xref: /linux/mm/shmem.c (revision 509d3f45847627f4c5cdce004c3ec79262b5239c)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45 
46 static struct vfsmount *shm_mnt __ro_after_init;
47 
48 #ifdef CONFIG_SHMEM
49 /*
50  * This virtual memory filesystem is heavily based on the ramfs. It
51  * extends ramfs by the ability to use swap and honor resource limits
52  * which makes it a completely usable filesystem.
53  */
54 
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/leafops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84 
85 #include <linux/uaccess.h>
86 
87 #include "internal.h"
88 
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96 
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99 
100 /*
101  * shmem_fallocate communicates with shmem_fault or shmem_writeout via
102  * inode->i_private (with i_rwsem making sure that it has only one user at
103  * a time): we would prefer not to enlarge the shmem inode just for that.
104  */
105 struct shmem_falloc {
106 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 	pgoff_t start;		/* start of range currently being fallocated */
108 	pgoff_t next;		/* the next page offset to be fallocated */
109 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110 	pgoff_t nr_unswapped;	/* how often writeout refused to swap out */
111 };
112 
113 struct shmem_options {
114 	unsigned long long blocks;
115 	unsigned long long inodes;
116 	struct mempolicy *mpol;
117 	kuid_t uid;
118 	kgid_t gid;
119 	umode_t mode;
120 	bool full_inums;
121 	int huge;
122 	int seen;
123 	bool noswap;
124 	unsigned short quota_types;
125 	struct shmem_quota_limits qlimits;
126 #if IS_ENABLED(CONFIG_UNICODE)
127 	struct unicode_map *encoding;
128 	bool strict_encoding;
129 #endif
130 #define SHMEM_SEEN_BLOCKS 1
131 #define SHMEM_SEEN_INODES 2
132 #define SHMEM_SEEN_HUGE 4
133 #define SHMEM_SEEN_INUMS 8
134 #define SHMEM_SEEN_QUOTA 16
135 };
136 
137 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
138 static unsigned long huge_shmem_orders_always __read_mostly;
139 static unsigned long huge_shmem_orders_madvise __read_mostly;
140 static unsigned long huge_shmem_orders_inherit __read_mostly;
141 static unsigned long huge_shmem_orders_within_size __read_mostly;
142 static bool shmem_orders_configured __initdata;
143 #endif
144 
145 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)146 static unsigned long shmem_default_max_blocks(void)
147 {
148 	return totalram_pages() / 2;
149 }
150 
shmem_default_max_inodes(void)151 static unsigned long shmem_default_max_inodes(void)
152 {
153 	unsigned long nr_pages = totalram_pages();
154 
155 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
156 			ULONG_MAX / BOGO_INODE_SIZE);
157 }
158 #endif
159 
160 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
161 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
162 			struct vm_area_struct *vma, vm_fault_t *fault_type);
163 
SHMEM_SB(struct super_block * sb)164 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
165 {
166 	return sb->s_fs_info;
167 }
168 
169 /*
170  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
171  * for shared memory and for shared anonymous (/dev/zero) mappings
172  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
173  * consistent with the pre-accounting of private mappings ...
174  */
shmem_acct_size(unsigned long flags,loff_t size)175 static inline int shmem_acct_size(unsigned long flags, loff_t size)
176 {
177 	return (flags & SHMEM_F_NORESERVE) ?
178 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
179 }
180 
shmem_unacct_size(unsigned long flags,loff_t size)181 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
182 {
183 	if (!(flags & SHMEM_F_NORESERVE))
184 		vm_unacct_memory(VM_ACCT(size));
185 }
186 
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)187 static inline int shmem_reacct_size(unsigned long flags,
188 		loff_t oldsize, loff_t newsize)
189 {
190 	if (!(flags & SHMEM_F_NORESERVE)) {
191 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
192 			return security_vm_enough_memory_mm(current->mm,
193 					VM_ACCT(newsize) - VM_ACCT(oldsize));
194 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
195 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
196 	}
197 	return 0;
198 }
199 
200 /*
201  * ... whereas tmpfs objects are accounted incrementally as
202  * pages are allocated, in order to allow large sparse files.
203  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
204  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
205  */
shmem_acct_blocks(unsigned long flags,long pages)206 static inline int shmem_acct_blocks(unsigned long flags, long pages)
207 {
208 	if (!(flags & SHMEM_F_NORESERVE))
209 		return 0;
210 
211 	return security_vm_enough_memory_mm(current->mm,
212 			pages * VM_ACCT(PAGE_SIZE));
213 }
214 
shmem_unacct_blocks(unsigned long flags,long pages)215 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
216 {
217 	if (flags & SHMEM_F_NORESERVE)
218 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
219 }
220 
shmem_inode_acct_blocks(struct inode * inode,long pages)221 int shmem_inode_acct_blocks(struct inode *inode, long pages)
222 {
223 	struct shmem_inode_info *info = SHMEM_I(inode);
224 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
225 	int err = -ENOSPC;
226 
227 	if (shmem_acct_blocks(info->flags, pages))
228 		return err;
229 
230 	might_sleep();	/* when quotas */
231 	if (sbinfo->max_blocks) {
232 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
233 						sbinfo->max_blocks, pages))
234 			goto unacct;
235 
236 		err = dquot_alloc_block_nodirty(inode, pages);
237 		if (err) {
238 			percpu_counter_sub(&sbinfo->used_blocks, pages);
239 			goto unacct;
240 		}
241 	} else {
242 		err = dquot_alloc_block_nodirty(inode, pages);
243 		if (err)
244 			goto unacct;
245 	}
246 
247 	return 0;
248 
249 unacct:
250 	shmem_unacct_blocks(info->flags, pages);
251 	return err;
252 }
253 
shmem_inode_unacct_blocks(struct inode * inode,long pages)254 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
255 {
256 	struct shmem_inode_info *info = SHMEM_I(inode);
257 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
258 
259 	might_sleep();	/* when quotas */
260 	dquot_free_block_nodirty(inode, pages);
261 
262 	if (sbinfo->max_blocks)
263 		percpu_counter_sub(&sbinfo->used_blocks, pages);
264 	shmem_unacct_blocks(info->flags, pages);
265 }
266 
267 static const struct super_operations shmem_ops;
268 static const struct address_space_operations shmem_aops;
269 static const struct file_operations shmem_file_operations;
270 static const struct inode_operations shmem_inode_operations;
271 static const struct inode_operations shmem_dir_inode_operations;
272 static const struct inode_operations shmem_special_inode_operations;
273 static const struct vm_operations_struct shmem_vm_ops;
274 static const struct vm_operations_struct shmem_anon_vm_ops;
275 static struct file_system_type shmem_fs_type;
276 
shmem_mapping(const struct address_space * mapping)277 bool shmem_mapping(const struct address_space *mapping)
278 {
279 	return mapping->a_ops == &shmem_aops;
280 }
281 EXPORT_SYMBOL_GPL(shmem_mapping);
282 
vma_is_anon_shmem(const struct vm_area_struct * vma)283 bool vma_is_anon_shmem(const struct vm_area_struct *vma)
284 {
285 	return vma->vm_ops == &shmem_anon_vm_ops;
286 }
287 
vma_is_shmem(const struct vm_area_struct * vma)288 bool vma_is_shmem(const struct vm_area_struct *vma)
289 {
290 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
291 }
292 
293 static LIST_HEAD(shmem_swaplist);
294 static DEFINE_SPINLOCK(shmem_swaplist_lock);
295 
296 #ifdef CONFIG_TMPFS_QUOTA
297 
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)298 static int shmem_enable_quotas(struct super_block *sb,
299 			       unsigned short quota_types)
300 {
301 	int type, err = 0;
302 
303 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
304 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
305 		if (!(quota_types & (1 << type)))
306 			continue;
307 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
308 					  DQUOT_USAGE_ENABLED |
309 					  DQUOT_LIMITS_ENABLED);
310 		if (err)
311 			goto out_err;
312 	}
313 	return 0;
314 
315 out_err:
316 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
317 		type, err);
318 	for (type--; type >= 0; type--)
319 		dquot_quota_off(sb, type);
320 	return err;
321 }
322 
shmem_disable_quotas(struct super_block * sb)323 static void shmem_disable_quotas(struct super_block *sb)
324 {
325 	int type;
326 
327 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
328 		dquot_quota_off(sb, type);
329 }
330 
shmem_get_dquots(struct inode * inode)331 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
332 {
333 	return SHMEM_I(inode)->i_dquot;
334 }
335 #endif /* CONFIG_TMPFS_QUOTA */
336 
337 /*
338  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
339  * produces a novel ino for the newly allocated inode.
340  *
341  * It may also be called when making a hard link to permit the space needed by
342  * each dentry. However, in that case, no new inode number is needed since that
343  * internally draws from another pool of inode numbers (currently global
344  * get_next_ino()). This case is indicated by passing NULL as inop.
345  */
346 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)347 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
348 {
349 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
350 	ino_t ino;
351 
352 	if (!(sb->s_flags & SB_KERNMOUNT)) {
353 		raw_spin_lock(&sbinfo->stat_lock);
354 		if (sbinfo->max_inodes) {
355 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
356 				raw_spin_unlock(&sbinfo->stat_lock);
357 				return -ENOSPC;
358 			}
359 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
360 		}
361 		if (inop) {
362 			ino = sbinfo->next_ino++;
363 			if (unlikely(is_zero_ino(ino)))
364 				ino = sbinfo->next_ino++;
365 			if (unlikely(!sbinfo->full_inums &&
366 				     ino > UINT_MAX)) {
367 				/*
368 				 * Emulate get_next_ino uint wraparound for
369 				 * compatibility
370 				 */
371 				if (IS_ENABLED(CONFIG_64BIT))
372 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
373 						__func__, MINOR(sb->s_dev));
374 				sbinfo->next_ino = 1;
375 				ino = sbinfo->next_ino++;
376 			}
377 			*inop = ino;
378 		}
379 		raw_spin_unlock(&sbinfo->stat_lock);
380 	} else if (inop) {
381 		/*
382 		 * __shmem_file_setup, one of our callers, is lock-free: it
383 		 * doesn't hold stat_lock in shmem_reserve_inode since
384 		 * max_inodes is always 0, and is called from potentially
385 		 * unknown contexts. As such, use a per-cpu batched allocator
386 		 * which doesn't require the per-sb stat_lock unless we are at
387 		 * the batch boundary.
388 		 *
389 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
390 		 * shmem mounts are not exposed to userspace, so we don't need
391 		 * to worry about things like glibc compatibility.
392 		 */
393 		ino_t *next_ino;
394 
395 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
396 		ino = *next_ino;
397 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
398 			raw_spin_lock(&sbinfo->stat_lock);
399 			ino = sbinfo->next_ino;
400 			sbinfo->next_ino += SHMEM_INO_BATCH;
401 			raw_spin_unlock(&sbinfo->stat_lock);
402 			if (unlikely(is_zero_ino(ino)))
403 				ino++;
404 		}
405 		*inop = ino;
406 		*next_ino = ++ino;
407 		put_cpu();
408 	}
409 
410 	return 0;
411 }
412 
shmem_free_inode(struct super_block * sb,size_t freed_ispace)413 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
414 {
415 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
416 	if (sbinfo->max_inodes) {
417 		raw_spin_lock(&sbinfo->stat_lock);
418 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
419 		raw_spin_unlock(&sbinfo->stat_lock);
420 	}
421 }
422 
423 /**
424  * shmem_recalc_inode - recalculate the block usage of an inode
425  * @inode: inode to recalc
426  * @alloced: the change in number of pages allocated to inode
427  * @swapped: the change in number of pages swapped from inode
428  *
429  * We have to calculate the free blocks since the mm can drop
430  * undirtied hole pages behind our back.
431  *
432  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
433  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
434  *
435  * Return: true if swapped was incremented from 0, for shmem_writeout().
436  */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)437 bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
438 {
439 	struct shmem_inode_info *info = SHMEM_I(inode);
440 	bool first_swapped = false;
441 	long freed;
442 
443 	spin_lock(&info->lock);
444 	info->alloced += alloced;
445 	info->swapped += swapped;
446 	freed = info->alloced - info->swapped -
447 		READ_ONCE(inode->i_mapping->nrpages);
448 	/*
449 	 * Special case: whereas normally shmem_recalc_inode() is called
450 	 * after i_mapping->nrpages has already been adjusted (up or down),
451 	 * shmem_writeout() has to raise swapped before nrpages is lowered -
452 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
453 	 * been freed.  Compensate here, to avoid the need for a followup call.
454 	 */
455 	if (swapped > 0) {
456 		if (info->swapped == swapped)
457 			first_swapped = true;
458 		freed += swapped;
459 	}
460 	if (freed > 0)
461 		info->alloced -= freed;
462 	spin_unlock(&info->lock);
463 
464 	/* The quota case may block */
465 	if (freed > 0)
466 		shmem_inode_unacct_blocks(inode, freed);
467 	return first_swapped;
468 }
469 
shmem_charge(struct inode * inode,long pages)470 bool shmem_charge(struct inode *inode, long pages)
471 {
472 	struct address_space *mapping = inode->i_mapping;
473 
474 	if (shmem_inode_acct_blocks(inode, pages))
475 		return false;
476 
477 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
478 	xa_lock_irq(&mapping->i_pages);
479 	mapping->nrpages += pages;
480 	xa_unlock_irq(&mapping->i_pages);
481 
482 	shmem_recalc_inode(inode, pages, 0);
483 	return true;
484 }
485 
shmem_uncharge(struct inode * inode,long pages)486 void shmem_uncharge(struct inode *inode, long pages)
487 {
488 	/* pages argument is currently unused: keep it to help debugging */
489 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
490 
491 	shmem_recalc_inode(inode, 0, 0);
492 }
493 
494 /*
495  * Replace item expected in xarray by a new item, while holding xa_lock.
496  */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)497 static int shmem_replace_entry(struct address_space *mapping,
498 			pgoff_t index, void *expected, void *replacement)
499 {
500 	XA_STATE(xas, &mapping->i_pages, index);
501 	void *item;
502 
503 	VM_BUG_ON(!expected);
504 	VM_BUG_ON(!replacement);
505 	item = xas_load(&xas);
506 	if (item != expected)
507 		return -ENOENT;
508 	xas_store(&xas, replacement);
509 	return 0;
510 }
511 
512 /*
513  * Sometimes, before we decide whether to proceed or to fail, we must check
514  * that an entry was not already brought back or split by a racing thread.
515  *
516  * Checking folio is not enough: by the time a swapcache folio is locked, it
517  * might be reused, and again be swapcache, using the same swap as before.
518  * Returns the swap entry's order if it still presents, else returns -1.
519  */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)520 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index,
521 			      swp_entry_t swap)
522 {
523 	XA_STATE(xas, &mapping->i_pages, index);
524 	int ret = -1;
525 	void *entry;
526 
527 	rcu_read_lock();
528 	do {
529 		entry = xas_load(&xas);
530 		if (entry == swp_to_radix_entry(swap))
531 			ret = xas_get_order(&xas);
532 	} while (xas_retry(&xas, entry));
533 	rcu_read_unlock();
534 	return ret;
535 }
536 
537 /*
538  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
539  *
540  * SHMEM_HUGE_NEVER:
541  *	disables huge pages for the mount;
542  * SHMEM_HUGE_ALWAYS:
543  *	enables huge pages for the mount;
544  * SHMEM_HUGE_WITHIN_SIZE:
545  *	only allocate huge pages if the page will be fully within i_size,
546  *	also respect madvise() hints;
547  * SHMEM_HUGE_ADVISE:
548  *	only allocate huge pages if requested with madvise();
549  */
550 
551 #define SHMEM_HUGE_NEVER	0
552 #define SHMEM_HUGE_ALWAYS	1
553 #define SHMEM_HUGE_WITHIN_SIZE	2
554 #define SHMEM_HUGE_ADVISE	3
555 
556 /*
557  * Special values.
558  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
559  *
560  * SHMEM_HUGE_DENY:
561  *	disables huge on shm_mnt and all mounts, for emergency use;
562  * SHMEM_HUGE_FORCE:
563  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
564  *
565  */
566 #define SHMEM_HUGE_DENY		(-1)
567 #define SHMEM_HUGE_FORCE	(-2)
568 
569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
570 /* ifdef here to avoid bloating shmem.o when not necessary */
571 
572 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_NEVER)
573 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER
574 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ALWAYS)
575 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ALWAYS
576 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_WITHIN_SIZE)
577 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE
578 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ADVISE)
579 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ADVISE
580 #else
581 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER
582 #endif
583 
584 static int shmem_huge __read_mostly = SHMEM_HUGE_DEFAULT;
585 
586 #undef SHMEM_HUGE_DEFAULT
587 
588 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_NEVER)
589 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER
590 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ALWAYS)
591 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ALWAYS
592 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_WITHIN_SIZE)
593 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE
594 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ADVISE)
595 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ADVISE
596 #else
597 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER
598 #endif
599 
600 static int tmpfs_huge __read_mostly = TMPFS_HUGE_DEFAULT;
601 
602 #undef TMPFS_HUGE_DEFAULT
603 
shmem_get_orders_within_size(struct inode * inode,unsigned long within_size_orders,pgoff_t index,loff_t write_end)604 static unsigned int shmem_get_orders_within_size(struct inode *inode,
605 		unsigned long within_size_orders, pgoff_t index,
606 		loff_t write_end)
607 {
608 	pgoff_t aligned_index;
609 	unsigned long order;
610 	loff_t i_size;
611 
612 	order = highest_order(within_size_orders);
613 	while (within_size_orders) {
614 		aligned_index = round_up(index + 1, 1 << order);
615 		i_size = max(write_end, i_size_read(inode));
616 		i_size = round_up(i_size, PAGE_SIZE);
617 		if (i_size >> PAGE_SHIFT >= aligned_index)
618 			return within_size_orders;
619 
620 		order = next_order(&within_size_orders, order);
621 	}
622 
623 	return 0;
624 }
625 
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,vm_flags_t vm_flags)626 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
627 					      loff_t write_end, bool shmem_huge_force,
628 					      struct vm_area_struct *vma,
629 					      vm_flags_t vm_flags)
630 {
631 	unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
632 		0 : BIT(HPAGE_PMD_ORDER);
633 	unsigned long within_size_orders;
634 
635 	if (!S_ISREG(inode->i_mode))
636 		return 0;
637 	if (shmem_huge == SHMEM_HUGE_DENY)
638 		return 0;
639 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
640 		return maybe_pmd_order;
641 
642 	/*
643 	 * The huge order allocation for anon shmem is controlled through
644 	 * the mTHP interface, so we still use PMD-sized huge order to
645 	 * check whether global control is enabled.
646 	 *
647 	 * For tmpfs with 'huge=always' or 'huge=within_size' mount option,
648 	 * we will always try PMD-sized order first. If that failed, it will
649 	 * fall back to small large folios.
650 	 */
651 	switch (SHMEM_SB(inode->i_sb)->huge) {
652 	case SHMEM_HUGE_ALWAYS:
653 		return THP_ORDERS_ALL_FILE_DEFAULT;
654 	case SHMEM_HUGE_WITHIN_SIZE:
655 		within_size_orders = shmem_get_orders_within_size(inode,
656 				THP_ORDERS_ALL_FILE_DEFAULT, index, write_end);
657 		if (within_size_orders > 0)
658 			return within_size_orders;
659 
660 		fallthrough;
661 	case SHMEM_HUGE_ADVISE:
662 		if (vm_flags & VM_HUGEPAGE)
663 			return THP_ORDERS_ALL_FILE_DEFAULT;
664 		fallthrough;
665 	default:
666 		return 0;
667 	}
668 }
669 
shmem_parse_huge(const char * str)670 static int shmem_parse_huge(const char *str)
671 {
672 	int huge;
673 
674 	if (!str)
675 		return -EINVAL;
676 
677 	if (!strcmp(str, "never"))
678 		huge = SHMEM_HUGE_NEVER;
679 	else if (!strcmp(str, "always"))
680 		huge = SHMEM_HUGE_ALWAYS;
681 	else if (!strcmp(str, "within_size"))
682 		huge = SHMEM_HUGE_WITHIN_SIZE;
683 	else if (!strcmp(str, "advise"))
684 		huge = SHMEM_HUGE_ADVISE;
685 	else if (!strcmp(str, "deny"))
686 		huge = SHMEM_HUGE_DENY;
687 	else if (!strcmp(str, "force"))
688 		huge = SHMEM_HUGE_FORCE;
689 	else
690 		return -EINVAL;
691 
692 	if (!has_transparent_hugepage() &&
693 	    huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
694 		return -EINVAL;
695 
696 	/* Do not override huge allocation policy with non-PMD sized mTHP */
697 	if (huge == SHMEM_HUGE_FORCE &&
698 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
699 		return -EINVAL;
700 
701 	return huge;
702 }
703 
704 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)705 static const char *shmem_format_huge(int huge)
706 {
707 	switch (huge) {
708 	case SHMEM_HUGE_NEVER:
709 		return "never";
710 	case SHMEM_HUGE_ALWAYS:
711 		return "always";
712 	case SHMEM_HUGE_WITHIN_SIZE:
713 		return "within_size";
714 	case SHMEM_HUGE_ADVISE:
715 		return "advise";
716 	case SHMEM_HUGE_DENY:
717 		return "deny";
718 	case SHMEM_HUGE_FORCE:
719 		return "force";
720 	default:
721 		VM_BUG_ON(1);
722 		return "bad_val";
723 	}
724 }
725 #endif
726 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)727 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
728 		struct shrink_control *sc, unsigned long nr_to_free)
729 {
730 	LIST_HEAD(list), *pos, *next;
731 	struct inode *inode;
732 	struct shmem_inode_info *info;
733 	struct folio *folio;
734 	unsigned long batch = sc ? sc->nr_to_scan : 128;
735 	unsigned long split = 0, freed = 0;
736 
737 	if (list_empty(&sbinfo->shrinklist))
738 		return SHRINK_STOP;
739 
740 	spin_lock(&sbinfo->shrinklist_lock);
741 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
742 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
743 
744 		/* pin the inode */
745 		inode = igrab(&info->vfs_inode);
746 
747 		/* inode is about to be evicted */
748 		if (!inode) {
749 			list_del_init(&info->shrinklist);
750 			goto next;
751 		}
752 
753 		list_move(&info->shrinklist, &list);
754 next:
755 		sbinfo->shrinklist_len--;
756 		if (!--batch)
757 			break;
758 	}
759 	spin_unlock(&sbinfo->shrinklist_lock);
760 
761 	list_for_each_safe(pos, next, &list) {
762 		pgoff_t next, end;
763 		loff_t i_size;
764 		int ret;
765 
766 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
767 		inode = &info->vfs_inode;
768 
769 		if (nr_to_free && freed >= nr_to_free)
770 			goto move_back;
771 
772 		i_size = i_size_read(inode);
773 		folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
774 		if (!folio || xa_is_value(folio))
775 			goto drop;
776 
777 		/* No large folio at the end of the file: nothing to split */
778 		if (!folio_test_large(folio)) {
779 			folio_put(folio);
780 			goto drop;
781 		}
782 
783 		/* Check if there is anything to gain from splitting */
784 		next = folio_next_index(folio);
785 		end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
786 		if (end <= folio->index || end >= next) {
787 			folio_put(folio);
788 			goto drop;
789 		}
790 
791 		/*
792 		 * Move the inode on the list back to shrinklist if we failed
793 		 * to lock the page at this time.
794 		 *
795 		 * Waiting for the lock may lead to deadlock in the
796 		 * reclaim path.
797 		 */
798 		if (!folio_trylock(folio)) {
799 			folio_put(folio);
800 			goto move_back;
801 		}
802 
803 		ret = split_folio(folio);
804 		folio_unlock(folio);
805 		folio_put(folio);
806 
807 		/* If split failed move the inode on the list back to shrinklist */
808 		if (ret)
809 			goto move_back;
810 
811 		freed += next - end;
812 		split++;
813 drop:
814 		list_del_init(&info->shrinklist);
815 		goto put;
816 move_back:
817 		/*
818 		 * Make sure the inode is either on the global list or deleted
819 		 * from any local list before iput() since it could be deleted
820 		 * in another thread once we put the inode (then the local list
821 		 * is corrupted).
822 		 */
823 		spin_lock(&sbinfo->shrinklist_lock);
824 		list_move(&info->shrinklist, &sbinfo->shrinklist);
825 		sbinfo->shrinklist_len++;
826 		spin_unlock(&sbinfo->shrinklist_lock);
827 put:
828 		iput(inode);
829 	}
830 
831 	return split;
832 }
833 
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)834 static long shmem_unused_huge_scan(struct super_block *sb,
835 		struct shrink_control *sc)
836 {
837 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
838 
839 	if (!READ_ONCE(sbinfo->shrinklist_len))
840 		return SHRINK_STOP;
841 
842 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
843 }
844 
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)845 static long shmem_unused_huge_count(struct super_block *sb,
846 		struct shrink_control *sc)
847 {
848 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
849 	return READ_ONCE(sbinfo->shrinklist_len);
850 }
851 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
852 
853 #define shmem_huge SHMEM_HUGE_DENY
854 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)855 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
856 		struct shrink_control *sc, unsigned long nr_to_free)
857 {
858 	return 0;
859 }
860 
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,vm_flags_t vm_flags)861 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
862 					      loff_t write_end, bool shmem_huge_force,
863 					      struct vm_area_struct *vma,
864 					      vm_flags_t vm_flags)
865 {
866 	return 0;
867 }
868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
869 
shmem_update_stats(struct folio * folio,int nr_pages)870 static void shmem_update_stats(struct folio *folio, int nr_pages)
871 {
872 	if (folio_test_pmd_mappable(folio))
873 		lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
874 	lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
875 	lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
876 }
877 
878 /*
879  * Somewhat like filemap_add_folio, but error if expected item has gone.
880  */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)881 int shmem_add_to_page_cache(struct folio *folio,
882 			    struct address_space *mapping,
883 			    pgoff_t index, void *expected, gfp_t gfp)
884 {
885 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
886 	unsigned long nr = folio_nr_pages(folio);
887 	swp_entry_t iter, swap;
888 	void *entry;
889 
890 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
891 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
892 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
893 
894 	folio_ref_add(folio, nr);
895 	folio->mapping = mapping;
896 	folio->index = index;
897 
898 	gfp &= GFP_RECLAIM_MASK;
899 	folio_throttle_swaprate(folio, gfp);
900 	swap = radix_to_swp_entry(expected);
901 
902 	do {
903 		iter = swap;
904 		xas_lock_irq(&xas);
905 		xas_for_each_conflict(&xas, entry) {
906 			/*
907 			 * The range must either be empty, or filled with
908 			 * expected swap entries. Shmem swap entries are never
909 			 * partially freed without split of both entry and
910 			 * folio, so there shouldn't be any holes.
911 			 */
912 			if (!expected || entry != swp_to_radix_entry(iter)) {
913 				xas_set_err(&xas, -EEXIST);
914 				goto unlock;
915 			}
916 			iter.val += 1 << xas_get_order(&xas);
917 		}
918 		if (expected && iter.val - nr != swap.val) {
919 			xas_set_err(&xas, -EEXIST);
920 			goto unlock;
921 		}
922 		xas_store(&xas, folio);
923 		if (xas_error(&xas))
924 			goto unlock;
925 		shmem_update_stats(folio, nr);
926 		mapping->nrpages += nr;
927 unlock:
928 		xas_unlock_irq(&xas);
929 	} while (xas_nomem(&xas, gfp));
930 
931 	if (xas_error(&xas)) {
932 		folio->mapping = NULL;
933 		folio_ref_sub(folio, nr);
934 		return xas_error(&xas);
935 	}
936 
937 	return 0;
938 }
939 
940 /*
941  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
942  */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)943 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
944 {
945 	struct address_space *mapping = folio->mapping;
946 	long nr = folio_nr_pages(folio);
947 	int error;
948 
949 	xa_lock_irq(&mapping->i_pages);
950 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
951 	folio->mapping = NULL;
952 	mapping->nrpages -= nr;
953 	shmem_update_stats(folio, -nr);
954 	xa_unlock_irq(&mapping->i_pages);
955 	folio_put_refs(folio, nr);
956 	BUG_ON(error);
957 }
958 
959 /*
960  * Remove swap entry from page cache, free the swap and its page cache. Returns
961  * the number of pages being freed. 0 means entry not found in XArray (0 pages
962  * being freed).
963  */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)964 static long shmem_free_swap(struct address_space *mapping,
965 			    pgoff_t index, void *radswap)
966 {
967 	int order = xa_get_order(&mapping->i_pages, index);
968 	void *old;
969 
970 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
971 	if (old != radswap)
972 		return 0;
973 	free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
974 
975 	return 1 << order;
976 }
977 
978 /*
979  * Determine (in bytes) how many of the shmem object's pages mapped by the
980  * given offsets are swapped out.
981  *
982  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
983  * as long as the inode doesn't go away and racy results are not a problem.
984  */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)985 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
986 						pgoff_t start, pgoff_t end)
987 {
988 	XA_STATE(xas, &mapping->i_pages, start);
989 	struct folio *folio;
990 	unsigned long swapped = 0;
991 	unsigned long max = end - 1;
992 
993 	rcu_read_lock();
994 	xas_for_each(&xas, folio, max) {
995 		if (xas_retry(&xas, folio))
996 			continue;
997 		if (xa_is_value(folio))
998 			swapped += 1 << xas_get_order(&xas);
999 		if (xas.xa_index == max)
1000 			break;
1001 		if (need_resched()) {
1002 			xas_pause(&xas);
1003 			cond_resched_rcu();
1004 		}
1005 	}
1006 	rcu_read_unlock();
1007 
1008 	return swapped << PAGE_SHIFT;
1009 }
1010 
1011 /*
1012  * Determine (in bytes) how many of the shmem object's pages mapped by the
1013  * given vma is swapped out.
1014  *
1015  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
1016  * as long as the inode doesn't go away and racy results are not a problem.
1017  */
shmem_swap_usage(struct vm_area_struct * vma)1018 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
1019 {
1020 	struct inode *inode = file_inode(vma->vm_file);
1021 	struct shmem_inode_info *info = SHMEM_I(inode);
1022 	struct address_space *mapping = inode->i_mapping;
1023 	unsigned long swapped;
1024 
1025 	/* Be careful as we don't hold info->lock */
1026 	swapped = READ_ONCE(info->swapped);
1027 
1028 	/*
1029 	 * The easier cases are when the shmem object has nothing in swap, or
1030 	 * the vma maps it whole. Then we can simply use the stats that we
1031 	 * already track.
1032 	 */
1033 	if (!swapped)
1034 		return 0;
1035 
1036 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
1037 		return swapped << PAGE_SHIFT;
1038 
1039 	/* Here comes the more involved part */
1040 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
1041 					vma->vm_pgoff + vma_pages(vma));
1042 }
1043 
1044 /*
1045  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
1046  */
shmem_unlock_mapping(struct address_space * mapping)1047 void shmem_unlock_mapping(struct address_space *mapping)
1048 {
1049 	struct folio_batch fbatch;
1050 	pgoff_t index = 0;
1051 
1052 	folio_batch_init(&fbatch);
1053 	/*
1054 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
1055 	 */
1056 	while (!mapping_unevictable(mapping) &&
1057 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
1058 		check_move_unevictable_folios(&fbatch);
1059 		folio_batch_release(&fbatch);
1060 		cond_resched();
1061 	}
1062 }
1063 
shmem_get_partial_folio(struct inode * inode,pgoff_t index)1064 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
1065 {
1066 	struct folio *folio;
1067 
1068 	/*
1069 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
1070 	 * beyond i_size, and reports fallocated folios as holes.
1071 	 */
1072 	folio = filemap_get_entry(inode->i_mapping, index);
1073 	if (!folio)
1074 		return folio;
1075 	if (!xa_is_value(folio)) {
1076 		folio_lock(folio);
1077 		if (folio->mapping == inode->i_mapping)
1078 			return folio;
1079 		/* The folio has been swapped out */
1080 		folio_unlock(folio);
1081 		folio_put(folio);
1082 	}
1083 	/*
1084 	 * But read a folio back from swap if any of it is within i_size
1085 	 * (although in some cases this is just a waste of time).
1086 	 */
1087 	folio = NULL;
1088 	shmem_get_folio(inode, index, 0, &folio, SGP_READ);
1089 	return folio;
1090 }
1091 
1092 /*
1093  * Remove range of pages and swap entries from page cache, and free them.
1094  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1095  */
shmem_undo_range(struct inode * inode,loff_t lstart,uoff_t lend,bool unfalloc)1096 static void shmem_undo_range(struct inode *inode, loff_t lstart, uoff_t lend,
1097 								 bool unfalloc)
1098 {
1099 	struct address_space *mapping = inode->i_mapping;
1100 	struct shmem_inode_info *info = SHMEM_I(inode);
1101 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1102 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1103 	struct folio_batch fbatch;
1104 	pgoff_t indices[PAGEVEC_SIZE];
1105 	struct folio *folio;
1106 	bool same_folio;
1107 	long nr_swaps_freed = 0;
1108 	pgoff_t index;
1109 	int i;
1110 
1111 	if (lend == -1)
1112 		end = -1;	/* unsigned, so actually very big */
1113 
1114 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1115 		info->fallocend = start;
1116 
1117 	folio_batch_init(&fbatch);
1118 	index = start;
1119 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1120 			&fbatch, indices)) {
1121 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1122 			folio = fbatch.folios[i];
1123 
1124 			if (xa_is_value(folio)) {
1125 				if (unfalloc)
1126 					continue;
1127 				nr_swaps_freed += shmem_free_swap(mapping,
1128 							indices[i], folio);
1129 				continue;
1130 			}
1131 
1132 			if (!unfalloc || !folio_test_uptodate(folio))
1133 				truncate_inode_folio(mapping, folio);
1134 			folio_unlock(folio);
1135 		}
1136 		folio_batch_remove_exceptionals(&fbatch);
1137 		folio_batch_release(&fbatch);
1138 		cond_resched();
1139 	}
1140 
1141 	/*
1142 	 * When undoing a failed fallocate, we want none of the partial folio
1143 	 * zeroing and splitting below, but shall want to truncate the whole
1144 	 * folio when !uptodate indicates that it was added by this fallocate,
1145 	 * even when [lstart, lend] covers only a part of the folio.
1146 	 */
1147 	if (unfalloc)
1148 		goto whole_folios;
1149 
1150 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1151 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1152 	if (folio) {
1153 		same_folio = lend < folio_next_pos(folio);
1154 		folio_mark_dirty(folio);
1155 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1156 			start = folio_next_index(folio);
1157 			if (same_folio)
1158 				end = folio->index;
1159 		}
1160 		folio_unlock(folio);
1161 		folio_put(folio);
1162 		folio = NULL;
1163 	}
1164 
1165 	if (!same_folio)
1166 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1167 	if (folio) {
1168 		folio_mark_dirty(folio);
1169 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1170 			end = folio->index;
1171 		folio_unlock(folio);
1172 		folio_put(folio);
1173 	}
1174 
1175 whole_folios:
1176 
1177 	index = start;
1178 	while (index < end) {
1179 		cond_resched();
1180 
1181 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1182 				indices)) {
1183 			/* If all gone or hole-punch or unfalloc, we're done */
1184 			if (index == start || end != -1)
1185 				break;
1186 			/* But if truncating, restart to make sure all gone */
1187 			index = start;
1188 			continue;
1189 		}
1190 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1191 			folio = fbatch.folios[i];
1192 
1193 			if (xa_is_value(folio)) {
1194 				long swaps_freed;
1195 
1196 				if (unfalloc)
1197 					continue;
1198 				swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1199 				if (!swaps_freed) {
1200 					/* Swap was replaced by page: retry */
1201 					index = indices[i];
1202 					break;
1203 				}
1204 				nr_swaps_freed += swaps_freed;
1205 				continue;
1206 			}
1207 
1208 			folio_lock(folio);
1209 
1210 			if (!unfalloc || !folio_test_uptodate(folio)) {
1211 				if (folio_mapping(folio) != mapping) {
1212 					/* Page was replaced by swap: retry */
1213 					folio_unlock(folio);
1214 					index = indices[i];
1215 					break;
1216 				}
1217 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1218 						folio);
1219 
1220 				if (!folio_test_large(folio)) {
1221 					truncate_inode_folio(mapping, folio);
1222 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1223 					/*
1224 					 * If we split a page, reset the loop so
1225 					 * that we pick up the new sub pages.
1226 					 * Otherwise the THP was entirely
1227 					 * dropped or the target range was
1228 					 * zeroed, so just continue the loop as
1229 					 * is.
1230 					 */
1231 					if (!folio_test_large(folio)) {
1232 						folio_unlock(folio);
1233 						index = start;
1234 						break;
1235 					}
1236 				}
1237 			}
1238 			folio_unlock(folio);
1239 		}
1240 		folio_batch_remove_exceptionals(&fbatch);
1241 		folio_batch_release(&fbatch);
1242 	}
1243 
1244 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1245 }
1246 
shmem_truncate_range(struct inode * inode,loff_t lstart,uoff_t lend)1247 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend)
1248 {
1249 	shmem_undo_range(inode, lstart, lend, false);
1250 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1251 	inode_inc_iversion(inode);
1252 }
1253 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1254 
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1255 static int shmem_getattr(struct mnt_idmap *idmap,
1256 			 const struct path *path, struct kstat *stat,
1257 			 u32 request_mask, unsigned int query_flags)
1258 {
1259 	struct inode *inode = path->dentry->d_inode;
1260 	struct shmem_inode_info *info = SHMEM_I(inode);
1261 
1262 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1263 		shmem_recalc_inode(inode, 0, 0);
1264 
1265 	if (info->fsflags & FS_APPEND_FL)
1266 		stat->attributes |= STATX_ATTR_APPEND;
1267 	if (info->fsflags & FS_IMMUTABLE_FL)
1268 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1269 	if (info->fsflags & FS_NODUMP_FL)
1270 		stat->attributes |= STATX_ATTR_NODUMP;
1271 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1272 			STATX_ATTR_IMMUTABLE |
1273 			STATX_ATTR_NODUMP);
1274 	generic_fillattr(idmap, request_mask, inode, stat);
1275 
1276 	if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1277 		stat->blksize = HPAGE_PMD_SIZE;
1278 
1279 	if (request_mask & STATX_BTIME) {
1280 		stat->result_mask |= STATX_BTIME;
1281 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1282 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1283 	}
1284 
1285 	return 0;
1286 }
1287 
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1288 static int shmem_setattr(struct mnt_idmap *idmap,
1289 			 struct dentry *dentry, struct iattr *attr)
1290 {
1291 	struct inode *inode = d_inode(dentry);
1292 	struct shmem_inode_info *info = SHMEM_I(inode);
1293 	int error;
1294 	bool update_mtime = false;
1295 	bool update_ctime = true;
1296 
1297 	error = setattr_prepare(idmap, dentry, attr);
1298 	if (error)
1299 		return error;
1300 
1301 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1302 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1303 			return -EPERM;
1304 		}
1305 	}
1306 
1307 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1308 		loff_t oldsize = inode->i_size;
1309 		loff_t newsize = attr->ia_size;
1310 
1311 		/* protected by i_rwsem */
1312 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1313 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1314 			return -EPERM;
1315 
1316 		if (newsize != oldsize) {
1317 			if (info->flags & SHMEM_F_MAPPING_FROZEN)
1318 				return -EPERM;
1319 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1320 					oldsize, newsize);
1321 			if (error)
1322 				return error;
1323 			i_size_write(inode, newsize);
1324 			update_mtime = true;
1325 		} else {
1326 			update_ctime = false;
1327 		}
1328 		if (newsize <= oldsize) {
1329 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1330 			if (oldsize > holebegin)
1331 				unmap_mapping_range(inode->i_mapping,
1332 							holebegin, 0, 1);
1333 			if (info->alloced)
1334 				shmem_truncate_range(inode,
1335 							newsize, (loff_t)-1);
1336 			/* unmap again to remove racily COWed private pages */
1337 			if (oldsize > holebegin)
1338 				unmap_mapping_range(inode->i_mapping,
1339 							holebegin, 0, 1);
1340 		}
1341 	}
1342 
1343 	if (is_quota_modification(idmap, inode, attr)) {
1344 		error = dquot_initialize(inode);
1345 		if (error)
1346 			return error;
1347 	}
1348 
1349 	/* Transfer quota accounting */
1350 	if (i_uid_needs_update(idmap, attr, inode) ||
1351 	    i_gid_needs_update(idmap, attr, inode)) {
1352 		error = dquot_transfer(idmap, inode, attr);
1353 		if (error)
1354 			return error;
1355 	}
1356 
1357 	setattr_copy(idmap, inode, attr);
1358 	if (attr->ia_valid & ATTR_MODE)
1359 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1360 	if (!error && update_ctime) {
1361 		inode_set_ctime_current(inode);
1362 		if (update_mtime)
1363 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1364 		inode_inc_iversion(inode);
1365 	}
1366 	return error;
1367 }
1368 
shmem_evict_inode(struct inode * inode)1369 static void shmem_evict_inode(struct inode *inode)
1370 {
1371 	struct shmem_inode_info *info = SHMEM_I(inode);
1372 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1373 	size_t freed = 0;
1374 
1375 	if (shmem_mapping(inode->i_mapping)) {
1376 		shmem_unacct_size(info->flags, inode->i_size);
1377 		inode->i_size = 0;
1378 		mapping_set_exiting(inode->i_mapping);
1379 		shmem_truncate_range(inode, 0, (loff_t)-1);
1380 		if (!list_empty(&info->shrinklist)) {
1381 			spin_lock(&sbinfo->shrinklist_lock);
1382 			if (!list_empty(&info->shrinklist)) {
1383 				list_del_init(&info->shrinklist);
1384 				sbinfo->shrinklist_len--;
1385 			}
1386 			spin_unlock(&sbinfo->shrinklist_lock);
1387 		}
1388 		while (!list_empty(&info->swaplist)) {
1389 			/* Wait while shmem_unuse() is scanning this inode... */
1390 			wait_var_event(&info->stop_eviction,
1391 				       !atomic_read(&info->stop_eviction));
1392 			spin_lock(&shmem_swaplist_lock);
1393 			/* ...but beware of the race if we peeked too early */
1394 			if (!atomic_read(&info->stop_eviction))
1395 				list_del_init(&info->swaplist);
1396 			spin_unlock(&shmem_swaplist_lock);
1397 		}
1398 	}
1399 
1400 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1401 	shmem_free_inode(inode->i_sb, freed);
1402 	WARN_ON(inode->i_blocks);
1403 	clear_inode(inode);
1404 #ifdef CONFIG_TMPFS_QUOTA
1405 	dquot_free_inode(inode);
1406 	dquot_drop(inode);
1407 #endif
1408 }
1409 
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1410 static unsigned int shmem_find_swap_entries(struct address_space *mapping,
1411 				pgoff_t start, struct folio_batch *fbatch,
1412 				pgoff_t *indices, unsigned int type)
1413 {
1414 	XA_STATE(xas, &mapping->i_pages, start);
1415 	struct folio *folio;
1416 	swp_entry_t entry;
1417 
1418 	rcu_read_lock();
1419 	xas_for_each(&xas, folio, ULONG_MAX) {
1420 		if (xas_retry(&xas, folio))
1421 			continue;
1422 
1423 		if (!xa_is_value(folio))
1424 			continue;
1425 
1426 		entry = radix_to_swp_entry(folio);
1427 		/*
1428 		 * swapin error entries can be found in the mapping. But they're
1429 		 * deliberately ignored here as we've done everything we can do.
1430 		 */
1431 		if (swp_type(entry) != type)
1432 			continue;
1433 
1434 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1435 		if (!folio_batch_add(fbatch, folio))
1436 			break;
1437 
1438 		if (need_resched()) {
1439 			xas_pause(&xas);
1440 			cond_resched_rcu();
1441 		}
1442 	}
1443 	rcu_read_unlock();
1444 
1445 	return folio_batch_count(fbatch);
1446 }
1447 
1448 /*
1449  * Move the swapped pages for an inode to page cache. Returns the count
1450  * of pages swapped in, or the error in case of failure.
1451  */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1452 static int shmem_unuse_swap_entries(struct inode *inode,
1453 		struct folio_batch *fbatch, pgoff_t *indices)
1454 {
1455 	int i = 0;
1456 	int ret = 0;
1457 	int error = 0;
1458 	struct address_space *mapping = inode->i_mapping;
1459 
1460 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1461 		struct folio *folio = fbatch->folios[i];
1462 
1463 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1464 					mapping_gfp_mask(mapping), NULL, NULL);
1465 		if (error == 0) {
1466 			folio_unlock(folio);
1467 			folio_put(folio);
1468 			ret++;
1469 		}
1470 		if (error == -ENOMEM)
1471 			break;
1472 		error = 0;
1473 	}
1474 	return error ? error : ret;
1475 }
1476 
1477 /*
1478  * If swap found in inode, free it and move page from swapcache to filecache.
1479  */
shmem_unuse_inode(struct inode * inode,unsigned int type)1480 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1481 {
1482 	struct address_space *mapping = inode->i_mapping;
1483 	pgoff_t start = 0;
1484 	struct folio_batch fbatch;
1485 	pgoff_t indices[PAGEVEC_SIZE];
1486 	int ret = 0;
1487 
1488 	do {
1489 		folio_batch_init(&fbatch);
1490 		if (!shmem_find_swap_entries(mapping, start, &fbatch,
1491 					     indices, type)) {
1492 			ret = 0;
1493 			break;
1494 		}
1495 
1496 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1497 		if (ret < 0)
1498 			break;
1499 
1500 		start = indices[folio_batch_count(&fbatch) - 1];
1501 	} while (true);
1502 
1503 	return ret;
1504 }
1505 
1506 /*
1507  * Read all the shared memory data that resides in the swap
1508  * device 'type' back into memory, so the swap device can be
1509  * unused.
1510  */
shmem_unuse(unsigned int type)1511 int shmem_unuse(unsigned int type)
1512 {
1513 	struct shmem_inode_info *info, *next;
1514 	int error = 0;
1515 
1516 	if (list_empty(&shmem_swaplist))
1517 		return 0;
1518 
1519 	spin_lock(&shmem_swaplist_lock);
1520 start_over:
1521 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1522 		if (!info->swapped) {
1523 			list_del_init(&info->swaplist);
1524 			continue;
1525 		}
1526 		/*
1527 		 * Drop the swaplist mutex while searching the inode for swap;
1528 		 * but before doing so, make sure shmem_evict_inode() will not
1529 		 * remove placeholder inode from swaplist, nor let it be freed
1530 		 * (igrab() would protect from unlink, but not from unmount).
1531 		 */
1532 		atomic_inc(&info->stop_eviction);
1533 		spin_unlock(&shmem_swaplist_lock);
1534 
1535 		error = shmem_unuse_inode(&info->vfs_inode, type);
1536 		cond_resched();
1537 
1538 		spin_lock(&shmem_swaplist_lock);
1539 		if (atomic_dec_and_test(&info->stop_eviction))
1540 			wake_up_var(&info->stop_eviction);
1541 		if (error)
1542 			break;
1543 		if (list_empty(&info->swaplist))
1544 			goto start_over;
1545 		next = list_next_entry(info, swaplist);
1546 		if (!info->swapped)
1547 			list_del_init(&info->swaplist);
1548 	}
1549 	spin_unlock(&shmem_swaplist_lock);
1550 
1551 	return error;
1552 }
1553 
1554 /**
1555  * shmem_writeout - Write the folio to swap
1556  * @folio: The folio to write
1557  * @plug: swap plug
1558  * @folio_list: list to put back folios on split
1559  *
1560  * Move the folio from the page cache to the swap cache.
1561  */
shmem_writeout(struct folio * folio,struct swap_iocb ** plug,struct list_head * folio_list)1562 int shmem_writeout(struct folio *folio, struct swap_iocb **plug,
1563 		struct list_head *folio_list)
1564 {
1565 	struct address_space *mapping = folio->mapping;
1566 	struct inode *inode = mapping->host;
1567 	struct shmem_inode_info *info = SHMEM_I(inode);
1568 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1569 	pgoff_t index;
1570 	int nr_pages;
1571 	bool split = false;
1572 
1573 	if ((info->flags & SHMEM_F_LOCKED) || sbinfo->noswap)
1574 		goto redirty;
1575 
1576 	if (!total_swap_pages)
1577 		goto redirty;
1578 
1579 	/*
1580 	 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1581 	 * split when swapping.
1582 	 *
1583 	 * And shrinkage of pages beyond i_size does not split swap, so
1584 	 * swapout of a large folio crossing i_size needs to split too
1585 	 * (unless fallocate has been used to preallocate beyond EOF).
1586 	 */
1587 	if (folio_test_large(folio)) {
1588 		index = shmem_fallocend(inode,
1589 			DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1590 		if ((index > folio->index && index < folio_next_index(folio)) ||
1591 		    !IS_ENABLED(CONFIG_THP_SWAP))
1592 			split = true;
1593 	}
1594 
1595 	if (split) {
1596 try_split:
1597 		/* Ensure the subpages are still dirty */
1598 		folio_test_set_dirty(folio);
1599 		if (split_folio_to_list(folio, folio_list))
1600 			goto redirty;
1601 		folio_clear_dirty(folio);
1602 	}
1603 
1604 	index = folio->index;
1605 	nr_pages = folio_nr_pages(folio);
1606 
1607 	/*
1608 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1609 	 * value into swapfile.c, the only way we can correctly account for a
1610 	 * fallocated folio arriving here is now to initialize it and write it.
1611 	 *
1612 	 * That's okay for a folio already fallocated earlier, but if we have
1613 	 * not yet completed the fallocation, then (a) we want to keep track
1614 	 * of this folio in case we have to undo it, and (b) it may not be a
1615 	 * good idea to continue anyway, once we're pushing into swap.  So
1616 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1617 	 */
1618 	if (!folio_test_uptodate(folio)) {
1619 		if (inode->i_private) {
1620 			struct shmem_falloc *shmem_falloc;
1621 			spin_lock(&inode->i_lock);
1622 			shmem_falloc = inode->i_private;
1623 			if (shmem_falloc &&
1624 			    !shmem_falloc->waitq &&
1625 			    index >= shmem_falloc->start &&
1626 			    index < shmem_falloc->next)
1627 				shmem_falloc->nr_unswapped += nr_pages;
1628 			else
1629 				shmem_falloc = NULL;
1630 			spin_unlock(&inode->i_lock);
1631 			if (shmem_falloc)
1632 				goto redirty;
1633 		}
1634 		folio_zero_range(folio, 0, folio_size(folio));
1635 		flush_dcache_folio(folio);
1636 		folio_mark_uptodate(folio);
1637 	}
1638 
1639 	if (!folio_alloc_swap(folio)) {
1640 		bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages);
1641 		int error;
1642 
1643 		/*
1644 		 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1645 		 * if it's not already there.  Do it now before the folio is
1646 		 * removed from page cache, when its pagelock no longer
1647 		 * protects the inode from eviction.  And do it now, after
1648 		 * we've incremented swapped, because shmem_unuse() will
1649 		 * prune a !swapped inode from the swaplist.
1650 		 */
1651 		if (first_swapped) {
1652 			spin_lock(&shmem_swaplist_lock);
1653 			if (list_empty(&info->swaplist))
1654 				list_add(&info->swaplist, &shmem_swaplist);
1655 			spin_unlock(&shmem_swaplist_lock);
1656 		}
1657 
1658 		swap_shmem_alloc(folio->swap, nr_pages);
1659 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap));
1660 
1661 		BUG_ON(folio_mapped(folio));
1662 		error = swap_writeout(folio, plug);
1663 		if (error != AOP_WRITEPAGE_ACTIVATE) {
1664 			/* folio has been unlocked */
1665 			return error;
1666 		}
1667 
1668 		/*
1669 		 * The intention here is to avoid holding on to the swap when
1670 		 * zswap was unable to compress and unable to writeback; but
1671 		 * it will be appropriate if other reactivate cases are added.
1672 		 */
1673 		error = shmem_add_to_page_cache(folio, mapping, index,
1674 				swp_to_radix_entry(folio->swap),
1675 				__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
1676 		/* Swap entry might be erased by racing shmem_free_swap() */
1677 		if (!error) {
1678 			shmem_recalc_inode(inode, 0, -nr_pages);
1679 			swap_free_nr(folio->swap, nr_pages);
1680 		}
1681 
1682 		/*
1683 		 * The swap_cache_del_folio() below could be left for
1684 		 * shrink_folio_list()'s folio_free_swap() to dispose of;
1685 		 * but I'm a little nervous about letting this folio out of
1686 		 * shmem_writeout() in a hybrid half-tmpfs-half-swap state
1687 		 * e.g. folio_mapping(folio) might give an unexpected answer.
1688 		 */
1689 		swap_cache_del_folio(folio);
1690 		goto redirty;
1691 	}
1692 	if (nr_pages > 1)
1693 		goto try_split;
1694 redirty:
1695 	folio_mark_dirty(folio);
1696 	return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1697 }
1698 EXPORT_SYMBOL_GPL(shmem_writeout);
1699 
1700 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1701 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1702 {
1703 	char buffer[64];
1704 
1705 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1706 		return;		/* show nothing */
1707 
1708 	mpol_to_str(buffer, sizeof(buffer), mpol);
1709 
1710 	seq_printf(seq, ",mpol=%s", buffer);
1711 }
1712 
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1713 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1714 {
1715 	struct mempolicy *mpol = NULL;
1716 	if (sbinfo->mpol) {
1717 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1718 		mpol = sbinfo->mpol;
1719 		mpol_get(mpol);
1720 		raw_spin_unlock(&sbinfo->stat_lock);
1721 	}
1722 	return mpol;
1723 }
1724 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1725 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1726 {
1727 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1728 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1729 {
1730 	return NULL;
1731 }
1732 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1733 
1734 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1735 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1736 
shmem_swapin_cluster(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1737 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1738 			struct shmem_inode_info *info, pgoff_t index)
1739 {
1740 	struct mempolicy *mpol;
1741 	pgoff_t ilx;
1742 	struct folio *folio;
1743 
1744 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1745 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1746 	mpol_cond_put(mpol);
1747 
1748 	return folio;
1749 }
1750 
1751 /*
1752  * Make sure huge_gfp is always more limited than limit_gfp.
1753  * Some of the flags set permissions, while others set limitations.
1754  */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1755 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1756 {
1757 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1758 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1759 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1760 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1761 
1762 	/* Allow allocations only from the originally specified zones. */
1763 	result |= zoneflags;
1764 
1765 	/*
1766 	 * Minimize the result gfp by taking the union with the deny flags,
1767 	 * and the intersection of the allow flags.
1768 	 */
1769 	result |= (limit_gfp & denyflags);
1770 	result |= (huge_gfp & limit_gfp) & allowflags;
1771 
1772 	return result;
1773 }
1774 
1775 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_hpage_pmd_enabled(void)1776 bool shmem_hpage_pmd_enabled(void)
1777 {
1778 	if (shmem_huge == SHMEM_HUGE_DENY)
1779 		return false;
1780 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1781 		return true;
1782 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1783 		return true;
1784 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1785 		return true;
1786 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1787 	    shmem_huge != SHMEM_HUGE_NEVER)
1788 		return true;
1789 
1790 	return false;
1791 }
1792 
shmem_allowable_huge_orders(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,loff_t write_end,bool shmem_huge_force)1793 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1794 				struct vm_area_struct *vma, pgoff_t index,
1795 				loff_t write_end, bool shmem_huge_force)
1796 {
1797 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1798 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1799 	vm_flags_t vm_flags = vma ? vma->vm_flags : 0;
1800 	unsigned int global_orders;
1801 
1802 	if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force)))
1803 		return 0;
1804 
1805 	global_orders = shmem_huge_global_enabled(inode, index, write_end,
1806 						  shmem_huge_force, vma, vm_flags);
1807 	/* Tmpfs huge pages allocation */
1808 	if (!vma || !vma_is_anon_shmem(vma))
1809 		return global_orders;
1810 
1811 	/*
1812 	 * Following the 'deny' semantics of the top level, force the huge
1813 	 * option off from all mounts.
1814 	 */
1815 	if (shmem_huge == SHMEM_HUGE_DENY)
1816 		return 0;
1817 
1818 	/*
1819 	 * Only allow inherit orders if the top-level value is 'force', which
1820 	 * means non-PMD sized THP can not override 'huge' mount option now.
1821 	 */
1822 	if (shmem_huge == SHMEM_HUGE_FORCE)
1823 		return READ_ONCE(huge_shmem_orders_inherit);
1824 
1825 	/* Allow mTHP that will be fully within i_size. */
1826 	mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0);
1827 
1828 	if (vm_flags & VM_HUGEPAGE)
1829 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1830 
1831 	if (global_orders > 0)
1832 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1833 
1834 	return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1835 }
1836 
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1837 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1838 					   struct address_space *mapping, pgoff_t index,
1839 					   unsigned long orders)
1840 {
1841 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1842 	pgoff_t aligned_index;
1843 	unsigned long pages;
1844 	int order;
1845 
1846 	if (vma) {
1847 		orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1848 		if (!orders)
1849 			return 0;
1850 	}
1851 
1852 	/* Find the highest order that can add into the page cache */
1853 	order = highest_order(orders);
1854 	while (orders) {
1855 		pages = 1UL << order;
1856 		aligned_index = round_down(index, pages);
1857 		/*
1858 		 * Check for conflict before waiting on a huge allocation.
1859 		 * Conflict might be that a huge page has just been allocated
1860 		 * and added to page cache by a racing thread, or that there
1861 		 * is already at least one small page in the huge extent.
1862 		 * Be careful to retry when appropriate, but not forever!
1863 		 * Elsewhere -EEXIST would be the right code, but not here.
1864 		 */
1865 		if (!xa_find(&mapping->i_pages, &aligned_index,
1866 			     aligned_index + pages - 1, XA_PRESENT))
1867 			break;
1868 		order = next_order(&orders, order);
1869 	}
1870 
1871 	return orders;
1872 }
1873 #else
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1874 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1875 					   struct address_space *mapping, pgoff_t index,
1876 					   unsigned long orders)
1877 {
1878 	return 0;
1879 }
1880 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1881 
shmem_alloc_folio(gfp_t gfp,int order,struct shmem_inode_info * info,pgoff_t index)1882 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1883 		struct shmem_inode_info *info, pgoff_t index)
1884 {
1885 	struct mempolicy *mpol;
1886 	pgoff_t ilx;
1887 	struct folio *folio;
1888 
1889 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1890 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1891 	mpol_cond_put(mpol);
1892 
1893 	return folio;
1894 }
1895 
shmem_alloc_and_add_folio(struct vm_fault * vmf,gfp_t gfp,struct inode * inode,pgoff_t index,struct mm_struct * fault_mm,unsigned long orders)1896 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1897 		gfp_t gfp, struct inode *inode, pgoff_t index,
1898 		struct mm_struct *fault_mm, unsigned long orders)
1899 {
1900 	struct address_space *mapping = inode->i_mapping;
1901 	struct shmem_inode_info *info = SHMEM_I(inode);
1902 	unsigned long suitable_orders = 0;
1903 	struct folio *folio = NULL;
1904 	pgoff_t aligned_index;
1905 	long pages;
1906 	int error, order;
1907 
1908 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1909 		orders = 0;
1910 
1911 	if (orders > 0) {
1912 		suitable_orders = shmem_suitable_orders(inode, vmf,
1913 							mapping, index, orders);
1914 
1915 		order = highest_order(suitable_orders);
1916 		while (suitable_orders) {
1917 			pages = 1UL << order;
1918 			aligned_index = round_down(index, pages);
1919 			folio = shmem_alloc_folio(gfp, order, info, aligned_index);
1920 			if (folio) {
1921 				index = aligned_index;
1922 				goto allocated;
1923 			}
1924 
1925 			if (pages == HPAGE_PMD_NR)
1926 				count_vm_event(THP_FILE_FALLBACK);
1927 			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1928 			order = next_order(&suitable_orders, order);
1929 		}
1930 	} else {
1931 		pages = 1;
1932 		folio = shmem_alloc_folio(gfp, 0, info, index);
1933 	}
1934 	if (!folio)
1935 		return ERR_PTR(-ENOMEM);
1936 
1937 allocated:
1938 	__folio_set_locked(folio);
1939 	__folio_set_swapbacked(folio);
1940 
1941 	gfp &= GFP_RECLAIM_MASK;
1942 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1943 	if (error) {
1944 		if (xa_find(&mapping->i_pages, &index,
1945 				index + pages - 1, XA_PRESENT)) {
1946 			error = -EEXIST;
1947 		} else if (pages > 1) {
1948 			if (pages == HPAGE_PMD_NR) {
1949 				count_vm_event(THP_FILE_FALLBACK);
1950 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1951 			}
1952 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1953 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1954 		}
1955 		goto unlock;
1956 	}
1957 
1958 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1959 	if (error)
1960 		goto unlock;
1961 
1962 	error = shmem_inode_acct_blocks(inode, pages);
1963 	if (error) {
1964 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1965 		long freed;
1966 		/*
1967 		 * Try to reclaim some space by splitting a few
1968 		 * large folios beyond i_size on the filesystem.
1969 		 */
1970 		shmem_unused_huge_shrink(sbinfo, NULL, pages);
1971 		/*
1972 		 * And do a shmem_recalc_inode() to account for freed pages:
1973 		 * except our folio is there in cache, so not quite balanced.
1974 		 */
1975 		spin_lock(&info->lock);
1976 		freed = pages + info->alloced - info->swapped -
1977 			READ_ONCE(mapping->nrpages);
1978 		if (freed > 0)
1979 			info->alloced -= freed;
1980 		spin_unlock(&info->lock);
1981 		if (freed > 0)
1982 			shmem_inode_unacct_blocks(inode, freed);
1983 		error = shmem_inode_acct_blocks(inode, pages);
1984 		if (error) {
1985 			filemap_remove_folio(folio);
1986 			goto unlock;
1987 		}
1988 	}
1989 
1990 	shmem_recalc_inode(inode, pages, 0);
1991 	folio_add_lru(folio);
1992 	return folio;
1993 
1994 unlock:
1995 	folio_unlock(folio);
1996 	folio_put(folio);
1997 	return ERR_PTR(error);
1998 }
1999 
shmem_swap_alloc_folio(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,swp_entry_t entry,int order,gfp_t gfp)2000 static struct folio *shmem_swap_alloc_folio(struct inode *inode,
2001 		struct vm_area_struct *vma, pgoff_t index,
2002 		swp_entry_t entry, int order, gfp_t gfp)
2003 {
2004 	struct shmem_inode_info *info = SHMEM_I(inode);
2005 	int nr_pages = 1 << order;
2006 	struct folio *new;
2007 	gfp_t alloc_gfp;
2008 	void *shadow;
2009 
2010 	/*
2011 	 * We have arrived here because our zones are constrained, so don't
2012 	 * limit chance of success with further cpuset and node constraints.
2013 	 */
2014 	gfp &= ~GFP_CONSTRAINT_MASK;
2015 	alloc_gfp = gfp;
2016 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
2017 		if (WARN_ON_ONCE(order))
2018 			return ERR_PTR(-EINVAL);
2019 	} else if (order) {
2020 		/*
2021 		 * If uffd is active for the vma, we need per-page fault
2022 		 * fidelity to maintain the uffd semantics, then fallback
2023 		 * to swapin order-0 folio, as well as for zswap case.
2024 		 * Any existing sub folio in the swap cache also blocks
2025 		 * mTHP swapin.
2026 		 */
2027 		if ((vma && unlikely(userfaultfd_armed(vma))) ||
2028 		     !zswap_never_enabled() ||
2029 		     non_swapcache_batch(entry, nr_pages) != nr_pages)
2030 			goto fallback;
2031 
2032 		alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp);
2033 	}
2034 retry:
2035 	new = shmem_alloc_folio(alloc_gfp, order, info, index);
2036 	if (!new) {
2037 		new = ERR_PTR(-ENOMEM);
2038 		goto fallback;
2039 	}
2040 
2041 	if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL,
2042 					   alloc_gfp, entry)) {
2043 		folio_put(new);
2044 		new = ERR_PTR(-ENOMEM);
2045 		goto fallback;
2046 	}
2047 
2048 	/*
2049 	 * Prevent parallel swapin from proceeding with the swap cache flag.
2050 	 *
2051 	 * Of course there is another possible concurrent scenario as well,
2052 	 * that is to say, the swap cache flag of a large folio has already
2053 	 * been set by swapcache_prepare(), while another thread may have
2054 	 * already split the large swap entry stored in the shmem mapping.
2055 	 * In this case, shmem_add_to_page_cache() will help identify the
2056 	 * concurrent swapin and return -EEXIST.
2057 	 */
2058 	if (swapcache_prepare(entry, nr_pages)) {
2059 		folio_put(new);
2060 		new = ERR_PTR(-EEXIST);
2061 		/* Try smaller folio to avoid cache conflict */
2062 		goto fallback;
2063 	}
2064 
2065 	__folio_set_locked(new);
2066 	__folio_set_swapbacked(new);
2067 	new->swap = entry;
2068 
2069 	memcg1_swapin(entry, nr_pages);
2070 	shadow = swap_cache_get_shadow(entry);
2071 	if (shadow)
2072 		workingset_refault(new, shadow);
2073 	folio_add_lru(new);
2074 	swap_read_folio(new, NULL);
2075 	return new;
2076 fallback:
2077 	/* Order 0 swapin failed, nothing to fallback to, abort */
2078 	if (!order)
2079 		return new;
2080 	entry.val += index - round_down(index, nr_pages);
2081 	alloc_gfp = gfp;
2082 	nr_pages = 1;
2083 	order = 0;
2084 	goto retry;
2085 }
2086 
2087 /*
2088  * When a page is moved from swapcache to shmem filecache (either by the
2089  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
2090  * shmem_unuse_inode()), it may have been read in earlier from swap, in
2091  * ignorance of the mapping it belongs to.  If that mapping has special
2092  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
2093  * we may need to copy to a suitable page before moving to filecache.
2094  *
2095  * In a future release, this may well be extended to respect cpuset and
2096  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
2097  * but for now it is a simple matter of zone.
2098  */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)2099 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
2100 {
2101 	return folio_zonenum(folio) > gfp_zone(gfp);
2102 }
2103 
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index,struct vm_area_struct * vma)2104 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
2105 				struct shmem_inode_info *info, pgoff_t index,
2106 				struct vm_area_struct *vma)
2107 {
2108 	struct swap_cluster_info *ci;
2109 	struct folio *new, *old = *foliop;
2110 	swp_entry_t entry = old->swap;
2111 	int nr_pages = folio_nr_pages(old);
2112 	int error = 0;
2113 
2114 	/*
2115 	 * We have arrived here because our zones are constrained, so don't
2116 	 * limit chance of success by further cpuset and node constraints.
2117 	 */
2118 	gfp &= ~GFP_CONSTRAINT_MASK;
2119 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2120 	if (nr_pages > 1) {
2121 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
2122 
2123 		gfp = limit_gfp_mask(huge_gfp, gfp);
2124 	}
2125 #endif
2126 
2127 	new = shmem_alloc_folio(gfp, folio_order(old), info, index);
2128 	if (!new)
2129 		return -ENOMEM;
2130 
2131 	folio_ref_add(new, nr_pages);
2132 	folio_copy(new, old);
2133 	flush_dcache_folio(new);
2134 
2135 	__folio_set_locked(new);
2136 	__folio_set_swapbacked(new);
2137 	folio_mark_uptodate(new);
2138 	new->swap = entry;
2139 	folio_set_swapcache(new);
2140 
2141 	ci = swap_cluster_get_and_lock_irq(old);
2142 	__swap_cache_replace_folio(ci, old, new);
2143 	mem_cgroup_replace_folio(old, new);
2144 	shmem_update_stats(new, nr_pages);
2145 	shmem_update_stats(old, -nr_pages);
2146 	swap_cluster_unlock_irq(ci);
2147 
2148 	folio_add_lru(new);
2149 	*foliop = new;
2150 
2151 	folio_clear_swapcache(old);
2152 	old->private = NULL;
2153 
2154 	folio_unlock(old);
2155 	/*
2156 	 * The old folio are removed from swap cache, drop the 'nr_pages'
2157 	 * reference, as well as one temporary reference getting from swap
2158 	 * cache.
2159 	 */
2160 	folio_put_refs(old, nr_pages + 1);
2161 	return error;
2162 }
2163 
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap,bool skip_swapcache)2164 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2165 					 struct folio *folio, swp_entry_t swap,
2166 					 bool skip_swapcache)
2167 {
2168 	struct address_space *mapping = inode->i_mapping;
2169 	swp_entry_t swapin_error;
2170 	void *old;
2171 	int nr_pages;
2172 
2173 	swapin_error = make_poisoned_swp_entry();
2174 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
2175 			     swp_to_radix_entry(swap),
2176 			     swp_to_radix_entry(swapin_error), 0);
2177 	if (old != swp_to_radix_entry(swap))
2178 		return;
2179 
2180 	nr_pages = folio_nr_pages(folio);
2181 	folio_wait_writeback(folio);
2182 	if (!skip_swapcache)
2183 		swap_cache_del_folio(folio);
2184 	/*
2185 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2186 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2187 	 * in shmem_evict_inode().
2188 	 */
2189 	shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2190 	swap_free_nr(swap, nr_pages);
2191 }
2192 
shmem_split_large_entry(struct inode * inode,pgoff_t index,swp_entry_t swap,gfp_t gfp)2193 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2194 				   swp_entry_t swap, gfp_t gfp)
2195 {
2196 	struct address_space *mapping = inode->i_mapping;
2197 	XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2198 	int split_order = 0;
2199 	int i;
2200 
2201 	/* Convert user data gfp flags to xarray node gfp flags */
2202 	gfp &= GFP_RECLAIM_MASK;
2203 
2204 	for (;;) {
2205 		void *old = NULL;
2206 		int cur_order;
2207 		pgoff_t swap_index;
2208 
2209 		xas_lock_irq(&xas);
2210 		old = xas_load(&xas);
2211 		if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2212 			xas_set_err(&xas, -EEXIST);
2213 			goto unlock;
2214 		}
2215 
2216 		cur_order = xas_get_order(&xas);
2217 		if (!cur_order)
2218 			goto unlock;
2219 
2220 		/* Try to split large swap entry in pagecache */
2221 		swap_index = round_down(index, 1 << cur_order);
2222 		split_order = xas_try_split_min_order(cur_order);
2223 
2224 		while (cur_order > 0) {
2225 			pgoff_t aligned_index =
2226 				round_down(index, 1 << cur_order);
2227 			pgoff_t swap_offset = aligned_index - swap_index;
2228 
2229 			xas_set_order(&xas, index, split_order);
2230 			xas_try_split(&xas, old, cur_order);
2231 			if (xas_error(&xas))
2232 				goto unlock;
2233 
2234 			/*
2235 			 * Re-set the swap entry after splitting, and the swap
2236 			 * offset of the original large entry must be continuous.
2237 			 */
2238 			for (i = 0; i < 1 << cur_order;
2239 			     i += (1 << split_order)) {
2240 				swp_entry_t tmp;
2241 
2242 				tmp = swp_entry(swp_type(swap),
2243 						swp_offset(swap) + swap_offset +
2244 							i);
2245 				__xa_store(&mapping->i_pages, aligned_index + i,
2246 					   swp_to_radix_entry(tmp), 0);
2247 			}
2248 			cur_order = split_order;
2249 			split_order = xas_try_split_min_order(split_order);
2250 		}
2251 
2252 unlock:
2253 		xas_unlock_irq(&xas);
2254 
2255 		if (!xas_nomem(&xas, gfp))
2256 			break;
2257 	}
2258 
2259 	if (xas_error(&xas))
2260 		return xas_error(&xas);
2261 
2262 	return 0;
2263 }
2264 
2265 /*
2266  * Swap in the folio pointed to by *foliop.
2267  * Caller has to make sure that *foliop contains a valid swapped folio.
2268  * Returns 0 and the folio in foliop if success. On failure, returns the
2269  * error code and NULL in *foliop.
2270  */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)2271 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2272 			     struct folio **foliop, enum sgp_type sgp,
2273 			     gfp_t gfp, struct vm_area_struct *vma,
2274 			     vm_fault_t *fault_type)
2275 {
2276 	struct address_space *mapping = inode->i_mapping;
2277 	struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2278 	struct shmem_inode_info *info = SHMEM_I(inode);
2279 	swp_entry_t swap;
2280 	softleaf_t index_entry;
2281 	struct swap_info_struct *si;
2282 	struct folio *folio = NULL;
2283 	bool skip_swapcache = false;
2284 	int error, nr_pages, order;
2285 	pgoff_t offset;
2286 
2287 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2288 	index_entry = radix_to_swp_entry(*foliop);
2289 	swap = index_entry;
2290 	*foliop = NULL;
2291 
2292 	if (softleaf_is_poison_marker(index_entry))
2293 		return -EIO;
2294 
2295 	si = get_swap_device(index_entry);
2296 	order = shmem_confirm_swap(mapping, index, index_entry);
2297 	if (unlikely(!si)) {
2298 		if (order < 0)
2299 			return -EEXIST;
2300 		else
2301 			return -EINVAL;
2302 	}
2303 	if (unlikely(order < 0)) {
2304 		put_swap_device(si);
2305 		return -EEXIST;
2306 	}
2307 
2308 	/* index may point to the middle of a large entry, get the sub entry */
2309 	if (order) {
2310 		offset = index - round_down(index, 1 << order);
2311 		swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2312 	}
2313 
2314 	/* Look it up and read it in.. */
2315 	folio = swap_cache_get_folio(swap);
2316 	if (!folio) {
2317 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
2318 			/* Direct swapin skipping swap cache & readahead */
2319 			folio = shmem_swap_alloc_folio(inode, vma, index,
2320 						       index_entry, order, gfp);
2321 			if (IS_ERR(folio)) {
2322 				error = PTR_ERR(folio);
2323 				folio = NULL;
2324 				goto failed;
2325 			}
2326 			skip_swapcache = true;
2327 		} else {
2328 			/* Cached swapin only supports order 0 folio */
2329 			folio = shmem_swapin_cluster(swap, gfp, info, index);
2330 			if (!folio) {
2331 				error = -ENOMEM;
2332 				goto failed;
2333 			}
2334 		}
2335 		if (fault_type) {
2336 			*fault_type |= VM_FAULT_MAJOR;
2337 			count_vm_event(PGMAJFAULT);
2338 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2339 		}
2340 	} else {
2341 		swap_update_readahead(folio, NULL, 0);
2342 	}
2343 
2344 	if (order > folio_order(folio)) {
2345 		/*
2346 		 * Swapin may get smaller folios due to various reasons:
2347 		 * It may fallback to order 0 due to memory pressure or race,
2348 		 * swap readahead may swap in order 0 folios into swapcache
2349 		 * asynchronously, while the shmem mapping can still stores
2350 		 * large swap entries. In such cases, we should split the
2351 		 * large swap entry to prevent possible data corruption.
2352 		 */
2353 		error = shmem_split_large_entry(inode, index, index_entry, gfp);
2354 		if (error)
2355 			goto failed_nolock;
2356 	}
2357 
2358 	/*
2359 	 * If the folio is large, round down swap and index by folio size.
2360 	 * No matter what race occurs, the swap layer ensures we either get
2361 	 * a valid folio that has its swap entry aligned by size, or a
2362 	 * temporarily invalid one which we'll abort very soon and retry.
2363 	 *
2364 	 * shmem_add_to_page_cache ensures the whole range contains expected
2365 	 * entries and prevents any corruption, so any race split is fine
2366 	 * too, it will succeed as long as the entries are still there.
2367 	 */
2368 	nr_pages = folio_nr_pages(folio);
2369 	if (nr_pages > 1) {
2370 		swap.val = round_down(swap.val, nr_pages);
2371 		index = round_down(index, nr_pages);
2372 	}
2373 
2374 	/*
2375 	 * We have to do this with the folio locked to prevent races.
2376 	 * The shmem_confirm_swap below only checks if the first swap
2377 	 * entry matches the folio, that's enough to ensure the folio
2378 	 * is not used outside of shmem, as shmem swap entries
2379 	 * and swap cache folios are never partially freed.
2380 	 */
2381 	folio_lock(folio);
2382 	if ((!skip_swapcache && !folio_test_swapcache(folio)) ||
2383 	    shmem_confirm_swap(mapping, index, swap) < 0 ||
2384 	    folio->swap.val != swap.val) {
2385 		error = -EEXIST;
2386 		goto unlock;
2387 	}
2388 	if (!folio_test_uptodate(folio)) {
2389 		error = -EIO;
2390 		goto failed;
2391 	}
2392 	folio_wait_writeback(folio);
2393 
2394 	/*
2395 	 * Some architectures may have to restore extra metadata to the
2396 	 * folio after reading from swap.
2397 	 */
2398 	arch_swap_restore(folio_swap(swap, folio), folio);
2399 
2400 	if (shmem_should_replace_folio(folio, gfp)) {
2401 		error = shmem_replace_folio(&folio, gfp, info, index, vma);
2402 		if (error)
2403 			goto failed;
2404 	}
2405 
2406 	error = shmem_add_to_page_cache(folio, mapping, index,
2407 					swp_to_radix_entry(swap), gfp);
2408 	if (error)
2409 		goto failed;
2410 
2411 	shmem_recalc_inode(inode, 0, -nr_pages);
2412 
2413 	if (sgp == SGP_WRITE)
2414 		folio_mark_accessed(folio);
2415 
2416 	if (skip_swapcache) {
2417 		folio->swap.val = 0;
2418 		swapcache_clear(si, swap, nr_pages);
2419 	} else {
2420 		swap_cache_del_folio(folio);
2421 	}
2422 	folio_mark_dirty(folio);
2423 	swap_free_nr(swap, nr_pages);
2424 	put_swap_device(si);
2425 
2426 	*foliop = folio;
2427 	return 0;
2428 failed:
2429 	if (shmem_confirm_swap(mapping, index, swap) < 0)
2430 		error = -EEXIST;
2431 	if (error == -EIO)
2432 		shmem_set_folio_swapin_error(inode, index, folio, swap,
2433 					     skip_swapcache);
2434 unlock:
2435 	if (folio)
2436 		folio_unlock(folio);
2437 failed_nolock:
2438 	if (skip_swapcache)
2439 		swapcache_clear(si, folio->swap, folio_nr_pages(folio));
2440 	if (folio)
2441 		folio_put(folio);
2442 	put_swap_device(si);
2443 
2444 	return error;
2445 }
2446 
2447 /*
2448  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2449  *
2450  * If we allocate a new one we do not mark it dirty. That's up to the
2451  * vm. If we swap it in we mark it dirty since we also free the swap
2452  * entry since a page cannot live in both the swap and page cache.
2453  *
2454  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2455  */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_fault * vmf,vm_fault_t * fault_type)2456 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2457 		loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2458 		gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2459 {
2460 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2461 	struct mm_struct *fault_mm;
2462 	struct folio *folio;
2463 	int error;
2464 	bool alloced;
2465 	unsigned long orders = 0;
2466 
2467 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2468 		return -EINVAL;
2469 
2470 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2471 		return -EFBIG;
2472 repeat:
2473 	if (sgp <= SGP_CACHE &&
2474 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2475 		return -EINVAL;
2476 
2477 	alloced = false;
2478 	fault_mm = vma ? vma->vm_mm : NULL;
2479 
2480 	folio = filemap_get_entry(inode->i_mapping, index);
2481 	if (folio && vma && userfaultfd_minor(vma)) {
2482 		if (!xa_is_value(folio))
2483 			folio_put(folio);
2484 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2485 		return 0;
2486 	}
2487 
2488 	if (xa_is_value(folio)) {
2489 		error = shmem_swapin_folio(inode, index, &folio,
2490 					   sgp, gfp, vma, fault_type);
2491 		if (error == -EEXIST)
2492 			goto repeat;
2493 
2494 		*foliop = folio;
2495 		return error;
2496 	}
2497 
2498 	if (folio) {
2499 		folio_lock(folio);
2500 
2501 		/* Has the folio been truncated or swapped out? */
2502 		if (unlikely(folio->mapping != inode->i_mapping)) {
2503 			folio_unlock(folio);
2504 			folio_put(folio);
2505 			goto repeat;
2506 		}
2507 		if (sgp == SGP_WRITE)
2508 			folio_mark_accessed(folio);
2509 		if (folio_test_uptodate(folio))
2510 			goto out;
2511 		/* fallocated folio */
2512 		if (sgp != SGP_READ)
2513 			goto clear;
2514 		folio_unlock(folio);
2515 		folio_put(folio);
2516 	}
2517 
2518 	/*
2519 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2520 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2521 	 */
2522 	*foliop = NULL;
2523 	if (sgp == SGP_READ)
2524 		return 0;
2525 	if (sgp == SGP_NOALLOC)
2526 		return -ENOENT;
2527 
2528 	/*
2529 	 * Fast cache lookup and swap lookup did not find it: allocate.
2530 	 */
2531 
2532 	if (vma && userfaultfd_missing(vma)) {
2533 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2534 		return 0;
2535 	}
2536 
2537 	/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2538 	orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2539 	if (orders > 0) {
2540 		gfp_t huge_gfp;
2541 
2542 		huge_gfp = vma_thp_gfp_mask(vma);
2543 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2544 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2545 				inode, index, fault_mm, orders);
2546 		if (!IS_ERR(folio)) {
2547 			if (folio_test_pmd_mappable(folio))
2548 				count_vm_event(THP_FILE_ALLOC);
2549 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2550 			goto alloced;
2551 		}
2552 		if (PTR_ERR(folio) == -EEXIST)
2553 			goto repeat;
2554 	}
2555 
2556 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2557 	if (IS_ERR(folio)) {
2558 		error = PTR_ERR(folio);
2559 		if (error == -EEXIST)
2560 			goto repeat;
2561 		folio = NULL;
2562 		goto unlock;
2563 	}
2564 
2565 alloced:
2566 	alloced = true;
2567 	if (folio_test_large(folio) &&
2568 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2569 					folio_next_index(folio)) {
2570 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2571 		struct shmem_inode_info *info = SHMEM_I(inode);
2572 		/*
2573 		 * Part of the large folio is beyond i_size: subject
2574 		 * to shrink under memory pressure.
2575 		 */
2576 		spin_lock(&sbinfo->shrinklist_lock);
2577 		/*
2578 		 * _careful to defend against unlocked access to
2579 		 * ->shrink_list in shmem_unused_huge_shrink()
2580 		 */
2581 		if (list_empty_careful(&info->shrinklist)) {
2582 			list_add_tail(&info->shrinklist,
2583 				      &sbinfo->shrinklist);
2584 			sbinfo->shrinklist_len++;
2585 		}
2586 		spin_unlock(&sbinfo->shrinklist_lock);
2587 	}
2588 
2589 	if (sgp == SGP_WRITE)
2590 		folio_set_referenced(folio);
2591 	/*
2592 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2593 	 */
2594 	if (sgp == SGP_FALLOC)
2595 		sgp = SGP_WRITE;
2596 clear:
2597 	/*
2598 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2599 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2600 	 * it now, lest undo on failure cancel our earlier guarantee.
2601 	 */
2602 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2603 		long i, n = folio_nr_pages(folio);
2604 
2605 		for (i = 0; i < n; i++)
2606 			clear_highpage(folio_page(folio, i));
2607 		flush_dcache_folio(folio);
2608 		folio_mark_uptodate(folio);
2609 	}
2610 
2611 	/* Perhaps the file has been truncated since we checked */
2612 	if (sgp <= SGP_CACHE &&
2613 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2614 		error = -EINVAL;
2615 		goto unlock;
2616 	}
2617 out:
2618 	*foliop = folio;
2619 	return 0;
2620 
2621 	/*
2622 	 * Error recovery.
2623 	 */
2624 unlock:
2625 	if (alloced)
2626 		filemap_remove_folio(folio);
2627 	shmem_recalc_inode(inode, 0, 0);
2628 	if (folio) {
2629 		folio_unlock(folio);
2630 		folio_put(folio);
2631 	}
2632 	return error;
2633 }
2634 
2635 /**
2636  * shmem_get_folio - find, and lock a shmem folio.
2637  * @inode:	inode to search
2638  * @index:	the page index.
2639  * @write_end:	end of a write, could extend inode size
2640  * @foliop:	pointer to the folio if found
2641  * @sgp:	SGP_* flags to control behavior
2642  *
2643  * Looks up the page cache entry at @inode & @index.  If a folio is
2644  * present, it is returned locked with an increased refcount.
2645  *
2646  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2647  * before unlocking the folio to ensure that the folio is not reclaimed.
2648  * There is no need to reserve space before calling folio_mark_dirty().
2649  *
2650  * When no folio is found, the behavior depends on @sgp:
2651  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2652  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2653  *  - for all other flags a new folio is allocated, inserted into the
2654  *    page cache and returned locked in @foliop.
2655  *
2656  * Context: May sleep.
2657  * Return: 0 if successful, else a negative error code.
2658  */
shmem_get_folio(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp)2659 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2660 		    struct folio **foliop, enum sgp_type sgp)
2661 {
2662 	return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2663 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2664 }
2665 EXPORT_SYMBOL_GPL(shmem_get_folio);
2666 
2667 /*
2668  * This is like autoremove_wake_function, but it removes the wait queue
2669  * entry unconditionally - even if something else had already woken the
2670  * target.
2671  */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)2672 static int synchronous_wake_function(wait_queue_entry_t *wait,
2673 			unsigned int mode, int sync, void *key)
2674 {
2675 	int ret = default_wake_function(wait, mode, sync, key);
2676 	list_del_init(&wait->entry);
2677 	return ret;
2678 }
2679 
2680 /*
2681  * Trinity finds that probing a hole which tmpfs is punching can
2682  * prevent the hole-punch from ever completing: which in turn
2683  * locks writers out with its hold on i_rwsem.  So refrain from
2684  * faulting pages into the hole while it's being punched.  Although
2685  * shmem_undo_range() does remove the additions, it may be unable to
2686  * keep up, as each new page needs its own unmap_mapping_range() call,
2687  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2688  *
2689  * It does not matter if we sometimes reach this check just before the
2690  * hole-punch begins, so that one fault then races with the punch:
2691  * we just need to make racing faults a rare case.
2692  *
2693  * The implementation below would be much simpler if we just used a
2694  * standard mutex or completion: but we cannot take i_rwsem in fault,
2695  * and bloating every shmem inode for this unlikely case would be sad.
2696  */
shmem_falloc_wait(struct vm_fault * vmf,struct inode * inode)2697 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2698 {
2699 	struct shmem_falloc *shmem_falloc;
2700 	struct file *fpin = NULL;
2701 	vm_fault_t ret = 0;
2702 
2703 	spin_lock(&inode->i_lock);
2704 	shmem_falloc = inode->i_private;
2705 	if (shmem_falloc &&
2706 	    shmem_falloc->waitq &&
2707 	    vmf->pgoff >= shmem_falloc->start &&
2708 	    vmf->pgoff < shmem_falloc->next) {
2709 		wait_queue_head_t *shmem_falloc_waitq;
2710 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2711 
2712 		ret = VM_FAULT_NOPAGE;
2713 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2714 		shmem_falloc_waitq = shmem_falloc->waitq;
2715 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2716 				TASK_UNINTERRUPTIBLE);
2717 		spin_unlock(&inode->i_lock);
2718 		schedule();
2719 
2720 		/*
2721 		 * shmem_falloc_waitq points into the shmem_fallocate()
2722 		 * stack of the hole-punching task: shmem_falloc_waitq
2723 		 * is usually invalid by the time we reach here, but
2724 		 * finish_wait() does not dereference it in that case;
2725 		 * though i_lock needed lest racing with wake_up_all().
2726 		 */
2727 		spin_lock(&inode->i_lock);
2728 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2729 	}
2730 	spin_unlock(&inode->i_lock);
2731 	if (fpin) {
2732 		fput(fpin);
2733 		ret = VM_FAULT_RETRY;
2734 	}
2735 	return ret;
2736 }
2737 
shmem_fault(struct vm_fault * vmf)2738 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2739 {
2740 	struct inode *inode = file_inode(vmf->vma->vm_file);
2741 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2742 	struct folio *folio = NULL;
2743 	vm_fault_t ret = 0;
2744 	int err;
2745 
2746 	/*
2747 	 * Trinity finds that probing a hole which tmpfs is punching can
2748 	 * prevent the hole-punch from ever completing: noted in i_private.
2749 	 */
2750 	if (unlikely(inode->i_private)) {
2751 		ret = shmem_falloc_wait(vmf, inode);
2752 		if (ret)
2753 			return ret;
2754 	}
2755 
2756 	WARN_ON_ONCE(vmf->page != NULL);
2757 	err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2758 				  gfp, vmf, &ret);
2759 	if (err)
2760 		return vmf_error(err);
2761 	if (folio) {
2762 		vmf->page = folio_file_page(folio, vmf->pgoff);
2763 		ret |= VM_FAULT_LOCKED;
2764 	}
2765 	return ret;
2766 }
2767 
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2768 unsigned long shmem_get_unmapped_area(struct file *file,
2769 				      unsigned long uaddr, unsigned long len,
2770 				      unsigned long pgoff, unsigned long flags)
2771 {
2772 	unsigned long addr;
2773 	unsigned long offset;
2774 	unsigned long inflated_len;
2775 	unsigned long inflated_addr;
2776 	unsigned long inflated_offset;
2777 	unsigned long hpage_size;
2778 
2779 	if (len > TASK_SIZE)
2780 		return -ENOMEM;
2781 
2782 	addr = mm_get_unmapped_area(file, uaddr, len, pgoff, flags);
2783 
2784 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2785 		return addr;
2786 	if (IS_ERR_VALUE(addr))
2787 		return addr;
2788 	if (addr & ~PAGE_MASK)
2789 		return addr;
2790 	if (addr > TASK_SIZE - len)
2791 		return addr;
2792 
2793 	if (shmem_huge == SHMEM_HUGE_DENY)
2794 		return addr;
2795 	if (flags & MAP_FIXED)
2796 		return addr;
2797 	/*
2798 	 * Our priority is to support MAP_SHARED mapped hugely;
2799 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2800 	 * But if caller specified an address hint and we allocated area there
2801 	 * successfully, respect that as before.
2802 	 */
2803 	if (uaddr == addr)
2804 		return addr;
2805 
2806 	hpage_size = HPAGE_PMD_SIZE;
2807 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2808 		struct super_block *sb;
2809 		unsigned long __maybe_unused hpage_orders;
2810 		int order = 0;
2811 
2812 		if (file) {
2813 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2814 			sb = file_inode(file)->i_sb;
2815 		} else {
2816 			/*
2817 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2818 			 * for "/dev/zero", to create a shared anonymous object.
2819 			 */
2820 			if (IS_ERR(shm_mnt))
2821 				return addr;
2822 			sb = shm_mnt->mnt_sb;
2823 
2824 			/*
2825 			 * Find the highest mTHP order used for anonymous shmem to
2826 			 * provide a suitable alignment address.
2827 			 */
2828 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2829 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2830 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2831 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2832 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2833 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2834 
2835 			if (hpage_orders > 0) {
2836 				order = highest_order(hpage_orders);
2837 				hpage_size = PAGE_SIZE << order;
2838 			}
2839 #endif
2840 		}
2841 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2842 			return addr;
2843 	}
2844 
2845 	if (len < hpage_size)
2846 		return addr;
2847 
2848 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2849 	if (offset && offset + len < 2 * hpage_size)
2850 		return addr;
2851 	if ((addr & (hpage_size - 1)) == offset)
2852 		return addr;
2853 
2854 	inflated_len = len + hpage_size - PAGE_SIZE;
2855 	if (inflated_len > TASK_SIZE)
2856 		return addr;
2857 	if (inflated_len < len)
2858 		return addr;
2859 
2860 	inflated_addr = mm_get_unmapped_area(NULL, uaddr, inflated_len, 0, flags);
2861 	if (IS_ERR_VALUE(inflated_addr))
2862 		return addr;
2863 	if (inflated_addr & ~PAGE_MASK)
2864 		return addr;
2865 
2866 	inflated_offset = inflated_addr & (hpage_size - 1);
2867 	inflated_addr += offset - inflated_offset;
2868 	if (inflated_offset > offset)
2869 		inflated_addr += hpage_size;
2870 
2871 	if (inflated_addr > TASK_SIZE - len)
2872 		return addr;
2873 	return inflated_addr;
2874 }
2875 
2876 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2877 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2878 {
2879 	struct inode *inode = file_inode(vma->vm_file);
2880 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2881 }
2882 
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)2883 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2884 					  unsigned long addr, pgoff_t *ilx)
2885 {
2886 	struct inode *inode = file_inode(vma->vm_file);
2887 	pgoff_t index;
2888 
2889 	/*
2890 	 * Bias interleave by inode number to distribute better across nodes;
2891 	 * but this interface is independent of which page order is used, so
2892 	 * supplies only that bias, letting caller apply the offset (adjusted
2893 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2894 	 */
2895 	*ilx = inode->i_ino;
2896 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2897 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2898 }
2899 
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2900 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2901 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2902 {
2903 	struct mempolicy *mpol;
2904 
2905 	/* Bias interleave by inode number to distribute better across nodes */
2906 	*ilx = info->vfs_inode.i_ino + (index >> order);
2907 
2908 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2909 	return mpol ? mpol : get_task_policy(current);
2910 }
2911 #else
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2912 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2913 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2914 {
2915 	*ilx = 0;
2916 	return NULL;
2917 }
2918 #endif /* CONFIG_NUMA */
2919 
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2920 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2921 {
2922 	struct inode *inode = file_inode(file);
2923 	struct shmem_inode_info *info = SHMEM_I(inode);
2924 	int retval = -ENOMEM;
2925 
2926 	/*
2927 	 * What serializes the accesses to info->flags?
2928 	 * ipc_lock_object() when called from shmctl_do_lock(),
2929 	 * no serialization needed when called from shm_destroy().
2930 	 */
2931 	if (lock && !(info->flags & SHMEM_F_LOCKED)) {
2932 		if (!user_shm_lock(inode->i_size, ucounts))
2933 			goto out_nomem;
2934 		info->flags |= SHMEM_F_LOCKED;
2935 		mapping_set_unevictable(file->f_mapping);
2936 	}
2937 	if (!lock && (info->flags & SHMEM_F_LOCKED) && ucounts) {
2938 		user_shm_unlock(inode->i_size, ucounts);
2939 		info->flags &= ~SHMEM_F_LOCKED;
2940 		mapping_clear_unevictable(file->f_mapping);
2941 	}
2942 	retval = 0;
2943 
2944 out_nomem:
2945 	return retval;
2946 }
2947 
shmem_mmap_prepare(struct vm_area_desc * desc)2948 static int shmem_mmap_prepare(struct vm_area_desc *desc)
2949 {
2950 	struct file *file = desc->file;
2951 	struct inode *inode = file_inode(file);
2952 
2953 	file_accessed(file);
2954 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2955 	if (inode->i_nlink)
2956 		desc->vm_ops = &shmem_vm_ops;
2957 	else
2958 		desc->vm_ops = &shmem_anon_vm_ops;
2959 	return 0;
2960 }
2961 
shmem_file_open(struct inode * inode,struct file * file)2962 static int shmem_file_open(struct inode *inode, struct file *file)
2963 {
2964 	file->f_mode |= FMODE_CAN_ODIRECT;
2965 	return generic_file_open(inode, file);
2966 }
2967 
2968 #ifdef CONFIG_TMPFS_XATTR
2969 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2970 
2971 #if IS_ENABLED(CONFIG_UNICODE)
2972 /*
2973  * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2974  *
2975  * The casefold file attribute needs some special checks. I can just be added to
2976  * an empty dir, and can't be removed from a non-empty dir.
2977  */
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)2978 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2979 				      struct dentry *dentry, unsigned int *i_flags)
2980 {
2981 	unsigned int old = inode->i_flags;
2982 	struct super_block *sb = inode->i_sb;
2983 
2984 	if (fsflags & FS_CASEFOLD_FL) {
2985 		if (!(old & S_CASEFOLD)) {
2986 			if (!sb->s_encoding)
2987 				return -EOPNOTSUPP;
2988 
2989 			if (!S_ISDIR(inode->i_mode))
2990 				return -ENOTDIR;
2991 
2992 			if (dentry && !simple_empty(dentry))
2993 				return -ENOTEMPTY;
2994 		}
2995 
2996 		*i_flags = *i_flags | S_CASEFOLD;
2997 	} else if (old & S_CASEFOLD) {
2998 		if (dentry && !simple_empty(dentry))
2999 			return -ENOTEMPTY;
3000 	}
3001 
3002 	return 0;
3003 }
3004 #else
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)3005 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
3006 				      struct dentry *dentry, unsigned int *i_flags)
3007 {
3008 	if (fsflags & FS_CASEFOLD_FL)
3009 		return -EOPNOTSUPP;
3010 
3011 	return 0;
3012 }
3013 #endif
3014 
3015 /*
3016  * chattr's fsflags are unrelated to extended attributes,
3017  * but tmpfs has chosen to enable them under the same config option.
3018  */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3019 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3020 {
3021 	unsigned int i_flags = 0;
3022 	int ret;
3023 
3024 	ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
3025 	if (ret)
3026 		return ret;
3027 
3028 	if (fsflags & FS_NOATIME_FL)
3029 		i_flags |= S_NOATIME;
3030 	if (fsflags & FS_APPEND_FL)
3031 		i_flags |= S_APPEND;
3032 	if (fsflags & FS_IMMUTABLE_FL)
3033 		i_flags |= S_IMMUTABLE;
3034 	/*
3035 	 * But FS_NODUMP_FL does not require any action in i_flags.
3036 	 */
3037 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
3038 
3039 	return 0;
3040 }
3041 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3042 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3043 {
3044 }
3045 #define shmem_initxattrs NULL
3046 #endif
3047 
shmem_get_offset_ctx(struct inode * inode)3048 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
3049 {
3050 	return &SHMEM_I(inode)->dir_offsets;
3051 }
3052 
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3053 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
3054 					     struct super_block *sb,
3055 					     struct inode *dir, umode_t mode,
3056 					     dev_t dev, unsigned long flags)
3057 {
3058 	struct inode *inode;
3059 	struct shmem_inode_info *info;
3060 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3061 	ino_t ino;
3062 	int err;
3063 
3064 	err = shmem_reserve_inode(sb, &ino);
3065 	if (err)
3066 		return ERR_PTR(err);
3067 
3068 	inode = new_inode(sb);
3069 	if (!inode) {
3070 		shmem_free_inode(sb, 0);
3071 		return ERR_PTR(-ENOSPC);
3072 	}
3073 
3074 	inode->i_ino = ino;
3075 	inode_init_owner(idmap, inode, dir, mode);
3076 	inode->i_blocks = 0;
3077 	simple_inode_init_ts(inode);
3078 	inode->i_generation = get_random_u32();
3079 	info = SHMEM_I(inode);
3080 	memset(info, 0, (char *)inode - (char *)info);
3081 	spin_lock_init(&info->lock);
3082 	atomic_set(&info->stop_eviction, 0);
3083 	info->seals = F_SEAL_SEAL;
3084 	info->flags = (flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0;
3085 	info->i_crtime = inode_get_mtime(inode);
3086 	info->fsflags = (dir == NULL) ? 0 :
3087 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
3088 	if (info->fsflags)
3089 		shmem_set_inode_flags(inode, info->fsflags, NULL);
3090 	INIT_LIST_HEAD(&info->shrinklist);
3091 	INIT_LIST_HEAD(&info->swaplist);
3092 	simple_xattrs_init(&info->xattrs);
3093 	cache_no_acl(inode);
3094 	if (sbinfo->noswap)
3095 		mapping_set_unevictable(inode->i_mapping);
3096 
3097 	/* Don't consider 'deny' for emergencies and 'force' for testing */
3098 	if (sbinfo->huge)
3099 		mapping_set_large_folios(inode->i_mapping);
3100 
3101 	switch (mode & S_IFMT) {
3102 	default:
3103 		inode->i_op = &shmem_special_inode_operations;
3104 		init_special_inode(inode, mode, dev);
3105 		break;
3106 	case S_IFREG:
3107 		inode->i_mapping->a_ops = &shmem_aops;
3108 		inode->i_op = &shmem_inode_operations;
3109 		inode->i_fop = &shmem_file_operations;
3110 		mpol_shared_policy_init(&info->policy,
3111 					 shmem_get_sbmpol(sbinfo));
3112 		break;
3113 	case S_IFDIR:
3114 		inc_nlink(inode);
3115 		/* Some things misbehave if size == 0 on a directory */
3116 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
3117 		inode->i_op = &shmem_dir_inode_operations;
3118 		inode->i_fop = &simple_offset_dir_operations;
3119 		simple_offset_init(shmem_get_offset_ctx(inode));
3120 		break;
3121 	case S_IFLNK:
3122 		/*
3123 		 * Must not load anything in the rbtree,
3124 		 * mpol_free_shared_policy will not be called.
3125 		 */
3126 		mpol_shared_policy_init(&info->policy, NULL);
3127 		break;
3128 	}
3129 
3130 	lockdep_annotate_inode_mutex_key(inode);
3131 	return inode;
3132 }
3133 
3134 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3135 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3136 				     struct super_block *sb, struct inode *dir,
3137 				     umode_t mode, dev_t dev, unsigned long flags)
3138 {
3139 	int err;
3140 	struct inode *inode;
3141 
3142 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3143 	if (IS_ERR(inode))
3144 		return inode;
3145 
3146 	err = dquot_initialize(inode);
3147 	if (err)
3148 		goto errout;
3149 
3150 	err = dquot_alloc_inode(inode);
3151 	if (err) {
3152 		dquot_drop(inode);
3153 		goto errout;
3154 	}
3155 	return inode;
3156 
3157 errout:
3158 	inode->i_flags |= S_NOQUOTA;
3159 	iput(inode);
3160 	return ERR_PTR(err);
3161 }
3162 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3163 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3164 				     struct super_block *sb, struct inode *dir,
3165 				     umode_t mode, dev_t dev, unsigned long flags)
3166 {
3167 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3168 }
3169 #endif /* CONFIG_TMPFS_QUOTA */
3170 
3171 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)3172 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
3173 			   struct vm_area_struct *dst_vma,
3174 			   unsigned long dst_addr,
3175 			   unsigned long src_addr,
3176 			   uffd_flags_t flags,
3177 			   struct folio **foliop)
3178 {
3179 	struct inode *inode = file_inode(dst_vma->vm_file);
3180 	struct shmem_inode_info *info = SHMEM_I(inode);
3181 	struct address_space *mapping = inode->i_mapping;
3182 	gfp_t gfp = mapping_gfp_mask(mapping);
3183 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
3184 	void *page_kaddr;
3185 	struct folio *folio;
3186 	int ret;
3187 	pgoff_t max_off;
3188 
3189 	if (shmem_inode_acct_blocks(inode, 1)) {
3190 		/*
3191 		 * We may have got a page, returned -ENOENT triggering a retry,
3192 		 * and now we find ourselves with -ENOMEM. Release the page, to
3193 		 * avoid a BUG_ON in our caller.
3194 		 */
3195 		if (unlikely(*foliop)) {
3196 			folio_put(*foliop);
3197 			*foliop = NULL;
3198 		}
3199 		return -ENOMEM;
3200 	}
3201 
3202 	if (!*foliop) {
3203 		ret = -ENOMEM;
3204 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3205 		if (!folio)
3206 			goto out_unacct_blocks;
3207 
3208 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3209 			page_kaddr = kmap_local_folio(folio, 0);
3210 			/*
3211 			 * The read mmap_lock is held here.  Despite the
3212 			 * mmap_lock being read recursive a deadlock is still
3213 			 * possible if a writer has taken a lock.  For example:
3214 			 *
3215 			 * process A thread 1 takes read lock on own mmap_lock
3216 			 * process A thread 2 calls mmap, blocks taking write lock
3217 			 * process B thread 1 takes page fault, read lock on own mmap lock
3218 			 * process B thread 2 calls mmap, blocks taking write lock
3219 			 * process A thread 1 blocks taking read lock on process B
3220 			 * process B thread 1 blocks taking read lock on process A
3221 			 *
3222 			 * Disable page faults to prevent potential deadlock
3223 			 * and retry the copy outside the mmap_lock.
3224 			 */
3225 			pagefault_disable();
3226 			ret = copy_from_user(page_kaddr,
3227 					     (const void __user *)src_addr,
3228 					     PAGE_SIZE);
3229 			pagefault_enable();
3230 			kunmap_local(page_kaddr);
3231 
3232 			/* fallback to copy_from_user outside mmap_lock */
3233 			if (unlikely(ret)) {
3234 				*foliop = folio;
3235 				ret = -ENOENT;
3236 				/* don't free the page */
3237 				goto out_unacct_blocks;
3238 			}
3239 
3240 			flush_dcache_folio(folio);
3241 		} else {		/* ZEROPAGE */
3242 			clear_user_highpage(&folio->page, dst_addr);
3243 		}
3244 	} else {
3245 		folio = *foliop;
3246 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3247 		*foliop = NULL;
3248 	}
3249 
3250 	VM_BUG_ON(folio_test_locked(folio));
3251 	VM_BUG_ON(folio_test_swapbacked(folio));
3252 	__folio_set_locked(folio);
3253 	__folio_set_swapbacked(folio);
3254 	__folio_mark_uptodate(folio);
3255 
3256 	ret = -EFAULT;
3257 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3258 	if (unlikely(pgoff >= max_off))
3259 		goto out_release;
3260 
3261 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3262 	if (ret)
3263 		goto out_release;
3264 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3265 	if (ret)
3266 		goto out_release;
3267 
3268 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3269 				       &folio->page, true, flags);
3270 	if (ret)
3271 		goto out_delete_from_cache;
3272 
3273 	shmem_recalc_inode(inode, 1, 0);
3274 	folio_unlock(folio);
3275 	return 0;
3276 out_delete_from_cache:
3277 	filemap_remove_folio(folio);
3278 out_release:
3279 	folio_unlock(folio);
3280 	folio_put(folio);
3281 out_unacct_blocks:
3282 	shmem_inode_unacct_blocks(inode, 1);
3283 	return ret;
3284 }
3285 #endif /* CONFIG_USERFAULTFD */
3286 
3287 #ifdef CONFIG_TMPFS
3288 static const struct inode_operations shmem_symlink_inode_operations;
3289 static const struct inode_operations shmem_short_symlink_operations;
3290 
3291 static int
shmem_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3292 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping,
3293 		  loff_t pos, unsigned len,
3294 		  struct folio **foliop, void **fsdata)
3295 {
3296 	struct inode *inode = mapping->host;
3297 	struct shmem_inode_info *info = SHMEM_I(inode);
3298 	pgoff_t index = pos >> PAGE_SHIFT;
3299 	struct folio *folio;
3300 	int ret = 0;
3301 
3302 	/* i_rwsem is held by caller */
3303 	if (unlikely(info->seals & (F_SEAL_GROW |
3304 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3305 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3306 			return -EPERM;
3307 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3308 			return -EPERM;
3309 	}
3310 
3311 	if (unlikely((info->flags & SHMEM_F_MAPPING_FROZEN) &&
3312 		     pos + len > inode->i_size))
3313 		return -EPERM;
3314 
3315 	ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3316 	if (ret)
3317 		return ret;
3318 
3319 	if (folio_contain_hwpoisoned_page(folio)) {
3320 		folio_unlock(folio);
3321 		folio_put(folio);
3322 		return -EIO;
3323 	}
3324 
3325 	*foliop = folio;
3326 	return 0;
3327 }
3328 
3329 static int
shmem_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3330 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping,
3331 		loff_t pos, unsigned len, unsigned copied,
3332 		struct folio *folio, void *fsdata)
3333 {
3334 	struct inode *inode = mapping->host;
3335 
3336 	if (pos + copied > inode->i_size)
3337 		i_size_write(inode, pos + copied);
3338 
3339 	if (!folio_test_uptodate(folio)) {
3340 		if (copied < folio_size(folio)) {
3341 			size_t from = offset_in_folio(folio, pos);
3342 			folio_zero_segments(folio, 0, from,
3343 					from + copied, folio_size(folio));
3344 		}
3345 		folio_mark_uptodate(folio);
3346 	}
3347 	folio_mark_dirty(folio);
3348 	folio_unlock(folio);
3349 	folio_put(folio);
3350 
3351 	return copied;
3352 }
3353 
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3354 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3355 {
3356 	struct file *file = iocb->ki_filp;
3357 	struct inode *inode = file_inode(file);
3358 	struct address_space *mapping = inode->i_mapping;
3359 	pgoff_t index;
3360 	unsigned long offset;
3361 	int error = 0;
3362 	ssize_t retval = 0;
3363 
3364 	for (;;) {
3365 		struct folio *folio = NULL;
3366 		struct page *page = NULL;
3367 		unsigned long nr, ret;
3368 		loff_t end_offset, i_size = i_size_read(inode);
3369 		bool fallback_page_copy = false;
3370 		size_t fsize;
3371 
3372 		if (unlikely(iocb->ki_pos >= i_size))
3373 			break;
3374 
3375 		index = iocb->ki_pos >> PAGE_SHIFT;
3376 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3377 		if (error) {
3378 			if (error == -EINVAL)
3379 				error = 0;
3380 			break;
3381 		}
3382 		if (folio) {
3383 			folio_unlock(folio);
3384 
3385 			page = folio_file_page(folio, index);
3386 			if (PageHWPoison(page)) {
3387 				folio_put(folio);
3388 				error = -EIO;
3389 				break;
3390 			}
3391 
3392 			if (folio_test_large(folio) &&
3393 			    folio_test_has_hwpoisoned(folio))
3394 				fallback_page_copy = true;
3395 		}
3396 
3397 		/*
3398 		 * We must evaluate after, since reads (unlike writes)
3399 		 * are called without i_rwsem protection against truncate
3400 		 */
3401 		i_size = i_size_read(inode);
3402 		if (unlikely(iocb->ki_pos >= i_size)) {
3403 			if (folio)
3404 				folio_put(folio);
3405 			break;
3406 		}
3407 		end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3408 		if (folio && likely(!fallback_page_copy))
3409 			fsize = folio_size(folio);
3410 		else
3411 			fsize = PAGE_SIZE;
3412 		offset = iocb->ki_pos & (fsize - 1);
3413 		nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3414 
3415 		if (folio) {
3416 			/*
3417 			 * If users can be writing to this page using arbitrary
3418 			 * virtual addresses, take care about potential aliasing
3419 			 * before reading the page on the kernel side.
3420 			 */
3421 			if (mapping_writably_mapped(mapping)) {
3422 				if (likely(!fallback_page_copy))
3423 					flush_dcache_folio(folio);
3424 				else
3425 					flush_dcache_page(page);
3426 			}
3427 
3428 			/*
3429 			 * Mark the folio accessed if we read the beginning.
3430 			 */
3431 			if (!offset)
3432 				folio_mark_accessed(folio);
3433 			/*
3434 			 * Ok, we have the page, and it's up-to-date, so
3435 			 * now we can copy it to user space...
3436 			 */
3437 			if (likely(!fallback_page_copy))
3438 				ret = copy_folio_to_iter(folio, offset, nr, to);
3439 			else
3440 				ret = copy_page_to_iter(page, offset, nr, to);
3441 			folio_put(folio);
3442 		} else if (user_backed_iter(to)) {
3443 			/*
3444 			 * Copy to user tends to be so well optimized, but
3445 			 * clear_user() not so much, that it is noticeably
3446 			 * faster to copy the zero page instead of clearing.
3447 			 */
3448 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3449 		} else {
3450 			/*
3451 			 * But submitting the same page twice in a row to
3452 			 * splice() - or others? - can result in confusion:
3453 			 * so don't attempt that optimization on pipes etc.
3454 			 */
3455 			ret = iov_iter_zero(nr, to);
3456 		}
3457 
3458 		retval += ret;
3459 		iocb->ki_pos += ret;
3460 
3461 		if (!iov_iter_count(to))
3462 			break;
3463 		if (ret < nr) {
3464 			error = -EFAULT;
3465 			break;
3466 		}
3467 		cond_resched();
3468 	}
3469 
3470 	file_accessed(file);
3471 	return retval ? retval : error;
3472 }
3473 
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3474 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3475 {
3476 	struct file *file = iocb->ki_filp;
3477 	struct inode *inode = file->f_mapping->host;
3478 	ssize_t ret;
3479 
3480 	inode_lock(inode);
3481 	ret = generic_write_checks(iocb, from);
3482 	if (ret <= 0)
3483 		goto unlock;
3484 	ret = file_remove_privs(file);
3485 	if (ret)
3486 		goto unlock;
3487 	ret = file_update_time(file);
3488 	if (ret)
3489 		goto unlock;
3490 	ret = generic_perform_write(iocb, from);
3491 unlock:
3492 	inode_unlock(inode);
3493 	return ret;
3494 }
3495 
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3496 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3497 			      struct pipe_buffer *buf)
3498 {
3499 	return true;
3500 }
3501 
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3502 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3503 				  struct pipe_buffer *buf)
3504 {
3505 }
3506 
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3507 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3508 				    struct pipe_buffer *buf)
3509 {
3510 	return false;
3511 }
3512 
3513 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3514 	.release	= zero_pipe_buf_release,
3515 	.try_steal	= zero_pipe_buf_try_steal,
3516 	.get		= zero_pipe_buf_get,
3517 };
3518 
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)3519 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3520 					loff_t fpos, size_t size)
3521 {
3522 	size_t offset = fpos & ~PAGE_MASK;
3523 
3524 	size = min_t(size_t, size, PAGE_SIZE - offset);
3525 
3526 	if (!pipe_is_full(pipe)) {
3527 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3528 
3529 		*buf = (struct pipe_buffer) {
3530 			.ops	= &zero_pipe_buf_ops,
3531 			.page	= ZERO_PAGE(0),
3532 			.offset	= offset,
3533 			.len	= size,
3534 		};
3535 		pipe->head++;
3536 	}
3537 
3538 	return size;
3539 }
3540 
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3541 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3542 				      struct pipe_inode_info *pipe,
3543 				      size_t len, unsigned int flags)
3544 {
3545 	struct inode *inode = file_inode(in);
3546 	struct address_space *mapping = inode->i_mapping;
3547 	struct folio *folio = NULL;
3548 	size_t total_spliced = 0, used, npages, n, part;
3549 	loff_t isize;
3550 	int error = 0;
3551 
3552 	/* Work out how much data we can actually add into the pipe */
3553 	used = pipe_buf_usage(pipe);
3554 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3555 	len = min_t(size_t, len, npages * PAGE_SIZE);
3556 
3557 	do {
3558 		bool fallback_page_splice = false;
3559 		struct page *page = NULL;
3560 		pgoff_t index;
3561 		size_t size;
3562 
3563 		if (*ppos >= i_size_read(inode))
3564 			break;
3565 
3566 		index = *ppos >> PAGE_SHIFT;
3567 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3568 		if (error) {
3569 			if (error == -EINVAL)
3570 				error = 0;
3571 			break;
3572 		}
3573 		if (folio) {
3574 			folio_unlock(folio);
3575 
3576 			page = folio_file_page(folio, index);
3577 			if (PageHWPoison(page)) {
3578 				error = -EIO;
3579 				break;
3580 			}
3581 
3582 			if (folio_test_large(folio) &&
3583 			    folio_test_has_hwpoisoned(folio))
3584 				fallback_page_splice = true;
3585 		}
3586 
3587 		/*
3588 		 * i_size must be checked after we know the pages are Uptodate.
3589 		 *
3590 		 * Checking i_size after the check allows us to calculate
3591 		 * the correct value for "nr", which means the zero-filled
3592 		 * part of the page is not copied back to userspace (unless
3593 		 * another truncate extends the file - this is desired though).
3594 		 */
3595 		isize = i_size_read(inode);
3596 		if (unlikely(*ppos >= isize))
3597 			break;
3598 		/*
3599 		 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3600 		 * pages.
3601 		 */
3602 		size = len;
3603 		if (unlikely(fallback_page_splice)) {
3604 			size_t offset = *ppos & ~PAGE_MASK;
3605 
3606 			size = umin(size, PAGE_SIZE - offset);
3607 		}
3608 		part = min_t(loff_t, isize - *ppos, size);
3609 
3610 		if (folio) {
3611 			/*
3612 			 * If users can be writing to this page using arbitrary
3613 			 * virtual addresses, take care about potential aliasing
3614 			 * before reading the page on the kernel side.
3615 			 */
3616 			if (mapping_writably_mapped(mapping)) {
3617 				if (likely(!fallback_page_splice))
3618 					flush_dcache_folio(folio);
3619 				else
3620 					flush_dcache_page(page);
3621 			}
3622 			folio_mark_accessed(folio);
3623 			/*
3624 			 * Ok, we have the page, and it's up-to-date, so we can
3625 			 * now splice it into the pipe.
3626 			 */
3627 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3628 			folio_put(folio);
3629 			folio = NULL;
3630 		} else {
3631 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3632 		}
3633 
3634 		if (!n)
3635 			break;
3636 		len -= n;
3637 		total_spliced += n;
3638 		*ppos += n;
3639 		in->f_ra.prev_pos = *ppos;
3640 		if (pipe_is_full(pipe))
3641 			break;
3642 
3643 		cond_resched();
3644 	} while (len);
3645 
3646 	if (folio)
3647 		folio_put(folio);
3648 
3649 	file_accessed(in);
3650 	return total_spliced ? total_spliced : error;
3651 }
3652 
shmem_file_llseek(struct file * file,loff_t offset,int whence)3653 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3654 {
3655 	struct address_space *mapping = file->f_mapping;
3656 	struct inode *inode = mapping->host;
3657 
3658 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3659 		return generic_file_llseek_size(file, offset, whence,
3660 					MAX_LFS_FILESIZE, i_size_read(inode));
3661 	if (offset < 0)
3662 		return -ENXIO;
3663 
3664 	inode_lock(inode);
3665 	/* We're holding i_rwsem so we can access i_size directly */
3666 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3667 	if (offset >= 0)
3668 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3669 	inode_unlock(inode);
3670 	return offset;
3671 }
3672 
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3673 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3674 							 loff_t len)
3675 {
3676 	struct inode *inode = file_inode(file);
3677 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3678 	struct shmem_inode_info *info = SHMEM_I(inode);
3679 	struct shmem_falloc shmem_falloc;
3680 	pgoff_t start, index, end, undo_fallocend;
3681 	int error;
3682 
3683 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3684 		return -EOPNOTSUPP;
3685 
3686 	inode_lock(inode);
3687 
3688 	if (info->flags & SHMEM_F_MAPPING_FROZEN) {
3689 		error = -EPERM;
3690 		goto out;
3691 	}
3692 
3693 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3694 		struct address_space *mapping = file->f_mapping;
3695 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3696 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3697 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3698 
3699 		/* protected by i_rwsem */
3700 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3701 			error = -EPERM;
3702 			goto out;
3703 		}
3704 
3705 		shmem_falloc.waitq = &shmem_falloc_waitq;
3706 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3707 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3708 		spin_lock(&inode->i_lock);
3709 		inode->i_private = &shmem_falloc;
3710 		spin_unlock(&inode->i_lock);
3711 
3712 		if ((u64)unmap_end > (u64)unmap_start)
3713 			unmap_mapping_range(mapping, unmap_start,
3714 					    1 + unmap_end - unmap_start, 0);
3715 		shmem_truncate_range(inode, offset, offset + len - 1);
3716 		/* No need to unmap again: hole-punching leaves COWed pages */
3717 
3718 		spin_lock(&inode->i_lock);
3719 		inode->i_private = NULL;
3720 		wake_up_all(&shmem_falloc_waitq);
3721 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3722 		spin_unlock(&inode->i_lock);
3723 		error = 0;
3724 		goto out;
3725 	}
3726 
3727 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3728 	error = inode_newsize_ok(inode, offset + len);
3729 	if (error)
3730 		goto out;
3731 
3732 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3733 		error = -EPERM;
3734 		goto out;
3735 	}
3736 
3737 	start = offset >> PAGE_SHIFT;
3738 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3739 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3740 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3741 		error = -ENOSPC;
3742 		goto out;
3743 	}
3744 
3745 	shmem_falloc.waitq = NULL;
3746 	shmem_falloc.start = start;
3747 	shmem_falloc.next  = start;
3748 	shmem_falloc.nr_falloced = 0;
3749 	shmem_falloc.nr_unswapped = 0;
3750 	spin_lock(&inode->i_lock);
3751 	inode->i_private = &shmem_falloc;
3752 	spin_unlock(&inode->i_lock);
3753 
3754 	/*
3755 	 * info->fallocend is only relevant when huge pages might be
3756 	 * involved: to prevent split_huge_page() freeing fallocated
3757 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3758 	 */
3759 	undo_fallocend = info->fallocend;
3760 	if (info->fallocend < end)
3761 		info->fallocend = end;
3762 
3763 	for (index = start; index < end; ) {
3764 		struct folio *folio;
3765 
3766 		/*
3767 		 * Check for fatal signal so that we abort early in OOM
3768 		 * situations. We don't want to abort in case of non-fatal
3769 		 * signals as large fallocate can take noticeable time and
3770 		 * e.g. periodic timers may result in fallocate constantly
3771 		 * restarting.
3772 		 */
3773 		if (fatal_signal_pending(current))
3774 			error = -EINTR;
3775 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3776 			error = -ENOMEM;
3777 		else
3778 			error = shmem_get_folio(inode, index, offset + len,
3779 						&folio, SGP_FALLOC);
3780 		if (error) {
3781 			info->fallocend = undo_fallocend;
3782 			/* Remove the !uptodate folios we added */
3783 			if (index > start) {
3784 				shmem_undo_range(inode,
3785 				    (loff_t)start << PAGE_SHIFT,
3786 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3787 			}
3788 			goto undone;
3789 		}
3790 
3791 		/*
3792 		 * Here is a more important optimization than it appears:
3793 		 * a second SGP_FALLOC on the same large folio will clear it,
3794 		 * making it uptodate and un-undoable if we fail later.
3795 		 */
3796 		index = folio_next_index(folio);
3797 		/* Beware 32-bit wraparound */
3798 		if (!index)
3799 			index--;
3800 
3801 		/*
3802 		 * Inform shmem_writeout() how far we have reached.
3803 		 * No need for lock or barrier: we have the page lock.
3804 		 */
3805 		if (!folio_test_uptodate(folio))
3806 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3807 		shmem_falloc.next = index;
3808 
3809 		/*
3810 		 * If !uptodate, leave it that way so that freeable folios
3811 		 * can be recognized if we need to rollback on error later.
3812 		 * But mark it dirty so that memory pressure will swap rather
3813 		 * than free the folios we are allocating (and SGP_CACHE folios
3814 		 * might still be clean: we now need to mark those dirty too).
3815 		 */
3816 		folio_mark_dirty(folio);
3817 		folio_unlock(folio);
3818 		folio_put(folio);
3819 		cond_resched();
3820 	}
3821 
3822 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3823 		i_size_write(inode, offset + len);
3824 undone:
3825 	spin_lock(&inode->i_lock);
3826 	inode->i_private = NULL;
3827 	spin_unlock(&inode->i_lock);
3828 out:
3829 	if (!error)
3830 		file_modified(file);
3831 	inode_unlock(inode);
3832 	return error;
3833 }
3834 
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3835 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3836 {
3837 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3838 
3839 	buf->f_type = TMPFS_MAGIC;
3840 	buf->f_bsize = PAGE_SIZE;
3841 	buf->f_namelen = NAME_MAX;
3842 	if (sbinfo->max_blocks) {
3843 		buf->f_blocks = sbinfo->max_blocks;
3844 		buf->f_bavail =
3845 		buf->f_bfree  = sbinfo->max_blocks -
3846 				percpu_counter_sum(&sbinfo->used_blocks);
3847 	}
3848 	if (sbinfo->max_inodes) {
3849 		buf->f_files = sbinfo->max_inodes;
3850 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3851 	}
3852 	/* else leave those fields 0 like simple_statfs */
3853 
3854 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3855 
3856 	return 0;
3857 }
3858 
3859 /*
3860  * File creation. Allocate an inode, and we're done..
3861  */
3862 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3863 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3864 	    struct dentry *dentry, umode_t mode, dev_t dev)
3865 {
3866 	struct inode *inode;
3867 	int error;
3868 
3869 	if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3870 		return -EINVAL;
3871 
3872 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3873 	if (IS_ERR(inode))
3874 		return PTR_ERR(inode);
3875 
3876 	error = simple_acl_create(dir, inode);
3877 	if (error)
3878 		goto out_iput;
3879 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3880 					     shmem_initxattrs, NULL);
3881 	if (error && error != -EOPNOTSUPP)
3882 		goto out_iput;
3883 
3884 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3885 	if (error)
3886 		goto out_iput;
3887 
3888 	dir->i_size += BOGO_DIRENT_SIZE;
3889 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3890 	inode_inc_iversion(dir);
3891 
3892 	d_make_persistent(dentry, inode);
3893 	return error;
3894 
3895 out_iput:
3896 	iput(inode);
3897 	return error;
3898 }
3899 
3900 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3901 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3902 	      struct file *file, umode_t mode)
3903 {
3904 	struct inode *inode;
3905 	int error;
3906 
3907 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3908 	if (IS_ERR(inode)) {
3909 		error = PTR_ERR(inode);
3910 		goto err_out;
3911 	}
3912 	error = security_inode_init_security(inode, dir, NULL,
3913 					     shmem_initxattrs, NULL);
3914 	if (error && error != -EOPNOTSUPP)
3915 		goto out_iput;
3916 	error = simple_acl_create(dir, inode);
3917 	if (error)
3918 		goto out_iput;
3919 	d_tmpfile(file, inode);
3920 
3921 err_out:
3922 	return finish_open_simple(file, error);
3923 out_iput:
3924 	iput(inode);
3925 	return error;
3926 }
3927 
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3928 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3929 				  struct dentry *dentry, umode_t mode)
3930 {
3931 	int error;
3932 
3933 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3934 	if (error)
3935 		return ERR_PTR(error);
3936 	inc_nlink(dir);
3937 	return NULL;
3938 }
3939 
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3940 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3941 			struct dentry *dentry, umode_t mode, bool excl)
3942 {
3943 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3944 }
3945 
3946 /*
3947  * Link a file..
3948  */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3949 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3950 		      struct dentry *dentry)
3951 {
3952 	struct inode *inode = d_inode(old_dentry);
3953 	int ret;
3954 
3955 	/*
3956 	 * No ordinary (disk based) filesystem counts links as inodes;
3957 	 * but each new link needs a new dentry, pinning lowmem, and
3958 	 * tmpfs dentries cannot be pruned until they are unlinked.
3959 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3960 	 * first link must skip that, to get the accounting right.
3961 	 */
3962 	if (inode->i_nlink) {
3963 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3964 		if (ret)
3965 			return ret;
3966 	}
3967 
3968 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3969 	if (ret) {
3970 		if (inode->i_nlink)
3971 			shmem_free_inode(inode->i_sb, 0);
3972 		return ret;
3973 	}
3974 
3975 	dir->i_size += BOGO_DIRENT_SIZE;
3976 	inode_inc_iversion(dir);
3977 	return simple_link(old_dentry, dir, dentry);
3978 }
3979 
shmem_unlink(struct inode * dir,struct dentry * dentry)3980 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3981 {
3982 	struct inode *inode = d_inode(dentry);
3983 
3984 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3985 		shmem_free_inode(inode->i_sb, 0);
3986 
3987 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3988 
3989 	dir->i_size -= BOGO_DIRENT_SIZE;
3990 	inode_inc_iversion(dir);
3991 	simple_unlink(dir, dentry);
3992 
3993 	/*
3994 	 * For now, VFS can't deal with case-insensitive negative dentries, so
3995 	 * we invalidate them
3996 	 */
3997 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3998 		d_invalidate(dentry);
3999 
4000 	return 0;
4001 }
4002 
shmem_rmdir(struct inode * dir,struct dentry * dentry)4003 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
4004 {
4005 	if (!simple_empty(dentry))
4006 		return -ENOTEMPTY;
4007 
4008 	drop_nlink(d_inode(dentry));
4009 	drop_nlink(dir);
4010 	return shmem_unlink(dir, dentry);
4011 }
4012 
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)4013 static int shmem_whiteout(struct mnt_idmap *idmap,
4014 			  struct inode *old_dir, struct dentry *old_dentry)
4015 {
4016 	struct dentry *whiteout;
4017 	int error;
4018 
4019 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
4020 	if (!whiteout)
4021 		return -ENOMEM;
4022 
4023 	error = shmem_mknod(idmap, old_dir, whiteout,
4024 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4025 	dput(whiteout);
4026 	if (error)
4027 		return error;
4028 
4029 	/*
4030 	 * Cheat and hash the whiteout while the old dentry is still in
4031 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
4032 	 *
4033 	 * d_lookup() will consistently find one of them at this point,
4034 	 * not sure which one, but that isn't even important.
4035 	 */
4036 	d_rehash(whiteout);
4037 	return 0;
4038 }
4039 
4040 /*
4041  * The VFS layer already does all the dentry stuff for rename,
4042  * we just have to decrement the usage count for the target if
4043  * it exists so that the VFS layer correctly free's it when it
4044  * gets overwritten.
4045  */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)4046 static int shmem_rename2(struct mnt_idmap *idmap,
4047 			 struct inode *old_dir, struct dentry *old_dentry,
4048 			 struct inode *new_dir, struct dentry *new_dentry,
4049 			 unsigned int flags)
4050 {
4051 	struct inode *inode = d_inode(old_dentry);
4052 	int they_are_dirs = S_ISDIR(inode->i_mode);
4053 	int error;
4054 
4055 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4056 		return -EINVAL;
4057 
4058 	if (flags & RENAME_EXCHANGE)
4059 		return simple_offset_rename_exchange(old_dir, old_dentry,
4060 						     new_dir, new_dentry);
4061 
4062 	if (!simple_empty(new_dentry))
4063 		return -ENOTEMPTY;
4064 
4065 	if (flags & RENAME_WHITEOUT) {
4066 		error = shmem_whiteout(idmap, old_dir, old_dentry);
4067 		if (error)
4068 			return error;
4069 	}
4070 
4071 	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
4072 	if (error)
4073 		return error;
4074 
4075 	if (d_really_is_positive(new_dentry)) {
4076 		(void) shmem_unlink(new_dir, new_dentry);
4077 		if (they_are_dirs) {
4078 			drop_nlink(d_inode(new_dentry));
4079 			drop_nlink(old_dir);
4080 		}
4081 	} else if (they_are_dirs) {
4082 		drop_nlink(old_dir);
4083 		inc_nlink(new_dir);
4084 	}
4085 
4086 	old_dir->i_size -= BOGO_DIRENT_SIZE;
4087 	new_dir->i_size += BOGO_DIRENT_SIZE;
4088 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
4089 	inode_inc_iversion(old_dir);
4090 	inode_inc_iversion(new_dir);
4091 	return 0;
4092 }
4093 
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)4094 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
4095 			 struct dentry *dentry, const char *symname)
4096 {
4097 	int error;
4098 	int len;
4099 	struct inode *inode;
4100 	struct folio *folio;
4101 	char *link;
4102 
4103 	len = strlen(symname) + 1;
4104 	if (len > PAGE_SIZE)
4105 		return -ENAMETOOLONG;
4106 
4107 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
4108 				VM_NORESERVE);
4109 	if (IS_ERR(inode))
4110 		return PTR_ERR(inode);
4111 
4112 	error = security_inode_init_security(inode, dir, &dentry->d_name,
4113 					     shmem_initxattrs, NULL);
4114 	if (error && error != -EOPNOTSUPP)
4115 		goto out_iput;
4116 
4117 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
4118 	if (error)
4119 		goto out_iput;
4120 
4121 	inode->i_size = len-1;
4122 	if (len <= SHORT_SYMLINK_LEN) {
4123 		link = kmemdup(symname, len, GFP_KERNEL);
4124 		if (!link) {
4125 			error = -ENOMEM;
4126 			goto out_remove_offset;
4127 		}
4128 		inode->i_op = &shmem_short_symlink_operations;
4129 		inode_set_cached_link(inode, link, len - 1);
4130 	} else {
4131 		inode_nohighmem(inode);
4132 		inode->i_mapping->a_ops = &shmem_aops;
4133 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
4134 		if (error)
4135 			goto out_remove_offset;
4136 		inode->i_op = &shmem_symlink_inode_operations;
4137 		memcpy(folio_address(folio), symname, len);
4138 		folio_mark_uptodate(folio);
4139 		folio_mark_dirty(folio);
4140 		folio_unlock(folio);
4141 		folio_put(folio);
4142 	}
4143 	dir->i_size += BOGO_DIRENT_SIZE;
4144 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
4145 	inode_inc_iversion(dir);
4146 	d_make_persistent(dentry, inode);
4147 	return 0;
4148 
4149 out_remove_offset:
4150 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4151 out_iput:
4152 	iput(inode);
4153 	return error;
4154 }
4155 
shmem_put_link(void * arg)4156 static void shmem_put_link(void *arg)
4157 {
4158 	folio_mark_accessed(arg);
4159 	folio_put(arg);
4160 }
4161 
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)4162 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
4163 				  struct delayed_call *done)
4164 {
4165 	struct folio *folio = NULL;
4166 	int error;
4167 
4168 	if (!dentry) {
4169 		folio = filemap_get_folio(inode->i_mapping, 0);
4170 		if (IS_ERR(folio))
4171 			return ERR_PTR(-ECHILD);
4172 		if (PageHWPoison(folio_page(folio, 0)) ||
4173 		    !folio_test_uptodate(folio)) {
4174 			folio_put(folio);
4175 			return ERR_PTR(-ECHILD);
4176 		}
4177 	} else {
4178 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4179 		if (error)
4180 			return ERR_PTR(error);
4181 		if (!folio)
4182 			return ERR_PTR(-ECHILD);
4183 		if (PageHWPoison(folio_page(folio, 0))) {
4184 			folio_unlock(folio);
4185 			folio_put(folio);
4186 			return ERR_PTR(-ECHILD);
4187 		}
4188 		folio_unlock(folio);
4189 	}
4190 	set_delayed_call(done, shmem_put_link, folio);
4191 	return folio_address(folio);
4192 }
4193 
4194 #ifdef CONFIG_TMPFS_XATTR
4195 
shmem_fileattr_get(struct dentry * dentry,struct file_kattr * fa)4196 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
4197 {
4198 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4199 
4200 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4201 
4202 	return 0;
4203 }
4204 
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct file_kattr * fa)4205 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4206 			      struct dentry *dentry, struct file_kattr *fa)
4207 {
4208 	struct inode *inode = d_inode(dentry);
4209 	struct shmem_inode_info *info = SHMEM_I(inode);
4210 	int ret, flags;
4211 
4212 	if (fileattr_has_fsx(fa))
4213 		return -EOPNOTSUPP;
4214 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4215 		return -EOPNOTSUPP;
4216 
4217 	flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4218 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
4219 
4220 	ret = shmem_set_inode_flags(inode, flags, dentry);
4221 
4222 	if (ret)
4223 		return ret;
4224 
4225 	info->fsflags = flags;
4226 
4227 	inode_set_ctime_current(inode);
4228 	inode_inc_iversion(inode);
4229 	return 0;
4230 }
4231 
4232 /*
4233  * Superblocks without xattr inode operations may get some security.* xattr
4234  * support from the LSM "for free". As soon as we have any other xattrs
4235  * like ACLs, we also need to implement the security.* handlers at
4236  * filesystem level, though.
4237  */
4238 
4239 /*
4240  * Callback for security_inode_init_security() for acquiring xattrs.
4241  */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)4242 static int shmem_initxattrs(struct inode *inode,
4243 			    const struct xattr *xattr_array, void *fs_info)
4244 {
4245 	struct shmem_inode_info *info = SHMEM_I(inode);
4246 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4247 	const struct xattr *xattr;
4248 	struct simple_xattr *new_xattr;
4249 	size_t ispace = 0;
4250 	size_t len;
4251 
4252 	if (sbinfo->max_inodes) {
4253 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4254 			ispace += simple_xattr_space(xattr->name,
4255 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4256 		}
4257 		if (ispace) {
4258 			raw_spin_lock(&sbinfo->stat_lock);
4259 			if (sbinfo->free_ispace < ispace)
4260 				ispace = 0;
4261 			else
4262 				sbinfo->free_ispace -= ispace;
4263 			raw_spin_unlock(&sbinfo->stat_lock);
4264 			if (!ispace)
4265 				return -ENOSPC;
4266 		}
4267 	}
4268 
4269 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4270 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4271 		if (!new_xattr)
4272 			break;
4273 
4274 		len = strlen(xattr->name) + 1;
4275 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4276 					  GFP_KERNEL_ACCOUNT);
4277 		if (!new_xattr->name) {
4278 			kvfree(new_xattr);
4279 			break;
4280 		}
4281 
4282 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4283 		       XATTR_SECURITY_PREFIX_LEN);
4284 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4285 		       xattr->name, len);
4286 
4287 		simple_xattr_add(&info->xattrs, new_xattr);
4288 	}
4289 
4290 	if (xattr->name != NULL) {
4291 		if (ispace) {
4292 			raw_spin_lock(&sbinfo->stat_lock);
4293 			sbinfo->free_ispace += ispace;
4294 			raw_spin_unlock(&sbinfo->stat_lock);
4295 		}
4296 		simple_xattrs_free(&info->xattrs, NULL);
4297 		return -ENOMEM;
4298 	}
4299 
4300 	return 0;
4301 }
4302 
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)4303 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4304 				   struct dentry *unused, struct inode *inode,
4305 				   const char *name, void *buffer, size_t size)
4306 {
4307 	struct shmem_inode_info *info = SHMEM_I(inode);
4308 
4309 	name = xattr_full_name(handler, name);
4310 	return simple_xattr_get(&info->xattrs, name, buffer, size);
4311 }
4312 
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)4313 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4314 				   struct mnt_idmap *idmap,
4315 				   struct dentry *unused, struct inode *inode,
4316 				   const char *name, const void *value,
4317 				   size_t size, int flags)
4318 {
4319 	struct shmem_inode_info *info = SHMEM_I(inode);
4320 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4321 	struct simple_xattr *old_xattr;
4322 	size_t ispace = 0;
4323 
4324 	name = xattr_full_name(handler, name);
4325 	if (value && sbinfo->max_inodes) {
4326 		ispace = simple_xattr_space(name, size);
4327 		raw_spin_lock(&sbinfo->stat_lock);
4328 		if (sbinfo->free_ispace < ispace)
4329 			ispace = 0;
4330 		else
4331 			sbinfo->free_ispace -= ispace;
4332 		raw_spin_unlock(&sbinfo->stat_lock);
4333 		if (!ispace)
4334 			return -ENOSPC;
4335 	}
4336 
4337 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4338 	if (!IS_ERR(old_xattr)) {
4339 		ispace = 0;
4340 		if (old_xattr && sbinfo->max_inodes)
4341 			ispace = simple_xattr_space(old_xattr->name,
4342 						    old_xattr->size);
4343 		simple_xattr_free(old_xattr);
4344 		old_xattr = NULL;
4345 		inode_set_ctime_current(inode);
4346 		inode_inc_iversion(inode);
4347 	}
4348 	if (ispace) {
4349 		raw_spin_lock(&sbinfo->stat_lock);
4350 		sbinfo->free_ispace += ispace;
4351 		raw_spin_unlock(&sbinfo->stat_lock);
4352 	}
4353 	return PTR_ERR(old_xattr);
4354 }
4355 
4356 static const struct xattr_handler shmem_security_xattr_handler = {
4357 	.prefix = XATTR_SECURITY_PREFIX,
4358 	.get = shmem_xattr_handler_get,
4359 	.set = shmem_xattr_handler_set,
4360 };
4361 
4362 static const struct xattr_handler shmem_trusted_xattr_handler = {
4363 	.prefix = XATTR_TRUSTED_PREFIX,
4364 	.get = shmem_xattr_handler_get,
4365 	.set = shmem_xattr_handler_set,
4366 };
4367 
4368 static const struct xattr_handler shmem_user_xattr_handler = {
4369 	.prefix = XATTR_USER_PREFIX,
4370 	.get = shmem_xattr_handler_get,
4371 	.set = shmem_xattr_handler_set,
4372 };
4373 
4374 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4375 	&shmem_security_xattr_handler,
4376 	&shmem_trusted_xattr_handler,
4377 	&shmem_user_xattr_handler,
4378 	NULL
4379 };
4380 
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)4381 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4382 {
4383 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4384 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4385 }
4386 #endif /* CONFIG_TMPFS_XATTR */
4387 
4388 static const struct inode_operations shmem_short_symlink_operations = {
4389 	.getattr	= shmem_getattr,
4390 	.setattr	= shmem_setattr,
4391 	.get_link	= simple_get_link,
4392 #ifdef CONFIG_TMPFS_XATTR
4393 	.listxattr	= shmem_listxattr,
4394 #endif
4395 };
4396 
4397 static const struct inode_operations shmem_symlink_inode_operations = {
4398 	.getattr	= shmem_getattr,
4399 	.setattr	= shmem_setattr,
4400 	.get_link	= shmem_get_link,
4401 #ifdef CONFIG_TMPFS_XATTR
4402 	.listxattr	= shmem_listxattr,
4403 #endif
4404 };
4405 
shmem_get_parent(struct dentry * child)4406 static struct dentry *shmem_get_parent(struct dentry *child)
4407 {
4408 	return ERR_PTR(-ESTALE);
4409 }
4410 
shmem_match(struct inode * ino,void * vfh)4411 static int shmem_match(struct inode *ino, void *vfh)
4412 {
4413 	__u32 *fh = vfh;
4414 	__u64 inum = fh[2];
4415 	inum = (inum << 32) | fh[1];
4416 	return ino->i_ino == inum && fh[0] == ino->i_generation;
4417 }
4418 
4419 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)4420 static struct dentry *shmem_find_alias(struct inode *inode)
4421 {
4422 	struct dentry *alias = d_find_alias(inode);
4423 
4424 	return alias ?: d_find_any_alias(inode);
4425 }
4426 
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)4427 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4428 		struct fid *fid, int fh_len, int fh_type)
4429 {
4430 	struct inode *inode;
4431 	struct dentry *dentry = NULL;
4432 	u64 inum;
4433 
4434 	if (fh_len < 3)
4435 		return NULL;
4436 
4437 	inum = fid->raw[2];
4438 	inum = (inum << 32) | fid->raw[1];
4439 
4440 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4441 			shmem_match, fid->raw);
4442 	if (inode) {
4443 		dentry = shmem_find_alias(inode);
4444 		iput(inode);
4445 	}
4446 
4447 	return dentry;
4448 }
4449 
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)4450 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4451 				struct inode *parent)
4452 {
4453 	if (*len < 3) {
4454 		*len = 3;
4455 		return FILEID_INVALID;
4456 	}
4457 
4458 	if (inode_unhashed(inode)) {
4459 		/* Unfortunately insert_inode_hash is not idempotent,
4460 		 * so as we hash inodes here rather than at creation
4461 		 * time, we need a lock to ensure we only try
4462 		 * to do it once
4463 		 */
4464 		static DEFINE_SPINLOCK(lock);
4465 		spin_lock(&lock);
4466 		if (inode_unhashed(inode))
4467 			__insert_inode_hash(inode,
4468 					    inode->i_ino + inode->i_generation);
4469 		spin_unlock(&lock);
4470 	}
4471 
4472 	fh[0] = inode->i_generation;
4473 	fh[1] = inode->i_ino;
4474 	fh[2] = ((__u64)inode->i_ino) >> 32;
4475 
4476 	*len = 3;
4477 	return 1;
4478 }
4479 
4480 static const struct export_operations shmem_export_ops = {
4481 	.get_parent     = shmem_get_parent,
4482 	.encode_fh      = shmem_encode_fh,
4483 	.fh_to_dentry	= shmem_fh_to_dentry,
4484 };
4485 
4486 enum shmem_param {
4487 	Opt_gid,
4488 	Opt_huge,
4489 	Opt_mode,
4490 	Opt_mpol,
4491 	Opt_nr_blocks,
4492 	Opt_nr_inodes,
4493 	Opt_size,
4494 	Opt_uid,
4495 	Opt_inode32,
4496 	Opt_inode64,
4497 	Opt_noswap,
4498 	Opt_quota,
4499 	Opt_usrquota,
4500 	Opt_grpquota,
4501 	Opt_usrquota_block_hardlimit,
4502 	Opt_usrquota_inode_hardlimit,
4503 	Opt_grpquota_block_hardlimit,
4504 	Opt_grpquota_inode_hardlimit,
4505 	Opt_casefold_version,
4506 	Opt_casefold,
4507 	Opt_strict_encoding,
4508 };
4509 
4510 static const struct constant_table shmem_param_enums_huge[] = {
4511 	{"never",	SHMEM_HUGE_NEVER },
4512 	{"always",	SHMEM_HUGE_ALWAYS },
4513 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4514 	{"advise",	SHMEM_HUGE_ADVISE },
4515 	{}
4516 };
4517 
4518 const struct fs_parameter_spec shmem_fs_parameters[] = {
4519 	fsparam_gid   ("gid",		Opt_gid),
4520 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4521 	fsparam_u32oct("mode",		Opt_mode),
4522 	fsparam_string("mpol",		Opt_mpol),
4523 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4524 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4525 	fsparam_string("size",		Opt_size),
4526 	fsparam_uid   ("uid",		Opt_uid),
4527 	fsparam_flag  ("inode32",	Opt_inode32),
4528 	fsparam_flag  ("inode64",	Opt_inode64),
4529 	fsparam_flag  ("noswap",	Opt_noswap),
4530 #ifdef CONFIG_TMPFS_QUOTA
4531 	fsparam_flag  ("quota",		Opt_quota),
4532 	fsparam_flag  ("usrquota",	Opt_usrquota),
4533 	fsparam_flag  ("grpquota",	Opt_grpquota),
4534 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4535 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4536 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4537 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4538 #endif
4539 	fsparam_string("casefold",	Opt_casefold_version),
4540 	fsparam_flag  ("casefold",	Opt_casefold),
4541 	fsparam_flag  ("strict_encoding", Opt_strict_encoding),
4542 	{}
4543 };
4544 
4545 #if IS_ENABLED(CONFIG_UNICODE)
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4546 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4547 				    bool latest_version)
4548 {
4549 	struct shmem_options *ctx = fc->fs_private;
4550 	int version = UTF8_LATEST;
4551 	struct unicode_map *encoding;
4552 	char *version_str = param->string + 5;
4553 
4554 	if (!latest_version) {
4555 		if (strncmp(param->string, "utf8-", 5))
4556 			return invalfc(fc, "Only UTF-8 encodings are supported "
4557 				       "in the format: utf8-<version number>");
4558 
4559 		version = utf8_parse_version(version_str);
4560 		if (version < 0)
4561 			return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4562 	}
4563 
4564 	encoding = utf8_load(version);
4565 
4566 	if (IS_ERR(encoding)) {
4567 		return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4568 			       unicode_major(version), unicode_minor(version),
4569 			       unicode_rev(version));
4570 	}
4571 
4572 	pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4573 		unicode_major(version), unicode_minor(version), unicode_rev(version));
4574 
4575 	ctx->encoding = encoding;
4576 
4577 	return 0;
4578 }
4579 #else
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4580 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4581 				    bool latest_version)
4582 {
4583 	return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4584 }
4585 #endif
4586 
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)4587 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4588 {
4589 	struct shmem_options *ctx = fc->fs_private;
4590 	struct fs_parse_result result;
4591 	unsigned long long size;
4592 	char *rest;
4593 	int opt;
4594 	kuid_t kuid;
4595 	kgid_t kgid;
4596 
4597 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4598 	if (opt < 0)
4599 		return opt;
4600 
4601 	switch (opt) {
4602 	case Opt_size:
4603 		size = memparse(param->string, &rest);
4604 		if (*rest == '%') {
4605 			size <<= PAGE_SHIFT;
4606 			size *= totalram_pages();
4607 			do_div(size, 100);
4608 			rest++;
4609 		}
4610 		if (*rest)
4611 			goto bad_value;
4612 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4613 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4614 		break;
4615 	case Opt_nr_blocks:
4616 		ctx->blocks = memparse(param->string, &rest);
4617 		if (*rest || ctx->blocks > LONG_MAX)
4618 			goto bad_value;
4619 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4620 		break;
4621 	case Opt_nr_inodes:
4622 		ctx->inodes = memparse(param->string, &rest);
4623 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4624 			goto bad_value;
4625 		ctx->seen |= SHMEM_SEEN_INODES;
4626 		break;
4627 	case Opt_mode:
4628 		ctx->mode = result.uint_32 & 07777;
4629 		break;
4630 	case Opt_uid:
4631 		kuid = result.uid;
4632 
4633 		/*
4634 		 * The requested uid must be representable in the
4635 		 * filesystem's idmapping.
4636 		 */
4637 		if (!kuid_has_mapping(fc->user_ns, kuid))
4638 			goto bad_value;
4639 
4640 		ctx->uid = kuid;
4641 		break;
4642 	case Opt_gid:
4643 		kgid = result.gid;
4644 
4645 		/*
4646 		 * The requested gid must be representable in the
4647 		 * filesystem's idmapping.
4648 		 */
4649 		if (!kgid_has_mapping(fc->user_ns, kgid))
4650 			goto bad_value;
4651 
4652 		ctx->gid = kgid;
4653 		break;
4654 	case Opt_huge:
4655 		ctx->huge = result.uint_32;
4656 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4657 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4658 		      has_transparent_hugepage()))
4659 			goto unsupported_parameter;
4660 		ctx->seen |= SHMEM_SEEN_HUGE;
4661 		break;
4662 	case Opt_mpol:
4663 		if (IS_ENABLED(CONFIG_NUMA)) {
4664 			mpol_put(ctx->mpol);
4665 			ctx->mpol = NULL;
4666 			if (mpol_parse_str(param->string, &ctx->mpol))
4667 				goto bad_value;
4668 			break;
4669 		}
4670 		goto unsupported_parameter;
4671 	case Opt_inode32:
4672 		ctx->full_inums = false;
4673 		ctx->seen |= SHMEM_SEEN_INUMS;
4674 		break;
4675 	case Opt_inode64:
4676 		if (sizeof(ino_t) < 8) {
4677 			return invalfc(fc,
4678 				       "Cannot use inode64 with <64bit inums in kernel\n");
4679 		}
4680 		ctx->full_inums = true;
4681 		ctx->seen |= SHMEM_SEEN_INUMS;
4682 		break;
4683 	case Opt_noswap:
4684 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4685 			return invalfc(fc,
4686 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4687 		}
4688 		ctx->noswap = true;
4689 		break;
4690 	case Opt_quota:
4691 		if (fc->user_ns != &init_user_ns)
4692 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4693 		ctx->seen |= SHMEM_SEEN_QUOTA;
4694 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4695 		break;
4696 	case Opt_usrquota:
4697 		if (fc->user_ns != &init_user_ns)
4698 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4699 		ctx->seen |= SHMEM_SEEN_QUOTA;
4700 		ctx->quota_types |= QTYPE_MASK_USR;
4701 		break;
4702 	case Opt_grpquota:
4703 		if (fc->user_ns != &init_user_ns)
4704 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4705 		ctx->seen |= SHMEM_SEEN_QUOTA;
4706 		ctx->quota_types |= QTYPE_MASK_GRP;
4707 		break;
4708 	case Opt_usrquota_block_hardlimit:
4709 		size = memparse(param->string, &rest);
4710 		if (*rest || !size)
4711 			goto bad_value;
4712 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4713 			return invalfc(fc,
4714 				       "User quota block hardlimit too large.");
4715 		ctx->qlimits.usrquota_bhardlimit = size;
4716 		break;
4717 	case Opt_grpquota_block_hardlimit:
4718 		size = memparse(param->string, &rest);
4719 		if (*rest || !size)
4720 			goto bad_value;
4721 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4722 			return invalfc(fc,
4723 				       "Group quota block hardlimit too large.");
4724 		ctx->qlimits.grpquota_bhardlimit = size;
4725 		break;
4726 	case Opt_usrquota_inode_hardlimit:
4727 		size = memparse(param->string, &rest);
4728 		if (*rest || !size)
4729 			goto bad_value;
4730 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4731 			return invalfc(fc,
4732 				       "User quota inode hardlimit too large.");
4733 		ctx->qlimits.usrquota_ihardlimit = size;
4734 		break;
4735 	case Opt_grpquota_inode_hardlimit:
4736 		size = memparse(param->string, &rest);
4737 		if (*rest || !size)
4738 			goto bad_value;
4739 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4740 			return invalfc(fc,
4741 				       "Group quota inode hardlimit too large.");
4742 		ctx->qlimits.grpquota_ihardlimit = size;
4743 		break;
4744 	case Opt_casefold_version:
4745 		return shmem_parse_opt_casefold(fc, param, false);
4746 	case Opt_casefold:
4747 		return shmem_parse_opt_casefold(fc, param, true);
4748 	case Opt_strict_encoding:
4749 #if IS_ENABLED(CONFIG_UNICODE)
4750 		ctx->strict_encoding = true;
4751 		break;
4752 #else
4753 		return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4754 #endif
4755 	}
4756 	return 0;
4757 
4758 unsupported_parameter:
4759 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4760 bad_value:
4761 	return invalfc(fc, "Bad value for '%s'", param->key);
4762 }
4763 
shmem_next_opt(char ** s)4764 static char *shmem_next_opt(char **s)
4765 {
4766 	char *sbegin = *s;
4767 	char *p;
4768 
4769 	if (sbegin == NULL)
4770 		return NULL;
4771 
4772 	/*
4773 	 * NUL-terminate this option: unfortunately,
4774 	 * mount options form a comma-separated list,
4775 	 * but mpol's nodelist may also contain commas.
4776 	 */
4777 	for (;;) {
4778 		p = strchr(*s, ',');
4779 		if (p == NULL)
4780 			break;
4781 		*s = p + 1;
4782 		if (!isdigit(*(p+1))) {
4783 			*p = '\0';
4784 			return sbegin;
4785 		}
4786 	}
4787 
4788 	*s = NULL;
4789 	return sbegin;
4790 }
4791 
shmem_parse_monolithic(struct fs_context * fc,void * data)4792 static int shmem_parse_monolithic(struct fs_context *fc, void *data)
4793 {
4794 	return vfs_parse_monolithic_sep(fc, data, shmem_next_opt);
4795 }
4796 
4797 /*
4798  * Reconfigure a shmem filesystem.
4799  */
shmem_reconfigure(struct fs_context * fc)4800 static int shmem_reconfigure(struct fs_context *fc)
4801 {
4802 	struct shmem_options *ctx = fc->fs_private;
4803 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4804 	unsigned long used_isp;
4805 	struct mempolicy *mpol = NULL;
4806 	const char *err;
4807 
4808 	raw_spin_lock(&sbinfo->stat_lock);
4809 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4810 
4811 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4812 		if (!sbinfo->max_blocks) {
4813 			err = "Cannot retroactively limit size";
4814 			goto out;
4815 		}
4816 		if (percpu_counter_compare(&sbinfo->used_blocks,
4817 					   ctx->blocks) > 0) {
4818 			err = "Too small a size for current use";
4819 			goto out;
4820 		}
4821 	}
4822 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4823 		if (!sbinfo->max_inodes) {
4824 			err = "Cannot retroactively limit inodes";
4825 			goto out;
4826 		}
4827 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4828 			err = "Too few inodes for current use";
4829 			goto out;
4830 		}
4831 	}
4832 
4833 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4834 	    sbinfo->next_ino > UINT_MAX) {
4835 		err = "Current inum too high to switch to 32-bit inums";
4836 		goto out;
4837 	}
4838 
4839 	/*
4840 	 * "noswap" doesn't use fsparam_flag_no, i.e. there's no "swap"
4841 	 * counterpart for (re-)enabling swap.
4842 	 */
4843 	if (ctx->noswap && !sbinfo->noswap) {
4844 		err = "Cannot disable swap on remount";
4845 		goto out;
4846 	}
4847 
4848 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4849 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4850 		err = "Cannot enable quota on remount";
4851 		goto out;
4852 	}
4853 
4854 #ifdef CONFIG_TMPFS_QUOTA
4855 #define CHANGED_LIMIT(name)						\
4856 	(ctx->qlimits.name## hardlimit &&				\
4857 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4858 
4859 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4860 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4861 		err = "Cannot change global quota limit on remount";
4862 		goto out;
4863 	}
4864 #endif /* CONFIG_TMPFS_QUOTA */
4865 
4866 	if (ctx->seen & SHMEM_SEEN_HUGE)
4867 		sbinfo->huge = ctx->huge;
4868 	if (ctx->seen & SHMEM_SEEN_INUMS)
4869 		sbinfo->full_inums = ctx->full_inums;
4870 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4871 		sbinfo->max_blocks  = ctx->blocks;
4872 	if (ctx->seen & SHMEM_SEEN_INODES) {
4873 		sbinfo->max_inodes  = ctx->inodes;
4874 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4875 	}
4876 
4877 	/*
4878 	 * Preserve previous mempolicy unless mpol remount option was specified.
4879 	 */
4880 	if (ctx->mpol) {
4881 		mpol = sbinfo->mpol;
4882 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4883 		ctx->mpol = NULL;
4884 	}
4885 
4886 	if (ctx->noswap)
4887 		sbinfo->noswap = true;
4888 
4889 	raw_spin_unlock(&sbinfo->stat_lock);
4890 	mpol_put(mpol);
4891 	return 0;
4892 out:
4893 	raw_spin_unlock(&sbinfo->stat_lock);
4894 	return invalfc(fc, "%s", err);
4895 }
4896 
shmem_show_options(struct seq_file * seq,struct dentry * root)4897 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4898 {
4899 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4900 	struct mempolicy *mpol;
4901 
4902 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4903 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4904 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4905 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4906 	if (sbinfo->mode != (0777 | S_ISVTX))
4907 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4908 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4909 		seq_printf(seq, ",uid=%u",
4910 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4911 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4912 		seq_printf(seq, ",gid=%u",
4913 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4914 
4915 	/*
4916 	 * Showing inode{64,32} might be useful even if it's the system default,
4917 	 * since then people don't have to resort to checking both here and
4918 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4919 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4920 	 *
4921 	 * We hide it when inode64 isn't the default and we are using 32-bit
4922 	 * inodes, since that probably just means the feature isn't even under
4923 	 * consideration.
4924 	 *
4925 	 * As such:
4926 	 *
4927 	 *                     +-----------------+-----------------+
4928 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4929 	 *  +------------------+-----------------+-----------------+
4930 	 *  | full_inums=true  | show            | show            |
4931 	 *  | full_inums=false | show            | hide            |
4932 	 *  +------------------+-----------------+-----------------+
4933 	 *
4934 	 */
4935 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4936 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4938 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4939 	if (sbinfo->huge)
4940 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4941 #endif
4942 	mpol = shmem_get_sbmpol(sbinfo);
4943 	shmem_show_mpol(seq, mpol);
4944 	mpol_put(mpol);
4945 	if (sbinfo->noswap)
4946 		seq_printf(seq, ",noswap");
4947 #ifdef CONFIG_TMPFS_QUOTA
4948 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4949 		seq_printf(seq, ",usrquota");
4950 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4951 		seq_printf(seq, ",grpquota");
4952 	if (sbinfo->qlimits.usrquota_bhardlimit)
4953 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4954 			   sbinfo->qlimits.usrquota_bhardlimit);
4955 	if (sbinfo->qlimits.grpquota_bhardlimit)
4956 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4957 			   sbinfo->qlimits.grpquota_bhardlimit);
4958 	if (sbinfo->qlimits.usrquota_ihardlimit)
4959 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4960 			   sbinfo->qlimits.usrquota_ihardlimit);
4961 	if (sbinfo->qlimits.grpquota_ihardlimit)
4962 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4963 			   sbinfo->qlimits.grpquota_ihardlimit);
4964 #endif
4965 	return 0;
4966 }
4967 
4968 #endif /* CONFIG_TMPFS */
4969 
shmem_put_super(struct super_block * sb)4970 static void shmem_put_super(struct super_block *sb)
4971 {
4972 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4973 
4974 #if IS_ENABLED(CONFIG_UNICODE)
4975 	if (sb->s_encoding)
4976 		utf8_unload(sb->s_encoding);
4977 #endif
4978 
4979 #ifdef CONFIG_TMPFS_QUOTA
4980 	shmem_disable_quotas(sb);
4981 #endif
4982 	free_percpu(sbinfo->ino_batch);
4983 	percpu_counter_destroy(&sbinfo->used_blocks);
4984 	mpol_put(sbinfo->mpol);
4985 	kfree(sbinfo);
4986 	sb->s_fs_info = NULL;
4987 }
4988 
4989 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4990 static const struct dentry_operations shmem_ci_dentry_ops = {
4991 	.d_hash = generic_ci_d_hash,
4992 	.d_compare = generic_ci_d_compare,
4993 };
4994 #endif
4995 
shmem_fill_super(struct super_block * sb,struct fs_context * fc)4996 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4997 {
4998 	struct shmem_options *ctx = fc->fs_private;
4999 	struct inode *inode;
5000 	struct shmem_sb_info *sbinfo;
5001 	int error = -ENOMEM;
5002 
5003 	/* Round up to L1_CACHE_BYTES to resist false sharing */
5004 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
5005 				L1_CACHE_BYTES), GFP_KERNEL);
5006 	if (!sbinfo)
5007 		return error;
5008 
5009 	sb->s_fs_info = sbinfo;
5010 
5011 #ifdef CONFIG_TMPFS
5012 	/*
5013 	 * Per default we only allow half of the physical ram per
5014 	 * tmpfs instance, limiting inodes to one per page of lowmem;
5015 	 * but the internal instance is left unlimited.
5016 	 */
5017 	if (!(sb->s_flags & SB_KERNMOUNT)) {
5018 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
5019 			ctx->blocks = shmem_default_max_blocks();
5020 		if (!(ctx->seen & SHMEM_SEEN_INODES))
5021 			ctx->inodes = shmem_default_max_inodes();
5022 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
5023 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
5024 		sbinfo->noswap = ctx->noswap;
5025 	} else {
5026 		sb->s_flags |= SB_NOUSER;
5027 	}
5028 	sb->s_export_op = &shmem_export_ops;
5029 	sb->s_flags |= SB_NOSEC;
5030 
5031 #if IS_ENABLED(CONFIG_UNICODE)
5032 	if (!ctx->encoding && ctx->strict_encoding) {
5033 		pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
5034 		error = -EINVAL;
5035 		goto failed;
5036 	}
5037 
5038 	if (ctx->encoding) {
5039 		sb->s_encoding = ctx->encoding;
5040 		set_default_d_op(sb, &shmem_ci_dentry_ops);
5041 		if (ctx->strict_encoding)
5042 			sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
5043 	}
5044 #endif
5045 
5046 #else
5047 	sb->s_flags |= SB_NOUSER;
5048 #endif /* CONFIG_TMPFS */
5049 	sb->s_d_flags |= DCACHE_DONTCACHE;
5050 	sbinfo->max_blocks = ctx->blocks;
5051 	sbinfo->max_inodes = ctx->inodes;
5052 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
5053 	if (sb->s_flags & SB_KERNMOUNT) {
5054 		sbinfo->ino_batch = alloc_percpu(ino_t);
5055 		if (!sbinfo->ino_batch)
5056 			goto failed;
5057 	}
5058 	sbinfo->uid = ctx->uid;
5059 	sbinfo->gid = ctx->gid;
5060 	sbinfo->full_inums = ctx->full_inums;
5061 	sbinfo->mode = ctx->mode;
5062 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5063 	if (ctx->seen & SHMEM_SEEN_HUGE)
5064 		sbinfo->huge = ctx->huge;
5065 	else
5066 		sbinfo->huge = tmpfs_huge;
5067 #endif
5068 	sbinfo->mpol = ctx->mpol;
5069 	ctx->mpol = NULL;
5070 
5071 	raw_spin_lock_init(&sbinfo->stat_lock);
5072 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
5073 		goto failed;
5074 	spin_lock_init(&sbinfo->shrinklist_lock);
5075 	INIT_LIST_HEAD(&sbinfo->shrinklist);
5076 
5077 	sb->s_maxbytes = MAX_LFS_FILESIZE;
5078 	sb->s_blocksize = PAGE_SIZE;
5079 	sb->s_blocksize_bits = PAGE_SHIFT;
5080 	sb->s_magic = TMPFS_MAGIC;
5081 	sb->s_op = &shmem_ops;
5082 	sb->s_time_gran = 1;
5083 #ifdef CONFIG_TMPFS_XATTR
5084 	sb->s_xattr = shmem_xattr_handlers;
5085 #endif
5086 #ifdef CONFIG_TMPFS_POSIX_ACL
5087 	sb->s_flags |= SB_POSIXACL;
5088 #endif
5089 	uuid_t uuid;
5090 	uuid_gen(&uuid);
5091 	super_set_uuid(sb, uuid.b, sizeof(uuid));
5092 
5093 #ifdef CONFIG_TMPFS_QUOTA
5094 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
5095 		sb->dq_op = &shmem_quota_operations;
5096 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5097 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
5098 
5099 		/* Copy the default limits from ctx into sbinfo */
5100 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
5101 		       sizeof(struct shmem_quota_limits));
5102 
5103 		if (shmem_enable_quotas(sb, ctx->quota_types))
5104 			goto failed;
5105 	}
5106 #endif /* CONFIG_TMPFS_QUOTA */
5107 
5108 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
5109 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
5110 	if (IS_ERR(inode)) {
5111 		error = PTR_ERR(inode);
5112 		goto failed;
5113 	}
5114 	inode->i_uid = sbinfo->uid;
5115 	inode->i_gid = sbinfo->gid;
5116 	sb->s_root = d_make_root(inode);
5117 	if (!sb->s_root)
5118 		goto failed;
5119 	return 0;
5120 
5121 failed:
5122 	shmem_put_super(sb);
5123 	return error;
5124 }
5125 
shmem_get_tree(struct fs_context * fc)5126 static int shmem_get_tree(struct fs_context *fc)
5127 {
5128 	return get_tree_nodev(fc, shmem_fill_super);
5129 }
5130 
shmem_free_fc(struct fs_context * fc)5131 static void shmem_free_fc(struct fs_context *fc)
5132 {
5133 	struct shmem_options *ctx = fc->fs_private;
5134 
5135 	if (ctx) {
5136 		mpol_put(ctx->mpol);
5137 		kfree(ctx);
5138 	}
5139 }
5140 
5141 static const struct fs_context_operations shmem_fs_context_ops = {
5142 	.free			= shmem_free_fc,
5143 	.get_tree		= shmem_get_tree,
5144 #ifdef CONFIG_TMPFS
5145 	.parse_monolithic	= shmem_parse_monolithic,
5146 	.parse_param		= shmem_parse_one,
5147 	.reconfigure		= shmem_reconfigure,
5148 #endif
5149 };
5150 
5151 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
5152 
shmem_alloc_inode(struct super_block * sb)5153 static struct inode *shmem_alloc_inode(struct super_block *sb)
5154 {
5155 	struct shmem_inode_info *info;
5156 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
5157 	if (!info)
5158 		return NULL;
5159 	return &info->vfs_inode;
5160 }
5161 
shmem_free_in_core_inode(struct inode * inode)5162 static void shmem_free_in_core_inode(struct inode *inode)
5163 {
5164 	if (S_ISLNK(inode->i_mode))
5165 		kfree(inode->i_link);
5166 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
5167 }
5168 
shmem_destroy_inode(struct inode * inode)5169 static void shmem_destroy_inode(struct inode *inode)
5170 {
5171 	if (S_ISREG(inode->i_mode))
5172 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5173 	if (S_ISDIR(inode->i_mode))
5174 		simple_offset_destroy(shmem_get_offset_ctx(inode));
5175 }
5176 
shmem_init_inode(void * foo)5177 static void shmem_init_inode(void *foo)
5178 {
5179 	struct shmem_inode_info *info = foo;
5180 	inode_init_once(&info->vfs_inode);
5181 }
5182 
shmem_init_inodecache(void)5183 static void __init shmem_init_inodecache(void)
5184 {
5185 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5186 				sizeof(struct shmem_inode_info),
5187 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5188 }
5189 
shmem_destroy_inodecache(void)5190 static void __init shmem_destroy_inodecache(void)
5191 {
5192 	kmem_cache_destroy(shmem_inode_cachep);
5193 }
5194 
5195 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_folio(struct address_space * mapping,struct folio * folio)5196 static int shmem_error_remove_folio(struct address_space *mapping,
5197 				   struct folio *folio)
5198 {
5199 	return 0;
5200 }
5201 
5202 static const struct address_space_operations shmem_aops = {
5203 	.dirty_folio	= noop_dirty_folio,
5204 #ifdef CONFIG_TMPFS
5205 	.write_begin	= shmem_write_begin,
5206 	.write_end	= shmem_write_end,
5207 #endif
5208 #ifdef CONFIG_MIGRATION
5209 	.migrate_folio	= migrate_folio,
5210 #endif
5211 	.error_remove_folio = shmem_error_remove_folio,
5212 };
5213 
5214 static const struct file_operations shmem_file_operations = {
5215 	.mmap_prepare	= shmem_mmap_prepare,
5216 	.open		= shmem_file_open,
5217 	.get_unmapped_area = shmem_get_unmapped_area,
5218 #ifdef CONFIG_TMPFS
5219 	.llseek		= shmem_file_llseek,
5220 	.read_iter	= shmem_file_read_iter,
5221 	.write_iter	= shmem_file_write_iter,
5222 	.fsync		= noop_fsync,
5223 	.splice_read	= shmem_file_splice_read,
5224 	.splice_write	= iter_file_splice_write,
5225 	.fallocate	= shmem_fallocate,
5226 #endif
5227 };
5228 
5229 static const struct inode_operations shmem_inode_operations = {
5230 	.getattr	= shmem_getattr,
5231 	.setattr	= shmem_setattr,
5232 #ifdef CONFIG_TMPFS_XATTR
5233 	.listxattr	= shmem_listxattr,
5234 	.set_acl	= simple_set_acl,
5235 	.fileattr_get	= shmem_fileattr_get,
5236 	.fileattr_set	= shmem_fileattr_set,
5237 #endif
5238 };
5239 
5240 static const struct inode_operations shmem_dir_inode_operations = {
5241 #ifdef CONFIG_TMPFS
5242 	.getattr	= shmem_getattr,
5243 	.create		= shmem_create,
5244 	.lookup		= simple_lookup,
5245 	.link		= shmem_link,
5246 	.unlink		= shmem_unlink,
5247 	.symlink	= shmem_symlink,
5248 	.mkdir		= shmem_mkdir,
5249 	.rmdir		= shmem_rmdir,
5250 	.mknod		= shmem_mknod,
5251 	.rename		= shmem_rename2,
5252 	.tmpfile	= shmem_tmpfile,
5253 	.get_offset_ctx	= shmem_get_offset_ctx,
5254 #endif
5255 #ifdef CONFIG_TMPFS_XATTR
5256 	.listxattr	= shmem_listxattr,
5257 	.fileattr_get	= shmem_fileattr_get,
5258 	.fileattr_set	= shmem_fileattr_set,
5259 #endif
5260 #ifdef CONFIG_TMPFS_POSIX_ACL
5261 	.setattr	= shmem_setattr,
5262 	.set_acl	= simple_set_acl,
5263 #endif
5264 };
5265 
5266 static const struct inode_operations shmem_special_inode_operations = {
5267 	.getattr	= shmem_getattr,
5268 #ifdef CONFIG_TMPFS_XATTR
5269 	.listxattr	= shmem_listxattr,
5270 #endif
5271 #ifdef CONFIG_TMPFS_POSIX_ACL
5272 	.setattr	= shmem_setattr,
5273 	.set_acl	= simple_set_acl,
5274 #endif
5275 };
5276 
5277 static const struct super_operations shmem_ops = {
5278 	.alloc_inode	= shmem_alloc_inode,
5279 	.free_inode	= shmem_free_in_core_inode,
5280 	.destroy_inode	= shmem_destroy_inode,
5281 #ifdef CONFIG_TMPFS
5282 	.statfs		= shmem_statfs,
5283 	.show_options	= shmem_show_options,
5284 #endif
5285 #ifdef CONFIG_TMPFS_QUOTA
5286 	.get_dquots	= shmem_get_dquots,
5287 #endif
5288 	.evict_inode	= shmem_evict_inode,
5289 	.drop_inode	= inode_just_drop,
5290 	.put_super	= shmem_put_super,
5291 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5292 	.nr_cached_objects	= shmem_unused_huge_count,
5293 	.free_cached_objects	= shmem_unused_huge_scan,
5294 #endif
5295 };
5296 
5297 static const struct vm_operations_struct shmem_vm_ops = {
5298 	.fault		= shmem_fault,
5299 	.map_pages	= filemap_map_pages,
5300 #ifdef CONFIG_NUMA
5301 	.set_policy     = shmem_set_policy,
5302 	.get_policy     = shmem_get_policy,
5303 #endif
5304 };
5305 
5306 static const struct vm_operations_struct shmem_anon_vm_ops = {
5307 	.fault		= shmem_fault,
5308 	.map_pages	= filemap_map_pages,
5309 #ifdef CONFIG_NUMA
5310 	.set_policy     = shmem_set_policy,
5311 	.get_policy     = shmem_get_policy,
5312 #endif
5313 };
5314 
shmem_init_fs_context(struct fs_context * fc)5315 int shmem_init_fs_context(struct fs_context *fc)
5316 {
5317 	struct shmem_options *ctx;
5318 
5319 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5320 	if (!ctx)
5321 		return -ENOMEM;
5322 
5323 	ctx->mode = 0777 | S_ISVTX;
5324 	ctx->uid = current_fsuid();
5325 	ctx->gid = current_fsgid();
5326 
5327 #if IS_ENABLED(CONFIG_UNICODE)
5328 	ctx->encoding = NULL;
5329 #endif
5330 
5331 	fc->fs_private = ctx;
5332 	fc->ops = &shmem_fs_context_ops;
5333 #ifdef CONFIG_TMPFS
5334 	fc->sb_flags |= SB_I_VERSION;
5335 #endif
5336 	return 0;
5337 }
5338 
5339 static struct file_system_type shmem_fs_type = {
5340 	.owner		= THIS_MODULE,
5341 	.name		= "tmpfs",
5342 	.init_fs_context = shmem_init_fs_context,
5343 #ifdef CONFIG_TMPFS
5344 	.parameters	= shmem_fs_parameters,
5345 #endif
5346 	.kill_sb	= kill_anon_super,
5347 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5348 };
5349 
5350 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5351 
5352 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store)			\
5353 {									\
5354 	.attr	= { .name = __stringify(_name), .mode = _mode },	\
5355 	.show	= _show,						\
5356 	.store	= _store,						\
5357 }
5358 
5359 #define TMPFS_ATTR_W(_name, _store)				\
5360 	static struct kobj_attribute tmpfs_attr_##_name =	\
5361 			__INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5362 
5363 #define TMPFS_ATTR_RW(_name, _show, _store)			\
5364 	static struct kobj_attribute tmpfs_attr_##_name =	\
5365 			__INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5366 
5367 #define TMPFS_ATTR_RO(_name, _show)				\
5368 	static struct kobj_attribute tmpfs_attr_##_name =	\
5369 			__INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5370 
5371 #if IS_ENABLED(CONFIG_UNICODE)
casefold_show(struct kobject * kobj,struct kobj_attribute * a,char * buf)5372 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5373 			char *buf)
5374 {
5375 		return sysfs_emit(buf, "supported\n");
5376 }
5377 TMPFS_ATTR_RO(casefold, casefold_show);
5378 #endif
5379 
5380 static struct attribute *tmpfs_attributes[] = {
5381 #if IS_ENABLED(CONFIG_UNICODE)
5382 	&tmpfs_attr_casefold.attr,
5383 #endif
5384 	NULL
5385 };
5386 
5387 static const struct attribute_group tmpfs_attribute_group = {
5388 	.attrs = tmpfs_attributes,
5389 	.name = "features"
5390 };
5391 
5392 static struct kobject *tmpfs_kobj;
5393 
tmpfs_sysfs_init(void)5394 static int __init tmpfs_sysfs_init(void)
5395 {
5396 	int ret;
5397 
5398 	tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5399 	if (!tmpfs_kobj)
5400 		return -ENOMEM;
5401 
5402 	ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5403 	if (ret)
5404 		kobject_put(tmpfs_kobj);
5405 
5406 	return ret;
5407 }
5408 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5409 
shmem_init(void)5410 void __init shmem_init(void)
5411 {
5412 	int error;
5413 
5414 	shmem_init_inodecache();
5415 
5416 #ifdef CONFIG_TMPFS_QUOTA
5417 	register_quota_format(&shmem_quota_format);
5418 #endif
5419 
5420 	error = register_filesystem(&shmem_fs_type);
5421 	if (error) {
5422 		pr_err("Could not register tmpfs\n");
5423 		goto out2;
5424 	}
5425 
5426 	shm_mnt = kern_mount(&shmem_fs_type);
5427 	if (IS_ERR(shm_mnt)) {
5428 		error = PTR_ERR(shm_mnt);
5429 		pr_err("Could not kern_mount tmpfs\n");
5430 		goto out1;
5431 	}
5432 
5433 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5434 	error = tmpfs_sysfs_init();
5435 	if (error) {
5436 		pr_err("Could not init tmpfs sysfs\n");
5437 		goto out1;
5438 	}
5439 #endif
5440 
5441 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5442 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5443 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5444 	else
5445 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5446 
5447 	/*
5448 	 * Default to setting PMD-sized THP to inherit the global setting and
5449 	 * disable all other multi-size THPs.
5450 	 */
5451 	if (!shmem_orders_configured)
5452 		huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5453 #endif
5454 	return;
5455 
5456 out1:
5457 	unregister_filesystem(&shmem_fs_type);
5458 out2:
5459 #ifdef CONFIG_TMPFS_QUOTA
5460 	unregister_quota_format(&shmem_quota_format);
5461 #endif
5462 	shmem_destroy_inodecache();
5463 	shm_mnt = ERR_PTR(error);
5464 }
5465 
5466 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5467 static ssize_t shmem_enabled_show(struct kobject *kobj,
5468 				  struct kobj_attribute *attr, char *buf)
5469 {
5470 	static const int values[] = {
5471 		SHMEM_HUGE_ALWAYS,
5472 		SHMEM_HUGE_WITHIN_SIZE,
5473 		SHMEM_HUGE_ADVISE,
5474 		SHMEM_HUGE_NEVER,
5475 		SHMEM_HUGE_DENY,
5476 		SHMEM_HUGE_FORCE,
5477 	};
5478 	int len = 0;
5479 	int i;
5480 
5481 	for (i = 0; i < ARRAY_SIZE(values); i++) {
5482 		len += sysfs_emit_at(buf, len,
5483 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5484 				i ? " " : "", shmem_format_huge(values[i]));
5485 	}
5486 	len += sysfs_emit_at(buf, len, "\n");
5487 
5488 	return len;
5489 }
5490 
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5491 static ssize_t shmem_enabled_store(struct kobject *kobj,
5492 		struct kobj_attribute *attr, const char *buf, size_t count)
5493 {
5494 	char tmp[16];
5495 	int huge, err;
5496 
5497 	if (count + 1 > sizeof(tmp))
5498 		return -EINVAL;
5499 	memcpy(tmp, buf, count);
5500 	tmp[count] = '\0';
5501 	if (count && tmp[count - 1] == '\n')
5502 		tmp[count - 1] = '\0';
5503 
5504 	huge = shmem_parse_huge(tmp);
5505 	if (huge == -EINVAL)
5506 		return huge;
5507 
5508 	shmem_huge = huge;
5509 	if (shmem_huge > SHMEM_HUGE_DENY)
5510 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5511 
5512 	err = start_stop_khugepaged();
5513 	return err ? err : count;
5514 }
5515 
5516 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5517 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5518 
thpsize_shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5519 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5520 					  struct kobj_attribute *attr, char *buf)
5521 {
5522 	int order = to_thpsize(kobj)->order;
5523 	const char *output;
5524 
5525 	if (test_bit(order, &huge_shmem_orders_always))
5526 		output = "[always] inherit within_size advise never";
5527 	else if (test_bit(order, &huge_shmem_orders_inherit))
5528 		output = "always [inherit] within_size advise never";
5529 	else if (test_bit(order, &huge_shmem_orders_within_size))
5530 		output = "always inherit [within_size] advise never";
5531 	else if (test_bit(order, &huge_shmem_orders_madvise))
5532 		output = "always inherit within_size [advise] never";
5533 	else
5534 		output = "always inherit within_size advise [never]";
5535 
5536 	return sysfs_emit(buf, "%s\n", output);
5537 }
5538 
thpsize_shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5539 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5540 					   struct kobj_attribute *attr,
5541 					   const char *buf, size_t count)
5542 {
5543 	int order = to_thpsize(kobj)->order;
5544 	ssize_t ret = count;
5545 
5546 	if (sysfs_streq(buf, "always")) {
5547 		spin_lock(&huge_shmem_orders_lock);
5548 		clear_bit(order, &huge_shmem_orders_inherit);
5549 		clear_bit(order, &huge_shmem_orders_madvise);
5550 		clear_bit(order, &huge_shmem_orders_within_size);
5551 		set_bit(order, &huge_shmem_orders_always);
5552 		spin_unlock(&huge_shmem_orders_lock);
5553 	} else if (sysfs_streq(buf, "inherit")) {
5554 		/* Do not override huge allocation policy with non-PMD sized mTHP */
5555 		if (shmem_huge == SHMEM_HUGE_FORCE &&
5556 		    order != HPAGE_PMD_ORDER)
5557 			return -EINVAL;
5558 
5559 		spin_lock(&huge_shmem_orders_lock);
5560 		clear_bit(order, &huge_shmem_orders_always);
5561 		clear_bit(order, &huge_shmem_orders_madvise);
5562 		clear_bit(order, &huge_shmem_orders_within_size);
5563 		set_bit(order, &huge_shmem_orders_inherit);
5564 		spin_unlock(&huge_shmem_orders_lock);
5565 	} else if (sysfs_streq(buf, "within_size")) {
5566 		spin_lock(&huge_shmem_orders_lock);
5567 		clear_bit(order, &huge_shmem_orders_always);
5568 		clear_bit(order, &huge_shmem_orders_inherit);
5569 		clear_bit(order, &huge_shmem_orders_madvise);
5570 		set_bit(order, &huge_shmem_orders_within_size);
5571 		spin_unlock(&huge_shmem_orders_lock);
5572 	} else if (sysfs_streq(buf, "advise")) {
5573 		spin_lock(&huge_shmem_orders_lock);
5574 		clear_bit(order, &huge_shmem_orders_always);
5575 		clear_bit(order, &huge_shmem_orders_inherit);
5576 		clear_bit(order, &huge_shmem_orders_within_size);
5577 		set_bit(order, &huge_shmem_orders_madvise);
5578 		spin_unlock(&huge_shmem_orders_lock);
5579 	} else if (sysfs_streq(buf, "never")) {
5580 		spin_lock(&huge_shmem_orders_lock);
5581 		clear_bit(order, &huge_shmem_orders_always);
5582 		clear_bit(order, &huge_shmem_orders_inherit);
5583 		clear_bit(order, &huge_shmem_orders_within_size);
5584 		clear_bit(order, &huge_shmem_orders_madvise);
5585 		spin_unlock(&huge_shmem_orders_lock);
5586 	} else {
5587 		ret = -EINVAL;
5588 	}
5589 
5590 	if (ret > 0) {
5591 		int err = start_stop_khugepaged();
5592 
5593 		if (err)
5594 			ret = err;
5595 	}
5596 	return ret;
5597 }
5598 
5599 struct kobj_attribute thpsize_shmem_enabled_attr =
5600 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5601 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5602 
5603 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5604 
setup_transparent_hugepage_shmem(char * str)5605 static int __init setup_transparent_hugepage_shmem(char *str)
5606 {
5607 	int huge;
5608 
5609 	huge = shmem_parse_huge(str);
5610 	if (huge == -EINVAL) {
5611 		pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5612 		return huge;
5613 	}
5614 
5615 	shmem_huge = huge;
5616 	return 1;
5617 }
5618 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5619 
setup_transparent_hugepage_tmpfs(char * str)5620 static int __init setup_transparent_hugepage_tmpfs(char *str)
5621 {
5622 	int huge;
5623 
5624 	huge = shmem_parse_huge(str);
5625 	if (huge < 0) {
5626 		pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
5627 		return huge;
5628 	}
5629 
5630 	tmpfs_huge = huge;
5631 	return 1;
5632 }
5633 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
5634 
5635 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_shmem(char * str)5636 static int __init setup_thp_shmem(char *str)
5637 {
5638 	char *token, *range, *policy, *subtoken;
5639 	unsigned long always, inherit, madvise, within_size;
5640 	char *start_size, *end_size;
5641 	int start, end, nr;
5642 	char *p;
5643 
5644 	if (!str || strlen(str) + 1 > PAGE_SIZE)
5645 		goto err;
5646 	strscpy(str_dup, str);
5647 
5648 	always = huge_shmem_orders_always;
5649 	inherit = huge_shmem_orders_inherit;
5650 	madvise = huge_shmem_orders_madvise;
5651 	within_size = huge_shmem_orders_within_size;
5652 	p = str_dup;
5653 	while ((token = strsep(&p, ";")) != NULL) {
5654 		range = strsep(&token, ":");
5655 		policy = token;
5656 
5657 		if (!policy)
5658 			goto err;
5659 
5660 		while ((subtoken = strsep(&range, ",")) != NULL) {
5661 			if (strchr(subtoken, '-')) {
5662 				start_size = strsep(&subtoken, "-");
5663 				end_size = subtoken;
5664 
5665 				start = get_order_from_str(start_size,
5666 							   THP_ORDERS_ALL_FILE_DEFAULT);
5667 				end = get_order_from_str(end_size,
5668 							 THP_ORDERS_ALL_FILE_DEFAULT);
5669 			} else {
5670 				start_size = end_size = subtoken;
5671 				start = end = get_order_from_str(subtoken,
5672 								 THP_ORDERS_ALL_FILE_DEFAULT);
5673 			}
5674 
5675 			if (start < 0) {
5676 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5677 				       start_size);
5678 				goto err;
5679 			}
5680 
5681 			if (end < 0) {
5682 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5683 				       end_size);
5684 				goto err;
5685 			}
5686 
5687 			if (start > end)
5688 				goto err;
5689 
5690 			nr = end - start + 1;
5691 			if (!strcmp(policy, "always")) {
5692 				bitmap_set(&always, start, nr);
5693 				bitmap_clear(&inherit, start, nr);
5694 				bitmap_clear(&madvise, start, nr);
5695 				bitmap_clear(&within_size, start, nr);
5696 			} else if (!strcmp(policy, "advise")) {
5697 				bitmap_set(&madvise, start, nr);
5698 				bitmap_clear(&inherit, start, nr);
5699 				bitmap_clear(&always, start, nr);
5700 				bitmap_clear(&within_size, start, nr);
5701 			} else if (!strcmp(policy, "inherit")) {
5702 				bitmap_set(&inherit, start, nr);
5703 				bitmap_clear(&madvise, start, nr);
5704 				bitmap_clear(&always, start, nr);
5705 				bitmap_clear(&within_size, start, nr);
5706 			} else if (!strcmp(policy, "within_size")) {
5707 				bitmap_set(&within_size, start, nr);
5708 				bitmap_clear(&inherit, start, nr);
5709 				bitmap_clear(&madvise, start, nr);
5710 				bitmap_clear(&always, start, nr);
5711 			} else if (!strcmp(policy, "never")) {
5712 				bitmap_clear(&inherit, start, nr);
5713 				bitmap_clear(&madvise, start, nr);
5714 				bitmap_clear(&always, start, nr);
5715 				bitmap_clear(&within_size, start, nr);
5716 			} else {
5717 				pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5718 				goto err;
5719 			}
5720 		}
5721 	}
5722 
5723 	huge_shmem_orders_always = always;
5724 	huge_shmem_orders_madvise = madvise;
5725 	huge_shmem_orders_inherit = inherit;
5726 	huge_shmem_orders_within_size = within_size;
5727 	shmem_orders_configured = true;
5728 	return 1;
5729 
5730 err:
5731 	pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5732 	return 0;
5733 }
5734 __setup("thp_shmem=", setup_thp_shmem);
5735 
5736 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5737 
5738 #else /* !CONFIG_SHMEM */
5739 
5740 /*
5741  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5742  *
5743  * This is intended for small system where the benefits of the full
5744  * shmem code (swap-backed and resource-limited) are outweighed by
5745  * their complexity. On systems without swap this code should be
5746  * effectively equivalent, but much lighter weight.
5747  */
5748 
5749 static struct file_system_type shmem_fs_type = {
5750 	.name		= "tmpfs",
5751 	.init_fs_context = ramfs_init_fs_context,
5752 	.parameters	= ramfs_fs_parameters,
5753 	.kill_sb	= ramfs_kill_sb,
5754 	.fs_flags	= FS_USERNS_MOUNT,
5755 };
5756 
shmem_init(void)5757 void __init shmem_init(void)
5758 {
5759 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5760 
5761 	shm_mnt = kern_mount(&shmem_fs_type);
5762 	BUG_ON(IS_ERR(shm_mnt));
5763 }
5764 
shmem_unuse(unsigned int type)5765 int shmem_unuse(unsigned int type)
5766 {
5767 	return 0;
5768 }
5769 
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)5770 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5771 {
5772 	return 0;
5773 }
5774 
shmem_unlock_mapping(struct address_space * mapping)5775 void shmem_unlock_mapping(struct address_space *mapping)
5776 {
5777 }
5778 
5779 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)5780 unsigned long shmem_get_unmapped_area(struct file *file,
5781 				      unsigned long addr, unsigned long len,
5782 				      unsigned long pgoff, unsigned long flags)
5783 {
5784 	return mm_get_unmapped_area(file, addr, len, pgoff, flags);
5785 }
5786 #endif
5787 
shmem_truncate_range(struct inode * inode,loff_t lstart,uoff_t lend)5788 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend)
5789 {
5790 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5791 }
5792 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5793 
5794 #define shmem_vm_ops				generic_file_vm_ops
5795 #define shmem_anon_vm_ops			generic_file_vm_ops
5796 #define shmem_file_operations			ramfs_file_operations
5797 #define shmem_acct_size(flags, size)		0
5798 #define shmem_unacct_size(flags, size)		do {} while (0)
5799 
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)5800 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5801 				struct super_block *sb, struct inode *dir,
5802 				umode_t mode, dev_t dev, unsigned long flags)
5803 {
5804 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5805 	return inode ? inode : ERR_PTR(-ENOSPC);
5806 }
5807 
5808 #endif /* CONFIG_SHMEM */
5809 
5810 /* common code */
5811 
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long vm_flags,unsigned int i_flags)5812 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5813 				       loff_t size, unsigned long vm_flags,
5814 				       unsigned int i_flags)
5815 {
5816 	unsigned long flags = (vm_flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0;
5817 	struct inode *inode;
5818 	struct file *res;
5819 
5820 	if (IS_ERR(mnt))
5821 		return ERR_CAST(mnt);
5822 
5823 	if (size < 0 || size > MAX_LFS_FILESIZE)
5824 		return ERR_PTR(-EINVAL);
5825 
5826 	if (is_idmapped_mnt(mnt))
5827 		return ERR_PTR(-EINVAL);
5828 
5829 	if (shmem_acct_size(flags, size))
5830 		return ERR_PTR(-ENOMEM);
5831 
5832 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5833 				S_IFREG | S_IRWXUGO, 0, vm_flags);
5834 	if (IS_ERR(inode)) {
5835 		shmem_unacct_size(flags, size);
5836 		return ERR_CAST(inode);
5837 	}
5838 	inode->i_flags |= i_flags;
5839 	inode->i_size = size;
5840 	clear_nlink(inode);	/* It is unlinked */
5841 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5842 	if (!IS_ERR(res))
5843 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5844 				&shmem_file_operations);
5845 	if (IS_ERR(res))
5846 		iput(inode);
5847 	return res;
5848 }
5849 
5850 /**
5851  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5852  * 	kernel internal.  There will be NO LSM permission checks against the
5853  * 	underlying inode.  So users of this interface must do LSM checks at a
5854  *	higher layer.  The users are the big_key and shm implementations.  LSM
5855  *	checks are provided at the key or shm level rather than the inode.
5856  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5857  * @size: size to be set for the file
5858  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5859  */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)5860 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5861 {
5862 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5863 }
5864 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5865 
5866 /**
5867  * shmem_file_setup - get an unlinked file living in tmpfs
5868  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5869  * @size: size to be set for the file
5870  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5871  */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)5872 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5873 {
5874 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5875 }
5876 EXPORT_SYMBOL_GPL(shmem_file_setup);
5877 
5878 /**
5879  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5880  * @mnt: the tmpfs mount where the file will be created
5881  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5882  * @size: size to be set for the file
5883  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5884  */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)5885 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5886 				       loff_t size, unsigned long flags)
5887 {
5888 	return __shmem_file_setup(mnt, name, size, flags, 0);
5889 }
5890 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5891 
__shmem_zero_setup(unsigned long start,unsigned long end,vm_flags_t vm_flags)5892 static struct file *__shmem_zero_setup(unsigned long start, unsigned long end, vm_flags_t vm_flags)
5893 {
5894 	loff_t size = end - start;
5895 
5896 	/*
5897 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5898 	 * between XFS directory reading and selinux: since this file is only
5899 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5900 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5901 	 */
5902 	return shmem_kernel_file_setup("dev/zero", size, vm_flags);
5903 }
5904 
5905 /**
5906  * shmem_zero_setup - setup a shared anonymous mapping
5907  * @vma: the vma to be mmapped is prepared by do_mmap
5908  * Returns: 0 on success, or error
5909  */
shmem_zero_setup(struct vm_area_struct * vma)5910 int shmem_zero_setup(struct vm_area_struct *vma)
5911 {
5912 	struct file *file = __shmem_zero_setup(vma->vm_start, vma->vm_end, vma->vm_flags);
5913 
5914 	if (IS_ERR(file))
5915 		return PTR_ERR(file);
5916 
5917 	if (vma->vm_file)
5918 		fput(vma->vm_file);
5919 	vma->vm_file = file;
5920 	vma->vm_ops = &shmem_anon_vm_ops;
5921 
5922 	return 0;
5923 }
5924 
5925 /**
5926  * shmem_zero_setup_desc - same as shmem_zero_setup, but determined by VMA
5927  * descriptor for convenience.
5928  * @desc: Describes VMA
5929  * Returns: 0 on success, or error
5930  */
shmem_zero_setup_desc(struct vm_area_desc * desc)5931 int shmem_zero_setup_desc(struct vm_area_desc *desc)
5932 {
5933 	struct file *file = __shmem_zero_setup(desc->start, desc->end, desc->vm_flags);
5934 
5935 	if (IS_ERR(file))
5936 		return PTR_ERR(file);
5937 
5938 	desc->vm_file = file;
5939 	desc->vm_ops = &shmem_anon_vm_ops;
5940 
5941 	return 0;
5942 }
5943 
5944 /**
5945  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5946  * @mapping:	the folio's address_space
5947  * @index:	the folio index
5948  * @gfp:	the page allocator flags to use if allocating
5949  *
5950  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5951  * with any new page allocations done using the specified allocation flags.
5952  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5953  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5954  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5955  *
5956  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5957  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5958  */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5959 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5960 		pgoff_t index, gfp_t gfp)
5961 {
5962 #ifdef CONFIG_SHMEM
5963 	struct inode *inode = mapping->host;
5964 	struct folio *folio;
5965 	int error;
5966 
5967 	error = shmem_get_folio_gfp(inode, index, i_size_read(inode),
5968 				    &folio, SGP_CACHE, gfp, NULL, NULL);
5969 	if (error)
5970 		return ERR_PTR(error);
5971 
5972 	folio_unlock(folio);
5973 	return folio;
5974 #else
5975 	/*
5976 	 * The tiny !SHMEM case uses ramfs without swap
5977 	 */
5978 	return mapping_read_folio_gfp(mapping, index, gfp);
5979 #endif
5980 }
5981 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5982 
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5983 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5984 					 pgoff_t index, gfp_t gfp)
5985 {
5986 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5987 	struct page *page;
5988 
5989 	if (IS_ERR(folio))
5990 		return &folio->page;
5991 
5992 	page = folio_file_page(folio, index);
5993 	if (PageHWPoison(page)) {
5994 		folio_put(folio);
5995 		return ERR_PTR(-EIO);
5996 	}
5997 
5998 	return page;
5999 }
6000 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
6001