xref: /linux/mm/shmem.c (revision 5635d8bad221701188017a6087fbe25ab245c226)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45 
46 static struct vfsmount *shm_mnt __ro_after_init;
47 
48 #ifdef CONFIG_SHMEM
49 /*
50  * This virtual memory filesystem is heavily based on the ramfs. It
51  * extends ramfs by the ability to use swap and honor resource limits
52  * which makes it a completely usable filesystem.
53  */
54 
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84 
85 #include <linux/uaccess.h>
86 
87 #include "internal.h"
88 
89 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
91 
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94 
95 /* Pretend that one inode + its dentry occupy this much memory */
96 #define BOGO_INODE_SIZE 1024
97 
98 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
99 #define SHORT_SYMLINK_LEN 128
100 
101 /*
102  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
103  * inode->i_private (with i_rwsem making sure that it has only one user at
104  * a time): we would prefer not to enlarge the shmem inode just for that.
105  */
106 struct shmem_falloc {
107 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
108 	pgoff_t start;		/* start of range currently being fallocated */
109 	pgoff_t next;		/* the next page offset to be fallocated */
110 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
111 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
112 };
113 
114 struct shmem_options {
115 	unsigned long long blocks;
116 	unsigned long long inodes;
117 	struct mempolicy *mpol;
118 	kuid_t uid;
119 	kgid_t gid;
120 	umode_t mode;
121 	bool full_inums;
122 	int huge;
123 	int seen;
124 	bool noswap;
125 	unsigned short quota_types;
126 	struct shmem_quota_limits qlimits;
127 #if IS_ENABLED(CONFIG_UNICODE)
128 	struct unicode_map *encoding;
129 	bool strict_encoding;
130 #endif
131 #define SHMEM_SEEN_BLOCKS 1
132 #define SHMEM_SEEN_INODES 2
133 #define SHMEM_SEEN_HUGE 4
134 #define SHMEM_SEEN_INUMS 8
135 #define SHMEM_SEEN_NOSWAP 16
136 #define SHMEM_SEEN_QUOTA 32
137 };
138 
139 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
140 static unsigned long huge_shmem_orders_always __read_mostly;
141 static unsigned long huge_shmem_orders_madvise __read_mostly;
142 static unsigned long huge_shmem_orders_inherit __read_mostly;
143 static unsigned long huge_shmem_orders_within_size __read_mostly;
144 static bool shmem_orders_configured __initdata;
145 #endif
146 
147 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)148 static unsigned long shmem_default_max_blocks(void)
149 {
150 	return totalram_pages() / 2;
151 }
152 
shmem_default_max_inodes(void)153 static unsigned long shmem_default_max_inodes(void)
154 {
155 	unsigned long nr_pages = totalram_pages();
156 
157 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
158 			ULONG_MAX / BOGO_INODE_SIZE);
159 }
160 #endif
161 
162 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
163 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
164 			struct vm_area_struct *vma, vm_fault_t *fault_type);
165 
SHMEM_SB(struct super_block * sb)166 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
167 {
168 	return sb->s_fs_info;
169 }
170 
171 /*
172  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
173  * for shared memory and for shared anonymous (/dev/zero) mappings
174  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
175  * consistent with the pre-accounting of private mappings ...
176  */
shmem_acct_size(unsigned long flags,loff_t size)177 static inline int shmem_acct_size(unsigned long flags, loff_t size)
178 {
179 	return (flags & VM_NORESERVE) ?
180 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
181 }
182 
shmem_unacct_size(unsigned long flags,loff_t size)183 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
184 {
185 	if (!(flags & VM_NORESERVE))
186 		vm_unacct_memory(VM_ACCT(size));
187 }
188 
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)189 static inline int shmem_reacct_size(unsigned long flags,
190 		loff_t oldsize, loff_t newsize)
191 {
192 	if (!(flags & VM_NORESERVE)) {
193 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
194 			return security_vm_enough_memory_mm(current->mm,
195 					VM_ACCT(newsize) - VM_ACCT(oldsize));
196 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
197 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
198 	}
199 	return 0;
200 }
201 
202 /*
203  * ... whereas tmpfs objects are accounted incrementally as
204  * pages are allocated, in order to allow large sparse files.
205  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
206  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
207  */
shmem_acct_blocks(unsigned long flags,long pages)208 static inline int shmem_acct_blocks(unsigned long flags, long pages)
209 {
210 	if (!(flags & VM_NORESERVE))
211 		return 0;
212 
213 	return security_vm_enough_memory_mm(current->mm,
214 			pages * VM_ACCT(PAGE_SIZE));
215 }
216 
shmem_unacct_blocks(unsigned long flags,long pages)217 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
218 {
219 	if (flags & VM_NORESERVE)
220 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
221 }
222 
shmem_inode_acct_blocks(struct inode * inode,long pages)223 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227 	int err = -ENOSPC;
228 
229 	if (shmem_acct_blocks(info->flags, pages))
230 		return err;
231 
232 	might_sleep();	/* when quotas */
233 	if (sbinfo->max_blocks) {
234 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
235 						sbinfo->max_blocks, pages))
236 			goto unacct;
237 
238 		err = dquot_alloc_block_nodirty(inode, pages);
239 		if (err) {
240 			percpu_counter_sub(&sbinfo->used_blocks, pages);
241 			goto unacct;
242 		}
243 	} else {
244 		err = dquot_alloc_block_nodirty(inode, pages);
245 		if (err)
246 			goto unacct;
247 	}
248 
249 	return 0;
250 
251 unacct:
252 	shmem_unacct_blocks(info->flags, pages);
253 	return err;
254 }
255 
shmem_inode_unacct_blocks(struct inode * inode,long pages)256 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
257 {
258 	struct shmem_inode_info *info = SHMEM_I(inode);
259 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
260 
261 	might_sleep();	/* when quotas */
262 	dquot_free_block_nodirty(inode, pages);
263 
264 	if (sbinfo->max_blocks)
265 		percpu_counter_sub(&sbinfo->used_blocks, pages);
266 	shmem_unacct_blocks(info->flags, pages);
267 }
268 
269 static const struct super_operations shmem_ops;
270 static const struct address_space_operations shmem_aops;
271 static const struct file_operations shmem_file_operations;
272 static const struct inode_operations shmem_inode_operations;
273 static const struct inode_operations shmem_dir_inode_operations;
274 static const struct inode_operations shmem_special_inode_operations;
275 static const struct vm_operations_struct shmem_vm_ops;
276 static const struct vm_operations_struct shmem_anon_vm_ops;
277 static struct file_system_type shmem_fs_type;
278 
shmem_mapping(struct address_space * mapping)279 bool shmem_mapping(struct address_space *mapping)
280 {
281 	return mapping->a_ops == &shmem_aops;
282 }
283 EXPORT_SYMBOL_GPL(shmem_mapping);
284 
vma_is_anon_shmem(struct vm_area_struct * vma)285 bool vma_is_anon_shmem(struct vm_area_struct *vma)
286 {
287 	return vma->vm_ops == &shmem_anon_vm_ops;
288 }
289 
vma_is_shmem(struct vm_area_struct * vma)290 bool vma_is_shmem(struct vm_area_struct *vma)
291 {
292 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
293 }
294 
295 static LIST_HEAD(shmem_swaplist);
296 static DEFINE_MUTEX(shmem_swaplist_mutex);
297 
298 #ifdef CONFIG_TMPFS_QUOTA
299 
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)300 static int shmem_enable_quotas(struct super_block *sb,
301 			       unsigned short quota_types)
302 {
303 	int type, err = 0;
304 
305 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
306 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
307 		if (!(quota_types & (1 << type)))
308 			continue;
309 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
310 					  DQUOT_USAGE_ENABLED |
311 					  DQUOT_LIMITS_ENABLED);
312 		if (err)
313 			goto out_err;
314 	}
315 	return 0;
316 
317 out_err:
318 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
319 		type, err);
320 	for (type--; type >= 0; type--)
321 		dquot_quota_off(sb, type);
322 	return err;
323 }
324 
shmem_disable_quotas(struct super_block * sb)325 static void shmem_disable_quotas(struct super_block *sb)
326 {
327 	int type;
328 
329 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
330 		dquot_quota_off(sb, type);
331 }
332 
shmem_get_dquots(struct inode * inode)333 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
334 {
335 	return SHMEM_I(inode)->i_dquot;
336 }
337 #endif /* CONFIG_TMPFS_QUOTA */
338 
339 /*
340  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
341  * produces a novel ino for the newly allocated inode.
342  *
343  * It may also be called when making a hard link to permit the space needed by
344  * each dentry. However, in that case, no new inode number is needed since that
345  * internally draws from another pool of inode numbers (currently global
346  * get_next_ino()). This case is indicated by passing NULL as inop.
347  */
348 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)349 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
350 {
351 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
352 	ino_t ino;
353 
354 	if (!(sb->s_flags & SB_KERNMOUNT)) {
355 		raw_spin_lock(&sbinfo->stat_lock);
356 		if (sbinfo->max_inodes) {
357 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
358 				raw_spin_unlock(&sbinfo->stat_lock);
359 				return -ENOSPC;
360 			}
361 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
362 		}
363 		if (inop) {
364 			ino = sbinfo->next_ino++;
365 			if (unlikely(is_zero_ino(ino)))
366 				ino = sbinfo->next_ino++;
367 			if (unlikely(!sbinfo->full_inums &&
368 				     ino > UINT_MAX)) {
369 				/*
370 				 * Emulate get_next_ino uint wraparound for
371 				 * compatibility
372 				 */
373 				if (IS_ENABLED(CONFIG_64BIT))
374 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
375 						__func__, MINOR(sb->s_dev));
376 				sbinfo->next_ino = 1;
377 				ino = sbinfo->next_ino++;
378 			}
379 			*inop = ino;
380 		}
381 		raw_spin_unlock(&sbinfo->stat_lock);
382 	} else if (inop) {
383 		/*
384 		 * __shmem_file_setup, one of our callers, is lock-free: it
385 		 * doesn't hold stat_lock in shmem_reserve_inode since
386 		 * max_inodes is always 0, and is called from potentially
387 		 * unknown contexts. As such, use a per-cpu batched allocator
388 		 * which doesn't require the per-sb stat_lock unless we are at
389 		 * the batch boundary.
390 		 *
391 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
392 		 * shmem mounts are not exposed to userspace, so we don't need
393 		 * to worry about things like glibc compatibility.
394 		 */
395 		ino_t *next_ino;
396 
397 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
398 		ino = *next_ino;
399 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
400 			raw_spin_lock(&sbinfo->stat_lock);
401 			ino = sbinfo->next_ino;
402 			sbinfo->next_ino += SHMEM_INO_BATCH;
403 			raw_spin_unlock(&sbinfo->stat_lock);
404 			if (unlikely(is_zero_ino(ino)))
405 				ino++;
406 		}
407 		*inop = ino;
408 		*next_ino = ++ino;
409 		put_cpu();
410 	}
411 
412 	return 0;
413 }
414 
shmem_free_inode(struct super_block * sb,size_t freed_ispace)415 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
416 {
417 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
418 	if (sbinfo->max_inodes) {
419 		raw_spin_lock(&sbinfo->stat_lock);
420 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
421 		raw_spin_unlock(&sbinfo->stat_lock);
422 	}
423 }
424 
425 /**
426  * shmem_recalc_inode - recalculate the block usage of an inode
427  * @inode: inode to recalc
428  * @alloced: the change in number of pages allocated to inode
429  * @swapped: the change in number of pages swapped from inode
430  *
431  * We have to calculate the free blocks since the mm can drop
432  * undirtied hole pages behind our back.
433  *
434  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
435  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
436  */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)437 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
438 {
439 	struct shmem_inode_info *info = SHMEM_I(inode);
440 	long freed;
441 
442 	spin_lock(&info->lock);
443 	info->alloced += alloced;
444 	info->swapped += swapped;
445 	freed = info->alloced - info->swapped -
446 		READ_ONCE(inode->i_mapping->nrpages);
447 	/*
448 	 * Special case: whereas normally shmem_recalc_inode() is called
449 	 * after i_mapping->nrpages has already been adjusted (up or down),
450 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
451 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
452 	 * been freed.  Compensate here, to avoid the need for a followup call.
453 	 */
454 	if (swapped > 0)
455 		freed += swapped;
456 	if (freed > 0)
457 		info->alloced -= freed;
458 	spin_unlock(&info->lock);
459 
460 	/* The quota case may block */
461 	if (freed > 0)
462 		shmem_inode_unacct_blocks(inode, freed);
463 }
464 
shmem_charge(struct inode * inode,long pages)465 bool shmem_charge(struct inode *inode, long pages)
466 {
467 	struct address_space *mapping = inode->i_mapping;
468 
469 	if (shmem_inode_acct_blocks(inode, pages))
470 		return false;
471 
472 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
473 	xa_lock_irq(&mapping->i_pages);
474 	mapping->nrpages += pages;
475 	xa_unlock_irq(&mapping->i_pages);
476 
477 	shmem_recalc_inode(inode, pages, 0);
478 	return true;
479 }
480 
shmem_uncharge(struct inode * inode,long pages)481 void shmem_uncharge(struct inode *inode, long pages)
482 {
483 	/* pages argument is currently unused: keep it to help debugging */
484 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
485 
486 	shmem_recalc_inode(inode, 0, 0);
487 }
488 
489 /*
490  * Replace item expected in xarray by a new item, while holding xa_lock.
491  */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)492 static int shmem_replace_entry(struct address_space *mapping,
493 			pgoff_t index, void *expected, void *replacement)
494 {
495 	XA_STATE(xas, &mapping->i_pages, index);
496 	void *item;
497 
498 	VM_BUG_ON(!expected);
499 	VM_BUG_ON(!replacement);
500 	item = xas_load(&xas);
501 	if (item != expected)
502 		return -ENOENT;
503 	xas_store(&xas, replacement);
504 	return 0;
505 }
506 
507 /*
508  * Sometimes, before we decide whether to proceed or to fail, we must check
509  * that an entry was not already brought back from swap by a racing thread.
510  *
511  * Checking folio is not enough: by the time a swapcache folio is locked, it
512  * might be reused, and again be swapcache, using the same swap as before.
513  */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)514 static bool shmem_confirm_swap(struct address_space *mapping,
515 			       pgoff_t index, swp_entry_t swap)
516 {
517 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
518 }
519 
520 /*
521  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
522  *
523  * SHMEM_HUGE_NEVER:
524  *	disables huge pages for the mount;
525  * SHMEM_HUGE_ALWAYS:
526  *	enables huge pages for the mount;
527  * SHMEM_HUGE_WITHIN_SIZE:
528  *	only allocate huge pages if the page will be fully within i_size,
529  *	also respect fadvise()/madvise() hints;
530  * SHMEM_HUGE_ADVISE:
531  *	only allocate huge pages if requested with fadvise()/madvise();
532  */
533 
534 #define SHMEM_HUGE_NEVER	0
535 #define SHMEM_HUGE_ALWAYS	1
536 #define SHMEM_HUGE_WITHIN_SIZE	2
537 #define SHMEM_HUGE_ADVISE	3
538 
539 /*
540  * Special values.
541  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
542  *
543  * SHMEM_HUGE_DENY:
544  *	disables huge on shm_mnt and all mounts, for emergency use;
545  * SHMEM_HUGE_FORCE:
546  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
547  *
548  */
549 #define SHMEM_HUGE_DENY		(-1)
550 #define SHMEM_HUGE_FORCE	(-2)
551 
552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
553 /* ifdef here to avoid bloating shmem.o when not necessary */
554 
555 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
556 
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,unsigned long vm_flags)557 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
558 				      loff_t write_end, bool shmem_huge_force,
559 				      unsigned long vm_flags)
560 {
561 	loff_t i_size;
562 
563 	if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
564 		return false;
565 	if (!S_ISREG(inode->i_mode))
566 		return false;
567 	if (shmem_huge == SHMEM_HUGE_DENY)
568 		return false;
569 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
570 		return true;
571 
572 	switch (SHMEM_SB(inode->i_sb)->huge) {
573 	case SHMEM_HUGE_ALWAYS:
574 		return true;
575 	case SHMEM_HUGE_WITHIN_SIZE:
576 		index = round_up(index + 1, HPAGE_PMD_NR);
577 		i_size = max(write_end, i_size_read(inode));
578 		i_size = round_up(i_size, PAGE_SIZE);
579 		if (i_size >> PAGE_SHIFT >= index)
580 			return true;
581 		fallthrough;
582 	case SHMEM_HUGE_ADVISE:
583 		if (vm_flags & VM_HUGEPAGE)
584 			return true;
585 		fallthrough;
586 	default:
587 		return false;
588 	}
589 }
590 
shmem_parse_huge(const char * str)591 static int shmem_parse_huge(const char *str)
592 {
593 	int huge;
594 
595 	if (!str)
596 		return -EINVAL;
597 
598 	if (!strcmp(str, "never"))
599 		huge = SHMEM_HUGE_NEVER;
600 	else if (!strcmp(str, "always"))
601 		huge = SHMEM_HUGE_ALWAYS;
602 	else if (!strcmp(str, "within_size"))
603 		huge = SHMEM_HUGE_WITHIN_SIZE;
604 	else if (!strcmp(str, "advise"))
605 		huge = SHMEM_HUGE_ADVISE;
606 	else if (!strcmp(str, "deny"))
607 		huge = SHMEM_HUGE_DENY;
608 	else if (!strcmp(str, "force"))
609 		huge = SHMEM_HUGE_FORCE;
610 	else
611 		return -EINVAL;
612 
613 	if (!has_transparent_hugepage() &&
614 	    huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
615 		return -EINVAL;
616 
617 	/* Do not override huge allocation policy with non-PMD sized mTHP */
618 	if (huge == SHMEM_HUGE_FORCE &&
619 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
620 		return -EINVAL;
621 
622 	return huge;
623 }
624 
625 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)626 static const char *shmem_format_huge(int huge)
627 {
628 	switch (huge) {
629 	case SHMEM_HUGE_NEVER:
630 		return "never";
631 	case SHMEM_HUGE_ALWAYS:
632 		return "always";
633 	case SHMEM_HUGE_WITHIN_SIZE:
634 		return "within_size";
635 	case SHMEM_HUGE_ADVISE:
636 		return "advise";
637 	case SHMEM_HUGE_DENY:
638 		return "deny";
639 	case SHMEM_HUGE_FORCE:
640 		return "force";
641 	default:
642 		VM_BUG_ON(1);
643 		return "bad_val";
644 	}
645 }
646 #endif
647 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 		struct shrink_control *sc, unsigned long nr_to_free)
650 {
651 	LIST_HEAD(list), *pos, *next;
652 	struct inode *inode;
653 	struct shmem_inode_info *info;
654 	struct folio *folio;
655 	unsigned long batch = sc ? sc->nr_to_scan : 128;
656 	unsigned long split = 0, freed = 0;
657 
658 	if (list_empty(&sbinfo->shrinklist))
659 		return SHRINK_STOP;
660 
661 	spin_lock(&sbinfo->shrinklist_lock);
662 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
663 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
664 
665 		/* pin the inode */
666 		inode = igrab(&info->vfs_inode);
667 
668 		/* inode is about to be evicted */
669 		if (!inode) {
670 			list_del_init(&info->shrinklist);
671 			goto next;
672 		}
673 
674 		list_move(&info->shrinklist, &list);
675 next:
676 		sbinfo->shrinklist_len--;
677 		if (!--batch)
678 			break;
679 	}
680 	spin_unlock(&sbinfo->shrinklist_lock);
681 
682 	list_for_each_safe(pos, next, &list) {
683 		pgoff_t next, end;
684 		loff_t i_size;
685 		int ret;
686 
687 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
688 		inode = &info->vfs_inode;
689 
690 		if (nr_to_free && freed >= nr_to_free)
691 			goto move_back;
692 
693 		i_size = i_size_read(inode);
694 		folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
695 		if (!folio || xa_is_value(folio))
696 			goto drop;
697 
698 		/* No large folio at the end of the file: nothing to split */
699 		if (!folio_test_large(folio)) {
700 			folio_put(folio);
701 			goto drop;
702 		}
703 
704 		/* Check if there is anything to gain from splitting */
705 		next = folio_next_index(folio);
706 		end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
707 		if (end <= folio->index || end >= next) {
708 			folio_put(folio);
709 			goto drop;
710 		}
711 
712 		/*
713 		 * Move the inode on the list back to shrinklist if we failed
714 		 * to lock the page at this time.
715 		 *
716 		 * Waiting for the lock may lead to deadlock in the
717 		 * reclaim path.
718 		 */
719 		if (!folio_trylock(folio)) {
720 			folio_put(folio);
721 			goto move_back;
722 		}
723 
724 		ret = split_folio(folio);
725 		folio_unlock(folio);
726 		folio_put(folio);
727 
728 		/* If split failed move the inode on the list back to shrinklist */
729 		if (ret)
730 			goto move_back;
731 
732 		freed += next - end;
733 		split++;
734 drop:
735 		list_del_init(&info->shrinklist);
736 		goto put;
737 move_back:
738 		/*
739 		 * Make sure the inode is either on the global list or deleted
740 		 * from any local list before iput() since it could be deleted
741 		 * in another thread once we put the inode (then the local list
742 		 * is corrupted).
743 		 */
744 		spin_lock(&sbinfo->shrinklist_lock);
745 		list_move(&info->shrinklist, &sbinfo->shrinklist);
746 		sbinfo->shrinklist_len++;
747 		spin_unlock(&sbinfo->shrinklist_lock);
748 put:
749 		iput(inode);
750 	}
751 
752 	return split;
753 }
754 
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)755 static long shmem_unused_huge_scan(struct super_block *sb,
756 		struct shrink_control *sc)
757 {
758 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
759 
760 	if (!READ_ONCE(sbinfo->shrinklist_len))
761 		return SHRINK_STOP;
762 
763 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
764 }
765 
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)766 static long shmem_unused_huge_count(struct super_block *sb,
767 		struct shrink_control *sc)
768 {
769 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
770 	return READ_ONCE(sbinfo->shrinklist_len);
771 }
772 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
773 
774 #define shmem_huge SHMEM_HUGE_DENY
775 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)776 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
777 		struct shrink_control *sc, unsigned long nr_to_free)
778 {
779 	return 0;
780 }
781 
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,unsigned long vm_flags)782 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
783 				      loff_t write_end, bool shmem_huge_force,
784 				      unsigned long vm_flags)
785 {
786 	return false;
787 }
788 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
789 
shmem_update_stats(struct folio * folio,int nr_pages)790 static void shmem_update_stats(struct folio *folio, int nr_pages)
791 {
792 	if (folio_test_pmd_mappable(folio))
793 		__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
794 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
795 	__lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
796 }
797 
798 /*
799  * Somewhat like filemap_add_folio, but error if expected item has gone.
800  */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)801 static int shmem_add_to_page_cache(struct folio *folio,
802 				   struct address_space *mapping,
803 				   pgoff_t index, void *expected, gfp_t gfp)
804 {
805 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
806 	long nr = folio_nr_pages(folio);
807 
808 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
809 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
810 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
811 
812 	folio_ref_add(folio, nr);
813 	folio->mapping = mapping;
814 	folio->index = index;
815 
816 	gfp &= GFP_RECLAIM_MASK;
817 	folio_throttle_swaprate(folio, gfp);
818 
819 	do {
820 		xas_lock_irq(&xas);
821 		if (expected != xas_find_conflict(&xas)) {
822 			xas_set_err(&xas, -EEXIST);
823 			goto unlock;
824 		}
825 		if (expected && xas_find_conflict(&xas)) {
826 			xas_set_err(&xas, -EEXIST);
827 			goto unlock;
828 		}
829 		xas_store(&xas, folio);
830 		if (xas_error(&xas))
831 			goto unlock;
832 		shmem_update_stats(folio, nr);
833 		mapping->nrpages += nr;
834 unlock:
835 		xas_unlock_irq(&xas);
836 	} while (xas_nomem(&xas, gfp));
837 
838 	if (xas_error(&xas)) {
839 		folio->mapping = NULL;
840 		folio_ref_sub(folio, nr);
841 		return xas_error(&xas);
842 	}
843 
844 	return 0;
845 }
846 
847 /*
848  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
849  */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)850 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
851 {
852 	struct address_space *mapping = folio->mapping;
853 	long nr = folio_nr_pages(folio);
854 	int error;
855 
856 	xa_lock_irq(&mapping->i_pages);
857 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
858 	folio->mapping = NULL;
859 	mapping->nrpages -= nr;
860 	shmem_update_stats(folio, -nr);
861 	xa_unlock_irq(&mapping->i_pages);
862 	folio_put_refs(folio, nr);
863 	BUG_ON(error);
864 }
865 
866 /*
867  * Remove swap entry from page cache, free the swap and its page cache. Returns
868  * the number of pages being freed. 0 means entry not found in XArray (0 pages
869  * being freed).
870  */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)871 static long shmem_free_swap(struct address_space *mapping,
872 			    pgoff_t index, void *radswap)
873 {
874 	int order = xa_get_order(&mapping->i_pages, index);
875 	void *old;
876 
877 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
878 	if (old != radswap)
879 		return 0;
880 	free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
881 
882 	return 1 << order;
883 }
884 
885 /*
886  * Determine (in bytes) how many of the shmem object's pages mapped by the
887  * given offsets are swapped out.
888  *
889  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
890  * as long as the inode doesn't go away and racy results are not a problem.
891  */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)892 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
893 						pgoff_t start, pgoff_t end)
894 {
895 	XA_STATE(xas, &mapping->i_pages, start);
896 	struct page *page;
897 	unsigned long swapped = 0;
898 	unsigned long max = end - 1;
899 
900 	rcu_read_lock();
901 	xas_for_each(&xas, page, max) {
902 		if (xas_retry(&xas, page))
903 			continue;
904 		if (xa_is_value(page))
905 			swapped += 1 << xas_get_order(&xas);
906 		if (xas.xa_index == max)
907 			break;
908 		if (need_resched()) {
909 			xas_pause(&xas);
910 			cond_resched_rcu();
911 		}
912 	}
913 	rcu_read_unlock();
914 
915 	return swapped << PAGE_SHIFT;
916 }
917 
918 /*
919  * Determine (in bytes) how many of the shmem object's pages mapped by the
920  * given vma is swapped out.
921  *
922  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
923  * as long as the inode doesn't go away and racy results are not a problem.
924  */
shmem_swap_usage(struct vm_area_struct * vma)925 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
926 {
927 	struct inode *inode = file_inode(vma->vm_file);
928 	struct shmem_inode_info *info = SHMEM_I(inode);
929 	struct address_space *mapping = inode->i_mapping;
930 	unsigned long swapped;
931 
932 	/* Be careful as we don't hold info->lock */
933 	swapped = READ_ONCE(info->swapped);
934 
935 	/*
936 	 * The easier cases are when the shmem object has nothing in swap, or
937 	 * the vma maps it whole. Then we can simply use the stats that we
938 	 * already track.
939 	 */
940 	if (!swapped)
941 		return 0;
942 
943 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
944 		return swapped << PAGE_SHIFT;
945 
946 	/* Here comes the more involved part */
947 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
948 					vma->vm_pgoff + vma_pages(vma));
949 }
950 
951 /*
952  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
953  */
shmem_unlock_mapping(struct address_space * mapping)954 void shmem_unlock_mapping(struct address_space *mapping)
955 {
956 	struct folio_batch fbatch;
957 	pgoff_t index = 0;
958 
959 	folio_batch_init(&fbatch);
960 	/*
961 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
962 	 */
963 	while (!mapping_unevictable(mapping) &&
964 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
965 		check_move_unevictable_folios(&fbatch);
966 		folio_batch_release(&fbatch);
967 		cond_resched();
968 	}
969 }
970 
shmem_get_partial_folio(struct inode * inode,pgoff_t index)971 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
972 {
973 	struct folio *folio;
974 
975 	/*
976 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
977 	 * beyond i_size, and reports fallocated folios as holes.
978 	 */
979 	folio = filemap_get_entry(inode->i_mapping, index);
980 	if (!folio)
981 		return folio;
982 	if (!xa_is_value(folio)) {
983 		folio_lock(folio);
984 		if (folio->mapping == inode->i_mapping)
985 			return folio;
986 		/* The folio has been swapped out */
987 		folio_unlock(folio);
988 		folio_put(folio);
989 	}
990 	/*
991 	 * But read a folio back from swap if any of it is within i_size
992 	 * (although in some cases this is just a waste of time).
993 	 */
994 	folio = NULL;
995 	shmem_get_folio(inode, index, 0, &folio, SGP_READ);
996 	return folio;
997 }
998 
999 /*
1000  * Remove range of pages and swap entries from page cache, and free them.
1001  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1002  */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)1003 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
1004 								 bool unfalloc)
1005 {
1006 	struct address_space *mapping = inode->i_mapping;
1007 	struct shmem_inode_info *info = SHMEM_I(inode);
1008 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1009 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1010 	struct folio_batch fbatch;
1011 	pgoff_t indices[PAGEVEC_SIZE];
1012 	struct folio *folio;
1013 	bool same_folio;
1014 	long nr_swaps_freed = 0;
1015 	pgoff_t index;
1016 	int i;
1017 
1018 	if (lend == -1)
1019 		end = -1;	/* unsigned, so actually very big */
1020 
1021 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1022 		info->fallocend = start;
1023 
1024 	folio_batch_init(&fbatch);
1025 	index = start;
1026 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1027 			&fbatch, indices)) {
1028 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1029 			folio = fbatch.folios[i];
1030 
1031 			if (xa_is_value(folio)) {
1032 				if (unfalloc)
1033 					continue;
1034 				nr_swaps_freed += shmem_free_swap(mapping,
1035 							indices[i], folio);
1036 				continue;
1037 			}
1038 
1039 			if (!unfalloc || !folio_test_uptodate(folio))
1040 				truncate_inode_folio(mapping, folio);
1041 			folio_unlock(folio);
1042 		}
1043 		folio_batch_remove_exceptionals(&fbatch);
1044 		folio_batch_release(&fbatch);
1045 		cond_resched();
1046 	}
1047 
1048 	/*
1049 	 * When undoing a failed fallocate, we want none of the partial folio
1050 	 * zeroing and splitting below, but shall want to truncate the whole
1051 	 * folio when !uptodate indicates that it was added by this fallocate,
1052 	 * even when [lstart, lend] covers only a part of the folio.
1053 	 */
1054 	if (unfalloc)
1055 		goto whole_folios;
1056 
1057 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1058 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1059 	if (folio) {
1060 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1061 		folio_mark_dirty(folio);
1062 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1063 			start = folio_next_index(folio);
1064 			if (same_folio)
1065 				end = folio->index;
1066 		}
1067 		folio_unlock(folio);
1068 		folio_put(folio);
1069 		folio = NULL;
1070 	}
1071 
1072 	if (!same_folio)
1073 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1074 	if (folio) {
1075 		folio_mark_dirty(folio);
1076 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1077 			end = folio->index;
1078 		folio_unlock(folio);
1079 		folio_put(folio);
1080 	}
1081 
1082 whole_folios:
1083 
1084 	index = start;
1085 	while (index < end) {
1086 		cond_resched();
1087 
1088 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1089 				indices)) {
1090 			/* If all gone or hole-punch or unfalloc, we're done */
1091 			if (index == start || end != -1)
1092 				break;
1093 			/* But if truncating, restart to make sure all gone */
1094 			index = start;
1095 			continue;
1096 		}
1097 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1098 			folio = fbatch.folios[i];
1099 
1100 			if (xa_is_value(folio)) {
1101 				long swaps_freed;
1102 
1103 				if (unfalloc)
1104 					continue;
1105 				swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1106 				if (!swaps_freed) {
1107 					/* Swap was replaced by page: retry */
1108 					index = indices[i];
1109 					break;
1110 				}
1111 				nr_swaps_freed += swaps_freed;
1112 				continue;
1113 			}
1114 
1115 			folio_lock(folio);
1116 
1117 			if (!unfalloc || !folio_test_uptodate(folio)) {
1118 				if (folio_mapping(folio) != mapping) {
1119 					/* Page was replaced by swap: retry */
1120 					folio_unlock(folio);
1121 					index = indices[i];
1122 					break;
1123 				}
1124 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1125 						folio);
1126 
1127 				if (!folio_test_large(folio)) {
1128 					truncate_inode_folio(mapping, folio);
1129 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1130 					/*
1131 					 * If we split a page, reset the loop so
1132 					 * that we pick up the new sub pages.
1133 					 * Otherwise the THP was entirely
1134 					 * dropped or the target range was
1135 					 * zeroed, so just continue the loop as
1136 					 * is.
1137 					 */
1138 					if (!folio_test_large(folio)) {
1139 						folio_unlock(folio);
1140 						index = start;
1141 						break;
1142 					}
1143 				}
1144 			}
1145 			folio_unlock(folio);
1146 		}
1147 		folio_batch_remove_exceptionals(&fbatch);
1148 		folio_batch_release(&fbatch);
1149 	}
1150 
1151 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1152 }
1153 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1154 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1155 {
1156 	shmem_undo_range(inode, lstart, lend, false);
1157 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1158 	inode_inc_iversion(inode);
1159 }
1160 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1161 
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1162 static int shmem_getattr(struct mnt_idmap *idmap,
1163 			 const struct path *path, struct kstat *stat,
1164 			 u32 request_mask, unsigned int query_flags)
1165 {
1166 	struct inode *inode = path->dentry->d_inode;
1167 	struct shmem_inode_info *info = SHMEM_I(inode);
1168 
1169 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1170 		shmem_recalc_inode(inode, 0, 0);
1171 
1172 	if (info->fsflags & FS_APPEND_FL)
1173 		stat->attributes |= STATX_ATTR_APPEND;
1174 	if (info->fsflags & FS_IMMUTABLE_FL)
1175 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1176 	if (info->fsflags & FS_NODUMP_FL)
1177 		stat->attributes |= STATX_ATTR_NODUMP;
1178 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1179 			STATX_ATTR_IMMUTABLE |
1180 			STATX_ATTR_NODUMP);
1181 	generic_fillattr(idmap, request_mask, inode, stat);
1182 
1183 	if (shmem_huge_global_enabled(inode, 0, 0, false, 0))
1184 		stat->blksize = HPAGE_PMD_SIZE;
1185 
1186 	if (request_mask & STATX_BTIME) {
1187 		stat->result_mask |= STATX_BTIME;
1188 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1189 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1190 	}
1191 
1192 	return 0;
1193 }
1194 
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1195 static int shmem_setattr(struct mnt_idmap *idmap,
1196 			 struct dentry *dentry, struct iattr *attr)
1197 {
1198 	struct inode *inode = d_inode(dentry);
1199 	struct shmem_inode_info *info = SHMEM_I(inode);
1200 	int error;
1201 	bool update_mtime = false;
1202 	bool update_ctime = true;
1203 
1204 	error = setattr_prepare(idmap, dentry, attr);
1205 	if (error)
1206 		return error;
1207 
1208 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1209 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1210 			return -EPERM;
1211 		}
1212 	}
1213 
1214 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1215 		loff_t oldsize = inode->i_size;
1216 		loff_t newsize = attr->ia_size;
1217 
1218 		/* protected by i_rwsem */
1219 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1220 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1221 			return -EPERM;
1222 
1223 		if (newsize != oldsize) {
1224 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1225 					oldsize, newsize);
1226 			if (error)
1227 				return error;
1228 			i_size_write(inode, newsize);
1229 			update_mtime = true;
1230 		} else {
1231 			update_ctime = false;
1232 		}
1233 		if (newsize <= oldsize) {
1234 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1235 			if (oldsize > holebegin)
1236 				unmap_mapping_range(inode->i_mapping,
1237 							holebegin, 0, 1);
1238 			if (info->alloced)
1239 				shmem_truncate_range(inode,
1240 							newsize, (loff_t)-1);
1241 			/* unmap again to remove racily COWed private pages */
1242 			if (oldsize > holebegin)
1243 				unmap_mapping_range(inode->i_mapping,
1244 							holebegin, 0, 1);
1245 		}
1246 	}
1247 
1248 	if (is_quota_modification(idmap, inode, attr)) {
1249 		error = dquot_initialize(inode);
1250 		if (error)
1251 			return error;
1252 	}
1253 
1254 	/* Transfer quota accounting */
1255 	if (i_uid_needs_update(idmap, attr, inode) ||
1256 	    i_gid_needs_update(idmap, attr, inode)) {
1257 		error = dquot_transfer(idmap, inode, attr);
1258 		if (error)
1259 			return error;
1260 	}
1261 
1262 	setattr_copy(idmap, inode, attr);
1263 	if (attr->ia_valid & ATTR_MODE)
1264 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1265 	if (!error && update_ctime) {
1266 		inode_set_ctime_current(inode);
1267 		if (update_mtime)
1268 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1269 		inode_inc_iversion(inode);
1270 	}
1271 	return error;
1272 }
1273 
shmem_evict_inode(struct inode * inode)1274 static void shmem_evict_inode(struct inode *inode)
1275 {
1276 	struct shmem_inode_info *info = SHMEM_I(inode);
1277 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1278 	size_t freed = 0;
1279 
1280 	if (shmem_mapping(inode->i_mapping)) {
1281 		shmem_unacct_size(info->flags, inode->i_size);
1282 		inode->i_size = 0;
1283 		mapping_set_exiting(inode->i_mapping);
1284 		shmem_truncate_range(inode, 0, (loff_t)-1);
1285 		if (!list_empty(&info->shrinklist)) {
1286 			spin_lock(&sbinfo->shrinklist_lock);
1287 			if (!list_empty(&info->shrinklist)) {
1288 				list_del_init(&info->shrinklist);
1289 				sbinfo->shrinklist_len--;
1290 			}
1291 			spin_unlock(&sbinfo->shrinklist_lock);
1292 		}
1293 		while (!list_empty(&info->swaplist)) {
1294 			/* Wait while shmem_unuse() is scanning this inode... */
1295 			wait_var_event(&info->stop_eviction,
1296 				       !atomic_read(&info->stop_eviction));
1297 			mutex_lock(&shmem_swaplist_mutex);
1298 			/* ...but beware of the race if we peeked too early */
1299 			if (!atomic_read(&info->stop_eviction))
1300 				list_del_init(&info->swaplist);
1301 			mutex_unlock(&shmem_swaplist_mutex);
1302 		}
1303 	}
1304 
1305 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1306 	shmem_free_inode(inode->i_sb, freed);
1307 	WARN_ON(inode->i_blocks);
1308 	clear_inode(inode);
1309 #ifdef CONFIG_TMPFS_QUOTA
1310 	dquot_free_inode(inode);
1311 	dquot_drop(inode);
1312 #endif
1313 }
1314 
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1315 static int shmem_find_swap_entries(struct address_space *mapping,
1316 				   pgoff_t start, struct folio_batch *fbatch,
1317 				   pgoff_t *indices, unsigned int type)
1318 {
1319 	XA_STATE(xas, &mapping->i_pages, start);
1320 	struct folio *folio;
1321 	swp_entry_t entry;
1322 
1323 	rcu_read_lock();
1324 	xas_for_each(&xas, folio, ULONG_MAX) {
1325 		if (xas_retry(&xas, folio))
1326 			continue;
1327 
1328 		if (!xa_is_value(folio))
1329 			continue;
1330 
1331 		entry = radix_to_swp_entry(folio);
1332 		/*
1333 		 * swapin error entries can be found in the mapping. But they're
1334 		 * deliberately ignored here as we've done everything we can do.
1335 		 */
1336 		if (swp_type(entry) != type)
1337 			continue;
1338 
1339 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1340 		if (!folio_batch_add(fbatch, folio))
1341 			break;
1342 
1343 		if (need_resched()) {
1344 			xas_pause(&xas);
1345 			cond_resched_rcu();
1346 		}
1347 	}
1348 	rcu_read_unlock();
1349 
1350 	return xas.xa_index;
1351 }
1352 
1353 /*
1354  * Move the swapped pages for an inode to page cache. Returns the count
1355  * of pages swapped in, or the error in case of failure.
1356  */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1357 static int shmem_unuse_swap_entries(struct inode *inode,
1358 		struct folio_batch *fbatch, pgoff_t *indices)
1359 {
1360 	int i = 0;
1361 	int ret = 0;
1362 	int error = 0;
1363 	struct address_space *mapping = inode->i_mapping;
1364 
1365 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1366 		struct folio *folio = fbatch->folios[i];
1367 
1368 		if (!xa_is_value(folio))
1369 			continue;
1370 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1371 					mapping_gfp_mask(mapping), NULL, NULL);
1372 		if (error == 0) {
1373 			folio_unlock(folio);
1374 			folio_put(folio);
1375 			ret++;
1376 		}
1377 		if (error == -ENOMEM)
1378 			break;
1379 		error = 0;
1380 	}
1381 	return error ? error : ret;
1382 }
1383 
1384 /*
1385  * If swap found in inode, free it and move page from swapcache to filecache.
1386  */
shmem_unuse_inode(struct inode * inode,unsigned int type)1387 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1388 {
1389 	struct address_space *mapping = inode->i_mapping;
1390 	pgoff_t start = 0;
1391 	struct folio_batch fbatch;
1392 	pgoff_t indices[PAGEVEC_SIZE];
1393 	int ret = 0;
1394 
1395 	do {
1396 		folio_batch_init(&fbatch);
1397 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1398 		if (folio_batch_count(&fbatch) == 0) {
1399 			ret = 0;
1400 			break;
1401 		}
1402 
1403 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1404 		if (ret < 0)
1405 			break;
1406 
1407 		start = indices[folio_batch_count(&fbatch) - 1];
1408 	} while (true);
1409 
1410 	return ret;
1411 }
1412 
1413 /*
1414  * Read all the shared memory data that resides in the swap
1415  * device 'type' back into memory, so the swap device can be
1416  * unused.
1417  */
shmem_unuse(unsigned int type)1418 int shmem_unuse(unsigned int type)
1419 {
1420 	struct shmem_inode_info *info, *next;
1421 	int error = 0;
1422 
1423 	if (list_empty(&shmem_swaplist))
1424 		return 0;
1425 
1426 	mutex_lock(&shmem_swaplist_mutex);
1427 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1428 		if (!info->swapped) {
1429 			list_del_init(&info->swaplist);
1430 			continue;
1431 		}
1432 		/*
1433 		 * Drop the swaplist mutex while searching the inode for swap;
1434 		 * but before doing so, make sure shmem_evict_inode() will not
1435 		 * remove placeholder inode from swaplist, nor let it be freed
1436 		 * (igrab() would protect from unlink, but not from unmount).
1437 		 */
1438 		atomic_inc(&info->stop_eviction);
1439 		mutex_unlock(&shmem_swaplist_mutex);
1440 
1441 		error = shmem_unuse_inode(&info->vfs_inode, type);
1442 		cond_resched();
1443 
1444 		mutex_lock(&shmem_swaplist_mutex);
1445 		next = list_next_entry(info, swaplist);
1446 		if (!info->swapped)
1447 			list_del_init(&info->swaplist);
1448 		if (atomic_dec_and_test(&info->stop_eviction))
1449 			wake_up_var(&info->stop_eviction);
1450 		if (error)
1451 			break;
1452 	}
1453 	mutex_unlock(&shmem_swaplist_mutex);
1454 
1455 	return error;
1456 }
1457 
1458 /*
1459  * Move the page from the page cache to the swap cache.
1460  */
shmem_writepage(struct page * page,struct writeback_control * wbc)1461 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1462 {
1463 	struct folio *folio = page_folio(page);
1464 	struct address_space *mapping = folio->mapping;
1465 	struct inode *inode = mapping->host;
1466 	struct shmem_inode_info *info = SHMEM_I(inode);
1467 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1468 	swp_entry_t swap;
1469 	pgoff_t index;
1470 	int nr_pages;
1471 	bool split = false;
1472 
1473 	/*
1474 	 * Our capabilities prevent regular writeback or sync from ever calling
1475 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1476 	 * its underlying filesystem, in which case tmpfs should write out to
1477 	 * swap only in response to memory pressure, and not for the writeback
1478 	 * threads or sync.
1479 	 */
1480 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1481 		goto redirty;
1482 
1483 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1484 		goto redirty;
1485 
1486 	if (!total_swap_pages)
1487 		goto redirty;
1488 
1489 	/*
1490 	 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1491 	 * split when swapping.
1492 	 *
1493 	 * And shrinkage of pages beyond i_size does not split swap, so
1494 	 * swapout of a large folio crossing i_size needs to split too
1495 	 * (unless fallocate has been used to preallocate beyond EOF).
1496 	 */
1497 	if (folio_test_large(folio)) {
1498 		index = shmem_fallocend(inode,
1499 			DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1500 		if ((index > folio->index && index < folio_next_index(folio)) ||
1501 		    !IS_ENABLED(CONFIG_THP_SWAP))
1502 			split = true;
1503 	}
1504 
1505 	if (split) {
1506 try_split:
1507 		/* Ensure the subpages are still dirty */
1508 		folio_test_set_dirty(folio);
1509 		if (split_huge_page_to_list_to_order(page, wbc->list, 0))
1510 			goto redirty;
1511 		folio = page_folio(page);
1512 		folio_clear_dirty(folio);
1513 	}
1514 
1515 	index = folio->index;
1516 	nr_pages = folio_nr_pages(folio);
1517 
1518 	/*
1519 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1520 	 * value into swapfile.c, the only way we can correctly account for a
1521 	 * fallocated folio arriving here is now to initialize it and write it.
1522 	 *
1523 	 * That's okay for a folio already fallocated earlier, but if we have
1524 	 * not yet completed the fallocation, then (a) we want to keep track
1525 	 * of this folio in case we have to undo it, and (b) it may not be a
1526 	 * good idea to continue anyway, once we're pushing into swap.  So
1527 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1528 	 */
1529 	if (!folio_test_uptodate(folio)) {
1530 		if (inode->i_private) {
1531 			struct shmem_falloc *shmem_falloc;
1532 			spin_lock(&inode->i_lock);
1533 			shmem_falloc = inode->i_private;
1534 			if (shmem_falloc &&
1535 			    !shmem_falloc->waitq &&
1536 			    index >= shmem_falloc->start &&
1537 			    index < shmem_falloc->next)
1538 				shmem_falloc->nr_unswapped += nr_pages;
1539 			else
1540 				shmem_falloc = NULL;
1541 			spin_unlock(&inode->i_lock);
1542 			if (shmem_falloc)
1543 				goto redirty;
1544 		}
1545 		folio_zero_range(folio, 0, folio_size(folio));
1546 		flush_dcache_folio(folio);
1547 		folio_mark_uptodate(folio);
1548 	}
1549 
1550 	swap = folio_alloc_swap(folio);
1551 	if (!swap.val) {
1552 		if (nr_pages > 1)
1553 			goto try_split;
1554 
1555 		goto redirty;
1556 	}
1557 
1558 	/*
1559 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1560 	 * if it's not already there.  Do it now before the folio is
1561 	 * moved to swap cache, when its pagelock no longer protects
1562 	 * the inode from eviction.  But don't unlock the mutex until
1563 	 * we've incremented swapped, because shmem_unuse_inode() will
1564 	 * prune a !swapped inode from the swaplist under this mutex.
1565 	 */
1566 	mutex_lock(&shmem_swaplist_mutex);
1567 	if (list_empty(&info->swaplist))
1568 		list_add(&info->swaplist, &shmem_swaplist);
1569 
1570 	if (add_to_swap_cache(folio, swap,
1571 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1572 			NULL) == 0) {
1573 		shmem_recalc_inode(inode, 0, nr_pages);
1574 		swap_shmem_alloc(swap, nr_pages);
1575 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1576 
1577 		mutex_unlock(&shmem_swaplist_mutex);
1578 		BUG_ON(folio_mapped(folio));
1579 		return swap_writepage(&folio->page, wbc);
1580 	}
1581 
1582 	mutex_unlock(&shmem_swaplist_mutex);
1583 	put_swap_folio(folio, swap);
1584 redirty:
1585 	folio_mark_dirty(folio);
1586 	if (wbc->for_reclaim)
1587 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1588 	folio_unlock(folio);
1589 	return 0;
1590 }
1591 
1592 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1593 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1594 {
1595 	char buffer[64];
1596 
1597 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1598 		return;		/* show nothing */
1599 
1600 	mpol_to_str(buffer, sizeof(buffer), mpol);
1601 
1602 	seq_printf(seq, ",mpol=%s", buffer);
1603 }
1604 
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1605 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1606 {
1607 	struct mempolicy *mpol = NULL;
1608 	if (sbinfo->mpol) {
1609 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1610 		mpol = sbinfo->mpol;
1611 		mpol_get(mpol);
1612 		raw_spin_unlock(&sbinfo->stat_lock);
1613 	}
1614 	return mpol;
1615 }
1616 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1617 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1618 {
1619 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1620 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1621 {
1622 	return NULL;
1623 }
1624 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1625 
1626 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1627 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1628 
shmem_swapin_cluster(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1629 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1630 			struct shmem_inode_info *info, pgoff_t index)
1631 {
1632 	struct mempolicy *mpol;
1633 	pgoff_t ilx;
1634 	struct folio *folio;
1635 
1636 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1637 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1638 	mpol_cond_put(mpol);
1639 
1640 	return folio;
1641 }
1642 
1643 /*
1644  * Make sure huge_gfp is always more limited than limit_gfp.
1645  * Some of the flags set permissions, while others set limitations.
1646  */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1647 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1648 {
1649 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1650 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1651 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1652 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1653 
1654 	/* Allow allocations only from the originally specified zones. */
1655 	result |= zoneflags;
1656 
1657 	/*
1658 	 * Minimize the result gfp by taking the union with the deny flags,
1659 	 * and the intersection of the allow flags.
1660 	 */
1661 	result |= (limit_gfp & denyflags);
1662 	result |= (huge_gfp & limit_gfp) & allowflags;
1663 
1664 	return result;
1665 }
1666 
1667 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_hpage_pmd_enabled(void)1668 bool shmem_hpage_pmd_enabled(void)
1669 {
1670 	if (shmem_huge == SHMEM_HUGE_DENY)
1671 		return false;
1672 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1673 		return true;
1674 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1675 		return true;
1676 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1677 		return true;
1678 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1679 	    shmem_huge != SHMEM_HUGE_NEVER)
1680 		return true;
1681 
1682 	return false;
1683 }
1684 
shmem_allowable_huge_orders(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,loff_t write_end,bool shmem_huge_force)1685 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1686 				struct vm_area_struct *vma, pgoff_t index,
1687 				loff_t write_end, bool shmem_huge_force)
1688 {
1689 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1690 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1691 	unsigned long vm_flags = vma ? vma->vm_flags : 0;
1692 	pgoff_t aligned_index;
1693 	bool global_huge;
1694 	loff_t i_size;
1695 	int order;
1696 
1697 	if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1698 		return 0;
1699 
1700 	global_huge = shmem_huge_global_enabled(inode, index, write_end,
1701 						shmem_huge_force, vm_flags);
1702 	if (!vma || !vma_is_anon_shmem(vma)) {
1703 		/*
1704 		 * For tmpfs, we now only support PMD sized THP if huge page
1705 		 * is enabled, otherwise fallback to order 0.
1706 		 */
1707 		return global_huge ? BIT(HPAGE_PMD_ORDER) : 0;
1708 	}
1709 
1710 	/*
1711 	 * Following the 'deny' semantics of the top level, force the huge
1712 	 * option off from all mounts.
1713 	 */
1714 	if (shmem_huge == SHMEM_HUGE_DENY)
1715 		return 0;
1716 
1717 	/*
1718 	 * Only allow inherit orders if the top-level value is 'force', which
1719 	 * means non-PMD sized THP can not override 'huge' mount option now.
1720 	 */
1721 	if (shmem_huge == SHMEM_HUGE_FORCE)
1722 		return READ_ONCE(huge_shmem_orders_inherit);
1723 
1724 	/* Allow mTHP that will be fully within i_size. */
1725 	order = highest_order(within_size_orders);
1726 	while (within_size_orders) {
1727 		aligned_index = round_up(index + 1, 1 << order);
1728 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1729 		if (i_size >> PAGE_SHIFT >= aligned_index) {
1730 			mask |= within_size_orders;
1731 			break;
1732 		}
1733 
1734 		order = next_order(&within_size_orders, order);
1735 	}
1736 
1737 	if (vm_flags & VM_HUGEPAGE)
1738 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1739 
1740 	if (global_huge)
1741 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1742 
1743 	return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1744 }
1745 
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1746 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1747 					   struct address_space *mapping, pgoff_t index,
1748 					   unsigned long orders)
1749 {
1750 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1751 	pgoff_t aligned_index;
1752 	unsigned long pages;
1753 	int order;
1754 
1755 	if (vma) {
1756 		orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1757 		if (!orders)
1758 			return 0;
1759 	}
1760 
1761 	/* Find the highest order that can add into the page cache */
1762 	order = highest_order(orders);
1763 	while (orders) {
1764 		pages = 1UL << order;
1765 		aligned_index = round_down(index, pages);
1766 		/*
1767 		 * Check for conflict before waiting on a huge allocation.
1768 		 * Conflict might be that a huge page has just been allocated
1769 		 * and added to page cache by a racing thread, or that there
1770 		 * is already at least one small page in the huge extent.
1771 		 * Be careful to retry when appropriate, but not forever!
1772 		 * Elsewhere -EEXIST would be the right code, but not here.
1773 		 */
1774 		if (!xa_find(&mapping->i_pages, &aligned_index,
1775 			     aligned_index + pages - 1, XA_PRESENT))
1776 			break;
1777 		order = next_order(&orders, order);
1778 	}
1779 
1780 	return orders;
1781 }
1782 #else
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1783 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1784 					   struct address_space *mapping, pgoff_t index,
1785 					   unsigned long orders)
1786 {
1787 	return 0;
1788 }
1789 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1790 
shmem_alloc_folio(gfp_t gfp,int order,struct shmem_inode_info * info,pgoff_t index)1791 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1792 		struct shmem_inode_info *info, pgoff_t index)
1793 {
1794 	struct mempolicy *mpol;
1795 	pgoff_t ilx;
1796 	struct folio *folio;
1797 
1798 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1799 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1800 	mpol_cond_put(mpol);
1801 
1802 	return folio;
1803 }
1804 
shmem_alloc_and_add_folio(struct vm_fault * vmf,gfp_t gfp,struct inode * inode,pgoff_t index,struct mm_struct * fault_mm,unsigned long orders)1805 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1806 		gfp_t gfp, struct inode *inode, pgoff_t index,
1807 		struct mm_struct *fault_mm, unsigned long orders)
1808 {
1809 	struct address_space *mapping = inode->i_mapping;
1810 	struct shmem_inode_info *info = SHMEM_I(inode);
1811 	unsigned long suitable_orders = 0;
1812 	struct folio *folio = NULL;
1813 	long pages;
1814 	int error, order;
1815 
1816 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1817 		orders = 0;
1818 
1819 	if (orders > 0) {
1820 		suitable_orders = shmem_suitable_orders(inode, vmf,
1821 							mapping, index, orders);
1822 
1823 		order = highest_order(suitable_orders);
1824 		while (suitable_orders) {
1825 			pages = 1UL << order;
1826 			index = round_down(index, pages);
1827 			folio = shmem_alloc_folio(gfp, order, info, index);
1828 			if (folio)
1829 				goto allocated;
1830 
1831 			if (pages == HPAGE_PMD_NR)
1832 				count_vm_event(THP_FILE_FALLBACK);
1833 			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1834 			order = next_order(&suitable_orders, order);
1835 		}
1836 	} else {
1837 		pages = 1;
1838 		folio = shmem_alloc_folio(gfp, 0, info, index);
1839 	}
1840 	if (!folio)
1841 		return ERR_PTR(-ENOMEM);
1842 
1843 allocated:
1844 	__folio_set_locked(folio);
1845 	__folio_set_swapbacked(folio);
1846 
1847 	gfp &= GFP_RECLAIM_MASK;
1848 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1849 	if (error) {
1850 		if (xa_find(&mapping->i_pages, &index,
1851 				index + pages - 1, XA_PRESENT)) {
1852 			error = -EEXIST;
1853 		} else if (pages > 1) {
1854 			if (pages == HPAGE_PMD_NR) {
1855 				count_vm_event(THP_FILE_FALLBACK);
1856 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1857 			}
1858 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1859 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1860 		}
1861 		goto unlock;
1862 	}
1863 
1864 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1865 	if (error)
1866 		goto unlock;
1867 
1868 	error = shmem_inode_acct_blocks(inode, pages);
1869 	if (error) {
1870 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1871 		long freed;
1872 		/*
1873 		 * Try to reclaim some space by splitting a few
1874 		 * large folios beyond i_size on the filesystem.
1875 		 */
1876 		shmem_unused_huge_shrink(sbinfo, NULL, pages);
1877 		/*
1878 		 * And do a shmem_recalc_inode() to account for freed pages:
1879 		 * except our folio is there in cache, so not quite balanced.
1880 		 */
1881 		spin_lock(&info->lock);
1882 		freed = pages + info->alloced - info->swapped -
1883 			READ_ONCE(mapping->nrpages);
1884 		if (freed > 0)
1885 			info->alloced -= freed;
1886 		spin_unlock(&info->lock);
1887 		if (freed > 0)
1888 			shmem_inode_unacct_blocks(inode, freed);
1889 		error = shmem_inode_acct_blocks(inode, pages);
1890 		if (error) {
1891 			filemap_remove_folio(folio);
1892 			goto unlock;
1893 		}
1894 	}
1895 
1896 	shmem_recalc_inode(inode, pages, 0);
1897 	folio_add_lru(folio);
1898 	return folio;
1899 
1900 unlock:
1901 	folio_unlock(folio);
1902 	folio_put(folio);
1903 	return ERR_PTR(error);
1904 }
1905 
1906 /*
1907  * When a page is moved from swapcache to shmem filecache (either by the
1908  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1909  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1910  * ignorance of the mapping it belongs to.  If that mapping has special
1911  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1912  * we may need to copy to a suitable page before moving to filecache.
1913  *
1914  * In a future release, this may well be extended to respect cpuset and
1915  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1916  * but for now it is a simple matter of zone.
1917  */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)1918 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1919 {
1920 	return folio_zonenum(folio) > gfp_zone(gfp);
1921 }
1922 
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index,struct vm_area_struct * vma)1923 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1924 				struct shmem_inode_info *info, pgoff_t index,
1925 				struct vm_area_struct *vma)
1926 {
1927 	struct folio *new, *old = *foliop;
1928 	swp_entry_t entry = old->swap;
1929 	struct address_space *swap_mapping = swap_address_space(entry);
1930 	pgoff_t swap_index = swap_cache_index(entry);
1931 	XA_STATE(xas, &swap_mapping->i_pages, swap_index);
1932 	int nr_pages = folio_nr_pages(old);
1933 	int error = 0, i;
1934 
1935 	/*
1936 	 * We have arrived here because our zones are constrained, so don't
1937 	 * limit chance of success by further cpuset and node constraints.
1938 	 */
1939 	gfp &= ~GFP_CONSTRAINT_MASK;
1940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1941 	if (nr_pages > 1) {
1942 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1943 
1944 		gfp = limit_gfp_mask(huge_gfp, gfp);
1945 	}
1946 #endif
1947 
1948 	new = shmem_alloc_folio(gfp, folio_order(old), info, index);
1949 	if (!new)
1950 		return -ENOMEM;
1951 
1952 	folio_ref_add(new, nr_pages);
1953 	folio_copy(new, old);
1954 	flush_dcache_folio(new);
1955 
1956 	__folio_set_locked(new);
1957 	__folio_set_swapbacked(new);
1958 	folio_mark_uptodate(new);
1959 	new->swap = entry;
1960 	folio_set_swapcache(new);
1961 
1962 	/* Swap cache still stores N entries instead of a high-order entry */
1963 	xa_lock_irq(&swap_mapping->i_pages);
1964 	for (i = 0; i < nr_pages; i++) {
1965 		void *item = xas_load(&xas);
1966 
1967 		if (item != old) {
1968 			error = -ENOENT;
1969 			break;
1970 		}
1971 
1972 		xas_store(&xas, new);
1973 		xas_next(&xas);
1974 	}
1975 	if (!error) {
1976 		mem_cgroup_replace_folio(old, new);
1977 		shmem_update_stats(new, nr_pages);
1978 		shmem_update_stats(old, -nr_pages);
1979 	}
1980 	xa_unlock_irq(&swap_mapping->i_pages);
1981 
1982 	if (unlikely(error)) {
1983 		/*
1984 		 * Is this possible?  I think not, now that our callers
1985 		 * check both the swapcache flag and folio->private
1986 		 * after getting the folio lock; but be defensive.
1987 		 * Reverse old to newpage for clear and free.
1988 		 */
1989 		old = new;
1990 	} else {
1991 		folio_add_lru(new);
1992 		*foliop = new;
1993 	}
1994 
1995 	folio_clear_swapcache(old);
1996 	old->private = NULL;
1997 
1998 	folio_unlock(old);
1999 	/*
2000 	 * The old folio are removed from swap cache, drop the 'nr_pages'
2001 	 * reference, as well as one temporary reference getting from swap
2002 	 * cache.
2003 	 */
2004 	folio_put_refs(old, nr_pages + 1);
2005 	return error;
2006 }
2007 
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap)2008 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2009 					 struct folio *folio, swp_entry_t swap)
2010 {
2011 	struct address_space *mapping = inode->i_mapping;
2012 	swp_entry_t swapin_error;
2013 	void *old;
2014 	int nr_pages;
2015 
2016 	swapin_error = make_poisoned_swp_entry();
2017 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
2018 			     swp_to_radix_entry(swap),
2019 			     swp_to_radix_entry(swapin_error), 0);
2020 	if (old != swp_to_radix_entry(swap))
2021 		return;
2022 
2023 	nr_pages = folio_nr_pages(folio);
2024 	folio_wait_writeback(folio);
2025 	delete_from_swap_cache(folio);
2026 	/*
2027 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2028 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2029 	 * in shmem_evict_inode().
2030 	 */
2031 	shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2032 	swap_free_nr(swap, nr_pages);
2033 }
2034 
shmem_split_large_entry(struct inode * inode,pgoff_t index,swp_entry_t swap,gfp_t gfp)2035 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2036 				   swp_entry_t swap, gfp_t gfp)
2037 {
2038 	struct address_space *mapping = inode->i_mapping;
2039 	XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2040 	void *alloced_shadow = NULL;
2041 	int alloced_order = 0, i;
2042 
2043 	/* Convert user data gfp flags to xarray node gfp flags */
2044 	gfp &= GFP_RECLAIM_MASK;
2045 
2046 	for (;;) {
2047 		int order = -1, split_order = 0;
2048 		void *old = NULL;
2049 
2050 		xas_lock_irq(&xas);
2051 		old = xas_load(&xas);
2052 		if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2053 			xas_set_err(&xas, -EEXIST);
2054 			goto unlock;
2055 		}
2056 
2057 		order = xas_get_order(&xas);
2058 
2059 		/* Swap entry may have changed before we re-acquire the lock */
2060 		if (alloced_order &&
2061 		    (old != alloced_shadow || order != alloced_order)) {
2062 			xas_destroy(&xas);
2063 			alloced_order = 0;
2064 		}
2065 
2066 		/* Try to split large swap entry in pagecache */
2067 		if (order > 0) {
2068 			if (!alloced_order) {
2069 				split_order = order;
2070 				goto unlock;
2071 			}
2072 			xas_split(&xas, old, order);
2073 
2074 			/*
2075 			 * Re-set the swap entry after splitting, and the swap
2076 			 * offset of the original large entry must be continuous.
2077 			 */
2078 			for (i = 0; i < 1 << order; i++) {
2079 				pgoff_t aligned_index = round_down(index, 1 << order);
2080 				swp_entry_t tmp;
2081 
2082 				tmp = swp_entry(swp_type(swap), swp_offset(swap) + i);
2083 				__xa_store(&mapping->i_pages, aligned_index + i,
2084 					   swp_to_radix_entry(tmp), 0);
2085 			}
2086 		}
2087 
2088 unlock:
2089 		xas_unlock_irq(&xas);
2090 
2091 		/* split needed, alloc here and retry. */
2092 		if (split_order) {
2093 			xas_split_alloc(&xas, old, split_order, gfp);
2094 			if (xas_error(&xas))
2095 				goto error;
2096 			alloced_shadow = old;
2097 			alloced_order = split_order;
2098 			xas_reset(&xas);
2099 			continue;
2100 		}
2101 
2102 		if (!xas_nomem(&xas, gfp))
2103 			break;
2104 	}
2105 
2106 error:
2107 	if (xas_error(&xas))
2108 		return xas_error(&xas);
2109 
2110 	return alloced_order;
2111 }
2112 
2113 /*
2114  * Swap in the folio pointed to by *foliop.
2115  * Caller has to make sure that *foliop contains a valid swapped folio.
2116  * Returns 0 and the folio in foliop if success. On failure, returns the
2117  * error code and NULL in *foliop.
2118  */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)2119 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2120 			     struct folio **foliop, enum sgp_type sgp,
2121 			     gfp_t gfp, struct vm_area_struct *vma,
2122 			     vm_fault_t *fault_type)
2123 {
2124 	struct address_space *mapping = inode->i_mapping;
2125 	struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2126 	struct shmem_inode_info *info = SHMEM_I(inode);
2127 	struct swap_info_struct *si;
2128 	struct folio *folio = NULL;
2129 	swp_entry_t swap;
2130 	int error, nr_pages;
2131 
2132 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2133 	swap = radix_to_swp_entry(*foliop);
2134 	*foliop = NULL;
2135 
2136 	if (is_poisoned_swp_entry(swap))
2137 		return -EIO;
2138 
2139 	si = get_swap_device(swap);
2140 	if (!si) {
2141 		if (!shmem_confirm_swap(mapping, index, swap))
2142 			return -EEXIST;
2143 		else
2144 			return -EINVAL;
2145 	}
2146 
2147 	/* Look it up and read it in.. */
2148 	folio = swap_cache_get_folio(swap, NULL, 0);
2149 	if (!folio) {
2150 		int split_order;
2151 
2152 		/* Or update major stats only when swapin succeeds?? */
2153 		if (fault_type) {
2154 			*fault_type |= VM_FAULT_MAJOR;
2155 			count_vm_event(PGMAJFAULT);
2156 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2157 		}
2158 
2159 		/*
2160 		 * Now swap device can only swap in order 0 folio, then we
2161 		 * should split the large swap entry stored in the pagecache
2162 		 * if necessary.
2163 		 */
2164 		split_order = shmem_split_large_entry(inode, index, swap, gfp);
2165 		if (split_order < 0) {
2166 			error = split_order;
2167 			goto failed;
2168 		}
2169 
2170 		/*
2171 		 * If the large swap entry has already been split, it is
2172 		 * necessary to recalculate the new swap entry based on
2173 		 * the old order alignment.
2174 		 */
2175 		if (split_order > 0) {
2176 			pgoff_t offset = index - round_down(index, 1 << split_order);
2177 
2178 			swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2179 		}
2180 
2181 		/* Here we actually start the io */
2182 		folio = shmem_swapin_cluster(swap, gfp, info, index);
2183 		if (!folio) {
2184 			error = -ENOMEM;
2185 			goto failed;
2186 		}
2187 	}
2188 
2189 	/* We have to do this with folio locked to prevent races */
2190 	folio_lock(folio);
2191 	if (!folio_test_swapcache(folio) ||
2192 	    folio->swap.val != swap.val ||
2193 	    !shmem_confirm_swap(mapping, index, swap)) {
2194 		error = -EEXIST;
2195 		goto unlock;
2196 	}
2197 	if (!folio_test_uptodate(folio)) {
2198 		error = -EIO;
2199 		goto failed;
2200 	}
2201 	folio_wait_writeback(folio);
2202 	nr_pages = folio_nr_pages(folio);
2203 
2204 	/*
2205 	 * Some architectures may have to restore extra metadata to the
2206 	 * folio after reading from swap.
2207 	 */
2208 	arch_swap_restore(folio_swap(swap, folio), folio);
2209 
2210 	if (shmem_should_replace_folio(folio, gfp)) {
2211 		error = shmem_replace_folio(&folio, gfp, info, index, vma);
2212 		if (error)
2213 			goto failed;
2214 	}
2215 
2216 	error = shmem_add_to_page_cache(folio, mapping,
2217 					round_down(index, nr_pages),
2218 					swp_to_radix_entry(swap), gfp);
2219 	if (error)
2220 		goto failed;
2221 
2222 	shmem_recalc_inode(inode, 0, -nr_pages);
2223 
2224 	if (sgp == SGP_WRITE)
2225 		folio_mark_accessed(folio);
2226 
2227 	delete_from_swap_cache(folio);
2228 	folio_mark_dirty(folio);
2229 	swap_free_nr(swap, nr_pages);
2230 	put_swap_device(si);
2231 
2232 	*foliop = folio;
2233 	return 0;
2234 failed:
2235 	if (!shmem_confirm_swap(mapping, index, swap))
2236 		error = -EEXIST;
2237 	if (error == -EIO)
2238 		shmem_set_folio_swapin_error(inode, index, folio, swap);
2239 unlock:
2240 	if (folio) {
2241 		folio_unlock(folio);
2242 		folio_put(folio);
2243 	}
2244 	put_swap_device(si);
2245 
2246 	return error;
2247 }
2248 
2249 /*
2250  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2251  *
2252  * If we allocate a new one we do not mark it dirty. That's up to the
2253  * vm. If we swap it in we mark it dirty since we also free the swap
2254  * entry since a page cannot live in both the swap and page cache.
2255  *
2256  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2257  */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_fault * vmf,vm_fault_t * fault_type)2258 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2259 		loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2260 		gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2261 {
2262 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2263 	struct mm_struct *fault_mm;
2264 	struct folio *folio;
2265 	int error;
2266 	bool alloced;
2267 	unsigned long orders = 0;
2268 
2269 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2270 		return -EINVAL;
2271 
2272 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2273 		return -EFBIG;
2274 repeat:
2275 	if (sgp <= SGP_CACHE &&
2276 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2277 		return -EINVAL;
2278 
2279 	alloced = false;
2280 	fault_mm = vma ? vma->vm_mm : NULL;
2281 
2282 	folio = filemap_get_entry(inode->i_mapping, index);
2283 	if (folio && vma && userfaultfd_minor(vma)) {
2284 		if (!xa_is_value(folio))
2285 			folio_put(folio);
2286 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2287 		return 0;
2288 	}
2289 
2290 	if (xa_is_value(folio)) {
2291 		error = shmem_swapin_folio(inode, index, &folio,
2292 					   sgp, gfp, vma, fault_type);
2293 		if (error == -EEXIST)
2294 			goto repeat;
2295 
2296 		*foliop = folio;
2297 		return error;
2298 	}
2299 
2300 	if (folio) {
2301 		folio_lock(folio);
2302 
2303 		/* Has the folio been truncated or swapped out? */
2304 		if (unlikely(folio->mapping != inode->i_mapping)) {
2305 			folio_unlock(folio);
2306 			folio_put(folio);
2307 			goto repeat;
2308 		}
2309 		if (sgp == SGP_WRITE)
2310 			folio_mark_accessed(folio);
2311 		if (folio_test_uptodate(folio))
2312 			goto out;
2313 		/* fallocated folio */
2314 		if (sgp != SGP_READ)
2315 			goto clear;
2316 		folio_unlock(folio);
2317 		folio_put(folio);
2318 	}
2319 
2320 	/*
2321 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2322 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2323 	 */
2324 	*foliop = NULL;
2325 	if (sgp == SGP_READ)
2326 		return 0;
2327 	if (sgp == SGP_NOALLOC)
2328 		return -ENOENT;
2329 
2330 	/*
2331 	 * Fast cache lookup and swap lookup did not find it: allocate.
2332 	 */
2333 
2334 	if (vma && userfaultfd_missing(vma)) {
2335 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2336 		return 0;
2337 	}
2338 
2339 	/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2340 	orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2341 	if (orders > 0) {
2342 		gfp_t huge_gfp;
2343 
2344 		huge_gfp = vma_thp_gfp_mask(vma);
2345 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2346 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2347 				inode, index, fault_mm, orders);
2348 		if (!IS_ERR(folio)) {
2349 			if (folio_test_pmd_mappable(folio))
2350 				count_vm_event(THP_FILE_ALLOC);
2351 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2352 			goto alloced;
2353 		}
2354 		if (PTR_ERR(folio) == -EEXIST)
2355 			goto repeat;
2356 	}
2357 
2358 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2359 	if (IS_ERR(folio)) {
2360 		error = PTR_ERR(folio);
2361 		if (error == -EEXIST)
2362 			goto repeat;
2363 		folio = NULL;
2364 		goto unlock;
2365 	}
2366 
2367 alloced:
2368 	alloced = true;
2369 	if (folio_test_large(folio) &&
2370 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2371 					folio_next_index(folio)) {
2372 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2373 		struct shmem_inode_info *info = SHMEM_I(inode);
2374 		/*
2375 		 * Part of the large folio is beyond i_size: subject
2376 		 * to shrink under memory pressure.
2377 		 */
2378 		spin_lock(&sbinfo->shrinklist_lock);
2379 		/*
2380 		 * _careful to defend against unlocked access to
2381 		 * ->shrink_list in shmem_unused_huge_shrink()
2382 		 */
2383 		if (list_empty_careful(&info->shrinklist)) {
2384 			list_add_tail(&info->shrinklist,
2385 				      &sbinfo->shrinklist);
2386 			sbinfo->shrinklist_len++;
2387 		}
2388 		spin_unlock(&sbinfo->shrinklist_lock);
2389 	}
2390 
2391 	if (sgp == SGP_WRITE)
2392 		folio_set_referenced(folio);
2393 	/*
2394 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2395 	 */
2396 	if (sgp == SGP_FALLOC)
2397 		sgp = SGP_WRITE;
2398 clear:
2399 	/*
2400 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2401 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2402 	 * it now, lest undo on failure cancel our earlier guarantee.
2403 	 */
2404 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2405 		long i, n = folio_nr_pages(folio);
2406 
2407 		for (i = 0; i < n; i++)
2408 			clear_highpage(folio_page(folio, i));
2409 		flush_dcache_folio(folio);
2410 		folio_mark_uptodate(folio);
2411 	}
2412 
2413 	/* Perhaps the file has been truncated since we checked */
2414 	if (sgp <= SGP_CACHE &&
2415 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2416 		error = -EINVAL;
2417 		goto unlock;
2418 	}
2419 out:
2420 	*foliop = folio;
2421 	return 0;
2422 
2423 	/*
2424 	 * Error recovery.
2425 	 */
2426 unlock:
2427 	if (alloced)
2428 		filemap_remove_folio(folio);
2429 	shmem_recalc_inode(inode, 0, 0);
2430 	if (folio) {
2431 		folio_unlock(folio);
2432 		folio_put(folio);
2433 	}
2434 	return error;
2435 }
2436 
2437 /**
2438  * shmem_get_folio - find, and lock a shmem folio.
2439  * @inode:	inode to search
2440  * @index:	the page index.
2441  * @write_end:	end of a write, could extend inode size
2442  * @foliop:	pointer to the folio if found
2443  * @sgp:	SGP_* flags to control behavior
2444  *
2445  * Looks up the page cache entry at @inode & @index.  If a folio is
2446  * present, it is returned locked with an increased refcount.
2447  *
2448  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2449  * before unlocking the folio to ensure that the folio is not reclaimed.
2450  * There is no need to reserve space before calling folio_mark_dirty().
2451  *
2452  * When no folio is found, the behavior depends on @sgp:
2453  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2454  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2455  *  - for all other flags a new folio is allocated, inserted into the
2456  *    page cache and returned locked in @foliop.
2457  *
2458  * Context: May sleep.
2459  * Return: 0 if successful, else a negative error code.
2460  */
shmem_get_folio(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp)2461 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2462 		    struct folio **foliop, enum sgp_type sgp)
2463 {
2464 	return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2465 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2466 }
2467 EXPORT_SYMBOL_GPL(shmem_get_folio);
2468 
2469 /*
2470  * This is like autoremove_wake_function, but it removes the wait queue
2471  * entry unconditionally - even if something else had already woken the
2472  * target.
2473  */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)2474 static int synchronous_wake_function(wait_queue_entry_t *wait,
2475 			unsigned int mode, int sync, void *key)
2476 {
2477 	int ret = default_wake_function(wait, mode, sync, key);
2478 	list_del_init(&wait->entry);
2479 	return ret;
2480 }
2481 
2482 /*
2483  * Trinity finds that probing a hole which tmpfs is punching can
2484  * prevent the hole-punch from ever completing: which in turn
2485  * locks writers out with its hold on i_rwsem.  So refrain from
2486  * faulting pages into the hole while it's being punched.  Although
2487  * shmem_undo_range() does remove the additions, it may be unable to
2488  * keep up, as each new page needs its own unmap_mapping_range() call,
2489  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2490  *
2491  * It does not matter if we sometimes reach this check just before the
2492  * hole-punch begins, so that one fault then races with the punch:
2493  * we just need to make racing faults a rare case.
2494  *
2495  * The implementation below would be much simpler if we just used a
2496  * standard mutex or completion: but we cannot take i_rwsem in fault,
2497  * and bloating every shmem inode for this unlikely case would be sad.
2498  */
shmem_falloc_wait(struct vm_fault * vmf,struct inode * inode)2499 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2500 {
2501 	struct shmem_falloc *shmem_falloc;
2502 	struct file *fpin = NULL;
2503 	vm_fault_t ret = 0;
2504 
2505 	spin_lock(&inode->i_lock);
2506 	shmem_falloc = inode->i_private;
2507 	if (shmem_falloc &&
2508 	    shmem_falloc->waitq &&
2509 	    vmf->pgoff >= shmem_falloc->start &&
2510 	    vmf->pgoff < shmem_falloc->next) {
2511 		wait_queue_head_t *shmem_falloc_waitq;
2512 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2513 
2514 		ret = VM_FAULT_NOPAGE;
2515 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2516 		shmem_falloc_waitq = shmem_falloc->waitq;
2517 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2518 				TASK_UNINTERRUPTIBLE);
2519 		spin_unlock(&inode->i_lock);
2520 		schedule();
2521 
2522 		/*
2523 		 * shmem_falloc_waitq points into the shmem_fallocate()
2524 		 * stack of the hole-punching task: shmem_falloc_waitq
2525 		 * is usually invalid by the time we reach here, but
2526 		 * finish_wait() does not dereference it in that case;
2527 		 * though i_lock needed lest racing with wake_up_all().
2528 		 */
2529 		spin_lock(&inode->i_lock);
2530 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2531 	}
2532 	spin_unlock(&inode->i_lock);
2533 	if (fpin) {
2534 		fput(fpin);
2535 		ret = VM_FAULT_RETRY;
2536 	}
2537 	return ret;
2538 }
2539 
shmem_fault(struct vm_fault * vmf)2540 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2541 {
2542 	struct inode *inode = file_inode(vmf->vma->vm_file);
2543 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2544 	struct folio *folio = NULL;
2545 	vm_fault_t ret = 0;
2546 	int err;
2547 
2548 	/*
2549 	 * Trinity finds that probing a hole which tmpfs is punching can
2550 	 * prevent the hole-punch from ever completing: noted in i_private.
2551 	 */
2552 	if (unlikely(inode->i_private)) {
2553 		ret = shmem_falloc_wait(vmf, inode);
2554 		if (ret)
2555 			return ret;
2556 	}
2557 
2558 	WARN_ON_ONCE(vmf->page != NULL);
2559 	err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2560 				  gfp, vmf, &ret);
2561 	if (err)
2562 		return vmf_error(err);
2563 	if (folio) {
2564 		vmf->page = folio_file_page(folio, vmf->pgoff);
2565 		ret |= VM_FAULT_LOCKED;
2566 	}
2567 	return ret;
2568 }
2569 
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2570 unsigned long shmem_get_unmapped_area(struct file *file,
2571 				      unsigned long uaddr, unsigned long len,
2572 				      unsigned long pgoff, unsigned long flags)
2573 {
2574 	unsigned long addr;
2575 	unsigned long offset;
2576 	unsigned long inflated_len;
2577 	unsigned long inflated_addr;
2578 	unsigned long inflated_offset;
2579 	unsigned long hpage_size;
2580 
2581 	if (len > TASK_SIZE)
2582 		return -ENOMEM;
2583 
2584 	addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2585 				    flags);
2586 
2587 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2588 		return addr;
2589 	if (IS_ERR_VALUE(addr))
2590 		return addr;
2591 	if (addr & ~PAGE_MASK)
2592 		return addr;
2593 	if (addr > TASK_SIZE - len)
2594 		return addr;
2595 
2596 	if (shmem_huge == SHMEM_HUGE_DENY)
2597 		return addr;
2598 	if (flags & MAP_FIXED)
2599 		return addr;
2600 	/*
2601 	 * Our priority is to support MAP_SHARED mapped hugely;
2602 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2603 	 * But if caller specified an address hint and we allocated area there
2604 	 * successfully, respect that as before.
2605 	 */
2606 	if (uaddr == addr)
2607 		return addr;
2608 
2609 	hpage_size = HPAGE_PMD_SIZE;
2610 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2611 		struct super_block *sb;
2612 		unsigned long __maybe_unused hpage_orders;
2613 		int order = 0;
2614 
2615 		if (file) {
2616 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2617 			sb = file_inode(file)->i_sb;
2618 		} else {
2619 			/*
2620 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2621 			 * for "/dev/zero", to create a shared anonymous object.
2622 			 */
2623 			if (IS_ERR(shm_mnt))
2624 				return addr;
2625 			sb = shm_mnt->mnt_sb;
2626 
2627 			/*
2628 			 * Find the highest mTHP order used for anonymous shmem to
2629 			 * provide a suitable alignment address.
2630 			 */
2631 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2632 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2633 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2634 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2635 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2636 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2637 
2638 			if (hpage_orders > 0) {
2639 				order = highest_order(hpage_orders);
2640 				hpage_size = PAGE_SIZE << order;
2641 			}
2642 #endif
2643 		}
2644 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2645 			return addr;
2646 	}
2647 
2648 	if (len < hpage_size)
2649 		return addr;
2650 
2651 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2652 	if (offset && offset + len < 2 * hpage_size)
2653 		return addr;
2654 	if ((addr & (hpage_size - 1)) == offset)
2655 		return addr;
2656 
2657 	inflated_len = len + hpage_size - PAGE_SIZE;
2658 	if (inflated_len > TASK_SIZE)
2659 		return addr;
2660 	if (inflated_len < len)
2661 		return addr;
2662 
2663 	inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2664 					     inflated_len, 0, flags);
2665 	if (IS_ERR_VALUE(inflated_addr))
2666 		return addr;
2667 	if (inflated_addr & ~PAGE_MASK)
2668 		return addr;
2669 
2670 	inflated_offset = inflated_addr & (hpage_size - 1);
2671 	inflated_addr += offset - inflated_offset;
2672 	if (inflated_offset > offset)
2673 		inflated_addr += hpage_size;
2674 
2675 	if (inflated_addr > TASK_SIZE - len)
2676 		return addr;
2677 	return inflated_addr;
2678 }
2679 
2680 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2681 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2682 {
2683 	struct inode *inode = file_inode(vma->vm_file);
2684 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2685 }
2686 
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)2687 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2688 					  unsigned long addr, pgoff_t *ilx)
2689 {
2690 	struct inode *inode = file_inode(vma->vm_file);
2691 	pgoff_t index;
2692 
2693 	/*
2694 	 * Bias interleave by inode number to distribute better across nodes;
2695 	 * but this interface is independent of which page order is used, so
2696 	 * supplies only that bias, letting caller apply the offset (adjusted
2697 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2698 	 */
2699 	*ilx = inode->i_ino;
2700 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2701 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2702 }
2703 
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2704 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2705 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2706 {
2707 	struct mempolicy *mpol;
2708 
2709 	/* Bias interleave by inode number to distribute better across nodes */
2710 	*ilx = info->vfs_inode.i_ino + (index >> order);
2711 
2712 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2713 	return mpol ? mpol : get_task_policy(current);
2714 }
2715 #else
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2716 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2717 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2718 {
2719 	*ilx = 0;
2720 	return NULL;
2721 }
2722 #endif /* CONFIG_NUMA */
2723 
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2724 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2725 {
2726 	struct inode *inode = file_inode(file);
2727 	struct shmem_inode_info *info = SHMEM_I(inode);
2728 	int retval = -ENOMEM;
2729 
2730 	/*
2731 	 * What serializes the accesses to info->flags?
2732 	 * ipc_lock_object() when called from shmctl_do_lock(),
2733 	 * no serialization needed when called from shm_destroy().
2734 	 */
2735 	if (lock && !(info->flags & VM_LOCKED)) {
2736 		if (!user_shm_lock(inode->i_size, ucounts))
2737 			goto out_nomem;
2738 		info->flags |= VM_LOCKED;
2739 		mapping_set_unevictable(file->f_mapping);
2740 	}
2741 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2742 		user_shm_unlock(inode->i_size, ucounts);
2743 		info->flags &= ~VM_LOCKED;
2744 		mapping_clear_unevictable(file->f_mapping);
2745 	}
2746 	retval = 0;
2747 
2748 out_nomem:
2749 	return retval;
2750 }
2751 
shmem_mmap(struct file * file,struct vm_area_struct * vma)2752 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2753 {
2754 	struct inode *inode = file_inode(file);
2755 	struct shmem_inode_info *info = SHMEM_I(inode);
2756 	int ret;
2757 
2758 	ret = seal_check_write(info->seals, vma);
2759 	if (ret)
2760 		return ret;
2761 
2762 	file_accessed(file);
2763 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2764 	if (inode->i_nlink)
2765 		vma->vm_ops = &shmem_vm_ops;
2766 	else
2767 		vma->vm_ops = &shmem_anon_vm_ops;
2768 	return 0;
2769 }
2770 
shmem_file_open(struct inode * inode,struct file * file)2771 static int shmem_file_open(struct inode *inode, struct file *file)
2772 {
2773 	file->f_mode |= FMODE_CAN_ODIRECT;
2774 	return generic_file_open(inode, file);
2775 }
2776 
2777 #ifdef CONFIG_TMPFS_XATTR
2778 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2779 
2780 #if IS_ENABLED(CONFIG_UNICODE)
2781 /*
2782  * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2783  *
2784  * The casefold file attribute needs some special checks. I can just be added to
2785  * an empty dir, and can't be removed from a non-empty dir.
2786  */
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)2787 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2788 				      struct dentry *dentry, unsigned int *i_flags)
2789 {
2790 	unsigned int old = inode->i_flags;
2791 	struct super_block *sb = inode->i_sb;
2792 
2793 	if (fsflags & FS_CASEFOLD_FL) {
2794 		if (!(old & S_CASEFOLD)) {
2795 			if (!sb->s_encoding)
2796 				return -EOPNOTSUPP;
2797 
2798 			if (!S_ISDIR(inode->i_mode))
2799 				return -ENOTDIR;
2800 
2801 			if (dentry && !simple_empty(dentry))
2802 				return -ENOTEMPTY;
2803 		}
2804 
2805 		*i_flags = *i_flags | S_CASEFOLD;
2806 	} else if (old & S_CASEFOLD) {
2807 		if (dentry && !simple_empty(dentry))
2808 			return -ENOTEMPTY;
2809 	}
2810 
2811 	return 0;
2812 }
2813 #else
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)2814 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2815 				      struct dentry *dentry, unsigned int *i_flags)
2816 {
2817 	if (fsflags & FS_CASEFOLD_FL)
2818 		return -EOPNOTSUPP;
2819 
2820 	return 0;
2821 }
2822 #endif
2823 
2824 /*
2825  * chattr's fsflags are unrelated to extended attributes,
2826  * but tmpfs has chosen to enable them under the same config option.
2827  */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)2828 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
2829 {
2830 	unsigned int i_flags = 0;
2831 	int ret;
2832 
2833 	ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
2834 	if (ret)
2835 		return ret;
2836 
2837 	if (fsflags & FS_NOATIME_FL)
2838 		i_flags |= S_NOATIME;
2839 	if (fsflags & FS_APPEND_FL)
2840 		i_flags |= S_APPEND;
2841 	if (fsflags & FS_IMMUTABLE_FL)
2842 		i_flags |= S_IMMUTABLE;
2843 	/*
2844 	 * But FS_NODUMP_FL does not require any action in i_flags.
2845 	 */
2846 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
2847 
2848 	return 0;
2849 }
2850 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)2851 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
2852 {
2853 }
2854 #define shmem_initxattrs NULL
2855 #endif
2856 
shmem_get_offset_ctx(struct inode * inode)2857 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2858 {
2859 	return &SHMEM_I(inode)->dir_offsets;
2860 }
2861 
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2862 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2863 					     struct super_block *sb,
2864 					     struct inode *dir, umode_t mode,
2865 					     dev_t dev, unsigned long flags)
2866 {
2867 	struct inode *inode;
2868 	struct shmem_inode_info *info;
2869 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2870 	ino_t ino;
2871 	int err;
2872 
2873 	err = shmem_reserve_inode(sb, &ino);
2874 	if (err)
2875 		return ERR_PTR(err);
2876 
2877 	inode = new_inode(sb);
2878 	if (!inode) {
2879 		shmem_free_inode(sb, 0);
2880 		return ERR_PTR(-ENOSPC);
2881 	}
2882 
2883 	inode->i_ino = ino;
2884 	inode_init_owner(idmap, inode, dir, mode);
2885 	inode->i_blocks = 0;
2886 	simple_inode_init_ts(inode);
2887 	inode->i_generation = get_random_u32();
2888 	info = SHMEM_I(inode);
2889 	memset(info, 0, (char *)inode - (char *)info);
2890 	spin_lock_init(&info->lock);
2891 	atomic_set(&info->stop_eviction, 0);
2892 	info->seals = F_SEAL_SEAL;
2893 	info->flags = flags & VM_NORESERVE;
2894 	info->i_crtime = inode_get_mtime(inode);
2895 	info->fsflags = (dir == NULL) ? 0 :
2896 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2897 	if (info->fsflags)
2898 		shmem_set_inode_flags(inode, info->fsflags, NULL);
2899 	INIT_LIST_HEAD(&info->shrinklist);
2900 	INIT_LIST_HEAD(&info->swaplist);
2901 	simple_xattrs_init(&info->xattrs);
2902 	cache_no_acl(inode);
2903 	if (sbinfo->noswap)
2904 		mapping_set_unevictable(inode->i_mapping);
2905 
2906 	/* Don't consider 'deny' for emergencies and 'force' for testing */
2907 	if (sbinfo->huge)
2908 		mapping_set_large_folios(inode->i_mapping);
2909 
2910 	switch (mode & S_IFMT) {
2911 	default:
2912 		inode->i_op = &shmem_special_inode_operations;
2913 		init_special_inode(inode, mode, dev);
2914 		break;
2915 	case S_IFREG:
2916 		inode->i_mapping->a_ops = &shmem_aops;
2917 		inode->i_op = &shmem_inode_operations;
2918 		inode->i_fop = &shmem_file_operations;
2919 		mpol_shared_policy_init(&info->policy,
2920 					 shmem_get_sbmpol(sbinfo));
2921 		break;
2922 	case S_IFDIR:
2923 		inc_nlink(inode);
2924 		/* Some things misbehave if size == 0 on a directory */
2925 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2926 		inode->i_op = &shmem_dir_inode_operations;
2927 		inode->i_fop = &simple_offset_dir_operations;
2928 		simple_offset_init(shmem_get_offset_ctx(inode));
2929 		break;
2930 	case S_IFLNK:
2931 		/*
2932 		 * Must not load anything in the rbtree,
2933 		 * mpol_free_shared_policy will not be called.
2934 		 */
2935 		mpol_shared_policy_init(&info->policy, NULL);
2936 		break;
2937 	}
2938 
2939 	lockdep_annotate_inode_mutex_key(inode);
2940 	return inode;
2941 }
2942 
2943 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2944 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2945 				     struct super_block *sb, struct inode *dir,
2946 				     umode_t mode, dev_t dev, unsigned long flags)
2947 {
2948 	int err;
2949 	struct inode *inode;
2950 
2951 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2952 	if (IS_ERR(inode))
2953 		return inode;
2954 
2955 	err = dquot_initialize(inode);
2956 	if (err)
2957 		goto errout;
2958 
2959 	err = dquot_alloc_inode(inode);
2960 	if (err) {
2961 		dquot_drop(inode);
2962 		goto errout;
2963 	}
2964 	return inode;
2965 
2966 errout:
2967 	inode->i_flags |= S_NOQUOTA;
2968 	iput(inode);
2969 	return ERR_PTR(err);
2970 }
2971 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2972 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2973 				     struct super_block *sb, struct inode *dir,
2974 				     umode_t mode, dev_t dev, unsigned long flags)
2975 {
2976 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2977 }
2978 #endif /* CONFIG_TMPFS_QUOTA */
2979 
2980 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)2981 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2982 			   struct vm_area_struct *dst_vma,
2983 			   unsigned long dst_addr,
2984 			   unsigned long src_addr,
2985 			   uffd_flags_t flags,
2986 			   struct folio **foliop)
2987 {
2988 	struct inode *inode = file_inode(dst_vma->vm_file);
2989 	struct shmem_inode_info *info = SHMEM_I(inode);
2990 	struct address_space *mapping = inode->i_mapping;
2991 	gfp_t gfp = mapping_gfp_mask(mapping);
2992 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2993 	void *page_kaddr;
2994 	struct folio *folio;
2995 	int ret;
2996 	pgoff_t max_off;
2997 
2998 	if (shmem_inode_acct_blocks(inode, 1)) {
2999 		/*
3000 		 * We may have got a page, returned -ENOENT triggering a retry,
3001 		 * and now we find ourselves with -ENOMEM. Release the page, to
3002 		 * avoid a BUG_ON in our caller.
3003 		 */
3004 		if (unlikely(*foliop)) {
3005 			folio_put(*foliop);
3006 			*foliop = NULL;
3007 		}
3008 		return -ENOMEM;
3009 	}
3010 
3011 	if (!*foliop) {
3012 		ret = -ENOMEM;
3013 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3014 		if (!folio)
3015 			goto out_unacct_blocks;
3016 
3017 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3018 			page_kaddr = kmap_local_folio(folio, 0);
3019 			/*
3020 			 * The read mmap_lock is held here.  Despite the
3021 			 * mmap_lock being read recursive a deadlock is still
3022 			 * possible if a writer has taken a lock.  For example:
3023 			 *
3024 			 * process A thread 1 takes read lock on own mmap_lock
3025 			 * process A thread 2 calls mmap, blocks taking write lock
3026 			 * process B thread 1 takes page fault, read lock on own mmap lock
3027 			 * process B thread 2 calls mmap, blocks taking write lock
3028 			 * process A thread 1 blocks taking read lock on process B
3029 			 * process B thread 1 blocks taking read lock on process A
3030 			 *
3031 			 * Disable page faults to prevent potential deadlock
3032 			 * and retry the copy outside the mmap_lock.
3033 			 */
3034 			pagefault_disable();
3035 			ret = copy_from_user(page_kaddr,
3036 					     (const void __user *)src_addr,
3037 					     PAGE_SIZE);
3038 			pagefault_enable();
3039 			kunmap_local(page_kaddr);
3040 
3041 			/* fallback to copy_from_user outside mmap_lock */
3042 			if (unlikely(ret)) {
3043 				*foliop = folio;
3044 				ret = -ENOENT;
3045 				/* don't free the page */
3046 				goto out_unacct_blocks;
3047 			}
3048 
3049 			flush_dcache_folio(folio);
3050 		} else {		/* ZEROPAGE */
3051 			clear_user_highpage(&folio->page, dst_addr);
3052 		}
3053 	} else {
3054 		folio = *foliop;
3055 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3056 		*foliop = NULL;
3057 	}
3058 
3059 	VM_BUG_ON(folio_test_locked(folio));
3060 	VM_BUG_ON(folio_test_swapbacked(folio));
3061 	__folio_set_locked(folio);
3062 	__folio_set_swapbacked(folio);
3063 	__folio_mark_uptodate(folio);
3064 
3065 	ret = -EFAULT;
3066 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3067 	if (unlikely(pgoff >= max_off))
3068 		goto out_release;
3069 
3070 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3071 	if (ret)
3072 		goto out_release;
3073 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3074 	if (ret)
3075 		goto out_release;
3076 
3077 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3078 				       &folio->page, true, flags);
3079 	if (ret)
3080 		goto out_delete_from_cache;
3081 
3082 	shmem_recalc_inode(inode, 1, 0);
3083 	folio_unlock(folio);
3084 	return 0;
3085 out_delete_from_cache:
3086 	filemap_remove_folio(folio);
3087 out_release:
3088 	folio_unlock(folio);
3089 	folio_put(folio);
3090 out_unacct_blocks:
3091 	shmem_inode_unacct_blocks(inode, 1);
3092 	return ret;
3093 }
3094 #endif /* CONFIG_USERFAULTFD */
3095 
3096 #ifdef CONFIG_TMPFS
3097 static const struct inode_operations shmem_symlink_inode_operations;
3098 static const struct inode_operations shmem_short_symlink_operations;
3099 
3100 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3101 shmem_write_begin(struct file *file, struct address_space *mapping,
3102 			loff_t pos, unsigned len,
3103 			struct folio **foliop, void **fsdata)
3104 {
3105 	struct inode *inode = mapping->host;
3106 	struct shmem_inode_info *info = SHMEM_I(inode);
3107 	pgoff_t index = pos >> PAGE_SHIFT;
3108 	struct folio *folio;
3109 	int ret = 0;
3110 
3111 	/* i_rwsem is held by caller */
3112 	if (unlikely(info->seals & (F_SEAL_GROW |
3113 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3114 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3115 			return -EPERM;
3116 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3117 			return -EPERM;
3118 	}
3119 
3120 	ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3121 	if (ret)
3122 		return ret;
3123 
3124 	if (folio_test_hwpoison(folio) ||
3125 	    (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
3126 		folio_unlock(folio);
3127 		folio_put(folio);
3128 		return -EIO;
3129 	}
3130 
3131 	*foliop = folio;
3132 	return 0;
3133 }
3134 
3135 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3136 shmem_write_end(struct file *file, struct address_space *mapping,
3137 			loff_t pos, unsigned len, unsigned copied,
3138 			struct folio *folio, void *fsdata)
3139 {
3140 	struct inode *inode = mapping->host;
3141 
3142 	if (pos + copied > inode->i_size)
3143 		i_size_write(inode, pos + copied);
3144 
3145 	if (!folio_test_uptodate(folio)) {
3146 		if (copied < folio_size(folio)) {
3147 			size_t from = offset_in_folio(folio, pos);
3148 			folio_zero_segments(folio, 0, from,
3149 					from + copied, folio_size(folio));
3150 		}
3151 		folio_mark_uptodate(folio);
3152 	}
3153 	folio_mark_dirty(folio);
3154 	folio_unlock(folio);
3155 	folio_put(folio);
3156 
3157 	return copied;
3158 }
3159 
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3160 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3161 {
3162 	struct file *file = iocb->ki_filp;
3163 	struct inode *inode = file_inode(file);
3164 	struct address_space *mapping = inode->i_mapping;
3165 	pgoff_t index;
3166 	unsigned long offset;
3167 	int error = 0;
3168 	ssize_t retval = 0;
3169 
3170 	for (;;) {
3171 		struct folio *folio = NULL;
3172 		struct page *page = NULL;
3173 		unsigned long nr, ret;
3174 		loff_t end_offset, i_size = i_size_read(inode);
3175 		bool fallback_page_copy = false;
3176 		size_t fsize;
3177 
3178 		if (unlikely(iocb->ki_pos >= i_size))
3179 			break;
3180 
3181 		index = iocb->ki_pos >> PAGE_SHIFT;
3182 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3183 		if (error) {
3184 			if (error == -EINVAL)
3185 				error = 0;
3186 			break;
3187 		}
3188 		if (folio) {
3189 			folio_unlock(folio);
3190 
3191 			page = folio_file_page(folio, index);
3192 			if (PageHWPoison(page)) {
3193 				folio_put(folio);
3194 				error = -EIO;
3195 				break;
3196 			}
3197 
3198 			if (folio_test_large(folio) &&
3199 			    folio_test_has_hwpoisoned(folio))
3200 				fallback_page_copy = true;
3201 		}
3202 
3203 		/*
3204 		 * We must evaluate after, since reads (unlike writes)
3205 		 * are called without i_rwsem protection against truncate
3206 		 */
3207 		i_size = i_size_read(inode);
3208 		if (unlikely(iocb->ki_pos >= i_size)) {
3209 			if (folio)
3210 				folio_put(folio);
3211 			break;
3212 		}
3213 		end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3214 		if (folio && likely(!fallback_page_copy))
3215 			fsize = folio_size(folio);
3216 		else
3217 			fsize = PAGE_SIZE;
3218 		offset = iocb->ki_pos & (fsize - 1);
3219 		nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3220 
3221 		if (folio) {
3222 			/*
3223 			 * If users can be writing to this page using arbitrary
3224 			 * virtual addresses, take care about potential aliasing
3225 			 * before reading the page on the kernel side.
3226 			 */
3227 			if (mapping_writably_mapped(mapping)) {
3228 				if (likely(!fallback_page_copy))
3229 					flush_dcache_folio(folio);
3230 				else
3231 					flush_dcache_page(page);
3232 			}
3233 
3234 			/*
3235 			 * Mark the folio accessed if we read the beginning.
3236 			 */
3237 			if (!offset)
3238 				folio_mark_accessed(folio);
3239 			/*
3240 			 * Ok, we have the page, and it's up-to-date, so
3241 			 * now we can copy it to user space...
3242 			 */
3243 			if (likely(!fallback_page_copy))
3244 				ret = copy_folio_to_iter(folio, offset, nr, to);
3245 			else
3246 				ret = copy_page_to_iter(page, offset, nr, to);
3247 			folio_put(folio);
3248 		} else if (user_backed_iter(to)) {
3249 			/*
3250 			 * Copy to user tends to be so well optimized, but
3251 			 * clear_user() not so much, that it is noticeably
3252 			 * faster to copy the zero page instead of clearing.
3253 			 */
3254 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3255 		} else {
3256 			/*
3257 			 * But submitting the same page twice in a row to
3258 			 * splice() - or others? - can result in confusion:
3259 			 * so don't attempt that optimization on pipes etc.
3260 			 */
3261 			ret = iov_iter_zero(nr, to);
3262 		}
3263 
3264 		retval += ret;
3265 		iocb->ki_pos += ret;
3266 
3267 		if (!iov_iter_count(to))
3268 			break;
3269 		if (ret < nr) {
3270 			error = -EFAULT;
3271 			break;
3272 		}
3273 		cond_resched();
3274 	}
3275 
3276 	file_accessed(file);
3277 	return retval ? retval : error;
3278 }
3279 
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3280 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3281 {
3282 	struct file *file = iocb->ki_filp;
3283 	struct inode *inode = file->f_mapping->host;
3284 	ssize_t ret;
3285 
3286 	inode_lock(inode);
3287 	ret = generic_write_checks(iocb, from);
3288 	if (ret <= 0)
3289 		goto unlock;
3290 	ret = file_remove_privs(file);
3291 	if (ret)
3292 		goto unlock;
3293 	ret = file_update_time(file);
3294 	if (ret)
3295 		goto unlock;
3296 	ret = generic_perform_write(iocb, from);
3297 unlock:
3298 	inode_unlock(inode);
3299 	return ret;
3300 }
3301 
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3302 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3303 			      struct pipe_buffer *buf)
3304 {
3305 	return true;
3306 }
3307 
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3308 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3309 				  struct pipe_buffer *buf)
3310 {
3311 }
3312 
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3313 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3314 				    struct pipe_buffer *buf)
3315 {
3316 	return false;
3317 }
3318 
3319 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3320 	.release	= zero_pipe_buf_release,
3321 	.try_steal	= zero_pipe_buf_try_steal,
3322 	.get		= zero_pipe_buf_get,
3323 };
3324 
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)3325 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3326 					loff_t fpos, size_t size)
3327 {
3328 	size_t offset = fpos & ~PAGE_MASK;
3329 
3330 	size = min_t(size_t, size, PAGE_SIZE - offset);
3331 
3332 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
3333 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3334 
3335 		*buf = (struct pipe_buffer) {
3336 			.ops	= &zero_pipe_buf_ops,
3337 			.page	= ZERO_PAGE(0),
3338 			.offset	= offset,
3339 			.len	= size,
3340 		};
3341 		pipe->head++;
3342 	}
3343 
3344 	return size;
3345 }
3346 
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3347 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3348 				      struct pipe_inode_info *pipe,
3349 				      size_t len, unsigned int flags)
3350 {
3351 	struct inode *inode = file_inode(in);
3352 	struct address_space *mapping = inode->i_mapping;
3353 	struct folio *folio = NULL;
3354 	size_t total_spliced = 0, used, npages, n, part;
3355 	loff_t isize;
3356 	int error = 0;
3357 
3358 	/* Work out how much data we can actually add into the pipe */
3359 	used = pipe_occupancy(pipe->head, pipe->tail);
3360 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3361 	len = min_t(size_t, len, npages * PAGE_SIZE);
3362 
3363 	do {
3364 		bool fallback_page_splice = false;
3365 		struct page *page = NULL;
3366 		pgoff_t index;
3367 		size_t size;
3368 
3369 		if (*ppos >= i_size_read(inode))
3370 			break;
3371 
3372 		index = *ppos >> PAGE_SHIFT;
3373 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3374 		if (error) {
3375 			if (error == -EINVAL)
3376 				error = 0;
3377 			break;
3378 		}
3379 		if (folio) {
3380 			folio_unlock(folio);
3381 
3382 			page = folio_file_page(folio, index);
3383 			if (PageHWPoison(page)) {
3384 				error = -EIO;
3385 				break;
3386 			}
3387 
3388 			if (folio_test_large(folio) &&
3389 			    folio_test_has_hwpoisoned(folio))
3390 				fallback_page_splice = true;
3391 		}
3392 
3393 		/*
3394 		 * i_size must be checked after we know the pages are Uptodate.
3395 		 *
3396 		 * Checking i_size after the check allows us to calculate
3397 		 * the correct value for "nr", which means the zero-filled
3398 		 * part of the page is not copied back to userspace (unless
3399 		 * another truncate extends the file - this is desired though).
3400 		 */
3401 		isize = i_size_read(inode);
3402 		if (unlikely(*ppos >= isize))
3403 			break;
3404 		/*
3405 		 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3406 		 * pages.
3407 		 */
3408 		size = len;
3409 		if (unlikely(fallback_page_splice)) {
3410 			size_t offset = *ppos & ~PAGE_MASK;
3411 
3412 			size = umin(size, PAGE_SIZE - offset);
3413 		}
3414 		part = min_t(loff_t, isize - *ppos, size);
3415 
3416 		if (folio) {
3417 			/*
3418 			 * If users can be writing to this page using arbitrary
3419 			 * virtual addresses, take care about potential aliasing
3420 			 * before reading the page on the kernel side.
3421 			 */
3422 			if (mapping_writably_mapped(mapping)) {
3423 				if (likely(!fallback_page_splice))
3424 					flush_dcache_folio(folio);
3425 				else
3426 					flush_dcache_page(page);
3427 			}
3428 			folio_mark_accessed(folio);
3429 			/*
3430 			 * Ok, we have the page, and it's up-to-date, so we can
3431 			 * now splice it into the pipe.
3432 			 */
3433 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3434 			folio_put(folio);
3435 			folio = NULL;
3436 		} else {
3437 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3438 		}
3439 
3440 		if (!n)
3441 			break;
3442 		len -= n;
3443 		total_spliced += n;
3444 		*ppos += n;
3445 		in->f_ra.prev_pos = *ppos;
3446 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3447 			break;
3448 
3449 		cond_resched();
3450 	} while (len);
3451 
3452 	if (folio)
3453 		folio_put(folio);
3454 
3455 	file_accessed(in);
3456 	return total_spliced ? total_spliced : error;
3457 }
3458 
shmem_file_llseek(struct file * file,loff_t offset,int whence)3459 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3460 {
3461 	struct address_space *mapping = file->f_mapping;
3462 	struct inode *inode = mapping->host;
3463 
3464 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3465 		return generic_file_llseek_size(file, offset, whence,
3466 					MAX_LFS_FILESIZE, i_size_read(inode));
3467 	if (offset < 0)
3468 		return -ENXIO;
3469 
3470 	inode_lock(inode);
3471 	/* We're holding i_rwsem so we can access i_size directly */
3472 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3473 	if (offset >= 0)
3474 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3475 	inode_unlock(inode);
3476 	return offset;
3477 }
3478 
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3479 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3480 							 loff_t len)
3481 {
3482 	struct inode *inode = file_inode(file);
3483 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3484 	struct shmem_inode_info *info = SHMEM_I(inode);
3485 	struct shmem_falloc shmem_falloc;
3486 	pgoff_t start, index, end, undo_fallocend;
3487 	int error;
3488 
3489 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3490 		return -EOPNOTSUPP;
3491 
3492 	inode_lock(inode);
3493 
3494 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3495 		struct address_space *mapping = file->f_mapping;
3496 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3497 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3498 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3499 
3500 		/* protected by i_rwsem */
3501 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3502 			error = -EPERM;
3503 			goto out;
3504 		}
3505 
3506 		shmem_falloc.waitq = &shmem_falloc_waitq;
3507 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3508 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3509 		spin_lock(&inode->i_lock);
3510 		inode->i_private = &shmem_falloc;
3511 		spin_unlock(&inode->i_lock);
3512 
3513 		if ((u64)unmap_end > (u64)unmap_start)
3514 			unmap_mapping_range(mapping, unmap_start,
3515 					    1 + unmap_end - unmap_start, 0);
3516 		shmem_truncate_range(inode, offset, offset + len - 1);
3517 		/* No need to unmap again: hole-punching leaves COWed pages */
3518 
3519 		spin_lock(&inode->i_lock);
3520 		inode->i_private = NULL;
3521 		wake_up_all(&shmem_falloc_waitq);
3522 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3523 		spin_unlock(&inode->i_lock);
3524 		error = 0;
3525 		goto out;
3526 	}
3527 
3528 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3529 	error = inode_newsize_ok(inode, offset + len);
3530 	if (error)
3531 		goto out;
3532 
3533 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3534 		error = -EPERM;
3535 		goto out;
3536 	}
3537 
3538 	start = offset >> PAGE_SHIFT;
3539 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3540 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3541 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3542 		error = -ENOSPC;
3543 		goto out;
3544 	}
3545 
3546 	shmem_falloc.waitq = NULL;
3547 	shmem_falloc.start = start;
3548 	shmem_falloc.next  = start;
3549 	shmem_falloc.nr_falloced = 0;
3550 	shmem_falloc.nr_unswapped = 0;
3551 	spin_lock(&inode->i_lock);
3552 	inode->i_private = &shmem_falloc;
3553 	spin_unlock(&inode->i_lock);
3554 
3555 	/*
3556 	 * info->fallocend is only relevant when huge pages might be
3557 	 * involved: to prevent split_huge_page() freeing fallocated
3558 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3559 	 */
3560 	undo_fallocend = info->fallocend;
3561 	if (info->fallocend < end)
3562 		info->fallocend = end;
3563 
3564 	for (index = start; index < end; ) {
3565 		struct folio *folio;
3566 
3567 		/*
3568 		 * Check for fatal signal so that we abort early in OOM
3569 		 * situations. We don't want to abort in case of non-fatal
3570 		 * signals as large fallocate can take noticeable time and
3571 		 * e.g. periodic timers may result in fallocate constantly
3572 		 * restarting.
3573 		 */
3574 		if (fatal_signal_pending(current))
3575 			error = -EINTR;
3576 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3577 			error = -ENOMEM;
3578 		else
3579 			error = shmem_get_folio(inode, index, offset + len,
3580 						&folio, SGP_FALLOC);
3581 		if (error) {
3582 			info->fallocend = undo_fallocend;
3583 			/* Remove the !uptodate folios we added */
3584 			if (index > start) {
3585 				shmem_undo_range(inode,
3586 				    (loff_t)start << PAGE_SHIFT,
3587 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3588 			}
3589 			goto undone;
3590 		}
3591 
3592 		/*
3593 		 * Here is a more important optimization than it appears:
3594 		 * a second SGP_FALLOC on the same large folio will clear it,
3595 		 * making it uptodate and un-undoable if we fail later.
3596 		 */
3597 		index = folio_next_index(folio);
3598 		/* Beware 32-bit wraparound */
3599 		if (!index)
3600 			index--;
3601 
3602 		/*
3603 		 * Inform shmem_writepage() how far we have reached.
3604 		 * No need for lock or barrier: we have the page lock.
3605 		 */
3606 		if (!folio_test_uptodate(folio))
3607 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3608 		shmem_falloc.next = index;
3609 
3610 		/*
3611 		 * If !uptodate, leave it that way so that freeable folios
3612 		 * can be recognized if we need to rollback on error later.
3613 		 * But mark it dirty so that memory pressure will swap rather
3614 		 * than free the folios we are allocating (and SGP_CACHE folios
3615 		 * might still be clean: we now need to mark those dirty too).
3616 		 */
3617 		folio_mark_dirty(folio);
3618 		folio_unlock(folio);
3619 		folio_put(folio);
3620 		cond_resched();
3621 	}
3622 
3623 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3624 		i_size_write(inode, offset + len);
3625 undone:
3626 	spin_lock(&inode->i_lock);
3627 	inode->i_private = NULL;
3628 	spin_unlock(&inode->i_lock);
3629 out:
3630 	if (!error)
3631 		file_modified(file);
3632 	inode_unlock(inode);
3633 	return error;
3634 }
3635 
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3636 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3637 {
3638 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3639 
3640 	buf->f_type = TMPFS_MAGIC;
3641 	buf->f_bsize = PAGE_SIZE;
3642 	buf->f_namelen = NAME_MAX;
3643 	if (sbinfo->max_blocks) {
3644 		buf->f_blocks = sbinfo->max_blocks;
3645 		buf->f_bavail =
3646 		buf->f_bfree  = sbinfo->max_blocks -
3647 				percpu_counter_sum(&sbinfo->used_blocks);
3648 	}
3649 	if (sbinfo->max_inodes) {
3650 		buf->f_files = sbinfo->max_inodes;
3651 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3652 	}
3653 	/* else leave those fields 0 like simple_statfs */
3654 
3655 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3656 
3657 	return 0;
3658 }
3659 
3660 /*
3661  * File creation. Allocate an inode, and we're done..
3662  */
3663 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3664 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3665 	    struct dentry *dentry, umode_t mode, dev_t dev)
3666 {
3667 	struct inode *inode;
3668 	int error;
3669 
3670 	if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3671 		return -EINVAL;
3672 
3673 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3674 	if (IS_ERR(inode))
3675 		return PTR_ERR(inode);
3676 
3677 	error = simple_acl_create(dir, inode);
3678 	if (error)
3679 		goto out_iput;
3680 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3681 					     shmem_initxattrs, NULL);
3682 	if (error && error != -EOPNOTSUPP)
3683 		goto out_iput;
3684 
3685 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3686 	if (error)
3687 		goto out_iput;
3688 
3689 	dir->i_size += BOGO_DIRENT_SIZE;
3690 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3691 	inode_inc_iversion(dir);
3692 
3693 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3694 		d_add(dentry, inode);
3695 	else
3696 		d_instantiate(dentry, inode);
3697 
3698 	dget(dentry); /* Extra count - pin the dentry in core */
3699 	return error;
3700 
3701 out_iput:
3702 	iput(inode);
3703 	return error;
3704 }
3705 
3706 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3707 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3708 	      struct file *file, umode_t mode)
3709 {
3710 	struct inode *inode;
3711 	int error;
3712 
3713 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3714 	if (IS_ERR(inode)) {
3715 		error = PTR_ERR(inode);
3716 		goto err_out;
3717 	}
3718 	error = security_inode_init_security(inode, dir, NULL,
3719 					     shmem_initxattrs, NULL);
3720 	if (error && error != -EOPNOTSUPP)
3721 		goto out_iput;
3722 	error = simple_acl_create(dir, inode);
3723 	if (error)
3724 		goto out_iput;
3725 	d_tmpfile(file, inode);
3726 
3727 err_out:
3728 	return finish_open_simple(file, error);
3729 out_iput:
3730 	iput(inode);
3731 	return error;
3732 }
3733 
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3734 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3735 		       struct dentry *dentry, umode_t mode)
3736 {
3737 	int error;
3738 
3739 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3740 	if (error)
3741 		return error;
3742 	inc_nlink(dir);
3743 	return 0;
3744 }
3745 
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3746 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3747 			struct dentry *dentry, umode_t mode, bool excl)
3748 {
3749 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3750 }
3751 
3752 /*
3753  * Link a file..
3754  */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3755 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3756 		      struct dentry *dentry)
3757 {
3758 	struct inode *inode = d_inode(old_dentry);
3759 	int ret = 0;
3760 
3761 	/*
3762 	 * No ordinary (disk based) filesystem counts links as inodes;
3763 	 * but each new link needs a new dentry, pinning lowmem, and
3764 	 * tmpfs dentries cannot be pruned until they are unlinked.
3765 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3766 	 * first link must skip that, to get the accounting right.
3767 	 */
3768 	if (inode->i_nlink) {
3769 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3770 		if (ret)
3771 			goto out;
3772 	}
3773 
3774 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3775 	if (ret) {
3776 		if (inode->i_nlink)
3777 			shmem_free_inode(inode->i_sb, 0);
3778 		goto out;
3779 	}
3780 
3781 	dir->i_size += BOGO_DIRENT_SIZE;
3782 	inode_set_mtime_to_ts(dir,
3783 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3784 	inode_inc_iversion(dir);
3785 	inc_nlink(inode);
3786 	ihold(inode);	/* New dentry reference */
3787 	dget(dentry);	/* Extra pinning count for the created dentry */
3788 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3789 		d_add(dentry, inode);
3790 	else
3791 		d_instantiate(dentry, inode);
3792 out:
3793 	return ret;
3794 }
3795 
shmem_unlink(struct inode * dir,struct dentry * dentry)3796 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3797 {
3798 	struct inode *inode = d_inode(dentry);
3799 
3800 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3801 		shmem_free_inode(inode->i_sb, 0);
3802 
3803 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3804 
3805 	dir->i_size -= BOGO_DIRENT_SIZE;
3806 	inode_set_mtime_to_ts(dir,
3807 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3808 	inode_inc_iversion(dir);
3809 	drop_nlink(inode);
3810 	dput(dentry);	/* Undo the count from "create" - does all the work */
3811 
3812 	/*
3813 	 * For now, VFS can't deal with case-insensitive negative dentries, so
3814 	 * we invalidate them
3815 	 */
3816 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3817 		d_invalidate(dentry);
3818 
3819 	return 0;
3820 }
3821 
shmem_rmdir(struct inode * dir,struct dentry * dentry)3822 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3823 {
3824 	if (!simple_offset_empty(dentry))
3825 		return -ENOTEMPTY;
3826 
3827 	drop_nlink(d_inode(dentry));
3828 	drop_nlink(dir);
3829 	return shmem_unlink(dir, dentry);
3830 }
3831 
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)3832 static int shmem_whiteout(struct mnt_idmap *idmap,
3833 			  struct inode *old_dir, struct dentry *old_dentry)
3834 {
3835 	struct dentry *whiteout;
3836 	int error;
3837 
3838 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3839 	if (!whiteout)
3840 		return -ENOMEM;
3841 
3842 	error = shmem_mknod(idmap, old_dir, whiteout,
3843 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3844 	dput(whiteout);
3845 	if (error)
3846 		return error;
3847 
3848 	/*
3849 	 * Cheat and hash the whiteout while the old dentry is still in
3850 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3851 	 *
3852 	 * d_lookup() will consistently find one of them at this point,
3853 	 * not sure which one, but that isn't even important.
3854 	 */
3855 	d_rehash(whiteout);
3856 	return 0;
3857 }
3858 
3859 /*
3860  * The VFS layer already does all the dentry stuff for rename,
3861  * we just have to decrement the usage count for the target if
3862  * it exists so that the VFS layer correctly free's it when it
3863  * gets overwritten.
3864  */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3865 static int shmem_rename2(struct mnt_idmap *idmap,
3866 			 struct inode *old_dir, struct dentry *old_dentry,
3867 			 struct inode *new_dir, struct dentry *new_dentry,
3868 			 unsigned int flags)
3869 {
3870 	struct inode *inode = d_inode(old_dentry);
3871 	int they_are_dirs = S_ISDIR(inode->i_mode);
3872 	int error;
3873 
3874 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3875 		return -EINVAL;
3876 
3877 	if (flags & RENAME_EXCHANGE)
3878 		return simple_offset_rename_exchange(old_dir, old_dentry,
3879 						     new_dir, new_dentry);
3880 
3881 	if (!simple_offset_empty(new_dentry))
3882 		return -ENOTEMPTY;
3883 
3884 	if (flags & RENAME_WHITEOUT) {
3885 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3886 		if (error)
3887 			return error;
3888 	}
3889 
3890 	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
3891 	if (error)
3892 		return error;
3893 
3894 	if (d_really_is_positive(new_dentry)) {
3895 		(void) shmem_unlink(new_dir, new_dentry);
3896 		if (they_are_dirs) {
3897 			drop_nlink(d_inode(new_dentry));
3898 			drop_nlink(old_dir);
3899 		}
3900 	} else if (they_are_dirs) {
3901 		drop_nlink(old_dir);
3902 		inc_nlink(new_dir);
3903 	}
3904 
3905 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3906 	new_dir->i_size += BOGO_DIRENT_SIZE;
3907 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3908 	inode_inc_iversion(old_dir);
3909 	inode_inc_iversion(new_dir);
3910 	return 0;
3911 }
3912 
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)3913 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3914 			 struct dentry *dentry, const char *symname)
3915 {
3916 	int error;
3917 	int len;
3918 	struct inode *inode;
3919 	struct folio *folio;
3920 
3921 	len = strlen(symname) + 1;
3922 	if (len > PAGE_SIZE)
3923 		return -ENAMETOOLONG;
3924 
3925 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3926 				VM_NORESERVE);
3927 	if (IS_ERR(inode))
3928 		return PTR_ERR(inode);
3929 
3930 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3931 					     shmem_initxattrs, NULL);
3932 	if (error && error != -EOPNOTSUPP)
3933 		goto out_iput;
3934 
3935 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3936 	if (error)
3937 		goto out_iput;
3938 
3939 	inode->i_size = len-1;
3940 	if (len <= SHORT_SYMLINK_LEN) {
3941 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3942 		if (!inode->i_link) {
3943 			error = -ENOMEM;
3944 			goto out_remove_offset;
3945 		}
3946 		inode->i_op = &shmem_short_symlink_operations;
3947 	} else {
3948 		inode_nohighmem(inode);
3949 		inode->i_mapping->a_ops = &shmem_aops;
3950 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
3951 		if (error)
3952 			goto out_remove_offset;
3953 		inode->i_op = &shmem_symlink_inode_operations;
3954 		memcpy(folio_address(folio), symname, len);
3955 		folio_mark_uptodate(folio);
3956 		folio_mark_dirty(folio);
3957 		folio_unlock(folio);
3958 		folio_put(folio);
3959 	}
3960 	dir->i_size += BOGO_DIRENT_SIZE;
3961 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3962 	inode_inc_iversion(dir);
3963 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3964 		d_add(dentry, inode);
3965 	else
3966 		d_instantiate(dentry, inode);
3967 	dget(dentry);
3968 	return 0;
3969 
3970 out_remove_offset:
3971 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3972 out_iput:
3973 	iput(inode);
3974 	return error;
3975 }
3976 
shmem_put_link(void * arg)3977 static void shmem_put_link(void *arg)
3978 {
3979 	folio_mark_accessed(arg);
3980 	folio_put(arg);
3981 }
3982 
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3983 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3984 				  struct delayed_call *done)
3985 {
3986 	struct folio *folio = NULL;
3987 	int error;
3988 
3989 	if (!dentry) {
3990 		folio = filemap_get_folio(inode->i_mapping, 0);
3991 		if (IS_ERR(folio))
3992 			return ERR_PTR(-ECHILD);
3993 		if (PageHWPoison(folio_page(folio, 0)) ||
3994 		    !folio_test_uptodate(folio)) {
3995 			folio_put(folio);
3996 			return ERR_PTR(-ECHILD);
3997 		}
3998 	} else {
3999 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4000 		if (error)
4001 			return ERR_PTR(error);
4002 		if (!folio)
4003 			return ERR_PTR(-ECHILD);
4004 		if (PageHWPoison(folio_page(folio, 0))) {
4005 			folio_unlock(folio);
4006 			folio_put(folio);
4007 			return ERR_PTR(-ECHILD);
4008 		}
4009 		folio_unlock(folio);
4010 	}
4011 	set_delayed_call(done, shmem_put_link, folio);
4012 	return folio_address(folio);
4013 }
4014 
4015 #ifdef CONFIG_TMPFS_XATTR
4016 
shmem_fileattr_get(struct dentry * dentry,struct fileattr * fa)4017 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
4018 {
4019 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4020 
4021 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4022 
4023 	return 0;
4024 }
4025 
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)4026 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4027 			      struct dentry *dentry, struct fileattr *fa)
4028 {
4029 	struct inode *inode = d_inode(dentry);
4030 	struct shmem_inode_info *info = SHMEM_I(inode);
4031 	int ret, flags;
4032 
4033 	if (fileattr_has_fsx(fa))
4034 		return -EOPNOTSUPP;
4035 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4036 		return -EOPNOTSUPP;
4037 
4038 	flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4039 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
4040 
4041 	ret = shmem_set_inode_flags(inode, flags, dentry);
4042 
4043 	if (ret)
4044 		return ret;
4045 
4046 	info->fsflags = flags;
4047 
4048 	inode_set_ctime_current(inode);
4049 	inode_inc_iversion(inode);
4050 	return 0;
4051 }
4052 
4053 /*
4054  * Superblocks without xattr inode operations may get some security.* xattr
4055  * support from the LSM "for free". As soon as we have any other xattrs
4056  * like ACLs, we also need to implement the security.* handlers at
4057  * filesystem level, though.
4058  */
4059 
4060 /*
4061  * Callback for security_inode_init_security() for acquiring xattrs.
4062  */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)4063 static int shmem_initxattrs(struct inode *inode,
4064 			    const struct xattr *xattr_array, void *fs_info)
4065 {
4066 	struct shmem_inode_info *info = SHMEM_I(inode);
4067 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4068 	const struct xattr *xattr;
4069 	struct simple_xattr *new_xattr;
4070 	size_t ispace = 0;
4071 	size_t len;
4072 
4073 	if (sbinfo->max_inodes) {
4074 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4075 			ispace += simple_xattr_space(xattr->name,
4076 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4077 		}
4078 		if (ispace) {
4079 			raw_spin_lock(&sbinfo->stat_lock);
4080 			if (sbinfo->free_ispace < ispace)
4081 				ispace = 0;
4082 			else
4083 				sbinfo->free_ispace -= ispace;
4084 			raw_spin_unlock(&sbinfo->stat_lock);
4085 			if (!ispace)
4086 				return -ENOSPC;
4087 		}
4088 	}
4089 
4090 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4091 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4092 		if (!new_xattr)
4093 			break;
4094 
4095 		len = strlen(xattr->name) + 1;
4096 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4097 					  GFP_KERNEL_ACCOUNT);
4098 		if (!new_xattr->name) {
4099 			kvfree(new_xattr);
4100 			break;
4101 		}
4102 
4103 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4104 		       XATTR_SECURITY_PREFIX_LEN);
4105 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4106 		       xattr->name, len);
4107 
4108 		simple_xattr_add(&info->xattrs, new_xattr);
4109 	}
4110 
4111 	if (xattr->name != NULL) {
4112 		if (ispace) {
4113 			raw_spin_lock(&sbinfo->stat_lock);
4114 			sbinfo->free_ispace += ispace;
4115 			raw_spin_unlock(&sbinfo->stat_lock);
4116 		}
4117 		simple_xattrs_free(&info->xattrs, NULL);
4118 		return -ENOMEM;
4119 	}
4120 
4121 	return 0;
4122 }
4123 
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)4124 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4125 				   struct dentry *unused, struct inode *inode,
4126 				   const char *name, void *buffer, size_t size)
4127 {
4128 	struct shmem_inode_info *info = SHMEM_I(inode);
4129 
4130 	name = xattr_full_name(handler, name);
4131 	return simple_xattr_get(&info->xattrs, name, buffer, size);
4132 }
4133 
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)4134 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4135 				   struct mnt_idmap *idmap,
4136 				   struct dentry *unused, struct inode *inode,
4137 				   const char *name, const void *value,
4138 				   size_t size, int flags)
4139 {
4140 	struct shmem_inode_info *info = SHMEM_I(inode);
4141 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4142 	struct simple_xattr *old_xattr;
4143 	size_t ispace = 0;
4144 
4145 	name = xattr_full_name(handler, name);
4146 	if (value && sbinfo->max_inodes) {
4147 		ispace = simple_xattr_space(name, size);
4148 		raw_spin_lock(&sbinfo->stat_lock);
4149 		if (sbinfo->free_ispace < ispace)
4150 			ispace = 0;
4151 		else
4152 			sbinfo->free_ispace -= ispace;
4153 		raw_spin_unlock(&sbinfo->stat_lock);
4154 		if (!ispace)
4155 			return -ENOSPC;
4156 	}
4157 
4158 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4159 	if (!IS_ERR(old_xattr)) {
4160 		ispace = 0;
4161 		if (old_xattr && sbinfo->max_inodes)
4162 			ispace = simple_xattr_space(old_xattr->name,
4163 						    old_xattr->size);
4164 		simple_xattr_free(old_xattr);
4165 		old_xattr = NULL;
4166 		inode_set_ctime_current(inode);
4167 		inode_inc_iversion(inode);
4168 	}
4169 	if (ispace) {
4170 		raw_spin_lock(&sbinfo->stat_lock);
4171 		sbinfo->free_ispace += ispace;
4172 		raw_spin_unlock(&sbinfo->stat_lock);
4173 	}
4174 	return PTR_ERR(old_xattr);
4175 }
4176 
4177 static const struct xattr_handler shmem_security_xattr_handler = {
4178 	.prefix = XATTR_SECURITY_PREFIX,
4179 	.get = shmem_xattr_handler_get,
4180 	.set = shmem_xattr_handler_set,
4181 };
4182 
4183 static const struct xattr_handler shmem_trusted_xattr_handler = {
4184 	.prefix = XATTR_TRUSTED_PREFIX,
4185 	.get = shmem_xattr_handler_get,
4186 	.set = shmem_xattr_handler_set,
4187 };
4188 
4189 static const struct xattr_handler shmem_user_xattr_handler = {
4190 	.prefix = XATTR_USER_PREFIX,
4191 	.get = shmem_xattr_handler_get,
4192 	.set = shmem_xattr_handler_set,
4193 };
4194 
4195 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4196 	&shmem_security_xattr_handler,
4197 	&shmem_trusted_xattr_handler,
4198 	&shmem_user_xattr_handler,
4199 	NULL
4200 };
4201 
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)4202 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4203 {
4204 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4205 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4206 }
4207 #endif /* CONFIG_TMPFS_XATTR */
4208 
4209 static const struct inode_operations shmem_short_symlink_operations = {
4210 	.getattr	= shmem_getattr,
4211 	.setattr	= shmem_setattr,
4212 	.get_link	= simple_get_link,
4213 #ifdef CONFIG_TMPFS_XATTR
4214 	.listxattr	= shmem_listxattr,
4215 #endif
4216 };
4217 
4218 static const struct inode_operations shmem_symlink_inode_operations = {
4219 	.getattr	= shmem_getattr,
4220 	.setattr	= shmem_setattr,
4221 	.get_link	= shmem_get_link,
4222 #ifdef CONFIG_TMPFS_XATTR
4223 	.listxattr	= shmem_listxattr,
4224 #endif
4225 };
4226 
shmem_get_parent(struct dentry * child)4227 static struct dentry *shmem_get_parent(struct dentry *child)
4228 {
4229 	return ERR_PTR(-ESTALE);
4230 }
4231 
shmem_match(struct inode * ino,void * vfh)4232 static int shmem_match(struct inode *ino, void *vfh)
4233 {
4234 	__u32 *fh = vfh;
4235 	__u64 inum = fh[2];
4236 	inum = (inum << 32) | fh[1];
4237 	return ino->i_ino == inum && fh[0] == ino->i_generation;
4238 }
4239 
4240 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)4241 static struct dentry *shmem_find_alias(struct inode *inode)
4242 {
4243 	struct dentry *alias = d_find_alias(inode);
4244 
4245 	return alias ?: d_find_any_alias(inode);
4246 }
4247 
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)4248 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4249 		struct fid *fid, int fh_len, int fh_type)
4250 {
4251 	struct inode *inode;
4252 	struct dentry *dentry = NULL;
4253 	u64 inum;
4254 
4255 	if (fh_len < 3)
4256 		return NULL;
4257 
4258 	inum = fid->raw[2];
4259 	inum = (inum << 32) | fid->raw[1];
4260 
4261 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4262 			shmem_match, fid->raw);
4263 	if (inode) {
4264 		dentry = shmem_find_alias(inode);
4265 		iput(inode);
4266 	}
4267 
4268 	return dentry;
4269 }
4270 
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)4271 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4272 				struct inode *parent)
4273 {
4274 	if (*len < 3) {
4275 		*len = 3;
4276 		return FILEID_INVALID;
4277 	}
4278 
4279 	if (inode_unhashed(inode)) {
4280 		/* Unfortunately insert_inode_hash is not idempotent,
4281 		 * so as we hash inodes here rather than at creation
4282 		 * time, we need a lock to ensure we only try
4283 		 * to do it once
4284 		 */
4285 		static DEFINE_SPINLOCK(lock);
4286 		spin_lock(&lock);
4287 		if (inode_unhashed(inode))
4288 			__insert_inode_hash(inode,
4289 					    inode->i_ino + inode->i_generation);
4290 		spin_unlock(&lock);
4291 	}
4292 
4293 	fh[0] = inode->i_generation;
4294 	fh[1] = inode->i_ino;
4295 	fh[2] = ((__u64)inode->i_ino) >> 32;
4296 
4297 	*len = 3;
4298 	return 1;
4299 }
4300 
4301 static const struct export_operations shmem_export_ops = {
4302 	.get_parent     = shmem_get_parent,
4303 	.encode_fh      = shmem_encode_fh,
4304 	.fh_to_dentry	= shmem_fh_to_dentry,
4305 };
4306 
4307 enum shmem_param {
4308 	Opt_gid,
4309 	Opt_huge,
4310 	Opt_mode,
4311 	Opt_mpol,
4312 	Opt_nr_blocks,
4313 	Opt_nr_inodes,
4314 	Opt_size,
4315 	Opt_uid,
4316 	Opt_inode32,
4317 	Opt_inode64,
4318 	Opt_noswap,
4319 	Opt_quota,
4320 	Opt_usrquota,
4321 	Opt_grpquota,
4322 	Opt_usrquota_block_hardlimit,
4323 	Opt_usrquota_inode_hardlimit,
4324 	Opt_grpquota_block_hardlimit,
4325 	Opt_grpquota_inode_hardlimit,
4326 	Opt_casefold_version,
4327 	Opt_casefold,
4328 	Opt_strict_encoding,
4329 };
4330 
4331 static const struct constant_table shmem_param_enums_huge[] = {
4332 	{"never",	SHMEM_HUGE_NEVER },
4333 	{"always",	SHMEM_HUGE_ALWAYS },
4334 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4335 	{"advise",	SHMEM_HUGE_ADVISE },
4336 	{}
4337 };
4338 
4339 const struct fs_parameter_spec shmem_fs_parameters[] = {
4340 	fsparam_gid   ("gid",		Opt_gid),
4341 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4342 	fsparam_u32oct("mode",		Opt_mode),
4343 	fsparam_string("mpol",		Opt_mpol),
4344 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4345 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4346 	fsparam_string("size",		Opt_size),
4347 	fsparam_uid   ("uid",		Opt_uid),
4348 	fsparam_flag  ("inode32",	Opt_inode32),
4349 	fsparam_flag  ("inode64",	Opt_inode64),
4350 	fsparam_flag  ("noswap",	Opt_noswap),
4351 #ifdef CONFIG_TMPFS_QUOTA
4352 	fsparam_flag  ("quota",		Opt_quota),
4353 	fsparam_flag  ("usrquota",	Opt_usrquota),
4354 	fsparam_flag  ("grpquota",	Opt_grpquota),
4355 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4356 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4357 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4358 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4359 #endif
4360 	fsparam_string("casefold",	Opt_casefold_version),
4361 	fsparam_flag  ("casefold",	Opt_casefold),
4362 	fsparam_flag  ("strict_encoding", Opt_strict_encoding),
4363 	{}
4364 };
4365 
4366 #if IS_ENABLED(CONFIG_UNICODE)
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4367 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4368 				    bool latest_version)
4369 {
4370 	struct shmem_options *ctx = fc->fs_private;
4371 	unsigned int version = UTF8_LATEST;
4372 	struct unicode_map *encoding;
4373 	char *version_str = param->string + 5;
4374 
4375 	if (!latest_version) {
4376 		if (strncmp(param->string, "utf8-", 5))
4377 			return invalfc(fc, "Only UTF-8 encodings are supported "
4378 				       "in the format: utf8-<version number>");
4379 
4380 		version = utf8_parse_version(version_str);
4381 		if (version < 0)
4382 			return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4383 	}
4384 
4385 	encoding = utf8_load(version);
4386 
4387 	if (IS_ERR(encoding)) {
4388 		return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4389 			       unicode_major(version), unicode_minor(version),
4390 			       unicode_rev(version));
4391 	}
4392 
4393 	pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4394 		unicode_major(version), unicode_minor(version), unicode_rev(version));
4395 
4396 	ctx->encoding = encoding;
4397 
4398 	return 0;
4399 }
4400 #else
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4401 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4402 				    bool latest_version)
4403 {
4404 	return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4405 }
4406 #endif
4407 
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)4408 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4409 {
4410 	struct shmem_options *ctx = fc->fs_private;
4411 	struct fs_parse_result result;
4412 	unsigned long long size;
4413 	char *rest;
4414 	int opt;
4415 	kuid_t kuid;
4416 	kgid_t kgid;
4417 
4418 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4419 	if (opt < 0)
4420 		return opt;
4421 
4422 	switch (opt) {
4423 	case Opt_size:
4424 		size = memparse(param->string, &rest);
4425 		if (*rest == '%') {
4426 			size <<= PAGE_SHIFT;
4427 			size *= totalram_pages();
4428 			do_div(size, 100);
4429 			rest++;
4430 		}
4431 		if (*rest)
4432 			goto bad_value;
4433 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4434 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4435 		break;
4436 	case Opt_nr_blocks:
4437 		ctx->blocks = memparse(param->string, &rest);
4438 		if (*rest || ctx->blocks > LONG_MAX)
4439 			goto bad_value;
4440 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4441 		break;
4442 	case Opt_nr_inodes:
4443 		ctx->inodes = memparse(param->string, &rest);
4444 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4445 			goto bad_value;
4446 		ctx->seen |= SHMEM_SEEN_INODES;
4447 		break;
4448 	case Opt_mode:
4449 		ctx->mode = result.uint_32 & 07777;
4450 		break;
4451 	case Opt_uid:
4452 		kuid = result.uid;
4453 
4454 		/*
4455 		 * The requested uid must be representable in the
4456 		 * filesystem's idmapping.
4457 		 */
4458 		if (!kuid_has_mapping(fc->user_ns, kuid))
4459 			goto bad_value;
4460 
4461 		ctx->uid = kuid;
4462 		break;
4463 	case Opt_gid:
4464 		kgid = result.gid;
4465 
4466 		/*
4467 		 * The requested gid must be representable in the
4468 		 * filesystem's idmapping.
4469 		 */
4470 		if (!kgid_has_mapping(fc->user_ns, kgid))
4471 			goto bad_value;
4472 
4473 		ctx->gid = kgid;
4474 		break;
4475 	case Opt_huge:
4476 		ctx->huge = result.uint_32;
4477 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4478 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4479 		      has_transparent_hugepage()))
4480 			goto unsupported_parameter;
4481 		ctx->seen |= SHMEM_SEEN_HUGE;
4482 		break;
4483 	case Opt_mpol:
4484 		if (IS_ENABLED(CONFIG_NUMA)) {
4485 			mpol_put(ctx->mpol);
4486 			ctx->mpol = NULL;
4487 			if (mpol_parse_str(param->string, &ctx->mpol))
4488 				goto bad_value;
4489 			break;
4490 		}
4491 		goto unsupported_parameter;
4492 	case Opt_inode32:
4493 		ctx->full_inums = false;
4494 		ctx->seen |= SHMEM_SEEN_INUMS;
4495 		break;
4496 	case Opt_inode64:
4497 		if (sizeof(ino_t) < 8) {
4498 			return invalfc(fc,
4499 				       "Cannot use inode64 with <64bit inums in kernel\n");
4500 		}
4501 		ctx->full_inums = true;
4502 		ctx->seen |= SHMEM_SEEN_INUMS;
4503 		break;
4504 	case Opt_noswap:
4505 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4506 			return invalfc(fc,
4507 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4508 		}
4509 		ctx->noswap = true;
4510 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4511 		break;
4512 	case Opt_quota:
4513 		if (fc->user_ns != &init_user_ns)
4514 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4515 		ctx->seen |= SHMEM_SEEN_QUOTA;
4516 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4517 		break;
4518 	case Opt_usrquota:
4519 		if (fc->user_ns != &init_user_ns)
4520 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4521 		ctx->seen |= SHMEM_SEEN_QUOTA;
4522 		ctx->quota_types |= QTYPE_MASK_USR;
4523 		break;
4524 	case Opt_grpquota:
4525 		if (fc->user_ns != &init_user_ns)
4526 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4527 		ctx->seen |= SHMEM_SEEN_QUOTA;
4528 		ctx->quota_types |= QTYPE_MASK_GRP;
4529 		break;
4530 	case Opt_usrquota_block_hardlimit:
4531 		size = memparse(param->string, &rest);
4532 		if (*rest || !size)
4533 			goto bad_value;
4534 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4535 			return invalfc(fc,
4536 				       "User quota block hardlimit too large.");
4537 		ctx->qlimits.usrquota_bhardlimit = size;
4538 		break;
4539 	case Opt_grpquota_block_hardlimit:
4540 		size = memparse(param->string, &rest);
4541 		if (*rest || !size)
4542 			goto bad_value;
4543 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4544 			return invalfc(fc,
4545 				       "Group quota block hardlimit too large.");
4546 		ctx->qlimits.grpquota_bhardlimit = size;
4547 		break;
4548 	case Opt_usrquota_inode_hardlimit:
4549 		size = memparse(param->string, &rest);
4550 		if (*rest || !size)
4551 			goto bad_value;
4552 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4553 			return invalfc(fc,
4554 				       "User quota inode hardlimit too large.");
4555 		ctx->qlimits.usrquota_ihardlimit = size;
4556 		break;
4557 	case Opt_grpquota_inode_hardlimit:
4558 		size = memparse(param->string, &rest);
4559 		if (*rest || !size)
4560 			goto bad_value;
4561 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4562 			return invalfc(fc,
4563 				       "Group quota inode hardlimit too large.");
4564 		ctx->qlimits.grpquota_ihardlimit = size;
4565 		break;
4566 	case Opt_casefold_version:
4567 		return shmem_parse_opt_casefold(fc, param, false);
4568 	case Opt_casefold:
4569 		return shmem_parse_opt_casefold(fc, param, true);
4570 	case Opt_strict_encoding:
4571 #if IS_ENABLED(CONFIG_UNICODE)
4572 		ctx->strict_encoding = true;
4573 		break;
4574 #else
4575 		return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4576 #endif
4577 	}
4578 	return 0;
4579 
4580 unsupported_parameter:
4581 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4582 bad_value:
4583 	return invalfc(fc, "Bad value for '%s'", param->key);
4584 }
4585 
shmem_parse_options(struct fs_context * fc,void * data)4586 static int shmem_parse_options(struct fs_context *fc, void *data)
4587 {
4588 	char *options = data;
4589 
4590 	if (options) {
4591 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4592 		if (err)
4593 			return err;
4594 	}
4595 
4596 	while (options != NULL) {
4597 		char *this_char = options;
4598 		for (;;) {
4599 			/*
4600 			 * NUL-terminate this option: unfortunately,
4601 			 * mount options form a comma-separated list,
4602 			 * but mpol's nodelist may also contain commas.
4603 			 */
4604 			options = strchr(options, ',');
4605 			if (options == NULL)
4606 				break;
4607 			options++;
4608 			if (!isdigit(*options)) {
4609 				options[-1] = '\0';
4610 				break;
4611 			}
4612 		}
4613 		if (*this_char) {
4614 			char *value = strchr(this_char, '=');
4615 			size_t len = 0;
4616 			int err;
4617 
4618 			if (value) {
4619 				*value++ = '\0';
4620 				len = strlen(value);
4621 			}
4622 			err = vfs_parse_fs_string(fc, this_char, value, len);
4623 			if (err < 0)
4624 				return err;
4625 		}
4626 	}
4627 	return 0;
4628 }
4629 
4630 /*
4631  * Reconfigure a shmem filesystem.
4632  */
shmem_reconfigure(struct fs_context * fc)4633 static int shmem_reconfigure(struct fs_context *fc)
4634 {
4635 	struct shmem_options *ctx = fc->fs_private;
4636 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4637 	unsigned long used_isp;
4638 	struct mempolicy *mpol = NULL;
4639 	const char *err;
4640 
4641 	raw_spin_lock(&sbinfo->stat_lock);
4642 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4643 
4644 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4645 		if (!sbinfo->max_blocks) {
4646 			err = "Cannot retroactively limit size";
4647 			goto out;
4648 		}
4649 		if (percpu_counter_compare(&sbinfo->used_blocks,
4650 					   ctx->blocks) > 0) {
4651 			err = "Too small a size for current use";
4652 			goto out;
4653 		}
4654 	}
4655 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4656 		if (!sbinfo->max_inodes) {
4657 			err = "Cannot retroactively limit inodes";
4658 			goto out;
4659 		}
4660 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4661 			err = "Too few inodes for current use";
4662 			goto out;
4663 		}
4664 	}
4665 
4666 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4667 	    sbinfo->next_ino > UINT_MAX) {
4668 		err = "Current inum too high to switch to 32-bit inums";
4669 		goto out;
4670 	}
4671 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4672 		err = "Cannot disable swap on remount";
4673 		goto out;
4674 	}
4675 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4676 		err = "Cannot enable swap on remount if it was disabled on first mount";
4677 		goto out;
4678 	}
4679 
4680 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4681 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4682 		err = "Cannot enable quota on remount";
4683 		goto out;
4684 	}
4685 
4686 #ifdef CONFIG_TMPFS_QUOTA
4687 #define CHANGED_LIMIT(name)						\
4688 	(ctx->qlimits.name## hardlimit &&				\
4689 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4690 
4691 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4692 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4693 		err = "Cannot change global quota limit on remount";
4694 		goto out;
4695 	}
4696 #endif /* CONFIG_TMPFS_QUOTA */
4697 
4698 	if (ctx->seen & SHMEM_SEEN_HUGE)
4699 		sbinfo->huge = ctx->huge;
4700 	if (ctx->seen & SHMEM_SEEN_INUMS)
4701 		sbinfo->full_inums = ctx->full_inums;
4702 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4703 		sbinfo->max_blocks  = ctx->blocks;
4704 	if (ctx->seen & SHMEM_SEEN_INODES) {
4705 		sbinfo->max_inodes  = ctx->inodes;
4706 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4707 	}
4708 
4709 	/*
4710 	 * Preserve previous mempolicy unless mpol remount option was specified.
4711 	 */
4712 	if (ctx->mpol) {
4713 		mpol = sbinfo->mpol;
4714 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4715 		ctx->mpol = NULL;
4716 	}
4717 
4718 	if (ctx->noswap)
4719 		sbinfo->noswap = true;
4720 
4721 	raw_spin_unlock(&sbinfo->stat_lock);
4722 	mpol_put(mpol);
4723 	return 0;
4724 out:
4725 	raw_spin_unlock(&sbinfo->stat_lock);
4726 	return invalfc(fc, "%s", err);
4727 }
4728 
shmem_show_options(struct seq_file * seq,struct dentry * root)4729 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4730 {
4731 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4732 	struct mempolicy *mpol;
4733 
4734 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4735 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4736 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4737 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4738 	if (sbinfo->mode != (0777 | S_ISVTX))
4739 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4740 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4741 		seq_printf(seq, ",uid=%u",
4742 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4743 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4744 		seq_printf(seq, ",gid=%u",
4745 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4746 
4747 	/*
4748 	 * Showing inode{64,32} might be useful even if it's the system default,
4749 	 * since then people don't have to resort to checking both here and
4750 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4751 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4752 	 *
4753 	 * We hide it when inode64 isn't the default and we are using 32-bit
4754 	 * inodes, since that probably just means the feature isn't even under
4755 	 * consideration.
4756 	 *
4757 	 * As such:
4758 	 *
4759 	 *                     +-----------------+-----------------+
4760 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4761 	 *  +------------------+-----------------+-----------------+
4762 	 *  | full_inums=true  | show            | show            |
4763 	 *  | full_inums=false | show            | hide            |
4764 	 *  +------------------+-----------------+-----------------+
4765 	 *
4766 	 */
4767 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4768 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4769 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4770 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4771 	if (sbinfo->huge)
4772 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4773 #endif
4774 	mpol = shmem_get_sbmpol(sbinfo);
4775 	shmem_show_mpol(seq, mpol);
4776 	mpol_put(mpol);
4777 	if (sbinfo->noswap)
4778 		seq_printf(seq, ",noswap");
4779 #ifdef CONFIG_TMPFS_QUOTA
4780 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4781 		seq_printf(seq, ",usrquota");
4782 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4783 		seq_printf(seq, ",grpquota");
4784 	if (sbinfo->qlimits.usrquota_bhardlimit)
4785 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4786 			   sbinfo->qlimits.usrquota_bhardlimit);
4787 	if (sbinfo->qlimits.grpquota_bhardlimit)
4788 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4789 			   sbinfo->qlimits.grpquota_bhardlimit);
4790 	if (sbinfo->qlimits.usrquota_ihardlimit)
4791 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4792 			   sbinfo->qlimits.usrquota_ihardlimit);
4793 	if (sbinfo->qlimits.grpquota_ihardlimit)
4794 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4795 			   sbinfo->qlimits.grpquota_ihardlimit);
4796 #endif
4797 	return 0;
4798 }
4799 
4800 #endif /* CONFIG_TMPFS */
4801 
shmem_put_super(struct super_block * sb)4802 static void shmem_put_super(struct super_block *sb)
4803 {
4804 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4805 
4806 #if IS_ENABLED(CONFIG_UNICODE)
4807 	if (sb->s_encoding)
4808 		utf8_unload(sb->s_encoding);
4809 #endif
4810 
4811 #ifdef CONFIG_TMPFS_QUOTA
4812 	shmem_disable_quotas(sb);
4813 #endif
4814 	free_percpu(sbinfo->ino_batch);
4815 	percpu_counter_destroy(&sbinfo->used_blocks);
4816 	mpol_put(sbinfo->mpol);
4817 	kfree(sbinfo);
4818 	sb->s_fs_info = NULL;
4819 }
4820 
4821 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4822 static const struct dentry_operations shmem_ci_dentry_ops = {
4823 	.d_hash = generic_ci_d_hash,
4824 	.d_compare = generic_ci_d_compare,
4825 	.d_delete = always_delete_dentry,
4826 };
4827 #endif
4828 
shmem_fill_super(struct super_block * sb,struct fs_context * fc)4829 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4830 {
4831 	struct shmem_options *ctx = fc->fs_private;
4832 	struct inode *inode;
4833 	struct shmem_sb_info *sbinfo;
4834 	int error = -ENOMEM;
4835 
4836 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4837 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4838 				L1_CACHE_BYTES), GFP_KERNEL);
4839 	if (!sbinfo)
4840 		return error;
4841 
4842 	sb->s_fs_info = sbinfo;
4843 
4844 #ifdef CONFIG_TMPFS
4845 	/*
4846 	 * Per default we only allow half of the physical ram per
4847 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4848 	 * but the internal instance is left unlimited.
4849 	 */
4850 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4851 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4852 			ctx->blocks = shmem_default_max_blocks();
4853 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4854 			ctx->inodes = shmem_default_max_inodes();
4855 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4856 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4857 		sbinfo->noswap = ctx->noswap;
4858 	} else {
4859 		sb->s_flags |= SB_NOUSER;
4860 	}
4861 	sb->s_export_op = &shmem_export_ops;
4862 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4863 
4864 #if IS_ENABLED(CONFIG_UNICODE)
4865 	if (!ctx->encoding && ctx->strict_encoding) {
4866 		pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
4867 		error = -EINVAL;
4868 		goto failed;
4869 	}
4870 
4871 	if (ctx->encoding) {
4872 		sb->s_encoding = ctx->encoding;
4873 		sb->s_d_op = &shmem_ci_dentry_ops;
4874 		if (ctx->strict_encoding)
4875 			sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
4876 	}
4877 #endif
4878 
4879 #else
4880 	sb->s_flags |= SB_NOUSER;
4881 #endif /* CONFIG_TMPFS */
4882 	sbinfo->max_blocks = ctx->blocks;
4883 	sbinfo->max_inodes = ctx->inodes;
4884 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4885 	if (sb->s_flags & SB_KERNMOUNT) {
4886 		sbinfo->ino_batch = alloc_percpu(ino_t);
4887 		if (!sbinfo->ino_batch)
4888 			goto failed;
4889 	}
4890 	sbinfo->uid = ctx->uid;
4891 	sbinfo->gid = ctx->gid;
4892 	sbinfo->full_inums = ctx->full_inums;
4893 	sbinfo->mode = ctx->mode;
4894 	sbinfo->huge = ctx->huge;
4895 	sbinfo->mpol = ctx->mpol;
4896 	ctx->mpol = NULL;
4897 
4898 	raw_spin_lock_init(&sbinfo->stat_lock);
4899 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4900 		goto failed;
4901 	spin_lock_init(&sbinfo->shrinklist_lock);
4902 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4903 
4904 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4905 	sb->s_blocksize = PAGE_SIZE;
4906 	sb->s_blocksize_bits = PAGE_SHIFT;
4907 	sb->s_magic = TMPFS_MAGIC;
4908 	sb->s_op = &shmem_ops;
4909 	sb->s_time_gran = 1;
4910 #ifdef CONFIG_TMPFS_XATTR
4911 	sb->s_xattr = shmem_xattr_handlers;
4912 #endif
4913 #ifdef CONFIG_TMPFS_POSIX_ACL
4914 	sb->s_flags |= SB_POSIXACL;
4915 #endif
4916 	uuid_t uuid;
4917 	uuid_gen(&uuid);
4918 	super_set_uuid(sb, uuid.b, sizeof(uuid));
4919 
4920 #ifdef CONFIG_TMPFS_QUOTA
4921 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4922 		sb->dq_op = &shmem_quota_operations;
4923 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4924 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4925 
4926 		/* Copy the default limits from ctx into sbinfo */
4927 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4928 		       sizeof(struct shmem_quota_limits));
4929 
4930 		if (shmem_enable_quotas(sb, ctx->quota_types))
4931 			goto failed;
4932 	}
4933 #endif /* CONFIG_TMPFS_QUOTA */
4934 
4935 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4936 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4937 	if (IS_ERR(inode)) {
4938 		error = PTR_ERR(inode);
4939 		goto failed;
4940 	}
4941 	inode->i_uid = sbinfo->uid;
4942 	inode->i_gid = sbinfo->gid;
4943 	sb->s_root = d_make_root(inode);
4944 	if (!sb->s_root)
4945 		goto failed;
4946 	return 0;
4947 
4948 failed:
4949 	shmem_put_super(sb);
4950 	return error;
4951 }
4952 
shmem_get_tree(struct fs_context * fc)4953 static int shmem_get_tree(struct fs_context *fc)
4954 {
4955 	return get_tree_nodev(fc, shmem_fill_super);
4956 }
4957 
shmem_free_fc(struct fs_context * fc)4958 static void shmem_free_fc(struct fs_context *fc)
4959 {
4960 	struct shmem_options *ctx = fc->fs_private;
4961 
4962 	if (ctx) {
4963 		mpol_put(ctx->mpol);
4964 		kfree(ctx);
4965 	}
4966 }
4967 
4968 static const struct fs_context_operations shmem_fs_context_ops = {
4969 	.free			= shmem_free_fc,
4970 	.get_tree		= shmem_get_tree,
4971 #ifdef CONFIG_TMPFS
4972 	.parse_monolithic	= shmem_parse_options,
4973 	.parse_param		= shmem_parse_one,
4974 	.reconfigure		= shmem_reconfigure,
4975 #endif
4976 };
4977 
4978 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4979 
shmem_alloc_inode(struct super_block * sb)4980 static struct inode *shmem_alloc_inode(struct super_block *sb)
4981 {
4982 	struct shmem_inode_info *info;
4983 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4984 	if (!info)
4985 		return NULL;
4986 	return &info->vfs_inode;
4987 }
4988 
shmem_free_in_core_inode(struct inode * inode)4989 static void shmem_free_in_core_inode(struct inode *inode)
4990 {
4991 	if (S_ISLNK(inode->i_mode))
4992 		kfree(inode->i_link);
4993 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4994 }
4995 
shmem_destroy_inode(struct inode * inode)4996 static void shmem_destroy_inode(struct inode *inode)
4997 {
4998 	if (S_ISREG(inode->i_mode))
4999 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5000 	if (S_ISDIR(inode->i_mode))
5001 		simple_offset_destroy(shmem_get_offset_ctx(inode));
5002 }
5003 
shmem_init_inode(void * foo)5004 static void shmem_init_inode(void *foo)
5005 {
5006 	struct shmem_inode_info *info = foo;
5007 	inode_init_once(&info->vfs_inode);
5008 }
5009 
shmem_init_inodecache(void)5010 static void __init shmem_init_inodecache(void)
5011 {
5012 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5013 				sizeof(struct shmem_inode_info),
5014 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5015 }
5016 
shmem_destroy_inodecache(void)5017 static void __init shmem_destroy_inodecache(void)
5018 {
5019 	kmem_cache_destroy(shmem_inode_cachep);
5020 }
5021 
5022 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_folio(struct address_space * mapping,struct folio * folio)5023 static int shmem_error_remove_folio(struct address_space *mapping,
5024 				   struct folio *folio)
5025 {
5026 	return 0;
5027 }
5028 
5029 static const struct address_space_operations shmem_aops = {
5030 	.writepage	= shmem_writepage,
5031 	.dirty_folio	= noop_dirty_folio,
5032 #ifdef CONFIG_TMPFS
5033 	.write_begin	= shmem_write_begin,
5034 	.write_end	= shmem_write_end,
5035 #endif
5036 #ifdef CONFIG_MIGRATION
5037 	.migrate_folio	= migrate_folio,
5038 #endif
5039 	.error_remove_folio = shmem_error_remove_folio,
5040 };
5041 
5042 static const struct file_operations shmem_file_operations = {
5043 	.mmap		= shmem_mmap,
5044 	.open		= shmem_file_open,
5045 	.get_unmapped_area = shmem_get_unmapped_area,
5046 #ifdef CONFIG_TMPFS
5047 	.llseek		= shmem_file_llseek,
5048 	.read_iter	= shmem_file_read_iter,
5049 	.write_iter	= shmem_file_write_iter,
5050 	.fsync		= noop_fsync,
5051 	.splice_read	= shmem_file_splice_read,
5052 	.splice_write	= iter_file_splice_write,
5053 	.fallocate	= shmem_fallocate,
5054 #endif
5055 };
5056 
5057 static const struct inode_operations shmem_inode_operations = {
5058 	.getattr	= shmem_getattr,
5059 	.setattr	= shmem_setattr,
5060 #ifdef CONFIG_TMPFS_XATTR
5061 	.listxattr	= shmem_listxattr,
5062 	.set_acl	= simple_set_acl,
5063 	.fileattr_get	= shmem_fileattr_get,
5064 	.fileattr_set	= shmem_fileattr_set,
5065 #endif
5066 };
5067 
5068 static const struct inode_operations shmem_dir_inode_operations = {
5069 #ifdef CONFIG_TMPFS
5070 	.getattr	= shmem_getattr,
5071 	.create		= shmem_create,
5072 	.lookup		= simple_lookup,
5073 	.link		= shmem_link,
5074 	.unlink		= shmem_unlink,
5075 	.symlink	= shmem_symlink,
5076 	.mkdir		= shmem_mkdir,
5077 	.rmdir		= shmem_rmdir,
5078 	.mknod		= shmem_mknod,
5079 	.rename		= shmem_rename2,
5080 	.tmpfile	= shmem_tmpfile,
5081 	.get_offset_ctx	= shmem_get_offset_ctx,
5082 #endif
5083 #ifdef CONFIG_TMPFS_XATTR
5084 	.listxattr	= shmem_listxattr,
5085 	.fileattr_get	= shmem_fileattr_get,
5086 	.fileattr_set	= shmem_fileattr_set,
5087 #endif
5088 #ifdef CONFIG_TMPFS_POSIX_ACL
5089 	.setattr	= shmem_setattr,
5090 	.set_acl	= simple_set_acl,
5091 #endif
5092 };
5093 
5094 static const struct inode_operations shmem_special_inode_operations = {
5095 	.getattr	= shmem_getattr,
5096 #ifdef CONFIG_TMPFS_XATTR
5097 	.listxattr	= shmem_listxattr,
5098 #endif
5099 #ifdef CONFIG_TMPFS_POSIX_ACL
5100 	.setattr	= shmem_setattr,
5101 	.set_acl	= simple_set_acl,
5102 #endif
5103 };
5104 
5105 static const struct super_operations shmem_ops = {
5106 	.alloc_inode	= shmem_alloc_inode,
5107 	.free_inode	= shmem_free_in_core_inode,
5108 	.destroy_inode	= shmem_destroy_inode,
5109 #ifdef CONFIG_TMPFS
5110 	.statfs		= shmem_statfs,
5111 	.show_options	= shmem_show_options,
5112 #endif
5113 #ifdef CONFIG_TMPFS_QUOTA
5114 	.get_dquots	= shmem_get_dquots,
5115 #endif
5116 	.evict_inode	= shmem_evict_inode,
5117 	.drop_inode	= generic_delete_inode,
5118 	.put_super	= shmem_put_super,
5119 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5120 	.nr_cached_objects	= shmem_unused_huge_count,
5121 	.free_cached_objects	= shmem_unused_huge_scan,
5122 #endif
5123 };
5124 
5125 static const struct vm_operations_struct shmem_vm_ops = {
5126 	.fault		= shmem_fault,
5127 	.map_pages	= filemap_map_pages,
5128 #ifdef CONFIG_NUMA
5129 	.set_policy     = shmem_set_policy,
5130 	.get_policy     = shmem_get_policy,
5131 #endif
5132 };
5133 
5134 static const struct vm_operations_struct shmem_anon_vm_ops = {
5135 	.fault		= shmem_fault,
5136 	.map_pages	= filemap_map_pages,
5137 #ifdef CONFIG_NUMA
5138 	.set_policy     = shmem_set_policy,
5139 	.get_policy     = shmem_get_policy,
5140 #endif
5141 };
5142 
shmem_init_fs_context(struct fs_context * fc)5143 int shmem_init_fs_context(struct fs_context *fc)
5144 {
5145 	struct shmem_options *ctx;
5146 
5147 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5148 	if (!ctx)
5149 		return -ENOMEM;
5150 
5151 	ctx->mode = 0777 | S_ISVTX;
5152 	ctx->uid = current_fsuid();
5153 	ctx->gid = current_fsgid();
5154 
5155 #if IS_ENABLED(CONFIG_UNICODE)
5156 	ctx->encoding = NULL;
5157 #endif
5158 
5159 	fc->fs_private = ctx;
5160 	fc->ops = &shmem_fs_context_ops;
5161 	return 0;
5162 }
5163 
5164 static struct file_system_type shmem_fs_type = {
5165 	.owner		= THIS_MODULE,
5166 	.name		= "tmpfs",
5167 	.init_fs_context = shmem_init_fs_context,
5168 #ifdef CONFIG_TMPFS
5169 	.parameters	= shmem_fs_parameters,
5170 #endif
5171 	.kill_sb	= kill_litter_super,
5172 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5173 };
5174 
5175 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5176 
5177 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store)			\
5178 {									\
5179 	.attr	= { .name = __stringify(_name), .mode = _mode },	\
5180 	.show	= _show,						\
5181 	.store	= _store,						\
5182 }
5183 
5184 #define TMPFS_ATTR_W(_name, _store)				\
5185 	static struct kobj_attribute tmpfs_attr_##_name =	\
5186 			__INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5187 
5188 #define TMPFS_ATTR_RW(_name, _show, _store)			\
5189 	static struct kobj_attribute tmpfs_attr_##_name =	\
5190 			__INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5191 
5192 #define TMPFS_ATTR_RO(_name, _show)				\
5193 	static struct kobj_attribute tmpfs_attr_##_name =	\
5194 			__INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5195 
5196 #if IS_ENABLED(CONFIG_UNICODE)
casefold_show(struct kobject * kobj,struct kobj_attribute * a,char * buf)5197 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5198 			char *buf)
5199 {
5200 		return sysfs_emit(buf, "supported\n");
5201 }
5202 TMPFS_ATTR_RO(casefold, casefold_show);
5203 #endif
5204 
5205 static struct attribute *tmpfs_attributes[] = {
5206 #if IS_ENABLED(CONFIG_UNICODE)
5207 	&tmpfs_attr_casefold.attr,
5208 #endif
5209 	NULL
5210 };
5211 
5212 static const struct attribute_group tmpfs_attribute_group = {
5213 	.attrs = tmpfs_attributes,
5214 	.name = "features"
5215 };
5216 
5217 static struct kobject *tmpfs_kobj;
5218 
tmpfs_sysfs_init(void)5219 static int __init tmpfs_sysfs_init(void)
5220 {
5221 	int ret;
5222 
5223 	tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5224 	if (!tmpfs_kobj)
5225 		return -ENOMEM;
5226 
5227 	ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5228 	if (ret)
5229 		kobject_put(tmpfs_kobj);
5230 
5231 	return ret;
5232 }
5233 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5234 
shmem_init(void)5235 void __init shmem_init(void)
5236 {
5237 	int error;
5238 
5239 	shmem_init_inodecache();
5240 
5241 #ifdef CONFIG_TMPFS_QUOTA
5242 	register_quota_format(&shmem_quota_format);
5243 #endif
5244 
5245 	error = register_filesystem(&shmem_fs_type);
5246 	if (error) {
5247 		pr_err("Could not register tmpfs\n");
5248 		goto out2;
5249 	}
5250 
5251 	shm_mnt = kern_mount(&shmem_fs_type);
5252 	if (IS_ERR(shm_mnt)) {
5253 		error = PTR_ERR(shm_mnt);
5254 		pr_err("Could not kern_mount tmpfs\n");
5255 		goto out1;
5256 	}
5257 
5258 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5259 	error = tmpfs_sysfs_init();
5260 	if (error) {
5261 		pr_err("Could not init tmpfs sysfs\n");
5262 		goto out1;
5263 	}
5264 #endif
5265 
5266 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5267 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5268 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5269 	else
5270 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5271 
5272 	/*
5273 	 * Default to setting PMD-sized THP to inherit the global setting and
5274 	 * disable all other multi-size THPs.
5275 	 */
5276 	if (!shmem_orders_configured)
5277 		huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5278 #endif
5279 	return;
5280 
5281 out1:
5282 	unregister_filesystem(&shmem_fs_type);
5283 out2:
5284 #ifdef CONFIG_TMPFS_QUOTA
5285 	unregister_quota_format(&shmem_quota_format);
5286 #endif
5287 	shmem_destroy_inodecache();
5288 	shm_mnt = ERR_PTR(error);
5289 }
5290 
5291 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5292 static ssize_t shmem_enabled_show(struct kobject *kobj,
5293 				  struct kobj_attribute *attr, char *buf)
5294 {
5295 	static const int values[] = {
5296 		SHMEM_HUGE_ALWAYS,
5297 		SHMEM_HUGE_WITHIN_SIZE,
5298 		SHMEM_HUGE_ADVISE,
5299 		SHMEM_HUGE_NEVER,
5300 		SHMEM_HUGE_DENY,
5301 		SHMEM_HUGE_FORCE,
5302 	};
5303 	int len = 0;
5304 	int i;
5305 
5306 	for (i = 0; i < ARRAY_SIZE(values); i++) {
5307 		len += sysfs_emit_at(buf, len,
5308 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5309 				i ? " " : "", shmem_format_huge(values[i]));
5310 	}
5311 	len += sysfs_emit_at(buf, len, "\n");
5312 
5313 	return len;
5314 }
5315 
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5316 static ssize_t shmem_enabled_store(struct kobject *kobj,
5317 		struct kobj_attribute *attr, const char *buf, size_t count)
5318 {
5319 	char tmp[16];
5320 	int huge, err;
5321 
5322 	if (count + 1 > sizeof(tmp))
5323 		return -EINVAL;
5324 	memcpy(tmp, buf, count);
5325 	tmp[count] = '\0';
5326 	if (count && tmp[count - 1] == '\n')
5327 		tmp[count - 1] = '\0';
5328 
5329 	huge = shmem_parse_huge(tmp);
5330 	if (huge == -EINVAL)
5331 		return huge;
5332 
5333 	shmem_huge = huge;
5334 	if (shmem_huge > SHMEM_HUGE_DENY)
5335 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5336 
5337 	err = start_stop_khugepaged();
5338 	return err ? err : count;
5339 }
5340 
5341 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5342 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5343 
thpsize_shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5344 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5345 					  struct kobj_attribute *attr, char *buf)
5346 {
5347 	int order = to_thpsize(kobj)->order;
5348 	const char *output;
5349 
5350 	if (test_bit(order, &huge_shmem_orders_always))
5351 		output = "[always] inherit within_size advise never";
5352 	else if (test_bit(order, &huge_shmem_orders_inherit))
5353 		output = "always [inherit] within_size advise never";
5354 	else if (test_bit(order, &huge_shmem_orders_within_size))
5355 		output = "always inherit [within_size] advise never";
5356 	else if (test_bit(order, &huge_shmem_orders_madvise))
5357 		output = "always inherit within_size [advise] never";
5358 	else
5359 		output = "always inherit within_size advise [never]";
5360 
5361 	return sysfs_emit(buf, "%s\n", output);
5362 }
5363 
thpsize_shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5364 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5365 					   struct kobj_attribute *attr,
5366 					   const char *buf, size_t count)
5367 {
5368 	int order = to_thpsize(kobj)->order;
5369 	ssize_t ret = count;
5370 
5371 	if (sysfs_streq(buf, "always")) {
5372 		spin_lock(&huge_shmem_orders_lock);
5373 		clear_bit(order, &huge_shmem_orders_inherit);
5374 		clear_bit(order, &huge_shmem_orders_madvise);
5375 		clear_bit(order, &huge_shmem_orders_within_size);
5376 		set_bit(order, &huge_shmem_orders_always);
5377 		spin_unlock(&huge_shmem_orders_lock);
5378 	} else if (sysfs_streq(buf, "inherit")) {
5379 		/* Do not override huge allocation policy with non-PMD sized mTHP */
5380 		if (shmem_huge == SHMEM_HUGE_FORCE &&
5381 		    order != HPAGE_PMD_ORDER)
5382 			return -EINVAL;
5383 
5384 		spin_lock(&huge_shmem_orders_lock);
5385 		clear_bit(order, &huge_shmem_orders_always);
5386 		clear_bit(order, &huge_shmem_orders_madvise);
5387 		clear_bit(order, &huge_shmem_orders_within_size);
5388 		set_bit(order, &huge_shmem_orders_inherit);
5389 		spin_unlock(&huge_shmem_orders_lock);
5390 	} else if (sysfs_streq(buf, "within_size")) {
5391 		spin_lock(&huge_shmem_orders_lock);
5392 		clear_bit(order, &huge_shmem_orders_always);
5393 		clear_bit(order, &huge_shmem_orders_inherit);
5394 		clear_bit(order, &huge_shmem_orders_madvise);
5395 		set_bit(order, &huge_shmem_orders_within_size);
5396 		spin_unlock(&huge_shmem_orders_lock);
5397 	} else if (sysfs_streq(buf, "advise")) {
5398 		spin_lock(&huge_shmem_orders_lock);
5399 		clear_bit(order, &huge_shmem_orders_always);
5400 		clear_bit(order, &huge_shmem_orders_inherit);
5401 		clear_bit(order, &huge_shmem_orders_within_size);
5402 		set_bit(order, &huge_shmem_orders_madvise);
5403 		spin_unlock(&huge_shmem_orders_lock);
5404 	} else if (sysfs_streq(buf, "never")) {
5405 		spin_lock(&huge_shmem_orders_lock);
5406 		clear_bit(order, &huge_shmem_orders_always);
5407 		clear_bit(order, &huge_shmem_orders_inherit);
5408 		clear_bit(order, &huge_shmem_orders_within_size);
5409 		clear_bit(order, &huge_shmem_orders_madvise);
5410 		spin_unlock(&huge_shmem_orders_lock);
5411 	} else {
5412 		ret = -EINVAL;
5413 	}
5414 
5415 	if (ret > 0) {
5416 		int err = start_stop_khugepaged();
5417 
5418 		if (err)
5419 			ret = err;
5420 	}
5421 	return ret;
5422 }
5423 
5424 struct kobj_attribute thpsize_shmem_enabled_attr =
5425 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5426 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5427 
5428 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5429 
setup_transparent_hugepage_shmem(char * str)5430 static int __init setup_transparent_hugepage_shmem(char *str)
5431 {
5432 	int huge;
5433 
5434 	huge = shmem_parse_huge(str);
5435 	if (huge == -EINVAL) {
5436 		pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5437 		return huge;
5438 	}
5439 
5440 	shmem_huge = huge;
5441 	return 1;
5442 }
5443 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5444 
5445 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_shmem(char * str)5446 static int __init setup_thp_shmem(char *str)
5447 {
5448 	char *token, *range, *policy, *subtoken;
5449 	unsigned long always, inherit, madvise, within_size;
5450 	char *start_size, *end_size;
5451 	int start, end, nr;
5452 	char *p;
5453 
5454 	if (!str || strlen(str) + 1 > PAGE_SIZE)
5455 		goto err;
5456 	strscpy(str_dup, str);
5457 
5458 	always = huge_shmem_orders_always;
5459 	inherit = huge_shmem_orders_inherit;
5460 	madvise = huge_shmem_orders_madvise;
5461 	within_size = huge_shmem_orders_within_size;
5462 	p = str_dup;
5463 	while ((token = strsep(&p, ";")) != NULL) {
5464 		range = strsep(&token, ":");
5465 		policy = token;
5466 
5467 		if (!policy)
5468 			goto err;
5469 
5470 		while ((subtoken = strsep(&range, ",")) != NULL) {
5471 			if (strchr(subtoken, '-')) {
5472 				start_size = strsep(&subtoken, "-");
5473 				end_size = subtoken;
5474 
5475 				start = get_order_from_str(start_size,
5476 							   THP_ORDERS_ALL_FILE_DEFAULT);
5477 				end = get_order_from_str(end_size,
5478 							 THP_ORDERS_ALL_FILE_DEFAULT);
5479 			} else {
5480 				start_size = end_size = subtoken;
5481 				start = end = get_order_from_str(subtoken,
5482 								 THP_ORDERS_ALL_FILE_DEFAULT);
5483 			}
5484 
5485 			if (start == -EINVAL) {
5486 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5487 				       start_size);
5488 				goto err;
5489 			}
5490 
5491 			if (end == -EINVAL) {
5492 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5493 				       end_size);
5494 				goto err;
5495 			}
5496 
5497 			if (start < 0 || end < 0 || start > end)
5498 				goto err;
5499 
5500 			nr = end - start + 1;
5501 			if (!strcmp(policy, "always")) {
5502 				bitmap_set(&always, start, nr);
5503 				bitmap_clear(&inherit, start, nr);
5504 				bitmap_clear(&madvise, start, nr);
5505 				bitmap_clear(&within_size, start, nr);
5506 			} else if (!strcmp(policy, "advise")) {
5507 				bitmap_set(&madvise, start, nr);
5508 				bitmap_clear(&inherit, start, nr);
5509 				bitmap_clear(&always, start, nr);
5510 				bitmap_clear(&within_size, start, nr);
5511 			} else if (!strcmp(policy, "inherit")) {
5512 				bitmap_set(&inherit, start, nr);
5513 				bitmap_clear(&madvise, start, nr);
5514 				bitmap_clear(&always, start, nr);
5515 				bitmap_clear(&within_size, start, nr);
5516 			} else if (!strcmp(policy, "within_size")) {
5517 				bitmap_set(&within_size, start, nr);
5518 				bitmap_clear(&inherit, start, nr);
5519 				bitmap_clear(&madvise, start, nr);
5520 				bitmap_clear(&always, start, nr);
5521 			} else if (!strcmp(policy, "never")) {
5522 				bitmap_clear(&inherit, start, nr);
5523 				bitmap_clear(&madvise, start, nr);
5524 				bitmap_clear(&always, start, nr);
5525 				bitmap_clear(&within_size, start, nr);
5526 			} else {
5527 				pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5528 				goto err;
5529 			}
5530 		}
5531 	}
5532 
5533 	huge_shmem_orders_always = always;
5534 	huge_shmem_orders_madvise = madvise;
5535 	huge_shmem_orders_inherit = inherit;
5536 	huge_shmem_orders_within_size = within_size;
5537 	shmem_orders_configured = true;
5538 	return 1;
5539 
5540 err:
5541 	pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5542 	return 0;
5543 }
5544 __setup("thp_shmem=", setup_thp_shmem);
5545 
5546 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5547 
5548 #else /* !CONFIG_SHMEM */
5549 
5550 /*
5551  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5552  *
5553  * This is intended for small system where the benefits of the full
5554  * shmem code (swap-backed and resource-limited) are outweighed by
5555  * their complexity. On systems without swap this code should be
5556  * effectively equivalent, but much lighter weight.
5557  */
5558 
5559 static struct file_system_type shmem_fs_type = {
5560 	.name		= "tmpfs",
5561 	.init_fs_context = ramfs_init_fs_context,
5562 	.parameters	= ramfs_fs_parameters,
5563 	.kill_sb	= ramfs_kill_sb,
5564 	.fs_flags	= FS_USERNS_MOUNT,
5565 };
5566 
shmem_init(void)5567 void __init shmem_init(void)
5568 {
5569 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5570 
5571 	shm_mnt = kern_mount(&shmem_fs_type);
5572 	BUG_ON(IS_ERR(shm_mnt));
5573 }
5574 
shmem_unuse(unsigned int type)5575 int shmem_unuse(unsigned int type)
5576 {
5577 	return 0;
5578 }
5579 
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)5580 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5581 {
5582 	return 0;
5583 }
5584 
shmem_unlock_mapping(struct address_space * mapping)5585 void shmem_unlock_mapping(struct address_space *mapping)
5586 {
5587 }
5588 
5589 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)5590 unsigned long shmem_get_unmapped_area(struct file *file,
5591 				      unsigned long addr, unsigned long len,
5592 				      unsigned long pgoff, unsigned long flags)
5593 {
5594 	return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5595 }
5596 #endif
5597 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)5598 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5599 {
5600 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5601 }
5602 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5603 
5604 #define shmem_vm_ops				generic_file_vm_ops
5605 #define shmem_anon_vm_ops			generic_file_vm_ops
5606 #define shmem_file_operations			ramfs_file_operations
5607 #define shmem_acct_size(flags, size)		0
5608 #define shmem_unacct_size(flags, size)		do {} while (0)
5609 
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)5610 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5611 				struct super_block *sb, struct inode *dir,
5612 				umode_t mode, dev_t dev, unsigned long flags)
5613 {
5614 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5615 	return inode ? inode : ERR_PTR(-ENOSPC);
5616 }
5617 
5618 #endif /* CONFIG_SHMEM */
5619 
5620 /* common code */
5621 
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)5622 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5623 			loff_t size, unsigned long flags, unsigned int i_flags)
5624 {
5625 	struct inode *inode;
5626 	struct file *res;
5627 
5628 	if (IS_ERR(mnt))
5629 		return ERR_CAST(mnt);
5630 
5631 	if (size < 0 || size > MAX_LFS_FILESIZE)
5632 		return ERR_PTR(-EINVAL);
5633 
5634 	if (shmem_acct_size(flags, size))
5635 		return ERR_PTR(-ENOMEM);
5636 
5637 	if (is_idmapped_mnt(mnt))
5638 		return ERR_PTR(-EINVAL);
5639 
5640 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5641 				S_IFREG | S_IRWXUGO, 0, flags);
5642 	if (IS_ERR(inode)) {
5643 		shmem_unacct_size(flags, size);
5644 		return ERR_CAST(inode);
5645 	}
5646 	inode->i_flags |= i_flags;
5647 	inode->i_size = size;
5648 	clear_nlink(inode);	/* It is unlinked */
5649 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5650 	if (!IS_ERR(res))
5651 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5652 				&shmem_file_operations);
5653 	if (IS_ERR(res))
5654 		iput(inode);
5655 	return res;
5656 }
5657 
5658 /**
5659  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5660  * 	kernel internal.  There will be NO LSM permission checks against the
5661  * 	underlying inode.  So users of this interface must do LSM checks at a
5662  *	higher layer.  The users are the big_key and shm implementations.  LSM
5663  *	checks are provided at the key or shm level rather than the inode.
5664  * @name: name for dentry (to be seen in /proc/<pid>/maps
5665  * @size: size to be set for the file
5666  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5667  */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)5668 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5669 {
5670 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5671 }
5672 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5673 
5674 /**
5675  * shmem_file_setup - get an unlinked file living in tmpfs
5676  * @name: name for dentry (to be seen in /proc/<pid>/maps
5677  * @size: size to be set for the file
5678  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5679  */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)5680 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5681 {
5682 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5683 }
5684 EXPORT_SYMBOL_GPL(shmem_file_setup);
5685 
5686 /**
5687  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5688  * @mnt: the tmpfs mount where the file will be created
5689  * @name: name for dentry (to be seen in /proc/<pid>/maps
5690  * @size: size to be set for the file
5691  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5692  */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)5693 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5694 				       loff_t size, unsigned long flags)
5695 {
5696 	return __shmem_file_setup(mnt, name, size, flags, 0);
5697 }
5698 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5699 
5700 /**
5701  * shmem_zero_setup - setup a shared anonymous mapping
5702  * @vma: the vma to be mmapped is prepared by do_mmap
5703  */
shmem_zero_setup(struct vm_area_struct * vma)5704 int shmem_zero_setup(struct vm_area_struct *vma)
5705 {
5706 	struct file *file;
5707 	loff_t size = vma->vm_end - vma->vm_start;
5708 
5709 	/*
5710 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5711 	 * between XFS directory reading and selinux: since this file is only
5712 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5713 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5714 	 */
5715 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5716 	if (IS_ERR(file))
5717 		return PTR_ERR(file);
5718 
5719 	if (vma->vm_file)
5720 		fput(vma->vm_file);
5721 	vma->vm_file = file;
5722 	vma->vm_ops = &shmem_anon_vm_ops;
5723 
5724 	return 0;
5725 }
5726 
5727 /**
5728  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5729  * @mapping:	the folio's address_space
5730  * @index:	the folio index
5731  * @gfp:	the page allocator flags to use if allocating
5732  *
5733  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5734  * with any new page allocations done using the specified allocation flags.
5735  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5736  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5737  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5738  *
5739  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5740  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5741  */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5742 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5743 		pgoff_t index, gfp_t gfp)
5744 {
5745 #ifdef CONFIG_SHMEM
5746 	struct inode *inode = mapping->host;
5747 	struct folio *folio;
5748 	int error;
5749 
5750 	error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5751 				    gfp, NULL, NULL);
5752 	if (error)
5753 		return ERR_PTR(error);
5754 
5755 	folio_unlock(folio);
5756 	return folio;
5757 #else
5758 	/*
5759 	 * The tiny !SHMEM case uses ramfs without swap
5760 	 */
5761 	return mapping_read_folio_gfp(mapping, index, gfp);
5762 #endif
5763 }
5764 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5765 
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5766 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5767 					 pgoff_t index, gfp_t gfp)
5768 {
5769 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5770 	struct page *page;
5771 
5772 	if (IS_ERR(folio))
5773 		return &folio->page;
5774 
5775 	page = folio_file_page(folio, index);
5776 	if (PageHWPoison(page)) {
5777 		folio_put(folio);
5778 		return ERR_PTR(-EIO);
5779 	}
5780 
5781 	return page;
5782 }
5783 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5784