1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45
46 static struct vfsmount *shm_mnt __ro_after_init;
47
48 #ifdef CONFIG_SHMEM
49 /*
50 * This virtual memory filesystem is heavily based on the ramfs. It
51 * extends ramfs by the ability to use swap and honor resource limits
52 * which makes it a completely usable filesystem.
53 */
54
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84
85 #include <linux/uaccess.h>
86
87 #include "internal.h"
88
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99
100 /*
101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via
102 * inode->i_private (with i_rwsem making sure that it has only one user at
103 * a time): we would prefer not to enlarge the shmem inode just for that.
104 */
105 struct shmem_falloc {
106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 pgoff_t start; /* start of range currently being fallocated */
108 pgoff_t next; /* the next page offset to be fallocated */
109 pgoff_t nr_falloced; /* how many new pages have been fallocated */
110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */
111 };
112
113 struct shmem_options {
114 unsigned long long blocks;
115 unsigned long long inodes;
116 struct mempolicy *mpol;
117 kuid_t uid;
118 kgid_t gid;
119 umode_t mode;
120 bool full_inums;
121 int huge;
122 int seen;
123 bool noswap;
124 unsigned short quota_types;
125 struct shmem_quota_limits qlimits;
126 #if IS_ENABLED(CONFIG_UNICODE)
127 struct unicode_map *encoding;
128 bool strict_encoding;
129 #endif
130 #define SHMEM_SEEN_BLOCKS 1
131 #define SHMEM_SEEN_INODES 2
132 #define SHMEM_SEEN_HUGE 4
133 #define SHMEM_SEEN_INUMS 8
134 #define SHMEM_SEEN_NOSWAP 16
135 #define SHMEM_SEEN_QUOTA 32
136 };
137
138 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
139 static unsigned long huge_shmem_orders_always __read_mostly;
140 static unsigned long huge_shmem_orders_madvise __read_mostly;
141 static unsigned long huge_shmem_orders_inherit __read_mostly;
142 static unsigned long huge_shmem_orders_within_size __read_mostly;
143 static bool shmem_orders_configured __initdata;
144 #endif
145
146 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)147 static unsigned long shmem_default_max_blocks(void)
148 {
149 return totalram_pages() / 2;
150 }
151
shmem_default_max_inodes(void)152 static unsigned long shmem_default_max_inodes(void)
153 {
154 unsigned long nr_pages = totalram_pages();
155
156 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
157 ULONG_MAX / BOGO_INODE_SIZE);
158 }
159 #endif
160
161 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
162 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
163 struct vm_area_struct *vma, vm_fault_t *fault_type);
164
SHMEM_SB(struct super_block * sb)165 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
166 {
167 return sb->s_fs_info;
168 }
169
170 /*
171 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
172 * for shared memory and for shared anonymous (/dev/zero) mappings
173 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
174 * consistent with the pre-accounting of private mappings ...
175 */
shmem_acct_size(unsigned long flags,loff_t size)176 static inline int shmem_acct_size(unsigned long flags, loff_t size)
177 {
178 return (flags & VM_NORESERVE) ?
179 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
180 }
181
shmem_unacct_size(unsigned long flags,loff_t size)182 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
183 {
184 if (!(flags & VM_NORESERVE))
185 vm_unacct_memory(VM_ACCT(size));
186 }
187
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)188 static inline int shmem_reacct_size(unsigned long flags,
189 loff_t oldsize, loff_t newsize)
190 {
191 if (!(flags & VM_NORESERVE)) {
192 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
193 return security_vm_enough_memory_mm(current->mm,
194 VM_ACCT(newsize) - VM_ACCT(oldsize));
195 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
196 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
197 }
198 return 0;
199 }
200
201 /*
202 * ... whereas tmpfs objects are accounted incrementally as
203 * pages are allocated, in order to allow large sparse files.
204 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
205 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
206 */
shmem_acct_blocks(unsigned long flags,long pages)207 static inline int shmem_acct_blocks(unsigned long flags, long pages)
208 {
209 if (!(flags & VM_NORESERVE))
210 return 0;
211
212 return security_vm_enough_memory_mm(current->mm,
213 pages * VM_ACCT(PAGE_SIZE));
214 }
215
shmem_unacct_blocks(unsigned long flags,long pages)216 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
217 {
218 if (flags & VM_NORESERVE)
219 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
220 }
221
shmem_inode_acct_blocks(struct inode * inode,long pages)222 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
223 {
224 struct shmem_inode_info *info = SHMEM_I(inode);
225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
226 int err = -ENOSPC;
227
228 if (shmem_acct_blocks(info->flags, pages))
229 return err;
230
231 might_sleep(); /* when quotas */
232 if (sbinfo->max_blocks) {
233 if (!percpu_counter_limited_add(&sbinfo->used_blocks,
234 sbinfo->max_blocks, pages))
235 goto unacct;
236
237 err = dquot_alloc_block_nodirty(inode, pages);
238 if (err) {
239 percpu_counter_sub(&sbinfo->used_blocks, pages);
240 goto unacct;
241 }
242 } else {
243 err = dquot_alloc_block_nodirty(inode, pages);
244 if (err)
245 goto unacct;
246 }
247
248 return 0;
249
250 unacct:
251 shmem_unacct_blocks(info->flags, pages);
252 return err;
253 }
254
shmem_inode_unacct_blocks(struct inode * inode,long pages)255 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
256 {
257 struct shmem_inode_info *info = SHMEM_I(inode);
258 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
259
260 might_sleep(); /* when quotas */
261 dquot_free_block_nodirty(inode, pages);
262
263 if (sbinfo->max_blocks)
264 percpu_counter_sub(&sbinfo->used_blocks, pages);
265 shmem_unacct_blocks(info->flags, pages);
266 }
267
268 static const struct super_operations shmem_ops;
269 static const struct address_space_operations shmem_aops;
270 static const struct file_operations shmem_file_operations;
271 static const struct inode_operations shmem_inode_operations;
272 static const struct inode_operations shmem_dir_inode_operations;
273 static const struct inode_operations shmem_special_inode_operations;
274 static const struct vm_operations_struct shmem_vm_ops;
275 static const struct vm_operations_struct shmem_anon_vm_ops;
276 static struct file_system_type shmem_fs_type;
277
shmem_mapping(struct address_space * mapping)278 bool shmem_mapping(struct address_space *mapping)
279 {
280 return mapping->a_ops == &shmem_aops;
281 }
282 EXPORT_SYMBOL_GPL(shmem_mapping);
283
vma_is_anon_shmem(struct vm_area_struct * vma)284 bool vma_is_anon_shmem(struct vm_area_struct *vma)
285 {
286 return vma->vm_ops == &shmem_anon_vm_ops;
287 }
288
vma_is_shmem(struct vm_area_struct * vma)289 bool vma_is_shmem(struct vm_area_struct *vma)
290 {
291 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
292 }
293
294 static LIST_HEAD(shmem_swaplist);
295 static DEFINE_MUTEX(shmem_swaplist_mutex);
296
297 #ifdef CONFIG_TMPFS_QUOTA
298
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)299 static int shmem_enable_quotas(struct super_block *sb,
300 unsigned short quota_types)
301 {
302 int type, err = 0;
303
304 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
305 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
306 if (!(quota_types & (1 << type)))
307 continue;
308 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
309 DQUOT_USAGE_ENABLED |
310 DQUOT_LIMITS_ENABLED);
311 if (err)
312 goto out_err;
313 }
314 return 0;
315
316 out_err:
317 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
318 type, err);
319 for (type--; type >= 0; type--)
320 dquot_quota_off(sb, type);
321 return err;
322 }
323
shmem_disable_quotas(struct super_block * sb)324 static void shmem_disable_quotas(struct super_block *sb)
325 {
326 int type;
327
328 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
329 dquot_quota_off(sb, type);
330 }
331
shmem_get_dquots(struct inode * inode)332 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
333 {
334 return SHMEM_I(inode)->i_dquot;
335 }
336 #endif /* CONFIG_TMPFS_QUOTA */
337
338 /*
339 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
340 * produces a novel ino for the newly allocated inode.
341 *
342 * It may also be called when making a hard link to permit the space needed by
343 * each dentry. However, in that case, no new inode number is needed since that
344 * internally draws from another pool of inode numbers (currently global
345 * get_next_ino()). This case is indicated by passing NULL as inop.
346 */
347 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)348 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
349 {
350 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
351 ino_t ino;
352
353 if (!(sb->s_flags & SB_KERNMOUNT)) {
354 raw_spin_lock(&sbinfo->stat_lock);
355 if (sbinfo->max_inodes) {
356 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
357 raw_spin_unlock(&sbinfo->stat_lock);
358 return -ENOSPC;
359 }
360 sbinfo->free_ispace -= BOGO_INODE_SIZE;
361 }
362 if (inop) {
363 ino = sbinfo->next_ino++;
364 if (unlikely(is_zero_ino(ino)))
365 ino = sbinfo->next_ino++;
366 if (unlikely(!sbinfo->full_inums &&
367 ino > UINT_MAX)) {
368 /*
369 * Emulate get_next_ino uint wraparound for
370 * compatibility
371 */
372 if (IS_ENABLED(CONFIG_64BIT))
373 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
374 __func__, MINOR(sb->s_dev));
375 sbinfo->next_ino = 1;
376 ino = sbinfo->next_ino++;
377 }
378 *inop = ino;
379 }
380 raw_spin_unlock(&sbinfo->stat_lock);
381 } else if (inop) {
382 /*
383 * __shmem_file_setup, one of our callers, is lock-free: it
384 * doesn't hold stat_lock in shmem_reserve_inode since
385 * max_inodes is always 0, and is called from potentially
386 * unknown contexts. As such, use a per-cpu batched allocator
387 * which doesn't require the per-sb stat_lock unless we are at
388 * the batch boundary.
389 *
390 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
391 * shmem mounts are not exposed to userspace, so we don't need
392 * to worry about things like glibc compatibility.
393 */
394 ino_t *next_ino;
395
396 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
397 ino = *next_ino;
398 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
399 raw_spin_lock(&sbinfo->stat_lock);
400 ino = sbinfo->next_ino;
401 sbinfo->next_ino += SHMEM_INO_BATCH;
402 raw_spin_unlock(&sbinfo->stat_lock);
403 if (unlikely(is_zero_ino(ino)))
404 ino++;
405 }
406 *inop = ino;
407 *next_ino = ++ino;
408 put_cpu();
409 }
410
411 return 0;
412 }
413
shmem_free_inode(struct super_block * sb,size_t freed_ispace)414 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
415 {
416 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
417 if (sbinfo->max_inodes) {
418 raw_spin_lock(&sbinfo->stat_lock);
419 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
420 raw_spin_unlock(&sbinfo->stat_lock);
421 }
422 }
423
424 /**
425 * shmem_recalc_inode - recalculate the block usage of an inode
426 * @inode: inode to recalc
427 * @alloced: the change in number of pages allocated to inode
428 * @swapped: the change in number of pages swapped from inode
429 *
430 * We have to calculate the free blocks since the mm can drop
431 * undirtied hole pages behind our back.
432 *
433 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
434 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
435 */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)436 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
437 {
438 struct shmem_inode_info *info = SHMEM_I(inode);
439 long freed;
440
441 spin_lock(&info->lock);
442 info->alloced += alloced;
443 info->swapped += swapped;
444 freed = info->alloced - info->swapped -
445 READ_ONCE(inode->i_mapping->nrpages);
446 /*
447 * Special case: whereas normally shmem_recalc_inode() is called
448 * after i_mapping->nrpages has already been adjusted (up or down),
449 * shmem_writeout() has to raise swapped before nrpages is lowered -
450 * to stop a racing shmem_recalc_inode() from thinking that a page has
451 * been freed. Compensate here, to avoid the need for a followup call.
452 */
453 if (swapped > 0)
454 freed += swapped;
455 if (freed > 0)
456 info->alloced -= freed;
457 spin_unlock(&info->lock);
458
459 /* The quota case may block */
460 if (freed > 0)
461 shmem_inode_unacct_blocks(inode, freed);
462 }
463
shmem_charge(struct inode * inode,long pages)464 bool shmem_charge(struct inode *inode, long pages)
465 {
466 struct address_space *mapping = inode->i_mapping;
467
468 if (shmem_inode_acct_blocks(inode, pages))
469 return false;
470
471 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
472 xa_lock_irq(&mapping->i_pages);
473 mapping->nrpages += pages;
474 xa_unlock_irq(&mapping->i_pages);
475
476 shmem_recalc_inode(inode, pages, 0);
477 return true;
478 }
479
shmem_uncharge(struct inode * inode,long pages)480 void shmem_uncharge(struct inode *inode, long pages)
481 {
482 /* pages argument is currently unused: keep it to help debugging */
483 /* nrpages adjustment done by __filemap_remove_folio() or caller */
484
485 shmem_recalc_inode(inode, 0, 0);
486 }
487
488 /*
489 * Replace item expected in xarray by a new item, while holding xa_lock.
490 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)491 static int shmem_replace_entry(struct address_space *mapping,
492 pgoff_t index, void *expected, void *replacement)
493 {
494 XA_STATE(xas, &mapping->i_pages, index);
495 void *item;
496
497 VM_BUG_ON(!expected);
498 VM_BUG_ON(!replacement);
499 item = xas_load(&xas);
500 if (item != expected)
501 return -ENOENT;
502 xas_store(&xas, replacement);
503 return 0;
504 }
505
506 /*
507 * Sometimes, before we decide whether to proceed or to fail, we must check
508 * that an entry was not already brought back from swap by a racing thread.
509 *
510 * Checking folio is not enough: by the time a swapcache folio is locked, it
511 * might be reused, and again be swapcache, using the same swap as before.
512 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)513 static bool shmem_confirm_swap(struct address_space *mapping,
514 pgoff_t index, swp_entry_t swap)
515 {
516 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
517 }
518
519 /*
520 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
521 *
522 * SHMEM_HUGE_NEVER:
523 * disables huge pages for the mount;
524 * SHMEM_HUGE_ALWAYS:
525 * enables huge pages for the mount;
526 * SHMEM_HUGE_WITHIN_SIZE:
527 * only allocate huge pages if the page will be fully within i_size,
528 * also respect madvise() hints;
529 * SHMEM_HUGE_ADVISE:
530 * only allocate huge pages if requested with madvise();
531 */
532
533 #define SHMEM_HUGE_NEVER 0
534 #define SHMEM_HUGE_ALWAYS 1
535 #define SHMEM_HUGE_WITHIN_SIZE 2
536 #define SHMEM_HUGE_ADVISE 3
537
538 /*
539 * Special values.
540 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
541 *
542 * SHMEM_HUGE_DENY:
543 * disables huge on shm_mnt and all mounts, for emergency use;
544 * SHMEM_HUGE_FORCE:
545 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
546 *
547 */
548 #define SHMEM_HUGE_DENY (-1)
549 #define SHMEM_HUGE_FORCE (-2)
550
551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
552 /* ifdef here to avoid bloating shmem.o when not necessary */
553
554 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
555 static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER;
556
557 /**
558 * shmem_mapping_size_orders - Get allowable folio orders for the given file size.
559 * @mapping: Target address_space.
560 * @index: The page index.
561 * @write_end: end of a write, could extend inode size.
562 *
563 * This returns huge orders for folios (when supported) based on the file size
564 * which the mapping currently allows at the given index. The index is relevant
565 * due to alignment considerations the mapping might have. The returned order
566 * may be less than the size passed.
567 *
568 * Return: The orders.
569 */
570 static inline unsigned int
shmem_mapping_size_orders(struct address_space * mapping,pgoff_t index,loff_t write_end)571 shmem_mapping_size_orders(struct address_space *mapping, pgoff_t index, loff_t write_end)
572 {
573 unsigned int order;
574 size_t size;
575
576 if (!mapping_large_folio_support(mapping) || !write_end)
577 return 0;
578
579 /* Calculate the write size based on the write_end */
580 size = write_end - (index << PAGE_SHIFT);
581 order = filemap_get_order(size);
582 if (!order)
583 return 0;
584
585 /* If we're not aligned, allocate a smaller folio */
586 if (index & ((1UL << order) - 1))
587 order = __ffs(index);
588
589 order = min_t(size_t, order, MAX_PAGECACHE_ORDER);
590 return order > 0 ? BIT(order + 1) - 1 : 0;
591 }
592
shmem_get_orders_within_size(struct inode * inode,unsigned long within_size_orders,pgoff_t index,loff_t write_end)593 static unsigned int shmem_get_orders_within_size(struct inode *inode,
594 unsigned long within_size_orders, pgoff_t index,
595 loff_t write_end)
596 {
597 pgoff_t aligned_index;
598 unsigned long order;
599 loff_t i_size;
600
601 order = highest_order(within_size_orders);
602 while (within_size_orders) {
603 aligned_index = round_up(index + 1, 1 << order);
604 i_size = max(write_end, i_size_read(inode));
605 i_size = round_up(i_size, PAGE_SIZE);
606 if (i_size >> PAGE_SHIFT >= aligned_index)
607 return within_size_orders;
608
609 order = next_order(&within_size_orders, order);
610 }
611
612 return 0;
613 }
614
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,unsigned long vm_flags)615 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
616 loff_t write_end, bool shmem_huge_force,
617 struct vm_area_struct *vma,
618 unsigned long vm_flags)
619 {
620 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
621 0 : BIT(HPAGE_PMD_ORDER);
622 unsigned long within_size_orders;
623
624 if (!S_ISREG(inode->i_mode))
625 return 0;
626 if (shmem_huge == SHMEM_HUGE_DENY)
627 return 0;
628 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
629 return maybe_pmd_order;
630
631 /*
632 * The huge order allocation for anon shmem is controlled through
633 * the mTHP interface, so we still use PMD-sized huge order to
634 * check whether global control is enabled.
635 *
636 * For tmpfs mmap()'s huge order, we still use PMD-sized order to
637 * allocate huge pages due to lack of a write size hint.
638 *
639 * Otherwise, tmpfs will allow getting a highest order hint based on
640 * the size of write and fallocate paths, then will try each allowable
641 * huge orders.
642 */
643 switch (SHMEM_SB(inode->i_sb)->huge) {
644 case SHMEM_HUGE_ALWAYS:
645 if (vma)
646 return maybe_pmd_order;
647
648 return shmem_mapping_size_orders(inode->i_mapping, index, write_end);
649 case SHMEM_HUGE_WITHIN_SIZE:
650 if (vma)
651 within_size_orders = maybe_pmd_order;
652 else
653 within_size_orders = shmem_mapping_size_orders(inode->i_mapping,
654 index, write_end);
655
656 within_size_orders = shmem_get_orders_within_size(inode, within_size_orders,
657 index, write_end);
658 if (within_size_orders > 0)
659 return within_size_orders;
660
661 fallthrough;
662 case SHMEM_HUGE_ADVISE:
663 if (vm_flags & VM_HUGEPAGE)
664 return maybe_pmd_order;
665 fallthrough;
666 default:
667 return 0;
668 }
669 }
670
shmem_parse_huge(const char * str)671 static int shmem_parse_huge(const char *str)
672 {
673 int huge;
674
675 if (!str)
676 return -EINVAL;
677
678 if (!strcmp(str, "never"))
679 huge = SHMEM_HUGE_NEVER;
680 else if (!strcmp(str, "always"))
681 huge = SHMEM_HUGE_ALWAYS;
682 else if (!strcmp(str, "within_size"))
683 huge = SHMEM_HUGE_WITHIN_SIZE;
684 else if (!strcmp(str, "advise"))
685 huge = SHMEM_HUGE_ADVISE;
686 else if (!strcmp(str, "deny"))
687 huge = SHMEM_HUGE_DENY;
688 else if (!strcmp(str, "force"))
689 huge = SHMEM_HUGE_FORCE;
690 else
691 return -EINVAL;
692
693 if (!has_transparent_hugepage() &&
694 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
695 return -EINVAL;
696
697 /* Do not override huge allocation policy with non-PMD sized mTHP */
698 if (huge == SHMEM_HUGE_FORCE &&
699 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
700 return -EINVAL;
701
702 return huge;
703 }
704
705 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)706 static const char *shmem_format_huge(int huge)
707 {
708 switch (huge) {
709 case SHMEM_HUGE_NEVER:
710 return "never";
711 case SHMEM_HUGE_ALWAYS:
712 return "always";
713 case SHMEM_HUGE_WITHIN_SIZE:
714 return "within_size";
715 case SHMEM_HUGE_ADVISE:
716 return "advise";
717 case SHMEM_HUGE_DENY:
718 return "deny";
719 case SHMEM_HUGE_FORCE:
720 return "force";
721 default:
722 VM_BUG_ON(1);
723 return "bad_val";
724 }
725 }
726 #endif
727
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)728 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
729 struct shrink_control *sc, unsigned long nr_to_free)
730 {
731 LIST_HEAD(list), *pos, *next;
732 struct inode *inode;
733 struct shmem_inode_info *info;
734 struct folio *folio;
735 unsigned long batch = sc ? sc->nr_to_scan : 128;
736 unsigned long split = 0, freed = 0;
737
738 if (list_empty(&sbinfo->shrinklist))
739 return SHRINK_STOP;
740
741 spin_lock(&sbinfo->shrinklist_lock);
742 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
743 info = list_entry(pos, struct shmem_inode_info, shrinklist);
744
745 /* pin the inode */
746 inode = igrab(&info->vfs_inode);
747
748 /* inode is about to be evicted */
749 if (!inode) {
750 list_del_init(&info->shrinklist);
751 goto next;
752 }
753
754 list_move(&info->shrinklist, &list);
755 next:
756 sbinfo->shrinklist_len--;
757 if (!--batch)
758 break;
759 }
760 spin_unlock(&sbinfo->shrinklist_lock);
761
762 list_for_each_safe(pos, next, &list) {
763 pgoff_t next, end;
764 loff_t i_size;
765 int ret;
766
767 info = list_entry(pos, struct shmem_inode_info, shrinklist);
768 inode = &info->vfs_inode;
769
770 if (nr_to_free && freed >= nr_to_free)
771 goto move_back;
772
773 i_size = i_size_read(inode);
774 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
775 if (!folio || xa_is_value(folio))
776 goto drop;
777
778 /* No large folio at the end of the file: nothing to split */
779 if (!folio_test_large(folio)) {
780 folio_put(folio);
781 goto drop;
782 }
783
784 /* Check if there is anything to gain from splitting */
785 next = folio_next_index(folio);
786 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
787 if (end <= folio->index || end >= next) {
788 folio_put(folio);
789 goto drop;
790 }
791
792 /*
793 * Move the inode on the list back to shrinklist if we failed
794 * to lock the page at this time.
795 *
796 * Waiting for the lock may lead to deadlock in the
797 * reclaim path.
798 */
799 if (!folio_trylock(folio)) {
800 folio_put(folio);
801 goto move_back;
802 }
803
804 ret = split_folio(folio);
805 folio_unlock(folio);
806 folio_put(folio);
807
808 /* If split failed move the inode on the list back to shrinklist */
809 if (ret)
810 goto move_back;
811
812 freed += next - end;
813 split++;
814 drop:
815 list_del_init(&info->shrinklist);
816 goto put;
817 move_back:
818 /*
819 * Make sure the inode is either on the global list or deleted
820 * from any local list before iput() since it could be deleted
821 * in another thread once we put the inode (then the local list
822 * is corrupted).
823 */
824 spin_lock(&sbinfo->shrinklist_lock);
825 list_move(&info->shrinklist, &sbinfo->shrinklist);
826 sbinfo->shrinklist_len++;
827 spin_unlock(&sbinfo->shrinklist_lock);
828 put:
829 iput(inode);
830 }
831
832 return split;
833 }
834
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)835 static long shmem_unused_huge_scan(struct super_block *sb,
836 struct shrink_control *sc)
837 {
838 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
839
840 if (!READ_ONCE(sbinfo->shrinklist_len))
841 return SHRINK_STOP;
842
843 return shmem_unused_huge_shrink(sbinfo, sc, 0);
844 }
845
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)846 static long shmem_unused_huge_count(struct super_block *sb,
847 struct shrink_control *sc)
848 {
849 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
850 return READ_ONCE(sbinfo->shrinklist_len);
851 }
852 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
853
854 #define shmem_huge SHMEM_HUGE_DENY
855
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)856 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
857 struct shrink_control *sc, unsigned long nr_to_free)
858 {
859 return 0;
860 }
861
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,unsigned long vm_flags)862 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
863 loff_t write_end, bool shmem_huge_force,
864 struct vm_area_struct *vma,
865 unsigned long vm_flags)
866 {
867 return 0;
868 }
869 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
870
shmem_update_stats(struct folio * folio,int nr_pages)871 static void shmem_update_stats(struct folio *folio, int nr_pages)
872 {
873 if (folio_test_pmd_mappable(folio))
874 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
875 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
876 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
877 }
878
879 /*
880 * Somewhat like filemap_add_folio, but error if expected item has gone.
881 */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)882 static int shmem_add_to_page_cache(struct folio *folio,
883 struct address_space *mapping,
884 pgoff_t index, void *expected, gfp_t gfp)
885 {
886 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
887 long nr = folio_nr_pages(folio);
888
889 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
890 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
891 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
892
893 folio_ref_add(folio, nr);
894 folio->mapping = mapping;
895 folio->index = index;
896
897 gfp &= GFP_RECLAIM_MASK;
898 folio_throttle_swaprate(folio, gfp);
899
900 do {
901 xas_lock_irq(&xas);
902 if (expected != xas_find_conflict(&xas)) {
903 xas_set_err(&xas, -EEXIST);
904 goto unlock;
905 }
906 if (expected && xas_find_conflict(&xas)) {
907 xas_set_err(&xas, -EEXIST);
908 goto unlock;
909 }
910 xas_store(&xas, folio);
911 if (xas_error(&xas))
912 goto unlock;
913 shmem_update_stats(folio, nr);
914 mapping->nrpages += nr;
915 unlock:
916 xas_unlock_irq(&xas);
917 } while (xas_nomem(&xas, gfp));
918
919 if (xas_error(&xas)) {
920 folio->mapping = NULL;
921 folio_ref_sub(folio, nr);
922 return xas_error(&xas);
923 }
924
925 return 0;
926 }
927
928 /*
929 * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
930 */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)931 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
932 {
933 struct address_space *mapping = folio->mapping;
934 long nr = folio_nr_pages(folio);
935 int error;
936
937 xa_lock_irq(&mapping->i_pages);
938 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
939 folio->mapping = NULL;
940 mapping->nrpages -= nr;
941 shmem_update_stats(folio, -nr);
942 xa_unlock_irq(&mapping->i_pages);
943 folio_put_refs(folio, nr);
944 BUG_ON(error);
945 }
946
947 /*
948 * Remove swap entry from page cache, free the swap and its page cache. Returns
949 * the number of pages being freed. 0 means entry not found in XArray (0 pages
950 * being freed).
951 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)952 static long shmem_free_swap(struct address_space *mapping,
953 pgoff_t index, void *radswap)
954 {
955 int order = xa_get_order(&mapping->i_pages, index);
956 void *old;
957
958 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
959 if (old != radswap)
960 return 0;
961 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
962
963 return 1 << order;
964 }
965
966 /*
967 * Determine (in bytes) how many of the shmem object's pages mapped by the
968 * given offsets are swapped out.
969 *
970 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
971 * as long as the inode doesn't go away and racy results are not a problem.
972 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)973 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
974 pgoff_t start, pgoff_t end)
975 {
976 XA_STATE(xas, &mapping->i_pages, start);
977 struct page *page;
978 unsigned long swapped = 0;
979 unsigned long max = end - 1;
980
981 rcu_read_lock();
982 xas_for_each(&xas, page, max) {
983 if (xas_retry(&xas, page))
984 continue;
985 if (xa_is_value(page))
986 swapped += 1 << xas_get_order(&xas);
987 if (xas.xa_index == max)
988 break;
989 if (need_resched()) {
990 xas_pause(&xas);
991 cond_resched_rcu();
992 }
993 }
994 rcu_read_unlock();
995
996 return swapped << PAGE_SHIFT;
997 }
998
999 /*
1000 * Determine (in bytes) how many of the shmem object's pages mapped by the
1001 * given vma is swapped out.
1002 *
1003 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
1004 * as long as the inode doesn't go away and racy results are not a problem.
1005 */
shmem_swap_usage(struct vm_area_struct * vma)1006 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
1007 {
1008 struct inode *inode = file_inode(vma->vm_file);
1009 struct shmem_inode_info *info = SHMEM_I(inode);
1010 struct address_space *mapping = inode->i_mapping;
1011 unsigned long swapped;
1012
1013 /* Be careful as we don't hold info->lock */
1014 swapped = READ_ONCE(info->swapped);
1015
1016 /*
1017 * The easier cases are when the shmem object has nothing in swap, or
1018 * the vma maps it whole. Then we can simply use the stats that we
1019 * already track.
1020 */
1021 if (!swapped)
1022 return 0;
1023
1024 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
1025 return swapped << PAGE_SHIFT;
1026
1027 /* Here comes the more involved part */
1028 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
1029 vma->vm_pgoff + vma_pages(vma));
1030 }
1031
1032 /*
1033 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
1034 */
shmem_unlock_mapping(struct address_space * mapping)1035 void shmem_unlock_mapping(struct address_space *mapping)
1036 {
1037 struct folio_batch fbatch;
1038 pgoff_t index = 0;
1039
1040 folio_batch_init(&fbatch);
1041 /*
1042 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
1043 */
1044 while (!mapping_unevictable(mapping) &&
1045 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
1046 check_move_unevictable_folios(&fbatch);
1047 folio_batch_release(&fbatch);
1048 cond_resched();
1049 }
1050 }
1051
shmem_get_partial_folio(struct inode * inode,pgoff_t index)1052 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
1053 {
1054 struct folio *folio;
1055
1056 /*
1057 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
1058 * beyond i_size, and reports fallocated folios as holes.
1059 */
1060 folio = filemap_get_entry(inode->i_mapping, index);
1061 if (!folio)
1062 return folio;
1063 if (!xa_is_value(folio)) {
1064 folio_lock(folio);
1065 if (folio->mapping == inode->i_mapping)
1066 return folio;
1067 /* The folio has been swapped out */
1068 folio_unlock(folio);
1069 folio_put(folio);
1070 }
1071 /*
1072 * But read a folio back from swap if any of it is within i_size
1073 * (although in some cases this is just a waste of time).
1074 */
1075 folio = NULL;
1076 shmem_get_folio(inode, index, 0, &folio, SGP_READ);
1077 return folio;
1078 }
1079
1080 /*
1081 * Remove range of pages and swap entries from page cache, and free them.
1082 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1083 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)1084 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
1085 bool unfalloc)
1086 {
1087 struct address_space *mapping = inode->i_mapping;
1088 struct shmem_inode_info *info = SHMEM_I(inode);
1089 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1090 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1091 struct folio_batch fbatch;
1092 pgoff_t indices[PAGEVEC_SIZE];
1093 struct folio *folio;
1094 bool same_folio;
1095 long nr_swaps_freed = 0;
1096 pgoff_t index;
1097 int i;
1098
1099 if (lend == -1)
1100 end = -1; /* unsigned, so actually very big */
1101
1102 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1103 info->fallocend = start;
1104
1105 folio_batch_init(&fbatch);
1106 index = start;
1107 while (index < end && find_lock_entries(mapping, &index, end - 1,
1108 &fbatch, indices)) {
1109 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1110 folio = fbatch.folios[i];
1111
1112 if (xa_is_value(folio)) {
1113 if (unfalloc)
1114 continue;
1115 nr_swaps_freed += shmem_free_swap(mapping,
1116 indices[i], folio);
1117 continue;
1118 }
1119
1120 if (!unfalloc || !folio_test_uptodate(folio))
1121 truncate_inode_folio(mapping, folio);
1122 folio_unlock(folio);
1123 }
1124 folio_batch_remove_exceptionals(&fbatch);
1125 folio_batch_release(&fbatch);
1126 cond_resched();
1127 }
1128
1129 /*
1130 * When undoing a failed fallocate, we want none of the partial folio
1131 * zeroing and splitting below, but shall want to truncate the whole
1132 * folio when !uptodate indicates that it was added by this fallocate,
1133 * even when [lstart, lend] covers only a part of the folio.
1134 */
1135 if (unfalloc)
1136 goto whole_folios;
1137
1138 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1139 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1140 if (folio) {
1141 same_folio = lend < folio_pos(folio) + folio_size(folio);
1142 folio_mark_dirty(folio);
1143 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1144 start = folio_next_index(folio);
1145 if (same_folio)
1146 end = folio->index;
1147 }
1148 folio_unlock(folio);
1149 folio_put(folio);
1150 folio = NULL;
1151 }
1152
1153 if (!same_folio)
1154 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1155 if (folio) {
1156 folio_mark_dirty(folio);
1157 if (!truncate_inode_partial_folio(folio, lstart, lend))
1158 end = folio->index;
1159 folio_unlock(folio);
1160 folio_put(folio);
1161 }
1162
1163 whole_folios:
1164
1165 index = start;
1166 while (index < end) {
1167 cond_resched();
1168
1169 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1170 indices)) {
1171 /* If all gone or hole-punch or unfalloc, we're done */
1172 if (index == start || end != -1)
1173 break;
1174 /* But if truncating, restart to make sure all gone */
1175 index = start;
1176 continue;
1177 }
1178 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1179 folio = fbatch.folios[i];
1180
1181 if (xa_is_value(folio)) {
1182 long swaps_freed;
1183
1184 if (unfalloc)
1185 continue;
1186 swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1187 if (!swaps_freed) {
1188 /* Swap was replaced by page: retry */
1189 index = indices[i];
1190 break;
1191 }
1192 nr_swaps_freed += swaps_freed;
1193 continue;
1194 }
1195
1196 folio_lock(folio);
1197
1198 if (!unfalloc || !folio_test_uptodate(folio)) {
1199 if (folio_mapping(folio) != mapping) {
1200 /* Page was replaced by swap: retry */
1201 folio_unlock(folio);
1202 index = indices[i];
1203 break;
1204 }
1205 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1206 folio);
1207
1208 if (!folio_test_large(folio)) {
1209 truncate_inode_folio(mapping, folio);
1210 } else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1211 /*
1212 * If we split a page, reset the loop so
1213 * that we pick up the new sub pages.
1214 * Otherwise the THP was entirely
1215 * dropped or the target range was
1216 * zeroed, so just continue the loop as
1217 * is.
1218 */
1219 if (!folio_test_large(folio)) {
1220 folio_unlock(folio);
1221 index = start;
1222 break;
1223 }
1224 }
1225 }
1226 folio_unlock(folio);
1227 }
1228 folio_batch_remove_exceptionals(&fbatch);
1229 folio_batch_release(&fbatch);
1230 }
1231
1232 shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1233 }
1234
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1235 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1236 {
1237 shmem_undo_range(inode, lstart, lend, false);
1238 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1239 inode_inc_iversion(inode);
1240 }
1241 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1242
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1243 static int shmem_getattr(struct mnt_idmap *idmap,
1244 const struct path *path, struct kstat *stat,
1245 u32 request_mask, unsigned int query_flags)
1246 {
1247 struct inode *inode = path->dentry->d_inode;
1248 struct shmem_inode_info *info = SHMEM_I(inode);
1249
1250 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1251 shmem_recalc_inode(inode, 0, 0);
1252
1253 if (info->fsflags & FS_APPEND_FL)
1254 stat->attributes |= STATX_ATTR_APPEND;
1255 if (info->fsflags & FS_IMMUTABLE_FL)
1256 stat->attributes |= STATX_ATTR_IMMUTABLE;
1257 if (info->fsflags & FS_NODUMP_FL)
1258 stat->attributes |= STATX_ATTR_NODUMP;
1259 stat->attributes_mask |= (STATX_ATTR_APPEND |
1260 STATX_ATTR_IMMUTABLE |
1261 STATX_ATTR_NODUMP);
1262 generic_fillattr(idmap, request_mask, inode, stat);
1263
1264 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1265 stat->blksize = HPAGE_PMD_SIZE;
1266
1267 if (request_mask & STATX_BTIME) {
1268 stat->result_mask |= STATX_BTIME;
1269 stat->btime.tv_sec = info->i_crtime.tv_sec;
1270 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1271 }
1272
1273 return 0;
1274 }
1275
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1276 static int shmem_setattr(struct mnt_idmap *idmap,
1277 struct dentry *dentry, struct iattr *attr)
1278 {
1279 struct inode *inode = d_inode(dentry);
1280 struct shmem_inode_info *info = SHMEM_I(inode);
1281 int error;
1282 bool update_mtime = false;
1283 bool update_ctime = true;
1284
1285 error = setattr_prepare(idmap, dentry, attr);
1286 if (error)
1287 return error;
1288
1289 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1290 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1291 return -EPERM;
1292 }
1293 }
1294
1295 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1296 loff_t oldsize = inode->i_size;
1297 loff_t newsize = attr->ia_size;
1298
1299 /* protected by i_rwsem */
1300 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1301 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1302 return -EPERM;
1303
1304 if (newsize != oldsize) {
1305 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1306 oldsize, newsize);
1307 if (error)
1308 return error;
1309 i_size_write(inode, newsize);
1310 update_mtime = true;
1311 } else {
1312 update_ctime = false;
1313 }
1314 if (newsize <= oldsize) {
1315 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1316 if (oldsize > holebegin)
1317 unmap_mapping_range(inode->i_mapping,
1318 holebegin, 0, 1);
1319 if (info->alloced)
1320 shmem_truncate_range(inode,
1321 newsize, (loff_t)-1);
1322 /* unmap again to remove racily COWed private pages */
1323 if (oldsize > holebegin)
1324 unmap_mapping_range(inode->i_mapping,
1325 holebegin, 0, 1);
1326 }
1327 }
1328
1329 if (is_quota_modification(idmap, inode, attr)) {
1330 error = dquot_initialize(inode);
1331 if (error)
1332 return error;
1333 }
1334
1335 /* Transfer quota accounting */
1336 if (i_uid_needs_update(idmap, attr, inode) ||
1337 i_gid_needs_update(idmap, attr, inode)) {
1338 error = dquot_transfer(idmap, inode, attr);
1339 if (error)
1340 return error;
1341 }
1342
1343 setattr_copy(idmap, inode, attr);
1344 if (attr->ia_valid & ATTR_MODE)
1345 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1346 if (!error && update_ctime) {
1347 inode_set_ctime_current(inode);
1348 if (update_mtime)
1349 inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1350 inode_inc_iversion(inode);
1351 }
1352 return error;
1353 }
1354
shmem_evict_inode(struct inode * inode)1355 static void shmem_evict_inode(struct inode *inode)
1356 {
1357 struct shmem_inode_info *info = SHMEM_I(inode);
1358 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1359 size_t freed = 0;
1360
1361 if (shmem_mapping(inode->i_mapping)) {
1362 shmem_unacct_size(info->flags, inode->i_size);
1363 inode->i_size = 0;
1364 mapping_set_exiting(inode->i_mapping);
1365 shmem_truncate_range(inode, 0, (loff_t)-1);
1366 if (!list_empty(&info->shrinklist)) {
1367 spin_lock(&sbinfo->shrinklist_lock);
1368 if (!list_empty(&info->shrinklist)) {
1369 list_del_init(&info->shrinklist);
1370 sbinfo->shrinklist_len--;
1371 }
1372 spin_unlock(&sbinfo->shrinklist_lock);
1373 }
1374 while (!list_empty(&info->swaplist)) {
1375 /* Wait while shmem_unuse() is scanning this inode... */
1376 wait_var_event(&info->stop_eviction,
1377 !atomic_read(&info->stop_eviction));
1378 mutex_lock(&shmem_swaplist_mutex);
1379 /* ...but beware of the race if we peeked too early */
1380 if (!atomic_read(&info->stop_eviction))
1381 list_del_init(&info->swaplist);
1382 mutex_unlock(&shmem_swaplist_mutex);
1383 }
1384 }
1385
1386 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1387 shmem_free_inode(inode->i_sb, freed);
1388 WARN_ON(inode->i_blocks);
1389 clear_inode(inode);
1390 #ifdef CONFIG_TMPFS_QUOTA
1391 dquot_free_inode(inode);
1392 dquot_drop(inode);
1393 #endif
1394 }
1395
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1396 static unsigned int shmem_find_swap_entries(struct address_space *mapping,
1397 pgoff_t start, struct folio_batch *fbatch,
1398 pgoff_t *indices, unsigned int type)
1399 {
1400 XA_STATE(xas, &mapping->i_pages, start);
1401 struct folio *folio;
1402 swp_entry_t entry;
1403
1404 rcu_read_lock();
1405 xas_for_each(&xas, folio, ULONG_MAX) {
1406 if (xas_retry(&xas, folio))
1407 continue;
1408
1409 if (!xa_is_value(folio))
1410 continue;
1411
1412 entry = radix_to_swp_entry(folio);
1413 /*
1414 * swapin error entries can be found in the mapping. But they're
1415 * deliberately ignored here as we've done everything we can do.
1416 */
1417 if (swp_type(entry) != type)
1418 continue;
1419
1420 indices[folio_batch_count(fbatch)] = xas.xa_index;
1421 if (!folio_batch_add(fbatch, folio))
1422 break;
1423
1424 if (need_resched()) {
1425 xas_pause(&xas);
1426 cond_resched_rcu();
1427 }
1428 }
1429 rcu_read_unlock();
1430
1431 return folio_batch_count(fbatch);
1432 }
1433
1434 /*
1435 * Move the swapped pages for an inode to page cache. Returns the count
1436 * of pages swapped in, or the error in case of failure.
1437 */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1438 static int shmem_unuse_swap_entries(struct inode *inode,
1439 struct folio_batch *fbatch, pgoff_t *indices)
1440 {
1441 int i = 0;
1442 int ret = 0;
1443 int error = 0;
1444 struct address_space *mapping = inode->i_mapping;
1445
1446 for (i = 0; i < folio_batch_count(fbatch); i++) {
1447 struct folio *folio = fbatch->folios[i];
1448
1449 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1450 mapping_gfp_mask(mapping), NULL, NULL);
1451 if (error == 0) {
1452 folio_unlock(folio);
1453 folio_put(folio);
1454 ret++;
1455 }
1456 if (error == -ENOMEM)
1457 break;
1458 error = 0;
1459 }
1460 return error ? error : ret;
1461 }
1462
1463 /*
1464 * If swap found in inode, free it and move page from swapcache to filecache.
1465 */
shmem_unuse_inode(struct inode * inode,unsigned int type)1466 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1467 {
1468 struct address_space *mapping = inode->i_mapping;
1469 pgoff_t start = 0;
1470 struct folio_batch fbatch;
1471 pgoff_t indices[PAGEVEC_SIZE];
1472 int ret = 0;
1473
1474 do {
1475 folio_batch_init(&fbatch);
1476 if (!shmem_find_swap_entries(mapping, start, &fbatch,
1477 indices, type)) {
1478 ret = 0;
1479 break;
1480 }
1481
1482 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1483 if (ret < 0)
1484 break;
1485
1486 start = indices[folio_batch_count(&fbatch) - 1];
1487 } while (true);
1488
1489 return ret;
1490 }
1491
1492 /*
1493 * Read all the shared memory data that resides in the swap
1494 * device 'type' back into memory, so the swap device can be
1495 * unused.
1496 */
shmem_unuse(unsigned int type)1497 int shmem_unuse(unsigned int type)
1498 {
1499 struct shmem_inode_info *info, *next;
1500 int error = 0;
1501
1502 if (list_empty(&shmem_swaplist))
1503 return 0;
1504
1505 mutex_lock(&shmem_swaplist_mutex);
1506 start_over:
1507 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1508 if (!info->swapped) {
1509 list_del_init(&info->swaplist);
1510 continue;
1511 }
1512 /*
1513 * Drop the swaplist mutex while searching the inode for swap;
1514 * but before doing so, make sure shmem_evict_inode() will not
1515 * remove placeholder inode from swaplist, nor let it be freed
1516 * (igrab() would protect from unlink, but not from unmount).
1517 */
1518 atomic_inc(&info->stop_eviction);
1519 mutex_unlock(&shmem_swaplist_mutex);
1520
1521 error = shmem_unuse_inode(&info->vfs_inode, type);
1522 cond_resched();
1523
1524 mutex_lock(&shmem_swaplist_mutex);
1525 if (atomic_dec_and_test(&info->stop_eviction))
1526 wake_up_var(&info->stop_eviction);
1527 if (error)
1528 break;
1529 if (list_empty(&info->swaplist))
1530 goto start_over;
1531 next = list_next_entry(info, swaplist);
1532 if (!info->swapped)
1533 list_del_init(&info->swaplist);
1534 }
1535 mutex_unlock(&shmem_swaplist_mutex);
1536
1537 return error;
1538 }
1539
1540 /**
1541 * shmem_writeout - Write the folio to swap
1542 * @folio: The folio to write
1543 * @wbc: How writeback is to be done
1544 *
1545 * Move the folio from the page cache to the swap cache.
1546 */
shmem_writeout(struct folio * folio,struct writeback_control * wbc)1547 int shmem_writeout(struct folio *folio, struct writeback_control *wbc)
1548 {
1549 struct address_space *mapping = folio->mapping;
1550 struct inode *inode = mapping->host;
1551 struct shmem_inode_info *info = SHMEM_I(inode);
1552 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1553 pgoff_t index;
1554 int nr_pages;
1555 bool split = false;
1556
1557 if (WARN_ON_ONCE(!wbc->for_reclaim))
1558 goto redirty;
1559
1560 if ((info->flags & VM_LOCKED) || sbinfo->noswap)
1561 goto redirty;
1562
1563 if (!total_swap_pages)
1564 goto redirty;
1565
1566 /*
1567 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1568 * split when swapping.
1569 *
1570 * And shrinkage of pages beyond i_size does not split swap, so
1571 * swapout of a large folio crossing i_size needs to split too
1572 * (unless fallocate has been used to preallocate beyond EOF).
1573 */
1574 if (folio_test_large(folio)) {
1575 index = shmem_fallocend(inode,
1576 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1577 if ((index > folio->index && index < folio_next_index(folio)) ||
1578 !IS_ENABLED(CONFIG_THP_SWAP))
1579 split = true;
1580 }
1581
1582 if (split) {
1583 try_split:
1584 /* Ensure the subpages are still dirty */
1585 folio_test_set_dirty(folio);
1586 if (split_folio_to_list(folio, wbc->list))
1587 goto redirty;
1588 folio_clear_dirty(folio);
1589 }
1590
1591 index = folio->index;
1592 nr_pages = folio_nr_pages(folio);
1593
1594 /*
1595 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1596 * value into swapfile.c, the only way we can correctly account for a
1597 * fallocated folio arriving here is now to initialize it and write it.
1598 *
1599 * That's okay for a folio already fallocated earlier, but if we have
1600 * not yet completed the fallocation, then (a) we want to keep track
1601 * of this folio in case we have to undo it, and (b) it may not be a
1602 * good idea to continue anyway, once we're pushing into swap. So
1603 * reactivate the folio, and let shmem_fallocate() quit when too many.
1604 */
1605 if (!folio_test_uptodate(folio)) {
1606 if (inode->i_private) {
1607 struct shmem_falloc *shmem_falloc;
1608 spin_lock(&inode->i_lock);
1609 shmem_falloc = inode->i_private;
1610 if (shmem_falloc &&
1611 !shmem_falloc->waitq &&
1612 index >= shmem_falloc->start &&
1613 index < shmem_falloc->next)
1614 shmem_falloc->nr_unswapped += nr_pages;
1615 else
1616 shmem_falloc = NULL;
1617 spin_unlock(&inode->i_lock);
1618 if (shmem_falloc)
1619 goto redirty;
1620 }
1621 folio_zero_range(folio, 0, folio_size(folio));
1622 flush_dcache_folio(folio);
1623 folio_mark_uptodate(folio);
1624 }
1625
1626 /*
1627 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1628 * if it's not already there. Do it now before the folio is
1629 * moved to swap cache, when its pagelock no longer protects
1630 * the inode from eviction. But don't unlock the mutex until
1631 * we've incremented swapped, because shmem_unuse_inode() will
1632 * prune a !swapped inode from the swaplist under this mutex.
1633 */
1634 mutex_lock(&shmem_swaplist_mutex);
1635 if (list_empty(&info->swaplist))
1636 list_add(&info->swaplist, &shmem_swaplist);
1637
1638 if (!folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN)) {
1639 shmem_recalc_inode(inode, 0, nr_pages);
1640 swap_shmem_alloc(folio->swap, nr_pages);
1641 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap));
1642
1643 mutex_unlock(&shmem_swaplist_mutex);
1644 BUG_ON(folio_mapped(folio));
1645 return swap_writeout(folio, wbc);
1646 }
1647 if (!info->swapped)
1648 list_del_init(&info->swaplist);
1649 mutex_unlock(&shmem_swaplist_mutex);
1650 if (nr_pages > 1)
1651 goto try_split;
1652 redirty:
1653 folio_mark_dirty(folio);
1654 if (wbc->for_reclaim)
1655 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1656 folio_unlock(folio);
1657 return 0;
1658 }
1659 EXPORT_SYMBOL_GPL(shmem_writeout);
1660
1661 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1662 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1663 {
1664 char buffer[64];
1665
1666 if (!mpol || mpol->mode == MPOL_DEFAULT)
1667 return; /* show nothing */
1668
1669 mpol_to_str(buffer, sizeof(buffer), mpol);
1670
1671 seq_printf(seq, ",mpol=%s", buffer);
1672 }
1673
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1674 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1675 {
1676 struct mempolicy *mpol = NULL;
1677 if (sbinfo->mpol) {
1678 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1679 mpol = sbinfo->mpol;
1680 mpol_get(mpol);
1681 raw_spin_unlock(&sbinfo->stat_lock);
1682 }
1683 return mpol;
1684 }
1685 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1686 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1687 {
1688 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1689 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1690 {
1691 return NULL;
1692 }
1693 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1694
1695 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1696 pgoff_t index, unsigned int order, pgoff_t *ilx);
1697
shmem_swapin_cluster(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1698 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1699 struct shmem_inode_info *info, pgoff_t index)
1700 {
1701 struct mempolicy *mpol;
1702 pgoff_t ilx;
1703 struct folio *folio;
1704
1705 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1706 folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1707 mpol_cond_put(mpol);
1708
1709 return folio;
1710 }
1711
1712 /*
1713 * Make sure huge_gfp is always more limited than limit_gfp.
1714 * Some of the flags set permissions, while others set limitations.
1715 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1716 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1717 {
1718 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1719 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1720 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1721 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1722
1723 /* Allow allocations only from the originally specified zones. */
1724 result |= zoneflags;
1725
1726 /*
1727 * Minimize the result gfp by taking the union with the deny flags,
1728 * and the intersection of the allow flags.
1729 */
1730 result |= (limit_gfp & denyflags);
1731 result |= (huge_gfp & limit_gfp) & allowflags;
1732
1733 return result;
1734 }
1735
1736 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_hpage_pmd_enabled(void)1737 bool shmem_hpage_pmd_enabled(void)
1738 {
1739 if (shmem_huge == SHMEM_HUGE_DENY)
1740 return false;
1741 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1742 return true;
1743 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1744 return true;
1745 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1746 return true;
1747 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1748 shmem_huge != SHMEM_HUGE_NEVER)
1749 return true;
1750
1751 return false;
1752 }
1753
shmem_allowable_huge_orders(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,loff_t write_end,bool shmem_huge_force)1754 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1755 struct vm_area_struct *vma, pgoff_t index,
1756 loff_t write_end, bool shmem_huge_force)
1757 {
1758 unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1759 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1760 unsigned long vm_flags = vma ? vma->vm_flags : 0;
1761 unsigned int global_orders;
1762
1763 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1764 return 0;
1765
1766 global_orders = shmem_huge_global_enabled(inode, index, write_end,
1767 shmem_huge_force, vma, vm_flags);
1768 /* Tmpfs huge pages allocation */
1769 if (!vma || !vma_is_anon_shmem(vma))
1770 return global_orders;
1771
1772 /*
1773 * Following the 'deny' semantics of the top level, force the huge
1774 * option off from all mounts.
1775 */
1776 if (shmem_huge == SHMEM_HUGE_DENY)
1777 return 0;
1778
1779 /*
1780 * Only allow inherit orders if the top-level value is 'force', which
1781 * means non-PMD sized THP can not override 'huge' mount option now.
1782 */
1783 if (shmem_huge == SHMEM_HUGE_FORCE)
1784 return READ_ONCE(huge_shmem_orders_inherit);
1785
1786 /* Allow mTHP that will be fully within i_size. */
1787 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0);
1788
1789 if (vm_flags & VM_HUGEPAGE)
1790 mask |= READ_ONCE(huge_shmem_orders_madvise);
1791
1792 if (global_orders > 0)
1793 mask |= READ_ONCE(huge_shmem_orders_inherit);
1794
1795 return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1796 }
1797
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1798 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1799 struct address_space *mapping, pgoff_t index,
1800 unsigned long orders)
1801 {
1802 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1803 pgoff_t aligned_index;
1804 unsigned long pages;
1805 int order;
1806
1807 if (vma) {
1808 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1809 if (!orders)
1810 return 0;
1811 }
1812
1813 /* Find the highest order that can add into the page cache */
1814 order = highest_order(orders);
1815 while (orders) {
1816 pages = 1UL << order;
1817 aligned_index = round_down(index, pages);
1818 /*
1819 * Check for conflict before waiting on a huge allocation.
1820 * Conflict might be that a huge page has just been allocated
1821 * and added to page cache by a racing thread, or that there
1822 * is already at least one small page in the huge extent.
1823 * Be careful to retry when appropriate, but not forever!
1824 * Elsewhere -EEXIST would be the right code, but not here.
1825 */
1826 if (!xa_find(&mapping->i_pages, &aligned_index,
1827 aligned_index + pages - 1, XA_PRESENT))
1828 break;
1829 order = next_order(&orders, order);
1830 }
1831
1832 return orders;
1833 }
1834 #else
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1835 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1836 struct address_space *mapping, pgoff_t index,
1837 unsigned long orders)
1838 {
1839 return 0;
1840 }
1841 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1842
shmem_alloc_folio(gfp_t gfp,int order,struct shmem_inode_info * info,pgoff_t index)1843 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1844 struct shmem_inode_info *info, pgoff_t index)
1845 {
1846 struct mempolicy *mpol;
1847 pgoff_t ilx;
1848 struct folio *folio;
1849
1850 mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1851 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1852 mpol_cond_put(mpol);
1853
1854 return folio;
1855 }
1856
shmem_alloc_and_add_folio(struct vm_fault * vmf,gfp_t gfp,struct inode * inode,pgoff_t index,struct mm_struct * fault_mm,unsigned long orders)1857 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1858 gfp_t gfp, struct inode *inode, pgoff_t index,
1859 struct mm_struct *fault_mm, unsigned long orders)
1860 {
1861 struct address_space *mapping = inode->i_mapping;
1862 struct shmem_inode_info *info = SHMEM_I(inode);
1863 unsigned long suitable_orders = 0;
1864 struct folio *folio = NULL;
1865 long pages;
1866 int error, order;
1867
1868 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1869 orders = 0;
1870
1871 if (orders > 0) {
1872 suitable_orders = shmem_suitable_orders(inode, vmf,
1873 mapping, index, orders);
1874
1875 order = highest_order(suitable_orders);
1876 while (suitable_orders) {
1877 pages = 1UL << order;
1878 index = round_down(index, pages);
1879 folio = shmem_alloc_folio(gfp, order, info, index);
1880 if (folio)
1881 goto allocated;
1882
1883 if (pages == HPAGE_PMD_NR)
1884 count_vm_event(THP_FILE_FALLBACK);
1885 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1886 order = next_order(&suitable_orders, order);
1887 }
1888 } else {
1889 pages = 1;
1890 folio = shmem_alloc_folio(gfp, 0, info, index);
1891 }
1892 if (!folio)
1893 return ERR_PTR(-ENOMEM);
1894
1895 allocated:
1896 __folio_set_locked(folio);
1897 __folio_set_swapbacked(folio);
1898
1899 gfp &= GFP_RECLAIM_MASK;
1900 error = mem_cgroup_charge(folio, fault_mm, gfp);
1901 if (error) {
1902 if (xa_find(&mapping->i_pages, &index,
1903 index + pages - 1, XA_PRESENT)) {
1904 error = -EEXIST;
1905 } else if (pages > 1) {
1906 if (pages == HPAGE_PMD_NR) {
1907 count_vm_event(THP_FILE_FALLBACK);
1908 count_vm_event(THP_FILE_FALLBACK_CHARGE);
1909 }
1910 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1911 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1912 }
1913 goto unlock;
1914 }
1915
1916 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1917 if (error)
1918 goto unlock;
1919
1920 error = shmem_inode_acct_blocks(inode, pages);
1921 if (error) {
1922 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1923 long freed;
1924 /*
1925 * Try to reclaim some space by splitting a few
1926 * large folios beyond i_size on the filesystem.
1927 */
1928 shmem_unused_huge_shrink(sbinfo, NULL, pages);
1929 /*
1930 * And do a shmem_recalc_inode() to account for freed pages:
1931 * except our folio is there in cache, so not quite balanced.
1932 */
1933 spin_lock(&info->lock);
1934 freed = pages + info->alloced - info->swapped -
1935 READ_ONCE(mapping->nrpages);
1936 if (freed > 0)
1937 info->alloced -= freed;
1938 spin_unlock(&info->lock);
1939 if (freed > 0)
1940 shmem_inode_unacct_blocks(inode, freed);
1941 error = shmem_inode_acct_blocks(inode, pages);
1942 if (error) {
1943 filemap_remove_folio(folio);
1944 goto unlock;
1945 }
1946 }
1947
1948 shmem_recalc_inode(inode, pages, 0);
1949 folio_add_lru(folio);
1950 return folio;
1951
1952 unlock:
1953 folio_unlock(folio);
1954 folio_put(folio);
1955 return ERR_PTR(error);
1956 }
1957
shmem_swap_alloc_folio(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,swp_entry_t entry,int order,gfp_t gfp)1958 static struct folio *shmem_swap_alloc_folio(struct inode *inode,
1959 struct vm_area_struct *vma, pgoff_t index,
1960 swp_entry_t entry, int order, gfp_t gfp)
1961 {
1962 struct shmem_inode_info *info = SHMEM_I(inode);
1963 struct folio *new;
1964 void *shadow;
1965 int nr_pages;
1966
1967 /*
1968 * We have arrived here because our zones are constrained, so don't
1969 * limit chance of success with further cpuset and node constraints.
1970 */
1971 gfp &= ~GFP_CONSTRAINT_MASK;
1972 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && order > 0) {
1973 gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1974
1975 gfp = limit_gfp_mask(huge_gfp, gfp);
1976 }
1977
1978 new = shmem_alloc_folio(gfp, order, info, index);
1979 if (!new)
1980 return ERR_PTR(-ENOMEM);
1981
1982 nr_pages = folio_nr_pages(new);
1983 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL,
1984 gfp, entry)) {
1985 folio_put(new);
1986 return ERR_PTR(-ENOMEM);
1987 }
1988
1989 /*
1990 * Prevent parallel swapin from proceeding with the swap cache flag.
1991 *
1992 * Of course there is another possible concurrent scenario as well,
1993 * that is to say, the swap cache flag of a large folio has already
1994 * been set by swapcache_prepare(), while another thread may have
1995 * already split the large swap entry stored in the shmem mapping.
1996 * In this case, shmem_add_to_page_cache() will help identify the
1997 * concurrent swapin and return -EEXIST.
1998 */
1999 if (swapcache_prepare(entry, nr_pages)) {
2000 folio_put(new);
2001 return ERR_PTR(-EEXIST);
2002 }
2003
2004 __folio_set_locked(new);
2005 __folio_set_swapbacked(new);
2006 new->swap = entry;
2007
2008 memcg1_swapin(entry, nr_pages);
2009 shadow = get_shadow_from_swap_cache(entry);
2010 if (shadow)
2011 workingset_refault(new, shadow);
2012 folio_add_lru(new);
2013 swap_read_folio(new, NULL);
2014 return new;
2015 }
2016
2017 /*
2018 * When a page is moved from swapcache to shmem filecache (either by the
2019 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
2020 * shmem_unuse_inode()), it may have been read in earlier from swap, in
2021 * ignorance of the mapping it belongs to. If that mapping has special
2022 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
2023 * we may need to copy to a suitable page before moving to filecache.
2024 *
2025 * In a future release, this may well be extended to respect cpuset and
2026 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
2027 * but for now it is a simple matter of zone.
2028 */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)2029 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
2030 {
2031 return folio_zonenum(folio) > gfp_zone(gfp);
2032 }
2033
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index,struct vm_area_struct * vma)2034 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
2035 struct shmem_inode_info *info, pgoff_t index,
2036 struct vm_area_struct *vma)
2037 {
2038 struct folio *new, *old = *foliop;
2039 swp_entry_t entry = old->swap;
2040 struct address_space *swap_mapping = swap_address_space(entry);
2041 pgoff_t swap_index = swap_cache_index(entry);
2042 XA_STATE(xas, &swap_mapping->i_pages, swap_index);
2043 int nr_pages = folio_nr_pages(old);
2044 int error = 0, i;
2045
2046 /*
2047 * We have arrived here because our zones are constrained, so don't
2048 * limit chance of success by further cpuset and node constraints.
2049 */
2050 gfp &= ~GFP_CONSTRAINT_MASK;
2051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2052 if (nr_pages > 1) {
2053 gfp_t huge_gfp = vma_thp_gfp_mask(vma);
2054
2055 gfp = limit_gfp_mask(huge_gfp, gfp);
2056 }
2057 #endif
2058
2059 new = shmem_alloc_folio(gfp, folio_order(old), info, index);
2060 if (!new)
2061 return -ENOMEM;
2062
2063 folio_ref_add(new, nr_pages);
2064 folio_copy(new, old);
2065 flush_dcache_folio(new);
2066
2067 __folio_set_locked(new);
2068 __folio_set_swapbacked(new);
2069 folio_mark_uptodate(new);
2070 new->swap = entry;
2071 folio_set_swapcache(new);
2072
2073 /* Swap cache still stores N entries instead of a high-order entry */
2074 xa_lock_irq(&swap_mapping->i_pages);
2075 for (i = 0; i < nr_pages; i++) {
2076 void *item = xas_load(&xas);
2077
2078 if (item != old) {
2079 error = -ENOENT;
2080 break;
2081 }
2082
2083 xas_store(&xas, new);
2084 xas_next(&xas);
2085 }
2086 if (!error) {
2087 mem_cgroup_replace_folio(old, new);
2088 shmem_update_stats(new, nr_pages);
2089 shmem_update_stats(old, -nr_pages);
2090 }
2091 xa_unlock_irq(&swap_mapping->i_pages);
2092
2093 if (unlikely(error)) {
2094 /*
2095 * Is this possible? I think not, now that our callers
2096 * check both the swapcache flag and folio->private
2097 * after getting the folio lock; but be defensive.
2098 * Reverse old to newpage for clear and free.
2099 */
2100 old = new;
2101 } else {
2102 folio_add_lru(new);
2103 *foliop = new;
2104 }
2105
2106 folio_clear_swapcache(old);
2107 old->private = NULL;
2108
2109 folio_unlock(old);
2110 /*
2111 * The old folio are removed from swap cache, drop the 'nr_pages'
2112 * reference, as well as one temporary reference getting from swap
2113 * cache.
2114 */
2115 folio_put_refs(old, nr_pages + 1);
2116 return error;
2117 }
2118
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap,bool skip_swapcache)2119 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2120 struct folio *folio, swp_entry_t swap,
2121 bool skip_swapcache)
2122 {
2123 struct address_space *mapping = inode->i_mapping;
2124 swp_entry_t swapin_error;
2125 void *old;
2126 int nr_pages;
2127
2128 swapin_error = make_poisoned_swp_entry();
2129 old = xa_cmpxchg_irq(&mapping->i_pages, index,
2130 swp_to_radix_entry(swap),
2131 swp_to_radix_entry(swapin_error), 0);
2132 if (old != swp_to_radix_entry(swap))
2133 return;
2134
2135 nr_pages = folio_nr_pages(folio);
2136 folio_wait_writeback(folio);
2137 if (!skip_swapcache)
2138 delete_from_swap_cache(folio);
2139 /*
2140 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2141 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2142 * in shmem_evict_inode().
2143 */
2144 shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2145 swap_free_nr(swap, nr_pages);
2146 }
2147
shmem_split_large_entry(struct inode * inode,pgoff_t index,swp_entry_t swap,gfp_t gfp)2148 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2149 swp_entry_t swap, gfp_t gfp)
2150 {
2151 struct address_space *mapping = inode->i_mapping;
2152 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2153 int split_order = 0, entry_order;
2154 int i;
2155
2156 /* Convert user data gfp flags to xarray node gfp flags */
2157 gfp &= GFP_RECLAIM_MASK;
2158
2159 for (;;) {
2160 void *old = NULL;
2161 int cur_order;
2162 pgoff_t swap_index;
2163
2164 xas_lock_irq(&xas);
2165 old = xas_load(&xas);
2166 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2167 xas_set_err(&xas, -EEXIST);
2168 goto unlock;
2169 }
2170
2171 entry_order = xas_get_order(&xas);
2172
2173 if (!entry_order)
2174 goto unlock;
2175
2176 /* Try to split large swap entry in pagecache */
2177 cur_order = entry_order;
2178 swap_index = round_down(index, 1 << entry_order);
2179
2180 split_order = xas_try_split_min_order(cur_order);
2181
2182 while (cur_order > 0) {
2183 pgoff_t aligned_index =
2184 round_down(index, 1 << cur_order);
2185 pgoff_t swap_offset = aligned_index - swap_index;
2186
2187 xas_set_order(&xas, index, split_order);
2188 xas_try_split(&xas, old, cur_order);
2189 if (xas_error(&xas))
2190 goto unlock;
2191
2192 /*
2193 * Re-set the swap entry after splitting, and the swap
2194 * offset of the original large entry must be continuous.
2195 */
2196 for (i = 0; i < 1 << cur_order;
2197 i += (1 << split_order)) {
2198 swp_entry_t tmp;
2199
2200 tmp = swp_entry(swp_type(swap),
2201 swp_offset(swap) + swap_offset +
2202 i);
2203 __xa_store(&mapping->i_pages, aligned_index + i,
2204 swp_to_radix_entry(tmp), 0);
2205 }
2206 cur_order = split_order;
2207 split_order = xas_try_split_min_order(split_order);
2208 }
2209
2210 unlock:
2211 xas_unlock_irq(&xas);
2212
2213 if (!xas_nomem(&xas, gfp))
2214 break;
2215 }
2216
2217 if (xas_error(&xas))
2218 return xas_error(&xas);
2219
2220 return entry_order;
2221 }
2222
2223 /*
2224 * Swap in the folio pointed to by *foliop.
2225 * Caller has to make sure that *foliop contains a valid swapped folio.
2226 * Returns 0 and the folio in foliop if success. On failure, returns the
2227 * error code and NULL in *foliop.
2228 */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)2229 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2230 struct folio **foliop, enum sgp_type sgp,
2231 gfp_t gfp, struct vm_area_struct *vma,
2232 vm_fault_t *fault_type)
2233 {
2234 struct address_space *mapping = inode->i_mapping;
2235 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2236 struct shmem_inode_info *info = SHMEM_I(inode);
2237 struct swap_info_struct *si;
2238 struct folio *folio = NULL;
2239 bool skip_swapcache = false;
2240 swp_entry_t swap;
2241 int error, nr_pages, order, split_order;
2242
2243 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2244 swap = radix_to_swp_entry(*foliop);
2245 *foliop = NULL;
2246
2247 if (is_poisoned_swp_entry(swap))
2248 return -EIO;
2249
2250 si = get_swap_device(swap);
2251 if (!si) {
2252 if (!shmem_confirm_swap(mapping, index, swap))
2253 return -EEXIST;
2254 else
2255 return -EINVAL;
2256 }
2257
2258 /* Look it up and read it in.. */
2259 folio = swap_cache_get_folio(swap, NULL, 0);
2260 order = xa_get_order(&mapping->i_pages, index);
2261 if (!folio) {
2262 int nr_pages = 1 << order;
2263 bool fallback_order0 = false;
2264
2265 /* Or update major stats only when swapin succeeds?? */
2266 if (fault_type) {
2267 *fault_type |= VM_FAULT_MAJOR;
2268 count_vm_event(PGMAJFAULT);
2269 count_memcg_event_mm(fault_mm, PGMAJFAULT);
2270 }
2271
2272 /*
2273 * If uffd is active for the vma, we need per-page fault
2274 * fidelity to maintain the uffd semantics, then fallback
2275 * to swapin order-0 folio, as well as for zswap case.
2276 * Any existing sub folio in the swap cache also blocks
2277 * mTHP swapin.
2278 */
2279 if (order > 0 && ((vma && unlikely(userfaultfd_armed(vma))) ||
2280 !zswap_never_enabled() ||
2281 non_swapcache_batch(swap, nr_pages) != nr_pages))
2282 fallback_order0 = true;
2283
2284 /* Skip swapcache for synchronous device. */
2285 if (!fallback_order0 && data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
2286 folio = shmem_swap_alloc_folio(inode, vma, index, swap, order, gfp);
2287 if (!IS_ERR(folio)) {
2288 skip_swapcache = true;
2289 goto alloced;
2290 }
2291
2292 /*
2293 * Fallback to swapin order-0 folio unless the swap entry
2294 * already exists.
2295 */
2296 error = PTR_ERR(folio);
2297 folio = NULL;
2298 if (error == -EEXIST)
2299 goto failed;
2300 }
2301
2302 /*
2303 * Now swap device can only swap in order 0 folio, then we
2304 * should split the large swap entry stored in the pagecache
2305 * if necessary.
2306 */
2307 split_order = shmem_split_large_entry(inode, index, swap, gfp);
2308 if (split_order < 0) {
2309 error = split_order;
2310 goto failed;
2311 }
2312
2313 /*
2314 * If the large swap entry has already been split, it is
2315 * necessary to recalculate the new swap entry based on
2316 * the old order alignment.
2317 */
2318 if (split_order > 0) {
2319 pgoff_t offset = index - round_down(index, 1 << split_order);
2320
2321 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2322 }
2323
2324 /* Here we actually start the io */
2325 folio = shmem_swapin_cluster(swap, gfp, info, index);
2326 if (!folio) {
2327 error = -ENOMEM;
2328 goto failed;
2329 }
2330 } else if (order != folio_order(folio)) {
2331 /*
2332 * Swap readahead may swap in order 0 folios into swapcache
2333 * asynchronously, while the shmem mapping can still stores
2334 * large swap entries. In such cases, we should split the
2335 * large swap entry to prevent possible data corruption.
2336 */
2337 split_order = shmem_split_large_entry(inode, index, swap, gfp);
2338 if (split_order < 0) {
2339 folio_put(folio);
2340 folio = NULL;
2341 error = split_order;
2342 goto failed;
2343 }
2344
2345 /*
2346 * If the large swap entry has already been split, it is
2347 * necessary to recalculate the new swap entry based on
2348 * the old order alignment.
2349 */
2350 if (split_order > 0) {
2351 pgoff_t offset = index - round_down(index, 1 << split_order);
2352
2353 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2354 }
2355 }
2356
2357 alloced:
2358 /* We have to do this with folio locked to prevent races */
2359 folio_lock(folio);
2360 if ((!skip_swapcache && !folio_test_swapcache(folio)) ||
2361 folio->swap.val != swap.val ||
2362 !shmem_confirm_swap(mapping, index, swap) ||
2363 xa_get_order(&mapping->i_pages, index) != folio_order(folio)) {
2364 error = -EEXIST;
2365 goto unlock;
2366 }
2367 if (!folio_test_uptodate(folio)) {
2368 error = -EIO;
2369 goto failed;
2370 }
2371 folio_wait_writeback(folio);
2372 nr_pages = folio_nr_pages(folio);
2373
2374 /*
2375 * Some architectures may have to restore extra metadata to the
2376 * folio after reading from swap.
2377 */
2378 arch_swap_restore(folio_swap(swap, folio), folio);
2379
2380 if (shmem_should_replace_folio(folio, gfp)) {
2381 error = shmem_replace_folio(&folio, gfp, info, index, vma);
2382 if (error)
2383 goto failed;
2384 }
2385
2386 error = shmem_add_to_page_cache(folio, mapping,
2387 round_down(index, nr_pages),
2388 swp_to_radix_entry(swap), gfp);
2389 if (error)
2390 goto failed;
2391
2392 shmem_recalc_inode(inode, 0, -nr_pages);
2393
2394 if (sgp == SGP_WRITE)
2395 folio_mark_accessed(folio);
2396
2397 if (skip_swapcache) {
2398 folio->swap.val = 0;
2399 swapcache_clear(si, swap, nr_pages);
2400 } else {
2401 delete_from_swap_cache(folio);
2402 }
2403 folio_mark_dirty(folio);
2404 swap_free_nr(swap, nr_pages);
2405 put_swap_device(si);
2406
2407 *foliop = folio;
2408 return 0;
2409 failed:
2410 if (!shmem_confirm_swap(mapping, index, swap))
2411 error = -EEXIST;
2412 if (error == -EIO)
2413 shmem_set_folio_swapin_error(inode, index, folio, swap,
2414 skip_swapcache);
2415 unlock:
2416 if (skip_swapcache)
2417 swapcache_clear(si, swap, folio_nr_pages(folio));
2418 if (folio) {
2419 folio_unlock(folio);
2420 folio_put(folio);
2421 }
2422 put_swap_device(si);
2423
2424 return error;
2425 }
2426
2427 /*
2428 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2429 *
2430 * If we allocate a new one we do not mark it dirty. That's up to the
2431 * vm. If we swap it in we mark it dirty since we also free the swap
2432 * entry since a page cannot live in both the swap and page cache.
2433 *
2434 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2435 */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_fault * vmf,vm_fault_t * fault_type)2436 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2437 loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2438 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2439 {
2440 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2441 struct mm_struct *fault_mm;
2442 struct folio *folio;
2443 int error;
2444 bool alloced;
2445 unsigned long orders = 0;
2446
2447 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2448 return -EINVAL;
2449
2450 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2451 return -EFBIG;
2452 repeat:
2453 if (sgp <= SGP_CACHE &&
2454 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2455 return -EINVAL;
2456
2457 alloced = false;
2458 fault_mm = vma ? vma->vm_mm : NULL;
2459
2460 folio = filemap_get_entry(inode->i_mapping, index);
2461 if (folio && vma && userfaultfd_minor(vma)) {
2462 if (!xa_is_value(folio))
2463 folio_put(folio);
2464 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2465 return 0;
2466 }
2467
2468 if (xa_is_value(folio)) {
2469 error = shmem_swapin_folio(inode, index, &folio,
2470 sgp, gfp, vma, fault_type);
2471 if (error == -EEXIST)
2472 goto repeat;
2473
2474 *foliop = folio;
2475 return error;
2476 }
2477
2478 if (folio) {
2479 folio_lock(folio);
2480
2481 /* Has the folio been truncated or swapped out? */
2482 if (unlikely(folio->mapping != inode->i_mapping)) {
2483 folio_unlock(folio);
2484 folio_put(folio);
2485 goto repeat;
2486 }
2487 if (sgp == SGP_WRITE)
2488 folio_mark_accessed(folio);
2489 if (folio_test_uptodate(folio))
2490 goto out;
2491 /* fallocated folio */
2492 if (sgp != SGP_READ)
2493 goto clear;
2494 folio_unlock(folio);
2495 folio_put(folio);
2496 }
2497
2498 /*
2499 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2500 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2501 */
2502 *foliop = NULL;
2503 if (sgp == SGP_READ)
2504 return 0;
2505 if (sgp == SGP_NOALLOC)
2506 return -ENOENT;
2507
2508 /*
2509 * Fast cache lookup and swap lookup did not find it: allocate.
2510 */
2511
2512 if (vma && userfaultfd_missing(vma)) {
2513 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2514 return 0;
2515 }
2516
2517 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2518 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2519 if (orders > 0) {
2520 gfp_t huge_gfp;
2521
2522 huge_gfp = vma_thp_gfp_mask(vma);
2523 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2524 folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2525 inode, index, fault_mm, orders);
2526 if (!IS_ERR(folio)) {
2527 if (folio_test_pmd_mappable(folio))
2528 count_vm_event(THP_FILE_ALLOC);
2529 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2530 goto alloced;
2531 }
2532 if (PTR_ERR(folio) == -EEXIST)
2533 goto repeat;
2534 }
2535
2536 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2537 if (IS_ERR(folio)) {
2538 error = PTR_ERR(folio);
2539 if (error == -EEXIST)
2540 goto repeat;
2541 folio = NULL;
2542 goto unlock;
2543 }
2544
2545 alloced:
2546 alloced = true;
2547 if (folio_test_large(folio) &&
2548 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2549 folio_next_index(folio)) {
2550 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2551 struct shmem_inode_info *info = SHMEM_I(inode);
2552 /*
2553 * Part of the large folio is beyond i_size: subject
2554 * to shrink under memory pressure.
2555 */
2556 spin_lock(&sbinfo->shrinklist_lock);
2557 /*
2558 * _careful to defend against unlocked access to
2559 * ->shrink_list in shmem_unused_huge_shrink()
2560 */
2561 if (list_empty_careful(&info->shrinklist)) {
2562 list_add_tail(&info->shrinklist,
2563 &sbinfo->shrinklist);
2564 sbinfo->shrinklist_len++;
2565 }
2566 spin_unlock(&sbinfo->shrinklist_lock);
2567 }
2568
2569 if (sgp == SGP_WRITE)
2570 folio_set_referenced(folio);
2571 /*
2572 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2573 */
2574 if (sgp == SGP_FALLOC)
2575 sgp = SGP_WRITE;
2576 clear:
2577 /*
2578 * Let SGP_WRITE caller clear ends if write does not fill folio;
2579 * but SGP_FALLOC on a folio fallocated earlier must initialize
2580 * it now, lest undo on failure cancel our earlier guarantee.
2581 */
2582 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2583 long i, n = folio_nr_pages(folio);
2584
2585 for (i = 0; i < n; i++)
2586 clear_highpage(folio_page(folio, i));
2587 flush_dcache_folio(folio);
2588 folio_mark_uptodate(folio);
2589 }
2590
2591 /* Perhaps the file has been truncated since we checked */
2592 if (sgp <= SGP_CACHE &&
2593 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2594 error = -EINVAL;
2595 goto unlock;
2596 }
2597 out:
2598 *foliop = folio;
2599 return 0;
2600
2601 /*
2602 * Error recovery.
2603 */
2604 unlock:
2605 if (alloced)
2606 filemap_remove_folio(folio);
2607 shmem_recalc_inode(inode, 0, 0);
2608 if (folio) {
2609 folio_unlock(folio);
2610 folio_put(folio);
2611 }
2612 return error;
2613 }
2614
2615 /**
2616 * shmem_get_folio - find, and lock a shmem folio.
2617 * @inode: inode to search
2618 * @index: the page index.
2619 * @write_end: end of a write, could extend inode size
2620 * @foliop: pointer to the folio if found
2621 * @sgp: SGP_* flags to control behavior
2622 *
2623 * Looks up the page cache entry at @inode & @index. If a folio is
2624 * present, it is returned locked with an increased refcount.
2625 *
2626 * If the caller modifies data in the folio, it must call folio_mark_dirty()
2627 * before unlocking the folio to ensure that the folio is not reclaimed.
2628 * There is no need to reserve space before calling folio_mark_dirty().
2629 *
2630 * When no folio is found, the behavior depends on @sgp:
2631 * - for SGP_READ, *@foliop is %NULL and 0 is returned
2632 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2633 * - for all other flags a new folio is allocated, inserted into the
2634 * page cache and returned locked in @foliop.
2635 *
2636 * Context: May sleep.
2637 * Return: 0 if successful, else a negative error code.
2638 */
shmem_get_folio(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp)2639 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2640 struct folio **foliop, enum sgp_type sgp)
2641 {
2642 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2643 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2644 }
2645 EXPORT_SYMBOL_GPL(shmem_get_folio);
2646
2647 /*
2648 * This is like autoremove_wake_function, but it removes the wait queue
2649 * entry unconditionally - even if something else had already woken the
2650 * target.
2651 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)2652 static int synchronous_wake_function(wait_queue_entry_t *wait,
2653 unsigned int mode, int sync, void *key)
2654 {
2655 int ret = default_wake_function(wait, mode, sync, key);
2656 list_del_init(&wait->entry);
2657 return ret;
2658 }
2659
2660 /*
2661 * Trinity finds that probing a hole which tmpfs is punching can
2662 * prevent the hole-punch from ever completing: which in turn
2663 * locks writers out with its hold on i_rwsem. So refrain from
2664 * faulting pages into the hole while it's being punched. Although
2665 * shmem_undo_range() does remove the additions, it may be unable to
2666 * keep up, as each new page needs its own unmap_mapping_range() call,
2667 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2668 *
2669 * It does not matter if we sometimes reach this check just before the
2670 * hole-punch begins, so that one fault then races with the punch:
2671 * we just need to make racing faults a rare case.
2672 *
2673 * The implementation below would be much simpler if we just used a
2674 * standard mutex or completion: but we cannot take i_rwsem in fault,
2675 * and bloating every shmem inode for this unlikely case would be sad.
2676 */
shmem_falloc_wait(struct vm_fault * vmf,struct inode * inode)2677 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2678 {
2679 struct shmem_falloc *shmem_falloc;
2680 struct file *fpin = NULL;
2681 vm_fault_t ret = 0;
2682
2683 spin_lock(&inode->i_lock);
2684 shmem_falloc = inode->i_private;
2685 if (shmem_falloc &&
2686 shmem_falloc->waitq &&
2687 vmf->pgoff >= shmem_falloc->start &&
2688 vmf->pgoff < shmem_falloc->next) {
2689 wait_queue_head_t *shmem_falloc_waitq;
2690 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2691
2692 ret = VM_FAULT_NOPAGE;
2693 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2694 shmem_falloc_waitq = shmem_falloc->waitq;
2695 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2696 TASK_UNINTERRUPTIBLE);
2697 spin_unlock(&inode->i_lock);
2698 schedule();
2699
2700 /*
2701 * shmem_falloc_waitq points into the shmem_fallocate()
2702 * stack of the hole-punching task: shmem_falloc_waitq
2703 * is usually invalid by the time we reach here, but
2704 * finish_wait() does not dereference it in that case;
2705 * though i_lock needed lest racing with wake_up_all().
2706 */
2707 spin_lock(&inode->i_lock);
2708 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2709 }
2710 spin_unlock(&inode->i_lock);
2711 if (fpin) {
2712 fput(fpin);
2713 ret = VM_FAULT_RETRY;
2714 }
2715 return ret;
2716 }
2717
shmem_fault(struct vm_fault * vmf)2718 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2719 {
2720 struct inode *inode = file_inode(vmf->vma->vm_file);
2721 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2722 struct folio *folio = NULL;
2723 vm_fault_t ret = 0;
2724 int err;
2725
2726 /*
2727 * Trinity finds that probing a hole which tmpfs is punching can
2728 * prevent the hole-punch from ever completing: noted in i_private.
2729 */
2730 if (unlikely(inode->i_private)) {
2731 ret = shmem_falloc_wait(vmf, inode);
2732 if (ret)
2733 return ret;
2734 }
2735
2736 WARN_ON_ONCE(vmf->page != NULL);
2737 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2738 gfp, vmf, &ret);
2739 if (err)
2740 return vmf_error(err);
2741 if (folio) {
2742 vmf->page = folio_file_page(folio, vmf->pgoff);
2743 ret |= VM_FAULT_LOCKED;
2744 }
2745 return ret;
2746 }
2747
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2748 unsigned long shmem_get_unmapped_area(struct file *file,
2749 unsigned long uaddr, unsigned long len,
2750 unsigned long pgoff, unsigned long flags)
2751 {
2752 unsigned long addr;
2753 unsigned long offset;
2754 unsigned long inflated_len;
2755 unsigned long inflated_addr;
2756 unsigned long inflated_offset;
2757 unsigned long hpage_size;
2758
2759 if (len > TASK_SIZE)
2760 return -ENOMEM;
2761
2762 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2763 flags);
2764
2765 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2766 return addr;
2767 if (IS_ERR_VALUE(addr))
2768 return addr;
2769 if (addr & ~PAGE_MASK)
2770 return addr;
2771 if (addr > TASK_SIZE - len)
2772 return addr;
2773
2774 if (shmem_huge == SHMEM_HUGE_DENY)
2775 return addr;
2776 if (flags & MAP_FIXED)
2777 return addr;
2778 /*
2779 * Our priority is to support MAP_SHARED mapped hugely;
2780 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2781 * But if caller specified an address hint and we allocated area there
2782 * successfully, respect that as before.
2783 */
2784 if (uaddr == addr)
2785 return addr;
2786
2787 hpage_size = HPAGE_PMD_SIZE;
2788 if (shmem_huge != SHMEM_HUGE_FORCE) {
2789 struct super_block *sb;
2790 unsigned long __maybe_unused hpage_orders;
2791 int order = 0;
2792
2793 if (file) {
2794 VM_BUG_ON(file->f_op != &shmem_file_operations);
2795 sb = file_inode(file)->i_sb;
2796 } else {
2797 /*
2798 * Called directly from mm/mmap.c, or drivers/char/mem.c
2799 * for "/dev/zero", to create a shared anonymous object.
2800 */
2801 if (IS_ERR(shm_mnt))
2802 return addr;
2803 sb = shm_mnt->mnt_sb;
2804
2805 /*
2806 * Find the highest mTHP order used for anonymous shmem to
2807 * provide a suitable alignment address.
2808 */
2809 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2810 hpage_orders = READ_ONCE(huge_shmem_orders_always);
2811 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2812 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2813 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2814 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2815
2816 if (hpage_orders > 0) {
2817 order = highest_order(hpage_orders);
2818 hpage_size = PAGE_SIZE << order;
2819 }
2820 #endif
2821 }
2822 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2823 return addr;
2824 }
2825
2826 if (len < hpage_size)
2827 return addr;
2828
2829 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2830 if (offset && offset + len < 2 * hpage_size)
2831 return addr;
2832 if ((addr & (hpage_size - 1)) == offset)
2833 return addr;
2834
2835 inflated_len = len + hpage_size - PAGE_SIZE;
2836 if (inflated_len > TASK_SIZE)
2837 return addr;
2838 if (inflated_len < len)
2839 return addr;
2840
2841 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2842 inflated_len, 0, flags);
2843 if (IS_ERR_VALUE(inflated_addr))
2844 return addr;
2845 if (inflated_addr & ~PAGE_MASK)
2846 return addr;
2847
2848 inflated_offset = inflated_addr & (hpage_size - 1);
2849 inflated_addr += offset - inflated_offset;
2850 if (inflated_offset > offset)
2851 inflated_addr += hpage_size;
2852
2853 if (inflated_addr > TASK_SIZE - len)
2854 return addr;
2855 return inflated_addr;
2856 }
2857
2858 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2859 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2860 {
2861 struct inode *inode = file_inode(vma->vm_file);
2862 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2863 }
2864
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)2865 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2866 unsigned long addr, pgoff_t *ilx)
2867 {
2868 struct inode *inode = file_inode(vma->vm_file);
2869 pgoff_t index;
2870
2871 /*
2872 * Bias interleave by inode number to distribute better across nodes;
2873 * but this interface is independent of which page order is used, so
2874 * supplies only that bias, letting caller apply the offset (adjusted
2875 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2876 */
2877 *ilx = inode->i_ino;
2878 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2879 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2880 }
2881
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2882 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2883 pgoff_t index, unsigned int order, pgoff_t *ilx)
2884 {
2885 struct mempolicy *mpol;
2886
2887 /* Bias interleave by inode number to distribute better across nodes */
2888 *ilx = info->vfs_inode.i_ino + (index >> order);
2889
2890 mpol = mpol_shared_policy_lookup(&info->policy, index);
2891 return mpol ? mpol : get_task_policy(current);
2892 }
2893 #else
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2894 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2895 pgoff_t index, unsigned int order, pgoff_t *ilx)
2896 {
2897 *ilx = 0;
2898 return NULL;
2899 }
2900 #endif /* CONFIG_NUMA */
2901
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2902 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2903 {
2904 struct inode *inode = file_inode(file);
2905 struct shmem_inode_info *info = SHMEM_I(inode);
2906 int retval = -ENOMEM;
2907
2908 /*
2909 * What serializes the accesses to info->flags?
2910 * ipc_lock_object() when called from shmctl_do_lock(),
2911 * no serialization needed when called from shm_destroy().
2912 */
2913 if (lock && !(info->flags & VM_LOCKED)) {
2914 if (!user_shm_lock(inode->i_size, ucounts))
2915 goto out_nomem;
2916 info->flags |= VM_LOCKED;
2917 mapping_set_unevictable(file->f_mapping);
2918 }
2919 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2920 user_shm_unlock(inode->i_size, ucounts);
2921 info->flags &= ~VM_LOCKED;
2922 mapping_clear_unevictable(file->f_mapping);
2923 }
2924 retval = 0;
2925
2926 out_nomem:
2927 return retval;
2928 }
2929
shmem_mmap(struct file * file,struct vm_area_struct * vma)2930 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2931 {
2932 struct inode *inode = file_inode(file);
2933
2934 file_accessed(file);
2935 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2936 if (inode->i_nlink)
2937 vma->vm_ops = &shmem_vm_ops;
2938 else
2939 vma->vm_ops = &shmem_anon_vm_ops;
2940 return 0;
2941 }
2942
shmem_file_open(struct inode * inode,struct file * file)2943 static int shmem_file_open(struct inode *inode, struct file *file)
2944 {
2945 file->f_mode |= FMODE_CAN_ODIRECT;
2946 return generic_file_open(inode, file);
2947 }
2948
2949 #ifdef CONFIG_TMPFS_XATTR
2950 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2951
2952 #if IS_ENABLED(CONFIG_UNICODE)
2953 /*
2954 * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2955 *
2956 * The casefold file attribute needs some special checks. I can just be added to
2957 * an empty dir, and can't be removed from a non-empty dir.
2958 */
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)2959 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2960 struct dentry *dentry, unsigned int *i_flags)
2961 {
2962 unsigned int old = inode->i_flags;
2963 struct super_block *sb = inode->i_sb;
2964
2965 if (fsflags & FS_CASEFOLD_FL) {
2966 if (!(old & S_CASEFOLD)) {
2967 if (!sb->s_encoding)
2968 return -EOPNOTSUPP;
2969
2970 if (!S_ISDIR(inode->i_mode))
2971 return -ENOTDIR;
2972
2973 if (dentry && !simple_empty(dentry))
2974 return -ENOTEMPTY;
2975 }
2976
2977 *i_flags = *i_flags | S_CASEFOLD;
2978 } else if (old & S_CASEFOLD) {
2979 if (dentry && !simple_empty(dentry))
2980 return -ENOTEMPTY;
2981 }
2982
2983 return 0;
2984 }
2985 #else
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)2986 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2987 struct dentry *dentry, unsigned int *i_flags)
2988 {
2989 if (fsflags & FS_CASEFOLD_FL)
2990 return -EOPNOTSUPP;
2991
2992 return 0;
2993 }
2994 #endif
2995
2996 /*
2997 * chattr's fsflags are unrelated to extended attributes,
2998 * but tmpfs has chosen to enable them under the same config option.
2999 */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3000 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3001 {
3002 unsigned int i_flags = 0;
3003 int ret;
3004
3005 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
3006 if (ret)
3007 return ret;
3008
3009 if (fsflags & FS_NOATIME_FL)
3010 i_flags |= S_NOATIME;
3011 if (fsflags & FS_APPEND_FL)
3012 i_flags |= S_APPEND;
3013 if (fsflags & FS_IMMUTABLE_FL)
3014 i_flags |= S_IMMUTABLE;
3015 /*
3016 * But FS_NODUMP_FL does not require any action in i_flags.
3017 */
3018 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
3019
3020 return 0;
3021 }
3022 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3023 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3024 {
3025 }
3026 #define shmem_initxattrs NULL
3027 #endif
3028
shmem_get_offset_ctx(struct inode * inode)3029 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
3030 {
3031 return &SHMEM_I(inode)->dir_offsets;
3032 }
3033
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3034 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
3035 struct super_block *sb,
3036 struct inode *dir, umode_t mode,
3037 dev_t dev, unsigned long flags)
3038 {
3039 struct inode *inode;
3040 struct shmem_inode_info *info;
3041 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3042 ino_t ino;
3043 int err;
3044
3045 err = shmem_reserve_inode(sb, &ino);
3046 if (err)
3047 return ERR_PTR(err);
3048
3049 inode = new_inode(sb);
3050 if (!inode) {
3051 shmem_free_inode(sb, 0);
3052 return ERR_PTR(-ENOSPC);
3053 }
3054
3055 inode->i_ino = ino;
3056 inode_init_owner(idmap, inode, dir, mode);
3057 inode->i_blocks = 0;
3058 simple_inode_init_ts(inode);
3059 inode->i_generation = get_random_u32();
3060 info = SHMEM_I(inode);
3061 memset(info, 0, (char *)inode - (char *)info);
3062 spin_lock_init(&info->lock);
3063 atomic_set(&info->stop_eviction, 0);
3064 info->seals = F_SEAL_SEAL;
3065 info->flags = flags & VM_NORESERVE;
3066 info->i_crtime = inode_get_mtime(inode);
3067 info->fsflags = (dir == NULL) ? 0 :
3068 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
3069 if (info->fsflags)
3070 shmem_set_inode_flags(inode, info->fsflags, NULL);
3071 INIT_LIST_HEAD(&info->shrinklist);
3072 INIT_LIST_HEAD(&info->swaplist);
3073 simple_xattrs_init(&info->xattrs);
3074 cache_no_acl(inode);
3075 if (sbinfo->noswap)
3076 mapping_set_unevictable(inode->i_mapping);
3077
3078 /* Don't consider 'deny' for emergencies and 'force' for testing */
3079 if (sbinfo->huge)
3080 mapping_set_large_folios(inode->i_mapping);
3081
3082 switch (mode & S_IFMT) {
3083 default:
3084 inode->i_op = &shmem_special_inode_operations;
3085 init_special_inode(inode, mode, dev);
3086 break;
3087 case S_IFREG:
3088 inode->i_mapping->a_ops = &shmem_aops;
3089 inode->i_op = &shmem_inode_operations;
3090 inode->i_fop = &shmem_file_operations;
3091 mpol_shared_policy_init(&info->policy,
3092 shmem_get_sbmpol(sbinfo));
3093 break;
3094 case S_IFDIR:
3095 inc_nlink(inode);
3096 /* Some things misbehave if size == 0 on a directory */
3097 inode->i_size = 2 * BOGO_DIRENT_SIZE;
3098 inode->i_op = &shmem_dir_inode_operations;
3099 inode->i_fop = &simple_offset_dir_operations;
3100 simple_offset_init(shmem_get_offset_ctx(inode));
3101 break;
3102 case S_IFLNK:
3103 /*
3104 * Must not load anything in the rbtree,
3105 * mpol_free_shared_policy will not be called.
3106 */
3107 mpol_shared_policy_init(&info->policy, NULL);
3108 break;
3109 }
3110
3111 lockdep_annotate_inode_mutex_key(inode);
3112 return inode;
3113 }
3114
3115 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3116 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3117 struct super_block *sb, struct inode *dir,
3118 umode_t mode, dev_t dev, unsigned long flags)
3119 {
3120 int err;
3121 struct inode *inode;
3122
3123 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3124 if (IS_ERR(inode))
3125 return inode;
3126
3127 err = dquot_initialize(inode);
3128 if (err)
3129 goto errout;
3130
3131 err = dquot_alloc_inode(inode);
3132 if (err) {
3133 dquot_drop(inode);
3134 goto errout;
3135 }
3136 return inode;
3137
3138 errout:
3139 inode->i_flags |= S_NOQUOTA;
3140 iput(inode);
3141 return ERR_PTR(err);
3142 }
3143 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3144 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3145 struct super_block *sb, struct inode *dir,
3146 umode_t mode, dev_t dev, unsigned long flags)
3147 {
3148 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3149 }
3150 #endif /* CONFIG_TMPFS_QUOTA */
3151
3152 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)3153 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
3154 struct vm_area_struct *dst_vma,
3155 unsigned long dst_addr,
3156 unsigned long src_addr,
3157 uffd_flags_t flags,
3158 struct folio **foliop)
3159 {
3160 struct inode *inode = file_inode(dst_vma->vm_file);
3161 struct shmem_inode_info *info = SHMEM_I(inode);
3162 struct address_space *mapping = inode->i_mapping;
3163 gfp_t gfp = mapping_gfp_mask(mapping);
3164 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
3165 void *page_kaddr;
3166 struct folio *folio;
3167 int ret;
3168 pgoff_t max_off;
3169
3170 if (shmem_inode_acct_blocks(inode, 1)) {
3171 /*
3172 * We may have got a page, returned -ENOENT triggering a retry,
3173 * and now we find ourselves with -ENOMEM. Release the page, to
3174 * avoid a BUG_ON in our caller.
3175 */
3176 if (unlikely(*foliop)) {
3177 folio_put(*foliop);
3178 *foliop = NULL;
3179 }
3180 return -ENOMEM;
3181 }
3182
3183 if (!*foliop) {
3184 ret = -ENOMEM;
3185 folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3186 if (!folio)
3187 goto out_unacct_blocks;
3188
3189 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3190 page_kaddr = kmap_local_folio(folio, 0);
3191 /*
3192 * The read mmap_lock is held here. Despite the
3193 * mmap_lock being read recursive a deadlock is still
3194 * possible if a writer has taken a lock. For example:
3195 *
3196 * process A thread 1 takes read lock on own mmap_lock
3197 * process A thread 2 calls mmap, blocks taking write lock
3198 * process B thread 1 takes page fault, read lock on own mmap lock
3199 * process B thread 2 calls mmap, blocks taking write lock
3200 * process A thread 1 blocks taking read lock on process B
3201 * process B thread 1 blocks taking read lock on process A
3202 *
3203 * Disable page faults to prevent potential deadlock
3204 * and retry the copy outside the mmap_lock.
3205 */
3206 pagefault_disable();
3207 ret = copy_from_user(page_kaddr,
3208 (const void __user *)src_addr,
3209 PAGE_SIZE);
3210 pagefault_enable();
3211 kunmap_local(page_kaddr);
3212
3213 /* fallback to copy_from_user outside mmap_lock */
3214 if (unlikely(ret)) {
3215 *foliop = folio;
3216 ret = -ENOENT;
3217 /* don't free the page */
3218 goto out_unacct_blocks;
3219 }
3220
3221 flush_dcache_folio(folio);
3222 } else { /* ZEROPAGE */
3223 clear_user_highpage(&folio->page, dst_addr);
3224 }
3225 } else {
3226 folio = *foliop;
3227 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3228 *foliop = NULL;
3229 }
3230
3231 VM_BUG_ON(folio_test_locked(folio));
3232 VM_BUG_ON(folio_test_swapbacked(folio));
3233 __folio_set_locked(folio);
3234 __folio_set_swapbacked(folio);
3235 __folio_mark_uptodate(folio);
3236
3237 ret = -EFAULT;
3238 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3239 if (unlikely(pgoff >= max_off))
3240 goto out_release;
3241
3242 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3243 if (ret)
3244 goto out_release;
3245 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3246 if (ret)
3247 goto out_release;
3248
3249 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3250 &folio->page, true, flags);
3251 if (ret)
3252 goto out_delete_from_cache;
3253
3254 shmem_recalc_inode(inode, 1, 0);
3255 folio_unlock(folio);
3256 return 0;
3257 out_delete_from_cache:
3258 filemap_remove_folio(folio);
3259 out_release:
3260 folio_unlock(folio);
3261 folio_put(folio);
3262 out_unacct_blocks:
3263 shmem_inode_unacct_blocks(inode, 1);
3264 return ret;
3265 }
3266 #endif /* CONFIG_USERFAULTFD */
3267
3268 #ifdef CONFIG_TMPFS
3269 static const struct inode_operations shmem_symlink_inode_operations;
3270 static const struct inode_operations shmem_short_symlink_operations;
3271
3272 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3273 shmem_write_begin(struct file *file, struct address_space *mapping,
3274 loff_t pos, unsigned len,
3275 struct folio **foliop, void **fsdata)
3276 {
3277 struct inode *inode = mapping->host;
3278 struct shmem_inode_info *info = SHMEM_I(inode);
3279 pgoff_t index = pos >> PAGE_SHIFT;
3280 struct folio *folio;
3281 int ret = 0;
3282
3283 /* i_rwsem is held by caller */
3284 if (unlikely(info->seals & (F_SEAL_GROW |
3285 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3286 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3287 return -EPERM;
3288 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3289 return -EPERM;
3290 }
3291
3292 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3293 if (ret)
3294 return ret;
3295
3296 if (folio_contain_hwpoisoned_page(folio)) {
3297 folio_unlock(folio);
3298 folio_put(folio);
3299 return -EIO;
3300 }
3301
3302 *foliop = folio;
3303 return 0;
3304 }
3305
3306 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3307 shmem_write_end(struct file *file, struct address_space *mapping,
3308 loff_t pos, unsigned len, unsigned copied,
3309 struct folio *folio, void *fsdata)
3310 {
3311 struct inode *inode = mapping->host;
3312
3313 if (pos + copied > inode->i_size)
3314 i_size_write(inode, pos + copied);
3315
3316 if (!folio_test_uptodate(folio)) {
3317 if (copied < folio_size(folio)) {
3318 size_t from = offset_in_folio(folio, pos);
3319 folio_zero_segments(folio, 0, from,
3320 from + copied, folio_size(folio));
3321 }
3322 folio_mark_uptodate(folio);
3323 }
3324 folio_mark_dirty(folio);
3325 folio_unlock(folio);
3326 folio_put(folio);
3327
3328 return copied;
3329 }
3330
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3331 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3332 {
3333 struct file *file = iocb->ki_filp;
3334 struct inode *inode = file_inode(file);
3335 struct address_space *mapping = inode->i_mapping;
3336 pgoff_t index;
3337 unsigned long offset;
3338 int error = 0;
3339 ssize_t retval = 0;
3340
3341 for (;;) {
3342 struct folio *folio = NULL;
3343 struct page *page = NULL;
3344 unsigned long nr, ret;
3345 loff_t end_offset, i_size = i_size_read(inode);
3346 bool fallback_page_copy = false;
3347 size_t fsize;
3348
3349 if (unlikely(iocb->ki_pos >= i_size))
3350 break;
3351
3352 index = iocb->ki_pos >> PAGE_SHIFT;
3353 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3354 if (error) {
3355 if (error == -EINVAL)
3356 error = 0;
3357 break;
3358 }
3359 if (folio) {
3360 folio_unlock(folio);
3361
3362 page = folio_file_page(folio, index);
3363 if (PageHWPoison(page)) {
3364 folio_put(folio);
3365 error = -EIO;
3366 break;
3367 }
3368
3369 if (folio_test_large(folio) &&
3370 folio_test_has_hwpoisoned(folio))
3371 fallback_page_copy = true;
3372 }
3373
3374 /*
3375 * We must evaluate after, since reads (unlike writes)
3376 * are called without i_rwsem protection against truncate
3377 */
3378 i_size = i_size_read(inode);
3379 if (unlikely(iocb->ki_pos >= i_size)) {
3380 if (folio)
3381 folio_put(folio);
3382 break;
3383 }
3384 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3385 if (folio && likely(!fallback_page_copy))
3386 fsize = folio_size(folio);
3387 else
3388 fsize = PAGE_SIZE;
3389 offset = iocb->ki_pos & (fsize - 1);
3390 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3391
3392 if (folio) {
3393 /*
3394 * If users can be writing to this page using arbitrary
3395 * virtual addresses, take care about potential aliasing
3396 * before reading the page on the kernel side.
3397 */
3398 if (mapping_writably_mapped(mapping)) {
3399 if (likely(!fallback_page_copy))
3400 flush_dcache_folio(folio);
3401 else
3402 flush_dcache_page(page);
3403 }
3404
3405 /*
3406 * Mark the folio accessed if we read the beginning.
3407 */
3408 if (!offset)
3409 folio_mark_accessed(folio);
3410 /*
3411 * Ok, we have the page, and it's up-to-date, so
3412 * now we can copy it to user space...
3413 */
3414 if (likely(!fallback_page_copy))
3415 ret = copy_folio_to_iter(folio, offset, nr, to);
3416 else
3417 ret = copy_page_to_iter(page, offset, nr, to);
3418 folio_put(folio);
3419 } else if (user_backed_iter(to)) {
3420 /*
3421 * Copy to user tends to be so well optimized, but
3422 * clear_user() not so much, that it is noticeably
3423 * faster to copy the zero page instead of clearing.
3424 */
3425 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3426 } else {
3427 /*
3428 * But submitting the same page twice in a row to
3429 * splice() - or others? - can result in confusion:
3430 * so don't attempt that optimization on pipes etc.
3431 */
3432 ret = iov_iter_zero(nr, to);
3433 }
3434
3435 retval += ret;
3436 iocb->ki_pos += ret;
3437
3438 if (!iov_iter_count(to))
3439 break;
3440 if (ret < nr) {
3441 error = -EFAULT;
3442 break;
3443 }
3444 cond_resched();
3445 }
3446
3447 file_accessed(file);
3448 return retval ? retval : error;
3449 }
3450
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3451 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3452 {
3453 struct file *file = iocb->ki_filp;
3454 struct inode *inode = file->f_mapping->host;
3455 ssize_t ret;
3456
3457 inode_lock(inode);
3458 ret = generic_write_checks(iocb, from);
3459 if (ret <= 0)
3460 goto unlock;
3461 ret = file_remove_privs(file);
3462 if (ret)
3463 goto unlock;
3464 ret = file_update_time(file);
3465 if (ret)
3466 goto unlock;
3467 ret = generic_perform_write(iocb, from);
3468 unlock:
3469 inode_unlock(inode);
3470 return ret;
3471 }
3472
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3473 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3474 struct pipe_buffer *buf)
3475 {
3476 return true;
3477 }
3478
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3479 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3480 struct pipe_buffer *buf)
3481 {
3482 }
3483
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3484 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3485 struct pipe_buffer *buf)
3486 {
3487 return false;
3488 }
3489
3490 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3491 .release = zero_pipe_buf_release,
3492 .try_steal = zero_pipe_buf_try_steal,
3493 .get = zero_pipe_buf_get,
3494 };
3495
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)3496 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3497 loff_t fpos, size_t size)
3498 {
3499 size_t offset = fpos & ~PAGE_MASK;
3500
3501 size = min_t(size_t, size, PAGE_SIZE - offset);
3502
3503 if (!pipe_is_full(pipe)) {
3504 struct pipe_buffer *buf = pipe_head_buf(pipe);
3505
3506 *buf = (struct pipe_buffer) {
3507 .ops = &zero_pipe_buf_ops,
3508 .page = ZERO_PAGE(0),
3509 .offset = offset,
3510 .len = size,
3511 };
3512 pipe->head++;
3513 }
3514
3515 return size;
3516 }
3517
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3518 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3519 struct pipe_inode_info *pipe,
3520 size_t len, unsigned int flags)
3521 {
3522 struct inode *inode = file_inode(in);
3523 struct address_space *mapping = inode->i_mapping;
3524 struct folio *folio = NULL;
3525 size_t total_spliced = 0, used, npages, n, part;
3526 loff_t isize;
3527 int error = 0;
3528
3529 /* Work out how much data we can actually add into the pipe */
3530 used = pipe_buf_usage(pipe);
3531 npages = max_t(ssize_t, pipe->max_usage - used, 0);
3532 len = min_t(size_t, len, npages * PAGE_SIZE);
3533
3534 do {
3535 bool fallback_page_splice = false;
3536 struct page *page = NULL;
3537 pgoff_t index;
3538 size_t size;
3539
3540 if (*ppos >= i_size_read(inode))
3541 break;
3542
3543 index = *ppos >> PAGE_SHIFT;
3544 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3545 if (error) {
3546 if (error == -EINVAL)
3547 error = 0;
3548 break;
3549 }
3550 if (folio) {
3551 folio_unlock(folio);
3552
3553 page = folio_file_page(folio, index);
3554 if (PageHWPoison(page)) {
3555 error = -EIO;
3556 break;
3557 }
3558
3559 if (folio_test_large(folio) &&
3560 folio_test_has_hwpoisoned(folio))
3561 fallback_page_splice = true;
3562 }
3563
3564 /*
3565 * i_size must be checked after we know the pages are Uptodate.
3566 *
3567 * Checking i_size after the check allows us to calculate
3568 * the correct value for "nr", which means the zero-filled
3569 * part of the page is not copied back to userspace (unless
3570 * another truncate extends the file - this is desired though).
3571 */
3572 isize = i_size_read(inode);
3573 if (unlikely(*ppos >= isize))
3574 break;
3575 /*
3576 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3577 * pages.
3578 */
3579 size = len;
3580 if (unlikely(fallback_page_splice)) {
3581 size_t offset = *ppos & ~PAGE_MASK;
3582
3583 size = umin(size, PAGE_SIZE - offset);
3584 }
3585 part = min_t(loff_t, isize - *ppos, size);
3586
3587 if (folio) {
3588 /*
3589 * If users can be writing to this page using arbitrary
3590 * virtual addresses, take care about potential aliasing
3591 * before reading the page on the kernel side.
3592 */
3593 if (mapping_writably_mapped(mapping)) {
3594 if (likely(!fallback_page_splice))
3595 flush_dcache_folio(folio);
3596 else
3597 flush_dcache_page(page);
3598 }
3599 folio_mark_accessed(folio);
3600 /*
3601 * Ok, we have the page, and it's up-to-date, so we can
3602 * now splice it into the pipe.
3603 */
3604 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3605 folio_put(folio);
3606 folio = NULL;
3607 } else {
3608 n = splice_zeropage_into_pipe(pipe, *ppos, part);
3609 }
3610
3611 if (!n)
3612 break;
3613 len -= n;
3614 total_spliced += n;
3615 *ppos += n;
3616 in->f_ra.prev_pos = *ppos;
3617 if (pipe_is_full(pipe))
3618 break;
3619
3620 cond_resched();
3621 } while (len);
3622
3623 if (folio)
3624 folio_put(folio);
3625
3626 file_accessed(in);
3627 return total_spliced ? total_spliced : error;
3628 }
3629
shmem_file_llseek(struct file * file,loff_t offset,int whence)3630 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3631 {
3632 struct address_space *mapping = file->f_mapping;
3633 struct inode *inode = mapping->host;
3634
3635 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3636 return generic_file_llseek_size(file, offset, whence,
3637 MAX_LFS_FILESIZE, i_size_read(inode));
3638 if (offset < 0)
3639 return -ENXIO;
3640
3641 inode_lock(inode);
3642 /* We're holding i_rwsem so we can access i_size directly */
3643 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3644 if (offset >= 0)
3645 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3646 inode_unlock(inode);
3647 return offset;
3648 }
3649
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3650 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3651 loff_t len)
3652 {
3653 struct inode *inode = file_inode(file);
3654 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3655 struct shmem_inode_info *info = SHMEM_I(inode);
3656 struct shmem_falloc shmem_falloc;
3657 pgoff_t start, index, end, undo_fallocend;
3658 int error;
3659
3660 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3661 return -EOPNOTSUPP;
3662
3663 inode_lock(inode);
3664
3665 if (mode & FALLOC_FL_PUNCH_HOLE) {
3666 struct address_space *mapping = file->f_mapping;
3667 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3668 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3669 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3670
3671 /* protected by i_rwsem */
3672 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3673 error = -EPERM;
3674 goto out;
3675 }
3676
3677 shmem_falloc.waitq = &shmem_falloc_waitq;
3678 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3679 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3680 spin_lock(&inode->i_lock);
3681 inode->i_private = &shmem_falloc;
3682 spin_unlock(&inode->i_lock);
3683
3684 if ((u64)unmap_end > (u64)unmap_start)
3685 unmap_mapping_range(mapping, unmap_start,
3686 1 + unmap_end - unmap_start, 0);
3687 shmem_truncate_range(inode, offset, offset + len - 1);
3688 /* No need to unmap again: hole-punching leaves COWed pages */
3689
3690 spin_lock(&inode->i_lock);
3691 inode->i_private = NULL;
3692 wake_up_all(&shmem_falloc_waitq);
3693 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3694 spin_unlock(&inode->i_lock);
3695 error = 0;
3696 goto out;
3697 }
3698
3699 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3700 error = inode_newsize_ok(inode, offset + len);
3701 if (error)
3702 goto out;
3703
3704 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3705 error = -EPERM;
3706 goto out;
3707 }
3708
3709 start = offset >> PAGE_SHIFT;
3710 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3711 /* Try to avoid a swapstorm if len is impossible to satisfy */
3712 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3713 error = -ENOSPC;
3714 goto out;
3715 }
3716
3717 shmem_falloc.waitq = NULL;
3718 shmem_falloc.start = start;
3719 shmem_falloc.next = start;
3720 shmem_falloc.nr_falloced = 0;
3721 shmem_falloc.nr_unswapped = 0;
3722 spin_lock(&inode->i_lock);
3723 inode->i_private = &shmem_falloc;
3724 spin_unlock(&inode->i_lock);
3725
3726 /*
3727 * info->fallocend is only relevant when huge pages might be
3728 * involved: to prevent split_huge_page() freeing fallocated
3729 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3730 */
3731 undo_fallocend = info->fallocend;
3732 if (info->fallocend < end)
3733 info->fallocend = end;
3734
3735 for (index = start; index < end; ) {
3736 struct folio *folio;
3737
3738 /*
3739 * Check for fatal signal so that we abort early in OOM
3740 * situations. We don't want to abort in case of non-fatal
3741 * signals as large fallocate can take noticeable time and
3742 * e.g. periodic timers may result in fallocate constantly
3743 * restarting.
3744 */
3745 if (fatal_signal_pending(current))
3746 error = -EINTR;
3747 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3748 error = -ENOMEM;
3749 else
3750 error = shmem_get_folio(inode, index, offset + len,
3751 &folio, SGP_FALLOC);
3752 if (error) {
3753 info->fallocend = undo_fallocend;
3754 /* Remove the !uptodate folios we added */
3755 if (index > start) {
3756 shmem_undo_range(inode,
3757 (loff_t)start << PAGE_SHIFT,
3758 ((loff_t)index << PAGE_SHIFT) - 1, true);
3759 }
3760 goto undone;
3761 }
3762
3763 /*
3764 * Here is a more important optimization than it appears:
3765 * a second SGP_FALLOC on the same large folio will clear it,
3766 * making it uptodate and un-undoable if we fail later.
3767 */
3768 index = folio_next_index(folio);
3769 /* Beware 32-bit wraparound */
3770 if (!index)
3771 index--;
3772
3773 /*
3774 * Inform shmem_writeout() how far we have reached.
3775 * No need for lock or barrier: we have the page lock.
3776 */
3777 if (!folio_test_uptodate(folio))
3778 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3779 shmem_falloc.next = index;
3780
3781 /*
3782 * If !uptodate, leave it that way so that freeable folios
3783 * can be recognized if we need to rollback on error later.
3784 * But mark it dirty so that memory pressure will swap rather
3785 * than free the folios we are allocating (and SGP_CACHE folios
3786 * might still be clean: we now need to mark those dirty too).
3787 */
3788 folio_mark_dirty(folio);
3789 folio_unlock(folio);
3790 folio_put(folio);
3791 cond_resched();
3792 }
3793
3794 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3795 i_size_write(inode, offset + len);
3796 undone:
3797 spin_lock(&inode->i_lock);
3798 inode->i_private = NULL;
3799 spin_unlock(&inode->i_lock);
3800 out:
3801 if (!error)
3802 file_modified(file);
3803 inode_unlock(inode);
3804 return error;
3805 }
3806
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3807 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3808 {
3809 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3810
3811 buf->f_type = TMPFS_MAGIC;
3812 buf->f_bsize = PAGE_SIZE;
3813 buf->f_namelen = NAME_MAX;
3814 if (sbinfo->max_blocks) {
3815 buf->f_blocks = sbinfo->max_blocks;
3816 buf->f_bavail =
3817 buf->f_bfree = sbinfo->max_blocks -
3818 percpu_counter_sum(&sbinfo->used_blocks);
3819 }
3820 if (sbinfo->max_inodes) {
3821 buf->f_files = sbinfo->max_inodes;
3822 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3823 }
3824 /* else leave those fields 0 like simple_statfs */
3825
3826 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3827
3828 return 0;
3829 }
3830
3831 /*
3832 * File creation. Allocate an inode, and we're done..
3833 */
3834 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3835 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3836 struct dentry *dentry, umode_t mode, dev_t dev)
3837 {
3838 struct inode *inode;
3839 int error;
3840
3841 if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3842 return -EINVAL;
3843
3844 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3845 if (IS_ERR(inode))
3846 return PTR_ERR(inode);
3847
3848 error = simple_acl_create(dir, inode);
3849 if (error)
3850 goto out_iput;
3851 error = security_inode_init_security(inode, dir, &dentry->d_name,
3852 shmem_initxattrs, NULL);
3853 if (error && error != -EOPNOTSUPP)
3854 goto out_iput;
3855
3856 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3857 if (error)
3858 goto out_iput;
3859
3860 dir->i_size += BOGO_DIRENT_SIZE;
3861 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3862 inode_inc_iversion(dir);
3863
3864 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3865 d_add(dentry, inode);
3866 else
3867 d_instantiate(dentry, inode);
3868
3869 dget(dentry); /* Extra count - pin the dentry in core */
3870 return error;
3871
3872 out_iput:
3873 iput(inode);
3874 return error;
3875 }
3876
3877 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3878 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3879 struct file *file, umode_t mode)
3880 {
3881 struct inode *inode;
3882 int error;
3883
3884 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3885 if (IS_ERR(inode)) {
3886 error = PTR_ERR(inode);
3887 goto err_out;
3888 }
3889 error = security_inode_init_security(inode, dir, NULL,
3890 shmem_initxattrs, NULL);
3891 if (error && error != -EOPNOTSUPP)
3892 goto out_iput;
3893 error = simple_acl_create(dir, inode);
3894 if (error)
3895 goto out_iput;
3896 d_tmpfile(file, inode);
3897
3898 err_out:
3899 return finish_open_simple(file, error);
3900 out_iput:
3901 iput(inode);
3902 return error;
3903 }
3904
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3905 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3906 struct dentry *dentry, umode_t mode)
3907 {
3908 int error;
3909
3910 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3911 if (error)
3912 return ERR_PTR(error);
3913 inc_nlink(dir);
3914 return NULL;
3915 }
3916
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3917 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3918 struct dentry *dentry, umode_t mode, bool excl)
3919 {
3920 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3921 }
3922
3923 /*
3924 * Link a file..
3925 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3926 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3927 struct dentry *dentry)
3928 {
3929 struct inode *inode = d_inode(old_dentry);
3930 int ret = 0;
3931
3932 /*
3933 * No ordinary (disk based) filesystem counts links as inodes;
3934 * but each new link needs a new dentry, pinning lowmem, and
3935 * tmpfs dentries cannot be pruned until they are unlinked.
3936 * But if an O_TMPFILE file is linked into the tmpfs, the
3937 * first link must skip that, to get the accounting right.
3938 */
3939 if (inode->i_nlink) {
3940 ret = shmem_reserve_inode(inode->i_sb, NULL);
3941 if (ret)
3942 goto out;
3943 }
3944
3945 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3946 if (ret) {
3947 if (inode->i_nlink)
3948 shmem_free_inode(inode->i_sb, 0);
3949 goto out;
3950 }
3951
3952 dir->i_size += BOGO_DIRENT_SIZE;
3953 inode_set_mtime_to_ts(dir,
3954 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3955 inode_inc_iversion(dir);
3956 inc_nlink(inode);
3957 ihold(inode); /* New dentry reference */
3958 dget(dentry); /* Extra pinning count for the created dentry */
3959 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3960 d_add(dentry, inode);
3961 else
3962 d_instantiate(dentry, inode);
3963 out:
3964 return ret;
3965 }
3966
shmem_unlink(struct inode * dir,struct dentry * dentry)3967 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3968 {
3969 struct inode *inode = d_inode(dentry);
3970
3971 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3972 shmem_free_inode(inode->i_sb, 0);
3973
3974 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3975
3976 dir->i_size -= BOGO_DIRENT_SIZE;
3977 inode_set_mtime_to_ts(dir,
3978 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3979 inode_inc_iversion(dir);
3980 drop_nlink(inode);
3981 dput(dentry); /* Undo the count from "create" - does all the work */
3982
3983 /*
3984 * For now, VFS can't deal with case-insensitive negative dentries, so
3985 * we invalidate them
3986 */
3987 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3988 d_invalidate(dentry);
3989
3990 return 0;
3991 }
3992
shmem_rmdir(struct inode * dir,struct dentry * dentry)3993 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3994 {
3995 if (!simple_empty(dentry))
3996 return -ENOTEMPTY;
3997
3998 drop_nlink(d_inode(dentry));
3999 drop_nlink(dir);
4000 return shmem_unlink(dir, dentry);
4001 }
4002
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)4003 static int shmem_whiteout(struct mnt_idmap *idmap,
4004 struct inode *old_dir, struct dentry *old_dentry)
4005 {
4006 struct dentry *whiteout;
4007 int error;
4008
4009 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
4010 if (!whiteout)
4011 return -ENOMEM;
4012
4013 error = shmem_mknod(idmap, old_dir, whiteout,
4014 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4015 dput(whiteout);
4016 if (error)
4017 return error;
4018
4019 /*
4020 * Cheat and hash the whiteout while the old dentry is still in
4021 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
4022 *
4023 * d_lookup() will consistently find one of them at this point,
4024 * not sure which one, but that isn't even important.
4025 */
4026 d_rehash(whiteout);
4027 return 0;
4028 }
4029
4030 /*
4031 * The VFS layer already does all the dentry stuff for rename,
4032 * we just have to decrement the usage count for the target if
4033 * it exists so that the VFS layer correctly free's it when it
4034 * gets overwritten.
4035 */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)4036 static int shmem_rename2(struct mnt_idmap *idmap,
4037 struct inode *old_dir, struct dentry *old_dentry,
4038 struct inode *new_dir, struct dentry *new_dentry,
4039 unsigned int flags)
4040 {
4041 struct inode *inode = d_inode(old_dentry);
4042 int they_are_dirs = S_ISDIR(inode->i_mode);
4043 int error;
4044
4045 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4046 return -EINVAL;
4047
4048 if (flags & RENAME_EXCHANGE)
4049 return simple_offset_rename_exchange(old_dir, old_dentry,
4050 new_dir, new_dentry);
4051
4052 if (!simple_empty(new_dentry))
4053 return -ENOTEMPTY;
4054
4055 if (flags & RENAME_WHITEOUT) {
4056 error = shmem_whiteout(idmap, old_dir, old_dentry);
4057 if (error)
4058 return error;
4059 }
4060
4061 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
4062 if (error)
4063 return error;
4064
4065 if (d_really_is_positive(new_dentry)) {
4066 (void) shmem_unlink(new_dir, new_dentry);
4067 if (they_are_dirs) {
4068 drop_nlink(d_inode(new_dentry));
4069 drop_nlink(old_dir);
4070 }
4071 } else if (they_are_dirs) {
4072 drop_nlink(old_dir);
4073 inc_nlink(new_dir);
4074 }
4075
4076 old_dir->i_size -= BOGO_DIRENT_SIZE;
4077 new_dir->i_size += BOGO_DIRENT_SIZE;
4078 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
4079 inode_inc_iversion(old_dir);
4080 inode_inc_iversion(new_dir);
4081 return 0;
4082 }
4083
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)4084 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
4085 struct dentry *dentry, const char *symname)
4086 {
4087 int error;
4088 int len;
4089 struct inode *inode;
4090 struct folio *folio;
4091 char *link;
4092
4093 len = strlen(symname) + 1;
4094 if (len > PAGE_SIZE)
4095 return -ENAMETOOLONG;
4096
4097 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
4098 VM_NORESERVE);
4099 if (IS_ERR(inode))
4100 return PTR_ERR(inode);
4101
4102 error = security_inode_init_security(inode, dir, &dentry->d_name,
4103 shmem_initxattrs, NULL);
4104 if (error && error != -EOPNOTSUPP)
4105 goto out_iput;
4106
4107 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
4108 if (error)
4109 goto out_iput;
4110
4111 inode->i_size = len-1;
4112 if (len <= SHORT_SYMLINK_LEN) {
4113 link = kmemdup(symname, len, GFP_KERNEL);
4114 if (!link) {
4115 error = -ENOMEM;
4116 goto out_remove_offset;
4117 }
4118 inode->i_op = &shmem_short_symlink_operations;
4119 inode_set_cached_link(inode, link, len - 1);
4120 } else {
4121 inode_nohighmem(inode);
4122 inode->i_mapping->a_ops = &shmem_aops;
4123 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
4124 if (error)
4125 goto out_remove_offset;
4126 inode->i_op = &shmem_symlink_inode_operations;
4127 memcpy(folio_address(folio), symname, len);
4128 folio_mark_uptodate(folio);
4129 folio_mark_dirty(folio);
4130 folio_unlock(folio);
4131 folio_put(folio);
4132 }
4133 dir->i_size += BOGO_DIRENT_SIZE;
4134 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
4135 inode_inc_iversion(dir);
4136 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
4137 d_add(dentry, inode);
4138 else
4139 d_instantiate(dentry, inode);
4140 dget(dentry);
4141 return 0;
4142
4143 out_remove_offset:
4144 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4145 out_iput:
4146 iput(inode);
4147 return error;
4148 }
4149
shmem_put_link(void * arg)4150 static void shmem_put_link(void *arg)
4151 {
4152 folio_mark_accessed(arg);
4153 folio_put(arg);
4154 }
4155
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)4156 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
4157 struct delayed_call *done)
4158 {
4159 struct folio *folio = NULL;
4160 int error;
4161
4162 if (!dentry) {
4163 folio = filemap_get_folio(inode->i_mapping, 0);
4164 if (IS_ERR(folio))
4165 return ERR_PTR(-ECHILD);
4166 if (PageHWPoison(folio_page(folio, 0)) ||
4167 !folio_test_uptodate(folio)) {
4168 folio_put(folio);
4169 return ERR_PTR(-ECHILD);
4170 }
4171 } else {
4172 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4173 if (error)
4174 return ERR_PTR(error);
4175 if (!folio)
4176 return ERR_PTR(-ECHILD);
4177 if (PageHWPoison(folio_page(folio, 0))) {
4178 folio_unlock(folio);
4179 folio_put(folio);
4180 return ERR_PTR(-ECHILD);
4181 }
4182 folio_unlock(folio);
4183 }
4184 set_delayed_call(done, shmem_put_link, folio);
4185 return folio_address(folio);
4186 }
4187
4188 #ifdef CONFIG_TMPFS_XATTR
4189
shmem_fileattr_get(struct dentry * dentry,struct fileattr * fa)4190 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
4191 {
4192 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4193
4194 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4195
4196 return 0;
4197 }
4198
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)4199 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4200 struct dentry *dentry, struct fileattr *fa)
4201 {
4202 struct inode *inode = d_inode(dentry);
4203 struct shmem_inode_info *info = SHMEM_I(inode);
4204 int ret, flags;
4205
4206 if (fileattr_has_fsx(fa))
4207 return -EOPNOTSUPP;
4208 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4209 return -EOPNOTSUPP;
4210
4211 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4212 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
4213
4214 ret = shmem_set_inode_flags(inode, flags, dentry);
4215
4216 if (ret)
4217 return ret;
4218
4219 info->fsflags = flags;
4220
4221 inode_set_ctime_current(inode);
4222 inode_inc_iversion(inode);
4223 return 0;
4224 }
4225
4226 /*
4227 * Superblocks without xattr inode operations may get some security.* xattr
4228 * support from the LSM "for free". As soon as we have any other xattrs
4229 * like ACLs, we also need to implement the security.* handlers at
4230 * filesystem level, though.
4231 */
4232
4233 /*
4234 * Callback for security_inode_init_security() for acquiring xattrs.
4235 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)4236 static int shmem_initxattrs(struct inode *inode,
4237 const struct xattr *xattr_array, void *fs_info)
4238 {
4239 struct shmem_inode_info *info = SHMEM_I(inode);
4240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4241 const struct xattr *xattr;
4242 struct simple_xattr *new_xattr;
4243 size_t ispace = 0;
4244 size_t len;
4245
4246 if (sbinfo->max_inodes) {
4247 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4248 ispace += simple_xattr_space(xattr->name,
4249 xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4250 }
4251 if (ispace) {
4252 raw_spin_lock(&sbinfo->stat_lock);
4253 if (sbinfo->free_ispace < ispace)
4254 ispace = 0;
4255 else
4256 sbinfo->free_ispace -= ispace;
4257 raw_spin_unlock(&sbinfo->stat_lock);
4258 if (!ispace)
4259 return -ENOSPC;
4260 }
4261 }
4262
4263 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4264 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4265 if (!new_xattr)
4266 break;
4267
4268 len = strlen(xattr->name) + 1;
4269 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4270 GFP_KERNEL_ACCOUNT);
4271 if (!new_xattr->name) {
4272 kvfree(new_xattr);
4273 break;
4274 }
4275
4276 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4277 XATTR_SECURITY_PREFIX_LEN);
4278 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4279 xattr->name, len);
4280
4281 simple_xattr_add(&info->xattrs, new_xattr);
4282 }
4283
4284 if (xattr->name != NULL) {
4285 if (ispace) {
4286 raw_spin_lock(&sbinfo->stat_lock);
4287 sbinfo->free_ispace += ispace;
4288 raw_spin_unlock(&sbinfo->stat_lock);
4289 }
4290 simple_xattrs_free(&info->xattrs, NULL);
4291 return -ENOMEM;
4292 }
4293
4294 return 0;
4295 }
4296
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)4297 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4298 struct dentry *unused, struct inode *inode,
4299 const char *name, void *buffer, size_t size)
4300 {
4301 struct shmem_inode_info *info = SHMEM_I(inode);
4302
4303 name = xattr_full_name(handler, name);
4304 return simple_xattr_get(&info->xattrs, name, buffer, size);
4305 }
4306
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)4307 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4308 struct mnt_idmap *idmap,
4309 struct dentry *unused, struct inode *inode,
4310 const char *name, const void *value,
4311 size_t size, int flags)
4312 {
4313 struct shmem_inode_info *info = SHMEM_I(inode);
4314 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4315 struct simple_xattr *old_xattr;
4316 size_t ispace = 0;
4317
4318 name = xattr_full_name(handler, name);
4319 if (value && sbinfo->max_inodes) {
4320 ispace = simple_xattr_space(name, size);
4321 raw_spin_lock(&sbinfo->stat_lock);
4322 if (sbinfo->free_ispace < ispace)
4323 ispace = 0;
4324 else
4325 sbinfo->free_ispace -= ispace;
4326 raw_spin_unlock(&sbinfo->stat_lock);
4327 if (!ispace)
4328 return -ENOSPC;
4329 }
4330
4331 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4332 if (!IS_ERR(old_xattr)) {
4333 ispace = 0;
4334 if (old_xattr && sbinfo->max_inodes)
4335 ispace = simple_xattr_space(old_xattr->name,
4336 old_xattr->size);
4337 simple_xattr_free(old_xattr);
4338 old_xattr = NULL;
4339 inode_set_ctime_current(inode);
4340 inode_inc_iversion(inode);
4341 }
4342 if (ispace) {
4343 raw_spin_lock(&sbinfo->stat_lock);
4344 sbinfo->free_ispace += ispace;
4345 raw_spin_unlock(&sbinfo->stat_lock);
4346 }
4347 return PTR_ERR(old_xattr);
4348 }
4349
4350 static const struct xattr_handler shmem_security_xattr_handler = {
4351 .prefix = XATTR_SECURITY_PREFIX,
4352 .get = shmem_xattr_handler_get,
4353 .set = shmem_xattr_handler_set,
4354 };
4355
4356 static const struct xattr_handler shmem_trusted_xattr_handler = {
4357 .prefix = XATTR_TRUSTED_PREFIX,
4358 .get = shmem_xattr_handler_get,
4359 .set = shmem_xattr_handler_set,
4360 };
4361
4362 static const struct xattr_handler shmem_user_xattr_handler = {
4363 .prefix = XATTR_USER_PREFIX,
4364 .get = shmem_xattr_handler_get,
4365 .set = shmem_xattr_handler_set,
4366 };
4367
4368 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4369 &shmem_security_xattr_handler,
4370 &shmem_trusted_xattr_handler,
4371 &shmem_user_xattr_handler,
4372 NULL
4373 };
4374
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)4375 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4376 {
4377 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4378 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4379 }
4380 #endif /* CONFIG_TMPFS_XATTR */
4381
4382 static const struct inode_operations shmem_short_symlink_operations = {
4383 .getattr = shmem_getattr,
4384 .setattr = shmem_setattr,
4385 .get_link = simple_get_link,
4386 #ifdef CONFIG_TMPFS_XATTR
4387 .listxattr = shmem_listxattr,
4388 #endif
4389 };
4390
4391 static const struct inode_operations shmem_symlink_inode_operations = {
4392 .getattr = shmem_getattr,
4393 .setattr = shmem_setattr,
4394 .get_link = shmem_get_link,
4395 #ifdef CONFIG_TMPFS_XATTR
4396 .listxattr = shmem_listxattr,
4397 #endif
4398 };
4399
shmem_get_parent(struct dentry * child)4400 static struct dentry *shmem_get_parent(struct dentry *child)
4401 {
4402 return ERR_PTR(-ESTALE);
4403 }
4404
shmem_match(struct inode * ino,void * vfh)4405 static int shmem_match(struct inode *ino, void *vfh)
4406 {
4407 __u32 *fh = vfh;
4408 __u64 inum = fh[2];
4409 inum = (inum << 32) | fh[1];
4410 return ino->i_ino == inum && fh[0] == ino->i_generation;
4411 }
4412
4413 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)4414 static struct dentry *shmem_find_alias(struct inode *inode)
4415 {
4416 struct dentry *alias = d_find_alias(inode);
4417
4418 return alias ?: d_find_any_alias(inode);
4419 }
4420
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)4421 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4422 struct fid *fid, int fh_len, int fh_type)
4423 {
4424 struct inode *inode;
4425 struct dentry *dentry = NULL;
4426 u64 inum;
4427
4428 if (fh_len < 3)
4429 return NULL;
4430
4431 inum = fid->raw[2];
4432 inum = (inum << 32) | fid->raw[1];
4433
4434 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4435 shmem_match, fid->raw);
4436 if (inode) {
4437 dentry = shmem_find_alias(inode);
4438 iput(inode);
4439 }
4440
4441 return dentry;
4442 }
4443
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)4444 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4445 struct inode *parent)
4446 {
4447 if (*len < 3) {
4448 *len = 3;
4449 return FILEID_INVALID;
4450 }
4451
4452 if (inode_unhashed(inode)) {
4453 /* Unfortunately insert_inode_hash is not idempotent,
4454 * so as we hash inodes here rather than at creation
4455 * time, we need a lock to ensure we only try
4456 * to do it once
4457 */
4458 static DEFINE_SPINLOCK(lock);
4459 spin_lock(&lock);
4460 if (inode_unhashed(inode))
4461 __insert_inode_hash(inode,
4462 inode->i_ino + inode->i_generation);
4463 spin_unlock(&lock);
4464 }
4465
4466 fh[0] = inode->i_generation;
4467 fh[1] = inode->i_ino;
4468 fh[2] = ((__u64)inode->i_ino) >> 32;
4469
4470 *len = 3;
4471 return 1;
4472 }
4473
4474 static const struct export_operations shmem_export_ops = {
4475 .get_parent = shmem_get_parent,
4476 .encode_fh = shmem_encode_fh,
4477 .fh_to_dentry = shmem_fh_to_dentry,
4478 };
4479
4480 enum shmem_param {
4481 Opt_gid,
4482 Opt_huge,
4483 Opt_mode,
4484 Opt_mpol,
4485 Opt_nr_blocks,
4486 Opt_nr_inodes,
4487 Opt_size,
4488 Opt_uid,
4489 Opt_inode32,
4490 Opt_inode64,
4491 Opt_noswap,
4492 Opt_quota,
4493 Opt_usrquota,
4494 Opt_grpquota,
4495 Opt_usrquota_block_hardlimit,
4496 Opt_usrquota_inode_hardlimit,
4497 Opt_grpquota_block_hardlimit,
4498 Opt_grpquota_inode_hardlimit,
4499 Opt_casefold_version,
4500 Opt_casefold,
4501 Opt_strict_encoding,
4502 };
4503
4504 static const struct constant_table shmem_param_enums_huge[] = {
4505 {"never", SHMEM_HUGE_NEVER },
4506 {"always", SHMEM_HUGE_ALWAYS },
4507 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
4508 {"advise", SHMEM_HUGE_ADVISE },
4509 {}
4510 };
4511
4512 const struct fs_parameter_spec shmem_fs_parameters[] = {
4513 fsparam_gid ("gid", Opt_gid),
4514 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
4515 fsparam_u32oct("mode", Opt_mode),
4516 fsparam_string("mpol", Opt_mpol),
4517 fsparam_string("nr_blocks", Opt_nr_blocks),
4518 fsparam_string("nr_inodes", Opt_nr_inodes),
4519 fsparam_string("size", Opt_size),
4520 fsparam_uid ("uid", Opt_uid),
4521 fsparam_flag ("inode32", Opt_inode32),
4522 fsparam_flag ("inode64", Opt_inode64),
4523 fsparam_flag ("noswap", Opt_noswap),
4524 #ifdef CONFIG_TMPFS_QUOTA
4525 fsparam_flag ("quota", Opt_quota),
4526 fsparam_flag ("usrquota", Opt_usrquota),
4527 fsparam_flag ("grpquota", Opt_grpquota),
4528 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4529 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4530 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4531 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4532 #endif
4533 fsparam_string("casefold", Opt_casefold_version),
4534 fsparam_flag ("casefold", Opt_casefold),
4535 fsparam_flag ("strict_encoding", Opt_strict_encoding),
4536 {}
4537 };
4538
4539 #if IS_ENABLED(CONFIG_UNICODE)
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4540 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4541 bool latest_version)
4542 {
4543 struct shmem_options *ctx = fc->fs_private;
4544 int version = UTF8_LATEST;
4545 struct unicode_map *encoding;
4546 char *version_str = param->string + 5;
4547
4548 if (!latest_version) {
4549 if (strncmp(param->string, "utf8-", 5))
4550 return invalfc(fc, "Only UTF-8 encodings are supported "
4551 "in the format: utf8-<version number>");
4552
4553 version = utf8_parse_version(version_str);
4554 if (version < 0)
4555 return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4556 }
4557
4558 encoding = utf8_load(version);
4559
4560 if (IS_ERR(encoding)) {
4561 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4562 unicode_major(version), unicode_minor(version),
4563 unicode_rev(version));
4564 }
4565
4566 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4567 unicode_major(version), unicode_minor(version), unicode_rev(version));
4568
4569 ctx->encoding = encoding;
4570
4571 return 0;
4572 }
4573 #else
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4574 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4575 bool latest_version)
4576 {
4577 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4578 }
4579 #endif
4580
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)4581 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4582 {
4583 struct shmem_options *ctx = fc->fs_private;
4584 struct fs_parse_result result;
4585 unsigned long long size;
4586 char *rest;
4587 int opt;
4588 kuid_t kuid;
4589 kgid_t kgid;
4590
4591 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4592 if (opt < 0)
4593 return opt;
4594
4595 switch (opt) {
4596 case Opt_size:
4597 size = memparse(param->string, &rest);
4598 if (*rest == '%') {
4599 size <<= PAGE_SHIFT;
4600 size *= totalram_pages();
4601 do_div(size, 100);
4602 rest++;
4603 }
4604 if (*rest)
4605 goto bad_value;
4606 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4607 ctx->seen |= SHMEM_SEEN_BLOCKS;
4608 break;
4609 case Opt_nr_blocks:
4610 ctx->blocks = memparse(param->string, &rest);
4611 if (*rest || ctx->blocks > LONG_MAX)
4612 goto bad_value;
4613 ctx->seen |= SHMEM_SEEN_BLOCKS;
4614 break;
4615 case Opt_nr_inodes:
4616 ctx->inodes = memparse(param->string, &rest);
4617 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4618 goto bad_value;
4619 ctx->seen |= SHMEM_SEEN_INODES;
4620 break;
4621 case Opt_mode:
4622 ctx->mode = result.uint_32 & 07777;
4623 break;
4624 case Opt_uid:
4625 kuid = result.uid;
4626
4627 /*
4628 * The requested uid must be representable in the
4629 * filesystem's idmapping.
4630 */
4631 if (!kuid_has_mapping(fc->user_ns, kuid))
4632 goto bad_value;
4633
4634 ctx->uid = kuid;
4635 break;
4636 case Opt_gid:
4637 kgid = result.gid;
4638
4639 /*
4640 * The requested gid must be representable in the
4641 * filesystem's idmapping.
4642 */
4643 if (!kgid_has_mapping(fc->user_ns, kgid))
4644 goto bad_value;
4645
4646 ctx->gid = kgid;
4647 break;
4648 case Opt_huge:
4649 ctx->huge = result.uint_32;
4650 if (ctx->huge != SHMEM_HUGE_NEVER &&
4651 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4652 has_transparent_hugepage()))
4653 goto unsupported_parameter;
4654 ctx->seen |= SHMEM_SEEN_HUGE;
4655 break;
4656 case Opt_mpol:
4657 if (IS_ENABLED(CONFIG_NUMA)) {
4658 mpol_put(ctx->mpol);
4659 ctx->mpol = NULL;
4660 if (mpol_parse_str(param->string, &ctx->mpol))
4661 goto bad_value;
4662 break;
4663 }
4664 goto unsupported_parameter;
4665 case Opt_inode32:
4666 ctx->full_inums = false;
4667 ctx->seen |= SHMEM_SEEN_INUMS;
4668 break;
4669 case Opt_inode64:
4670 if (sizeof(ino_t) < 8) {
4671 return invalfc(fc,
4672 "Cannot use inode64 with <64bit inums in kernel\n");
4673 }
4674 ctx->full_inums = true;
4675 ctx->seen |= SHMEM_SEEN_INUMS;
4676 break;
4677 case Opt_noswap:
4678 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4679 return invalfc(fc,
4680 "Turning off swap in unprivileged tmpfs mounts unsupported");
4681 }
4682 ctx->noswap = true;
4683 ctx->seen |= SHMEM_SEEN_NOSWAP;
4684 break;
4685 case Opt_quota:
4686 if (fc->user_ns != &init_user_ns)
4687 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4688 ctx->seen |= SHMEM_SEEN_QUOTA;
4689 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4690 break;
4691 case Opt_usrquota:
4692 if (fc->user_ns != &init_user_ns)
4693 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4694 ctx->seen |= SHMEM_SEEN_QUOTA;
4695 ctx->quota_types |= QTYPE_MASK_USR;
4696 break;
4697 case Opt_grpquota:
4698 if (fc->user_ns != &init_user_ns)
4699 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4700 ctx->seen |= SHMEM_SEEN_QUOTA;
4701 ctx->quota_types |= QTYPE_MASK_GRP;
4702 break;
4703 case Opt_usrquota_block_hardlimit:
4704 size = memparse(param->string, &rest);
4705 if (*rest || !size)
4706 goto bad_value;
4707 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4708 return invalfc(fc,
4709 "User quota block hardlimit too large.");
4710 ctx->qlimits.usrquota_bhardlimit = size;
4711 break;
4712 case Opt_grpquota_block_hardlimit:
4713 size = memparse(param->string, &rest);
4714 if (*rest || !size)
4715 goto bad_value;
4716 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4717 return invalfc(fc,
4718 "Group quota block hardlimit too large.");
4719 ctx->qlimits.grpquota_bhardlimit = size;
4720 break;
4721 case Opt_usrquota_inode_hardlimit:
4722 size = memparse(param->string, &rest);
4723 if (*rest || !size)
4724 goto bad_value;
4725 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4726 return invalfc(fc,
4727 "User quota inode hardlimit too large.");
4728 ctx->qlimits.usrquota_ihardlimit = size;
4729 break;
4730 case Opt_grpquota_inode_hardlimit:
4731 size = memparse(param->string, &rest);
4732 if (*rest || !size)
4733 goto bad_value;
4734 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4735 return invalfc(fc,
4736 "Group quota inode hardlimit too large.");
4737 ctx->qlimits.grpquota_ihardlimit = size;
4738 break;
4739 case Opt_casefold_version:
4740 return shmem_parse_opt_casefold(fc, param, false);
4741 case Opt_casefold:
4742 return shmem_parse_opt_casefold(fc, param, true);
4743 case Opt_strict_encoding:
4744 #if IS_ENABLED(CONFIG_UNICODE)
4745 ctx->strict_encoding = true;
4746 break;
4747 #else
4748 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4749 #endif
4750 }
4751 return 0;
4752
4753 unsupported_parameter:
4754 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4755 bad_value:
4756 return invalfc(fc, "Bad value for '%s'", param->key);
4757 }
4758
shmem_next_opt(char ** s)4759 static char *shmem_next_opt(char **s)
4760 {
4761 char *sbegin = *s;
4762 char *p;
4763
4764 if (sbegin == NULL)
4765 return NULL;
4766
4767 /*
4768 * NUL-terminate this option: unfortunately,
4769 * mount options form a comma-separated list,
4770 * but mpol's nodelist may also contain commas.
4771 */
4772 for (;;) {
4773 p = strchr(*s, ',');
4774 if (p == NULL)
4775 break;
4776 *s = p + 1;
4777 if (!isdigit(*(p+1))) {
4778 *p = '\0';
4779 return sbegin;
4780 }
4781 }
4782
4783 *s = NULL;
4784 return sbegin;
4785 }
4786
shmem_parse_monolithic(struct fs_context * fc,void * data)4787 static int shmem_parse_monolithic(struct fs_context *fc, void *data)
4788 {
4789 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt);
4790 }
4791
4792 /*
4793 * Reconfigure a shmem filesystem.
4794 */
shmem_reconfigure(struct fs_context * fc)4795 static int shmem_reconfigure(struct fs_context *fc)
4796 {
4797 struct shmem_options *ctx = fc->fs_private;
4798 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4799 unsigned long used_isp;
4800 struct mempolicy *mpol = NULL;
4801 const char *err;
4802
4803 raw_spin_lock(&sbinfo->stat_lock);
4804 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4805
4806 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4807 if (!sbinfo->max_blocks) {
4808 err = "Cannot retroactively limit size";
4809 goto out;
4810 }
4811 if (percpu_counter_compare(&sbinfo->used_blocks,
4812 ctx->blocks) > 0) {
4813 err = "Too small a size for current use";
4814 goto out;
4815 }
4816 }
4817 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4818 if (!sbinfo->max_inodes) {
4819 err = "Cannot retroactively limit inodes";
4820 goto out;
4821 }
4822 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4823 err = "Too few inodes for current use";
4824 goto out;
4825 }
4826 }
4827
4828 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4829 sbinfo->next_ino > UINT_MAX) {
4830 err = "Current inum too high to switch to 32-bit inums";
4831 goto out;
4832 }
4833 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4834 err = "Cannot disable swap on remount";
4835 goto out;
4836 }
4837 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4838 err = "Cannot enable swap on remount if it was disabled on first mount";
4839 goto out;
4840 }
4841
4842 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4843 !sb_any_quota_loaded(fc->root->d_sb)) {
4844 err = "Cannot enable quota on remount";
4845 goto out;
4846 }
4847
4848 #ifdef CONFIG_TMPFS_QUOTA
4849 #define CHANGED_LIMIT(name) \
4850 (ctx->qlimits.name## hardlimit && \
4851 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4852
4853 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4854 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4855 err = "Cannot change global quota limit on remount";
4856 goto out;
4857 }
4858 #endif /* CONFIG_TMPFS_QUOTA */
4859
4860 if (ctx->seen & SHMEM_SEEN_HUGE)
4861 sbinfo->huge = ctx->huge;
4862 if (ctx->seen & SHMEM_SEEN_INUMS)
4863 sbinfo->full_inums = ctx->full_inums;
4864 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4865 sbinfo->max_blocks = ctx->blocks;
4866 if (ctx->seen & SHMEM_SEEN_INODES) {
4867 sbinfo->max_inodes = ctx->inodes;
4868 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4869 }
4870
4871 /*
4872 * Preserve previous mempolicy unless mpol remount option was specified.
4873 */
4874 if (ctx->mpol) {
4875 mpol = sbinfo->mpol;
4876 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4877 ctx->mpol = NULL;
4878 }
4879
4880 if (ctx->noswap)
4881 sbinfo->noswap = true;
4882
4883 raw_spin_unlock(&sbinfo->stat_lock);
4884 mpol_put(mpol);
4885 return 0;
4886 out:
4887 raw_spin_unlock(&sbinfo->stat_lock);
4888 return invalfc(fc, "%s", err);
4889 }
4890
shmem_show_options(struct seq_file * seq,struct dentry * root)4891 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4892 {
4893 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4894 struct mempolicy *mpol;
4895
4896 if (sbinfo->max_blocks != shmem_default_max_blocks())
4897 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4898 if (sbinfo->max_inodes != shmem_default_max_inodes())
4899 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4900 if (sbinfo->mode != (0777 | S_ISVTX))
4901 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4902 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4903 seq_printf(seq, ",uid=%u",
4904 from_kuid_munged(&init_user_ns, sbinfo->uid));
4905 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4906 seq_printf(seq, ",gid=%u",
4907 from_kgid_munged(&init_user_ns, sbinfo->gid));
4908
4909 /*
4910 * Showing inode{64,32} might be useful even if it's the system default,
4911 * since then people don't have to resort to checking both here and
4912 * /proc/config.gz to confirm 64-bit inums were successfully applied
4913 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4914 *
4915 * We hide it when inode64 isn't the default and we are using 32-bit
4916 * inodes, since that probably just means the feature isn't even under
4917 * consideration.
4918 *
4919 * As such:
4920 *
4921 * +-----------------+-----------------+
4922 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4923 * +------------------+-----------------+-----------------+
4924 * | full_inums=true | show | show |
4925 * | full_inums=false | show | hide |
4926 * +------------------+-----------------+-----------------+
4927 *
4928 */
4929 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4930 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4931 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4932 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4933 if (sbinfo->huge)
4934 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4935 #endif
4936 mpol = shmem_get_sbmpol(sbinfo);
4937 shmem_show_mpol(seq, mpol);
4938 mpol_put(mpol);
4939 if (sbinfo->noswap)
4940 seq_printf(seq, ",noswap");
4941 #ifdef CONFIG_TMPFS_QUOTA
4942 if (sb_has_quota_active(root->d_sb, USRQUOTA))
4943 seq_printf(seq, ",usrquota");
4944 if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4945 seq_printf(seq, ",grpquota");
4946 if (sbinfo->qlimits.usrquota_bhardlimit)
4947 seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4948 sbinfo->qlimits.usrquota_bhardlimit);
4949 if (sbinfo->qlimits.grpquota_bhardlimit)
4950 seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4951 sbinfo->qlimits.grpquota_bhardlimit);
4952 if (sbinfo->qlimits.usrquota_ihardlimit)
4953 seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4954 sbinfo->qlimits.usrquota_ihardlimit);
4955 if (sbinfo->qlimits.grpquota_ihardlimit)
4956 seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4957 sbinfo->qlimits.grpquota_ihardlimit);
4958 #endif
4959 return 0;
4960 }
4961
4962 #endif /* CONFIG_TMPFS */
4963
shmem_put_super(struct super_block * sb)4964 static void shmem_put_super(struct super_block *sb)
4965 {
4966 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4967
4968 #if IS_ENABLED(CONFIG_UNICODE)
4969 if (sb->s_encoding)
4970 utf8_unload(sb->s_encoding);
4971 #endif
4972
4973 #ifdef CONFIG_TMPFS_QUOTA
4974 shmem_disable_quotas(sb);
4975 #endif
4976 free_percpu(sbinfo->ino_batch);
4977 percpu_counter_destroy(&sbinfo->used_blocks);
4978 mpol_put(sbinfo->mpol);
4979 kfree(sbinfo);
4980 sb->s_fs_info = NULL;
4981 }
4982
4983 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4984 static const struct dentry_operations shmem_ci_dentry_ops = {
4985 .d_hash = generic_ci_d_hash,
4986 .d_compare = generic_ci_d_compare,
4987 .d_delete = always_delete_dentry,
4988 };
4989 #endif
4990
shmem_fill_super(struct super_block * sb,struct fs_context * fc)4991 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4992 {
4993 struct shmem_options *ctx = fc->fs_private;
4994 struct inode *inode;
4995 struct shmem_sb_info *sbinfo;
4996 int error = -ENOMEM;
4997
4998 /* Round up to L1_CACHE_BYTES to resist false sharing */
4999 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
5000 L1_CACHE_BYTES), GFP_KERNEL);
5001 if (!sbinfo)
5002 return error;
5003
5004 sb->s_fs_info = sbinfo;
5005
5006 #ifdef CONFIG_TMPFS
5007 /*
5008 * Per default we only allow half of the physical ram per
5009 * tmpfs instance, limiting inodes to one per page of lowmem;
5010 * but the internal instance is left unlimited.
5011 */
5012 if (!(sb->s_flags & SB_KERNMOUNT)) {
5013 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
5014 ctx->blocks = shmem_default_max_blocks();
5015 if (!(ctx->seen & SHMEM_SEEN_INODES))
5016 ctx->inodes = shmem_default_max_inodes();
5017 if (!(ctx->seen & SHMEM_SEEN_INUMS))
5018 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
5019 sbinfo->noswap = ctx->noswap;
5020 } else {
5021 sb->s_flags |= SB_NOUSER;
5022 }
5023 sb->s_export_op = &shmem_export_ops;
5024 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
5025
5026 #if IS_ENABLED(CONFIG_UNICODE)
5027 if (!ctx->encoding && ctx->strict_encoding) {
5028 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
5029 error = -EINVAL;
5030 goto failed;
5031 }
5032
5033 if (ctx->encoding) {
5034 sb->s_encoding = ctx->encoding;
5035 sb->s_d_op = &shmem_ci_dentry_ops;
5036 if (ctx->strict_encoding)
5037 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
5038 }
5039 #endif
5040
5041 #else
5042 sb->s_flags |= SB_NOUSER;
5043 #endif /* CONFIG_TMPFS */
5044 sbinfo->max_blocks = ctx->blocks;
5045 sbinfo->max_inodes = ctx->inodes;
5046 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
5047 if (sb->s_flags & SB_KERNMOUNT) {
5048 sbinfo->ino_batch = alloc_percpu(ino_t);
5049 if (!sbinfo->ino_batch)
5050 goto failed;
5051 }
5052 sbinfo->uid = ctx->uid;
5053 sbinfo->gid = ctx->gid;
5054 sbinfo->full_inums = ctx->full_inums;
5055 sbinfo->mode = ctx->mode;
5056 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5057 if (ctx->seen & SHMEM_SEEN_HUGE)
5058 sbinfo->huge = ctx->huge;
5059 else
5060 sbinfo->huge = tmpfs_huge;
5061 #endif
5062 sbinfo->mpol = ctx->mpol;
5063 ctx->mpol = NULL;
5064
5065 raw_spin_lock_init(&sbinfo->stat_lock);
5066 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
5067 goto failed;
5068 spin_lock_init(&sbinfo->shrinklist_lock);
5069 INIT_LIST_HEAD(&sbinfo->shrinklist);
5070
5071 sb->s_maxbytes = MAX_LFS_FILESIZE;
5072 sb->s_blocksize = PAGE_SIZE;
5073 sb->s_blocksize_bits = PAGE_SHIFT;
5074 sb->s_magic = TMPFS_MAGIC;
5075 sb->s_op = &shmem_ops;
5076 sb->s_time_gran = 1;
5077 #ifdef CONFIG_TMPFS_XATTR
5078 sb->s_xattr = shmem_xattr_handlers;
5079 #endif
5080 #ifdef CONFIG_TMPFS_POSIX_ACL
5081 sb->s_flags |= SB_POSIXACL;
5082 #endif
5083 uuid_t uuid;
5084 uuid_gen(&uuid);
5085 super_set_uuid(sb, uuid.b, sizeof(uuid));
5086
5087 #ifdef CONFIG_TMPFS_QUOTA
5088 if (ctx->seen & SHMEM_SEEN_QUOTA) {
5089 sb->dq_op = &shmem_quota_operations;
5090 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5091 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
5092
5093 /* Copy the default limits from ctx into sbinfo */
5094 memcpy(&sbinfo->qlimits, &ctx->qlimits,
5095 sizeof(struct shmem_quota_limits));
5096
5097 if (shmem_enable_quotas(sb, ctx->quota_types))
5098 goto failed;
5099 }
5100 #endif /* CONFIG_TMPFS_QUOTA */
5101
5102 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
5103 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
5104 if (IS_ERR(inode)) {
5105 error = PTR_ERR(inode);
5106 goto failed;
5107 }
5108 inode->i_uid = sbinfo->uid;
5109 inode->i_gid = sbinfo->gid;
5110 sb->s_root = d_make_root(inode);
5111 if (!sb->s_root)
5112 goto failed;
5113 return 0;
5114
5115 failed:
5116 shmem_put_super(sb);
5117 return error;
5118 }
5119
shmem_get_tree(struct fs_context * fc)5120 static int shmem_get_tree(struct fs_context *fc)
5121 {
5122 return get_tree_nodev(fc, shmem_fill_super);
5123 }
5124
shmem_free_fc(struct fs_context * fc)5125 static void shmem_free_fc(struct fs_context *fc)
5126 {
5127 struct shmem_options *ctx = fc->fs_private;
5128
5129 if (ctx) {
5130 mpol_put(ctx->mpol);
5131 kfree(ctx);
5132 }
5133 }
5134
5135 static const struct fs_context_operations shmem_fs_context_ops = {
5136 .free = shmem_free_fc,
5137 .get_tree = shmem_get_tree,
5138 #ifdef CONFIG_TMPFS
5139 .parse_monolithic = shmem_parse_monolithic,
5140 .parse_param = shmem_parse_one,
5141 .reconfigure = shmem_reconfigure,
5142 #endif
5143 };
5144
5145 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
5146
shmem_alloc_inode(struct super_block * sb)5147 static struct inode *shmem_alloc_inode(struct super_block *sb)
5148 {
5149 struct shmem_inode_info *info;
5150 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
5151 if (!info)
5152 return NULL;
5153 return &info->vfs_inode;
5154 }
5155
shmem_free_in_core_inode(struct inode * inode)5156 static void shmem_free_in_core_inode(struct inode *inode)
5157 {
5158 if (S_ISLNK(inode->i_mode))
5159 kfree(inode->i_link);
5160 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
5161 }
5162
shmem_destroy_inode(struct inode * inode)5163 static void shmem_destroy_inode(struct inode *inode)
5164 {
5165 if (S_ISREG(inode->i_mode))
5166 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5167 if (S_ISDIR(inode->i_mode))
5168 simple_offset_destroy(shmem_get_offset_ctx(inode));
5169 }
5170
shmem_init_inode(void * foo)5171 static void shmem_init_inode(void *foo)
5172 {
5173 struct shmem_inode_info *info = foo;
5174 inode_init_once(&info->vfs_inode);
5175 }
5176
shmem_init_inodecache(void)5177 static void __init shmem_init_inodecache(void)
5178 {
5179 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5180 sizeof(struct shmem_inode_info),
5181 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5182 }
5183
shmem_destroy_inodecache(void)5184 static void __init shmem_destroy_inodecache(void)
5185 {
5186 kmem_cache_destroy(shmem_inode_cachep);
5187 }
5188
5189 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_folio(struct address_space * mapping,struct folio * folio)5190 static int shmem_error_remove_folio(struct address_space *mapping,
5191 struct folio *folio)
5192 {
5193 return 0;
5194 }
5195
5196 static const struct address_space_operations shmem_aops = {
5197 .dirty_folio = noop_dirty_folio,
5198 #ifdef CONFIG_TMPFS
5199 .write_begin = shmem_write_begin,
5200 .write_end = shmem_write_end,
5201 #endif
5202 #ifdef CONFIG_MIGRATION
5203 .migrate_folio = migrate_folio,
5204 #endif
5205 .error_remove_folio = shmem_error_remove_folio,
5206 };
5207
5208 static const struct file_operations shmem_file_operations = {
5209 .mmap = shmem_mmap,
5210 .open = shmem_file_open,
5211 .get_unmapped_area = shmem_get_unmapped_area,
5212 #ifdef CONFIG_TMPFS
5213 .llseek = shmem_file_llseek,
5214 .read_iter = shmem_file_read_iter,
5215 .write_iter = shmem_file_write_iter,
5216 .fsync = noop_fsync,
5217 .splice_read = shmem_file_splice_read,
5218 .splice_write = iter_file_splice_write,
5219 .fallocate = shmem_fallocate,
5220 #endif
5221 };
5222
5223 static const struct inode_operations shmem_inode_operations = {
5224 .getattr = shmem_getattr,
5225 .setattr = shmem_setattr,
5226 #ifdef CONFIG_TMPFS_XATTR
5227 .listxattr = shmem_listxattr,
5228 .set_acl = simple_set_acl,
5229 .fileattr_get = shmem_fileattr_get,
5230 .fileattr_set = shmem_fileattr_set,
5231 #endif
5232 };
5233
5234 static const struct inode_operations shmem_dir_inode_operations = {
5235 #ifdef CONFIG_TMPFS
5236 .getattr = shmem_getattr,
5237 .create = shmem_create,
5238 .lookup = simple_lookup,
5239 .link = shmem_link,
5240 .unlink = shmem_unlink,
5241 .symlink = shmem_symlink,
5242 .mkdir = shmem_mkdir,
5243 .rmdir = shmem_rmdir,
5244 .mknod = shmem_mknod,
5245 .rename = shmem_rename2,
5246 .tmpfile = shmem_tmpfile,
5247 .get_offset_ctx = shmem_get_offset_ctx,
5248 #endif
5249 #ifdef CONFIG_TMPFS_XATTR
5250 .listxattr = shmem_listxattr,
5251 .fileattr_get = shmem_fileattr_get,
5252 .fileattr_set = shmem_fileattr_set,
5253 #endif
5254 #ifdef CONFIG_TMPFS_POSIX_ACL
5255 .setattr = shmem_setattr,
5256 .set_acl = simple_set_acl,
5257 #endif
5258 };
5259
5260 static const struct inode_operations shmem_special_inode_operations = {
5261 .getattr = shmem_getattr,
5262 #ifdef CONFIG_TMPFS_XATTR
5263 .listxattr = shmem_listxattr,
5264 #endif
5265 #ifdef CONFIG_TMPFS_POSIX_ACL
5266 .setattr = shmem_setattr,
5267 .set_acl = simple_set_acl,
5268 #endif
5269 };
5270
5271 static const struct super_operations shmem_ops = {
5272 .alloc_inode = shmem_alloc_inode,
5273 .free_inode = shmem_free_in_core_inode,
5274 .destroy_inode = shmem_destroy_inode,
5275 #ifdef CONFIG_TMPFS
5276 .statfs = shmem_statfs,
5277 .show_options = shmem_show_options,
5278 #endif
5279 #ifdef CONFIG_TMPFS_QUOTA
5280 .get_dquots = shmem_get_dquots,
5281 #endif
5282 .evict_inode = shmem_evict_inode,
5283 .drop_inode = generic_delete_inode,
5284 .put_super = shmem_put_super,
5285 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5286 .nr_cached_objects = shmem_unused_huge_count,
5287 .free_cached_objects = shmem_unused_huge_scan,
5288 #endif
5289 };
5290
5291 static const struct vm_operations_struct shmem_vm_ops = {
5292 .fault = shmem_fault,
5293 .map_pages = filemap_map_pages,
5294 #ifdef CONFIG_NUMA
5295 .set_policy = shmem_set_policy,
5296 .get_policy = shmem_get_policy,
5297 #endif
5298 };
5299
5300 static const struct vm_operations_struct shmem_anon_vm_ops = {
5301 .fault = shmem_fault,
5302 .map_pages = filemap_map_pages,
5303 #ifdef CONFIG_NUMA
5304 .set_policy = shmem_set_policy,
5305 .get_policy = shmem_get_policy,
5306 #endif
5307 };
5308
shmem_init_fs_context(struct fs_context * fc)5309 int shmem_init_fs_context(struct fs_context *fc)
5310 {
5311 struct shmem_options *ctx;
5312
5313 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5314 if (!ctx)
5315 return -ENOMEM;
5316
5317 ctx->mode = 0777 | S_ISVTX;
5318 ctx->uid = current_fsuid();
5319 ctx->gid = current_fsgid();
5320
5321 #if IS_ENABLED(CONFIG_UNICODE)
5322 ctx->encoding = NULL;
5323 #endif
5324
5325 fc->fs_private = ctx;
5326 fc->ops = &shmem_fs_context_ops;
5327 return 0;
5328 }
5329
5330 static struct file_system_type shmem_fs_type = {
5331 .owner = THIS_MODULE,
5332 .name = "tmpfs",
5333 .init_fs_context = shmem_init_fs_context,
5334 #ifdef CONFIG_TMPFS
5335 .parameters = shmem_fs_parameters,
5336 #endif
5337 .kill_sb = kill_litter_super,
5338 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5339 };
5340
5341 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5342
5343 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \
5344 { \
5345 .attr = { .name = __stringify(_name), .mode = _mode }, \
5346 .show = _show, \
5347 .store = _store, \
5348 }
5349
5350 #define TMPFS_ATTR_W(_name, _store) \
5351 static struct kobj_attribute tmpfs_attr_##_name = \
5352 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5353
5354 #define TMPFS_ATTR_RW(_name, _show, _store) \
5355 static struct kobj_attribute tmpfs_attr_##_name = \
5356 __INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5357
5358 #define TMPFS_ATTR_RO(_name, _show) \
5359 static struct kobj_attribute tmpfs_attr_##_name = \
5360 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5361
5362 #if IS_ENABLED(CONFIG_UNICODE)
casefold_show(struct kobject * kobj,struct kobj_attribute * a,char * buf)5363 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5364 char *buf)
5365 {
5366 return sysfs_emit(buf, "supported\n");
5367 }
5368 TMPFS_ATTR_RO(casefold, casefold_show);
5369 #endif
5370
5371 static struct attribute *tmpfs_attributes[] = {
5372 #if IS_ENABLED(CONFIG_UNICODE)
5373 &tmpfs_attr_casefold.attr,
5374 #endif
5375 NULL
5376 };
5377
5378 static const struct attribute_group tmpfs_attribute_group = {
5379 .attrs = tmpfs_attributes,
5380 .name = "features"
5381 };
5382
5383 static struct kobject *tmpfs_kobj;
5384
tmpfs_sysfs_init(void)5385 static int __init tmpfs_sysfs_init(void)
5386 {
5387 int ret;
5388
5389 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5390 if (!tmpfs_kobj)
5391 return -ENOMEM;
5392
5393 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5394 if (ret)
5395 kobject_put(tmpfs_kobj);
5396
5397 return ret;
5398 }
5399 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5400
shmem_init(void)5401 void __init shmem_init(void)
5402 {
5403 int error;
5404
5405 shmem_init_inodecache();
5406
5407 #ifdef CONFIG_TMPFS_QUOTA
5408 register_quota_format(&shmem_quota_format);
5409 #endif
5410
5411 error = register_filesystem(&shmem_fs_type);
5412 if (error) {
5413 pr_err("Could not register tmpfs\n");
5414 goto out2;
5415 }
5416
5417 shm_mnt = kern_mount(&shmem_fs_type);
5418 if (IS_ERR(shm_mnt)) {
5419 error = PTR_ERR(shm_mnt);
5420 pr_err("Could not kern_mount tmpfs\n");
5421 goto out1;
5422 }
5423
5424 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5425 error = tmpfs_sysfs_init();
5426 if (error) {
5427 pr_err("Could not init tmpfs sysfs\n");
5428 goto out1;
5429 }
5430 #endif
5431
5432 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5433 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5434 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5435 else
5436 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5437
5438 /*
5439 * Default to setting PMD-sized THP to inherit the global setting and
5440 * disable all other multi-size THPs.
5441 */
5442 if (!shmem_orders_configured)
5443 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5444 #endif
5445 return;
5446
5447 out1:
5448 unregister_filesystem(&shmem_fs_type);
5449 out2:
5450 #ifdef CONFIG_TMPFS_QUOTA
5451 unregister_quota_format(&shmem_quota_format);
5452 #endif
5453 shmem_destroy_inodecache();
5454 shm_mnt = ERR_PTR(error);
5455 }
5456
5457 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5458 static ssize_t shmem_enabled_show(struct kobject *kobj,
5459 struct kobj_attribute *attr, char *buf)
5460 {
5461 static const int values[] = {
5462 SHMEM_HUGE_ALWAYS,
5463 SHMEM_HUGE_WITHIN_SIZE,
5464 SHMEM_HUGE_ADVISE,
5465 SHMEM_HUGE_NEVER,
5466 SHMEM_HUGE_DENY,
5467 SHMEM_HUGE_FORCE,
5468 };
5469 int len = 0;
5470 int i;
5471
5472 for (i = 0; i < ARRAY_SIZE(values); i++) {
5473 len += sysfs_emit_at(buf, len,
5474 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5475 i ? " " : "", shmem_format_huge(values[i]));
5476 }
5477 len += sysfs_emit_at(buf, len, "\n");
5478
5479 return len;
5480 }
5481
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5482 static ssize_t shmem_enabled_store(struct kobject *kobj,
5483 struct kobj_attribute *attr, const char *buf, size_t count)
5484 {
5485 char tmp[16];
5486 int huge, err;
5487
5488 if (count + 1 > sizeof(tmp))
5489 return -EINVAL;
5490 memcpy(tmp, buf, count);
5491 tmp[count] = '\0';
5492 if (count && tmp[count - 1] == '\n')
5493 tmp[count - 1] = '\0';
5494
5495 huge = shmem_parse_huge(tmp);
5496 if (huge == -EINVAL)
5497 return huge;
5498
5499 shmem_huge = huge;
5500 if (shmem_huge > SHMEM_HUGE_DENY)
5501 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5502
5503 err = start_stop_khugepaged();
5504 return err ? err : count;
5505 }
5506
5507 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5508 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5509
thpsize_shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5510 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5511 struct kobj_attribute *attr, char *buf)
5512 {
5513 int order = to_thpsize(kobj)->order;
5514 const char *output;
5515
5516 if (test_bit(order, &huge_shmem_orders_always))
5517 output = "[always] inherit within_size advise never";
5518 else if (test_bit(order, &huge_shmem_orders_inherit))
5519 output = "always [inherit] within_size advise never";
5520 else if (test_bit(order, &huge_shmem_orders_within_size))
5521 output = "always inherit [within_size] advise never";
5522 else if (test_bit(order, &huge_shmem_orders_madvise))
5523 output = "always inherit within_size [advise] never";
5524 else
5525 output = "always inherit within_size advise [never]";
5526
5527 return sysfs_emit(buf, "%s\n", output);
5528 }
5529
thpsize_shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5530 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5531 struct kobj_attribute *attr,
5532 const char *buf, size_t count)
5533 {
5534 int order = to_thpsize(kobj)->order;
5535 ssize_t ret = count;
5536
5537 if (sysfs_streq(buf, "always")) {
5538 spin_lock(&huge_shmem_orders_lock);
5539 clear_bit(order, &huge_shmem_orders_inherit);
5540 clear_bit(order, &huge_shmem_orders_madvise);
5541 clear_bit(order, &huge_shmem_orders_within_size);
5542 set_bit(order, &huge_shmem_orders_always);
5543 spin_unlock(&huge_shmem_orders_lock);
5544 } else if (sysfs_streq(buf, "inherit")) {
5545 /* Do not override huge allocation policy with non-PMD sized mTHP */
5546 if (shmem_huge == SHMEM_HUGE_FORCE &&
5547 order != HPAGE_PMD_ORDER)
5548 return -EINVAL;
5549
5550 spin_lock(&huge_shmem_orders_lock);
5551 clear_bit(order, &huge_shmem_orders_always);
5552 clear_bit(order, &huge_shmem_orders_madvise);
5553 clear_bit(order, &huge_shmem_orders_within_size);
5554 set_bit(order, &huge_shmem_orders_inherit);
5555 spin_unlock(&huge_shmem_orders_lock);
5556 } else if (sysfs_streq(buf, "within_size")) {
5557 spin_lock(&huge_shmem_orders_lock);
5558 clear_bit(order, &huge_shmem_orders_always);
5559 clear_bit(order, &huge_shmem_orders_inherit);
5560 clear_bit(order, &huge_shmem_orders_madvise);
5561 set_bit(order, &huge_shmem_orders_within_size);
5562 spin_unlock(&huge_shmem_orders_lock);
5563 } else if (sysfs_streq(buf, "advise")) {
5564 spin_lock(&huge_shmem_orders_lock);
5565 clear_bit(order, &huge_shmem_orders_always);
5566 clear_bit(order, &huge_shmem_orders_inherit);
5567 clear_bit(order, &huge_shmem_orders_within_size);
5568 set_bit(order, &huge_shmem_orders_madvise);
5569 spin_unlock(&huge_shmem_orders_lock);
5570 } else if (sysfs_streq(buf, "never")) {
5571 spin_lock(&huge_shmem_orders_lock);
5572 clear_bit(order, &huge_shmem_orders_always);
5573 clear_bit(order, &huge_shmem_orders_inherit);
5574 clear_bit(order, &huge_shmem_orders_within_size);
5575 clear_bit(order, &huge_shmem_orders_madvise);
5576 spin_unlock(&huge_shmem_orders_lock);
5577 } else {
5578 ret = -EINVAL;
5579 }
5580
5581 if (ret > 0) {
5582 int err = start_stop_khugepaged();
5583
5584 if (err)
5585 ret = err;
5586 }
5587 return ret;
5588 }
5589
5590 struct kobj_attribute thpsize_shmem_enabled_attr =
5591 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5592 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5593
5594 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5595
setup_transparent_hugepage_shmem(char * str)5596 static int __init setup_transparent_hugepage_shmem(char *str)
5597 {
5598 int huge;
5599
5600 huge = shmem_parse_huge(str);
5601 if (huge == -EINVAL) {
5602 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5603 return huge;
5604 }
5605
5606 shmem_huge = huge;
5607 return 1;
5608 }
5609 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5610
setup_transparent_hugepage_tmpfs(char * str)5611 static int __init setup_transparent_hugepage_tmpfs(char *str)
5612 {
5613 int huge;
5614
5615 huge = shmem_parse_huge(str);
5616 if (huge < 0) {
5617 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
5618 return huge;
5619 }
5620
5621 tmpfs_huge = huge;
5622 return 1;
5623 }
5624 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
5625
5626 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_shmem(char * str)5627 static int __init setup_thp_shmem(char *str)
5628 {
5629 char *token, *range, *policy, *subtoken;
5630 unsigned long always, inherit, madvise, within_size;
5631 char *start_size, *end_size;
5632 int start, end, nr;
5633 char *p;
5634
5635 if (!str || strlen(str) + 1 > PAGE_SIZE)
5636 goto err;
5637 strscpy(str_dup, str);
5638
5639 always = huge_shmem_orders_always;
5640 inherit = huge_shmem_orders_inherit;
5641 madvise = huge_shmem_orders_madvise;
5642 within_size = huge_shmem_orders_within_size;
5643 p = str_dup;
5644 while ((token = strsep(&p, ";")) != NULL) {
5645 range = strsep(&token, ":");
5646 policy = token;
5647
5648 if (!policy)
5649 goto err;
5650
5651 while ((subtoken = strsep(&range, ",")) != NULL) {
5652 if (strchr(subtoken, '-')) {
5653 start_size = strsep(&subtoken, "-");
5654 end_size = subtoken;
5655
5656 start = get_order_from_str(start_size,
5657 THP_ORDERS_ALL_FILE_DEFAULT);
5658 end = get_order_from_str(end_size,
5659 THP_ORDERS_ALL_FILE_DEFAULT);
5660 } else {
5661 start_size = end_size = subtoken;
5662 start = end = get_order_from_str(subtoken,
5663 THP_ORDERS_ALL_FILE_DEFAULT);
5664 }
5665
5666 if (start < 0) {
5667 pr_err("invalid size %s in thp_shmem boot parameter\n",
5668 start_size);
5669 goto err;
5670 }
5671
5672 if (end < 0) {
5673 pr_err("invalid size %s in thp_shmem boot parameter\n",
5674 end_size);
5675 goto err;
5676 }
5677
5678 if (start > end)
5679 goto err;
5680
5681 nr = end - start + 1;
5682 if (!strcmp(policy, "always")) {
5683 bitmap_set(&always, start, nr);
5684 bitmap_clear(&inherit, start, nr);
5685 bitmap_clear(&madvise, start, nr);
5686 bitmap_clear(&within_size, start, nr);
5687 } else if (!strcmp(policy, "advise")) {
5688 bitmap_set(&madvise, start, nr);
5689 bitmap_clear(&inherit, start, nr);
5690 bitmap_clear(&always, start, nr);
5691 bitmap_clear(&within_size, start, nr);
5692 } else if (!strcmp(policy, "inherit")) {
5693 bitmap_set(&inherit, start, nr);
5694 bitmap_clear(&madvise, start, nr);
5695 bitmap_clear(&always, start, nr);
5696 bitmap_clear(&within_size, start, nr);
5697 } else if (!strcmp(policy, "within_size")) {
5698 bitmap_set(&within_size, start, nr);
5699 bitmap_clear(&inherit, start, nr);
5700 bitmap_clear(&madvise, start, nr);
5701 bitmap_clear(&always, start, nr);
5702 } else if (!strcmp(policy, "never")) {
5703 bitmap_clear(&inherit, start, nr);
5704 bitmap_clear(&madvise, start, nr);
5705 bitmap_clear(&always, start, nr);
5706 bitmap_clear(&within_size, start, nr);
5707 } else {
5708 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5709 goto err;
5710 }
5711 }
5712 }
5713
5714 huge_shmem_orders_always = always;
5715 huge_shmem_orders_madvise = madvise;
5716 huge_shmem_orders_inherit = inherit;
5717 huge_shmem_orders_within_size = within_size;
5718 shmem_orders_configured = true;
5719 return 1;
5720
5721 err:
5722 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5723 return 0;
5724 }
5725 __setup("thp_shmem=", setup_thp_shmem);
5726
5727 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5728
5729 #else /* !CONFIG_SHMEM */
5730
5731 /*
5732 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5733 *
5734 * This is intended for small system where the benefits of the full
5735 * shmem code (swap-backed and resource-limited) are outweighed by
5736 * their complexity. On systems without swap this code should be
5737 * effectively equivalent, but much lighter weight.
5738 */
5739
5740 static struct file_system_type shmem_fs_type = {
5741 .name = "tmpfs",
5742 .init_fs_context = ramfs_init_fs_context,
5743 .parameters = ramfs_fs_parameters,
5744 .kill_sb = ramfs_kill_sb,
5745 .fs_flags = FS_USERNS_MOUNT,
5746 };
5747
shmem_init(void)5748 void __init shmem_init(void)
5749 {
5750 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5751
5752 shm_mnt = kern_mount(&shmem_fs_type);
5753 BUG_ON(IS_ERR(shm_mnt));
5754 }
5755
shmem_unuse(unsigned int type)5756 int shmem_unuse(unsigned int type)
5757 {
5758 return 0;
5759 }
5760
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)5761 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5762 {
5763 return 0;
5764 }
5765
shmem_unlock_mapping(struct address_space * mapping)5766 void shmem_unlock_mapping(struct address_space *mapping)
5767 {
5768 }
5769
5770 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)5771 unsigned long shmem_get_unmapped_area(struct file *file,
5772 unsigned long addr, unsigned long len,
5773 unsigned long pgoff, unsigned long flags)
5774 {
5775 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5776 }
5777 #endif
5778
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)5779 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5780 {
5781 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5782 }
5783 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5784
5785 #define shmem_vm_ops generic_file_vm_ops
5786 #define shmem_anon_vm_ops generic_file_vm_ops
5787 #define shmem_file_operations ramfs_file_operations
5788 #define shmem_acct_size(flags, size) 0
5789 #define shmem_unacct_size(flags, size) do {} while (0)
5790
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)5791 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5792 struct super_block *sb, struct inode *dir,
5793 umode_t mode, dev_t dev, unsigned long flags)
5794 {
5795 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5796 return inode ? inode : ERR_PTR(-ENOSPC);
5797 }
5798
5799 #endif /* CONFIG_SHMEM */
5800
5801 /* common code */
5802
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)5803 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5804 loff_t size, unsigned long flags, unsigned int i_flags)
5805 {
5806 struct inode *inode;
5807 struct file *res;
5808
5809 if (IS_ERR(mnt))
5810 return ERR_CAST(mnt);
5811
5812 if (size < 0 || size > MAX_LFS_FILESIZE)
5813 return ERR_PTR(-EINVAL);
5814
5815 if (is_idmapped_mnt(mnt))
5816 return ERR_PTR(-EINVAL);
5817
5818 if (shmem_acct_size(flags, size))
5819 return ERR_PTR(-ENOMEM);
5820
5821 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5822 S_IFREG | S_IRWXUGO, 0, flags);
5823 if (IS_ERR(inode)) {
5824 shmem_unacct_size(flags, size);
5825 return ERR_CAST(inode);
5826 }
5827 inode->i_flags |= i_flags;
5828 inode->i_size = size;
5829 clear_nlink(inode); /* It is unlinked */
5830 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5831 if (!IS_ERR(res))
5832 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5833 &shmem_file_operations);
5834 if (IS_ERR(res))
5835 iput(inode);
5836 return res;
5837 }
5838
5839 /**
5840 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5841 * kernel internal. There will be NO LSM permission checks against the
5842 * underlying inode. So users of this interface must do LSM checks at a
5843 * higher layer. The users are the big_key and shm implementations. LSM
5844 * checks are provided at the key or shm level rather than the inode.
5845 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5846 * @size: size to be set for the file
5847 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5848 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)5849 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5850 {
5851 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5852 }
5853 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5854
5855 /**
5856 * shmem_file_setup - get an unlinked file living in tmpfs
5857 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5858 * @size: size to be set for the file
5859 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5860 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)5861 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5862 {
5863 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5864 }
5865 EXPORT_SYMBOL_GPL(shmem_file_setup);
5866
5867 /**
5868 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5869 * @mnt: the tmpfs mount where the file will be created
5870 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5871 * @size: size to be set for the file
5872 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5873 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)5874 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5875 loff_t size, unsigned long flags)
5876 {
5877 return __shmem_file_setup(mnt, name, size, flags, 0);
5878 }
5879 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5880
5881 /**
5882 * shmem_zero_setup - setup a shared anonymous mapping
5883 * @vma: the vma to be mmapped is prepared by do_mmap
5884 */
shmem_zero_setup(struct vm_area_struct * vma)5885 int shmem_zero_setup(struct vm_area_struct *vma)
5886 {
5887 struct file *file;
5888 loff_t size = vma->vm_end - vma->vm_start;
5889
5890 /*
5891 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5892 * between XFS directory reading and selinux: since this file is only
5893 * accessible to the user through its mapping, use S_PRIVATE flag to
5894 * bypass file security, in the same way as shmem_kernel_file_setup().
5895 */
5896 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5897 if (IS_ERR(file))
5898 return PTR_ERR(file);
5899
5900 if (vma->vm_file)
5901 fput(vma->vm_file);
5902 vma->vm_file = file;
5903 vma->vm_ops = &shmem_anon_vm_ops;
5904
5905 return 0;
5906 }
5907
5908 /**
5909 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5910 * @mapping: the folio's address_space
5911 * @index: the folio index
5912 * @gfp: the page allocator flags to use if allocating
5913 *
5914 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5915 * with any new page allocations done using the specified allocation flags.
5916 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5917 * suit tmpfs, since it may have pages in swapcache, and needs to find those
5918 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5919 *
5920 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5921 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5922 */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5923 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5924 pgoff_t index, gfp_t gfp)
5925 {
5926 #ifdef CONFIG_SHMEM
5927 struct inode *inode = mapping->host;
5928 struct folio *folio;
5929 int error;
5930
5931 error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5932 gfp, NULL, NULL);
5933 if (error)
5934 return ERR_PTR(error);
5935
5936 folio_unlock(folio);
5937 return folio;
5938 #else
5939 /*
5940 * The tiny !SHMEM case uses ramfs without swap
5941 */
5942 return mapping_read_folio_gfp(mapping, index, gfp);
5943 #endif
5944 }
5945 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5946
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5947 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5948 pgoff_t index, gfp_t gfp)
5949 {
5950 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5951 struct page *page;
5952
5953 if (IS_ERR(folio))
5954 return &folio->page;
5955
5956 page = folio_file_page(folio, index);
5957 if (PageHWPoison(page)) {
5958 folio_put(folio);
5959 return ERR_PTR(-EIO);
5960 }
5961
5962 return page;
5963 }
5964 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5965