1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include <linux/unicode.h> 44 #include "swap.h" 45 46 static struct vfsmount *shm_mnt __ro_after_init; 47 48 #ifdef CONFIG_SHMEM 49 /* 50 * This virtual memory filesystem is heavily based on the ramfs. It 51 * extends ramfs by the ability to use swap and honor resource limits 52 * which makes it a completely usable filesystem. 53 */ 54 55 #include <linux/xattr.h> 56 #include <linux/exportfs.h> 57 #include <linux/posix_acl.h> 58 #include <linux/posix_acl_xattr.h> 59 #include <linux/mman.h> 60 #include <linux/string.h> 61 #include <linux/slab.h> 62 #include <linux/backing-dev.h> 63 #include <linux/writeback.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 #include <linux/quotaops.h> 83 #include <linux/rcupdate_wait.h> 84 85 #include <linux/uaccess.h> 86 87 #include "internal.h" 88 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #if IS_ENABLED(CONFIG_UNICODE) 127 struct unicode_map *encoding; 128 bool strict_encoding; 129 #endif 130 #define SHMEM_SEEN_BLOCKS 1 131 #define SHMEM_SEEN_INODES 2 132 #define SHMEM_SEEN_HUGE 4 133 #define SHMEM_SEEN_INUMS 8 134 #define SHMEM_SEEN_QUOTA 16 135 }; 136 137 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 138 static unsigned long huge_shmem_orders_always __read_mostly; 139 static unsigned long huge_shmem_orders_madvise __read_mostly; 140 static unsigned long huge_shmem_orders_inherit __read_mostly; 141 static unsigned long huge_shmem_orders_within_size __read_mostly; 142 static bool shmem_orders_configured __initdata; 143 #endif 144 145 #ifdef CONFIG_TMPFS 146 static unsigned long shmem_default_max_blocks(void) 147 { 148 return totalram_pages() / 2; 149 } 150 151 static unsigned long shmem_default_max_inodes(void) 152 { 153 unsigned long nr_pages = totalram_pages(); 154 155 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 156 ULONG_MAX / BOGO_INODE_SIZE); 157 } 158 #endif 159 160 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 161 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 162 struct vm_area_struct *vma, vm_fault_t *fault_type); 163 164 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 165 { 166 return sb->s_fs_info; 167 } 168 169 /* 170 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 171 * for shared memory and for shared anonymous (/dev/zero) mappings 172 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 173 * consistent with the pre-accounting of private mappings ... 174 */ 175 static inline int shmem_acct_size(unsigned long flags, loff_t size) 176 { 177 return (flags & VM_NORESERVE) ? 178 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 179 } 180 181 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 182 { 183 if (!(flags & VM_NORESERVE)) 184 vm_unacct_memory(VM_ACCT(size)); 185 } 186 187 static inline int shmem_reacct_size(unsigned long flags, 188 loff_t oldsize, loff_t newsize) 189 { 190 if (!(flags & VM_NORESERVE)) { 191 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 192 return security_vm_enough_memory_mm(current->mm, 193 VM_ACCT(newsize) - VM_ACCT(oldsize)); 194 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 195 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 196 } 197 return 0; 198 } 199 200 /* 201 * ... whereas tmpfs objects are accounted incrementally as 202 * pages are allocated, in order to allow large sparse files. 203 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 204 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 205 */ 206 static inline int shmem_acct_blocks(unsigned long flags, long pages) 207 { 208 if (!(flags & VM_NORESERVE)) 209 return 0; 210 211 return security_vm_enough_memory_mm(current->mm, 212 pages * VM_ACCT(PAGE_SIZE)); 213 } 214 215 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 216 { 217 if (flags & VM_NORESERVE) 218 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 219 } 220 221 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 222 { 223 struct shmem_inode_info *info = SHMEM_I(inode); 224 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 225 int err = -ENOSPC; 226 227 if (shmem_acct_blocks(info->flags, pages)) 228 return err; 229 230 might_sleep(); /* when quotas */ 231 if (sbinfo->max_blocks) { 232 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 233 sbinfo->max_blocks, pages)) 234 goto unacct; 235 236 err = dquot_alloc_block_nodirty(inode, pages); 237 if (err) { 238 percpu_counter_sub(&sbinfo->used_blocks, pages); 239 goto unacct; 240 } 241 } else { 242 err = dquot_alloc_block_nodirty(inode, pages); 243 if (err) 244 goto unacct; 245 } 246 247 return 0; 248 249 unacct: 250 shmem_unacct_blocks(info->flags, pages); 251 return err; 252 } 253 254 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 255 { 256 struct shmem_inode_info *info = SHMEM_I(inode); 257 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 258 259 might_sleep(); /* when quotas */ 260 dquot_free_block_nodirty(inode, pages); 261 262 if (sbinfo->max_blocks) 263 percpu_counter_sub(&sbinfo->used_blocks, pages); 264 shmem_unacct_blocks(info->flags, pages); 265 } 266 267 static const struct super_operations shmem_ops; 268 static const struct address_space_operations shmem_aops; 269 static const struct file_operations shmem_file_operations; 270 static const struct inode_operations shmem_inode_operations; 271 static const struct inode_operations shmem_dir_inode_operations; 272 static const struct inode_operations shmem_special_inode_operations; 273 static const struct vm_operations_struct shmem_vm_ops; 274 static const struct vm_operations_struct shmem_anon_vm_ops; 275 static struct file_system_type shmem_fs_type; 276 277 bool shmem_mapping(const struct address_space *mapping) 278 { 279 return mapping->a_ops == &shmem_aops; 280 } 281 EXPORT_SYMBOL_GPL(shmem_mapping); 282 283 bool vma_is_anon_shmem(const struct vm_area_struct *vma) 284 { 285 return vma->vm_ops == &shmem_anon_vm_ops; 286 } 287 288 bool vma_is_shmem(const struct vm_area_struct *vma) 289 { 290 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 291 } 292 293 static LIST_HEAD(shmem_swaplist); 294 static DEFINE_SPINLOCK(shmem_swaplist_lock); 295 296 #ifdef CONFIG_TMPFS_QUOTA 297 298 static int shmem_enable_quotas(struct super_block *sb, 299 unsigned short quota_types) 300 { 301 int type, err = 0; 302 303 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 304 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 305 if (!(quota_types & (1 << type))) 306 continue; 307 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 308 DQUOT_USAGE_ENABLED | 309 DQUOT_LIMITS_ENABLED); 310 if (err) 311 goto out_err; 312 } 313 return 0; 314 315 out_err: 316 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 317 type, err); 318 for (type--; type >= 0; type--) 319 dquot_quota_off(sb, type); 320 return err; 321 } 322 323 static void shmem_disable_quotas(struct super_block *sb) 324 { 325 int type; 326 327 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 328 dquot_quota_off(sb, type); 329 } 330 331 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 332 { 333 return SHMEM_I(inode)->i_dquot; 334 } 335 #endif /* CONFIG_TMPFS_QUOTA */ 336 337 /* 338 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 339 * produces a novel ino for the newly allocated inode. 340 * 341 * It may also be called when making a hard link to permit the space needed by 342 * each dentry. However, in that case, no new inode number is needed since that 343 * internally draws from another pool of inode numbers (currently global 344 * get_next_ino()). This case is indicated by passing NULL as inop. 345 */ 346 #define SHMEM_INO_BATCH 1024 347 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 348 { 349 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 350 ino_t ino; 351 352 if (!(sb->s_flags & SB_KERNMOUNT)) { 353 raw_spin_lock(&sbinfo->stat_lock); 354 if (sbinfo->max_inodes) { 355 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 356 raw_spin_unlock(&sbinfo->stat_lock); 357 return -ENOSPC; 358 } 359 sbinfo->free_ispace -= BOGO_INODE_SIZE; 360 } 361 if (inop) { 362 ino = sbinfo->next_ino++; 363 if (unlikely(is_zero_ino(ino))) 364 ino = sbinfo->next_ino++; 365 if (unlikely(!sbinfo->full_inums && 366 ino > UINT_MAX)) { 367 /* 368 * Emulate get_next_ino uint wraparound for 369 * compatibility 370 */ 371 if (IS_ENABLED(CONFIG_64BIT)) 372 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 373 __func__, MINOR(sb->s_dev)); 374 sbinfo->next_ino = 1; 375 ino = sbinfo->next_ino++; 376 } 377 *inop = ino; 378 } 379 raw_spin_unlock(&sbinfo->stat_lock); 380 } else if (inop) { 381 /* 382 * __shmem_file_setup, one of our callers, is lock-free: it 383 * doesn't hold stat_lock in shmem_reserve_inode since 384 * max_inodes is always 0, and is called from potentially 385 * unknown contexts. As such, use a per-cpu batched allocator 386 * which doesn't require the per-sb stat_lock unless we are at 387 * the batch boundary. 388 * 389 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 390 * shmem mounts are not exposed to userspace, so we don't need 391 * to worry about things like glibc compatibility. 392 */ 393 ino_t *next_ino; 394 395 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 396 ino = *next_ino; 397 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 398 raw_spin_lock(&sbinfo->stat_lock); 399 ino = sbinfo->next_ino; 400 sbinfo->next_ino += SHMEM_INO_BATCH; 401 raw_spin_unlock(&sbinfo->stat_lock); 402 if (unlikely(is_zero_ino(ino))) 403 ino++; 404 } 405 *inop = ino; 406 *next_ino = ++ino; 407 put_cpu(); 408 } 409 410 return 0; 411 } 412 413 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 414 { 415 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 416 if (sbinfo->max_inodes) { 417 raw_spin_lock(&sbinfo->stat_lock); 418 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 419 raw_spin_unlock(&sbinfo->stat_lock); 420 } 421 } 422 423 /** 424 * shmem_recalc_inode - recalculate the block usage of an inode 425 * @inode: inode to recalc 426 * @alloced: the change in number of pages allocated to inode 427 * @swapped: the change in number of pages swapped from inode 428 * 429 * We have to calculate the free blocks since the mm can drop 430 * undirtied hole pages behind our back. 431 * 432 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 433 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 434 * 435 * Return: true if swapped was incremented from 0, for shmem_writeout(). 436 */ 437 static bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 438 { 439 struct shmem_inode_info *info = SHMEM_I(inode); 440 bool first_swapped = false; 441 long freed; 442 443 spin_lock(&info->lock); 444 info->alloced += alloced; 445 info->swapped += swapped; 446 freed = info->alloced - info->swapped - 447 READ_ONCE(inode->i_mapping->nrpages); 448 /* 449 * Special case: whereas normally shmem_recalc_inode() is called 450 * after i_mapping->nrpages has already been adjusted (up or down), 451 * shmem_writeout() has to raise swapped before nrpages is lowered - 452 * to stop a racing shmem_recalc_inode() from thinking that a page has 453 * been freed. Compensate here, to avoid the need for a followup call. 454 */ 455 if (swapped > 0) { 456 if (info->swapped == swapped) 457 first_swapped = true; 458 freed += swapped; 459 } 460 if (freed > 0) 461 info->alloced -= freed; 462 spin_unlock(&info->lock); 463 464 /* The quota case may block */ 465 if (freed > 0) 466 shmem_inode_unacct_blocks(inode, freed); 467 return first_swapped; 468 } 469 470 bool shmem_charge(struct inode *inode, long pages) 471 { 472 struct address_space *mapping = inode->i_mapping; 473 474 if (shmem_inode_acct_blocks(inode, pages)) 475 return false; 476 477 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 478 xa_lock_irq(&mapping->i_pages); 479 mapping->nrpages += pages; 480 xa_unlock_irq(&mapping->i_pages); 481 482 shmem_recalc_inode(inode, pages, 0); 483 return true; 484 } 485 486 void shmem_uncharge(struct inode *inode, long pages) 487 { 488 /* pages argument is currently unused: keep it to help debugging */ 489 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 490 491 shmem_recalc_inode(inode, 0, 0); 492 } 493 494 /* 495 * Replace item expected in xarray by a new item, while holding xa_lock. 496 */ 497 static int shmem_replace_entry(struct address_space *mapping, 498 pgoff_t index, void *expected, void *replacement) 499 { 500 XA_STATE(xas, &mapping->i_pages, index); 501 void *item; 502 503 VM_BUG_ON(!expected); 504 VM_BUG_ON(!replacement); 505 item = xas_load(&xas); 506 if (item != expected) 507 return -ENOENT; 508 xas_store(&xas, replacement); 509 return 0; 510 } 511 512 /* 513 * Sometimes, before we decide whether to proceed or to fail, we must check 514 * that an entry was not already brought back or split by a racing thread. 515 * 516 * Checking folio is not enough: by the time a swapcache folio is locked, it 517 * might be reused, and again be swapcache, using the same swap as before. 518 * Returns the swap entry's order if it still presents, else returns -1. 519 */ 520 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index, 521 swp_entry_t swap) 522 { 523 XA_STATE(xas, &mapping->i_pages, index); 524 int ret = -1; 525 void *entry; 526 527 rcu_read_lock(); 528 do { 529 entry = xas_load(&xas); 530 if (entry == swp_to_radix_entry(swap)) 531 ret = xas_get_order(&xas); 532 } while (xas_retry(&xas, entry)); 533 rcu_read_unlock(); 534 return ret; 535 } 536 537 /* 538 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 539 * 540 * SHMEM_HUGE_NEVER: 541 * disables huge pages for the mount; 542 * SHMEM_HUGE_ALWAYS: 543 * enables huge pages for the mount; 544 * SHMEM_HUGE_WITHIN_SIZE: 545 * only allocate huge pages if the page will be fully within i_size, 546 * also respect madvise() hints; 547 * SHMEM_HUGE_ADVISE: 548 * only allocate huge pages if requested with madvise(); 549 */ 550 551 #define SHMEM_HUGE_NEVER 0 552 #define SHMEM_HUGE_ALWAYS 1 553 #define SHMEM_HUGE_WITHIN_SIZE 2 554 #define SHMEM_HUGE_ADVISE 3 555 556 /* 557 * Special values. 558 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 559 * 560 * SHMEM_HUGE_DENY: 561 * disables huge on shm_mnt and all mounts, for emergency use; 562 * SHMEM_HUGE_FORCE: 563 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 564 * 565 */ 566 #define SHMEM_HUGE_DENY (-1) 567 #define SHMEM_HUGE_FORCE (-2) 568 569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 570 /* ifdef here to avoid bloating shmem.o when not necessary */ 571 572 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 573 static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER; 574 575 static unsigned int shmem_get_orders_within_size(struct inode *inode, 576 unsigned long within_size_orders, pgoff_t index, 577 loff_t write_end) 578 { 579 pgoff_t aligned_index; 580 unsigned long order; 581 loff_t i_size; 582 583 order = highest_order(within_size_orders); 584 while (within_size_orders) { 585 aligned_index = round_up(index + 1, 1 << order); 586 i_size = max(write_end, i_size_read(inode)); 587 i_size = round_up(i_size, PAGE_SIZE); 588 if (i_size >> PAGE_SHIFT >= aligned_index) 589 return within_size_orders; 590 591 order = next_order(&within_size_orders, order); 592 } 593 594 return 0; 595 } 596 597 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 598 loff_t write_end, bool shmem_huge_force, 599 struct vm_area_struct *vma, 600 vm_flags_t vm_flags) 601 { 602 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ? 603 0 : BIT(HPAGE_PMD_ORDER); 604 unsigned long within_size_orders; 605 606 if (!S_ISREG(inode->i_mode)) 607 return 0; 608 if (shmem_huge == SHMEM_HUGE_DENY) 609 return 0; 610 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 611 return maybe_pmd_order; 612 613 /* 614 * The huge order allocation for anon shmem is controlled through 615 * the mTHP interface, so we still use PMD-sized huge order to 616 * check whether global control is enabled. 617 * 618 * For tmpfs mmap()'s huge order, we still use PMD-sized order to 619 * allocate huge pages due to lack of a write size hint. 620 * 621 * For tmpfs with 'huge=always' or 'huge=within_size' mount option, 622 * we will always try PMD-sized order first. If that failed, it will 623 * fall back to small large folios. 624 */ 625 switch (SHMEM_SB(inode->i_sb)->huge) { 626 case SHMEM_HUGE_ALWAYS: 627 if (vma) 628 return maybe_pmd_order; 629 630 return THP_ORDERS_ALL_FILE_DEFAULT; 631 case SHMEM_HUGE_WITHIN_SIZE: 632 if (vma) 633 within_size_orders = maybe_pmd_order; 634 else 635 within_size_orders = THP_ORDERS_ALL_FILE_DEFAULT; 636 637 within_size_orders = shmem_get_orders_within_size(inode, within_size_orders, 638 index, write_end); 639 if (within_size_orders > 0) 640 return within_size_orders; 641 642 fallthrough; 643 case SHMEM_HUGE_ADVISE: 644 if (vm_flags & VM_HUGEPAGE) 645 return maybe_pmd_order; 646 fallthrough; 647 default: 648 return 0; 649 } 650 } 651 652 static int shmem_parse_huge(const char *str) 653 { 654 int huge; 655 656 if (!str) 657 return -EINVAL; 658 659 if (!strcmp(str, "never")) 660 huge = SHMEM_HUGE_NEVER; 661 else if (!strcmp(str, "always")) 662 huge = SHMEM_HUGE_ALWAYS; 663 else if (!strcmp(str, "within_size")) 664 huge = SHMEM_HUGE_WITHIN_SIZE; 665 else if (!strcmp(str, "advise")) 666 huge = SHMEM_HUGE_ADVISE; 667 else if (!strcmp(str, "deny")) 668 huge = SHMEM_HUGE_DENY; 669 else if (!strcmp(str, "force")) 670 huge = SHMEM_HUGE_FORCE; 671 else 672 return -EINVAL; 673 674 if (!has_transparent_hugepage() && 675 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 676 return -EINVAL; 677 678 /* Do not override huge allocation policy with non-PMD sized mTHP */ 679 if (huge == SHMEM_HUGE_FORCE && 680 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 681 return -EINVAL; 682 683 return huge; 684 } 685 686 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 687 static const char *shmem_format_huge(int huge) 688 { 689 switch (huge) { 690 case SHMEM_HUGE_NEVER: 691 return "never"; 692 case SHMEM_HUGE_ALWAYS: 693 return "always"; 694 case SHMEM_HUGE_WITHIN_SIZE: 695 return "within_size"; 696 case SHMEM_HUGE_ADVISE: 697 return "advise"; 698 case SHMEM_HUGE_DENY: 699 return "deny"; 700 case SHMEM_HUGE_FORCE: 701 return "force"; 702 default: 703 VM_BUG_ON(1); 704 return "bad_val"; 705 } 706 } 707 #endif 708 709 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 710 struct shrink_control *sc, unsigned long nr_to_free) 711 { 712 LIST_HEAD(list), *pos, *next; 713 struct inode *inode; 714 struct shmem_inode_info *info; 715 struct folio *folio; 716 unsigned long batch = sc ? sc->nr_to_scan : 128; 717 unsigned long split = 0, freed = 0; 718 719 if (list_empty(&sbinfo->shrinklist)) 720 return SHRINK_STOP; 721 722 spin_lock(&sbinfo->shrinklist_lock); 723 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 724 info = list_entry(pos, struct shmem_inode_info, shrinklist); 725 726 /* pin the inode */ 727 inode = igrab(&info->vfs_inode); 728 729 /* inode is about to be evicted */ 730 if (!inode) { 731 list_del_init(&info->shrinklist); 732 goto next; 733 } 734 735 list_move(&info->shrinklist, &list); 736 next: 737 sbinfo->shrinklist_len--; 738 if (!--batch) 739 break; 740 } 741 spin_unlock(&sbinfo->shrinklist_lock); 742 743 list_for_each_safe(pos, next, &list) { 744 pgoff_t next, end; 745 loff_t i_size; 746 int ret; 747 748 info = list_entry(pos, struct shmem_inode_info, shrinklist); 749 inode = &info->vfs_inode; 750 751 if (nr_to_free && freed >= nr_to_free) 752 goto move_back; 753 754 i_size = i_size_read(inode); 755 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 756 if (!folio || xa_is_value(folio)) 757 goto drop; 758 759 /* No large folio at the end of the file: nothing to split */ 760 if (!folio_test_large(folio)) { 761 folio_put(folio); 762 goto drop; 763 } 764 765 /* Check if there is anything to gain from splitting */ 766 next = folio_next_index(folio); 767 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 768 if (end <= folio->index || end >= next) { 769 folio_put(folio); 770 goto drop; 771 } 772 773 /* 774 * Move the inode on the list back to shrinklist if we failed 775 * to lock the page at this time. 776 * 777 * Waiting for the lock may lead to deadlock in the 778 * reclaim path. 779 */ 780 if (!folio_trylock(folio)) { 781 folio_put(folio); 782 goto move_back; 783 } 784 785 ret = split_folio(folio); 786 folio_unlock(folio); 787 folio_put(folio); 788 789 /* If split failed move the inode on the list back to shrinklist */ 790 if (ret) 791 goto move_back; 792 793 freed += next - end; 794 split++; 795 drop: 796 list_del_init(&info->shrinklist); 797 goto put; 798 move_back: 799 /* 800 * Make sure the inode is either on the global list or deleted 801 * from any local list before iput() since it could be deleted 802 * in another thread once we put the inode (then the local list 803 * is corrupted). 804 */ 805 spin_lock(&sbinfo->shrinklist_lock); 806 list_move(&info->shrinklist, &sbinfo->shrinklist); 807 sbinfo->shrinklist_len++; 808 spin_unlock(&sbinfo->shrinklist_lock); 809 put: 810 iput(inode); 811 } 812 813 return split; 814 } 815 816 static long shmem_unused_huge_scan(struct super_block *sb, 817 struct shrink_control *sc) 818 { 819 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 820 821 if (!READ_ONCE(sbinfo->shrinklist_len)) 822 return SHRINK_STOP; 823 824 return shmem_unused_huge_shrink(sbinfo, sc, 0); 825 } 826 827 static long shmem_unused_huge_count(struct super_block *sb, 828 struct shrink_control *sc) 829 { 830 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 831 return READ_ONCE(sbinfo->shrinklist_len); 832 } 833 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 834 835 #define shmem_huge SHMEM_HUGE_DENY 836 837 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 838 struct shrink_control *sc, unsigned long nr_to_free) 839 { 840 return 0; 841 } 842 843 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 844 loff_t write_end, bool shmem_huge_force, 845 struct vm_area_struct *vma, 846 vm_flags_t vm_flags) 847 { 848 return 0; 849 } 850 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 851 852 static void shmem_update_stats(struct folio *folio, int nr_pages) 853 { 854 if (folio_test_pmd_mappable(folio)) 855 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 856 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 857 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 858 } 859 860 /* 861 * Somewhat like filemap_add_folio, but error if expected item has gone. 862 */ 863 static int shmem_add_to_page_cache(struct folio *folio, 864 struct address_space *mapping, 865 pgoff_t index, void *expected, gfp_t gfp) 866 { 867 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 868 unsigned long nr = folio_nr_pages(folio); 869 swp_entry_t iter, swap; 870 void *entry; 871 872 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 873 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 874 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 875 876 folio_ref_add(folio, nr); 877 folio->mapping = mapping; 878 folio->index = index; 879 880 gfp &= GFP_RECLAIM_MASK; 881 folio_throttle_swaprate(folio, gfp); 882 swap = radix_to_swp_entry(expected); 883 884 do { 885 iter = swap; 886 xas_lock_irq(&xas); 887 xas_for_each_conflict(&xas, entry) { 888 /* 889 * The range must either be empty, or filled with 890 * expected swap entries. Shmem swap entries are never 891 * partially freed without split of both entry and 892 * folio, so there shouldn't be any holes. 893 */ 894 if (!expected || entry != swp_to_radix_entry(iter)) { 895 xas_set_err(&xas, -EEXIST); 896 goto unlock; 897 } 898 iter.val += 1 << xas_get_order(&xas); 899 } 900 if (expected && iter.val - nr != swap.val) { 901 xas_set_err(&xas, -EEXIST); 902 goto unlock; 903 } 904 xas_store(&xas, folio); 905 if (xas_error(&xas)) 906 goto unlock; 907 shmem_update_stats(folio, nr); 908 mapping->nrpages += nr; 909 unlock: 910 xas_unlock_irq(&xas); 911 } while (xas_nomem(&xas, gfp)); 912 913 if (xas_error(&xas)) { 914 folio->mapping = NULL; 915 folio_ref_sub(folio, nr); 916 return xas_error(&xas); 917 } 918 919 return 0; 920 } 921 922 /* 923 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 924 */ 925 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 926 { 927 struct address_space *mapping = folio->mapping; 928 long nr = folio_nr_pages(folio); 929 int error; 930 931 xa_lock_irq(&mapping->i_pages); 932 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 933 folio->mapping = NULL; 934 mapping->nrpages -= nr; 935 shmem_update_stats(folio, -nr); 936 xa_unlock_irq(&mapping->i_pages); 937 folio_put_refs(folio, nr); 938 BUG_ON(error); 939 } 940 941 /* 942 * Remove swap entry from page cache, free the swap and its page cache. Returns 943 * the number of pages being freed. 0 means entry not found in XArray (0 pages 944 * being freed). 945 */ 946 static long shmem_free_swap(struct address_space *mapping, 947 pgoff_t index, void *radswap) 948 { 949 int order = xa_get_order(&mapping->i_pages, index); 950 void *old; 951 952 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 953 if (old != radswap) 954 return 0; 955 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order); 956 957 return 1 << order; 958 } 959 960 /* 961 * Determine (in bytes) how many of the shmem object's pages mapped by the 962 * given offsets are swapped out. 963 * 964 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 965 * as long as the inode doesn't go away and racy results are not a problem. 966 */ 967 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 968 pgoff_t start, pgoff_t end) 969 { 970 XA_STATE(xas, &mapping->i_pages, start); 971 struct folio *folio; 972 unsigned long swapped = 0; 973 unsigned long max = end - 1; 974 975 rcu_read_lock(); 976 xas_for_each(&xas, folio, max) { 977 if (xas_retry(&xas, folio)) 978 continue; 979 if (xa_is_value(folio)) 980 swapped += 1 << xas_get_order(&xas); 981 if (xas.xa_index == max) 982 break; 983 if (need_resched()) { 984 xas_pause(&xas); 985 cond_resched_rcu(); 986 } 987 } 988 rcu_read_unlock(); 989 990 return swapped << PAGE_SHIFT; 991 } 992 993 /* 994 * Determine (in bytes) how many of the shmem object's pages mapped by the 995 * given vma is swapped out. 996 * 997 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 998 * as long as the inode doesn't go away and racy results are not a problem. 999 */ 1000 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 1001 { 1002 struct inode *inode = file_inode(vma->vm_file); 1003 struct shmem_inode_info *info = SHMEM_I(inode); 1004 struct address_space *mapping = inode->i_mapping; 1005 unsigned long swapped; 1006 1007 /* Be careful as we don't hold info->lock */ 1008 swapped = READ_ONCE(info->swapped); 1009 1010 /* 1011 * The easier cases are when the shmem object has nothing in swap, or 1012 * the vma maps it whole. Then we can simply use the stats that we 1013 * already track. 1014 */ 1015 if (!swapped) 1016 return 0; 1017 1018 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 1019 return swapped << PAGE_SHIFT; 1020 1021 /* Here comes the more involved part */ 1022 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 1023 vma->vm_pgoff + vma_pages(vma)); 1024 } 1025 1026 /* 1027 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 1028 */ 1029 void shmem_unlock_mapping(struct address_space *mapping) 1030 { 1031 struct folio_batch fbatch; 1032 pgoff_t index = 0; 1033 1034 folio_batch_init(&fbatch); 1035 /* 1036 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 1037 */ 1038 while (!mapping_unevictable(mapping) && 1039 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 1040 check_move_unevictable_folios(&fbatch); 1041 folio_batch_release(&fbatch); 1042 cond_resched(); 1043 } 1044 } 1045 1046 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 1047 { 1048 struct folio *folio; 1049 1050 /* 1051 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 1052 * beyond i_size, and reports fallocated folios as holes. 1053 */ 1054 folio = filemap_get_entry(inode->i_mapping, index); 1055 if (!folio) 1056 return folio; 1057 if (!xa_is_value(folio)) { 1058 folio_lock(folio); 1059 if (folio->mapping == inode->i_mapping) 1060 return folio; 1061 /* The folio has been swapped out */ 1062 folio_unlock(folio); 1063 folio_put(folio); 1064 } 1065 /* 1066 * But read a folio back from swap if any of it is within i_size 1067 * (although in some cases this is just a waste of time). 1068 */ 1069 folio = NULL; 1070 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 1071 return folio; 1072 } 1073 1074 /* 1075 * Remove range of pages and swap entries from page cache, and free them. 1076 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1077 */ 1078 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 1079 bool unfalloc) 1080 { 1081 struct address_space *mapping = inode->i_mapping; 1082 struct shmem_inode_info *info = SHMEM_I(inode); 1083 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1084 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1085 struct folio_batch fbatch; 1086 pgoff_t indices[PAGEVEC_SIZE]; 1087 struct folio *folio; 1088 bool same_folio; 1089 long nr_swaps_freed = 0; 1090 pgoff_t index; 1091 int i; 1092 1093 if (lend == -1) 1094 end = -1; /* unsigned, so actually very big */ 1095 1096 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1097 info->fallocend = start; 1098 1099 folio_batch_init(&fbatch); 1100 index = start; 1101 while (index < end && find_lock_entries(mapping, &index, end - 1, 1102 &fbatch, indices)) { 1103 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1104 folio = fbatch.folios[i]; 1105 1106 if (xa_is_value(folio)) { 1107 if (unfalloc) 1108 continue; 1109 nr_swaps_freed += shmem_free_swap(mapping, 1110 indices[i], folio); 1111 continue; 1112 } 1113 1114 if (!unfalloc || !folio_test_uptodate(folio)) 1115 truncate_inode_folio(mapping, folio); 1116 folio_unlock(folio); 1117 } 1118 folio_batch_remove_exceptionals(&fbatch); 1119 folio_batch_release(&fbatch); 1120 cond_resched(); 1121 } 1122 1123 /* 1124 * When undoing a failed fallocate, we want none of the partial folio 1125 * zeroing and splitting below, but shall want to truncate the whole 1126 * folio when !uptodate indicates that it was added by this fallocate, 1127 * even when [lstart, lend] covers only a part of the folio. 1128 */ 1129 if (unfalloc) 1130 goto whole_folios; 1131 1132 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1133 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1134 if (folio) { 1135 same_folio = lend < folio_pos(folio) + folio_size(folio); 1136 folio_mark_dirty(folio); 1137 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1138 start = folio_next_index(folio); 1139 if (same_folio) 1140 end = folio->index; 1141 } 1142 folio_unlock(folio); 1143 folio_put(folio); 1144 folio = NULL; 1145 } 1146 1147 if (!same_folio) 1148 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1149 if (folio) { 1150 folio_mark_dirty(folio); 1151 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1152 end = folio->index; 1153 folio_unlock(folio); 1154 folio_put(folio); 1155 } 1156 1157 whole_folios: 1158 1159 index = start; 1160 while (index < end) { 1161 cond_resched(); 1162 1163 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1164 indices)) { 1165 /* If all gone or hole-punch or unfalloc, we're done */ 1166 if (index == start || end != -1) 1167 break; 1168 /* But if truncating, restart to make sure all gone */ 1169 index = start; 1170 continue; 1171 } 1172 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1173 folio = fbatch.folios[i]; 1174 1175 if (xa_is_value(folio)) { 1176 long swaps_freed; 1177 1178 if (unfalloc) 1179 continue; 1180 swaps_freed = shmem_free_swap(mapping, indices[i], folio); 1181 if (!swaps_freed) { 1182 /* Swap was replaced by page: retry */ 1183 index = indices[i]; 1184 break; 1185 } 1186 nr_swaps_freed += swaps_freed; 1187 continue; 1188 } 1189 1190 folio_lock(folio); 1191 1192 if (!unfalloc || !folio_test_uptodate(folio)) { 1193 if (folio_mapping(folio) != mapping) { 1194 /* Page was replaced by swap: retry */ 1195 folio_unlock(folio); 1196 index = indices[i]; 1197 break; 1198 } 1199 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1200 folio); 1201 1202 if (!folio_test_large(folio)) { 1203 truncate_inode_folio(mapping, folio); 1204 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1205 /* 1206 * If we split a page, reset the loop so 1207 * that we pick up the new sub pages. 1208 * Otherwise the THP was entirely 1209 * dropped or the target range was 1210 * zeroed, so just continue the loop as 1211 * is. 1212 */ 1213 if (!folio_test_large(folio)) { 1214 folio_unlock(folio); 1215 index = start; 1216 break; 1217 } 1218 } 1219 } 1220 folio_unlock(folio); 1221 } 1222 folio_batch_remove_exceptionals(&fbatch); 1223 folio_batch_release(&fbatch); 1224 } 1225 1226 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1227 } 1228 1229 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1230 { 1231 shmem_undo_range(inode, lstart, lend, false); 1232 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1233 inode_inc_iversion(inode); 1234 } 1235 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1236 1237 static int shmem_getattr(struct mnt_idmap *idmap, 1238 const struct path *path, struct kstat *stat, 1239 u32 request_mask, unsigned int query_flags) 1240 { 1241 struct inode *inode = path->dentry->d_inode; 1242 struct shmem_inode_info *info = SHMEM_I(inode); 1243 1244 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1245 shmem_recalc_inode(inode, 0, 0); 1246 1247 if (info->fsflags & FS_APPEND_FL) 1248 stat->attributes |= STATX_ATTR_APPEND; 1249 if (info->fsflags & FS_IMMUTABLE_FL) 1250 stat->attributes |= STATX_ATTR_IMMUTABLE; 1251 if (info->fsflags & FS_NODUMP_FL) 1252 stat->attributes |= STATX_ATTR_NODUMP; 1253 stat->attributes_mask |= (STATX_ATTR_APPEND | 1254 STATX_ATTR_IMMUTABLE | 1255 STATX_ATTR_NODUMP); 1256 generic_fillattr(idmap, request_mask, inode, stat); 1257 1258 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1259 stat->blksize = HPAGE_PMD_SIZE; 1260 1261 if (request_mask & STATX_BTIME) { 1262 stat->result_mask |= STATX_BTIME; 1263 stat->btime.tv_sec = info->i_crtime.tv_sec; 1264 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1265 } 1266 1267 return 0; 1268 } 1269 1270 static int shmem_setattr(struct mnt_idmap *idmap, 1271 struct dentry *dentry, struct iattr *attr) 1272 { 1273 struct inode *inode = d_inode(dentry); 1274 struct shmem_inode_info *info = SHMEM_I(inode); 1275 int error; 1276 bool update_mtime = false; 1277 bool update_ctime = true; 1278 1279 error = setattr_prepare(idmap, dentry, attr); 1280 if (error) 1281 return error; 1282 1283 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1284 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1285 return -EPERM; 1286 } 1287 } 1288 1289 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1290 loff_t oldsize = inode->i_size; 1291 loff_t newsize = attr->ia_size; 1292 1293 /* protected by i_rwsem */ 1294 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1295 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1296 return -EPERM; 1297 1298 if (newsize != oldsize) { 1299 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1300 oldsize, newsize); 1301 if (error) 1302 return error; 1303 i_size_write(inode, newsize); 1304 update_mtime = true; 1305 } else { 1306 update_ctime = false; 1307 } 1308 if (newsize <= oldsize) { 1309 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1310 if (oldsize > holebegin) 1311 unmap_mapping_range(inode->i_mapping, 1312 holebegin, 0, 1); 1313 if (info->alloced) 1314 shmem_truncate_range(inode, 1315 newsize, (loff_t)-1); 1316 /* unmap again to remove racily COWed private pages */ 1317 if (oldsize > holebegin) 1318 unmap_mapping_range(inode->i_mapping, 1319 holebegin, 0, 1); 1320 } 1321 } 1322 1323 if (is_quota_modification(idmap, inode, attr)) { 1324 error = dquot_initialize(inode); 1325 if (error) 1326 return error; 1327 } 1328 1329 /* Transfer quota accounting */ 1330 if (i_uid_needs_update(idmap, attr, inode) || 1331 i_gid_needs_update(idmap, attr, inode)) { 1332 error = dquot_transfer(idmap, inode, attr); 1333 if (error) 1334 return error; 1335 } 1336 1337 setattr_copy(idmap, inode, attr); 1338 if (attr->ia_valid & ATTR_MODE) 1339 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1340 if (!error && update_ctime) { 1341 inode_set_ctime_current(inode); 1342 if (update_mtime) 1343 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1344 inode_inc_iversion(inode); 1345 } 1346 return error; 1347 } 1348 1349 static void shmem_evict_inode(struct inode *inode) 1350 { 1351 struct shmem_inode_info *info = SHMEM_I(inode); 1352 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1353 size_t freed = 0; 1354 1355 if (shmem_mapping(inode->i_mapping)) { 1356 shmem_unacct_size(info->flags, inode->i_size); 1357 inode->i_size = 0; 1358 mapping_set_exiting(inode->i_mapping); 1359 shmem_truncate_range(inode, 0, (loff_t)-1); 1360 if (!list_empty(&info->shrinklist)) { 1361 spin_lock(&sbinfo->shrinklist_lock); 1362 if (!list_empty(&info->shrinklist)) { 1363 list_del_init(&info->shrinklist); 1364 sbinfo->shrinklist_len--; 1365 } 1366 spin_unlock(&sbinfo->shrinklist_lock); 1367 } 1368 while (!list_empty(&info->swaplist)) { 1369 /* Wait while shmem_unuse() is scanning this inode... */ 1370 wait_var_event(&info->stop_eviction, 1371 !atomic_read(&info->stop_eviction)); 1372 spin_lock(&shmem_swaplist_lock); 1373 /* ...but beware of the race if we peeked too early */ 1374 if (!atomic_read(&info->stop_eviction)) 1375 list_del_init(&info->swaplist); 1376 spin_unlock(&shmem_swaplist_lock); 1377 } 1378 } 1379 1380 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1381 shmem_free_inode(inode->i_sb, freed); 1382 WARN_ON(inode->i_blocks); 1383 clear_inode(inode); 1384 #ifdef CONFIG_TMPFS_QUOTA 1385 dquot_free_inode(inode); 1386 dquot_drop(inode); 1387 #endif 1388 } 1389 1390 static unsigned int shmem_find_swap_entries(struct address_space *mapping, 1391 pgoff_t start, struct folio_batch *fbatch, 1392 pgoff_t *indices, unsigned int type) 1393 { 1394 XA_STATE(xas, &mapping->i_pages, start); 1395 struct folio *folio; 1396 swp_entry_t entry; 1397 1398 rcu_read_lock(); 1399 xas_for_each(&xas, folio, ULONG_MAX) { 1400 if (xas_retry(&xas, folio)) 1401 continue; 1402 1403 if (!xa_is_value(folio)) 1404 continue; 1405 1406 entry = radix_to_swp_entry(folio); 1407 /* 1408 * swapin error entries can be found in the mapping. But they're 1409 * deliberately ignored here as we've done everything we can do. 1410 */ 1411 if (swp_type(entry) != type) 1412 continue; 1413 1414 indices[folio_batch_count(fbatch)] = xas.xa_index; 1415 if (!folio_batch_add(fbatch, folio)) 1416 break; 1417 1418 if (need_resched()) { 1419 xas_pause(&xas); 1420 cond_resched_rcu(); 1421 } 1422 } 1423 rcu_read_unlock(); 1424 1425 return folio_batch_count(fbatch); 1426 } 1427 1428 /* 1429 * Move the swapped pages for an inode to page cache. Returns the count 1430 * of pages swapped in, or the error in case of failure. 1431 */ 1432 static int shmem_unuse_swap_entries(struct inode *inode, 1433 struct folio_batch *fbatch, pgoff_t *indices) 1434 { 1435 int i = 0; 1436 int ret = 0; 1437 int error = 0; 1438 struct address_space *mapping = inode->i_mapping; 1439 1440 for (i = 0; i < folio_batch_count(fbatch); i++) { 1441 struct folio *folio = fbatch->folios[i]; 1442 1443 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1444 mapping_gfp_mask(mapping), NULL, NULL); 1445 if (error == 0) { 1446 folio_unlock(folio); 1447 folio_put(folio); 1448 ret++; 1449 } 1450 if (error == -ENOMEM) 1451 break; 1452 error = 0; 1453 } 1454 return error ? error : ret; 1455 } 1456 1457 /* 1458 * If swap found in inode, free it and move page from swapcache to filecache. 1459 */ 1460 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1461 { 1462 struct address_space *mapping = inode->i_mapping; 1463 pgoff_t start = 0; 1464 struct folio_batch fbatch; 1465 pgoff_t indices[PAGEVEC_SIZE]; 1466 int ret = 0; 1467 1468 do { 1469 folio_batch_init(&fbatch); 1470 if (!shmem_find_swap_entries(mapping, start, &fbatch, 1471 indices, type)) { 1472 ret = 0; 1473 break; 1474 } 1475 1476 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1477 if (ret < 0) 1478 break; 1479 1480 start = indices[folio_batch_count(&fbatch) - 1]; 1481 } while (true); 1482 1483 return ret; 1484 } 1485 1486 /* 1487 * Read all the shared memory data that resides in the swap 1488 * device 'type' back into memory, so the swap device can be 1489 * unused. 1490 */ 1491 int shmem_unuse(unsigned int type) 1492 { 1493 struct shmem_inode_info *info, *next; 1494 int error = 0; 1495 1496 if (list_empty(&shmem_swaplist)) 1497 return 0; 1498 1499 spin_lock(&shmem_swaplist_lock); 1500 start_over: 1501 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1502 if (!info->swapped) { 1503 list_del_init(&info->swaplist); 1504 continue; 1505 } 1506 /* 1507 * Drop the swaplist mutex while searching the inode for swap; 1508 * but before doing so, make sure shmem_evict_inode() will not 1509 * remove placeholder inode from swaplist, nor let it be freed 1510 * (igrab() would protect from unlink, but not from unmount). 1511 */ 1512 atomic_inc(&info->stop_eviction); 1513 spin_unlock(&shmem_swaplist_lock); 1514 1515 error = shmem_unuse_inode(&info->vfs_inode, type); 1516 cond_resched(); 1517 1518 spin_lock(&shmem_swaplist_lock); 1519 if (atomic_dec_and_test(&info->stop_eviction)) 1520 wake_up_var(&info->stop_eviction); 1521 if (error) 1522 break; 1523 if (list_empty(&info->swaplist)) 1524 goto start_over; 1525 next = list_next_entry(info, swaplist); 1526 if (!info->swapped) 1527 list_del_init(&info->swaplist); 1528 } 1529 spin_unlock(&shmem_swaplist_lock); 1530 1531 return error; 1532 } 1533 1534 /** 1535 * shmem_writeout - Write the folio to swap 1536 * @folio: The folio to write 1537 * @plug: swap plug 1538 * @folio_list: list to put back folios on split 1539 * 1540 * Move the folio from the page cache to the swap cache. 1541 */ 1542 int shmem_writeout(struct folio *folio, struct swap_iocb **plug, 1543 struct list_head *folio_list) 1544 { 1545 struct address_space *mapping = folio->mapping; 1546 struct inode *inode = mapping->host; 1547 struct shmem_inode_info *info = SHMEM_I(inode); 1548 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1549 pgoff_t index; 1550 int nr_pages; 1551 bool split = false; 1552 1553 if ((info->flags & VM_LOCKED) || sbinfo->noswap) 1554 goto redirty; 1555 1556 if (!total_swap_pages) 1557 goto redirty; 1558 1559 /* 1560 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1561 * split when swapping. 1562 * 1563 * And shrinkage of pages beyond i_size does not split swap, so 1564 * swapout of a large folio crossing i_size needs to split too 1565 * (unless fallocate has been used to preallocate beyond EOF). 1566 */ 1567 if (folio_test_large(folio)) { 1568 index = shmem_fallocend(inode, 1569 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1570 if ((index > folio->index && index < folio_next_index(folio)) || 1571 !IS_ENABLED(CONFIG_THP_SWAP)) 1572 split = true; 1573 } 1574 1575 if (split) { 1576 try_split: 1577 /* Ensure the subpages are still dirty */ 1578 folio_test_set_dirty(folio); 1579 if (split_folio_to_list(folio, folio_list)) 1580 goto redirty; 1581 folio_clear_dirty(folio); 1582 } 1583 1584 index = folio->index; 1585 nr_pages = folio_nr_pages(folio); 1586 1587 /* 1588 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1589 * value into swapfile.c, the only way we can correctly account for a 1590 * fallocated folio arriving here is now to initialize it and write it. 1591 * 1592 * That's okay for a folio already fallocated earlier, but if we have 1593 * not yet completed the fallocation, then (a) we want to keep track 1594 * of this folio in case we have to undo it, and (b) it may not be a 1595 * good idea to continue anyway, once we're pushing into swap. So 1596 * reactivate the folio, and let shmem_fallocate() quit when too many. 1597 */ 1598 if (!folio_test_uptodate(folio)) { 1599 if (inode->i_private) { 1600 struct shmem_falloc *shmem_falloc; 1601 spin_lock(&inode->i_lock); 1602 shmem_falloc = inode->i_private; 1603 if (shmem_falloc && 1604 !shmem_falloc->waitq && 1605 index >= shmem_falloc->start && 1606 index < shmem_falloc->next) 1607 shmem_falloc->nr_unswapped += nr_pages; 1608 else 1609 shmem_falloc = NULL; 1610 spin_unlock(&inode->i_lock); 1611 if (shmem_falloc) 1612 goto redirty; 1613 } 1614 folio_zero_range(folio, 0, folio_size(folio)); 1615 flush_dcache_folio(folio); 1616 folio_mark_uptodate(folio); 1617 } 1618 1619 if (!folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN)) { 1620 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages); 1621 int error; 1622 1623 /* 1624 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1625 * if it's not already there. Do it now before the folio is 1626 * removed from page cache, when its pagelock no longer 1627 * protects the inode from eviction. And do it now, after 1628 * we've incremented swapped, because shmem_unuse() will 1629 * prune a !swapped inode from the swaplist. 1630 */ 1631 if (first_swapped) { 1632 spin_lock(&shmem_swaplist_lock); 1633 if (list_empty(&info->swaplist)) 1634 list_add(&info->swaplist, &shmem_swaplist); 1635 spin_unlock(&shmem_swaplist_lock); 1636 } 1637 1638 swap_shmem_alloc(folio->swap, nr_pages); 1639 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap)); 1640 1641 BUG_ON(folio_mapped(folio)); 1642 error = swap_writeout(folio, plug); 1643 if (error != AOP_WRITEPAGE_ACTIVATE) { 1644 /* folio has been unlocked */ 1645 return error; 1646 } 1647 1648 /* 1649 * The intention here is to avoid holding on to the swap when 1650 * zswap was unable to compress and unable to writeback; but 1651 * it will be appropriate if other reactivate cases are added. 1652 */ 1653 error = shmem_add_to_page_cache(folio, mapping, index, 1654 swp_to_radix_entry(folio->swap), 1655 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 1656 /* Swap entry might be erased by racing shmem_free_swap() */ 1657 if (!error) { 1658 shmem_recalc_inode(inode, 0, -nr_pages); 1659 swap_free_nr(folio->swap, nr_pages); 1660 } 1661 1662 /* 1663 * The swap_cache_del_folio() below could be left for 1664 * shrink_folio_list()'s folio_free_swap() to dispose of; 1665 * but I'm a little nervous about letting this folio out of 1666 * shmem_writeout() in a hybrid half-tmpfs-half-swap state 1667 * e.g. folio_mapping(folio) might give an unexpected answer. 1668 */ 1669 swap_cache_del_folio(folio); 1670 goto redirty; 1671 } 1672 if (nr_pages > 1) 1673 goto try_split; 1674 redirty: 1675 folio_mark_dirty(folio); 1676 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1677 } 1678 EXPORT_SYMBOL_GPL(shmem_writeout); 1679 1680 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1681 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1682 { 1683 char buffer[64]; 1684 1685 if (!mpol || mpol->mode == MPOL_DEFAULT) 1686 return; /* show nothing */ 1687 1688 mpol_to_str(buffer, sizeof(buffer), mpol); 1689 1690 seq_printf(seq, ",mpol=%s", buffer); 1691 } 1692 1693 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1694 { 1695 struct mempolicy *mpol = NULL; 1696 if (sbinfo->mpol) { 1697 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1698 mpol = sbinfo->mpol; 1699 mpol_get(mpol); 1700 raw_spin_unlock(&sbinfo->stat_lock); 1701 } 1702 return mpol; 1703 } 1704 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1705 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1706 { 1707 } 1708 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1709 { 1710 return NULL; 1711 } 1712 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1713 1714 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1715 pgoff_t index, unsigned int order, pgoff_t *ilx); 1716 1717 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1718 struct shmem_inode_info *info, pgoff_t index) 1719 { 1720 struct mempolicy *mpol; 1721 pgoff_t ilx; 1722 struct folio *folio; 1723 1724 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1725 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1726 mpol_cond_put(mpol); 1727 1728 return folio; 1729 } 1730 1731 /* 1732 * Make sure huge_gfp is always more limited than limit_gfp. 1733 * Some of the flags set permissions, while others set limitations. 1734 */ 1735 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1736 { 1737 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1738 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1739 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1740 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1741 1742 /* Allow allocations only from the originally specified zones. */ 1743 result |= zoneflags; 1744 1745 /* 1746 * Minimize the result gfp by taking the union with the deny flags, 1747 * and the intersection of the allow flags. 1748 */ 1749 result |= (limit_gfp & denyflags); 1750 result |= (huge_gfp & limit_gfp) & allowflags; 1751 1752 return result; 1753 } 1754 1755 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1756 bool shmem_hpage_pmd_enabled(void) 1757 { 1758 if (shmem_huge == SHMEM_HUGE_DENY) 1759 return false; 1760 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1761 return true; 1762 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1763 return true; 1764 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1765 return true; 1766 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1767 shmem_huge != SHMEM_HUGE_NEVER) 1768 return true; 1769 1770 return false; 1771 } 1772 1773 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1774 struct vm_area_struct *vma, pgoff_t index, 1775 loff_t write_end, bool shmem_huge_force) 1776 { 1777 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1778 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1779 vm_flags_t vm_flags = vma ? vma->vm_flags : 0; 1780 unsigned int global_orders; 1781 1782 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force))) 1783 return 0; 1784 1785 global_orders = shmem_huge_global_enabled(inode, index, write_end, 1786 shmem_huge_force, vma, vm_flags); 1787 /* Tmpfs huge pages allocation */ 1788 if (!vma || !vma_is_anon_shmem(vma)) 1789 return global_orders; 1790 1791 /* 1792 * Following the 'deny' semantics of the top level, force the huge 1793 * option off from all mounts. 1794 */ 1795 if (shmem_huge == SHMEM_HUGE_DENY) 1796 return 0; 1797 1798 /* 1799 * Only allow inherit orders if the top-level value is 'force', which 1800 * means non-PMD sized THP can not override 'huge' mount option now. 1801 */ 1802 if (shmem_huge == SHMEM_HUGE_FORCE) 1803 return READ_ONCE(huge_shmem_orders_inherit); 1804 1805 /* Allow mTHP that will be fully within i_size. */ 1806 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0); 1807 1808 if (vm_flags & VM_HUGEPAGE) 1809 mask |= READ_ONCE(huge_shmem_orders_madvise); 1810 1811 if (global_orders > 0) 1812 mask |= READ_ONCE(huge_shmem_orders_inherit); 1813 1814 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1815 } 1816 1817 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1818 struct address_space *mapping, pgoff_t index, 1819 unsigned long orders) 1820 { 1821 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1822 pgoff_t aligned_index; 1823 unsigned long pages; 1824 int order; 1825 1826 if (vma) { 1827 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1828 if (!orders) 1829 return 0; 1830 } 1831 1832 /* Find the highest order that can add into the page cache */ 1833 order = highest_order(orders); 1834 while (orders) { 1835 pages = 1UL << order; 1836 aligned_index = round_down(index, pages); 1837 /* 1838 * Check for conflict before waiting on a huge allocation. 1839 * Conflict might be that a huge page has just been allocated 1840 * and added to page cache by a racing thread, or that there 1841 * is already at least one small page in the huge extent. 1842 * Be careful to retry when appropriate, but not forever! 1843 * Elsewhere -EEXIST would be the right code, but not here. 1844 */ 1845 if (!xa_find(&mapping->i_pages, &aligned_index, 1846 aligned_index + pages - 1, XA_PRESENT)) 1847 break; 1848 order = next_order(&orders, order); 1849 } 1850 1851 return orders; 1852 } 1853 #else 1854 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1855 struct address_space *mapping, pgoff_t index, 1856 unsigned long orders) 1857 { 1858 return 0; 1859 } 1860 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1861 1862 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1863 struct shmem_inode_info *info, pgoff_t index) 1864 { 1865 struct mempolicy *mpol; 1866 pgoff_t ilx; 1867 struct folio *folio; 1868 1869 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1870 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1871 mpol_cond_put(mpol); 1872 1873 return folio; 1874 } 1875 1876 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1877 gfp_t gfp, struct inode *inode, pgoff_t index, 1878 struct mm_struct *fault_mm, unsigned long orders) 1879 { 1880 struct address_space *mapping = inode->i_mapping; 1881 struct shmem_inode_info *info = SHMEM_I(inode); 1882 unsigned long suitable_orders = 0; 1883 struct folio *folio = NULL; 1884 pgoff_t aligned_index; 1885 long pages; 1886 int error, order; 1887 1888 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1889 orders = 0; 1890 1891 if (orders > 0) { 1892 suitable_orders = shmem_suitable_orders(inode, vmf, 1893 mapping, index, orders); 1894 1895 order = highest_order(suitable_orders); 1896 while (suitable_orders) { 1897 pages = 1UL << order; 1898 aligned_index = round_down(index, pages); 1899 folio = shmem_alloc_folio(gfp, order, info, aligned_index); 1900 if (folio) { 1901 index = aligned_index; 1902 goto allocated; 1903 } 1904 1905 if (pages == HPAGE_PMD_NR) 1906 count_vm_event(THP_FILE_FALLBACK); 1907 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1908 order = next_order(&suitable_orders, order); 1909 } 1910 } else { 1911 pages = 1; 1912 folio = shmem_alloc_folio(gfp, 0, info, index); 1913 } 1914 if (!folio) 1915 return ERR_PTR(-ENOMEM); 1916 1917 allocated: 1918 __folio_set_locked(folio); 1919 __folio_set_swapbacked(folio); 1920 1921 gfp &= GFP_RECLAIM_MASK; 1922 error = mem_cgroup_charge(folio, fault_mm, gfp); 1923 if (error) { 1924 if (xa_find(&mapping->i_pages, &index, 1925 index + pages - 1, XA_PRESENT)) { 1926 error = -EEXIST; 1927 } else if (pages > 1) { 1928 if (pages == HPAGE_PMD_NR) { 1929 count_vm_event(THP_FILE_FALLBACK); 1930 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1931 } 1932 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1933 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1934 } 1935 goto unlock; 1936 } 1937 1938 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1939 if (error) 1940 goto unlock; 1941 1942 error = shmem_inode_acct_blocks(inode, pages); 1943 if (error) { 1944 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1945 long freed; 1946 /* 1947 * Try to reclaim some space by splitting a few 1948 * large folios beyond i_size on the filesystem. 1949 */ 1950 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1951 /* 1952 * And do a shmem_recalc_inode() to account for freed pages: 1953 * except our folio is there in cache, so not quite balanced. 1954 */ 1955 spin_lock(&info->lock); 1956 freed = pages + info->alloced - info->swapped - 1957 READ_ONCE(mapping->nrpages); 1958 if (freed > 0) 1959 info->alloced -= freed; 1960 spin_unlock(&info->lock); 1961 if (freed > 0) 1962 shmem_inode_unacct_blocks(inode, freed); 1963 error = shmem_inode_acct_blocks(inode, pages); 1964 if (error) { 1965 filemap_remove_folio(folio); 1966 goto unlock; 1967 } 1968 } 1969 1970 shmem_recalc_inode(inode, pages, 0); 1971 folio_add_lru(folio); 1972 return folio; 1973 1974 unlock: 1975 folio_unlock(folio); 1976 folio_put(folio); 1977 return ERR_PTR(error); 1978 } 1979 1980 static struct folio *shmem_swap_alloc_folio(struct inode *inode, 1981 struct vm_area_struct *vma, pgoff_t index, 1982 swp_entry_t entry, int order, gfp_t gfp) 1983 { 1984 struct shmem_inode_info *info = SHMEM_I(inode); 1985 int nr_pages = 1 << order; 1986 struct folio *new; 1987 gfp_t alloc_gfp; 1988 void *shadow; 1989 1990 /* 1991 * We have arrived here because our zones are constrained, so don't 1992 * limit chance of success with further cpuset and node constraints. 1993 */ 1994 gfp &= ~GFP_CONSTRAINT_MASK; 1995 alloc_gfp = gfp; 1996 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1997 if (WARN_ON_ONCE(order)) 1998 return ERR_PTR(-EINVAL); 1999 } else if (order) { 2000 /* 2001 * If uffd is active for the vma, we need per-page fault 2002 * fidelity to maintain the uffd semantics, then fallback 2003 * to swapin order-0 folio, as well as for zswap case. 2004 * Any existing sub folio in the swap cache also blocks 2005 * mTHP swapin. 2006 */ 2007 if ((vma && unlikely(userfaultfd_armed(vma))) || 2008 !zswap_never_enabled() || 2009 non_swapcache_batch(entry, nr_pages) != nr_pages) 2010 goto fallback; 2011 2012 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp); 2013 } 2014 retry: 2015 new = shmem_alloc_folio(alloc_gfp, order, info, index); 2016 if (!new) { 2017 new = ERR_PTR(-ENOMEM); 2018 goto fallback; 2019 } 2020 2021 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL, 2022 alloc_gfp, entry)) { 2023 folio_put(new); 2024 new = ERR_PTR(-ENOMEM); 2025 goto fallback; 2026 } 2027 2028 /* 2029 * Prevent parallel swapin from proceeding with the swap cache flag. 2030 * 2031 * Of course there is another possible concurrent scenario as well, 2032 * that is to say, the swap cache flag of a large folio has already 2033 * been set by swapcache_prepare(), while another thread may have 2034 * already split the large swap entry stored in the shmem mapping. 2035 * In this case, shmem_add_to_page_cache() will help identify the 2036 * concurrent swapin and return -EEXIST. 2037 */ 2038 if (swapcache_prepare(entry, nr_pages)) { 2039 folio_put(new); 2040 new = ERR_PTR(-EEXIST); 2041 /* Try smaller folio to avoid cache conflict */ 2042 goto fallback; 2043 } 2044 2045 __folio_set_locked(new); 2046 __folio_set_swapbacked(new); 2047 new->swap = entry; 2048 2049 memcg1_swapin(entry, nr_pages); 2050 shadow = swap_cache_get_shadow(entry); 2051 if (shadow) 2052 workingset_refault(new, shadow); 2053 folio_add_lru(new); 2054 swap_read_folio(new, NULL); 2055 return new; 2056 fallback: 2057 /* Order 0 swapin failed, nothing to fallback to, abort */ 2058 if (!order) 2059 return new; 2060 entry.val += index - round_down(index, nr_pages); 2061 alloc_gfp = gfp; 2062 nr_pages = 1; 2063 order = 0; 2064 goto retry; 2065 } 2066 2067 /* 2068 * When a page is moved from swapcache to shmem filecache (either by the 2069 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 2070 * shmem_unuse_inode()), it may have been read in earlier from swap, in 2071 * ignorance of the mapping it belongs to. If that mapping has special 2072 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 2073 * we may need to copy to a suitable page before moving to filecache. 2074 * 2075 * In a future release, this may well be extended to respect cpuset and 2076 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 2077 * but for now it is a simple matter of zone. 2078 */ 2079 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 2080 { 2081 return folio_zonenum(folio) > gfp_zone(gfp); 2082 } 2083 2084 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 2085 struct shmem_inode_info *info, pgoff_t index, 2086 struct vm_area_struct *vma) 2087 { 2088 struct swap_cluster_info *ci; 2089 struct folio *new, *old = *foliop; 2090 swp_entry_t entry = old->swap; 2091 int nr_pages = folio_nr_pages(old); 2092 int error = 0; 2093 2094 /* 2095 * We have arrived here because our zones are constrained, so don't 2096 * limit chance of success by further cpuset and node constraints. 2097 */ 2098 gfp &= ~GFP_CONSTRAINT_MASK; 2099 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2100 if (nr_pages > 1) { 2101 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 2102 2103 gfp = limit_gfp_mask(huge_gfp, gfp); 2104 } 2105 #endif 2106 2107 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 2108 if (!new) 2109 return -ENOMEM; 2110 2111 folio_ref_add(new, nr_pages); 2112 folio_copy(new, old); 2113 flush_dcache_folio(new); 2114 2115 __folio_set_locked(new); 2116 __folio_set_swapbacked(new); 2117 folio_mark_uptodate(new); 2118 new->swap = entry; 2119 folio_set_swapcache(new); 2120 2121 ci = swap_cluster_get_and_lock_irq(old); 2122 __swap_cache_replace_folio(ci, old, new); 2123 mem_cgroup_replace_folio(old, new); 2124 shmem_update_stats(new, nr_pages); 2125 shmem_update_stats(old, -nr_pages); 2126 swap_cluster_unlock_irq(ci); 2127 2128 folio_add_lru(new); 2129 *foliop = new; 2130 2131 folio_clear_swapcache(old); 2132 old->private = NULL; 2133 2134 folio_unlock(old); 2135 /* 2136 * The old folio are removed from swap cache, drop the 'nr_pages' 2137 * reference, as well as one temporary reference getting from swap 2138 * cache. 2139 */ 2140 folio_put_refs(old, nr_pages + 1); 2141 return error; 2142 } 2143 2144 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2145 struct folio *folio, swp_entry_t swap, 2146 bool skip_swapcache) 2147 { 2148 struct address_space *mapping = inode->i_mapping; 2149 swp_entry_t swapin_error; 2150 void *old; 2151 int nr_pages; 2152 2153 swapin_error = make_poisoned_swp_entry(); 2154 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2155 swp_to_radix_entry(swap), 2156 swp_to_radix_entry(swapin_error), 0); 2157 if (old != swp_to_radix_entry(swap)) 2158 return; 2159 2160 nr_pages = folio_nr_pages(folio); 2161 folio_wait_writeback(folio); 2162 if (!skip_swapcache) 2163 swap_cache_del_folio(folio); 2164 /* 2165 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2166 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2167 * in shmem_evict_inode(). 2168 */ 2169 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2170 swap_free_nr(swap, nr_pages); 2171 } 2172 2173 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2174 swp_entry_t swap, gfp_t gfp) 2175 { 2176 struct address_space *mapping = inode->i_mapping; 2177 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2178 int split_order = 0; 2179 int i; 2180 2181 /* Convert user data gfp flags to xarray node gfp flags */ 2182 gfp &= GFP_RECLAIM_MASK; 2183 2184 for (;;) { 2185 void *old = NULL; 2186 int cur_order; 2187 pgoff_t swap_index; 2188 2189 xas_lock_irq(&xas); 2190 old = xas_load(&xas); 2191 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2192 xas_set_err(&xas, -EEXIST); 2193 goto unlock; 2194 } 2195 2196 cur_order = xas_get_order(&xas); 2197 if (!cur_order) 2198 goto unlock; 2199 2200 /* Try to split large swap entry in pagecache */ 2201 swap_index = round_down(index, 1 << cur_order); 2202 split_order = xas_try_split_min_order(cur_order); 2203 2204 while (cur_order > 0) { 2205 pgoff_t aligned_index = 2206 round_down(index, 1 << cur_order); 2207 pgoff_t swap_offset = aligned_index - swap_index; 2208 2209 xas_set_order(&xas, index, split_order); 2210 xas_try_split(&xas, old, cur_order); 2211 if (xas_error(&xas)) 2212 goto unlock; 2213 2214 /* 2215 * Re-set the swap entry after splitting, and the swap 2216 * offset of the original large entry must be continuous. 2217 */ 2218 for (i = 0; i < 1 << cur_order; 2219 i += (1 << split_order)) { 2220 swp_entry_t tmp; 2221 2222 tmp = swp_entry(swp_type(swap), 2223 swp_offset(swap) + swap_offset + 2224 i); 2225 __xa_store(&mapping->i_pages, aligned_index + i, 2226 swp_to_radix_entry(tmp), 0); 2227 } 2228 cur_order = split_order; 2229 split_order = xas_try_split_min_order(split_order); 2230 } 2231 2232 unlock: 2233 xas_unlock_irq(&xas); 2234 2235 if (!xas_nomem(&xas, gfp)) 2236 break; 2237 } 2238 2239 if (xas_error(&xas)) 2240 return xas_error(&xas); 2241 2242 return 0; 2243 } 2244 2245 /* 2246 * Swap in the folio pointed to by *foliop. 2247 * Caller has to make sure that *foliop contains a valid swapped folio. 2248 * Returns 0 and the folio in foliop if success. On failure, returns the 2249 * error code and NULL in *foliop. 2250 */ 2251 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2252 struct folio **foliop, enum sgp_type sgp, 2253 gfp_t gfp, struct vm_area_struct *vma, 2254 vm_fault_t *fault_type) 2255 { 2256 struct address_space *mapping = inode->i_mapping; 2257 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2258 struct shmem_inode_info *info = SHMEM_I(inode); 2259 swp_entry_t swap, index_entry; 2260 struct swap_info_struct *si; 2261 struct folio *folio = NULL; 2262 bool skip_swapcache = false; 2263 int error, nr_pages, order; 2264 pgoff_t offset; 2265 2266 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2267 index_entry = radix_to_swp_entry(*foliop); 2268 swap = index_entry; 2269 *foliop = NULL; 2270 2271 if (is_poisoned_swp_entry(index_entry)) 2272 return -EIO; 2273 2274 si = get_swap_device(index_entry); 2275 order = shmem_confirm_swap(mapping, index, index_entry); 2276 if (unlikely(!si)) { 2277 if (order < 0) 2278 return -EEXIST; 2279 else 2280 return -EINVAL; 2281 } 2282 if (unlikely(order < 0)) { 2283 put_swap_device(si); 2284 return -EEXIST; 2285 } 2286 2287 /* index may point to the middle of a large entry, get the sub entry */ 2288 if (order) { 2289 offset = index - round_down(index, 1 << order); 2290 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2291 } 2292 2293 /* Look it up and read it in.. */ 2294 folio = swap_cache_get_folio(swap); 2295 if (!folio) { 2296 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 2297 /* Direct swapin skipping swap cache & readahead */ 2298 folio = shmem_swap_alloc_folio(inode, vma, index, 2299 index_entry, order, gfp); 2300 if (IS_ERR(folio)) { 2301 error = PTR_ERR(folio); 2302 folio = NULL; 2303 goto failed; 2304 } 2305 skip_swapcache = true; 2306 } else { 2307 /* Cached swapin only supports order 0 folio */ 2308 folio = shmem_swapin_cluster(swap, gfp, info, index); 2309 if (!folio) { 2310 error = -ENOMEM; 2311 goto failed; 2312 } 2313 } 2314 if (fault_type) { 2315 *fault_type |= VM_FAULT_MAJOR; 2316 count_vm_event(PGMAJFAULT); 2317 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2318 } 2319 } else { 2320 swap_update_readahead(folio, NULL, 0); 2321 } 2322 2323 if (order > folio_order(folio)) { 2324 /* 2325 * Swapin may get smaller folios due to various reasons: 2326 * It may fallback to order 0 due to memory pressure or race, 2327 * swap readahead may swap in order 0 folios into swapcache 2328 * asynchronously, while the shmem mapping can still stores 2329 * large swap entries. In such cases, we should split the 2330 * large swap entry to prevent possible data corruption. 2331 */ 2332 error = shmem_split_large_entry(inode, index, index_entry, gfp); 2333 if (error) 2334 goto failed_nolock; 2335 } 2336 2337 /* 2338 * If the folio is large, round down swap and index by folio size. 2339 * No matter what race occurs, the swap layer ensures we either get 2340 * a valid folio that has its swap entry aligned by size, or a 2341 * temporarily invalid one which we'll abort very soon and retry. 2342 * 2343 * shmem_add_to_page_cache ensures the whole range contains expected 2344 * entries and prevents any corruption, so any race split is fine 2345 * too, it will succeed as long as the entries are still there. 2346 */ 2347 nr_pages = folio_nr_pages(folio); 2348 if (nr_pages > 1) { 2349 swap.val = round_down(swap.val, nr_pages); 2350 index = round_down(index, nr_pages); 2351 } 2352 2353 /* 2354 * We have to do this with the folio locked to prevent races. 2355 * The shmem_confirm_swap below only checks if the first swap 2356 * entry matches the folio, that's enough to ensure the folio 2357 * is not used outside of shmem, as shmem swap entries 2358 * and swap cache folios are never partially freed. 2359 */ 2360 folio_lock(folio); 2361 if ((!skip_swapcache && !folio_test_swapcache(folio)) || 2362 shmem_confirm_swap(mapping, index, swap) < 0 || 2363 folio->swap.val != swap.val) { 2364 error = -EEXIST; 2365 goto unlock; 2366 } 2367 if (!folio_test_uptodate(folio)) { 2368 error = -EIO; 2369 goto failed; 2370 } 2371 folio_wait_writeback(folio); 2372 2373 /* 2374 * Some architectures may have to restore extra metadata to the 2375 * folio after reading from swap. 2376 */ 2377 arch_swap_restore(folio_swap(swap, folio), folio); 2378 2379 if (shmem_should_replace_folio(folio, gfp)) { 2380 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2381 if (error) 2382 goto failed; 2383 } 2384 2385 error = shmem_add_to_page_cache(folio, mapping, index, 2386 swp_to_radix_entry(swap), gfp); 2387 if (error) 2388 goto failed; 2389 2390 shmem_recalc_inode(inode, 0, -nr_pages); 2391 2392 if (sgp == SGP_WRITE) 2393 folio_mark_accessed(folio); 2394 2395 if (skip_swapcache) { 2396 folio->swap.val = 0; 2397 swapcache_clear(si, swap, nr_pages); 2398 } else { 2399 swap_cache_del_folio(folio); 2400 } 2401 folio_mark_dirty(folio); 2402 swap_free_nr(swap, nr_pages); 2403 put_swap_device(si); 2404 2405 *foliop = folio; 2406 return 0; 2407 failed: 2408 if (shmem_confirm_swap(mapping, index, swap) < 0) 2409 error = -EEXIST; 2410 if (error == -EIO) 2411 shmem_set_folio_swapin_error(inode, index, folio, swap, 2412 skip_swapcache); 2413 unlock: 2414 if (folio) 2415 folio_unlock(folio); 2416 failed_nolock: 2417 if (skip_swapcache) 2418 swapcache_clear(si, folio->swap, folio_nr_pages(folio)); 2419 if (folio) 2420 folio_put(folio); 2421 put_swap_device(si); 2422 2423 return error; 2424 } 2425 2426 /* 2427 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2428 * 2429 * If we allocate a new one we do not mark it dirty. That's up to the 2430 * vm. If we swap it in we mark it dirty since we also free the swap 2431 * entry since a page cannot live in both the swap and page cache. 2432 * 2433 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2434 */ 2435 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2436 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2437 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2438 { 2439 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2440 struct mm_struct *fault_mm; 2441 struct folio *folio; 2442 int error; 2443 bool alloced; 2444 unsigned long orders = 0; 2445 2446 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2447 return -EINVAL; 2448 2449 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2450 return -EFBIG; 2451 repeat: 2452 if (sgp <= SGP_CACHE && 2453 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2454 return -EINVAL; 2455 2456 alloced = false; 2457 fault_mm = vma ? vma->vm_mm : NULL; 2458 2459 folio = filemap_get_entry(inode->i_mapping, index); 2460 if (folio && vma && userfaultfd_minor(vma)) { 2461 if (!xa_is_value(folio)) 2462 folio_put(folio); 2463 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2464 return 0; 2465 } 2466 2467 if (xa_is_value(folio)) { 2468 error = shmem_swapin_folio(inode, index, &folio, 2469 sgp, gfp, vma, fault_type); 2470 if (error == -EEXIST) 2471 goto repeat; 2472 2473 *foliop = folio; 2474 return error; 2475 } 2476 2477 if (folio) { 2478 folio_lock(folio); 2479 2480 /* Has the folio been truncated or swapped out? */ 2481 if (unlikely(folio->mapping != inode->i_mapping)) { 2482 folio_unlock(folio); 2483 folio_put(folio); 2484 goto repeat; 2485 } 2486 if (sgp == SGP_WRITE) 2487 folio_mark_accessed(folio); 2488 if (folio_test_uptodate(folio)) 2489 goto out; 2490 /* fallocated folio */ 2491 if (sgp != SGP_READ) 2492 goto clear; 2493 folio_unlock(folio); 2494 folio_put(folio); 2495 } 2496 2497 /* 2498 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2499 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2500 */ 2501 *foliop = NULL; 2502 if (sgp == SGP_READ) 2503 return 0; 2504 if (sgp == SGP_NOALLOC) 2505 return -ENOENT; 2506 2507 /* 2508 * Fast cache lookup and swap lookup did not find it: allocate. 2509 */ 2510 2511 if (vma && userfaultfd_missing(vma)) { 2512 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2513 return 0; 2514 } 2515 2516 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2517 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2518 if (orders > 0) { 2519 gfp_t huge_gfp; 2520 2521 huge_gfp = vma_thp_gfp_mask(vma); 2522 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2523 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2524 inode, index, fault_mm, orders); 2525 if (!IS_ERR(folio)) { 2526 if (folio_test_pmd_mappable(folio)) 2527 count_vm_event(THP_FILE_ALLOC); 2528 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2529 goto alloced; 2530 } 2531 if (PTR_ERR(folio) == -EEXIST) 2532 goto repeat; 2533 } 2534 2535 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2536 if (IS_ERR(folio)) { 2537 error = PTR_ERR(folio); 2538 if (error == -EEXIST) 2539 goto repeat; 2540 folio = NULL; 2541 goto unlock; 2542 } 2543 2544 alloced: 2545 alloced = true; 2546 if (folio_test_large(folio) && 2547 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2548 folio_next_index(folio)) { 2549 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2550 struct shmem_inode_info *info = SHMEM_I(inode); 2551 /* 2552 * Part of the large folio is beyond i_size: subject 2553 * to shrink under memory pressure. 2554 */ 2555 spin_lock(&sbinfo->shrinklist_lock); 2556 /* 2557 * _careful to defend against unlocked access to 2558 * ->shrink_list in shmem_unused_huge_shrink() 2559 */ 2560 if (list_empty_careful(&info->shrinklist)) { 2561 list_add_tail(&info->shrinklist, 2562 &sbinfo->shrinklist); 2563 sbinfo->shrinklist_len++; 2564 } 2565 spin_unlock(&sbinfo->shrinklist_lock); 2566 } 2567 2568 if (sgp == SGP_WRITE) 2569 folio_set_referenced(folio); 2570 /* 2571 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2572 */ 2573 if (sgp == SGP_FALLOC) 2574 sgp = SGP_WRITE; 2575 clear: 2576 /* 2577 * Let SGP_WRITE caller clear ends if write does not fill folio; 2578 * but SGP_FALLOC on a folio fallocated earlier must initialize 2579 * it now, lest undo on failure cancel our earlier guarantee. 2580 */ 2581 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2582 long i, n = folio_nr_pages(folio); 2583 2584 for (i = 0; i < n; i++) 2585 clear_highpage(folio_page(folio, i)); 2586 flush_dcache_folio(folio); 2587 folio_mark_uptodate(folio); 2588 } 2589 2590 /* Perhaps the file has been truncated since we checked */ 2591 if (sgp <= SGP_CACHE && 2592 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2593 error = -EINVAL; 2594 goto unlock; 2595 } 2596 out: 2597 *foliop = folio; 2598 return 0; 2599 2600 /* 2601 * Error recovery. 2602 */ 2603 unlock: 2604 if (alloced) 2605 filemap_remove_folio(folio); 2606 shmem_recalc_inode(inode, 0, 0); 2607 if (folio) { 2608 folio_unlock(folio); 2609 folio_put(folio); 2610 } 2611 return error; 2612 } 2613 2614 /** 2615 * shmem_get_folio - find, and lock a shmem folio. 2616 * @inode: inode to search 2617 * @index: the page index. 2618 * @write_end: end of a write, could extend inode size 2619 * @foliop: pointer to the folio if found 2620 * @sgp: SGP_* flags to control behavior 2621 * 2622 * Looks up the page cache entry at @inode & @index. If a folio is 2623 * present, it is returned locked with an increased refcount. 2624 * 2625 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2626 * before unlocking the folio to ensure that the folio is not reclaimed. 2627 * There is no need to reserve space before calling folio_mark_dirty(). 2628 * 2629 * When no folio is found, the behavior depends on @sgp: 2630 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2631 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2632 * - for all other flags a new folio is allocated, inserted into the 2633 * page cache and returned locked in @foliop. 2634 * 2635 * Context: May sleep. 2636 * Return: 0 if successful, else a negative error code. 2637 */ 2638 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2639 struct folio **foliop, enum sgp_type sgp) 2640 { 2641 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2642 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2643 } 2644 EXPORT_SYMBOL_GPL(shmem_get_folio); 2645 2646 /* 2647 * This is like autoremove_wake_function, but it removes the wait queue 2648 * entry unconditionally - even if something else had already woken the 2649 * target. 2650 */ 2651 static int synchronous_wake_function(wait_queue_entry_t *wait, 2652 unsigned int mode, int sync, void *key) 2653 { 2654 int ret = default_wake_function(wait, mode, sync, key); 2655 list_del_init(&wait->entry); 2656 return ret; 2657 } 2658 2659 /* 2660 * Trinity finds that probing a hole which tmpfs is punching can 2661 * prevent the hole-punch from ever completing: which in turn 2662 * locks writers out with its hold on i_rwsem. So refrain from 2663 * faulting pages into the hole while it's being punched. Although 2664 * shmem_undo_range() does remove the additions, it may be unable to 2665 * keep up, as each new page needs its own unmap_mapping_range() call, 2666 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2667 * 2668 * It does not matter if we sometimes reach this check just before the 2669 * hole-punch begins, so that one fault then races with the punch: 2670 * we just need to make racing faults a rare case. 2671 * 2672 * The implementation below would be much simpler if we just used a 2673 * standard mutex or completion: but we cannot take i_rwsem in fault, 2674 * and bloating every shmem inode for this unlikely case would be sad. 2675 */ 2676 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2677 { 2678 struct shmem_falloc *shmem_falloc; 2679 struct file *fpin = NULL; 2680 vm_fault_t ret = 0; 2681 2682 spin_lock(&inode->i_lock); 2683 shmem_falloc = inode->i_private; 2684 if (shmem_falloc && 2685 shmem_falloc->waitq && 2686 vmf->pgoff >= shmem_falloc->start && 2687 vmf->pgoff < shmem_falloc->next) { 2688 wait_queue_head_t *shmem_falloc_waitq; 2689 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2690 2691 ret = VM_FAULT_NOPAGE; 2692 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2693 shmem_falloc_waitq = shmem_falloc->waitq; 2694 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2695 TASK_UNINTERRUPTIBLE); 2696 spin_unlock(&inode->i_lock); 2697 schedule(); 2698 2699 /* 2700 * shmem_falloc_waitq points into the shmem_fallocate() 2701 * stack of the hole-punching task: shmem_falloc_waitq 2702 * is usually invalid by the time we reach here, but 2703 * finish_wait() does not dereference it in that case; 2704 * though i_lock needed lest racing with wake_up_all(). 2705 */ 2706 spin_lock(&inode->i_lock); 2707 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2708 } 2709 spin_unlock(&inode->i_lock); 2710 if (fpin) { 2711 fput(fpin); 2712 ret = VM_FAULT_RETRY; 2713 } 2714 return ret; 2715 } 2716 2717 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2718 { 2719 struct inode *inode = file_inode(vmf->vma->vm_file); 2720 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2721 struct folio *folio = NULL; 2722 vm_fault_t ret = 0; 2723 int err; 2724 2725 /* 2726 * Trinity finds that probing a hole which tmpfs is punching can 2727 * prevent the hole-punch from ever completing: noted in i_private. 2728 */ 2729 if (unlikely(inode->i_private)) { 2730 ret = shmem_falloc_wait(vmf, inode); 2731 if (ret) 2732 return ret; 2733 } 2734 2735 WARN_ON_ONCE(vmf->page != NULL); 2736 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2737 gfp, vmf, &ret); 2738 if (err) 2739 return vmf_error(err); 2740 if (folio) { 2741 vmf->page = folio_file_page(folio, vmf->pgoff); 2742 ret |= VM_FAULT_LOCKED; 2743 } 2744 return ret; 2745 } 2746 2747 unsigned long shmem_get_unmapped_area(struct file *file, 2748 unsigned long uaddr, unsigned long len, 2749 unsigned long pgoff, unsigned long flags) 2750 { 2751 unsigned long addr; 2752 unsigned long offset; 2753 unsigned long inflated_len; 2754 unsigned long inflated_addr; 2755 unsigned long inflated_offset; 2756 unsigned long hpage_size; 2757 2758 if (len > TASK_SIZE) 2759 return -ENOMEM; 2760 2761 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff, 2762 flags); 2763 2764 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2765 return addr; 2766 if (IS_ERR_VALUE(addr)) 2767 return addr; 2768 if (addr & ~PAGE_MASK) 2769 return addr; 2770 if (addr > TASK_SIZE - len) 2771 return addr; 2772 2773 if (shmem_huge == SHMEM_HUGE_DENY) 2774 return addr; 2775 if (flags & MAP_FIXED) 2776 return addr; 2777 /* 2778 * Our priority is to support MAP_SHARED mapped hugely; 2779 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2780 * But if caller specified an address hint and we allocated area there 2781 * successfully, respect that as before. 2782 */ 2783 if (uaddr == addr) 2784 return addr; 2785 2786 hpage_size = HPAGE_PMD_SIZE; 2787 if (shmem_huge != SHMEM_HUGE_FORCE) { 2788 struct super_block *sb; 2789 unsigned long __maybe_unused hpage_orders; 2790 int order = 0; 2791 2792 if (file) { 2793 VM_BUG_ON(file->f_op != &shmem_file_operations); 2794 sb = file_inode(file)->i_sb; 2795 } else { 2796 /* 2797 * Called directly from mm/mmap.c, or drivers/char/mem.c 2798 * for "/dev/zero", to create a shared anonymous object. 2799 */ 2800 if (IS_ERR(shm_mnt)) 2801 return addr; 2802 sb = shm_mnt->mnt_sb; 2803 2804 /* 2805 * Find the highest mTHP order used for anonymous shmem to 2806 * provide a suitable alignment address. 2807 */ 2808 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2809 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2810 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2811 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2812 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2813 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2814 2815 if (hpage_orders > 0) { 2816 order = highest_order(hpage_orders); 2817 hpage_size = PAGE_SIZE << order; 2818 } 2819 #endif 2820 } 2821 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2822 return addr; 2823 } 2824 2825 if (len < hpage_size) 2826 return addr; 2827 2828 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2829 if (offset && offset + len < 2 * hpage_size) 2830 return addr; 2831 if ((addr & (hpage_size - 1)) == offset) 2832 return addr; 2833 2834 inflated_len = len + hpage_size - PAGE_SIZE; 2835 if (inflated_len > TASK_SIZE) 2836 return addr; 2837 if (inflated_len < len) 2838 return addr; 2839 2840 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr, 2841 inflated_len, 0, flags); 2842 if (IS_ERR_VALUE(inflated_addr)) 2843 return addr; 2844 if (inflated_addr & ~PAGE_MASK) 2845 return addr; 2846 2847 inflated_offset = inflated_addr & (hpage_size - 1); 2848 inflated_addr += offset - inflated_offset; 2849 if (inflated_offset > offset) 2850 inflated_addr += hpage_size; 2851 2852 if (inflated_addr > TASK_SIZE - len) 2853 return addr; 2854 return inflated_addr; 2855 } 2856 2857 #ifdef CONFIG_NUMA 2858 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2859 { 2860 struct inode *inode = file_inode(vma->vm_file); 2861 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2862 } 2863 2864 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2865 unsigned long addr, pgoff_t *ilx) 2866 { 2867 struct inode *inode = file_inode(vma->vm_file); 2868 pgoff_t index; 2869 2870 /* 2871 * Bias interleave by inode number to distribute better across nodes; 2872 * but this interface is independent of which page order is used, so 2873 * supplies only that bias, letting caller apply the offset (adjusted 2874 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2875 */ 2876 *ilx = inode->i_ino; 2877 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2878 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2879 } 2880 2881 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2882 pgoff_t index, unsigned int order, pgoff_t *ilx) 2883 { 2884 struct mempolicy *mpol; 2885 2886 /* Bias interleave by inode number to distribute better across nodes */ 2887 *ilx = info->vfs_inode.i_ino + (index >> order); 2888 2889 mpol = mpol_shared_policy_lookup(&info->policy, index); 2890 return mpol ? mpol : get_task_policy(current); 2891 } 2892 #else 2893 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2894 pgoff_t index, unsigned int order, pgoff_t *ilx) 2895 { 2896 *ilx = 0; 2897 return NULL; 2898 } 2899 #endif /* CONFIG_NUMA */ 2900 2901 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2902 { 2903 struct inode *inode = file_inode(file); 2904 struct shmem_inode_info *info = SHMEM_I(inode); 2905 int retval = -ENOMEM; 2906 2907 /* 2908 * What serializes the accesses to info->flags? 2909 * ipc_lock_object() when called from shmctl_do_lock(), 2910 * no serialization needed when called from shm_destroy(). 2911 */ 2912 if (lock && !(info->flags & VM_LOCKED)) { 2913 if (!user_shm_lock(inode->i_size, ucounts)) 2914 goto out_nomem; 2915 info->flags |= VM_LOCKED; 2916 mapping_set_unevictable(file->f_mapping); 2917 } 2918 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2919 user_shm_unlock(inode->i_size, ucounts); 2920 info->flags &= ~VM_LOCKED; 2921 mapping_clear_unevictable(file->f_mapping); 2922 } 2923 retval = 0; 2924 2925 out_nomem: 2926 return retval; 2927 } 2928 2929 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2930 { 2931 struct inode *inode = file_inode(file); 2932 2933 file_accessed(file); 2934 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2935 if (inode->i_nlink) 2936 vma->vm_ops = &shmem_vm_ops; 2937 else 2938 vma->vm_ops = &shmem_anon_vm_ops; 2939 return 0; 2940 } 2941 2942 static int shmem_file_open(struct inode *inode, struct file *file) 2943 { 2944 file->f_mode |= FMODE_CAN_ODIRECT; 2945 return generic_file_open(inode, file); 2946 } 2947 2948 #ifdef CONFIG_TMPFS_XATTR 2949 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2950 2951 #if IS_ENABLED(CONFIG_UNICODE) 2952 /* 2953 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 2954 * 2955 * The casefold file attribute needs some special checks. I can just be added to 2956 * an empty dir, and can't be removed from a non-empty dir. 2957 */ 2958 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2959 struct dentry *dentry, unsigned int *i_flags) 2960 { 2961 unsigned int old = inode->i_flags; 2962 struct super_block *sb = inode->i_sb; 2963 2964 if (fsflags & FS_CASEFOLD_FL) { 2965 if (!(old & S_CASEFOLD)) { 2966 if (!sb->s_encoding) 2967 return -EOPNOTSUPP; 2968 2969 if (!S_ISDIR(inode->i_mode)) 2970 return -ENOTDIR; 2971 2972 if (dentry && !simple_empty(dentry)) 2973 return -ENOTEMPTY; 2974 } 2975 2976 *i_flags = *i_flags | S_CASEFOLD; 2977 } else if (old & S_CASEFOLD) { 2978 if (dentry && !simple_empty(dentry)) 2979 return -ENOTEMPTY; 2980 } 2981 2982 return 0; 2983 } 2984 #else 2985 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2986 struct dentry *dentry, unsigned int *i_flags) 2987 { 2988 if (fsflags & FS_CASEFOLD_FL) 2989 return -EOPNOTSUPP; 2990 2991 return 0; 2992 } 2993 #endif 2994 2995 /* 2996 * chattr's fsflags are unrelated to extended attributes, 2997 * but tmpfs has chosen to enable them under the same config option. 2998 */ 2999 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3000 { 3001 unsigned int i_flags = 0; 3002 int ret; 3003 3004 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 3005 if (ret) 3006 return ret; 3007 3008 if (fsflags & FS_NOATIME_FL) 3009 i_flags |= S_NOATIME; 3010 if (fsflags & FS_APPEND_FL) 3011 i_flags |= S_APPEND; 3012 if (fsflags & FS_IMMUTABLE_FL) 3013 i_flags |= S_IMMUTABLE; 3014 /* 3015 * But FS_NODUMP_FL does not require any action in i_flags. 3016 */ 3017 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 3018 3019 return 0; 3020 } 3021 #else 3022 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3023 { 3024 } 3025 #define shmem_initxattrs NULL 3026 #endif 3027 3028 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 3029 { 3030 return &SHMEM_I(inode)->dir_offsets; 3031 } 3032 3033 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 3034 struct super_block *sb, 3035 struct inode *dir, umode_t mode, 3036 dev_t dev, unsigned long flags) 3037 { 3038 struct inode *inode; 3039 struct shmem_inode_info *info; 3040 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3041 ino_t ino; 3042 int err; 3043 3044 err = shmem_reserve_inode(sb, &ino); 3045 if (err) 3046 return ERR_PTR(err); 3047 3048 inode = new_inode(sb); 3049 if (!inode) { 3050 shmem_free_inode(sb, 0); 3051 return ERR_PTR(-ENOSPC); 3052 } 3053 3054 inode->i_ino = ino; 3055 inode_init_owner(idmap, inode, dir, mode); 3056 inode->i_blocks = 0; 3057 simple_inode_init_ts(inode); 3058 inode->i_generation = get_random_u32(); 3059 info = SHMEM_I(inode); 3060 memset(info, 0, (char *)inode - (char *)info); 3061 spin_lock_init(&info->lock); 3062 atomic_set(&info->stop_eviction, 0); 3063 info->seals = F_SEAL_SEAL; 3064 info->flags = flags & VM_NORESERVE; 3065 info->i_crtime = inode_get_mtime(inode); 3066 info->fsflags = (dir == NULL) ? 0 : 3067 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 3068 if (info->fsflags) 3069 shmem_set_inode_flags(inode, info->fsflags, NULL); 3070 INIT_LIST_HEAD(&info->shrinklist); 3071 INIT_LIST_HEAD(&info->swaplist); 3072 simple_xattrs_init(&info->xattrs); 3073 cache_no_acl(inode); 3074 if (sbinfo->noswap) 3075 mapping_set_unevictable(inode->i_mapping); 3076 3077 /* Don't consider 'deny' for emergencies and 'force' for testing */ 3078 if (sbinfo->huge) 3079 mapping_set_large_folios(inode->i_mapping); 3080 3081 switch (mode & S_IFMT) { 3082 default: 3083 inode->i_op = &shmem_special_inode_operations; 3084 init_special_inode(inode, mode, dev); 3085 break; 3086 case S_IFREG: 3087 inode->i_mapping->a_ops = &shmem_aops; 3088 inode->i_op = &shmem_inode_operations; 3089 inode->i_fop = &shmem_file_operations; 3090 mpol_shared_policy_init(&info->policy, 3091 shmem_get_sbmpol(sbinfo)); 3092 break; 3093 case S_IFDIR: 3094 inc_nlink(inode); 3095 /* Some things misbehave if size == 0 on a directory */ 3096 inode->i_size = 2 * BOGO_DIRENT_SIZE; 3097 inode->i_op = &shmem_dir_inode_operations; 3098 inode->i_fop = &simple_offset_dir_operations; 3099 simple_offset_init(shmem_get_offset_ctx(inode)); 3100 break; 3101 case S_IFLNK: 3102 /* 3103 * Must not load anything in the rbtree, 3104 * mpol_free_shared_policy will not be called. 3105 */ 3106 mpol_shared_policy_init(&info->policy, NULL); 3107 break; 3108 } 3109 3110 lockdep_annotate_inode_mutex_key(inode); 3111 return inode; 3112 } 3113 3114 #ifdef CONFIG_TMPFS_QUOTA 3115 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3116 struct super_block *sb, struct inode *dir, 3117 umode_t mode, dev_t dev, unsigned long flags) 3118 { 3119 int err; 3120 struct inode *inode; 3121 3122 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3123 if (IS_ERR(inode)) 3124 return inode; 3125 3126 err = dquot_initialize(inode); 3127 if (err) 3128 goto errout; 3129 3130 err = dquot_alloc_inode(inode); 3131 if (err) { 3132 dquot_drop(inode); 3133 goto errout; 3134 } 3135 return inode; 3136 3137 errout: 3138 inode->i_flags |= S_NOQUOTA; 3139 iput(inode); 3140 return ERR_PTR(err); 3141 } 3142 #else 3143 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3144 struct super_block *sb, struct inode *dir, 3145 umode_t mode, dev_t dev, unsigned long flags) 3146 { 3147 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3148 } 3149 #endif /* CONFIG_TMPFS_QUOTA */ 3150 3151 #ifdef CONFIG_USERFAULTFD 3152 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 3153 struct vm_area_struct *dst_vma, 3154 unsigned long dst_addr, 3155 unsigned long src_addr, 3156 uffd_flags_t flags, 3157 struct folio **foliop) 3158 { 3159 struct inode *inode = file_inode(dst_vma->vm_file); 3160 struct shmem_inode_info *info = SHMEM_I(inode); 3161 struct address_space *mapping = inode->i_mapping; 3162 gfp_t gfp = mapping_gfp_mask(mapping); 3163 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 3164 void *page_kaddr; 3165 struct folio *folio; 3166 int ret; 3167 pgoff_t max_off; 3168 3169 if (shmem_inode_acct_blocks(inode, 1)) { 3170 /* 3171 * We may have got a page, returned -ENOENT triggering a retry, 3172 * and now we find ourselves with -ENOMEM. Release the page, to 3173 * avoid a BUG_ON in our caller. 3174 */ 3175 if (unlikely(*foliop)) { 3176 folio_put(*foliop); 3177 *foliop = NULL; 3178 } 3179 return -ENOMEM; 3180 } 3181 3182 if (!*foliop) { 3183 ret = -ENOMEM; 3184 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3185 if (!folio) 3186 goto out_unacct_blocks; 3187 3188 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3189 page_kaddr = kmap_local_folio(folio, 0); 3190 /* 3191 * The read mmap_lock is held here. Despite the 3192 * mmap_lock being read recursive a deadlock is still 3193 * possible if a writer has taken a lock. For example: 3194 * 3195 * process A thread 1 takes read lock on own mmap_lock 3196 * process A thread 2 calls mmap, blocks taking write lock 3197 * process B thread 1 takes page fault, read lock on own mmap lock 3198 * process B thread 2 calls mmap, blocks taking write lock 3199 * process A thread 1 blocks taking read lock on process B 3200 * process B thread 1 blocks taking read lock on process A 3201 * 3202 * Disable page faults to prevent potential deadlock 3203 * and retry the copy outside the mmap_lock. 3204 */ 3205 pagefault_disable(); 3206 ret = copy_from_user(page_kaddr, 3207 (const void __user *)src_addr, 3208 PAGE_SIZE); 3209 pagefault_enable(); 3210 kunmap_local(page_kaddr); 3211 3212 /* fallback to copy_from_user outside mmap_lock */ 3213 if (unlikely(ret)) { 3214 *foliop = folio; 3215 ret = -ENOENT; 3216 /* don't free the page */ 3217 goto out_unacct_blocks; 3218 } 3219 3220 flush_dcache_folio(folio); 3221 } else { /* ZEROPAGE */ 3222 clear_user_highpage(&folio->page, dst_addr); 3223 } 3224 } else { 3225 folio = *foliop; 3226 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3227 *foliop = NULL; 3228 } 3229 3230 VM_BUG_ON(folio_test_locked(folio)); 3231 VM_BUG_ON(folio_test_swapbacked(folio)); 3232 __folio_set_locked(folio); 3233 __folio_set_swapbacked(folio); 3234 __folio_mark_uptodate(folio); 3235 3236 ret = -EFAULT; 3237 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3238 if (unlikely(pgoff >= max_off)) 3239 goto out_release; 3240 3241 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3242 if (ret) 3243 goto out_release; 3244 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3245 if (ret) 3246 goto out_release; 3247 3248 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3249 &folio->page, true, flags); 3250 if (ret) 3251 goto out_delete_from_cache; 3252 3253 shmem_recalc_inode(inode, 1, 0); 3254 folio_unlock(folio); 3255 return 0; 3256 out_delete_from_cache: 3257 filemap_remove_folio(folio); 3258 out_release: 3259 folio_unlock(folio); 3260 folio_put(folio); 3261 out_unacct_blocks: 3262 shmem_inode_unacct_blocks(inode, 1); 3263 return ret; 3264 } 3265 #endif /* CONFIG_USERFAULTFD */ 3266 3267 #ifdef CONFIG_TMPFS 3268 static const struct inode_operations shmem_symlink_inode_operations; 3269 static const struct inode_operations shmem_short_symlink_operations; 3270 3271 static int 3272 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping, 3273 loff_t pos, unsigned len, 3274 struct folio **foliop, void **fsdata) 3275 { 3276 struct inode *inode = mapping->host; 3277 struct shmem_inode_info *info = SHMEM_I(inode); 3278 pgoff_t index = pos >> PAGE_SHIFT; 3279 struct folio *folio; 3280 int ret = 0; 3281 3282 /* i_rwsem is held by caller */ 3283 if (unlikely(info->seals & (F_SEAL_GROW | 3284 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3285 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3286 return -EPERM; 3287 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3288 return -EPERM; 3289 } 3290 3291 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3292 if (ret) 3293 return ret; 3294 3295 if (folio_contain_hwpoisoned_page(folio)) { 3296 folio_unlock(folio); 3297 folio_put(folio); 3298 return -EIO; 3299 } 3300 3301 *foliop = folio; 3302 return 0; 3303 } 3304 3305 static int 3306 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping, 3307 loff_t pos, unsigned len, unsigned copied, 3308 struct folio *folio, void *fsdata) 3309 { 3310 struct inode *inode = mapping->host; 3311 3312 if (pos + copied > inode->i_size) 3313 i_size_write(inode, pos + copied); 3314 3315 if (!folio_test_uptodate(folio)) { 3316 if (copied < folio_size(folio)) { 3317 size_t from = offset_in_folio(folio, pos); 3318 folio_zero_segments(folio, 0, from, 3319 from + copied, folio_size(folio)); 3320 } 3321 folio_mark_uptodate(folio); 3322 } 3323 folio_mark_dirty(folio); 3324 folio_unlock(folio); 3325 folio_put(folio); 3326 3327 return copied; 3328 } 3329 3330 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3331 { 3332 struct file *file = iocb->ki_filp; 3333 struct inode *inode = file_inode(file); 3334 struct address_space *mapping = inode->i_mapping; 3335 pgoff_t index; 3336 unsigned long offset; 3337 int error = 0; 3338 ssize_t retval = 0; 3339 3340 for (;;) { 3341 struct folio *folio = NULL; 3342 struct page *page = NULL; 3343 unsigned long nr, ret; 3344 loff_t end_offset, i_size = i_size_read(inode); 3345 bool fallback_page_copy = false; 3346 size_t fsize; 3347 3348 if (unlikely(iocb->ki_pos >= i_size)) 3349 break; 3350 3351 index = iocb->ki_pos >> PAGE_SHIFT; 3352 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3353 if (error) { 3354 if (error == -EINVAL) 3355 error = 0; 3356 break; 3357 } 3358 if (folio) { 3359 folio_unlock(folio); 3360 3361 page = folio_file_page(folio, index); 3362 if (PageHWPoison(page)) { 3363 folio_put(folio); 3364 error = -EIO; 3365 break; 3366 } 3367 3368 if (folio_test_large(folio) && 3369 folio_test_has_hwpoisoned(folio)) 3370 fallback_page_copy = true; 3371 } 3372 3373 /* 3374 * We must evaluate after, since reads (unlike writes) 3375 * are called without i_rwsem protection against truncate 3376 */ 3377 i_size = i_size_read(inode); 3378 if (unlikely(iocb->ki_pos >= i_size)) { 3379 if (folio) 3380 folio_put(folio); 3381 break; 3382 } 3383 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3384 if (folio && likely(!fallback_page_copy)) 3385 fsize = folio_size(folio); 3386 else 3387 fsize = PAGE_SIZE; 3388 offset = iocb->ki_pos & (fsize - 1); 3389 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3390 3391 if (folio) { 3392 /* 3393 * If users can be writing to this page using arbitrary 3394 * virtual addresses, take care about potential aliasing 3395 * before reading the page on the kernel side. 3396 */ 3397 if (mapping_writably_mapped(mapping)) { 3398 if (likely(!fallback_page_copy)) 3399 flush_dcache_folio(folio); 3400 else 3401 flush_dcache_page(page); 3402 } 3403 3404 /* 3405 * Mark the folio accessed if we read the beginning. 3406 */ 3407 if (!offset) 3408 folio_mark_accessed(folio); 3409 /* 3410 * Ok, we have the page, and it's up-to-date, so 3411 * now we can copy it to user space... 3412 */ 3413 if (likely(!fallback_page_copy)) 3414 ret = copy_folio_to_iter(folio, offset, nr, to); 3415 else 3416 ret = copy_page_to_iter(page, offset, nr, to); 3417 folio_put(folio); 3418 } else if (user_backed_iter(to)) { 3419 /* 3420 * Copy to user tends to be so well optimized, but 3421 * clear_user() not so much, that it is noticeably 3422 * faster to copy the zero page instead of clearing. 3423 */ 3424 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3425 } else { 3426 /* 3427 * But submitting the same page twice in a row to 3428 * splice() - or others? - can result in confusion: 3429 * so don't attempt that optimization on pipes etc. 3430 */ 3431 ret = iov_iter_zero(nr, to); 3432 } 3433 3434 retval += ret; 3435 iocb->ki_pos += ret; 3436 3437 if (!iov_iter_count(to)) 3438 break; 3439 if (ret < nr) { 3440 error = -EFAULT; 3441 break; 3442 } 3443 cond_resched(); 3444 } 3445 3446 file_accessed(file); 3447 return retval ? retval : error; 3448 } 3449 3450 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3451 { 3452 struct file *file = iocb->ki_filp; 3453 struct inode *inode = file->f_mapping->host; 3454 ssize_t ret; 3455 3456 inode_lock(inode); 3457 ret = generic_write_checks(iocb, from); 3458 if (ret <= 0) 3459 goto unlock; 3460 ret = file_remove_privs(file); 3461 if (ret) 3462 goto unlock; 3463 ret = file_update_time(file); 3464 if (ret) 3465 goto unlock; 3466 ret = generic_perform_write(iocb, from); 3467 unlock: 3468 inode_unlock(inode); 3469 return ret; 3470 } 3471 3472 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3473 struct pipe_buffer *buf) 3474 { 3475 return true; 3476 } 3477 3478 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3479 struct pipe_buffer *buf) 3480 { 3481 } 3482 3483 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3484 struct pipe_buffer *buf) 3485 { 3486 return false; 3487 } 3488 3489 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3490 .release = zero_pipe_buf_release, 3491 .try_steal = zero_pipe_buf_try_steal, 3492 .get = zero_pipe_buf_get, 3493 }; 3494 3495 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3496 loff_t fpos, size_t size) 3497 { 3498 size_t offset = fpos & ~PAGE_MASK; 3499 3500 size = min_t(size_t, size, PAGE_SIZE - offset); 3501 3502 if (!pipe_is_full(pipe)) { 3503 struct pipe_buffer *buf = pipe_head_buf(pipe); 3504 3505 *buf = (struct pipe_buffer) { 3506 .ops = &zero_pipe_buf_ops, 3507 .page = ZERO_PAGE(0), 3508 .offset = offset, 3509 .len = size, 3510 }; 3511 pipe->head++; 3512 } 3513 3514 return size; 3515 } 3516 3517 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3518 struct pipe_inode_info *pipe, 3519 size_t len, unsigned int flags) 3520 { 3521 struct inode *inode = file_inode(in); 3522 struct address_space *mapping = inode->i_mapping; 3523 struct folio *folio = NULL; 3524 size_t total_spliced = 0, used, npages, n, part; 3525 loff_t isize; 3526 int error = 0; 3527 3528 /* Work out how much data we can actually add into the pipe */ 3529 used = pipe_buf_usage(pipe); 3530 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3531 len = min_t(size_t, len, npages * PAGE_SIZE); 3532 3533 do { 3534 bool fallback_page_splice = false; 3535 struct page *page = NULL; 3536 pgoff_t index; 3537 size_t size; 3538 3539 if (*ppos >= i_size_read(inode)) 3540 break; 3541 3542 index = *ppos >> PAGE_SHIFT; 3543 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3544 if (error) { 3545 if (error == -EINVAL) 3546 error = 0; 3547 break; 3548 } 3549 if (folio) { 3550 folio_unlock(folio); 3551 3552 page = folio_file_page(folio, index); 3553 if (PageHWPoison(page)) { 3554 error = -EIO; 3555 break; 3556 } 3557 3558 if (folio_test_large(folio) && 3559 folio_test_has_hwpoisoned(folio)) 3560 fallback_page_splice = true; 3561 } 3562 3563 /* 3564 * i_size must be checked after we know the pages are Uptodate. 3565 * 3566 * Checking i_size after the check allows us to calculate 3567 * the correct value for "nr", which means the zero-filled 3568 * part of the page is not copied back to userspace (unless 3569 * another truncate extends the file - this is desired though). 3570 */ 3571 isize = i_size_read(inode); 3572 if (unlikely(*ppos >= isize)) 3573 break; 3574 /* 3575 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3576 * pages. 3577 */ 3578 size = len; 3579 if (unlikely(fallback_page_splice)) { 3580 size_t offset = *ppos & ~PAGE_MASK; 3581 3582 size = umin(size, PAGE_SIZE - offset); 3583 } 3584 part = min_t(loff_t, isize - *ppos, size); 3585 3586 if (folio) { 3587 /* 3588 * If users can be writing to this page using arbitrary 3589 * virtual addresses, take care about potential aliasing 3590 * before reading the page on the kernel side. 3591 */ 3592 if (mapping_writably_mapped(mapping)) { 3593 if (likely(!fallback_page_splice)) 3594 flush_dcache_folio(folio); 3595 else 3596 flush_dcache_page(page); 3597 } 3598 folio_mark_accessed(folio); 3599 /* 3600 * Ok, we have the page, and it's up-to-date, so we can 3601 * now splice it into the pipe. 3602 */ 3603 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3604 folio_put(folio); 3605 folio = NULL; 3606 } else { 3607 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3608 } 3609 3610 if (!n) 3611 break; 3612 len -= n; 3613 total_spliced += n; 3614 *ppos += n; 3615 in->f_ra.prev_pos = *ppos; 3616 if (pipe_is_full(pipe)) 3617 break; 3618 3619 cond_resched(); 3620 } while (len); 3621 3622 if (folio) 3623 folio_put(folio); 3624 3625 file_accessed(in); 3626 return total_spliced ? total_spliced : error; 3627 } 3628 3629 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3630 { 3631 struct address_space *mapping = file->f_mapping; 3632 struct inode *inode = mapping->host; 3633 3634 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3635 return generic_file_llseek_size(file, offset, whence, 3636 MAX_LFS_FILESIZE, i_size_read(inode)); 3637 if (offset < 0) 3638 return -ENXIO; 3639 3640 inode_lock(inode); 3641 /* We're holding i_rwsem so we can access i_size directly */ 3642 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3643 if (offset >= 0) 3644 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3645 inode_unlock(inode); 3646 return offset; 3647 } 3648 3649 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3650 loff_t len) 3651 { 3652 struct inode *inode = file_inode(file); 3653 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3654 struct shmem_inode_info *info = SHMEM_I(inode); 3655 struct shmem_falloc shmem_falloc; 3656 pgoff_t start, index, end, undo_fallocend; 3657 int error; 3658 3659 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3660 return -EOPNOTSUPP; 3661 3662 inode_lock(inode); 3663 3664 if (mode & FALLOC_FL_PUNCH_HOLE) { 3665 struct address_space *mapping = file->f_mapping; 3666 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3667 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3668 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3669 3670 /* protected by i_rwsem */ 3671 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3672 error = -EPERM; 3673 goto out; 3674 } 3675 3676 shmem_falloc.waitq = &shmem_falloc_waitq; 3677 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3678 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3679 spin_lock(&inode->i_lock); 3680 inode->i_private = &shmem_falloc; 3681 spin_unlock(&inode->i_lock); 3682 3683 if ((u64)unmap_end > (u64)unmap_start) 3684 unmap_mapping_range(mapping, unmap_start, 3685 1 + unmap_end - unmap_start, 0); 3686 shmem_truncate_range(inode, offset, offset + len - 1); 3687 /* No need to unmap again: hole-punching leaves COWed pages */ 3688 3689 spin_lock(&inode->i_lock); 3690 inode->i_private = NULL; 3691 wake_up_all(&shmem_falloc_waitq); 3692 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3693 spin_unlock(&inode->i_lock); 3694 error = 0; 3695 goto out; 3696 } 3697 3698 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3699 error = inode_newsize_ok(inode, offset + len); 3700 if (error) 3701 goto out; 3702 3703 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3704 error = -EPERM; 3705 goto out; 3706 } 3707 3708 start = offset >> PAGE_SHIFT; 3709 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3710 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3711 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3712 error = -ENOSPC; 3713 goto out; 3714 } 3715 3716 shmem_falloc.waitq = NULL; 3717 shmem_falloc.start = start; 3718 shmem_falloc.next = start; 3719 shmem_falloc.nr_falloced = 0; 3720 shmem_falloc.nr_unswapped = 0; 3721 spin_lock(&inode->i_lock); 3722 inode->i_private = &shmem_falloc; 3723 spin_unlock(&inode->i_lock); 3724 3725 /* 3726 * info->fallocend is only relevant when huge pages might be 3727 * involved: to prevent split_huge_page() freeing fallocated 3728 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3729 */ 3730 undo_fallocend = info->fallocend; 3731 if (info->fallocend < end) 3732 info->fallocend = end; 3733 3734 for (index = start; index < end; ) { 3735 struct folio *folio; 3736 3737 /* 3738 * Check for fatal signal so that we abort early in OOM 3739 * situations. We don't want to abort in case of non-fatal 3740 * signals as large fallocate can take noticeable time and 3741 * e.g. periodic timers may result in fallocate constantly 3742 * restarting. 3743 */ 3744 if (fatal_signal_pending(current)) 3745 error = -EINTR; 3746 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3747 error = -ENOMEM; 3748 else 3749 error = shmem_get_folio(inode, index, offset + len, 3750 &folio, SGP_FALLOC); 3751 if (error) { 3752 info->fallocend = undo_fallocend; 3753 /* Remove the !uptodate folios we added */ 3754 if (index > start) { 3755 shmem_undo_range(inode, 3756 (loff_t)start << PAGE_SHIFT, 3757 ((loff_t)index << PAGE_SHIFT) - 1, true); 3758 } 3759 goto undone; 3760 } 3761 3762 /* 3763 * Here is a more important optimization than it appears: 3764 * a second SGP_FALLOC on the same large folio will clear it, 3765 * making it uptodate and un-undoable if we fail later. 3766 */ 3767 index = folio_next_index(folio); 3768 /* Beware 32-bit wraparound */ 3769 if (!index) 3770 index--; 3771 3772 /* 3773 * Inform shmem_writeout() how far we have reached. 3774 * No need for lock or barrier: we have the page lock. 3775 */ 3776 if (!folio_test_uptodate(folio)) 3777 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3778 shmem_falloc.next = index; 3779 3780 /* 3781 * If !uptodate, leave it that way so that freeable folios 3782 * can be recognized if we need to rollback on error later. 3783 * But mark it dirty so that memory pressure will swap rather 3784 * than free the folios we are allocating (and SGP_CACHE folios 3785 * might still be clean: we now need to mark those dirty too). 3786 */ 3787 folio_mark_dirty(folio); 3788 folio_unlock(folio); 3789 folio_put(folio); 3790 cond_resched(); 3791 } 3792 3793 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3794 i_size_write(inode, offset + len); 3795 undone: 3796 spin_lock(&inode->i_lock); 3797 inode->i_private = NULL; 3798 spin_unlock(&inode->i_lock); 3799 out: 3800 if (!error) 3801 file_modified(file); 3802 inode_unlock(inode); 3803 return error; 3804 } 3805 3806 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3807 { 3808 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3809 3810 buf->f_type = TMPFS_MAGIC; 3811 buf->f_bsize = PAGE_SIZE; 3812 buf->f_namelen = NAME_MAX; 3813 if (sbinfo->max_blocks) { 3814 buf->f_blocks = sbinfo->max_blocks; 3815 buf->f_bavail = 3816 buf->f_bfree = sbinfo->max_blocks - 3817 percpu_counter_sum(&sbinfo->used_blocks); 3818 } 3819 if (sbinfo->max_inodes) { 3820 buf->f_files = sbinfo->max_inodes; 3821 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3822 } 3823 /* else leave those fields 0 like simple_statfs */ 3824 3825 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3826 3827 return 0; 3828 } 3829 3830 /* 3831 * File creation. Allocate an inode, and we're done.. 3832 */ 3833 static int 3834 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3835 struct dentry *dentry, umode_t mode, dev_t dev) 3836 { 3837 struct inode *inode; 3838 int error; 3839 3840 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3841 return -EINVAL; 3842 3843 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3844 if (IS_ERR(inode)) 3845 return PTR_ERR(inode); 3846 3847 error = simple_acl_create(dir, inode); 3848 if (error) 3849 goto out_iput; 3850 error = security_inode_init_security(inode, dir, &dentry->d_name, 3851 shmem_initxattrs, NULL); 3852 if (error && error != -EOPNOTSUPP) 3853 goto out_iput; 3854 3855 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3856 if (error) 3857 goto out_iput; 3858 3859 dir->i_size += BOGO_DIRENT_SIZE; 3860 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3861 inode_inc_iversion(dir); 3862 3863 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3864 d_add(dentry, inode); 3865 else 3866 d_instantiate(dentry, inode); 3867 3868 dget(dentry); /* Extra count - pin the dentry in core */ 3869 return error; 3870 3871 out_iput: 3872 iput(inode); 3873 return error; 3874 } 3875 3876 static int 3877 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3878 struct file *file, umode_t mode) 3879 { 3880 struct inode *inode; 3881 int error; 3882 3883 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3884 if (IS_ERR(inode)) { 3885 error = PTR_ERR(inode); 3886 goto err_out; 3887 } 3888 error = security_inode_init_security(inode, dir, NULL, 3889 shmem_initxattrs, NULL); 3890 if (error && error != -EOPNOTSUPP) 3891 goto out_iput; 3892 error = simple_acl_create(dir, inode); 3893 if (error) 3894 goto out_iput; 3895 d_tmpfile(file, inode); 3896 3897 err_out: 3898 return finish_open_simple(file, error); 3899 out_iput: 3900 iput(inode); 3901 return error; 3902 } 3903 3904 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3905 struct dentry *dentry, umode_t mode) 3906 { 3907 int error; 3908 3909 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3910 if (error) 3911 return ERR_PTR(error); 3912 inc_nlink(dir); 3913 return NULL; 3914 } 3915 3916 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3917 struct dentry *dentry, umode_t mode, bool excl) 3918 { 3919 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3920 } 3921 3922 /* 3923 * Link a file.. 3924 */ 3925 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3926 struct dentry *dentry) 3927 { 3928 struct inode *inode = d_inode(old_dentry); 3929 int ret = 0; 3930 3931 /* 3932 * No ordinary (disk based) filesystem counts links as inodes; 3933 * but each new link needs a new dentry, pinning lowmem, and 3934 * tmpfs dentries cannot be pruned until they are unlinked. 3935 * But if an O_TMPFILE file is linked into the tmpfs, the 3936 * first link must skip that, to get the accounting right. 3937 */ 3938 if (inode->i_nlink) { 3939 ret = shmem_reserve_inode(inode->i_sb, NULL); 3940 if (ret) 3941 goto out; 3942 } 3943 3944 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3945 if (ret) { 3946 if (inode->i_nlink) 3947 shmem_free_inode(inode->i_sb, 0); 3948 goto out; 3949 } 3950 3951 dir->i_size += BOGO_DIRENT_SIZE; 3952 inode_set_mtime_to_ts(dir, 3953 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3954 inode_inc_iversion(dir); 3955 inc_nlink(inode); 3956 ihold(inode); /* New dentry reference */ 3957 dget(dentry); /* Extra pinning count for the created dentry */ 3958 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3959 d_add(dentry, inode); 3960 else 3961 d_instantiate(dentry, inode); 3962 out: 3963 return ret; 3964 } 3965 3966 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3967 { 3968 struct inode *inode = d_inode(dentry); 3969 3970 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3971 shmem_free_inode(inode->i_sb, 0); 3972 3973 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3974 3975 dir->i_size -= BOGO_DIRENT_SIZE; 3976 inode_set_mtime_to_ts(dir, 3977 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3978 inode_inc_iversion(dir); 3979 drop_nlink(inode); 3980 dput(dentry); /* Undo the count from "create" - does all the work */ 3981 3982 /* 3983 * For now, VFS can't deal with case-insensitive negative dentries, so 3984 * we invalidate them 3985 */ 3986 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3987 d_invalidate(dentry); 3988 3989 return 0; 3990 } 3991 3992 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3993 { 3994 if (!simple_empty(dentry)) 3995 return -ENOTEMPTY; 3996 3997 drop_nlink(d_inode(dentry)); 3998 drop_nlink(dir); 3999 return shmem_unlink(dir, dentry); 4000 } 4001 4002 static int shmem_whiteout(struct mnt_idmap *idmap, 4003 struct inode *old_dir, struct dentry *old_dentry) 4004 { 4005 struct dentry *whiteout; 4006 int error; 4007 4008 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 4009 if (!whiteout) 4010 return -ENOMEM; 4011 4012 error = shmem_mknod(idmap, old_dir, whiteout, 4013 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4014 dput(whiteout); 4015 if (error) 4016 return error; 4017 4018 /* 4019 * Cheat and hash the whiteout while the old dentry is still in 4020 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 4021 * 4022 * d_lookup() will consistently find one of them at this point, 4023 * not sure which one, but that isn't even important. 4024 */ 4025 d_rehash(whiteout); 4026 return 0; 4027 } 4028 4029 /* 4030 * The VFS layer already does all the dentry stuff for rename, 4031 * we just have to decrement the usage count for the target if 4032 * it exists so that the VFS layer correctly free's it when it 4033 * gets overwritten. 4034 */ 4035 static int shmem_rename2(struct mnt_idmap *idmap, 4036 struct inode *old_dir, struct dentry *old_dentry, 4037 struct inode *new_dir, struct dentry *new_dentry, 4038 unsigned int flags) 4039 { 4040 struct inode *inode = d_inode(old_dentry); 4041 int they_are_dirs = S_ISDIR(inode->i_mode); 4042 int error; 4043 4044 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4045 return -EINVAL; 4046 4047 if (flags & RENAME_EXCHANGE) 4048 return simple_offset_rename_exchange(old_dir, old_dentry, 4049 new_dir, new_dentry); 4050 4051 if (!simple_empty(new_dentry)) 4052 return -ENOTEMPTY; 4053 4054 if (flags & RENAME_WHITEOUT) { 4055 error = shmem_whiteout(idmap, old_dir, old_dentry); 4056 if (error) 4057 return error; 4058 } 4059 4060 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 4061 if (error) 4062 return error; 4063 4064 if (d_really_is_positive(new_dentry)) { 4065 (void) shmem_unlink(new_dir, new_dentry); 4066 if (they_are_dirs) { 4067 drop_nlink(d_inode(new_dentry)); 4068 drop_nlink(old_dir); 4069 } 4070 } else if (they_are_dirs) { 4071 drop_nlink(old_dir); 4072 inc_nlink(new_dir); 4073 } 4074 4075 old_dir->i_size -= BOGO_DIRENT_SIZE; 4076 new_dir->i_size += BOGO_DIRENT_SIZE; 4077 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 4078 inode_inc_iversion(old_dir); 4079 inode_inc_iversion(new_dir); 4080 return 0; 4081 } 4082 4083 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 4084 struct dentry *dentry, const char *symname) 4085 { 4086 int error; 4087 int len; 4088 struct inode *inode; 4089 struct folio *folio; 4090 char *link; 4091 4092 len = strlen(symname) + 1; 4093 if (len > PAGE_SIZE) 4094 return -ENAMETOOLONG; 4095 4096 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 4097 VM_NORESERVE); 4098 if (IS_ERR(inode)) 4099 return PTR_ERR(inode); 4100 4101 error = security_inode_init_security(inode, dir, &dentry->d_name, 4102 shmem_initxattrs, NULL); 4103 if (error && error != -EOPNOTSUPP) 4104 goto out_iput; 4105 4106 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4107 if (error) 4108 goto out_iput; 4109 4110 inode->i_size = len-1; 4111 if (len <= SHORT_SYMLINK_LEN) { 4112 link = kmemdup(symname, len, GFP_KERNEL); 4113 if (!link) { 4114 error = -ENOMEM; 4115 goto out_remove_offset; 4116 } 4117 inode->i_op = &shmem_short_symlink_operations; 4118 inode_set_cached_link(inode, link, len - 1); 4119 } else { 4120 inode_nohighmem(inode); 4121 inode->i_mapping->a_ops = &shmem_aops; 4122 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 4123 if (error) 4124 goto out_remove_offset; 4125 inode->i_op = &shmem_symlink_inode_operations; 4126 memcpy(folio_address(folio), symname, len); 4127 folio_mark_uptodate(folio); 4128 folio_mark_dirty(folio); 4129 folio_unlock(folio); 4130 folio_put(folio); 4131 } 4132 dir->i_size += BOGO_DIRENT_SIZE; 4133 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 4134 inode_inc_iversion(dir); 4135 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4136 d_add(dentry, inode); 4137 else 4138 d_instantiate(dentry, inode); 4139 dget(dentry); 4140 return 0; 4141 4142 out_remove_offset: 4143 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4144 out_iput: 4145 iput(inode); 4146 return error; 4147 } 4148 4149 static void shmem_put_link(void *arg) 4150 { 4151 folio_mark_accessed(arg); 4152 folio_put(arg); 4153 } 4154 4155 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 4156 struct delayed_call *done) 4157 { 4158 struct folio *folio = NULL; 4159 int error; 4160 4161 if (!dentry) { 4162 folio = filemap_get_folio(inode->i_mapping, 0); 4163 if (IS_ERR(folio)) 4164 return ERR_PTR(-ECHILD); 4165 if (PageHWPoison(folio_page(folio, 0)) || 4166 !folio_test_uptodate(folio)) { 4167 folio_put(folio); 4168 return ERR_PTR(-ECHILD); 4169 } 4170 } else { 4171 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 4172 if (error) 4173 return ERR_PTR(error); 4174 if (!folio) 4175 return ERR_PTR(-ECHILD); 4176 if (PageHWPoison(folio_page(folio, 0))) { 4177 folio_unlock(folio); 4178 folio_put(folio); 4179 return ERR_PTR(-ECHILD); 4180 } 4181 folio_unlock(folio); 4182 } 4183 set_delayed_call(done, shmem_put_link, folio); 4184 return folio_address(folio); 4185 } 4186 4187 #ifdef CONFIG_TMPFS_XATTR 4188 4189 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa) 4190 { 4191 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4192 4193 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4194 4195 return 0; 4196 } 4197 4198 static int shmem_fileattr_set(struct mnt_idmap *idmap, 4199 struct dentry *dentry, struct file_kattr *fa) 4200 { 4201 struct inode *inode = d_inode(dentry); 4202 struct shmem_inode_info *info = SHMEM_I(inode); 4203 int ret, flags; 4204 4205 if (fileattr_has_fsx(fa)) 4206 return -EOPNOTSUPP; 4207 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4208 return -EOPNOTSUPP; 4209 4210 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4211 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4212 4213 ret = shmem_set_inode_flags(inode, flags, dentry); 4214 4215 if (ret) 4216 return ret; 4217 4218 info->fsflags = flags; 4219 4220 inode_set_ctime_current(inode); 4221 inode_inc_iversion(inode); 4222 return 0; 4223 } 4224 4225 /* 4226 * Superblocks without xattr inode operations may get some security.* xattr 4227 * support from the LSM "for free". As soon as we have any other xattrs 4228 * like ACLs, we also need to implement the security.* handlers at 4229 * filesystem level, though. 4230 */ 4231 4232 /* 4233 * Callback for security_inode_init_security() for acquiring xattrs. 4234 */ 4235 static int shmem_initxattrs(struct inode *inode, 4236 const struct xattr *xattr_array, void *fs_info) 4237 { 4238 struct shmem_inode_info *info = SHMEM_I(inode); 4239 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4240 const struct xattr *xattr; 4241 struct simple_xattr *new_xattr; 4242 size_t ispace = 0; 4243 size_t len; 4244 4245 if (sbinfo->max_inodes) { 4246 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4247 ispace += simple_xattr_space(xattr->name, 4248 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4249 } 4250 if (ispace) { 4251 raw_spin_lock(&sbinfo->stat_lock); 4252 if (sbinfo->free_ispace < ispace) 4253 ispace = 0; 4254 else 4255 sbinfo->free_ispace -= ispace; 4256 raw_spin_unlock(&sbinfo->stat_lock); 4257 if (!ispace) 4258 return -ENOSPC; 4259 } 4260 } 4261 4262 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4263 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4264 if (!new_xattr) 4265 break; 4266 4267 len = strlen(xattr->name) + 1; 4268 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4269 GFP_KERNEL_ACCOUNT); 4270 if (!new_xattr->name) { 4271 kvfree(new_xattr); 4272 break; 4273 } 4274 4275 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4276 XATTR_SECURITY_PREFIX_LEN); 4277 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4278 xattr->name, len); 4279 4280 simple_xattr_add(&info->xattrs, new_xattr); 4281 } 4282 4283 if (xattr->name != NULL) { 4284 if (ispace) { 4285 raw_spin_lock(&sbinfo->stat_lock); 4286 sbinfo->free_ispace += ispace; 4287 raw_spin_unlock(&sbinfo->stat_lock); 4288 } 4289 simple_xattrs_free(&info->xattrs, NULL); 4290 return -ENOMEM; 4291 } 4292 4293 return 0; 4294 } 4295 4296 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4297 struct dentry *unused, struct inode *inode, 4298 const char *name, void *buffer, size_t size) 4299 { 4300 struct shmem_inode_info *info = SHMEM_I(inode); 4301 4302 name = xattr_full_name(handler, name); 4303 return simple_xattr_get(&info->xattrs, name, buffer, size); 4304 } 4305 4306 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4307 struct mnt_idmap *idmap, 4308 struct dentry *unused, struct inode *inode, 4309 const char *name, const void *value, 4310 size_t size, int flags) 4311 { 4312 struct shmem_inode_info *info = SHMEM_I(inode); 4313 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4314 struct simple_xattr *old_xattr; 4315 size_t ispace = 0; 4316 4317 name = xattr_full_name(handler, name); 4318 if (value && sbinfo->max_inodes) { 4319 ispace = simple_xattr_space(name, size); 4320 raw_spin_lock(&sbinfo->stat_lock); 4321 if (sbinfo->free_ispace < ispace) 4322 ispace = 0; 4323 else 4324 sbinfo->free_ispace -= ispace; 4325 raw_spin_unlock(&sbinfo->stat_lock); 4326 if (!ispace) 4327 return -ENOSPC; 4328 } 4329 4330 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4331 if (!IS_ERR(old_xattr)) { 4332 ispace = 0; 4333 if (old_xattr && sbinfo->max_inodes) 4334 ispace = simple_xattr_space(old_xattr->name, 4335 old_xattr->size); 4336 simple_xattr_free(old_xattr); 4337 old_xattr = NULL; 4338 inode_set_ctime_current(inode); 4339 inode_inc_iversion(inode); 4340 } 4341 if (ispace) { 4342 raw_spin_lock(&sbinfo->stat_lock); 4343 sbinfo->free_ispace += ispace; 4344 raw_spin_unlock(&sbinfo->stat_lock); 4345 } 4346 return PTR_ERR(old_xattr); 4347 } 4348 4349 static const struct xattr_handler shmem_security_xattr_handler = { 4350 .prefix = XATTR_SECURITY_PREFIX, 4351 .get = shmem_xattr_handler_get, 4352 .set = shmem_xattr_handler_set, 4353 }; 4354 4355 static const struct xattr_handler shmem_trusted_xattr_handler = { 4356 .prefix = XATTR_TRUSTED_PREFIX, 4357 .get = shmem_xattr_handler_get, 4358 .set = shmem_xattr_handler_set, 4359 }; 4360 4361 static const struct xattr_handler shmem_user_xattr_handler = { 4362 .prefix = XATTR_USER_PREFIX, 4363 .get = shmem_xattr_handler_get, 4364 .set = shmem_xattr_handler_set, 4365 }; 4366 4367 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4368 &shmem_security_xattr_handler, 4369 &shmem_trusted_xattr_handler, 4370 &shmem_user_xattr_handler, 4371 NULL 4372 }; 4373 4374 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4375 { 4376 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4377 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4378 } 4379 #endif /* CONFIG_TMPFS_XATTR */ 4380 4381 static const struct inode_operations shmem_short_symlink_operations = { 4382 .getattr = shmem_getattr, 4383 .setattr = shmem_setattr, 4384 .get_link = simple_get_link, 4385 #ifdef CONFIG_TMPFS_XATTR 4386 .listxattr = shmem_listxattr, 4387 #endif 4388 }; 4389 4390 static const struct inode_operations shmem_symlink_inode_operations = { 4391 .getattr = shmem_getattr, 4392 .setattr = shmem_setattr, 4393 .get_link = shmem_get_link, 4394 #ifdef CONFIG_TMPFS_XATTR 4395 .listxattr = shmem_listxattr, 4396 #endif 4397 }; 4398 4399 static struct dentry *shmem_get_parent(struct dentry *child) 4400 { 4401 return ERR_PTR(-ESTALE); 4402 } 4403 4404 static int shmem_match(struct inode *ino, void *vfh) 4405 { 4406 __u32 *fh = vfh; 4407 __u64 inum = fh[2]; 4408 inum = (inum << 32) | fh[1]; 4409 return ino->i_ino == inum && fh[0] == ino->i_generation; 4410 } 4411 4412 /* Find any alias of inode, but prefer a hashed alias */ 4413 static struct dentry *shmem_find_alias(struct inode *inode) 4414 { 4415 struct dentry *alias = d_find_alias(inode); 4416 4417 return alias ?: d_find_any_alias(inode); 4418 } 4419 4420 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4421 struct fid *fid, int fh_len, int fh_type) 4422 { 4423 struct inode *inode; 4424 struct dentry *dentry = NULL; 4425 u64 inum; 4426 4427 if (fh_len < 3) 4428 return NULL; 4429 4430 inum = fid->raw[2]; 4431 inum = (inum << 32) | fid->raw[1]; 4432 4433 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4434 shmem_match, fid->raw); 4435 if (inode) { 4436 dentry = shmem_find_alias(inode); 4437 iput(inode); 4438 } 4439 4440 return dentry; 4441 } 4442 4443 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4444 struct inode *parent) 4445 { 4446 if (*len < 3) { 4447 *len = 3; 4448 return FILEID_INVALID; 4449 } 4450 4451 if (inode_unhashed(inode)) { 4452 /* Unfortunately insert_inode_hash is not idempotent, 4453 * so as we hash inodes here rather than at creation 4454 * time, we need a lock to ensure we only try 4455 * to do it once 4456 */ 4457 static DEFINE_SPINLOCK(lock); 4458 spin_lock(&lock); 4459 if (inode_unhashed(inode)) 4460 __insert_inode_hash(inode, 4461 inode->i_ino + inode->i_generation); 4462 spin_unlock(&lock); 4463 } 4464 4465 fh[0] = inode->i_generation; 4466 fh[1] = inode->i_ino; 4467 fh[2] = ((__u64)inode->i_ino) >> 32; 4468 4469 *len = 3; 4470 return 1; 4471 } 4472 4473 static const struct export_operations shmem_export_ops = { 4474 .get_parent = shmem_get_parent, 4475 .encode_fh = shmem_encode_fh, 4476 .fh_to_dentry = shmem_fh_to_dentry, 4477 }; 4478 4479 enum shmem_param { 4480 Opt_gid, 4481 Opt_huge, 4482 Opt_mode, 4483 Opt_mpol, 4484 Opt_nr_blocks, 4485 Opt_nr_inodes, 4486 Opt_size, 4487 Opt_uid, 4488 Opt_inode32, 4489 Opt_inode64, 4490 Opt_noswap, 4491 Opt_quota, 4492 Opt_usrquota, 4493 Opt_grpquota, 4494 Opt_usrquota_block_hardlimit, 4495 Opt_usrquota_inode_hardlimit, 4496 Opt_grpquota_block_hardlimit, 4497 Opt_grpquota_inode_hardlimit, 4498 Opt_casefold_version, 4499 Opt_casefold, 4500 Opt_strict_encoding, 4501 }; 4502 4503 static const struct constant_table shmem_param_enums_huge[] = { 4504 {"never", SHMEM_HUGE_NEVER }, 4505 {"always", SHMEM_HUGE_ALWAYS }, 4506 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4507 {"advise", SHMEM_HUGE_ADVISE }, 4508 {} 4509 }; 4510 4511 const struct fs_parameter_spec shmem_fs_parameters[] = { 4512 fsparam_gid ("gid", Opt_gid), 4513 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4514 fsparam_u32oct("mode", Opt_mode), 4515 fsparam_string("mpol", Opt_mpol), 4516 fsparam_string("nr_blocks", Opt_nr_blocks), 4517 fsparam_string("nr_inodes", Opt_nr_inodes), 4518 fsparam_string("size", Opt_size), 4519 fsparam_uid ("uid", Opt_uid), 4520 fsparam_flag ("inode32", Opt_inode32), 4521 fsparam_flag ("inode64", Opt_inode64), 4522 fsparam_flag ("noswap", Opt_noswap), 4523 #ifdef CONFIG_TMPFS_QUOTA 4524 fsparam_flag ("quota", Opt_quota), 4525 fsparam_flag ("usrquota", Opt_usrquota), 4526 fsparam_flag ("grpquota", Opt_grpquota), 4527 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4528 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4529 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4530 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4531 #endif 4532 fsparam_string("casefold", Opt_casefold_version), 4533 fsparam_flag ("casefold", Opt_casefold), 4534 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4535 {} 4536 }; 4537 4538 #if IS_ENABLED(CONFIG_UNICODE) 4539 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4540 bool latest_version) 4541 { 4542 struct shmem_options *ctx = fc->fs_private; 4543 int version = UTF8_LATEST; 4544 struct unicode_map *encoding; 4545 char *version_str = param->string + 5; 4546 4547 if (!latest_version) { 4548 if (strncmp(param->string, "utf8-", 5)) 4549 return invalfc(fc, "Only UTF-8 encodings are supported " 4550 "in the format: utf8-<version number>"); 4551 4552 version = utf8_parse_version(version_str); 4553 if (version < 0) 4554 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4555 } 4556 4557 encoding = utf8_load(version); 4558 4559 if (IS_ERR(encoding)) { 4560 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4561 unicode_major(version), unicode_minor(version), 4562 unicode_rev(version)); 4563 } 4564 4565 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4566 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4567 4568 ctx->encoding = encoding; 4569 4570 return 0; 4571 } 4572 #else 4573 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4574 bool latest_version) 4575 { 4576 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4577 } 4578 #endif 4579 4580 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4581 { 4582 struct shmem_options *ctx = fc->fs_private; 4583 struct fs_parse_result result; 4584 unsigned long long size; 4585 char *rest; 4586 int opt; 4587 kuid_t kuid; 4588 kgid_t kgid; 4589 4590 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4591 if (opt < 0) 4592 return opt; 4593 4594 switch (opt) { 4595 case Opt_size: 4596 size = memparse(param->string, &rest); 4597 if (*rest == '%') { 4598 size <<= PAGE_SHIFT; 4599 size *= totalram_pages(); 4600 do_div(size, 100); 4601 rest++; 4602 } 4603 if (*rest) 4604 goto bad_value; 4605 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4606 ctx->seen |= SHMEM_SEEN_BLOCKS; 4607 break; 4608 case Opt_nr_blocks: 4609 ctx->blocks = memparse(param->string, &rest); 4610 if (*rest || ctx->blocks > LONG_MAX) 4611 goto bad_value; 4612 ctx->seen |= SHMEM_SEEN_BLOCKS; 4613 break; 4614 case Opt_nr_inodes: 4615 ctx->inodes = memparse(param->string, &rest); 4616 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4617 goto bad_value; 4618 ctx->seen |= SHMEM_SEEN_INODES; 4619 break; 4620 case Opt_mode: 4621 ctx->mode = result.uint_32 & 07777; 4622 break; 4623 case Opt_uid: 4624 kuid = result.uid; 4625 4626 /* 4627 * The requested uid must be representable in the 4628 * filesystem's idmapping. 4629 */ 4630 if (!kuid_has_mapping(fc->user_ns, kuid)) 4631 goto bad_value; 4632 4633 ctx->uid = kuid; 4634 break; 4635 case Opt_gid: 4636 kgid = result.gid; 4637 4638 /* 4639 * The requested gid must be representable in the 4640 * filesystem's idmapping. 4641 */ 4642 if (!kgid_has_mapping(fc->user_ns, kgid)) 4643 goto bad_value; 4644 4645 ctx->gid = kgid; 4646 break; 4647 case Opt_huge: 4648 ctx->huge = result.uint_32; 4649 if (ctx->huge != SHMEM_HUGE_NEVER && 4650 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4651 has_transparent_hugepage())) 4652 goto unsupported_parameter; 4653 ctx->seen |= SHMEM_SEEN_HUGE; 4654 break; 4655 case Opt_mpol: 4656 if (IS_ENABLED(CONFIG_NUMA)) { 4657 mpol_put(ctx->mpol); 4658 ctx->mpol = NULL; 4659 if (mpol_parse_str(param->string, &ctx->mpol)) 4660 goto bad_value; 4661 break; 4662 } 4663 goto unsupported_parameter; 4664 case Opt_inode32: 4665 ctx->full_inums = false; 4666 ctx->seen |= SHMEM_SEEN_INUMS; 4667 break; 4668 case Opt_inode64: 4669 if (sizeof(ino_t) < 8) { 4670 return invalfc(fc, 4671 "Cannot use inode64 with <64bit inums in kernel\n"); 4672 } 4673 ctx->full_inums = true; 4674 ctx->seen |= SHMEM_SEEN_INUMS; 4675 break; 4676 case Opt_noswap: 4677 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4678 return invalfc(fc, 4679 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4680 } 4681 ctx->noswap = true; 4682 break; 4683 case Opt_quota: 4684 if (fc->user_ns != &init_user_ns) 4685 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4686 ctx->seen |= SHMEM_SEEN_QUOTA; 4687 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4688 break; 4689 case Opt_usrquota: 4690 if (fc->user_ns != &init_user_ns) 4691 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4692 ctx->seen |= SHMEM_SEEN_QUOTA; 4693 ctx->quota_types |= QTYPE_MASK_USR; 4694 break; 4695 case Opt_grpquota: 4696 if (fc->user_ns != &init_user_ns) 4697 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4698 ctx->seen |= SHMEM_SEEN_QUOTA; 4699 ctx->quota_types |= QTYPE_MASK_GRP; 4700 break; 4701 case Opt_usrquota_block_hardlimit: 4702 size = memparse(param->string, &rest); 4703 if (*rest || !size) 4704 goto bad_value; 4705 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4706 return invalfc(fc, 4707 "User quota block hardlimit too large."); 4708 ctx->qlimits.usrquota_bhardlimit = size; 4709 break; 4710 case Opt_grpquota_block_hardlimit: 4711 size = memparse(param->string, &rest); 4712 if (*rest || !size) 4713 goto bad_value; 4714 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4715 return invalfc(fc, 4716 "Group quota block hardlimit too large."); 4717 ctx->qlimits.grpquota_bhardlimit = size; 4718 break; 4719 case Opt_usrquota_inode_hardlimit: 4720 size = memparse(param->string, &rest); 4721 if (*rest || !size) 4722 goto bad_value; 4723 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4724 return invalfc(fc, 4725 "User quota inode hardlimit too large."); 4726 ctx->qlimits.usrquota_ihardlimit = size; 4727 break; 4728 case Opt_grpquota_inode_hardlimit: 4729 size = memparse(param->string, &rest); 4730 if (*rest || !size) 4731 goto bad_value; 4732 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4733 return invalfc(fc, 4734 "Group quota inode hardlimit too large."); 4735 ctx->qlimits.grpquota_ihardlimit = size; 4736 break; 4737 case Opt_casefold_version: 4738 return shmem_parse_opt_casefold(fc, param, false); 4739 case Opt_casefold: 4740 return shmem_parse_opt_casefold(fc, param, true); 4741 case Opt_strict_encoding: 4742 #if IS_ENABLED(CONFIG_UNICODE) 4743 ctx->strict_encoding = true; 4744 break; 4745 #else 4746 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4747 #endif 4748 } 4749 return 0; 4750 4751 unsupported_parameter: 4752 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4753 bad_value: 4754 return invalfc(fc, "Bad value for '%s'", param->key); 4755 } 4756 4757 static char *shmem_next_opt(char **s) 4758 { 4759 char *sbegin = *s; 4760 char *p; 4761 4762 if (sbegin == NULL) 4763 return NULL; 4764 4765 /* 4766 * NUL-terminate this option: unfortunately, 4767 * mount options form a comma-separated list, 4768 * but mpol's nodelist may also contain commas. 4769 */ 4770 for (;;) { 4771 p = strchr(*s, ','); 4772 if (p == NULL) 4773 break; 4774 *s = p + 1; 4775 if (!isdigit(*(p+1))) { 4776 *p = '\0'; 4777 return sbegin; 4778 } 4779 } 4780 4781 *s = NULL; 4782 return sbegin; 4783 } 4784 4785 static int shmem_parse_monolithic(struct fs_context *fc, void *data) 4786 { 4787 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt); 4788 } 4789 4790 /* 4791 * Reconfigure a shmem filesystem. 4792 */ 4793 static int shmem_reconfigure(struct fs_context *fc) 4794 { 4795 struct shmem_options *ctx = fc->fs_private; 4796 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4797 unsigned long used_isp; 4798 struct mempolicy *mpol = NULL; 4799 const char *err; 4800 4801 raw_spin_lock(&sbinfo->stat_lock); 4802 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4803 4804 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4805 if (!sbinfo->max_blocks) { 4806 err = "Cannot retroactively limit size"; 4807 goto out; 4808 } 4809 if (percpu_counter_compare(&sbinfo->used_blocks, 4810 ctx->blocks) > 0) { 4811 err = "Too small a size for current use"; 4812 goto out; 4813 } 4814 } 4815 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4816 if (!sbinfo->max_inodes) { 4817 err = "Cannot retroactively limit inodes"; 4818 goto out; 4819 } 4820 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4821 err = "Too few inodes for current use"; 4822 goto out; 4823 } 4824 } 4825 4826 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4827 sbinfo->next_ino > UINT_MAX) { 4828 err = "Current inum too high to switch to 32-bit inums"; 4829 goto out; 4830 } 4831 4832 /* 4833 * "noswap" doesn't use fsparam_flag_no, i.e. there's no "swap" 4834 * counterpart for (re-)enabling swap. 4835 */ 4836 if (ctx->noswap && !sbinfo->noswap) { 4837 err = "Cannot disable swap on remount"; 4838 goto out; 4839 } 4840 4841 if (ctx->seen & SHMEM_SEEN_QUOTA && 4842 !sb_any_quota_loaded(fc->root->d_sb)) { 4843 err = "Cannot enable quota on remount"; 4844 goto out; 4845 } 4846 4847 #ifdef CONFIG_TMPFS_QUOTA 4848 #define CHANGED_LIMIT(name) \ 4849 (ctx->qlimits.name## hardlimit && \ 4850 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4851 4852 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4853 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4854 err = "Cannot change global quota limit on remount"; 4855 goto out; 4856 } 4857 #endif /* CONFIG_TMPFS_QUOTA */ 4858 4859 if (ctx->seen & SHMEM_SEEN_HUGE) 4860 sbinfo->huge = ctx->huge; 4861 if (ctx->seen & SHMEM_SEEN_INUMS) 4862 sbinfo->full_inums = ctx->full_inums; 4863 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4864 sbinfo->max_blocks = ctx->blocks; 4865 if (ctx->seen & SHMEM_SEEN_INODES) { 4866 sbinfo->max_inodes = ctx->inodes; 4867 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4868 } 4869 4870 /* 4871 * Preserve previous mempolicy unless mpol remount option was specified. 4872 */ 4873 if (ctx->mpol) { 4874 mpol = sbinfo->mpol; 4875 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4876 ctx->mpol = NULL; 4877 } 4878 4879 if (ctx->noswap) 4880 sbinfo->noswap = true; 4881 4882 raw_spin_unlock(&sbinfo->stat_lock); 4883 mpol_put(mpol); 4884 return 0; 4885 out: 4886 raw_spin_unlock(&sbinfo->stat_lock); 4887 return invalfc(fc, "%s", err); 4888 } 4889 4890 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4891 { 4892 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4893 struct mempolicy *mpol; 4894 4895 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4896 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4897 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4898 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4899 if (sbinfo->mode != (0777 | S_ISVTX)) 4900 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4901 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4902 seq_printf(seq, ",uid=%u", 4903 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4904 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4905 seq_printf(seq, ",gid=%u", 4906 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4907 4908 /* 4909 * Showing inode{64,32} might be useful even if it's the system default, 4910 * since then people don't have to resort to checking both here and 4911 * /proc/config.gz to confirm 64-bit inums were successfully applied 4912 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4913 * 4914 * We hide it when inode64 isn't the default and we are using 32-bit 4915 * inodes, since that probably just means the feature isn't even under 4916 * consideration. 4917 * 4918 * As such: 4919 * 4920 * +-----------------+-----------------+ 4921 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4922 * +------------------+-----------------+-----------------+ 4923 * | full_inums=true | show | show | 4924 * | full_inums=false | show | hide | 4925 * +------------------+-----------------+-----------------+ 4926 * 4927 */ 4928 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4929 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4931 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4932 if (sbinfo->huge) 4933 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4934 #endif 4935 mpol = shmem_get_sbmpol(sbinfo); 4936 shmem_show_mpol(seq, mpol); 4937 mpol_put(mpol); 4938 if (sbinfo->noswap) 4939 seq_printf(seq, ",noswap"); 4940 #ifdef CONFIG_TMPFS_QUOTA 4941 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4942 seq_printf(seq, ",usrquota"); 4943 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4944 seq_printf(seq, ",grpquota"); 4945 if (sbinfo->qlimits.usrquota_bhardlimit) 4946 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4947 sbinfo->qlimits.usrquota_bhardlimit); 4948 if (sbinfo->qlimits.grpquota_bhardlimit) 4949 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4950 sbinfo->qlimits.grpquota_bhardlimit); 4951 if (sbinfo->qlimits.usrquota_ihardlimit) 4952 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4953 sbinfo->qlimits.usrquota_ihardlimit); 4954 if (sbinfo->qlimits.grpquota_ihardlimit) 4955 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4956 sbinfo->qlimits.grpquota_ihardlimit); 4957 #endif 4958 return 0; 4959 } 4960 4961 #endif /* CONFIG_TMPFS */ 4962 4963 static void shmem_put_super(struct super_block *sb) 4964 { 4965 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4966 4967 #if IS_ENABLED(CONFIG_UNICODE) 4968 if (sb->s_encoding) 4969 utf8_unload(sb->s_encoding); 4970 #endif 4971 4972 #ifdef CONFIG_TMPFS_QUOTA 4973 shmem_disable_quotas(sb); 4974 #endif 4975 free_percpu(sbinfo->ino_batch); 4976 percpu_counter_destroy(&sbinfo->used_blocks); 4977 mpol_put(sbinfo->mpol); 4978 kfree(sbinfo); 4979 sb->s_fs_info = NULL; 4980 } 4981 4982 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 4983 static const struct dentry_operations shmem_ci_dentry_ops = { 4984 .d_hash = generic_ci_d_hash, 4985 .d_compare = generic_ci_d_compare, 4986 }; 4987 #endif 4988 4989 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4990 { 4991 struct shmem_options *ctx = fc->fs_private; 4992 struct inode *inode; 4993 struct shmem_sb_info *sbinfo; 4994 int error = -ENOMEM; 4995 4996 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4997 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4998 L1_CACHE_BYTES), GFP_KERNEL); 4999 if (!sbinfo) 5000 return error; 5001 5002 sb->s_fs_info = sbinfo; 5003 5004 #ifdef CONFIG_TMPFS 5005 /* 5006 * Per default we only allow half of the physical ram per 5007 * tmpfs instance, limiting inodes to one per page of lowmem; 5008 * but the internal instance is left unlimited. 5009 */ 5010 if (!(sb->s_flags & SB_KERNMOUNT)) { 5011 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 5012 ctx->blocks = shmem_default_max_blocks(); 5013 if (!(ctx->seen & SHMEM_SEEN_INODES)) 5014 ctx->inodes = shmem_default_max_inodes(); 5015 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 5016 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 5017 sbinfo->noswap = ctx->noswap; 5018 } else { 5019 sb->s_flags |= SB_NOUSER; 5020 } 5021 sb->s_export_op = &shmem_export_ops; 5022 sb->s_flags |= SB_NOSEC; 5023 5024 #if IS_ENABLED(CONFIG_UNICODE) 5025 if (!ctx->encoding && ctx->strict_encoding) { 5026 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 5027 error = -EINVAL; 5028 goto failed; 5029 } 5030 5031 if (ctx->encoding) { 5032 sb->s_encoding = ctx->encoding; 5033 set_default_d_op(sb, &shmem_ci_dentry_ops); 5034 if (ctx->strict_encoding) 5035 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 5036 } 5037 #endif 5038 5039 #else 5040 sb->s_flags |= SB_NOUSER; 5041 #endif /* CONFIG_TMPFS */ 5042 sb->s_d_flags |= DCACHE_DONTCACHE; 5043 sbinfo->max_blocks = ctx->blocks; 5044 sbinfo->max_inodes = ctx->inodes; 5045 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 5046 if (sb->s_flags & SB_KERNMOUNT) { 5047 sbinfo->ino_batch = alloc_percpu(ino_t); 5048 if (!sbinfo->ino_batch) 5049 goto failed; 5050 } 5051 sbinfo->uid = ctx->uid; 5052 sbinfo->gid = ctx->gid; 5053 sbinfo->full_inums = ctx->full_inums; 5054 sbinfo->mode = ctx->mode; 5055 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5056 if (ctx->seen & SHMEM_SEEN_HUGE) 5057 sbinfo->huge = ctx->huge; 5058 else 5059 sbinfo->huge = tmpfs_huge; 5060 #endif 5061 sbinfo->mpol = ctx->mpol; 5062 ctx->mpol = NULL; 5063 5064 raw_spin_lock_init(&sbinfo->stat_lock); 5065 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 5066 goto failed; 5067 spin_lock_init(&sbinfo->shrinklist_lock); 5068 INIT_LIST_HEAD(&sbinfo->shrinklist); 5069 5070 sb->s_maxbytes = MAX_LFS_FILESIZE; 5071 sb->s_blocksize = PAGE_SIZE; 5072 sb->s_blocksize_bits = PAGE_SHIFT; 5073 sb->s_magic = TMPFS_MAGIC; 5074 sb->s_op = &shmem_ops; 5075 sb->s_time_gran = 1; 5076 #ifdef CONFIG_TMPFS_XATTR 5077 sb->s_xattr = shmem_xattr_handlers; 5078 #endif 5079 #ifdef CONFIG_TMPFS_POSIX_ACL 5080 sb->s_flags |= SB_POSIXACL; 5081 #endif 5082 uuid_t uuid; 5083 uuid_gen(&uuid); 5084 super_set_uuid(sb, uuid.b, sizeof(uuid)); 5085 5086 #ifdef CONFIG_TMPFS_QUOTA 5087 if (ctx->seen & SHMEM_SEEN_QUOTA) { 5088 sb->dq_op = &shmem_quota_operations; 5089 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5090 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 5091 5092 /* Copy the default limits from ctx into sbinfo */ 5093 memcpy(&sbinfo->qlimits, &ctx->qlimits, 5094 sizeof(struct shmem_quota_limits)); 5095 5096 if (shmem_enable_quotas(sb, ctx->quota_types)) 5097 goto failed; 5098 } 5099 #endif /* CONFIG_TMPFS_QUOTA */ 5100 5101 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 5102 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 5103 if (IS_ERR(inode)) { 5104 error = PTR_ERR(inode); 5105 goto failed; 5106 } 5107 inode->i_uid = sbinfo->uid; 5108 inode->i_gid = sbinfo->gid; 5109 sb->s_root = d_make_root(inode); 5110 if (!sb->s_root) 5111 goto failed; 5112 return 0; 5113 5114 failed: 5115 shmem_put_super(sb); 5116 return error; 5117 } 5118 5119 static int shmem_get_tree(struct fs_context *fc) 5120 { 5121 return get_tree_nodev(fc, shmem_fill_super); 5122 } 5123 5124 static void shmem_free_fc(struct fs_context *fc) 5125 { 5126 struct shmem_options *ctx = fc->fs_private; 5127 5128 if (ctx) { 5129 mpol_put(ctx->mpol); 5130 kfree(ctx); 5131 } 5132 } 5133 5134 static const struct fs_context_operations shmem_fs_context_ops = { 5135 .free = shmem_free_fc, 5136 .get_tree = shmem_get_tree, 5137 #ifdef CONFIG_TMPFS 5138 .parse_monolithic = shmem_parse_monolithic, 5139 .parse_param = shmem_parse_one, 5140 .reconfigure = shmem_reconfigure, 5141 #endif 5142 }; 5143 5144 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 5145 5146 static struct inode *shmem_alloc_inode(struct super_block *sb) 5147 { 5148 struct shmem_inode_info *info; 5149 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 5150 if (!info) 5151 return NULL; 5152 return &info->vfs_inode; 5153 } 5154 5155 static void shmem_free_in_core_inode(struct inode *inode) 5156 { 5157 if (S_ISLNK(inode->i_mode)) 5158 kfree(inode->i_link); 5159 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 5160 } 5161 5162 static void shmem_destroy_inode(struct inode *inode) 5163 { 5164 if (S_ISREG(inode->i_mode)) 5165 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 5166 if (S_ISDIR(inode->i_mode)) 5167 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5168 } 5169 5170 static void shmem_init_inode(void *foo) 5171 { 5172 struct shmem_inode_info *info = foo; 5173 inode_init_once(&info->vfs_inode); 5174 } 5175 5176 static void __init shmem_init_inodecache(void) 5177 { 5178 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5179 sizeof(struct shmem_inode_info), 5180 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5181 } 5182 5183 static void __init shmem_destroy_inodecache(void) 5184 { 5185 kmem_cache_destroy(shmem_inode_cachep); 5186 } 5187 5188 /* Keep the page in page cache instead of truncating it */ 5189 static int shmem_error_remove_folio(struct address_space *mapping, 5190 struct folio *folio) 5191 { 5192 return 0; 5193 } 5194 5195 static const struct address_space_operations shmem_aops = { 5196 .dirty_folio = noop_dirty_folio, 5197 #ifdef CONFIG_TMPFS 5198 .write_begin = shmem_write_begin, 5199 .write_end = shmem_write_end, 5200 #endif 5201 #ifdef CONFIG_MIGRATION 5202 .migrate_folio = migrate_folio, 5203 #endif 5204 .error_remove_folio = shmem_error_remove_folio, 5205 }; 5206 5207 static const struct file_operations shmem_file_operations = { 5208 .mmap = shmem_mmap, 5209 .open = shmem_file_open, 5210 .get_unmapped_area = shmem_get_unmapped_area, 5211 #ifdef CONFIG_TMPFS 5212 .llseek = shmem_file_llseek, 5213 .read_iter = shmem_file_read_iter, 5214 .write_iter = shmem_file_write_iter, 5215 .fsync = noop_fsync, 5216 .splice_read = shmem_file_splice_read, 5217 .splice_write = iter_file_splice_write, 5218 .fallocate = shmem_fallocate, 5219 #endif 5220 }; 5221 5222 static const struct inode_operations shmem_inode_operations = { 5223 .getattr = shmem_getattr, 5224 .setattr = shmem_setattr, 5225 #ifdef CONFIG_TMPFS_XATTR 5226 .listxattr = shmem_listxattr, 5227 .set_acl = simple_set_acl, 5228 .fileattr_get = shmem_fileattr_get, 5229 .fileattr_set = shmem_fileattr_set, 5230 #endif 5231 }; 5232 5233 static const struct inode_operations shmem_dir_inode_operations = { 5234 #ifdef CONFIG_TMPFS 5235 .getattr = shmem_getattr, 5236 .create = shmem_create, 5237 .lookup = simple_lookup, 5238 .link = shmem_link, 5239 .unlink = shmem_unlink, 5240 .symlink = shmem_symlink, 5241 .mkdir = shmem_mkdir, 5242 .rmdir = shmem_rmdir, 5243 .mknod = shmem_mknod, 5244 .rename = shmem_rename2, 5245 .tmpfile = shmem_tmpfile, 5246 .get_offset_ctx = shmem_get_offset_ctx, 5247 #endif 5248 #ifdef CONFIG_TMPFS_XATTR 5249 .listxattr = shmem_listxattr, 5250 .fileattr_get = shmem_fileattr_get, 5251 .fileattr_set = shmem_fileattr_set, 5252 #endif 5253 #ifdef CONFIG_TMPFS_POSIX_ACL 5254 .setattr = shmem_setattr, 5255 .set_acl = simple_set_acl, 5256 #endif 5257 }; 5258 5259 static const struct inode_operations shmem_special_inode_operations = { 5260 .getattr = shmem_getattr, 5261 #ifdef CONFIG_TMPFS_XATTR 5262 .listxattr = shmem_listxattr, 5263 #endif 5264 #ifdef CONFIG_TMPFS_POSIX_ACL 5265 .setattr = shmem_setattr, 5266 .set_acl = simple_set_acl, 5267 #endif 5268 }; 5269 5270 static const struct super_operations shmem_ops = { 5271 .alloc_inode = shmem_alloc_inode, 5272 .free_inode = shmem_free_in_core_inode, 5273 .destroy_inode = shmem_destroy_inode, 5274 #ifdef CONFIG_TMPFS 5275 .statfs = shmem_statfs, 5276 .show_options = shmem_show_options, 5277 #endif 5278 #ifdef CONFIG_TMPFS_QUOTA 5279 .get_dquots = shmem_get_dquots, 5280 #endif 5281 .evict_inode = shmem_evict_inode, 5282 .drop_inode = inode_just_drop, 5283 .put_super = shmem_put_super, 5284 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5285 .nr_cached_objects = shmem_unused_huge_count, 5286 .free_cached_objects = shmem_unused_huge_scan, 5287 #endif 5288 }; 5289 5290 static const struct vm_operations_struct shmem_vm_ops = { 5291 .fault = shmem_fault, 5292 .map_pages = filemap_map_pages, 5293 #ifdef CONFIG_NUMA 5294 .set_policy = shmem_set_policy, 5295 .get_policy = shmem_get_policy, 5296 #endif 5297 }; 5298 5299 static const struct vm_operations_struct shmem_anon_vm_ops = { 5300 .fault = shmem_fault, 5301 .map_pages = filemap_map_pages, 5302 #ifdef CONFIG_NUMA 5303 .set_policy = shmem_set_policy, 5304 .get_policy = shmem_get_policy, 5305 #endif 5306 }; 5307 5308 int shmem_init_fs_context(struct fs_context *fc) 5309 { 5310 struct shmem_options *ctx; 5311 5312 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 5313 if (!ctx) 5314 return -ENOMEM; 5315 5316 ctx->mode = 0777 | S_ISVTX; 5317 ctx->uid = current_fsuid(); 5318 ctx->gid = current_fsgid(); 5319 5320 #if IS_ENABLED(CONFIG_UNICODE) 5321 ctx->encoding = NULL; 5322 #endif 5323 5324 fc->fs_private = ctx; 5325 fc->ops = &shmem_fs_context_ops; 5326 #ifdef CONFIG_TMPFS 5327 fc->sb_flags |= SB_I_VERSION; 5328 #endif 5329 return 0; 5330 } 5331 5332 static struct file_system_type shmem_fs_type = { 5333 .owner = THIS_MODULE, 5334 .name = "tmpfs", 5335 .init_fs_context = shmem_init_fs_context, 5336 #ifdef CONFIG_TMPFS 5337 .parameters = shmem_fs_parameters, 5338 #endif 5339 .kill_sb = kill_litter_super, 5340 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5341 }; 5342 5343 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5344 5345 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5346 { \ 5347 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5348 .show = _show, \ 5349 .store = _store, \ 5350 } 5351 5352 #define TMPFS_ATTR_W(_name, _store) \ 5353 static struct kobj_attribute tmpfs_attr_##_name = \ 5354 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5355 5356 #define TMPFS_ATTR_RW(_name, _show, _store) \ 5357 static struct kobj_attribute tmpfs_attr_##_name = \ 5358 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5359 5360 #define TMPFS_ATTR_RO(_name, _show) \ 5361 static struct kobj_attribute tmpfs_attr_##_name = \ 5362 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5363 5364 #if IS_ENABLED(CONFIG_UNICODE) 5365 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5366 char *buf) 5367 { 5368 return sysfs_emit(buf, "supported\n"); 5369 } 5370 TMPFS_ATTR_RO(casefold, casefold_show); 5371 #endif 5372 5373 static struct attribute *tmpfs_attributes[] = { 5374 #if IS_ENABLED(CONFIG_UNICODE) 5375 &tmpfs_attr_casefold.attr, 5376 #endif 5377 NULL 5378 }; 5379 5380 static const struct attribute_group tmpfs_attribute_group = { 5381 .attrs = tmpfs_attributes, 5382 .name = "features" 5383 }; 5384 5385 static struct kobject *tmpfs_kobj; 5386 5387 static int __init tmpfs_sysfs_init(void) 5388 { 5389 int ret; 5390 5391 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5392 if (!tmpfs_kobj) 5393 return -ENOMEM; 5394 5395 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5396 if (ret) 5397 kobject_put(tmpfs_kobj); 5398 5399 return ret; 5400 } 5401 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5402 5403 void __init shmem_init(void) 5404 { 5405 int error; 5406 5407 shmem_init_inodecache(); 5408 5409 #ifdef CONFIG_TMPFS_QUOTA 5410 register_quota_format(&shmem_quota_format); 5411 #endif 5412 5413 error = register_filesystem(&shmem_fs_type); 5414 if (error) { 5415 pr_err("Could not register tmpfs\n"); 5416 goto out2; 5417 } 5418 5419 shm_mnt = kern_mount(&shmem_fs_type); 5420 if (IS_ERR(shm_mnt)) { 5421 error = PTR_ERR(shm_mnt); 5422 pr_err("Could not kern_mount tmpfs\n"); 5423 goto out1; 5424 } 5425 5426 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5427 error = tmpfs_sysfs_init(); 5428 if (error) { 5429 pr_err("Could not init tmpfs sysfs\n"); 5430 goto out1; 5431 } 5432 #endif 5433 5434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5435 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5436 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5437 else 5438 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5439 5440 /* 5441 * Default to setting PMD-sized THP to inherit the global setting and 5442 * disable all other multi-size THPs. 5443 */ 5444 if (!shmem_orders_configured) 5445 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5446 #endif 5447 return; 5448 5449 out1: 5450 unregister_filesystem(&shmem_fs_type); 5451 out2: 5452 #ifdef CONFIG_TMPFS_QUOTA 5453 unregister_quota_format(&shmem_quota_format); 5454 #endif 5455 shmem_destroy_inodecache(); 5456 shm_mnt = ERR_PTR(error); 5457 } 5458 5459 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5460 static ssize_t shmem_enabled_show(struct kobject *kobj, 5461 struct kobj_attribute *attr, char *buf) 5462 { 5463 static const int values[] = { 5464 SHMEM_HUGE_ALWAYS, 5465 SHMEM_HUGE_WITHIN_SIZE, 5466 SHMEM_HUGE_ADVISE, 5467 SHMEM_HUGE_NEVER, 5468 SHMEM_HUGE_DENY, 5469 SHMEM_HUGE_FORCE, 5470 }; 5471 int len = 0; 5472 int i; 5473 5474 for (i = 0; i < ARRAY_SIZE(values); i++) { 5475 len += sysfs_emit_at(buf, len, 5476 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5477 i ? " " : "", shmem_format_huge(values[i])); 5478 } 5479 len += sysfs_emit_at(buf, len, "\n"); 5480 5481 return len; 5482 } 5483 5484 static ssize_t shmem_enabled_store(struct kobject *kobj, 5485 struct kobj_attribute *attr, const char *buf, size_t count) 5486 { 5487 char tmp[16]; 5488 int huge, err; 5489 5490 if (count + 1 > sizeof(tmp)) 5491 return -EINVAL; 5492 memcpy(tmp, buf, count); 5493 tmp[count] = '\0'; 5494 if (count && tmp[count - 1] == '\n') 5495 tmp[count - 1] = '\0'; 5496 5497 huge = shmem_parse_huge(tmp); 5498 if (huge == -EINVAL) 5499 return huge; 5500 5501 shmem_huge = huge; 5502 if (shmem_huge > SHMEM_HUGE_DENY) 5503 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5504 5505 err = start_stop_khugepaged(); 5506 return err ? err : count; 5507 } 5508 5509 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5510 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5511 5512 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5513 struct kobj_attribute *attr, char *buf) 5514 { 5515 int order = to_thpsize(kobj)->order; 5516 const char *output; 5517 5518 if (test_bit(order, &huge_shmem_orders_always)) 5519 output = "[always] inherit within_size advise never"; 5520 else if (test_bit(order, &huge_shmem_orders_inherit)) 5521 output = "always [inherit] within_size advise never"; 5522 else if (test_bit(order, &huge_shmem_orders_within_size)) 5523 output = "always inherit [within_size] advise never"; 5524 else if (test_bit(order, &huge_shmem_orders_madvise)) 5525 output = "always inherit within_size [advise] never"; 5526 else 5527 output = "always inherit within_size advise [never]"; 5528 5529 return sysfs_emit(buf, "%s\n", output); 5530 } 5531 5532 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5533 struct kobj_attribute *attr, 5534 const char *buf, size_t count) 5535 { 5536 int order = to_thpsize(kobj)->order; 5537 ssize_t ret = count; 5538 5539 if (sysfs_streq(buf, "always")) { 5540 spin_lock(&huge_shmem_orders_lock); 5541 clear_bit(order, &huge_shmem_orders_inherit); 5542 clear_bit(order, &huge_shmem_orders_madvise); 5543 clear_bit(order, &huge_shmem_orders_within_size); 5544 set_bit(order, &huge_shmem_orders_always); 5545 spin_unlock(&huge_shmem_orders_lock); 5546 } else if (sysfs_streq(buf, "inherit")) { 5547 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5548 if (shmem_huge == SHMEM_HUGE_FORCE && 5549 order != HPAGE_PMD_ORDER) 5550 return -EINVAL; 5551 5552 spin_lock(&huge_shmem_orders_lock); 5553 clear_bit(order, &huge_shmem_orders_always); 5554 clear_bit(order, &huge_shmem_orders_madvise); 5555 clear_bit(order, &huge_shmem_orders_within_size); 5556 set_bit(order, &huge_shmem_orders_inherit); 5557 spin_unlock(&huge_shmem_orders_lock); 5558 } else if (sysfs_streq(buf, "within_size")) { 5559 spin_lock(&huge_shmem_orders_lock); 5560 clear_bit(order, &huge_shmem_orders_always); 5561 clear_bit(order, &huge_shmem_orders_inherit); 5562 clear_bit(order, &huge_shmem_orders_madvise); 5563 set_bit(order, &huge_shmem_orders_within_size); 5564 spin_unlock(&huge_shmem_orders_lock); 5565 } else if (sysfs_streq(buf, "advise")) { 5566 spin_lock(&huge_shmem_orders_lock); 5567 clear_bit(order, &huge_shmem_orders_always); 5568 clear_bit(order, &huge_shmem_orders_inherit); 5569 clear_bit(order, &huge_shmem_orders_within_size); 5570 set_bit(order, &huge_shmem_orders_madvise); 5571 spin_unlock(&huge_shmem_orders_lock); 5572 } else if (sysfs_streq(buf, "never")) { 5573 spin_lock(&huge_shmem_orders_lock); 5574 clear_bit(order, &huge_shmem_orders_always); 5575 clear_bit(order, &huge_shmem_orders_inherit); 5576 clear_bit(order, &huge_shmem_orders_within_size); 5577 clear_bit(order, &huge_shmem_orders_madvise); 5578 spin_unlock(&huge_shmem_orders_lock); 5579 } else { 5580 ret = -EINVAL; 5581 } 5582 5583 if (ret > 0) { 5584 int err = start_stop_khugepaged(); 5585 5586 if (err) 5587 ret = err; 5588 } 5589 return ret; 5590 } 5591 5592 struct kobj_attribute thpsize_shmem_enabled_attr = 5593 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5594 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5595 5596 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5597 5598 static int __init setup_transparent_hugepage_shmem(char *str) 5599 { 5600 int huge; 5601 5602 huge = shmem_parse_huge(str); 5603 if (huge == -EINVAL) { 5604 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5605 return huge; 5606 } 5607 5608 shmem_huge = huge; 5609 return 1; 5610 } 5611 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5612 5613 static int __init setup_transparent_hugepage_tmpfs(char *str) 5614 { 5615 int huge; 5616 5617 huge = shmem_parse_huge(str); 5618 if (huge < 0) { 5619 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n"); 5620 return huge; 5621 } 5622 5623 tmpfs_huge = huge; 5624 return 1; 5625 } 5626 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs); 5627 5628 static char str_dup[PAGE_SIZE] __initdata; 5629 static int __init setup_thp_shmem(char *str) 5630 { 5631 char *token, *range, *policy, *subtoken; 5632 unsigned long always, inherit, madvise, within_size; 5633 char *start_size, *end_size; 5634 int start, end, nr; 5635 char *p; 5636 5637 if (!str || strlen(str) + 1 > PAGE_SIZE) 5638 goto err; 5639 strscpy(str_dup, str); 5640 5641 always = huge_shmem_orders_always; 5642 inherit = huge_shmem_orders_inherit; 5643 madvise = huge_shmem_orders_madvise; 5644 within_size = huge_shmem_orders_within_size; 5645 p = str_dup; 5646 while ((token = strsep(&p, ";")) != NULL) { 5647 range = strsep(&token, ":"); 5648 policy = token; 5649 5650 if (!policy) 5651 goto err; 5652 5653 while ((subtoken = strsep(&range, ",")) != NULL) { 5654 if (strchr(subtoken, '-')) { 5655 start_size = strsep(&subtoken, "-"); 5656 end_size = subtoken; 5657 5658 start = get_order_from_str(start_size, 5659 THP_ORDERS_ALL_FILE_DEFAULT); 5660 end = get_order_from_str(end_size, 5661 THP_ORDERS_ALL_FILE_DEFAULT); 5662 } else { 5663 start_size = end_size = subtoken; 5664 start = end = get_order_from_str(subtoken, 5665 THP_ORDERS_ALL_FILE_DEFAULT); 5666 } 5667 5668 if (start < 0) { 5669 pr_err("invalid size %s in thp_shmem boot parameter\n", 5670 start_size); 5671 goto err; 5672 } 5673 5674 if (end < 0) { 5675 pr_err("invalid size %s in thp_shmem boot parameter\n", 5676 end_size); 5677 goto err; 5678 } 5679 5680 if (start > end) 5681 goto err; 5682 5683 nr = end - start + 1; 5684 if (!strcmp(policy, "always")) { 5685 bitmap_set(&always, start, nr); 5686 bitmap_clear(&inherit, start, nr); 5687 bitmap_clear(&madvise, start, nr); 5688 bitmap_clear(&within_size, start, nr); 5689 } else if (!strcmp(policy, "advise")) { 5690 bitmap_set(&madvise, start, nr); 5691 bitmap_clear(&inherit, start, nr); 5692 bitmap_clear(&always, start, nr); 5693 bitmap_clear(&within_size, start, nr); 5694 } else if (!strcmp(policy, "inherit")) { 5695 bitmap_set(&inherit, start, nr); 5696 bitmap_clear(&madvise, start, nr); 5697 bitmap_clear(&always, start, nr); 5698 bitmap_clear(&within_size, start, nr); 5699 } else if (!strcmp(policy, "within_size")) { 5700 bitmap_set(&within_size, start, nr); 5701 bitmap_clear(&inherit, start, nr); 5702 bitmap_clear(&madvise, start, nr); 5703 bitmap_clear(&always, start, nr); 5704 } else if (!strcmp(policy, "never")) { 5705 bitmap_clear(&inherit, start, nr); 5706 bitmap_clear(&madvise, start, nr); 5707 bitmap_clear(&always, start, nr); 5708 bitmap_clear(&within_size, start, nr); 5709 } else { 5710 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5711 goto err; 5712 } 5713 } 5714 } 5715 5716 huge_shmem_orders_always = always; 5717 huge_shmem_orders_madvise = madvise; 5718 huge_shmem_orders_inherit = inherit; 5719 huge_shmem_orders_within_size = within_size; 5720 shmem_orders_configured = true; 5721 return 1; 5722 5723 err: 5724 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5725 return 0; 5726 } 5727 __setup("thp_shmem=", setup_thp_shmem); 5728 5729 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5730 5731 #else /* !CONFIG_SHMEM */ 5732 5733 /* 5734 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5735 * 5736 * This is intended for small system where the benefits of the full 5737 * shmem code (swap-backed and resource-limited) are outweighed by 5738 * their complexity. On systems without swap this code should be 5739 * effectively equivalent, but much lighter weight. 5740 */ 5741 5742 static struct file_system_type shmem_fs_type = { 5743 .name = "tmpfs", 5744 .init_fs_context = ramfs_init_fs_context, 5745 .parameters = ramfs_fs_parameters, 5746 .kill_sb = ramfs_kill_sb, 5747 .fs_flags = FS_USERNS_MOUNT, 5748 }; 5749 5750 void __init shmem_init(void) 5751 { 5752 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5753 5754 shm_mnt = kern_mount(&shmem_fs_type); 5755 BUG_ON(IS_ERR(shm_mnt)); 5756 } 5757 5758 int shmem_unuse(unsigned int type) 5759 { 5760 return 0; 5761 } 5762 5763 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5764 { 5765 return 0; 5766 } 5767 5768 void shmem_unlock_mapping(struct address_space *mapping) 5769 { 5770 } 5771 5772 #ifdef CONFIG_MMU 5773 unsigned long shmem_get_unmapped_area(struct file *file, 5774 unsigned long addr, unsigned long len, 5775 unsigned long pgoff, unsigned long flags) 5776 { 5777 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); 5778 } 5779 #endif 5780 5781 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 5782 { 5783 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5784 } 5785 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5786 5787 #define shmem_vm_ops generic_file_vm_ops 5788 #define shmem_anon_vm_ops generic_file_vm_ops 5789 #define shmem_file_operations ramfs_file_operations 5790 #define shmem_acct_size(flags, size) 0 5791 #define shmem_unacct_size(flags, size) do {} while (0) 5792 5793 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5794 struct super_block *sb, struct inode *dir, 5795 umode_t mode, dev_t dev, unsigned long flags) 5796 { 5797 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5798 return inode ? inode : ERR_PTR(-ENOSPC); 5799 } 5800 5801 #endif /* CONFIG_SHMEM */ 5802 5803 /* common code */ 5804 5805 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5806 loff_t size, unsigned long flags, unsigned int i_flags) 5807 { 5808 struct inode *inode; 5809 struct file *res; 5810 5811 if (IS_ERR(mnt)) 5812 return ERR_CAST(mnt); 5813 5814 if (size < 0 || size > MAX_LFS_FILESIZE) 5815 return ERR_PTR(-EINVAL); 5816 5817 if (is_idmapped_mnt(mnt)) 5818 return ERR_PTR(-EINVAL); 5819 5820 if (shmem_acct_size(flags, size)) 5821 return ERR_PTR(-ENOMEM); 5822 5823 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5824 S_IFREG | S_IRWXUGO, 0, flags); 5825 if (IS_ERR(inode)) { 5826 shmem_unacct_size(flags, size); 5827 return ERR_CAST(inode); 5828 } 5829 inode->i_flags |= i_flags; 5830 inode->i_size = size; 5831 clear_nlink(inode); /* It is unlinked */ 5832 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5833 if (!IS_ERR(res)) 5834 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5835 &shmem_file_operations); 5836 if (IS_ERR(res)) 5837 iput(inode); 5838 return res; 5839 } 5840 5841 /** 5842 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5843 * kernel internal. There will be NO LSM permission checks against the 5844 * underlying inode. So users of this interface must do LSM checks at a 5845 * higher layer. The users are the big_key and shm implementations. LSM 5846 * checks are provided at the key or shm level rather than the inode. 5847 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5848 * @size: size to be set for the file 5849 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5850 */ 5851 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5852 { 5853 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5854 } 5855 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5856 5857 /** 5858 * shmem_file_setup - get an unlinked file living in tmpfs 5859 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5860 * @size: size to be set for the file 5861 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5862 */ 5863 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5864 { 5865 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5866 } 5867 EXPORT_SYMBOL_GPL(shmem_file_setup); 5868 5869 /** 5870 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5871 * @mnt: the tmpfs mount where the file will be created 5872 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5873 * @size: size to be set for the file 5874 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5875 */ 5876 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5877 loff_t size, unsigned long flags) 5878 { 5879 return __shmem_file_setup(mnt, name, size, flags, 0); 5880 } 5881 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5882 5883 /** 5884 * shmem_zero_setup - setup a shared anonymous mapping 5885 * @vma: the vma to be mmapped is prepared by do_mmap 5886 */ 5887 int shmem_zero_setup(struct vm_area_struct *vma) 5888 { 5889 struct file *file; 5890 loff_t size = vma->vm_end - vma->vm_start; 5891 5892 /* 5893 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5894 * between XFS directory reading and selinux: since this file is only 5895 * accessible to the user through its mapping, use S_PRIVATE flag to 5896 * bypass file security, in the same way as shmem_kernel_file_setup(). 5897 */ 5898 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 5899 if (IS_ERR(file)) 5900 return PTR_ERR(file); 5901 5902 if (vma->vm_file) 5903 fput(vma->vm_file); 5904 vma->vm_file = file; 5905 vma->vm_ops = &shmem_anon_vm_ops; 5906 5907 return 0; 5908 } 5909 5910 /** 5911 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5912 * @mapping: the folio's address_space 5913 * @index: the folio index 5914 * @gfp: the page allocator flags to use if allocating 5915 * 5916 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5917 * with any new page allocations done using the specified allocation flags. 5918 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5919 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5920 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5921 * 5922 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5923 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5924 */ 5925 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5926 pgoff_t index, gfp_t gfp) 5927 { 5928 #ifdef CONFIG_SHMEM 5929 struct inode *inode = mapping->host; 5930 struct folio *folio; 5931 int error; 5932 5933 error = shmem_get_folio_gfp(inode, index, i_size_read(inode), 5934 &folio, SGP_CACHE, gfp, NULL, NULL); 5935 if (error) 5936 return ERR_PTR(error); 5937 5938 folio_unlock(folio); 5939 return folio; 5940 #else 5941 /* 5942 * The tiny !SHMEM case uses ramfs without swap 5943 */ 5944 return mapping_read_folio_gfp(mapping, index, gfp); 5945 #endif 5946 } 5947 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 5948 5949 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 5950 pgoff_t index, gfp_t gfp) 5951 { 5952 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 5953 struct page *page; 5954 5955 if (IS_ERR(folio)) 5956 return &folio->page; 5957 5958 page = folio_file_page(folio, index); 5959 if (PageHWPoison(page)) { 5960 folio_put(folio); 5961 return ERR_PTR(-EIO); 5962 } 5963 5964 return page; 5965 } 5966 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 5967