_falloc_waitq points into the shmem_fallocate()
2720 * stack of the hole-punching task: shmem_falloc_waitq
2721 * is usually invalid by the time we reach here, but
2722 * finish_wait() does not dereference it in that case;
2723 * though i_lock needed lest racing with wake_up_all().
2724 */
2725 spin_lock(&inode->i_lock);
2726 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2727 }
2728 spin_unlock(&inode->i_lock);
2729 if (fpin) {
2730 fput(fpin);
2731 ret = VM_FAULT_RETRY;
2732 }
2733 return ret;
2734 }
2735
shmem_fault(struct vm_fault * vmf)2736 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2737 {
2738 struct inode *inode = file_inode(vmf->vma->vm_file);
2739 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2740 struct folio *folio = NULL;
2741 vm_fault_t ret = 0;
2742 int err;
2743
2744 /*
2745 * Trinity finds that probing a hole which tmpfs is punching can
2746 * prevent the hole-punch from ever completing: noted in i_private.
2747 */
2748 if (unlikely(inode->i_private)) {
2749 ret = shmem_falloc_wait(vmf, inode);
2750 if (ret)
2751 return ret;
2752 }
2753
2754 WARN_ON_ONCE(vmf->page != NULL);
2755 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2756 gfp, vmf, &ret);
2757 if (err)
2758 return vmf_error(err);
2759 if (folio) {
2760 vmf->page = folio_file_page(folio, vmf->pgoff);
2761 ret |= VM_FAULT_LOCKED;
2762 }
2763 return ret;
2764 }
2765
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2766 unsigned long shmem_get_unmapped_area(struct file *file,
2767 unsigned long uaddr, unsigned long len,
2768 unsigned long pgoff, unsigned long flags)
2769 {
2770 unsigned long addr;
2771 unsigned long offset;
2772 unsigned long inflated_len;
2773 unsigned long inflated_addr;
2774 unsigned long inflated_offset;
2775 unsigned long hpage_size;
2776
2777 if (len > TASK_SIZE)
2778 return -ENOMEM;
2779
2780 addr = mm_get_unmapped_area(file, uaddr, len, pgoff, flags);
2781
2782 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2783 return addr;
2784 if (IS_ERR_VALUE(addr))
2785 return addr;
2786 if (addr & ~PAGE_MASK)
2787 return addr;
2788 if (addr > TASK_SIZE - len)
2789 return addr;
2790
2791 if (shmem_huge == SHMEM_HUGE_DENY)
2792 return addr;
2793 if (flags & MAP_FIXED)
2794 return addr;
2795 /*
2796 * Our priority is to support MAP_SHARED mapped hugely;
2797 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2798 * But if caller specified an address hint and we allocated area there
2799 * successfully, respect that as before.
2800 */
2801 if (uaddr == addr)
2802 return addr;
2803
2804 hpage_size = HPAGE_PMD_SIZE;
2805 if (shmem_huge != SHMEM_HUGE_FORCE) {
2806 struct super_block *sb;
2807 unsigned long __maybe_unused hpage_orders;
2808 int order = 0;
2809
2810 if (file) {
2811 VM_BUG_ON(file->f_op != &shmem_file_operations);
2812 sb = file_inode(file)->i_sb;
2813 } else {
2814 /*
2815 * Called directly from mm/mmap.c, or drivers/char/mem.c
2816 * for "/dev/zero", to create a shared anonymous object.
2817 */
2818 if (IS_ERR(shm_mnt))
2819 return addr;
2820 sb = shm_mnt->mnt_sb;
2821
2822 /*
2823 * Find the highest mTHP order used for anonymous shmem to
2824 * provide a suitable alignment address.
2825 */
2826 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2827 hpage_orders = READ_ONCE(huge_shmem_orders_always);
2828 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2829 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2830 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2831 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2832
2833 if (hpage_orders > 0) {
2834 order = highest_order(hpage_orders);
2835 hpage_size = PAGE_SIZE << order;
2836 }
2837 #endif
2838 }
2839 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2840 return addr;
2841 }
2842
2843 if (len < hpage_size)
2844 return addr;
2845
2846 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2847 if (offset && offset + len < 2 * hpage_size)
2848 return addr;
2849 if ((addr & (hpage_size - 1)) == offset)
2850 return addr;
2851
2852 inflated_len = len + hpage_size - PAGE_SIZE;
2853 if (inflated_len > TASK_SIZE)
2854 return addr;
2855 if (inflated_len < len)
2856 return addr;
2857
2858 inflated_addr = mm_get_unmapped_area(NULL, uaddr, inflated_len, 0, flags);
2859 if (IS_ERR_VALUE(inflated_addr))
2860 return addr;
2861 if (inflated_addr & ~PAGE_MASK)
2862 return addr;
2863
2864 inflated_offset = inflated_addr & (hpage_size - 1);
2865 inflated_addr += offset - inflated_offset;
2866 if (inflated_offset > offset)
2867 inflated_addr += hpage_size;
2868
2869 if (inflated_addr > TASK_SIZE - len)
2870 return addr;
2871 return inflated_addr;
2872 }
2873
2874 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2875 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2876 {
2877 struct inode *inode = file_inode(vma->vm_file);
2878 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2879 }
2880
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)2881 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2882 unsigned long addr, pgoff_t *ilx)
2883 {
2884 struct inode *inode = file_inode(vma->vm_file);
2885 pgoff_t index;
2886
2887 /*
2888 * Bias interleave by inode number to distribute better across nodes;
2889 * but this interface is independent of which page order is used, so
2890 * supplies only that bias, letting caller apply the offset (adjusted
2891 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2892 */
2893 *ilx = inode->i_ino;
2894 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2895 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2896 }
2897
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2898 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2899 pgoff_t index, unsigned int order, pgoff_t *ilx)
2900 {
2901 struct mempolicy *mpol;
2902
2903 /* Bias interleave by inode number to distribute better across nodes */
2904 *ilx = info->vfs_inode.i_ino + (index >> order);
2905
2906 mpol = mpol_shared_policy_lookup(&info->policy, index);
2907 return mpol ? mpol : get_task_policy(current);
2908 }
2909 #else
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2910 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2911 pgoff_t index, unsigned int order, pgoff_t *ilx)
2912 {
2913 *ilx = 0;
2914 return NULL;
2915 }
2916 #endif /* CONFIG_NUMA */
2917
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2918 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2919 {
2920 struct inode *inode = file_inode(file);
2921 struct shmem_inode_info *info = SHMEM_I(inode);
2922 int retval = -ENOMEM;
2923
2924 /*
2925 * What serializes the accesses to info->flags?
2926 * ipc_lock_object() when called from shmctl_do_lock(),
2927 * no serialization needed when called from shm_destroy().
2928 */
2929 if (lock && !(info->flags & VM_LOCKED)) {
2930 if (!user_shm_lock(inode->i_size, ucounts))
2931 goto out_nomem;
2932 info->flags |= VM_LOCKED;
2933 mapping_set_unevictable(file->f_mapping);
2934 }
2935 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2936 user_shm_unlock(inode->i_size, ucounts);
2937 info->flags &= ~VM_LOCKED;
2938 mapping_clear_unevictable(file->f_mapping);
2939 }
2940 retval = 0;
2941
2942 out_nomem:
2943 return retval;
2944 }
2945
shmem_mmap_prepare(struct vm_area_desc * desc)2946 static int shmem_mmap_prepare(struct vm_area_desc *desc)
2947 {
2948 struct file *file = desc->file;
2949 struct inode *inode = file_inode(file);
2950
2951 file_accessed(file);
2952 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2953 if (inode->i_nlink)
2954 desc->vm_ops = &shmem_vm_ops;
2955 else
2956 desc->vm_ops = &shmem_anon_vm_ops;
2957 return 0;
2958 }
2959
shmem_file_open(struct inode * inode,struct file * file)2960 static int shmem_file_open(struct inode *inode, struct file *file)
2961 {
2962 file->f_mode |= FMODE_CAN_ODIRECT;
2963 return generic_file_open(inode, file);
2964 }
2965
2966 #ifdef CONFIG_TMPFS_XATTR
2967 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2968
2969 #if IS_ENABLED(CONFIG_UNICODE)
2970 /*
2971 * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2972 *
2973 * The casefold file attribute needs some special checks. I can just be added to
2974 * an empty dir, and can't be removed from a non-empty dir.
2975 */
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)2976 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2977 struct dentry *dentry, unsigned int *i_flags)
2978 {
2979 unsigned int old = inode->i_flags;
2980 struct super_block *sb = inode->i_sb;
2981
2982 if (fsflags & FS_CASEFOLD_FL) {
2983 if (!(old & S_CASEFOLD)) {
2984 if (!sb->s_encoding)
2985 return -EOPNOTSUPP;
2986
2987 if (!S_ISDIR(inode->i_mode))
2988 return -ENOTDIR;
2989
2990 if (dentry && !simple_empty(dentry))
2991 return -ENOTEMPTY;
2992 }
2993
2994 *i_flags = *i_flags | S_CASEFOLD;
2995 } else if (old & S_CASEFOLD) {
2996 if (dentry && !simple_empty(dentry))
2997 return -ENOTEMPTY;
2998 }
2999
3000 return 0;
3001 }
3002 #else
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)3003 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
3004 struct dentry *dentry, unsigned int *i_flags)
3005 {
3006 if (fsflags & FS_CASEFOLD_FL)
3007 return -EOPNOTSUPP;
3008
3009 return 0;
3010 }
3011 #endif
3012
3013 /*
3014 * chattr's fsflags are unrelated to extended attributes,
3015 * but tmpfs has chosen to enable them under the same config option.
3016 */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3017 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3018 {
3019 unsigned int i_flags = 0;
3020 int ret;
3021
3022 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
3023 if (ret)
3024 return ret;
3025
3026 if (fsflags & FS_NOATIME_FL)
3027 i_flags |= S_NOATIME;
3028 if (fsflags & FS_APPEND_FL)
3029 i_flags |= S_APPEND;
3030 if (fsflags & FS_IMMUTABLE_FL)
3031 i_flags |= S_IMMUTABLE;
3032 /*
3033 * But FS_NODUMP_FL does not require any action in i_flags.
3034 */
3035 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
3036
3037 return 0;
3038 }
3039 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3040 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3041 {
3042 }
3043 #define shmem_initxattrs NULL
3044 #endif
3045
shmem_get_offset_ctx(struct inode * inode)3046 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
3047 {
3048 return &SHMEM_I(inode)->dir_offsets;
3049 }
3050
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3051 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
3052 struct super_block *sb,
3053 struct inode *dir, umode_t mode,
3054 dev_t dev, unsigned long flags)
3055 {
3056 struct inode *inode;
3057 struct shmem_inode_info *info;
3058 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3059 ino_t ino;
3060 int err;
3061
3062 err = shmem_reserve_inode(sb, &ino);
3063 if (err)
3064 return ERR_PTR(err);
3065
3066 inode = new_inode(sb);
3067 if (!inode) {
3068 shmem_free_inode(sb, 0);
3069 return ERR_PTR(-ENOSPC);
3070 }
3071
3072 inode->i_ino = ino;
3073 inode_init_owner(idmap, inode, dir, mode);
3074 inode->i_blocks = 0;
3075 simple_inode_init_ts(inode);
3076 inode->i_generation = get_random_u32();
3077 info = SHMEM_I(inode);
3078 memset(info, 0, (char *)inode - (char *)info);
3079 spin_lock_init(&info->lock);
3080 atomic_set(&info->stop_eviction, 0);
3081 info->seals = F_SEAL_SEAL;
3082 info->flags = flags & VM_NORESERVE;
3083 info->i_crtime = inode_get_mtime(inode);
3084 info->fsflags = (dir == NULL) ? 0 :
3085 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
3086 if (info->fsflags)
3087 shmem_set_inode_flags(inode, info->fsflags, NULL);
3088 INIT_LIST_HEAD(&info->shrinklist);
3089 INIT_LIST_HEAD(&info->swaplist);
3090 simple_xattrs_init(&info->xattrs);
3091 cache_no_acl(inode);
3092 if (sbinfo->noswap)
3093 mapping_set_unevictable(inode->i_mapping);
3094
3095 /* Don't consider 'deny' for emergencies and 'force' for testing */
3096 if (sbinfo->huge)
3097 mapping_set_large_folios(inode->i_mapping);
3098
3099 switch (mode & S_IFMT) {
3100 default:
3101 inode->i_op = &shmem_special_inode_operations;
3102 init_special_inode(inode, mode, dev);
3103 break;
3104 case S_IFREG:
3105 inode->i_mapping->a_ops = &shmem_aops;
3106 inode->i_op = &shmem_inode_operations;
3107 inode->i_fop = &shmem_file_operations;
3108 mpol_shared_policy_init(&info->policy,
3109 shmem_get_sbmpol(sbinfo));
3110 break;
3111 case S_IFDIR:
3112 inc_nlink(inode);
3113 /* Some things misbehave if size == 0 on a directory */
3114 inode->i_size = 2 * BOGO_DIRENT_SIZE;
3115 inode->i_op = &shmem_dir_inode_operations;
3116 inode->i_fop = &simple_offset_dir_operations;
3117 simple_offset_init(shmem_get_offset_ctx(inode));
3118 break;
3119 case S_IFLNK:
3120 /*
3121 * Must not load anything in the rbtree,
3122 * mpol_free_shared_policy will not be called.
3123 */
3124 mpol_shared_policy_init(&info->policy, NULL);
3125 break;
3126 }
3127
3128 lockdep_annotate_inode_mutex_key(inode);
3129 return inode;
3130 }
3131
3132 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3133 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3134 struct super_block *sb, struct inode *dir,
3135 umode_t mode, dev_t dev, unsigned long flags)
3136 {
3137 int err;
3138 struct inode *inode;
3139
3140 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3141 if (IS_ERR(inode))
3142 return inode;
3143
3144 err = dquot_initialize(inode);
3145 if (err)
3146 goto errout;
3147
3148 err = dquot_alloc_inode(inode);
3149 if (err) {
3150 dquot_drop(inode);
3151 goto errout;
3152 }
3153 return inode;
3154
3155 errout:
3156 inode->i_flags |= S_NOQUOTA;
3157 iput(inode);
3158 return ERR_PTR(err);
3159 }
3160 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3161 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3162 struct super_block *sb, struct inode *dir,
3163 umode_t mode, dev_t dev, unsigned long flags)
3164 {
3165 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3166 }
3167 #endif /* CONFIG_TMPFS_QUOTA */
3168
3169 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)3170 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
3171 struct vm_area_struct *dst_vma,
3172 unsigned long dst_addr,
3173 unsigned long src_addr,
3174 uffd_flags_t flags,
3175 struct folio **foliop)
3176 {
3177 struct inode *inode = file_inode(dst_vma->vm_file);
3178 struct shmem_inode_info *info = SHMEM_I(inode);
3179 struct address_space *mapping = inode->i_mapping;
3180 gfp_t gfp = mapping_gfp_mask(mapping);
3181 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
3182 void *page_kaddr;
3183 struct folio *folio;
3184 int ret;
3185 pgoff_t max_off;
3186
3187 if (shmem_inode_acct_blocks(inode, 1)) {
3188 /*
3189 * We may have got a page, returned -ENOENT triggering a retry,
3190 * and now we find ourselves with -ENOMEM. Release the page, to
3191 * avoid a BUG_ON in our caller.
3192 */
3193 if (unlikely(*foliop)) {
3194 folio_put(*foliop);
3195 *foliop = NULL;
3196 }
3197 return -ENOMEM;
3198 }
3199
3200 if (!*foliop) {
3201 ret = -ENOMEM;
3202 folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3203 if (!folio)
3204 goto out_unacct_blocks;
3205
3206 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3207 page_kaddr = kmap_local_folio(folio, 0);
3208 /*
3209 * The read mmap_lock is held here. Despite the
3210 * mmap_lock being read recursive a deadlock is still
3211 * possible if a writer has taken a lock. For example:
3212 *
3213 * process A thread 1 takes read lock on own mmap_lock
3214 * process A thread 2 calls mmap, blocks taking write lock
3215 * process B thread 1 takes page fault, read lock on own mmap lock
3216 * process B thread 2 calls mmap, blocks taking write lock
3217 * process A thread 1 blocks taking read lock on process B
3218 * process B thread 1 blocks taking read lock on process A
3219 *
3220 * Disable page faults to prevent potential deadlock
3221 * and retry the copy outside the mmap_lock.
3222 */
3223 pagefault_disable();
3224 ret = copy_from_user(page_kaddr,
3225 (const void __user *)src_addr,
3226 PAGE_SIZE);
3227 pagefault_enable();
3228 kunmap_local(page_kaddr);
3229
3230 /* fallback to copy_from_user outside mmap_lock */
3231 if (unlikely(ret)) {
3232 *foliop = folio;
3233 ret = -ENOENT;
3234 /* don't free the page */
3235 goto out_unacct_blocks;
3236 }
3237
3238 flush_dcache_folio(folio);
3239 } else { /* ZEROPAGE */
3240 clear_user_highpage(&folio->page, dst_addr);
3241 }
3242 } else {
3243 folio = *foliop;
3244 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3245 *foliop = NULL;
3246 }
3247
3248 VM_BUG_ON(folio_test_locked(folio));
3249 VM_BUG_ON(folio_test_swapbacked(folio));
3250 __folio_set_locked(folio);
3251 __folio_set_swapbacked(folio);
3252 __folio_mark_uptodate(folio);
3253
3254 ret = -EFAULT;
3255 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3256 if (unlikely(pgoff >= max_off))
3257 goto out_release;
3258
3259 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3260 if (ret)
3261 goto out_release;
3262 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3263 if (ret)
3264 goto out_release;
3265
3266 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3267 &folio->page, true, flags);
3268 if (ret)
3269 goto out_delete_from_cache;
3270
3271 shmem_recalc_inode(inode, 1, 0);
3272 folio_unlock(folio);
3273 return 0;
3274 out_delete_from_cache:
3275 filemap_remove_folio(folio);
3276 out_release:
3277 folio_unlock(folio);
3278 folio_put(folio);
3279 out_unacct_blocks:
3280 shmem_inode_unacct_blocks(inode, 1);
3281 return ret;
3282 }
3283 #endif /* CONFIG_USERFAULTFD */
3284
3285 #ifdef CONFIG_TMPFS
3286 static const struct inode_operations shmem_symlink_inode_operations;
3287 static const struct inode_operations shmem_short_symlink_operations;
3288
3289 static int
shmem_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3290 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping,
3291 loff_t pos, unsigned len,
3292 struct folio **foliop, void **fsdata)
3293 {
3294 struct inode *inode = mapping->host;
3295 struct shmem_inode_info *info = SHMEM_I(inode);
3296 pgoff_t index = pos >> PAGE_SHIFT;
3297 struct folio *folio;
3298 int ret = 0;
3299
3300 /* i_rwsem is held by caller */
3301 if (unlikely(info->seals & (F_SEAL_GROW |
3302 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3303 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3304 return -EPERM;
3305 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3306 return -EPERM;
3307 }
3308
3309 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3310 if (ret)
3311 return ret;
3312
3313 if (folio_contain_hwpoisoned_page(folio)) {
3314 folio_unlock(folio);
3315 folio_put(folio);
3316 return -EIO;
3317 }
3318
3319 *foliop = folio;
3320 return 0;
3321 }
3322
3323 static int
shmem_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3324 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping,
3325 loff_t pos, unsigned len, unsigned copied,
3326 struct folio *folio, void *fsdata)
3327 {
3328 struct inode *inode = mapping->host;
3329
3330 if (pos + copied > inode->i_size)
3331 i_size_write(inode, pos + copied);
3332
3333 if (!folio_test_uptodate(folio)) {
3334 if (copied < folio_size(folio)) {
3335 size_t from = offset_in_folio(folio, pos);
3336 folio_zero_segments(folio, 0, from,
3337 from + copied, folio_size(folio));
3338 }
3339 folio_mark_uptodate(folio);
3340 }
3341 folio_mark_dirty(folio);
3342 folio_unlock(folio);
3343 folio_put(folio);
3344
3345 return copied;
3346 }
3347
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3348 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3349 {
3350 struct file *file = iocb->ki_filp;
3351 struct inode *inode = file_inode(file);
3352 struct address_space *mapping = inode->i_mapping;
3353 pgoff_t index;
3354 unsigned long offset;
3355 int error = 0;
3356 ssize_t retval = 0;
3357
3358 for (;;) {
3359 struct folio *folio = NULL;
3360 struct page *page = NULL;
3361 unsigned long nr, ret;
3362 loff_t end_offset, i_size = i_size_read(inode);
3363 bool fallback_page_copy = false;
3364 size_t fsize;
3365
3366 if (unlikely(iocb->ki_pos >= i_size))
3367 break;
3368
3369 index = iocb->ki_pos >> PAGE_SHIFT;
3370 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3371 if (error) {
3372 if (error == -EINVAL)
3373 error = 0;
3374 break;
3375 }
3376 if (folio) {
3377 folio_unlock(folio);
3378
3379 page = folio_file_page(folio, index);
3380 if (PageHWPoison(page)) {
3381 folio_put(folio);
3382 error = -EIO;
3383 break;
3384 }
3385
3386 if (folio_test_large(folio) &&
3387 folio_test_has_hwpoisoned(folio))
3388 fallback_page_copy = true;
3389 }
3390
3391 /*
3392 * We must evaluate after, since reads (unlike writes)
3393 * are called without i_rwsem protection against truncate
3394 */
3395 i_size = i_size_read(inode);
3396 if (unlikely(iocb->ki_pos >= i_size)) {
3397 if (folio)
3398 folio_put(folio);
3399 break;
3400 }
3401 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3402 if (folio && likely(!fallback_page_copy))
3403 fsize = folio_size(folio);
3404 else
3405 fsize = PAGE_SIZE;
3406 offset = iocb->ki_pos & (fsize - 1);
3407 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3408
3409 if (folio) {
3410 /*
3411 * If users can be writing to this page using arbitrary
3412 * virtual addresses, take care about potential aliasing
3413 * before reading the page on the kernel side.
3414 */
3415 if (mapping_writably_mapped(mapping)) {
3416 if (likely(!fallback_page_copy))
3417 flush_dcache_folio(folio);
3418 else
3419 flush_dcache_page(page);
3420 }
3421
3422 /*
3423 * Mark the folio accessed if we read the beginning.
3424 */
3425 if (!offset)
3426 folio_mark_accessed(folio);
3427 /*
3428 * Ok, we have the page, and it's up-to-date, so
3429 * now we can copy it to user space...
3430 */
3431 if (likely(!fallback_page_copy))
3432 ret = copy_folio_to_iter(folio, offset, nr, to);
3433 else
3434 ret = copy_page_to_iter(page, offset, nr, to);
3435 folio_put(folio);
3436 } else if (user_backed_iter(to)) {
3437 /*
3438 * Copy to user tends to be so well optimized, but
3439 * clear_user() not so much, that it is noticeably
3440 * faster to copy the zero page instead of clearing.
3441 */
3442 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3443 } else {
3444 /*
3445 * But submitting the same page twice in a row to
3446 * splice() - or others? - can result in confusion:
3447 * so don't attempt that optimization on pipes etc.
3448 */
3449 ret = iov_iter_zero(nr, to);
3450 }
3451
3452 retval += ret;
3453 iocb->ki_pos += ret;
3454
3455 if (!iov_iter_count(to))
3456 break;
3457 if (ret < nr) {
3458 error = -EFAULT;
3459 break;
3460 }
3461 cond_resched();
3462 }
3463
3464 file_accessed(file);
3465 return retval ? retval : error;
3466 }
3467
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3468 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3469 {
3470 struct file *file = iocb->ki_filp;
3471 struct inode *inode = file->f_mapping->host;
3472 ssize_t ret;
3473
3474 inode_lock(inode);
3475 ret = generic_write_checks(iocb, from);
3476 if (ret <= 0)
3477 goto unlock;
3478 ret = file_remove_privs(file);
3479 if (ret)
3480 goto unlock;
3481 ret = file_update_time(file);
3482 if (ret)
3483 goto unlock;
3484 ret = generic_perform_write(iocb, from);
3485 unlock:
3486 inode_unlock(inode);
3487 return ret;
3488 }
3489
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3490 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3491 struct pipe_buffer *buf)
3492 {
3493 return true;
3494 }
3495
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3496 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3497 struct pipe_buffer *buf)
3498 {
3499 }
3500
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3501 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3502 struct pipe_buffer *buf)
3503 {
3504 return false;
3505 }
3506
3507 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3508 .release = zero_pipe_buf_release,
3509 .try_steal = zero_pipe_buf_try_steal,
3510 .get = zero_pipe_buf_get,
3511 };
3512
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)3513 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3514 loff_t fpos, size_t size)
3515 {
3516 size_t offset = fpos & ~PAGE_MASK;
3517
3518 size = min_t(size_t, size, PAGE_SIZE - offset);
3519
3520 if (!pipe_is_full(pipe)) {
3521 struct pipe_buffer *buf = pipe_head_buf(pipe);
3522
3523 *buf = (struct pipe_buffer) {
3524 .ops = &zero_pipe_buf_ops,
3525 .page = ZERO_PAGE(0),
3526 .offset = offset,
3527 .len = size,
3528 };
3529 pipe->head++;
3530 }
3531
3532 return size;
3533 }
3534
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3535 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3536 struct pipe_inode_info *pipe,
3537 size_t len, unsigned int flags)
3538 {
3539 struct inode *inode = file_inode(in);
3540 struct address_space *mapping = inode->i_mapping;
3541 struct folio *folio = NULL;
3542 size_t total_spliced = 0, used, npages, n, part;
3543 loff_t isize;
3544 int error = 0;
3545
3546 /* Work out how much data we can actually add into the pipe */
3547 used = pipe_buf_usage(pipe);
3548 npages = max_t(ssize_t, pipe->max_usage - used, 0);
3549 len = min_t(size_t, len, npages * PAGE_SIZE);
3550
3551 do {
3552 bool fallback_page_splice = false;
3553 struct page *page = NULL;
3554 pgoff_t index;
3555 size_t size;
3556
3557 if (*ppos >= i_size_read(inode))
3558 break;
3559
3560 index = *ppos >> PAGE_SHIFT;
3561 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3562 if (error) {
3563 if (error == -EINVAL)
3564 error = 0;
3565 break;
3566 }
3567 if (folio) {
3568 folio_unlock(folio);
3569
3570 page = folio_file_page(folio, index);
3571 if (PageHWPoison(page)) {
3572 error = -EIO;
3573 break;
3574 }
3575
3576 if (folio_test_large(folio) &&
3577 folio_test_has_hwpoisoned(folio))
3578 fallback_page_splice = true;
3579 }
3580
3581 /*
3582 * i_size must be checked after we know the pages are Uptodate.
3583 *
3584 * Checking i_size after the check allows us to calculate
3585 * the correct value for "nr", which means the zero-filled
3586 * part of the page is not copied back to userspace (unless
3587 * another truncate extends the file - this is desired though).
3588 */
3589 isize = i_size_read(inode);
3590 if (unlikely(*ppos >= isize))
3591 break;
3592 /*
3593 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3594 * pages.
3595 */
3596 size = len;
3597 if (unlikely(fallback_page_splice)) {
3598 size_t offset = *ppos & ~PAGE_MASK;
3599
3600 size = umin(size, PAGE_SIZE - offset);
3601 }
3602 part = min_t(loff_t, isize - *ppos, size);
3603
3604 if (folio) {
3605 /*
3606 * If users can be writing to this page using arbitrary
3607 * virtual addresses, take care about potential aliasing
3608 * before reading the page on the kernel side.
3609 */
3610 if (mapping_writably_mapped(mapping)) {
3611 if (likely(!fallback_page_splice))
3612 flush_dcache_folio(folio);
3613 else
3614 flush_dcache_page(page);
3615 }
3616 folio_mark_accessed(folio);
3617 /*
3618 * Ok, we have the page, and it's up-to-date, so we can
3619 * now splice it into the pipe.
3620 */
3621 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3622 folio_put(folio);
3623 folio = NULL;
3624 } else {
3625 n = splice_zeropage_into_pipe(pipe, *ppos, part);
3626 }
3627
3628 if (!n)
3629 break;
3630 len -= n;
3631 total_spliced += n;
3632 *ppos += n;
3633 in->f_ra.prev_pos = *ppos;
3634 if (pipe_is_full(pipe))
3635 break;
3636
3637 cond_resched();
3638 } while (len);
3639
3640 if (folio)
3641 folio_put(folio);
3642
3643 file_accessed(in);
3644 return total_spliced ? total_spliced : error;
3645 }
3646
shmem_file_llseek(struct file * file,loff_t offset,int whence)3647 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3648 {
3649 struct address_space *mapping = file->f_mapping;
3650 struct inode *inode = mapping->host;
3651
3652 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3653 return generic_file_llseek_size(file, offset, whence,
3654 MAX_LFS_FILESIZE, i_size_read(inode));
3655 if (offset < 0)
3656 return -ENXIO;
3657
3658 inode_lock(inode);
3659 /* We're holding i_rwsem so we can access i_size directly */
3660 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3661 if (offset >= 0)
3662 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3663 inode_unlock(inode);
3664 return offset;
3665 }
3666
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3667 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3668 loff_t len)
3669 {
3670 struct inode *inode = file_inode(file);
3671 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3672 struct shmem_inode_info *info = SHMEM_I(inode);
3673 struct shmem_falloc shmem_falloc;
3674 pgoff_t start, index, end, undo_fallocend;
3675 int error;
3676
3677 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3678 return -EOPNOTSUPP;
3679
3680 inode_lock(inode);
3681
3682 if (mode & FALLOC_FL_PUNCH_HOLE) {
3683 struct address_space *mapping = file->f_mapping;
3684 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3685 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3686 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3687
3688 /* protected by i_rwsem */
3689 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3690 error = -EPERM;
3691 goto out;
3692 }
3693
3694 shmem_falloc.waitq = &shmem_falloc_waitq;
3695 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3696 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3697 spin_lock(&inode->i_lock);
3698 inode->i_private = &shmem_falloc;
3699 spin_unlock(&inode->i_lock);
3700
3701 if ((u64)unmap_end > (u64)unmap_start)
3702 unmap_mapping_range(mapping, unmap_start,
3703 1 + unmap_end - unmap_start, 0);
3704 shmem_truncate_range(inode, offset, offset + len - 1);
3705 /* No need to unmap again: hole-punching leaves COWed pages */
3706
3707 spin_lock(&inode->i_lock);
3708 inode->i_private = NULL;
3709 wake_up_all(&shmem_falloc_waitq);
3710 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3711 spin_unlock(&inode->i_lock);
3712 error = 0;
3713 goto out;
3714 }
3715
3716 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3717 error = inode_newsize_ok(inode, offset + len);
3718 if (error)
3719 goto out;
3720
3721 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3722 error = -EPERM;
3723 goto out;
3724 }
3725
3726 start = offset >> PAGE_SHIFT;
3727 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3728 /* Try to avoid a swapstorm if len is impossible to satisfy */
3729 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3730 error = -ENOSPC;
3731 goto out;
3732 }
3733
3734 shmem_falloc.waitq = NULL;
3735 shmem_falloc.start = start;
3736 shmem_falloc.next = start;
3737 shmem_falloc.nr_falloced = 0;
3738 shmem_falloc.nr_unswapped = 0;
3739 spin_lock(&inode->i_lock);
3740 inode->i_private = &shmem_falloc;
3741 spin_unlock(&inode->i_lock);
3742
3743 /*
3744 * info->fallocend is only relevant when huge pages might be
3745 * involved: to prevent split_huge_page() freeing fallocated
3746 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3747 */
3748 undo_fallocend = info->fallocend;
3749 if (info->fallocend < end)
3750 info->fallocend = end;
3751
3752 for (index = start; index < end; ) {
3753 struct folio *folio;
3754
3755 /*
3756 * Check for fatal signal so that we abort early in OOM
3757 * situations. We don't want to abort in case of non-fatal
3758 * signals as large fallocate can take noticeable time and
3759 * e.g. periodic timers may result in fallocate constantly
3760 * restarting.
3761 */
3762 if (fatal_signal_pending(current))
3763 error = -EINTR;
3764 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3765 error = -ENOMEM;
3766 else
3767 error = shmem_get_folio(inode, index, offset + len,
3768 &folio, SGP_FALLOC);
3769 if (error) {
3770 info->fallocend = undo_fallocend;
3771 /* Remove the !uptodate folios we added */
3772 if (index > start) {
3773 shmem_undo_range(inode,
3774 (loff_t)start << PAGE_SHIFT,
3775 ((loff_t)index << PAGE_SHIFT) - 1, true);
3776 }
3777 goto undone;
3778 }
3779
3780 /*
3781 * Here is a more important optimization than it appears:
3782 * a second SGP_FALLOC on the same large folio will clear it,
3783 * making it uptodate and un-undoable if we fail later.
3784 */
3785 index = folio_next_index(folio);
3786 /* Beware 32-bit wraparound */
3787 if (!index)
3788 index--;
3789
3790 /*
3791 * Inform shmem_writeout() how far we have reached.
3792 * No need for lock or barrier: we have the page lock.
3793 */
3794 if (!folio_test_uptodate(folio))
3795 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3796 shmem_falloc.next = index;
3797
3798 /*
3799 * If !uptodate, leave it that way so that freeable folios
3800 * can be recognized if we need to rollback on error later.
3801 * But mark it dirty so that memory pressure will swap rather
3802 * than free the folios we are allocating (and SGP_CACHE folios
3803 * might still be clean: we now need to mark those dirty too).
3804 */
3805 folio_mark_dirty(folio);
3806 folio_unlock(folio);
3807 folio_put(folio);
3808 cond_resched();
3809 }
3810
3811 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3812 i_size_write(inode, offset + len);
3813 undone:
3814 spin_lock(&inode->i_lock);
3815 inode->i_private = NULL;
3816 spin_unlock(&inode->i_lock);
3817 out:
3818 if (!error)
3819 file_modified(file);
3820 inode_unlock(inode);
3821 return error;
3822 }
3823
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3824 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3825 {
3826 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3827
3828 buf->f_type = TMPFS_MAGIC;
3829 buf->f_bsize = PAGE_SIZE;
3830 buf->f_namelen = NAME_MAX;
3831 if (sbinfo->max_blocks) {
3832 buf->f_blocks = sbinfo->max_blocks;
3833 buf->f_bavail =
3834 buf->f_bfree = sbinfo->max_blocks -
3835 percpu_counter_sum(&sbinfo->used_blocks);
3836 }
3837 if (sbinfo->max_inodes) {
3838 buf->f_files = sbinfo->max_inodes;
3839 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3840 }
3841 /* else leave those fields 0 like simple_statfs */
3842
3843 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3844
3845 return 0;
3846 }
3847
3848 /*
3849 * File creation. Allocate an inode, and we're done..
3850 */
3851 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3852 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3853 struct dentry *dentry, umode_t mode, dev_t dev)
3854 {
3855 struct inode *inode;
3856 int error;
3857
3858 if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3859 return -EINVAL;
3860
3861 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3862 if (IS_ERR(inode))
3863 return PTR_ERR(inode);
3864
3865 error = simple_acl_create(dir, inode);
3866 if (error)
3867 goto out_iput;
3868 error = security_inode_init_security(inode, dir, &dentry->d_name,
3869 shmem_initxattrs, NULL);
3870 if (error && error != -EOPNOTSUPP)
3871 goto out_iput;
3872
3873 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3874 if (error)
3875 goto out_iput;
3876
3877 dir->i_size += BOGO_DIRENT_SIZE;
3878 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3879 inode_inc_iversion(dir);
3880
3881 d_make_persistent(dentry, inode);
3882 return error;
3883
3884 out_iput:
3885 iput(inode);
3886 return error;
3887 }
3888
3889 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3890 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3891 struct file *file, umode_t mode)
3892 {
3893 struct inode *inode;
3894 int error;
3895
3896 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3897 if (IS_ERR(inode)) {
3898 error = PTR_ERR(inode);
3899 goto err_out;
3900 }
3901 error = security_inode_init_security(inode, dir, NULL,
3902 shmem_initxattrs, NULL);
3903 if (error && error != -EOPNOTSUPP)
3904 goto out_iput;
3905 error = simple_acl_create(dir, inode);
3906 if (error)
3907 goto out_iput;
3908 d_tmpfile(file, inode);
3909
3910 err_out:
3911 return finish_open_simple(file, error);
3912 out_iput:
3913 iput(inode);
3914 return error;
3915 }
3916
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3917 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3918 struct dentry *dentry, umode_t mode)
3919 {
3920 int error;
3921
3922 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3923 if (error)
3924 return ERR_PTR(error);
3925 inc_nlink(dir);
3926 return NULL;
3927 }
3928
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3929 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3930 struct dentry *dentry, umode_t mode, bool excl)
3931 {
3932 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3933 }
3934
3935 /*
3936 * Link a file..
3937 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3938 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3939 struct dentry *dentry)
3940 {
3941 struct inode *inode = d_inode(old_dentry);
3942 int ret;
3943
3944 /*
3945 * No ordinary (disk based) filesystem counts links as inodes;
3946 * but each new link needs a new dentry, pinning lowmem, and
3947 * tmpfs dentries cannot be pruned until they are unlinked.
3948 * But if an O_TMPFILE file is linked into the tmpfs, the
3949 * first link must skip that, to get the accounting right.
3950 */
3951 if (inode->i_nlink) {
3952 ret = shmem_reserve_inode(inode->i_sb, NULL);
3953 if (ret)
3954 return ret;
3955 }
3956
3957 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3958 if (ret) {
3959 if (inode->i_nlink)
3960 shmem_free_inode(inode->i_sb, 0);
3961 return ret;
3962 }
3963
3964 dir->i_size += BOGO_DIRENT_SIZE;
3965 inode_inc_iversion(dir);
3966 return simple_link(old_dentry, dir, dentry);
3967 }
3968
shmem_unlink(struct inode * dir,struct dentry * dentry)3969 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3970 {
3971 struct inode *inode = d_inode(dentry);
3972
3973 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3974 shmem_free_inode(inode->i_sb, 0);
3975
3976 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3977
3978 dir->i_size -= BOGO_DIRENT_SIZE;
3979 inode_inc_iversion(dir);
3980 simple_unlink(dir, dentry);
3981
3982 /*
3983 * For now, VFS can't deal with case-insensitive negative dentries, so
3984 * we invalidate them
3985 */
3986 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3987 d_invalidate(dentry);
3988
3989 return 0;
3990 }
3991
shmem_rmdir(struct inode * dir,struct dentry * dentry)3992 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3993 {
3994 if (!simple_empty(dentry))
3995 return -ENOTEMPTY;
3996
3997 drop_nlink(d_inode(dentry));
3998 drop_nlink(dir);
3999 return shmem_unlink(dir, dentry);
4000 }
4001
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)4002 static int shmem_whiteout(struct mnt_idmap *idmap,
4003 struct inode *old_dir, struct dentry *old_dentry)
4004 {
4005 struct dentry *whiteout;
4006 int error;
4007
4008 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
4009 if (!whiteout)
4010 return -ENOMEM;
4011
4012 error = shmem_mknod(idmap, old_dir, whiteout,
4013 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4014 dput(whiteout);
4015 if (error)
4016 return error;
4017
4018 /*
4019 * Cheat and hash the whiteout while the old dentry is still in
4020 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
4021 *
4022 * d_lookup() will consistently find one of them at this point,
4023 * not sure which one, but that isn't even important.
4024 */
4025 d_rehash(whiteout);
4026 return 0;
4027 }
4028
4029 /*
4030 * The VFS layer already does all the dentry stuff for rename,
4031 * we just have to decrement the usage count for the target if
4032 * it exists so that the VFS layer correctly free's it when it
4033 * gets overwritten.
4034 */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)4035 static int shmem_rename2(struct mnt_idmap *idmap,
4036 struct inode *old_dir, struct dentry *old_dentry,
4037 struct inode *new_dir, struct dentry *new_dentry,
4038 unsigned int flags)
4039 {
4040 struct inode *inode = d_inode(old_dentry);
4041 int they_are_dirs = S_ISDIR(inode->i_mode);
4042 int error;
4043
4044 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4045 return -EINVAL;
4046
4047 if (flags & RENAME_EXCHANGE)
4048 return simple_offset_rename_exchange(old_dir, old_dentry,
4049 new_dir, new_dentry);
4050
4051 if (!simple_empty(new_dentry))
4052 return -ENOTEMPTY;
4053
4054 if (flags & RENAME_WHITEOUT) {
4055 error = shmem_whiteout(idmap, old_dir, old_dentry);
4056 if (error)
4057 return error;
4058 }
4059
4060 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
4061 if (error)
4062 return error;
4063
4064 if (d_really_is_positive(new_dentry)) {
4065 (void) shmem_unlink(new_dir, new_dentry);
4066 if (they_are_dirs) {
4067 drop_nlink(d_inode(new_dentry));
4068 drop_nlink(old_dir);
4069 }
4070 } else if (they_are_dirs) {
4071 drop_nlink(old_dir);
4072 inc_nlink(new_dir);
4073 }
4074
4075 old_dir->i_size -= BOGO_DIRENT_SIZE;
4076 new_dir->i_size += BOGO_DIRENT_SIZE;
4077 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
4078 inode_inc_iversion(old_dir);
4079 inode_inc_iversion(new_dir);
4080 return 0;
4081 }
4082
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)4083 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
4084 struct dentry *dentry, const char *symname)
4085 {
4086 int error;
4087 int len;
4088 struct inode *inode;
4089 struct folio *folio;
4090 char *link;
4091
4092 len = strlen(symname) + 1;
4093 if (len > PAGE_SIZE)
4094 return -ENAMETOOLONG;
4095
4096 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
4097 VM_NORESERVE);
4098 if (IS_ERR(inode))
4099 return PTR_ERR(inode);
4100
4101 error = security_inode_init_security(inode, dir, &dentry->d_name,
4102 shmem_initxattrs, NULL);
4103 if (error && error != -EOPNOTSUPP)
4104 goto out_iput;
4105
4106 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
4107 if (error)
4108 goto out_iput;
4109
4110 inode->i_size = len-1;
4111 if (len <= SHORT_SYMLINK_LEN) {
4112 link = kmemdup(symname, len, GFP_KERNEL);
4113 if (!link) {
4114 error = -ENOMEM;
4115 goto out_remove_offset;
4116 }
4117 inode->i_op = &shmem_short_symlink_operations;
4118 inode_set_cached_link(inode, link, len - 1);
4119 } else {
4120 inode_nohighmem(inode);
4121 inode->i_mapping->a_ops = &shmem_aops;
4122 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
4123 if (error)
4124 goto out_remove_offset;
4125 inode->i_op = &shmem_symlink_inode_operations;
4126 memcpy(folio_address(folio), symname, len);
4127 folio_mark_uptodate(folio);
4128 folio_mark_dirty(folio);
4129 folio_unlock(folio);
4130 folio_put(folio);
4131 }
4132 dir->i_size += BOGO_DIRENT_SIZE;
4133 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
4134 inode_inc_iversion(dir);
4135 d_make_persistent(dentry, inode);
4136 return 0;
4137
4138 out_remove_offset:
4139 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4140 out_iput:
4141 iput(inode);
4142 return error;
4143 }
4144
shmem_put_link(void * arg)4145 static void shmem_put_link(void *arg)
4146 {
4147 folio_mark_accessed(arg);
4148 folio_put(arg);
4149 }
4150
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)4151 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
4152 struct delayed_call *done)
4153 {
4154 struct folio *folio = NULL;
4155 int error;
4156
4157 if (!dentry) {
4158 folio = filemap_get_folio(inode->i_mapping, 0);
4159 if (IS_ERR(folio))
4160 return ERR_PTR(-ECHILD);
4161 if (PageHWPoison(folio_page(folio, 0)) ||
4162 !folio_test_uptodate(folio)) {
4163 folio_put(folio);
4164 return ERR_PTR(-ECHILD);
4165 }
4166 } else {
4167 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4168 if (error)
4169 return ERR_PTR(error);
4170 if (!folio)
4171 return ERR_PTR(-ECHILD);
4172 if (PageHWPoison(folio_page(folio, 0))) {
4173 folio_unlock(folio);
4174 folio_put(folio);
4175 return ERR_PTR(-ECHILD);
4176 }
4177 folio_unlock(folio);
4178 }
4179 set_delayed_call(done, shmem_put_link, folio);
4180 return folio_address(folio);
4181 }
4182
4183 #ifdef CONFIG_TMPFS_XATTR
4184
shmem_fileattr_get(struct dentry * dentry,struct file_kattr * fa)4185 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
4186 {
4187 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4188
4189 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4190
4191 return 0;
4192 }
4193
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct file_kattr * fa)4194 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4195 struct dentry *dentry, struct file_kattr *fa)
4196 {
4197 struct inode *inode = d_inode(dentry);
4198 struct shmem_inode_info *info = SHMEM_I(inode);
4199 int ret, flags;
4200
4201 if (fileattr_has_fsx(fa))
4202 return -EOPNOTSUPP;
4203 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4204 return -EOPNOTSUPP;
4205
4206 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4207 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
4208
4209 ret = shmem_set_inode_flags(inode, flags, dentry);
4210
4211 if (ret)
4212 return ret;
4213
4214 info->fsflags = flags;
4215
4216 inode_set_ctime_current(inode);
4217 inode_inc_iversion(inode);
4218 return 0;
4219 }
4220
4221 /*
4222 * Superblocks without xattr inode operations may get some security.* xattr
4223 * support from the LSM "for free". As soon as we have any other xattrs
4224 * like ACLs, we also need to implement the security.* handlers at
4225 * filesystem level, though.
4226 */
4227
4228 /*
4229 * Callback for security_inode_init_security() for acquiring xattrs.
4230 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)4231 static int shmem_initxattrs(struct inode *inode,
4232 const struct xattr *xattr_array, void *fs_info)
4233 {
4234 struct shmem_inode_info *info = SHMEM_I(inode);
4235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4236 const struct xattr *xattr;
4237 struct simple_xattr *new_xattr;
4238 size_t ispace = 0;
4239 size_t len;
4240
4241 if (sbinfo->max_inodes) {
4242 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4243 ispace += simple_xattr_space(xattr->name,
4244 xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4245 }
4246 if (ispace) {
4247 raw_spin_lock(&sbinfo->stat_lock);
4248 if (sbinfo->free_ispace < ispace)
4249 ispace = 0;
4250 else
4251 sbinfo->free_ispace -= ispace;
4252 raw_spin_unlock(&sbinfo->stat_lock);
4253 if (!ispace)
4254 return -ENOSPC;
4255 }
4256 }
4257
4258 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4259 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4260 if (!new_xattr)
4261 break;
4262
4263 len = strlen(xattr->name) + 1;
4264 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4265 GFP_KERNEL_ACCOUNT);
4266 if (!new_xattr->name) {
4267 kvfree(new_xattr);
4268 break;
4269 }
4270
4271 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4272 XATTR_SECURITY_PREFIX_LEN);
4273 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4274 xattr->name, len);
4275
4276 simple_xattr_add(&info->xattrs, new_xattr);
4277 }
4278
4279 if (xattr->name != NULL) {
4280 if (ispace) {
4281 raw_spin_lock(&sbinfo->stat_lock);
4282 sbinfo->free_ispace += ispace;
4283 raw_spin_unlock(&sbinfo->stat_lock);
4284 }
4285 simple_xattrs_free(&info->xattrs, NULL);
4286 return -ENOMEM;
4287 }
4288
4289 return 0;
4290 }
4291
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)4292 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4293 struct dentry *unused, struct inode *inode,
4294 const char *name, void *buffer, size_t size)
4295 {
4296 struct shmem_inode_info *info = SHMEM_I(inode);
4297
4298 name = xattr_full_name(handler, name);
4299 return simple_xattr_get(&info->xattrs, name, buffer, size);
4300 }
4301
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)4302 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4303 struct mnt_idmap *idmap,
4304 struct dentry *unused, struct inode *inode,
4305 const char *name, const void *value,
4306 size_t size, int flags)
4307 {
4308 struct shmem_inode_info *info = SHMEM_I(inode);
4309 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4310 struct simple_xattr *old_xattr;
4311 size_t ispace = 0;
4312
4313 name = xattr_full_name(handler, name);
4314 if (value && sbinfo->max_inodes) {
4315 ispace = simple_xattr_space(name, size);
4316 raw_spin_lock(&sbinfo->stat_lock);
4317 if (sbinfo->free_ispace < ispace)
4318 ispace = 0;
4319 else
4320 sbinfo->free_ispace -= ispace;
4321 raw_spin_unlock(&sbinfo->stat_lock);
4322 if (!ispace)
4323 return -ENOSPC;
4324 }
4325
4326 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4327 if (!IS_ERR(old_xattr)) {
4328 ispace = 0;
4329 if (old_xattr && sbinfo->max_inodes)
4330 ispace = simple_xattr_space(old_xattr->name,
4331 old_xattr->size);
4332 simple_xattr_free(old_xattr);
4333 old_xattr = NULL;
4334 inode_set_ctime_current(inode);
4335 inode_inc_iversion(inode);
4336 }
4337 if (ispace) {
4338 raw_spin_lock(&sbinfo->stat_lock);
4339 sbinfo->free_ispace += ispace;
4340 raw_spin_unlock(&sbinfo->stat_lock);
4341 }
4342 return PTR_ERR(old_xattr);
4343 }
4344
4345 static const struct xattr_handler shmem_security_xattr_handler = {
4346 .prefix = XATTR_SECURITY_PREFIX,
4347 .get = shmem_xattr_handler_get,
4348 .set = shmem_xattr_handler_set,
4349 };
4350
4351 static const struct xattr_handler shmem_trusted_xattr_handler = {
4352 .prefix = XATTR_TRUSTED_PREFIX,
4353 .get = shmem_xattr_handler_get,
4354 .set = shmem_xattr_handler_set,
4355 };
4356
4357 static const struct xattr_handler shmem_user_xattr_handler = {
4358 .prefix = XATTR_USER_PREFIX,
4359 .get = shmem_xattr_handler_get,
4360 .set = shmem_xattr_handler_set,
4361 };
4362
4363 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4364 &shmem_security_xattr_handler,
4365 &shmem_trusted_xattr_handler,
4366 &shmem_user_xattr_handler,
4367 NULL
4368 };
4369
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)4370 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4371 {
4372 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4373 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4374 }
4375 #endif /* CONFIG_TMPFS_XATTR */
4376
4377 static const struct inode_operations shmem_short_symlink_operations = {
4378 .getattr = shmem_getattr,
4379 .setattr = shmem_setattr,
4380 .get_link = simple_get_link,
4381 #ifdef CONFIG_TMPFS_XATTR
4382 .listxattr = shmem_listxattr,
4383 #endif
4384 };
4385
4386 static const struct inode_operations shmem_symlink_inode_operations = {
4387 .getattr = shmem_getattr,
4388 .setattr = shmem_setattr,
4389 .get_link = shmem_get_link,
4390 #ifdef CONFIG_TMPFS_XATTR
4391 .listxattr = shmem_listxattr,
4392 #endif
4393 };
4394
shmem_get_parent(struct dentry * child)4395 static struct dentry *shmem_get_parent(struct dentry *child)
4396 {
4397 return ERR_PTR(-ESTALE);
4398 }
4399
shmem_match(struct inode * ino,void * vfh)4400 static int shmem_match(struct inode *ino, void *vfh)
4401 {
4402 __u32 *fh = vfh;
4403 __u64 inum = fh[2];
4404 inum = (inum << 32) | fh[1];
4405 return ino->i_ino == inum && fh[0] == ino->i_generation;
4406 }
4407
4408 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)4409 static struct dentry *shmem_find_alias(struct inode *inode)
4410 {
4411 struct dentry *alias = d_find_alias(inode);
4412
4413 return alias ?: d_find_any_alias(inode);
4414 }
4415
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)4416 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4417 struct fid *fid, int fh_len, int fh_type)
4418 {
4419 struct inode *inode;
4420 struct dentry *dentry = NULL;
4421 u64 inum;
4422
4423 if (fh_len < 3)
4424 return NULL;
4425
4426 inum = fid->raw[2];
4427 inum = (inum << 32) | fid->raw[1];
4428
4429 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4430 shmem_match, fid->raw);
4431 if (inode) {
4432 dentry = shmem_find_alias(inode);
4433 iput(inode);
4434 }
4435
4436 return dentry;
4437 }
4438
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)4439 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4440 struct inode *parent)
4441 {
4442 if (*len < 3) {
4443 *len = 3;
4444 return FILEID_INVALID;
4445 }
4446
4447 if (inode_unhashed(inode)) {
4448 /* Unfortunately insert_inode_hash is not idempotent,
4449 * so as we hash inodes here rather than at creation
4450 * time, we need a lock to ensure we only try
4451 * to do it once
4452 */
4453 static DEFINE_SPINLOCK(lock);
4454 spin_lock(&lock);
4455 if (inode_unhashed(inode))
4456 __insert_inode_hash(inode,
4457 inode->i_ino + inode->i_generation);
4458 spin_unlock(&lock);
4459 }
4460
4461 fh[0] = inode->i_generation;
4462 fh[1] = inode->i_ino;
4463 fh[2] = ((__u64)inode->i_ino) >> 32;
4464
4465 *len = 3;
4466 return 1;
4467 }
4468
4469 static const struct export_operations shmem_export_ops = {
4470 .get_parent = shmem_get_parent,
4471 .encode_fh = shmem_encode_fh,
4472 .fh_to_dentry = shmem_fh_to_dentry,
4473 };
4474
4475 enum shmem_param {
4476 Opt_gid,
4477 Opt_huge,
4478 Opt_mode,
4479 Opt_mpol,
4480 Opt_nr_blocks,
4481 Opt_nr_inodes,
4482 Opt_size,
4483 Opt_uid,
4484 Opt_inode32,
4485 Opt_inode64,
4486 Opt_noswap,
4487 Opt_quota,
4488 Opt_usrquota,
4489 Opt_grpquota,
4490 Opt_usrquota_block_hardlimit,
4491 Opt_usrquota_inode_hardlimit,
4492 Opt_grpquota_block_hardlimit,
4493 Opt_grpquota_inode_hardlimit,
4494 Opt_casefold_version,
4495 Opt_casefold,
4496 Opt_strict_encoding,
4497 };
4498
4499 static const struct constant_table shmem_param_enums_huge[] = {
4500 {"never", SHMEM_HUGE_NEVER },
4501 {"always", SHMEM_HUGE_ALWAYS },
4502 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
4503 {"advise", SHMEM_HUGE_ADVISE },
4504 {}
4505 };
4506
4507 const struct fs_parameter_spec shmem_fs_parameters[] = {
4508 fsparam_gid ("gid", Opt_gid),
4509 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
4510 fsparam_u32oct("mode", Opt_mode),
4511 fsparam_string("mpol", Opt_mpol),
4512 fsparam_string("nr_blocks", Opt_nr_blocks),
4513 fsparam_string("nr_inodes", Opt_nr_inodes),
4514 fsparam_string("size", Opt_size),
4515 fsparam_uid ("uid", Opt_uid),
4516 fsparam_flag ("inode32", Opt_inode32),
4517 fsparam_flag ("inode64", Opt_inode64),
4518 fsparam_flag ("noswap", Opt_noswap),
4519 #ifdef CONFIG_TMPFS_QUOTA
4520 fsparam_flag ("quota", Opt_quota),
4521 fsparam_flag ("usrquota", Opt_usrquota),
4522 fsparam_flag ("grpquota", Opt_grpquota),
4523 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4524 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4525 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4526 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4527 #endif
4528 fsparam_string("casefold", Opt_casefold_version),
4529 fsparam_flag ("casefold", Opt_casefold),
4530 fsparam_flag ("strict_encoding", Opt_strict_encoding),
4531 {}
4532 };
4533
4534 #if IS_ENABLED(CONFIG_UNICODE)
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4535 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4536 bool latest_version)
4537 {
4538 struct shmem_options *ctx = fc->fs_private;
4539 int version = UTF8_LATEST;
4540 struct unicode_map *encoding;
4541 char *version_str = param->string + 5;
4542
4543 if (!latest_version) {
4544 if (strncmp(param->string, "utf8-", 5))
4545 return invalfc(fc, "Only UTF-8 encodings are supported "
4546 "in the format: utf8-<version number>");
4547
4548 version = utf8_parse_version(version_str);
4549 if (version < 0)
4550 return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4551 }
4552
4553 encoding = utf8_load(version);
4554
4555 if (IS_ERR(encoding)) {
4556 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4557 unicode_major(version), unicode_minor(version),
4558 unicode_rev(version));
4559 }
4560
4561 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4562 unicode_major(version), unicode_minor(version), unicode_rev(version));
4563
4564 ctx->encoding = encoding;
4565
4566 return 0;
4567 }
4568 #else
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4569 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4570 bool latest_version)
4571 {
4572 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4573 }
4574 #endif
4575
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)4576 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4577 {
4578 struct shmem_options *ctx = fc->fs_private;
4579 struct fs_parse_result result;
4580 unsigned long long size;
4581 char *rest;
4582 int opt;
4583 kuid_t kuid;
4584 kgid_t kgid;
4585
4586 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4587 if (opt < 0)
4588 return opt;
4589
4590 switch (opt) {
4591 case Opt_size:
4592 size = memparse(param->string, &rest);
4593 if (*rest == '%') {
4594 size <<= PAGE_SHIFT;
4595 size *= totalram_pages();
4596 do_div(size, 100);
4597 rest++;
4598 }
4599 if (*rest)
4600 goto bad_value;
4601 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4602 ctx->seen |= SHMEM_SEEN_BLOCKS;
4603 break;
4604 case Opt_nr_blocks:
4605 ctx->blocks = memparse(param->string, &rest);
4606 if (*rest || ctx->blocks > LONG_MAX)
4607 goto bad_value;
4608 ctx->seen |= SHMEM_SEEN_BLOCKS;
4609 break;
4610 case Opt_nr_inodes:
4611 ctx->inodes = memparse(param->string, &rest);
4612 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4613 goto bad_value;
4614 ctx->seen |= SHMEM_SEEN_INODES;
4615 break;
4616 case Opt_mode:
4617 ctx->mode = result.uint_32 & 07777;
4618 break;
4619 case Opt_uid:
4620 kuid = result.uid;
4621
4622 /*
4623 * The requested uid must be representable in the
4624 * filesystem's idmapping.
4625 */
4626 if (!kuid_has_mapping(fc->user_ns, kuid))
4627 goto bad_value;
4628
4629 ctx->uid = kuid;
4630 break;
4631 case Opt_gid:
4632 kgid = result.gid;
4633
4634 /*
4635 * The requested gid must be representable in the
4636 * filesystem's idmapping.
4637 */
4638 if (!kgid_has_mapping(fc->user_ns, kgid))
4639 goto bad_value;
4640
4641 ctx->gid = kgid;
4642 break;
4643 case Opt_huge:
4644 ctx->huge = result.uint_32;
4645 if (ctx->huge != SHMEM_HUGE_NEVER &&
4646 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4647 has_transparent_hugepage()))
4648 goto unsupported_parameter;
4649 ctx->seen |= SHMEM_SEEN_HUGE;
4650 break;
4651 case Opt_mpol:
4652 if (IS_ENABLED(CONFIG_NUMA)) {
4653 mpol_put(ctx->mpol);
4654 ctx->mpol = NULL;
4655 if (mpol_parse_str(param->string, &ctx->mpol))
4656 goto bad_value;
4657 break;
4658 }
4659 goto unsupported_parameter;
4660 case Opt_inode32:
4661 ctx->full_inums = false;
4662 ctx->seen |= SHMEM_SEEN_INUMS;
4663 break;
4664 case Opt_inode64:
4665 if (sizeof(ino_t) < 8) {
4666 return invalfc(fc,
4667 "Cannot use inode64 with <64bit inums in kernel\n");
4668 }
4669 ctx->full_inums = true;
4670 ctx->seen |= SHMEM_SEEN_INUMS;
4671 break;
4672 case Opt_noswap:
4673 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4674 return invalfc(fc,
4675 "Turning off swap in unprivileged tmpfs mounts unsupported");
4676 }
4677 ctx->noswap = true;
4678 break;
4679 case Opt_quota:
4680 if (fc->user_ns != &init_user_ns)
4681 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4682 ctx->seen |= SHMEM_SEEN_QUOTA;
4683 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4684 break;
4685 case Opt_usrquota:
4686 if (fc->user_ns != &init_user_ns)
4687 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4688 ctx->seen |= SHMEM_SEEN_QUOTA;
4689 ctx->quota_types |= QTYPE_MASK_USR;
4690 break;
4691 case Opt_grpquota:
4692 if (fc->user_ns != &init_user_ns)
4693 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4694 ctx->seen |= SHMEM_SEEN_QUOTA;
4695 ctx->quota_types |= QTYPE_MASK_GRP;
4696 break;
4697 case Opt_usrquota_block_hardlimit:
4698 size = memparse(param->string, &rest);
4699 if (*rest || !size)
4700 goto bad_value;
4701 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4702 return invalfc(fc,
4703 "User quota block hardlimit too large.");
4704 ctx->qlimits.usrquota_bhardlimit = size;
4705 break;
4706 case Opt_grpquota_block_hardlimit:
4707 size = memparse(param->string, &rest);
4708 if (*rest || !size)
4709 goto bad_value;
4710 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4711 return invalfc(fc,
4712 "Group quota block hardlimit too large.");
4713 ctx->qlimits.grpquota_bhardlimit = size;
4714 break;
4715 case Opt_usrquota_inode_hardlimit:
4716 size = memparse(param->string, &rest);
4717 if (*rest || !size)
4718 goto bad_value;
4719 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4720 return invalfc(fc,
4721 "User quota inode hardlimit too large.");
4722 ctx->qlimits.usrquota_ihardlimit = size;
4723 break;
4724 case Opt_grpquota_inode_hardlimit:
4725 size = memparse(param->string, &rest);
4726 if (*rest || !size)
4727 goto bad_value;
4728 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4729 return invalfc(fc,
4730 "Group quota inode hardlimit too large.");
4731 ctx->qlimits.grpquota_ihardlimit = size;
4732 break;
4733 case Opt_casefold_version:
4734 return shmem_parse_opt_casefold(fc, param, false);
4735 case Opt_casefold:
4736 return shmem_parse_opt_casefold(fc, param, true);
4737 case Opt_strict_encoding:
4738 #if IS_ENABLED(CONFIG_UNICODE)
4739 ctx->strict_encoding = true;
4740 break;
4741 #else
4742 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4743 #endif
4744 }
4745 return 0;
4746
4747 unsupported_parameter:
4748 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4749 bad_value:
4750 return invalfc(fc, "Bad value for '%s'", param->key);
4751 }
4752
shmem_next_opt(char ** s)4753 static char *shmem_next_opt(char **s)
4754 {
4755 char *sbegin = *s;
4756 char *p;
4757
4758 if (sbegin == NULL)
4759 return NULL;
4760
4761 /*
4762 * NUL-terminate this option: unfortunately,
4763 * mount options form a comma-separated list,
4764 * but mpol's nodelist may also contain commas.
4765 */
4766 for (;;) {
4767 p = strchr(*s, ',');
4768 if (p == NULL)
4769 break;
4770 *s = p + 1;
4771 if (!isdigit(*(p+1))) {
4772 *p = '\0';
4773 return sbegin;
4774 }
4775 }
4776
4777 *s = NULL;
4778 return sbegin;
4779 }
4780
shmem_parse_monolithic(struct fs_context * fc,void * data)4781 static int shmem_parse_monolithic(struct fs_context *fc, void *data)
4782 {
4783 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt);
4784 }
4785
4786 /*
4787 * Reconfigure a shmem filesystem.
4788 */
shmem_reconfigure(struct fs_context * fc)4789 static int shmem_reconfigure(struct fs_context *fc)
4790 {
4791 struct shmem_options *ctx = fc->fs_private;
4792 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4793 unsigned long used_isp;
4794 struct mempolicy *mpol = NULL;
4795 const char *err;
4796
4797 raw_spin_lock(&sbinfo->stat_lock);
4798 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4799
4800 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4801 if (!sbinfo->max_blocks) {
4802 err = "Cannot retroactively limit size";
4803 goto out;
4804 }
4805 if (percpu_counter_compare(&sbinfo->used_blocks,
4806 ctx->blocks) > 0) {
4807 err = "Too small a size for current use";
4808 goto out;
4809 }
4810 }
4811 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4812 if (!sbinfo->max_inodes) {
4813 err = "Cannot retroactively limit inodes";
4814 goto out;
4815 }
4816 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4817 err = "Too few inodes for current use";
4818 goto out;
4819 }
4820 }
4821
4822 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4823 sbinfo->next_ino > UINT_MAX) {
4824 err = "Current inum too high to switch to 32-bit inums";
4825 goto out;
4826 }
4827
4828 /*
4829 * "noswap" doesn't use fsparam_flag_no, i.e. there's no "swap"
4830 * counterpart for (re-)enabling swap.
4831 */
4832 if (ctx->noswap && !sbinfo->noswap) {
4833 err = "Cannot disable swap on remount";
4834 goto out;
4835 }
4836
4837 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4838 !sb_any_quota_loaded(fc->root->d_sb)) {
4839 err = "Cannot enable quota on remount";
4840 goto out;
4841 }
4842
4843 #ifdef CONFIG_TMPFS_QUOTA
4844 #define CHANGED_LIMIT(name) \
4845 (ctx->qlimits.name## hardlimit && \
4846 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4847
4848 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4849 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4850 err = "Cannot change global quota limit on remount";
4851 goto out;
4852 }
4853 #endif /* CONFIG_TMPFS_QUOTA */
4854
4855 if (ctx->seen & SHMEM_SEEN_HUGE)
4856 sbinfo->huge = ctx->huge;
4857 if (ctx->seen & SHMEM_SEEN_INUMS)
4858 sbinfo->full_inums = ctx->full_inums;
4859 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4860 sbinfo->max_blocks = ctx->blocks;
4861 if (ctx->seen & SHMEM_SEEN_INODES) {
4862 sbinfo->max_inodes = ctx->inodes;
4863 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4864 }
4865
4866 /*
4867 * Preserve previous mempolicy unless mpol remount option was specified.
4868 */
4869 if (ctx->mpol) {
4870 mpol = sbinfo->mpol;
4871 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4872 ctx->mpol = NULL;
4873 }
4874
4875 if (ctx->noswap)
4876 sbinfo->noswap = true;
4877
4878 raw_spin_unlock(&sbinfo->stat_lock);
4879 mpol_put(mpol);
4880 return 0;
4881 out:
4882 raw_spin_unlock(&sbinfo->stat_lock);
4883 return invalfc(fc, "%s", err);
4884 }
4885
shmem_show_options(struct seq_file * seq,struct dentry * root)4886 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4887 {
4888 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4889 struct mempolicy *mpol;
4890
4891 if (sbinfo->max_blocks != shmem_default_max_blocks())
4892 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4893 if (sbinfo->max_inodes != shmem_default_max_inodes())
4894 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4895 if (sbinfo->mode != (0777 | S_ISVTX))
4896 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4897 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4898 seq_printf(seq, ",uid=%u",
4899 from_kuid_munged(&init_user_ns, sbinfo->uid));
4900 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4901 seq_printf(seq, ",gid=%u",
4902 from_kgid_munged(&init_user_ns, sbinfo->gid));
4903
4904 /*
4905 * Showing inode{64,32} might be useful even if it's the system default,
4906 * since then people don't have to resort to checking both here and
4907 * /proc/config.gz to confirm 64-bit inums were successfully applied
4908 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4909 *
4910 * We hide it when inode64 isn't the default and we are using 32-bit
4911 * inodes, since that probably just means the feature isn't even under
4912 * consideration.
4913 *
4914 * As such:
4915 *
4916 * +-----------------+-----------------+
4917 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4918 * +------------------+-----------------+-----------------+
4919 * | full_inums=true | show | show |
4920 * | full_inums=false | show | hide |
4921 * +------------------+-----------------+-----------------+
4922 *
4923 */
4924 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4925 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4926 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4927 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4928 if (sbinfo->huge)
4929 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4930 #endif
4931 mpol = shmem_get_sbmpol(sbinfo);
4932 shmem_show_mpol(seq, mpol);
4933 mpol_put(mpol);
4934 if (sbinfo->noswap)
4935 seq_printf(seq, ",noswap");
4936 #ifdef CONFIG_TMPFS_QUOTA
4937 if (sb_has_quota_active(root->d_sb, USRQUOTA))
4938 seq_printf(seq, ",usrquota");
4939 if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4940 seq_printf(seq, ",grpquota");
4941 if (sbinfo->qlimits.usrquota_bhardlimit)
4942 seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4943 sbinfo->qlimits.usrquota_bhardlimit);
4944 if (sbinfo->qlimits.grpquota_bhardlimit)
4945 seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4946 sbinfo->qlimits.grpquota_bhardlimit);
4947 if (sbinfo->qlimits.usrquota_ihardlimit)
4948 seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4949 sbinfo->qlimits.usrquota_ihardlimit);
4950 if (sbinfo->qlimits.grpquota_ihardlimit)
4951 seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4952 sbinfo->qlimits.grpquota_ihardlimit);
4953 #endif
4954 return 0;
4955 }
4956
4957 #endif /* CONFIG_TMPFS */
4958
shmem_put_super(struct super_block * sb)4959 static void shmem_put_super(struct super_block *sb)
4960 {
4961 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4962
4963 #if IS_ENABLED(CONFIG_UNICODE)
4964 if (sb->s_encoding)
4965 utf8_unload(sb->s_encoding);
4966 #endif
4967
4968 #ifdef CONFIG_TMPFS_QUOTA
4969 shmem_disable_quotas(sb);
4970 #endif
4971 free_percpu(sbinfo->ino_batch);
4972 percpu_counter_destroy(&sbinfo->used_blocks);
4973 mpol_put(sbinfo->mpol);
4974 kfree(sbinfo);
4975 sb->s_fs_info = NULL;
4976 }
4977
4978 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4979 static const struct dentry_operations shmem_ci_dentry_ops = {
4980 .d_hash = generic_ci_d_hash,
4981 .d_compare = generic_ci_d_compare,
4982 };
4983 #endif
4984
shmem_fill_super(struct super_block * sb,struct fs_context * fc)4985 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4986 {
4987 struct shmem_options *ctx = fc->fs_private;
4988 struct inode *inode;
4989 struct shmem_sb_info *sbinfo;
4990 int error = -ENOMEM;
4991
4992 /* Round up to L1_CACHE_BYTES to resist false sharing */
4993 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4994 L1_CACHE_BYTES), GFP_KERNEL);
4995 if (!sbinfo)
4996 return error;
4997
4998 sb->s_fs_info = sbinfo;
4999
5000 #ifdef CONFIG_TMPFS
5001 /*
5002 * Per default we only allow half of the physical ram per
5003 * tmpfs instance, limiting inodes to one per page of lowmem;
5004 * but the internal instance is left unlimited.
5005 */
5006 if (!(sb->s_flags & SB_KERNMOUNT)) {
5007 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
5008 ctx->blocks = shmem_default_max_blocks();
5009 if (!(ctx->seen & SHMEM_SEEN_INODES))
5010 ctx->inodes = shmem_default_max_inodes();
5011 if (!(ctx->seen & SHMEM_SEEN_INUMS))
5012 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
5013 sbinfo->noswap = ctx->noswap;
5014 } else {
5015 sb->s_flags |= SB_NOUSER;
5016 }
5017 sb->s_export_op = &shmem_export_ops;
5018 sb->s_flags |= SB_NOSEC;
5019
5020 #if IS_ENABLED(CONFIG_UNICODE)
5021 if (!ctx->encoding && ctx->strict_encoding) {
5022 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
5023 error = -EINVAL;
5024 goto failed;
5025 }
5026
5027 if (ctx->encoding) {
5028 sb->s_encoding = ctx->encoding;
5029 set_default_d_op(sb, &shmem_ci_dentry_ops);
5030 if (ctx->strict_encoding)
5031 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
5032 }
5033 #endif
5034
5035 #else
5036 sb->s_flags |= SB_NOUSER;
5037 #endif /* CONFIG_TMPFS */
5038 sb->s_d_flags |= DCACHE_DONTCACHE;
5039 sbinfo->max_blocks = ctx->blocks;
5040 sbinfo->max_inodes = ctx->inodes;
5041 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
5042 if (sb->s_flags & SB_KERNMOUNT) {
5043 sbinfo->ino_batch = alloc_percpu(ino_t);
5044 if (!sbinfo->ino_batch)
5045 goto failed;
5046 }
5047 sbinfo->uid = ctx->uid;
5048 sbinfo->gid = ctx->gid;
5049 sbinfo->full_inums = ctx->full_inums;
5050 sbinfo->mode = ctx->mode;
5051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5052 if (ctx->seen & SHMEM_SEEN_HUGE)
5053 sbinfo->huge = ctx->huge;
5054 else
5055 sbinfo->huge = tmpfs_huge;
5056 #endif
5057 sbinfo->mpol = ctx->mpol;
5058 ctx->mpol = NULL;
5059
5060 raw_spin_lock_init(&sbinfo->stat_lock);
5061 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
5062 goto failed;
5063 spin_lock_init(&sbinfo->shrinklist_lock);
5064 INIT_LIST_HEAD(&sbinfo->shrinklist);
5065
5066 sb->s_maxbytes = MAX_LFS_FILESIZE;
5067 sb->s_blocksize = PAGE_SIZE;
5068 sb->s_blocksize_bits = PAGE_SHIFT;
5069 sb->s_magic = TMPFS_MAGIC;
5070 sb->s_op = &shmem_ops;
5071 sb->s_time_gran = 1;
5072 #ifdef CONFIG_TMPFS_XATTR
5073 sb->s_xattr = shmem_xattr_handlers;
5074 #endif
5075 #ifdef CONFIG_TMPFS_POSIX_ACL
5076 sb->s_flags |= SB_POSIXACL;
5077 #endif
5078 uuid_t uuid;
5079 uuid_gen(&uuid);
5080 super_set_uuid(sb, uuid.b, sizeof(uuid));
5081
5082 #ifdef CONFIG_TMPFS_QUOTA
5083 if (ctx->seen & SHMEM_SEEN_QUOTA) {
5084 sb->dq_op = &shmem_quota_operations;
5085 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5086 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
5087
5088 /* Copy the default limits from ctx into sbinfo */
5089 memcpy(&sbinfo->qlimits, &ctx->qlimits,
5090 sizeof(struct shmem_quota_limits));
5091
5092 if (shmem_enable_quotas(sb, ctx->quota_types))
5093 goto failed;
5094 }
5095 #endif /* CONFIG_TMPFS_QUOTA */
5096
5097 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
5098 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
5099 if (IS_ERR(inode)) {
5100 error = PTR_ERR(inode);
5101 goto failed;
5102 }
5103 inode->i_uid = sbinfo->uid;
5104 inode->i_gid = sbinfo->gid;
5105 sb->s_root = d_make_root(inode);
5106 if (!sb->s_root)
5107 goto failed;
5108 return 0;
5109
5110 failed:
5111 shmem_put_super(sb);
5112 return error;
5113 }
5114
shmem_get_tree(struct fs_context * fc)5115 static int shmem_get_tree(struct fs_context *fc)
5116 {
5117 return get_tree_nodev(fc, shmem_fill_super);
5118 }
5119
shmem_free_fc(struct fs_context * fc)5120 static void shmem_free_fc(struct fs_context *fc)
5121 {
5122 struct shmem_options *ctx = fc->fs_private;
5123
5124 if (ctx) {
5125 mpol_put(ctx->mpol);
5126 kfree(ctx);
5127 }
5128 }
5129
5130 static const struct fs_context_operations shmem_fs_context_ops = {
5131 .free = shmem_free_fc,
5132 .get_tree = shmem_get_tree,
5133 #ifdef CONFIG_TMPFS
5134 .parse_monolithic = shmem_parse_monolithic,
5135 .parse_param = shmem_parse_one,
5136 .reconfigure = shmem_reconfigure,
5137 #endif
5138 };
5139
5140 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
5141
shmem_alloc_inode(struct super_block * sb)5142 static struct inode *shmem_alloc_inode(struct super_block *sb)
5143 {
5144 struct shmem_inode_info *info;
5145 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
5146 if (!info)
5147 return NULL;
5148 return &info->vfs_inode;
5149 }
5150
shmem_free_in_core_inode(struct inode * inode)5151 static void shmem_free_in_core_inode(struct inode *inode)
5152 {
5153 if (S_ISLNK(inode->i_mode))
5154 kfree(inode->i_link);
5155 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
5156 }
5157
shmem_destroy_inode(struct inode * inode)5158 static void shmem_destroy_inode(struct inode *inode)
5159 {
5160 if (S_ISREG(inode->i_mode))
5161 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5162 if (S_ISDIR(inode->i_mode))
5163 simple_offset_destroy(shmem_get_offset_ctx(inode));
5164 }
5165
shmem_init_inode(void * foo)5166 static void shmem_init_inode(void *foo)
5167 {
5168 struct shmem_inode_info *info = foo;
5169 inode_init_once(&info->vfs_inode);
5170 }
5171
shmem_init_inodecache(void)5172 static void __init shmem_init_inodecache(void)
5173 {
5174 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5175 sizeof(struct shmem_inode_info),
5176 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5177 }
5178
shmem_destroy_inodecache(void)5179 static void __init shmem_destroy_inodecache(void)
5180 {
5181 kmem_cache_destroy(shmem_inode_cachep);
5182 }
5183
5184 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_folio(struct address_space * mapping,struct folio * folio)5185 static int shmem_error_remove_folio(struct address_space *mapping,
5186 struct folio *folio)
5187 {
5188 return 0;
5189 }
5190
5191 static const struct address_space_operations shmem_aops = {
5192 .dirty_folio = noop_dirty_folio,
5193 #ifdef CONFIG_TMPFS
5194 .write_begin = shmem_write_begin,
5195 .write_end = shmem_write_end,
5196 #endif
5197 #ifdef CONFIG_MIGRATION
5198 .migrate_folio = migrate_folio,
5199 #endif
5200 .error_remove_folio = shmem_error_remove_folio,
5201 };
5202
5203 static const struct file_operations shmem_file_operations = {
5204 .mmap_prepare = shmem_mmap_prepare,
5205 .open = shmem_file_open,
5206 .get_unmapped_area = shmem_get_unmapped_area,
5207 #ifdef CONFIG_TMPFS
5208 .llseek = shmem_file_llseek,
5209 .read_iter = shmem_file_read_iter,
5210 .write_iter = shmem_file_write_iter,
5211 .fsync = noop_fsync,
5212 .splice_read = shmem_file_splice_read,
5213 .splice_write = iter_file_splice_write,
5214 .fallocate = shmem_fallocate,
5215 #endif
5216 };
5217
5218 static const struct inode_operations shmem_inode_operations = {
5219 .getattr = shmem_getattr,
5220 .setattr = shmem_setattr,
5221 #ifdef CONFIG_TMPFS_XATTR
5222 .listxattr = shmem_listxattr,
5223 .set_acl = simple_set_acl,
5224 .fileattr_get = shmem_fileattr_get,
5225 .fileattr_set = shmem_fileattr_set,
5226 #endif
5227 };
5228
5229 static const struct inode_operations shmem_dir_inode_operations = {
5230 #ifdef CONFIG_TMPFS
5231 .getattr = shmem_getattr,
5232 .create = shmem_create,
5233 .lookup = simple_lookup,
5234 .link = shmem_link,
5235 .unlink = shmem_unlink,
5236 .symlink = shmem_symlink,
5237 .mkdir = shmem_mkdir,
5238 .rmdir = shmem_rmdir,
5239 .mknod = shmem_mknod,
5240 .rename = shmem_rename2,
5241 .tmpfile = shmem_tmpfile,
5242 .get_offset_ctx = shmem_get_offset_ctx,
5243 #endif
5244 #ifdef CONFIG_TMPFS_XATTR
5245 .listxattr = shmem_listxattr,
5246 .fileattr_get = shmem_fileattr_get,
5247 .fileattr_set = shmem_fileattr_set,
5248 #endif
5249 #ifdef CONFIG_TMPFS_POSIX_ACL
5250 .setattr = shmem_setattr,
5251 .set_acl = simple_set_acl,
5252 #endif
5253 };
5254
5255 static const struct inode_operations shmem_special_inode_operations = {
5256 .getattr = shmem_getattr,
5257 #ifdef CONFIG_TMPFS_XATTR
5258 .listxattr = shmem_listxattr,
5259 #endif
5260 #ifdef CONFIG_TMPFS_POSIX_ACL
5261 .setattr = shmem_setattr,
5262 .set_acl = simple_set_acl,
5263 #endif
5264 };
5265
5266 static const struct super_operations shmem_ops = {
5267 .alloc_inode = shmem_alloc_inode,
5268 .free_inode = shmem_free_in_core_inode,
5269 .destroy_inode = shmem_destroy_inode,
5270 #ifdef CONFIG_TMPFS
5271 .statfs = shmem_statfs,
5272 .show_options = shmem_show_options,
5273 #endif
5274 #ifdef CONFIG_TMPFS_QUOTA
5275 .get_dquots = shmem_get_dquots,
5276 #endif
5277 .evict_inode = shmem_evict_inode,
5278 .drop_inode = inode_just_drop,
5279 .put_super = shmem_put_super,
5280 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5281 .nr_cached_objects = shmem_unused_huge_count,
5282 .free_cached_objects = shmem_unused_huge_scan,
5283 #endif
5284 };
5285
5286 static const struct vm_operations_struct shmem_vm_ops = {
5287 .fault = shmem_fault,
5288 .map_pages = filemap_map_pages,
5289 #ifdef CONFIG_NUMA
5290 .set_policy = shmem_set_policy,
5291 .get_policy = shmem_get_policy,
5292 #endif
5293 };
5294
5295 static const struct vm_operations_struct shmem_anon_vm_ops = {
5296 .fault = shmem_fault,
5297 .map_pages = filemap_map_pages,
5298 #ifdef CONFIG_NUMA
5299 .set_policy = shmem_set_policy,
5300 .get_policy = shmem_get_policy,
5301 #endif
5302 };
5303
shmem_init_fs_context(struct fs_context * fc)5304 int shmem_init_fs_context(struct fs_context *fc)
5305 {
5306 struct shmem_options *ctx;
5307
5308 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5309 if (!ctx)
5310 return -ENOMEM;
5311
5312 ctx->mode = 0777 | S_ISVTX;
5313 ctx->uid = current_fsuid();
5314 ctx->gid = current_fsgid();
5315
5316 #if IS_ENABLED(CONFIG_UNICODE)
5317 ctx->encoding = NULL;
5318 #endif
5319
5320 fc->fs_private = ctx;
5321 fc->ops = &shmem_fs_context_ops;
5322 #ifdef CONFIG_TMPFS
5323 fc->sb_flags |= SB_I_VERSION;
5324 #endif
5325 return 0;
5326 }
5327
5328 static struct file_system_type shmem_fs_type = {
5329 .owner = THIS_MODULE,
5330 .name = "tmpfs",
5331 .init_fs_context = shmem_init_fs_context,
5332 #ifdef CONFIG_TMPFS
5333 .parameters = shmem_fs_parameters,
5334 #endif
5335 .kill_sb = kill_anon_super,
5336 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5337 };
5338
5339 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5340
5341 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \
5342 { \
5343 .attr = { .name = __stringify(_name), .mode = _mode }, \
5344 .show = _show, \
5345 .store = _store, \
5346 }
5347
5348 #define TMPFS_ATTR_W(_name, _store) \
5349 static struct kobj_attribute tmpfs_attr_##_name = \
5350 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5351
5352 #define TMPFS_ATTR_RW(_name, _show, _store) \
5353 static struct kobj_attribute tmpfs_attr_##_name = \
5354 __INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5355
5356 #define TMPFS_ATTR_RO(_name, _show) \
5357 static struct kobj_attribute tmpfs_attr_##_name = \
5358 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5359
5360 #if IS_ENABLED(CONFIG_UNICODE)
casefold_show(struct kobject * kobj,struct kobj_attribute * a,char * buf)5361 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5362 char *buf)
5363 {
5364 return sysfs_emit(buf, "supported\n");
5365 }
5366 TMPFS_ATTR_RO(casefold, casefold_show);
5367 #endif
5368
5369 static struct attribute *tmpfs_attributes[] = {
5370 #if IS_ENABLED(CONFIG_UNICODE)
5371 &tmpfs_attr_casefold.attr,
5372 #endif
5373 NULL
5374 };
5375
5376 static const struct attribute_group tmpfs_attribute_group = {
5377 .attrs = tmpfs_attributes,
5378 .name = "features"
5379 };
5380
5381 static struct kobject *tmpfs_kobj;
5382
tmpfs_sysfs_init(void)5383 static int __init tmpfs_sysfs_init(void)
5384 {
5385 int ret;
5386
5387 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5388 if (!tmpfs_kobj)
5389 return -ENOMEM;
5390
5391 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5392 if (ret)
5393 kobject_put(tmpfs_kobj);
5394
5395 return ret;
5396 }
5397 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5398
shmem_init(void)5399 void __init shmem_init(void)
5400 {
5401 int error;
5402
5403 shmem_init_inodecache();
5404
5405 #ifdef CONFIG_TMPFS_QUOTA
5406 register_quota_format(&shmem_quota_format);
5407 #endif
5408
5409 error = register_filesystem(&shmem_fs_type);
5410 if (error) {
5411 pr_err("Could not register tmpfs\n");
5412 goto out2;
5413 }
5414
5415 shm_mnt = kern_mount(&shmem_fs_type);
5416 if (IS_ERR(shm_mnt)) {
5417 error = PTR_ERR(shm_mnt);
5418 pr_err("Could not kern_mount tmpfs\n");
5419 goto out1;
5420 }
5421
5422 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5423 error = tmpfs_sysfs_init();
5424 if (error) {
5425 pr_err("Could not init tmpfs sysfs\n");
5426 goto out1;
5427 }
5428 #endif
5429
5430 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5431 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5432 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5433 else
5434 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5435
5436 /*
5437 * Default to setting PMD-sized THP to inherit the global setting and
5438 * disable all other multi-size THPs.
5439 */
5440 if (!shmem_orders_configured)
5441 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5442 #endif
5443 return;
5444
5445 out1:
5446 unregister_filesystem(&shmem_fs_type);
5447 out2:
5448 #ifdef CONFIG_TMPFS_QUOTA
5449 unregister_quota_format(&shmem_quota_format);
5450 #endif
5451 shmem_destroy_inodecache();
5452 shm_mnt = ERR_PTR(error);
5453 }
5454
5455 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5456 static ssize_t shmem_enabled_show(struct kobject *kobj,
5457 struct kobj_attribute *attr, char *buf)
5458 {
5459 static const int values[] = {
5460 SHMEM_HUGE_ALWAYS,
5461 SHMEM_HUGE_WITHIN_SIZE,
5462 SHMEM_HUGE_ADVISE,
5463 SHMEM_HUGE_NEVER,
5464 SHMEM_HUGE_DENY,
5465 SHMEM_HUGE_FORCE,
5466 };
5467 int len = 0;
5468 int i;
5469
5470 for (i = 0; i < ARRAY_SIZE(values); i++) {
5471 len += sysfs_emit_at(buf, len,
5472 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5473 i ? " " : "", shmem_format_huge(values[i]));
5474 }
5475 len += sysfs_emit_at(buf, len, "\n");
5476
5477 return len;
5478 }
5479
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5480 static ssize_t shmem_enabled_store(struct kobject *kobj,
5481 struct kobj_attribute *attr, const char *buf, size_t count)
5482 {
5483 char tmp[16];
5484 int huge, err;
5485
5486 if (count + 1 > sizeof(tmp))
5487 return -EINVAL;
5488 memcpy(tmp, buf, count);
5489 tmp[count] = '\0';
5490 if (count && tmp[count - 1] == '\n')
5491 tmp[count - 1] = '\0';
5492
5493 huge = shmem_parse_huge(tmp);
5494 if (huge == -EINVAL)
5495 return huge;
5496
5497 shmem_huge = huge;
5498 if (shmem_huge > SHMEM_HUGE_DENY)
5499 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5500
5501 err = start_stop_khugepaged();
5502 return err ? err : count;
5503 }
5504
5505 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5506 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5507
thpsize_shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5508 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5509 struct kobj_attribute *attr, char *buf)
5510 {
5511 int order = to_thpsize(kobj)->order;
5512 const char *output;
5513
5514 if (test_bit(order, &huge_shmem_orders_always))
5515 output = "[always] inherit within_size advise never";
5516 else if (test_bit(order, &huge_shmem_orders_inherit))
5517 output = "always [inherit] within_size advise never";
5518 else if (test_bit(order, &huge_shmem_orders_within_size))
5519 output = "always inherit [within_size] advise never";
5520 else if (test_bit(order, &huge_shmem_orders_madvise))
5521 output = "always inherit within_size [advise] never";
5522 else
5523 output = "always inherit within_size advise [never]";
5524
5525 return sysfs_emit(buf, "%s\n", output);
5526 }
5527
thpsize_shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5528 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5529 struct kobj_attribute *attr,
5530 const char *buf, size_t count)
5531 {
5532 int order = to_thpsize(kobj)->order;
5533 ssize_t ret = count;
5534
5535 if (sysfs_streq(buf, "always")) {
5536 spin_lock(&huge_shmem_orders_lock);
5537 clear_bit(order, &huge_shmem_orders_inherit);
5538 clear_bit(order, &huge_shmem_orders_madvise);
5539 clear_bit(order, &huge_shmem_orders_within_size);
5540 set_bit(order, &huge_shmem_orders_always);
5541 spin_unlock(&huge_shmem_orders_lock);
5542 } else if (sysfs_streq(buf, "inherit")) {
5543 /* Do not override huge allocation policy with non-PMD sized mTHP */
5544 if (shmem_huge == SHMEM_HUGE_FORCE &&
5545 order != HPAGE_PMD_ORDER)
5546 return -EINVAL;
5547
5548 spin_lock(&huge_shmem_orders_lock);
5549 clear_bit(order, &huge_shmem_orders_always);
5550 clear_bit(order, &huge_shmem_orders_madvise);
5551 clear_bit(order, &huge_shmem_orders_within_size);
5552 set_bit(order, &huge_shmem_orders_inherit);
5553 spin_unlock(&huge_shmem_orders_lock);
5554 } else if (sysfs_streq(buf, "within_size")) {
5555 spin_lock(&huge_shmem_orders_lock);
5556 clear_bit(order, &huge_shmem_orders_always);
5557 clear_bit(order, &huge_shmem_orders_inherit);
5558 clear_bit(order, &huge_shmem_orders_madvise);
5559 set_bit(order, &huge_shmem_orders_within_size);
5560 spin_unlock(&huge_shmem_orders_lock);
5561 } else if (sysfs_streq(buf, "advise")) {
5562 spin_lock(&huge_shmem_orders_lock);
5563 clear_bit(order, &huge_shmem_orders_always);
5564 clear_bit(order, &huge_shmem_orders_inherit);
5565 clear_bit(order, &huge_shmem_orders_within_size);
5566 set_bit(order, &huge_shmem_orders_madvise);
5567 spin_unlock(&huge_shmem_orders_lock);
5568 } else if (sysfs_streq(buf, "never")) {
5569 spin_lock(&huge_shmem_orders_lock);
5570 clear_bit(order, &huge_shmem_orders_always);
5571 clear_bit(order, &huge_shmem_orders_inherit);
5572 clear_bit(order, &huge_shmem_orders_within_size);
5573 clear_bit(order, &huge_shmem_orders_madvise);
5574 spin_unlock(&huge_shmem_orders_lock);
5575 } else {
5576 ret = -EINVAL;
5577 }
5578
5579 if (ret > 0) {
5580 int err = start_stop_khugepaged();
5581
5582 if (err)
5583 ret = err;
5584 }
5585 return ret;
5586 }
5587
5588 struct kobj_attribute thpsize_shmem_enabled_attr =
5589 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5590 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5591
5592 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5593
setup_transparent_hugepage_shmem(char * str)5594 static int __init setup_transparent_hugepage_shmem(char *str)
5595 {
5596 int huge;
5597
5598 huge = shmem_parse_huge(str);
5599 if (huge == -EINVAL) {
5600 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5601 return huge;
5602 }
5603
5604 shmem_huge = huge;
5605 return 1;
5606 }
5607 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5608
setup_transparent_hugepage_tmpfs(char * str)5609 static int __init setup_transparent_hugepage_tmpfs(char *str)
5610 {
5611 int huge;
5612
5613 huge = shmem_parse_huge(str);
5614 if (huge < 0) {
5615 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
5616 return huge;
5617 }
5618
5619 tmpfs_huge = huge;
5620 return 1;
5621 }
5622 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
5623
5624 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_shmem(char * str)5625 static int __init setup_thp_shmem(char *str)
5626 {
5627 char *token, *range, *policy, *subtoken;
5628 unsigned long always, inherit, madvise, within_size;
5629 char *start_size, *end_size;
5630 int start, end, nr;
5631 char *p;
5632
5633 if (!str || strlen(str) + 1 > PAGE_SIZE)
5634 goto err;
5635 strscpy(str_dup, str);
5636
5637 always = huge_shmem_orders_always;
5638 inherit = huge_shmem_orders_inherit;
5639 madvise = huge_shmem_orders_madvise;
5640 within_size = huge_shmem_orders_within_size;
5641 p = str_dup;
5642 while ((token = strsep(&p, ";")) != NULL) {
5643 range = strsep(&token, ":");
5644 policy = token;
5645
5646 if (!policy)
5647 goto err;
5648
5649 while ((subtoken = strsep(&range, ",")) != NULL) {
5650 if (strchr(subtoken, '-')) {
5651 start_size = strsep(&subtoken, "-");
5652 end_size = subtoken;
5653
5654 start = get_order_from_str(start_size,
5655 THP_ORDERS_ALL_FILE_DEFAULT);
5656 end = get_order_from_str(end_size,
5657 THP_ORDERS_ALL_FILE_DEFAULT);
5658 } else {
5659 start_size = end_size = subtoken;
5660 start = end = get_order_from_str(subtoken,
5661 THP_ORDERS_ALL_FILE_DEFAULT);
5662 }
5663
5664 if (start < 0) {
5665 pr_err("invalid size %s in thp_shmem boot parameter\n",
5666 start_size);
5667 goto err;
5668 }
5669
5670 if (end < 0) {
5671 pr_err("invalid size %s in thp_shmem boot parameter\n",
5672 end_size);
5673 goto err;
5674 }
5675
5676 if (start > end)
5677 goto err;
5678
5679 nr = end - start + 1;
5680 if (!strcmp(policy, "always")) {
5681 bitmap_set(&always, start, nr);
5682 bitmap_clear(&inherit, start, nr);
5683 bitmap_clear(&madvise, start, nr);
5684 bitmap_clear(&within_size, start, nr);
5685 } else if (!strcmp(policy, "advise")) {
5686 bitmap_set(&madvise, start, nr);
5687 bitmap_clear(&inherit, start, nr);
5688 bitmap_clear(&always, start, nr);
5689 bitmap_clear(&within_size, start, nr);
5690 } else if (!strcmp(policy, "inherit")) {
5691 bitmap_set(&inherit, start, nr);
5692 bitmap_clear(&madvise, start, nr);
5693 bitmap_clear(&always, start, nr);
5694 bitmap_clear(&within_size, start, nr);
5695 } else if (!strcmp(policy, "within_size")) {
5696 bitmap_set(&within_size, start, nr);
5697 bitmap_clear(&inherit, start, nr);
5698 bitmap_clear(&madvise, start, nr);
5699 bitmap_clear(&always, start, nr);
5700 } else if (!strcmp(policy, "never")) {
5701 bitmap_clear(&inherit, start, nr);
5702 bitmap_clear(&madvise, start, nr);
5703 bitmap_clear(&always, start, nr);
5704 bitmap_clear(&within_size, start, nr);
5705 } else {
5706 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5707 goto err;
5708 }
5709 }
5710 }
5711
5712 huge_shmem_orders_always = always;
5713 huge_shmem_orders_madvise = madvise;
5714 huge_shmem_orders_inherit = inherit;
5715 huge_shmem_orders_within_size = within_size;
5716 shmem_orders_configured = true;
5717 return 1;
5718
5719 err:
5720 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5721 return 0;
5722 }
5723 __setup("thp_shmem=", setup_thp_shmem);
5724
5725 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5726
5727 #else /* !CONFIG_SHMEM */
5728
5729 /*
5730 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5731 *
5732 * This is intended for small system where the benefits of the full
5733 * shmem code (swap-backed and resource-limited) are outweighed by
5734 * their complexity. On systems without swap this code should be
5735 * effectively equivalent, but much lighter weight.
5736 */
5737
5738 static struct file_system_type shmem_fs_type = {
5739 .name = "tmpfs",
5740 .init_fs_context = ramfs_init_fs_context,
5741 .parameters = ramfs_fs_parameters,
5742 .kill_sb = ramfs_kill_sb,
5743 .fs_flags = FS_USERNS_MOUNT,
5744 };
5745
shmem_init(void)5746 void __init shmem_init(void)
5747 {
5748 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5749
5750 shm_mnt = kern_mount(&shmem_fs_type);
5751 BUG_ON(IS_ERR(shm_mnt));
5752 }
5753
shmem_unuse(unsigned int type)5754 int shmem_unuse(unsigned int type)
5755 {
5756 return 0;
5757 }
5758
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)5759 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5760 {
5761 return 0;
5762 }
5763
shmem_unlock_mapping(struct address_space * mapping)5764 void shmem_unlock_mapping(struct address_space *mapping)
5765 {
5766 }
5767
5768 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)5769 unsigned long shmem_get_unmapped_area(struct file *file,
5770 unsigned long addr, unsigned long len,
5771 unsigned long pgoff, unsigned long flags)
5772 {
5773 return mm_get_unmapped_area(file, addr, len, pgoff, flags);
5774 }
5775 #endif
5776
shmem_truncate_range(struct inode * inode,loff_t lstart,uoff_t lend)5777 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend)
5778 {
5779 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5780 }
5781 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5782
5783 #define shmem_vm_ops generic_file_vm_ops
5784 #define shmem_anon_vm_ops generic_file_vm_ops
5785 #define shmem_file_operations ramfs_file_operations
5786 #define shmem_acct_size(flags, size) 0
5787 #define shmem_unacct_size(flags, size) do {} while (0)
5788
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)5789 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5790 struct super_block *sb, struct inode *dir,
5791 umode_t mode, dev_t dev, unsigned long flags)
5792 {
5793 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5794 return inode ? inode : ERR_PTR(-ENOSPC);
5795 }
5796
5797 #endif /* CONFIG_SHMEM */
5798
5799 /* common code */
5800
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)5801 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5802 loff_t size, unsigned long flags, unsigned int i_flags)
5803 {
5804 struct inode *inode;
5805 struct file *res;
5806
5807 if (IS_ERR(mnt))
5808 return ERR_CAST(mnt);
5809
5810 if (size < 0 || size > MAX_LFS_FILESIZE)
5811 return ERR_PTR(-EINVAL);
5812
5813 if (is_idmapped_mnt(mnt))
5814 return ERR_PTR(-EINVAL);
5815
5816 if (shmem_acct_size(flags, size))
5817 return ERR_PTR(-ENOMEM);
5818
5819 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5820 S_IFREG | S_IRWXUGO, 0, flags);
5821 if (IS_ERR(inode)) {
5822 shmem_unacct_size(flags, size);
5823 return ERR_CAST(inode);
5824 }
5825 inode->i_flags |= i_flags;
5826 inode->i_size = size;
5827 clear_nlink(inode); /* It is unlinked */
5828 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5829 if (!IS_ERR(res))
5830 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5831 &shmem_file_operations);
5832 if (IS_ERR(res))
5833 iput(inode);
5834 return res;
5835 }
5836
5837 /**
5838 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5839 * kernel internal. There will be NO LSM permission checks against the
5840 * underlying inode. So users of this interface must do LSM checks at a
5841 * higher layer. The users are the big_key and shm implementations. LSM
5842 * checks are provided at the key or shm level rather than the inode.
5843 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5844 * @size: size to be set for the file
5845 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5846 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)5847 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5848 {
5849 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5850 }
5851 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5852
5853 /**
5854 * shmem_file_setup - get an unlinked file living in tmpfs
5855 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5856 * @size: size to be set for the file
5857 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5858 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)5859 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5860 {
5861 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5862 }
5863 EXPORT_SYMBOL_GPL(shmem_file_setup);
5864
5865 /**
5866 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5867 * @mnt: the tmpfs mount where the file will be created
5868 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5869 * @size: size to be set for the file
5870 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5871 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)5872 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5873 loff_t size, unsigned long flags)
5874 {
5875 return __shmem_file_setup(mnt, name, size, flags, 0);
5876 }
5877 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5878
__shmem_zero_setup(unsigned long start,unsigned long end,vm_flags_t vm_flags)5879 static struct file *__shmem_zero_setup(unsigned long start, unsigned long end, vm_flags_t vm_flags)
5880 {
5881 loff_t size = end - start;
5882
5883 /*
5884 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5885 * between XFS directory reading and selinux: since this file is only
5886 * accessible to the user through its mapping, use S_PRIVATE flag to
5887 * bypass file security, in the same way as shmem_kernel_file_setup().
5888 */
5889 return shmem_kernel_file_setup("dev/zero", size, vm_flags);
5890 }
5891
5892 /**
5893 * shmem_zero_setup - setup a shared anonymous mapping
5894 * @vma: the vma to be mmapped is prepared by do_mmap
5895 * Returns: 0 on success, or error
5896 */
shmem_zero_setup(struct vm_area_struct * vma)5897 int shmem_zero_setup(struct vm_area_struct *vma)
5898 {
5899 struct file *file = __shmem_zero_setup(vma->vm_start, vma->vm_end, vma->vm_flags);
5900
5901 if (IS_ERR(file))
5902 return PTR_ERR(file);
5903
5904 if (vma->vm_file)
5905 fput(vma->vm_file);
5906 vma->vm_file = file;
5907 vma->vm_ops = &shmem_anon_vm_ops;
5908
5909 return 0;
5910 }
5911
5912 /**
5913 * shmem_zero_setup_desc - same as shmem_zero_setup, but determined by VMA
5914 * descriptor for convenience.
5915 * @desc: Describes VMA
5916 * Returns: 0 on success, or error
5917 */
shmem_zero_setup_desc(struct vm_area_desc * desc)5918 int shmem_zero_setup_desc(struct vm_area_desc *desc)
5919 {
5920 struct file *file = __shmem_zero_setup(desc->start, desc->end, desc->vm_flags);
5921
5922 if (IS_ERR(file))
5923 return PTR_ERR(file);
5924
5925 desc->vm_file = file;
5926 desc->vm_ops = &shmem_anon_vm_ops;
5927
5928 return 0;
5929 }
5930
5931 /**
5932 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5933 * @mapping: the folio's address_space
5934 * @index: the folio index
5935 * @gfp: the page allocator flags to use if allocating
5936 *
5937 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5938 * with any new page allocations done using the specified allocation flags.
5939 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5940 * suit tmpfs, since it may have pages in swapcache, and needs to find those
5941 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5942 *
5943 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5944 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5945 */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5946 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5947 pgoff_t index, gfp_t gfp)
5948 {
5949 #ifdef CONFIG_SHMEM
5950 struct inode *inode = mapping->host;
5951 struct folio *folio;
5952 int error;
5953
5954 error = shmem_get_folio_gfp(inode, index, i_size_read(inode),
5955 &folio, SGP_CACHE, gfp, NULL, NULL);
5956 if (error)
5957 return ERR_PTR(error);
5958
5959 folio_unlock(folio);
5960 return folio;
5961 #else
5962 /*
5963 * The tiny !SHMEM case uses ramfs without swap
5964 */
5965 return mapping_read_folio_gfp(mapping, index, gfp);
5966 #endif
5967 }
5968 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5969
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5970 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5971 pgoff_t index, gfp_t gfp)
5972 {
5973 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5974 struct page *page;
5975
5976 if (IS_ERR(folio))
5977 return &folio->page;
5978
5979 page = folio_file_page(folio, index);
5980 if (PageHWPoison(page)) {
5981 folio_put(folio);
5982 return ERR_PTR(-EIO);
5983 }
5984
5985 return page;
5986 }
5987 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5988